Merge branch 'intelfb-patches' of master.kernel.org:/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/syscalls.h>
68
69 #include "audit.h"
70
71 extern struct list_head audit_filter_list[];
72
73 /* No syscall auditing will take place unless audit_enabled != 0. */
74 extern int audit_enabled;
75
76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
77 * for saving names from getname(). */
78 #define AUDIT_NAMES 20
79
80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
81 * audit_context from being used for nameless inodes from
82 * path_lookup. */
83 #define AUDIT_NAMES_RESERVED 7
84
85 /* Indicates that audit should log the full pathname. */
86 #define AUDIT_NAME_FULL -1
87
88 /* number of audit rules */
89 int audit_n_rules;
90
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
94 *
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 const char *name;
98 int name_len; /* number of name's characters to log */
99 unsigned name_put; /* call __putname() for this name */
100 unsigned long ino;
101 dev_t dev;
102 umode_t mode;
103 uid_t uid;
104 gid_t gid;
105 dev_t rdev;
106 u32 osid;
107 };
108
109 struct audit_aux_data {
110 struct audit_aux_data *next;
111 int type;
112 };
113
114 #define AUDIT_AUX_IPCPERM 0
115
116 struct audit_aux_data_mq_open {
117 struct audit_aux_data d;
118 int oflag;
119 mode_t mode;
120 struct mq_attr attr;
121 };
122
123 struct audit_aux_data_mq_sendrecv {
124 struct audit_aux_data d;
125 mqd_t mqdes;
126 size_t msg_len;
127 unsigned int msg_prio;
128 struct timespec abs_timeout;
129 };
130
131 struct audit_aux_data_mq_notify {
132 struct audit_aux_data d;
133 mqd_t mqdes;
134 struct sigevent notification;
135 };
136
137 struct audit_aux_data_mq_getsetattr {
138 struct audit_aux_data d;
139 mqd_t mqdes;
140 struct mq_attr mqstat;
141 };
142
143 struct audit_aux_data_ipcctl {
144 struct audit_aux_data d;
145 struct ipc_perm p;
146 unsigned long qbytes;
147 uid_t uid;
148 gid_t gid;
149 mode_t mode;
150 u32 osid;
151 };
152
153 struct audit_aux_data_execve {
154 struct audit_aux_data d;
155 int argc;
156 int envc;
157 char mem[0];
158 };
159
160 struct audit_aux_data_socketcall {
161 struct audit_aux_data d;
162 int nargs;
163 unsigned long args[0];
164 };
165
166 struct audit_aux_data_sockaddr {
167 struct audit_aux_data d;
168 int len;
169 char a[0];
170 };
171
172 struct audit_aux_data_path {
173 struct audit_aux_data d;
174 struct dentry *dentry;
175 struct vfsmount *mnt;
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state;
183 unsigned int serial; /* serial number for record */
184 struct timespec ctime; /* time of syscall entry */
185 uid_t loginuid; /* login uid (identity) */
186 int major; /* syscall number */
187 unsigned long argv[4]; /* syscall arguments */
188 int return_valid; /* return code is valid */
189 long return_code;/* syscall return code */
190 int auditable; /* 1 if record should be written */
191 int name_count;
192 struct audit_names names[AUDIT_NAMES];
193 char * filterkey; /* key for rule that triggered record */
194 struct dentry * pwd;
195 struct vfsmount * pwdmnt;
196 struct audit_context *previous; /* For nested syscalls */
197 struct audit_aux_data *aux;
198
199 /* Save things to print about task_struct */
200 pid_t pid, ppid;
201 uid_t uid, euid, suid, fsuid;
202 gid_t gid, egid, sgid, fsgid;
203 unsigned long personality;
204 int arch;
205
206 #if AUDIT_DEBUG
207 int put_count;
208 int ino_count;
209 #endif
210 };
211
212 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
213 static inline int open_arg(int flags, int mask)
214 {
215 int n = ACC_MODE(flags);
216 if (flags & (O_TRUNC | O_CREAT))
217 n |= AUDIT_PERM_WRITE;
218 return n & mask;
219 }
220
221 static int audit_match_perm(struct audit_context *ctx, int mask)
222 {
223 unsigned n = ctx->major;
224 switch (audit_classify_syscall(ctx->arch, n)) {
225 case 0: /* native */
226 if ((mask & AUDIT_PERM_WRITE) &&
227 audit_match_class(AUDIT_CLASS_WRITE, n))
228 return 1;
229 if ((mask & AUDIT_PERM_READ) &&
230 audit_match_class(AUDIT_CLASS_READ, n))
231 return 1;
232 if ((mask & AUDIT_PERM_ATTR) &&
233 audit_match_class(AUDIT_CLASS_CHATTR, n))
234 return 1;
235 return 0;
236 case 1: /* 32bit on biarch */
237 if ((mask & AUDIT_PERM_WRITE) &&
238 audit_match_class(AUDIT_CLASS_WRITE_32, n))
239 return 1;
240 if ((mask & AUDIT_PERM_READ) &&
241 audit_match_class(AUDIT_CLASS_READ_32, n))
242 return 1;
243 if ((mask & AUDIT_PERM_ATTR) &&
244 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
245 return 1;
246 return 0;
247 case 2: /* open */
248 return mask & ACC_MODE(ctx->argv[1]);
249 case 3: /* openat */
250 return mask & ACC_MODE(ctx->argv[2]);
251 case 4: /* socketcall */
252 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
253 case 5: /* execve */
254 return mask & AUDIT_PERM_EXEC;
255 default:
256 return 0;
257 }
258 }
259
260 /* Determine if any context name data matches a rule's watch data */
261 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
262 * otherwise. */
263 static int audit_filter_rules(struct task_struct *tsk,
264 struct audit_krule *rule,
265 struct audit_context *ctx,
266 struct audit_names *name,
267 enum audit_state *state)
268 {
269 int i, j, need_sid = 1;
270 u32 sid;
271
272 for (i = 0; i < rule->field_count; i++) {
273 struct audit_field *f = &rule->fields[i];
274 int result = 0;
275
276 switch (f->type) {
277 case AUDIT_PID:
278 result = audit_comparator(tsk->pid, f->op, f->val);
279 break;
280 case AUDIT_PPID:
281 if (ctx)
282 result = audit_comparator(ctx->ppid, f->op, f->val);
283 break;
284 case AUDIT_UID:
285 result = audit_comparator(tsk->uid, f->op, f->val);
286 break;
287 case AUDIT_EUID:
288 result = audit_comparator(tsk->euid, f->op, f->val);
289 break;
290 case AUDIT_SUID:
291 result = audit_comparator(tsk->suid, f->op, f->val);
292 break;
293 case AUDIT_FSUID:
294 result = audit_comparator(tsk->fsuid, f->op, f->val);
295 break;
296 case AUDIT_GID:
297 result = audit_comparator(tsk->gid, f->op, f->val);
298 break;
299 case AUDIT_EGID:
300 result = audit_comparator(tsk->egid, f->op, f->val);
301 break;
302 case AUDIT_SGID:
303 result = audit_comparator(tsk->sgid, f->op, f->val);
304 break;
305 case AUDIT_FSGID:
306 result = audit_comparator(tsk->fsgid, f->op, f->val);
307 break;
308 case AUDIT_PERS:
309 result = audit_comparator(tsk->personality, f->op, f->val);
310 break;
311 case AUDIT_ARCH:
312 if (ctx)
313 result = audit_comparator(ctx->arch, f->op, f->val);
314 break;
315
316 case AUDIT_EXIT:
317 if (ctx && ctx->return_valid)
318 result = audit_comparator(ctx->return_code, f->op, f->val);
319 break;
320 case AUDIT_SUCCESS:
321 if (ctx && ctx->return_valid) {
322 if (f->val)
323 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
324 else
325 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
326 }
327 break;
328 case AUDIT_DEVMAJOR:
329 if (name)
330 result = audit_comparator(MAJOR(name->dev),
331 f->op, f->val);
332 else if (ctx) {
333 for (j = 0; j < ctx->name_count; j++) {
334 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
335 ++result;
336 break;
337 }
338 }
339 }
340 break;
341 case AUDIT_DEVMINOR:
342 if (name)
343 result = audit_comparator(MINOR(name->dev),
344 f->op, f->val);
345 else if (ctx) {
346 for (j = 0; j < ctx->name_count; j++) {
347 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
348 ++result;
349 break;
350 }
351 }
352 }
353 break;
354 case AUDIT_INODE:
355 if (name)
356 result = (name->ino == f->val);
357 else if (ctx) {
358 for (j = 0; j < ctx->name_count; j++) {
359 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
360 ++result;
361 break;
362 }
363 }
364 }
365 break;
366 case AUDIT_WATCH:
367 if (name && rule->watch->ino != (unsigned long)-1)
368 result = (name->dev == rule->watch->dev &&
369 name->ino == rule->watch->ino);
370 break;
371 case AUDIT_LOGINUID:
372 result = 0;
373 if (ctx)
374 result = audit_comparator(ctx->loginuid, f->op, f->val);
375 break;
376 case AUDIT_SUBJ_USER:
377 case AUDIT_SUBJ_ROLE:
378 case AUDIT_SUBJ_TYPE:
379 case AUDIT_SUBJ_SEN:
380 case AUDIT_SUBJ_CLR:
381 /* NOTE: this may return negative values indicating
382 a temporary error. We simply treat this as a
383 match for now to avoid losing information that
384 may be wanted. An error message will also be
385 logged upon error */
386 if (f->se_rule) {
387 if (need_sid) {
388 selinux_get_task_sid(tsk, &sid);
389 need_sid = 0;
390 }
391 result = selinux_audit_rule_match(sid, f->type,
392 f->op,
393 f->se_rule,
394 ctx);
395 }
396 break;
397 case AUDIT_OBJ_USER:
398 case AUDIT_OBJ_ROLE:
399 case AUDIT_OBJ_TYPE:
400 case AUDIT_OBJ_LEV_LOW:
401 case AUDIT_OBJ_LEV_HIGH:
402 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
403 also applies here */
404 if (f->se_rule) {
405 /* Find files that match */
406 if (name) {
407 result = selinux_audit_rule_match(
408 name->osid, f->type, f->op,
409 f->se_rule, ctx);
410 } else if (ctx) {
411 for (j = 0; j < ctx->name_count; j++) {
412 if (selinux_audit_rule_match(
413 ctx->names[j].osid,
414 f->type, f->op,
415 f->se_rule, ctx)) {
416 ++result;
417 break;
418 }
419 }
420 }
421 /* Find ipc objects that match */
422 if (ctx) {
423 struct audit_aux_data *aux;
424 for (aux = ctx->aux; aux;
425 aux = aux->next) {
426 if (aux->type == AUDIT_IPC) {
427 struct audit_aux_data_ipcctl *axi = (void *)aux;
428 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
429 ++result;
430 break;
431 }
432 }
433 }
434 }
435 }
436 break;
437 case AUDIT_ARG0:
438 case AUDIT_ARG1:
439 case AUDIT_ARG2:
440 case AUDIT_ARG3:
441 if (ctx)
442 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
443 break;
444 case AUDIT_FILTERKEY:
445 /* ignore this field for filtering */
446 result = 1;
447 break;
448 case AUDIT_PERM:
449 result = audit_match_perm(ctx, f->val);
450 break;
451 }
452
453 if (!result)
454 return 0;
455 }
456 if (rule->filterkey)
457 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
458 switch (rule->action) {
459 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
460 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
461 }
462 return 1;
463 }
464
465 /* At process creation time, we can determine if system-call auditing is
466 * completely disabled for this task. Since we only have the task
467 * structure at this point, we can only check uid and gid.
468 */
469 static enum audit_state audit_filter_task(struct task_struct *tsk)
470 {
471 struct audit_entry *e;
472 enum audit_state state;
473
474 rcu_read_lock();
475 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
476 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
477 rcu_read_unlock();
478 return state;
479 }
480 }
481 rcu_read_unlock();
482 return AUDIT_BUILD_CONTEXT;
483 }
484
485 /* At syscall entry and exit time, this filter is called if the
486 * audit_state is not low enough that auditing cannot take place, but is
487 * also not high enough that we already know we have to write an audit
488 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
489 */
490 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
491 struct audit_context *ctx,
492 struct list_head *list)
493 {
494 struct audit_entry *e;
495 enum audit_state state;
496
497 if (audit_pid && tsk->tgid == audit_pid)
498 return AUDIT_DISABLED;
499
500 rcu_read_lock();
501 if (!list_empty(list)) {
502 int word = AUDIT_WORD(ctx->major);
503 int bit = AUDIT_BIT(ctx->major);
504
505 list_for_each_entry_rcu(e, list, list) {
506 if ((e->rule.mask[word] & bit) == bit &&
507 audit_filter_rules(tsk, &e->rule, ctx, NULL,
508 &state)) {
509 rcu_read_unlock();
510 return state;
511 }
512 }
513 }
514 rcu_read_unlock();
515 return AUDIT_BUILD_CONTEXT;
516 }
517
518 /* At syscall exit time, this filter is called if any audit_names[] have been
519 * collected during syscall processing. We only check rules in sublists at hash
520 * buckets applicable to the inode numbers in audit_names[].
521 * Regarding audit_state, same rules apply as for audit_filter_syscall().
522 */
523 enum audit_state audit_filter_inodes(struct task_struct *tsk,
524 struct audit_context *ctx)
525 {
526 int i;
527 struct audit_entry *e;
528 enum audit_state state;
529
530 if (audit_pid && tsk->tgid == audit_pid)
531 return AUDIT_DISABLED;
532
533 rcu_read_lock();
534 for (i = 0; i < ctx->name_count; i++) {
535 int word = AUDIT_WORD(ctx->major);
536 int bit = AUDIT_BIT(ctx->major);
537 struct audit_names *n = &ctx->names[i];
538 int h = audit_hash_ino((u32)n->ino);
539 struct list_head *list = &audit_inode_hash[h];
540
541 if (list_empty(list))
542 continue;
543
544 list_for_each_entry_rcu(e, list, list) {
545 if ((e->rule.mask[word] & bit) == bit &&
546 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
547 rcu_read_unlock();
548 return state;
549 }
550 }
551 }
552 rcu_read_unlock();
553 return AUDIT_BUILD_CONTEXT;
554 }
555
556 void audit_set_auditable(struct audit_context *ctx)
557 {
558 ctx->auditable = 1;
559 }
560
561 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
562 int return_valid,
563 int return_code)
564 {
565 struct audit_context *context = tsk->audit_context;
566
567 if (likely(!context))
568 return NULL;
569 context->return_valid = return_valid;
570 context->return_code = return_code;
571
572 if (context->in_syscall && !context->dummy && !context->auditable) {
573 enum audit_state state;
574
575 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
576 if (state == AUDIT_RECORD_CONTEXT) {
577 context->auditable = 1;
578 goto get_context;
579 }
580
581 state = audit_filter_inodes(tsk, context);
582 if (state == AUDIT_RECORD_CONTEXT)
583 context->auditable = 1;
584
585 }
586
587 get_context:
588
589 tsk->audit_context = NULL;
590 return context;
591 }
592
593 static inline void audit_free_names(struct audit_context *context)
594 {
595 int i;
596
597 #if AUDIT_DEBUG == 2
598 if (context->auditable
599 ||context->put_count + context->ino_count != context->name_count) {
600 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
601 " name_count=%d put_count=%d"
602 " ino_count=%d [NOT freeing]\n",
603 __FILE__, __LINE__,
604 context->serial, context->major, context->in_syscall,
605 context->name_count, context->put_count,
606 context->ino_count);
607 for (i = 0; i < context->name_count; i++) {
608 printk(KERN_ERR "names[%d] = %p = %s\n", i,
609 context->names[i].name,
610 context->names[i].name ?: "(null)");
611 }
612 dump_stack();
613 return;
614 }
615 #endif
616 #if AUDIT_DEBUG
617 context->put_count = 0;
618 context->ino_count = 0;
619 #endif
620
621 for (i = 0; i < context->name_count; i++) {
622 if (context->names[i].name && context->names[i].name_put)
623 __putname(context->names[i].name);
624 }
625 context->name_count = 0;
626 if (context->pwd)
627 dput(context->pwd);
628 if (context->pwdmnt)
629 mntput(context->pwdmnt);
630 context->pwd = NULL;
631 context->pwdmnt = NULL;
632 }
633
634 static inline void audit_free_aux(struct audit_context *context)
635 {
636 struct audit_aux_data *aux;
637
638 while ((aux = context->aux)) {
639 if (aux->type == AUDIT_AVC_PATH) {
640 struct audit_aux_data_path *axi = (void *)aux;
641 dput(axi->dentry);
642 mntput(axi->mnt);
643 }
644
645 context->aux = aux->next;
646 kfree(aux);
647 }
648 }
649
650 static inline void audit_zero_context(struct audit_context *context,
651 enum audit_state state)
652 {
653 uid_t loginuid = context->loginuid;
654
655 memset(context, 0, sizeof(*context));
656 context->state = state;
657 context->loginuid = loginuid;
658 }
659
660 static inline struct audit_context *audit_alloc_context(enum audit_state state)
661 {
662 struct audit_context *context;
663
664 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
665 return NULL;
666 audit_zero_context(context, state);
667 return context;
668 }
669
670 /**
671 * audit_alloc - allocate an audit context block for a task
672 * @tsk: task
673 *
674 * Filter on the task information and allocate a per-task audit context
675 * if necessary. Doing so turns on system call auditing for the
676 * specified task. This is called from copy_process, so no lock is
677 * needed.
678 */
679 int audit_alloc(struct task_struct *tsk)
680 {
681 struct audit_context *context;
682 enum audit_state state;
683
684 if (likely(!audit_enabled))
685 return 0; /* Return if not auditing. */
686
687 state = audit_filter_task(tsk);
688 if (likely(state == AUDIT_DISABLED))
689 return 0;
690
691 if (!(context = audit_alloc_context(state))) {
692 audit_log_lost("out of memory in audit_alloc");
693 return -ENOMEM;
694 }
695
696 /* Preserve login uid */
697 context->loginuid = -1;
698 if (current->audit_context)
699 context->loginuid = current->audit_context->loginuid;
700
701 tsk->audit_context = context;
702 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
703 return 0;
704 }
705
706 static inline void audit_free_context(struct audit_context *context)
707 {
708 struct audit_context *previous;
709 int count = 0;
710
711 do {
712 previous = context->previous;
713 if (previous || (count && count < 10)) {
714 ++count;
715 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
716 " freeing multiple contexts (%d)\n",
717 context->serial, context->major,
718 context->name_count, count);
719 }
720 audit_free_names(context);
721 audit_free_aux(context);
722 kfree(context->filterkey);
723 kfree(context);
724 context = previous;
725 } while (context);
726 if (count >= 10)
727 printk(KERN_ERR "audit: freed %d contexts\n", count);
728 }
729
730 static void audit_log_task_context(struct audit_buffer *ab)
731 {
732 char *ctx = NULL;
733 ssize_t len = 0;
734
735 len = security_getprocattr(current, "current", NULL, 0);
736 if (len < 0) {
737 if (len != -EINVAL)
738 goto error_path;
739 return;
740 }
741
742 ctx = kmalloc(len, GFP_KERNEL);
743 if (!ctx)
744 goto error_path;
745
746 len = security_getprocattr(current, "current", ctx, len);
747 if (len < 0 )
748 goto error_path;
749
750 audit_log_format(ab, " subj=%s", ctx);
751 return;
752
753 error_path:
754 kfree(ctx);
755 audit_panic("error in audit_log_task_context");
756 return;
757 }
758
759 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
760 {
761 char name[sizeof(tsk->comm)];
762 struct mm_struct *mm = tsk->mm;
763 struct vm_area_struct *vma;
764
765 /* tsk == current */
766
767 get_task_comm(name, tsk);
768 audit_log_format(ab, " comm=");
769 audit_log_untrustedstring(ab, name);
770
771 if (mm) {
772 down_read(&mm->mmap_sem);
773 vma = mm->mmap;
774 while (vma) {
775 if ((vma->vm_flags & VM_EXECUTABLE) &&
776 vma->vm_file) {
777 audit_log_d_path(ab, "exe=",
778 vma->vm_file->f_dentry,
779 vma->vm_file->f_vfsmnt);
780 break;
781 }
782 vma = vma->vm_next;
783 }
784 up_read(&mm->mmap_sem);
785 }
786 audit_log_task_context(ab);
787 }
788
789 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
790 {
791 int i, call_panic = 0;
792 struct audit_buffer *ab;
793 struct audit_aux_data *aux;
794 const char *tty;
795
796 /* tsk == current */
797 context->pid = tsk->pid;
798 context->ppid = sys_getppid(); /* sic. tsk == current in all cases */
799 context->uid = tsk->uid;
800 context->gid = tsk->gid;
801 context->euid = tsk->euid;
802 context->suid = tsk->suid;
803 context->fsuid = tsk->fsuid;
804 context->egid = tsk->egid;
805 context->sgid = tsk->sgid;
806 context->fsgid = tsk->fsgid;
807 context->personality = tsk->personality;
808
809 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
810 if (!ab)
811 return; /* audit_panic has been called */
812 audit_log_format(ab, "arch=%x syscall=%d",
813 context->arch, context->major);
814 if (context->personality != PER_LINUX)
815 audit_log_format(ab, " per=%lx", context->personality);
816 if (context->return_valid)
817 audit_log_format(ab, " success=%s exit=%ld",
818 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
819 context->return_code);
820
821 mutex_lock(&tty_mutex);
822 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
823 tty = tsk->signal->tty->name;
824 else
825 tty = "(none)";
826 audit_log_format(ab,
827 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
828 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
829 " euid=%u suid=%u fsuid=%u"
830 " egid=%u sgid=%u fsgid=%u tty=%s",
831 context->argv[0],
832 context->argv[1],
833 context->argv[2],
834 context->argv[3],
835 context->name_count,
836 context->ppid,
837 context->pid,
838 context->loginuid,
839 context->uid,
840 context->gid,
841 context->euid, context->suid, context->fsuid,
842 context->egid, context->sgid, context->fsgid, tty);
843
844 mutex_unlock(&tty_mutex);
845
846 audit_log_task_info(ab, tsk);
847 if (context->filterkey) {
848 audit_log_format(ab, " key=");
849 audit_log_untrustedstring(ab, context->filterkey);
850 } else
851 audit_log_format(ab, " key=(null)");
852 audit_log_end(ab);
853
854 for (aux = context->aux; aux; aux = aux->next) {
855
856 ab = audit_log_start(context, GFP_KERNEL, aux->type);
857 if (!ab)
858 continue; /* audit_panic has been called */
859
860 switch (aux->type) {
861 case AUDIT_MQ_OPEN: {
862 struct audit_aux_data_mq_open *axi = (void *)aux;
863 audit_log_format(ab,
864 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
865 "mq_msgsize=%ld mq_curmsgs=%ld",
866 axi->oflag, axi->mode, axi->attr.mq_flags,
867 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
868 axi->attr.mq_curmsgs);
869 break; }
870
871 case AUDIT_MQ_SENDRECV: {
872 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
873 audit_log_format(ab,
874 "mqdes=%d msg_len=%zd msg_prio=%u "
875 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
876 axi->mqdes, axi->msg_len, axi->msg_prio,
877 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
878 break; }
879
880 case AUDIT_MQ_NOTIFY: {
881 struct audit_aux_data_mq_notify *axi = (void *)aux;
882 audit_log_format(ab,
883 "mqdes=%d sigev_signo=%d",
884 axi->mqdes,
885 axi->notification.sigev_signo);
886 break; }
887
888 case AUDIT_MQ_GETSETATTR: {
889 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
890 audit_log_format(ab,
891 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
892 "mq_curmsgs=%ld ",
893 axi->mqdes,
894 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
895 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
896 break; }
897
898 case AUDIT_IPC: {
899 struct audit_aux_data_ipcctl *axi = (void *)aux;
900 audit_log_format(ab,
901 "ouid=%u ogid=%u mode=%x",
902 axi->uid, axi->gid, axi->mode);
903 if (axi->osid != 0) {
904 char *ctx = NULL;
905 u32 len;
906 if (selinux_sid_to_string(
907 axi->osid, &ctx, &len)) {
908 audit_log_format(ab, " osid=%u",
909 axi->osid);
910 call_panic = 1;
911 } else
912 audit_log_format(ab, " obj=%s", ctx);
913 kfree(ctx);
914 }
915 break; }
916
917 case AUDIT_IPC_SET_PERM: {
918 struct audit_aux_data_ipcctl *axi = (void *)aux;
919 audit_log_format(ab,
920 "qbytes=%lx ouid=%u ogid=%u mode=%x",
921 axi->qbytes, axi->uid, axi->gid, axi->mode);
922 break; }
923
924 case AUDIT_EXECVE: {
925 struct audit_aux_data_execve *axi = (void *)aux;
926 int i;
927 const char *p;
928 for (i = 0, p = axi->mem; i < axi->argc; i++) {
929 audit_log_format(ab, "a%d=", i);
930 p = audit_log_untrustedstring(ab, p);
931 audit_log_format(ab, "\n");
932 }
933 break; }
934
935 case AUDIT_SOCKETCALL: {
936 int i;
937 struct audit_aux_data_socketcall *axs = (void *)aux;
938 audit_log_format(ab, "nargs=%d", axs->nargs);
939 for (i=0; i<axs->nargs; i++)
940 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
941 break; }
942
943 case AUDIT_SOCKADDR: {
944 struct audit_aux_data_sockaddr *axs = (void *)aux;
945
946 audit_log_format(ab, "saddr=");
947 audit_log_hex(ab, axs->a, axs->len);
948 break; }
949
950 case AUDIT_AVC_PATH: {
951 struct audit_aux_data_path *axi = (void *)aux;
952 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
953 break; }
954
955 }
956 audit_log_end(ab);
957 }
958
959 if (context->pwd && context->pwdmnt) {
960 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
961 if (ab) {
962 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
963 audit_log_end(ab);
964 }
965 }
966 for (i = 0; i < context->name_count; i++) {
967 struct audit_names *n = &context->names[i];
968
969 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
970 if (!ab)
971 continue; /* audit_panic has been called */
972
973 audit_log_format(ab, "item=%d", i);
974
975 if (n->name) {
976 switch(n->name_len) {
977 case AUDIT_NAME_FULL:
978 /* log the full path */
979 audit_log_format(ab, " name=");
980 audit_log_untrustedstring(ab, n->name);
981 break;
982 case 0:
983 /* name was specified as a relative path and the
984 * directory component is the cwd */
985 audit_log_d_path(ab, " name=", context->pwd,
986 context->pwdmnt);
987 break;
988 default:
989 /* log the name's directory component */
990 audit_log_format(ab, " name=");
991 audit_log_n_untrustedstring(ab, n->name_len,
992 n->name);
993 }
994 } else
995 audit_log_format(ab, " name=(null)");
996
997 if (n->ino != (unsigned long)-1) {
998 audit_log_format(ab, " inode=%lu"
999 " dev=%02x:%02x mode=%#o"
1000 " ouid=%u ogid=%u rdev=%02x:%02x",
1001 n->ino,
1002 MAJOR(n->dev),
1003 MINOR(n->dev),
1004 n->mode,
1005 n->uid,
1006 n->gid,
1007 MAJOR(n->rdev),
1008 MINOR(n->rdev));
1009 }
1010 if (n->osid != 0) {
1011 char *ctx = NULL;
1012 u32 len;
1013 if (selinux_sid_to_string(
1014 n->osid, &ctx, &len)) {
1015 audit_log_format(ab, " osid=%u", n->osid);
1016 call_panic = 2;
1017 } else
1018 audit_log_format(ab, " obj=%s", ctx);
1019 kfree(ctx);
1020 }
1021
1022 audit_log_end(ab);
1023 }
1024 if (call_panic)
1025 audit_panic("error converting sid to string");
1026 }
1027
1028 /**
1029 * audit_free - free a per-task audit context
1030 * @tsk: task whose audit context block to free
1031 *
1032 * Called from copy_process and do_exit
1033 */
1034 void audit_free(struct task_struct *tsk)
1035 {
1036 struct audit_context *context;
1037
1038 context = audit_get_context(tsk, 0, 0);
1039 if (likely(!context))
1040 return;
1041
1042 /* Check for system calls that do not go through the exit
1043 * function (e.g., exit_group), then free context block.
1044 * We use GFP_ATOMIC here because we might be doing this
1045 * in the context of the idle thread */
1046 /* that can happen only if we are called from do_exit() */
1047 if (context->in_syscall && context->auditable)
1048 audit_log_exit(context, tsk);
1049
1050 audit_free_context(context);
1051 }
1052
1053 /**
1054 * audit_syscall_entry - fill in an audit record at syscall entry
1055 * @tsk: task being audited
1056 * @arch: architecture type
1057 * @major: major syscall type (function)
1058 * @a1: additional syscall register 1
1059 * @a2: additional syscall register 2
1060 * @a3: additional syscall register 3
1061 * @a4: additional syscall register 4
1062 *
1063 * Fill in audit context at syscall entry. This only happens if the
1064 * audit context was created when the task was created and the state or
1065 * filters demand the audit context be built. If the state from the
1066 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1067 * then the record will be written at syscall exit time (otherwise, it
1068 * will only be written if another part of the kernel requests that it
1069 * be written).
1070 */
1071 void audit_syscall_entry(int arch, int major,
1072 unsigned long a1, unsigned long a2,
1073 unsigned long a3, unsigned long a4)
1074 {
1075 struct task_struct *tsk = current;
1076 struct audit_context *context = tsk->audit_context;
1077 enum audit_state state;
1078
1079 BUG_ON(!context);
1080
1081 /*
1082 * This happens only on certain architectures that make system
1083 * calls in kernel_thread via the entry.S interface, instead of
1084 * with direct calls. (If you are porting to a new
1085 * architecture, hitting this condition can indicate that you
1086 * got the _exit/_leave calls backward in entry.S.)
1087 *
1088 * i386 no
1089 * x86_64 no
1090 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1091 *
1092 * This also happens with vm86 emulation in a non-nested manner
1093 * (entries without exits), so this case must be caught.
1094 */
1095 if (context->in_syscall) {
1096 struct audit_context *newctx;
1097
1098 #if AUDIT_DEBUG
1099 printk(KERN_ERR
1100 "audit(:%d) pid=%d in syscall=%d;"
1101 " entering syscall=%d\n",
1102 context->serial, tsk->pid, context->major, major);
1103 #endif
1104 newctx = audit_alloc_context(context->state);
1105 if (newctx) {
1106 newctx->previous = context;
1107 context = newctx;
1108 tsk->audit_context = newctx;
1109 } else {
1110 /* If we can't alloc a new context, the best we
1111 * can do is to leak memory (any pending putname
1112 * will be lost). The only other alternative is
1113 * to abandon auditing. */
1114 audit_zero_context(context, context->state);
1115 }
1116 }
1117 BUG_ON(context->in_syscall || context->name_count);
1118
1119 if (!audit_enabled)
1120 return;
1121
1122 context->arch = arch;
1123 context->major = major;
1124 context->argv[0] = a1;
1125 context->argv[1] = a2;
1126 context->argv[2] = a3;
1127 context->argv[3] = a4;
1128
1129 state = context->state;
1130 context->dummy = !audit_n_rules;
1131 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1132 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1133 if (likely(state == AUDIT_DISABLED))
1134 return;
1135
1136 context->serial = 0;
1137 context->ctime = CURRENT_TIME;
1138 context->in_syscall = 1;
1139 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1140 }
1141
1142 /**
1143 * audit_syscall_exit - deallocate audit context after a system call
1144 * @tsk: task being audited
1145 * @valid: success/failure flag
1146 * @return_code: syscall return value
1147 *
1148 * Tear down after system call. If the audit context has been marked as
1149 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1150 * filtering, or because some other part of the kernel write an audit
1151 * message), then write out the syscall information. In call cases,
1152 * free the names stored from getname().
1153 */
1154 void audit_syscall_exit(int valid, long return_code)
1155 {
1156 struct task_struct *tsk = current;
1157 struct audit_context *context;
1158
1159 context = audit_get_context(tsk, valid, return_code);
1160
1161 if (likely(!context))
1162 return;
1163
1164 if (context->in_syscall && context->auditable)
1165 audit_log_exit(context, tsk);
1166
1167 context->in_syscall = 0;
1168 context->auditable = 0;
1169
1170 if (context->previous) {
1171 struct audit_context *new_context = context->previous;
1172 context->previous = NULL;
1173 audit_free_context(context);
1174 tsk->audit_context = new_context;
1175 } else {
1176 audit_free_names(context);
1177 audit_free_aux(context);
1178 kfree(context->filterkey);
1179 context->filterkey = NULL;
1180 tsk->audit_context = context;
1181 }
1182 }
1183
1184 /**
1185 * audit_getname - add a name to the list
1186 * @name: name to add
1187 *
1188 * Add a name to the list of audit names for this context.
1189 * Called from fs/namei.c:getname().
1190 */
1191 void __audit_getname(const char *name)
1192 {
1193 struct audit_context *context = current->audit_context;
1194
1195 if (IS_ERR(name) || !name)
1196 return;
1197
1198 if (!context->in_syscall) {
1199 #if AUDIT_DEBUG == 2
1200 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1201 __FILE__, __LINE__, context->serial, name);
1202 dump_stack();
1203 #endif
1204 return;
1205 }
1206 BUG_ON(context->name_count >= AUDIT_NAMES);
1207 context->names[context->name_count].name = name;
1208 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1209 context->names[context->name_count].name_put = 1;
1210 context->names[context->name_count].ino = (unsigned long)-1;
1211 ++context->name_count;
1212 if (!context->pwd) {
1213 read_lock(&current->fs->lock);
1214 context->pwd = dget(current->fs->pwd);
1215 context->pwdmnt = mntget(current->fs->pwdmnt);
1216 read_unlock(&current->fs->lock);
1217 }
1218
1219 }
1220
1221 /* audit_putname - intercept a putname request
1222 * @name: name to intercept and delay for putname
1223 *
1224 * If we have stored the name from getname in the audit context,
1225 * then we delay the putname until syscall exit.
1226 * Called from include/linux/fs.h:putname().
1227 */
1228 void audit_putname(const char *name)
1229 {
1230 struct audit_context *context = current->audit_context;
1231
1232 BUG_ON(!context);
1233 if (!context->in_syscall) {
1234 #if AUDIT_DEBUG == 2
1235 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1236 __FILE__, __LINE__, context->serial, name);
1237 if (context->name_count) {
1238 int i;
1239 for (i = 0; i < context->name_count; i++)
1240 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1241 context->names[i].name,
1242 context->names[i].name ?: "(null)");
1243 }
1244 #endif
1245 __putname(name);
1246 }
1247 #if AUDIT_DEBUG
1248 else {
1249 ++context->put_count;
1250 if (context->put_count > context->name_count) {
1251 printk(KERN_ERR "%s:%d(:%d): major=%d"
1252 " in_syscall=%d putname(%p) name_count=%d"
1253 " put_count=%d\n",
1254 __FILE__, __LINE__,
1255 context->serial, context->major,
1256 context->in_syscall, name, context->name_count,
1257 context->put_count);
1258 dump_stack();
1259 }
1260 }
1261 #endif
1262 }
1263
1264 /* Copy inode data into an audit_names. */
1265 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1266 {
1267 name->ino = inode->i_ino;
1268 name->dev = inode->i_sb->s_dev;
1269 name->mode = inode->i_mode;
1270 name->uid = inode->i_uid;
1271 name->gid = inode->i_gid;
1272 name->rdev = inode->i_rdev;
1273 selinux_get_inode_sid(inode, &name->osid);
1274 }
1275
1276 /**
1277 * audit_inode - store the inode and device from a lookup
1278 * @name: name being audited
1279 * @inode: inode being audited
1280 *
1281 * Called from fs/namei.c:path_lookup().
1282 */
1283 void __audit_inode(const char *name, const struct inode *inode)
1284 {
1285 int idx;
1286 struct audit_context *context = current->audit_context;
1287
1288 if (!context->in_syscall)
1289 return;
1290 if (context->name_count
1291 && context->names[context->name_count-1].name
1292 && context->names[context->name_count-1].name == name)
1293 idx = context->name_count - 1;
1294 else if (context->name_count > 1
1295 && context->names[context->name_count-2].name
1296 && context->names[context->name_count-2].name == name)
1297 idx = context->name_count - 2;
1298 else {
1299 /* FIXME: how much do we care about inodes that have no
1300 * associated name? */
1301 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1302 return;
1303 idx = context->name_count++;
1304 context->names[idx].name = NULL;
1305 #if AUDIT_DEBUG
1306 ++context->ino_count;
1307 #endif
1308 }
1309 audit_copy_inode(&context->names[idx], inode);
1310 }
1311
1312 /**
1313 * audit_inode_child - collect inode info for created/removed objects
1314 * @dname: inode's dentry name
1315 * @inode: inode being audited
1316 * @parent: inode of dentry parent
1317 *
1318 * For syscalls that create or remove filesystem objects, audit_inode
1319 * can only collect information for the filesystem object's parent.
1320 * This call updates the audit context with the child's information.
1321 * Syscalls that create a new filesystem object must be hooked after
1322 * the object is created. Syscalls that remove a filesystem object
1323 * must be hooked prior, in order to capture the target inode during
1324 * unsuccessful attempts.
1325 */
1326 void __audit_inode_child(const char *dname, const struct inode *inode,
1327 const struct inode *parent)
1328 {
1329 int idx;
1330 struct audit_context *context = current->audit_context;
1331 const char *found_name = NULL;
1332 int dirlen = 0;
1333
1334 if (!context->in_syscall)
1335 return;
1336
1337 /* determine matching parent */
1338 if (!dname)
1339 goto update_context;
1340 for (idx = 0; idx < context->name_count; idx++)
1341 if (context->names[idx].ino == parent->i_ino) {
1342 const char *name = context->names[idx].name;
1343
1344 if (!name)
1345 continue;
1346
1347 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1348 context->names[idx].name_len = dirlen;
1349 found_name = name;
1350 break;
1351 }
1352 }
1353
1354 update_context:
1355 idx = context->name_count++;
1356 #if AUDIT_DEBUG
1357 context->ino_count++;
1358 #endif
1359 /* Re-use the name belonging to the slot for a matching parent directory.
1360 * All names for this context are relinquished in audit_free_names() */
1361 context->names[idx].name = found_name;
1362 context->names[idx].name_len = AUDIT_NAME_FULL;
1363 context->names[idx].name_put = 0; /* don't call __putname() */
1364
1365 if (!inode)
1366 context->names[idx].ino = (unsigned long)-1;
1367 else
1368 audit_copy_inode(&context->names[idx], inode);
1369
1370 /* A parent was not found in audit_names, so copy the inode data for the
1371 * provided parent. */
1372 if (!found_name) {
1373 idx = context->name_count++;
1374 #if AUDIT_DEBUG
1375 context->ino_count++;
1376 #endif
1377 audit_copy_inode(&context->names[idx], parent);
1378 }
1379 }
1380
1381 /**
1382 * audit_inode_update - update inode info for last collected name
1383 * @inode: inode being audited
1384 *
1385 * When open() is called on an existing object with the O_CREAT flag, the inode
1386 * data audit initially collects is incorrect. This additional hook ensures
1387 * audit has the inode data for the actual object to be opened.
1388 */
1389 void __audit_inode_update(const struct inode *inode)
1390 {
1391 struct audit_context *context = current->audit_context;
1392 int idx;
1393
1394 if (!context->in_syscall || !inode)
1395 return;
1396
1397 if (context->name_count == 0) {
1398 context->name_count++;
1399 #if AUDIT_DEBUG
1400 context->ino_count++;
1401 #endif
1402 }
1403 idx = context->name_count - 1;
1404
1405 audit_copy_inode(&context->names[idx], inode);
1406 }
1407
1408 /**
1409 * auditsc_get_stamp - get local copies of audit_context values
1410 * @ctx: audit_context for the task
1411 * @t: timespec to store time recorded in the audit_context
1412 * @serial: serial value that is recorded in the audit_context
1413 *
1414 * Also sets the context as auditable.
1415 */
1416 void auditsc_get_stamp(struct audit_context *ctx,
1417 struct timespec *t, unsigned int *serial)
1418 {
1419 if (!ctx->serial)
1420 ctx->serial = audit_serial();
1421 t->tv_sec = ctx->ctime.tv_sec;
1422 t->tv_nsec = ctx->ctime.tv_nsec;
1423 *serial = ctx->serial;
1424 ctx->auditable = 1;
1425 }
1426
1427 /**
1428 * audit_set_loginuid - set a task's audit_context loginuid
1429 * @task: task whose audit context is being modified
1430 * @loginuid: loginuid value
1431 *
1432 * Returns 0.
1433 *
1434 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1435 */
1436 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1437 {
1438 struct audit_context *context = task->audit_context;
1439
1440 if (context) {
1441 /* Only log if audit is enabled */
1442 if (context->in_syscall) {
1443 struct audit_buffer *ab;
1444
1445 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1446 if (ab) {
1447 audit_log_format(ab, "login pid=%d uid=%u "
1448 "old auid=%u new auid=%u",
1449 task->pid, task->uid,
1450 context->loginuid, loginuid);
1451 audit_log_end(ab);
1452 }
1453 }
1454 context->loginuid = loginuid;
1455 }
1456 return 0;
1457 }
1458
1459 /**
1460 * audit_get_loginuid - get the loginuid for an audit_context
1461 * @ctx: the audit_context
1462 *
1463 * Returns the context's loginuid or -1 if @ctx is NULL.
1464 */
1465 uid_t audit_get_loginuid(struct audit_context *ctx)
1466 {
1467 return ctx ? ctx->loginuid : -1;
1468 }
1469
1470 /**
1471 * __audit_mq_open - record audit data for a POSIX MQ open
1472 * @oflag: open flag
1473 * @mode: mode bits
1474 * @u_attr: queue attributes
1475 *
1476 * Returns 0 for success or NULL context or < 0 on error.
1477 */
1478 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1479 {
1480 struct audit_aux_data_mq_open *ax;
1481 struct audit_context *context = current->audit_context;
1482
1483 if (!audit_enabled)
1484 return 0;
1485
1486 if (likely(!context))
1487 return 0;
1488
1489 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1490 if (!ax)
1491 return -ENOMEM;
1492
1493 if (u_attr != NULL) {
1494 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1495 kfree(ax);
1496 return -EFAULT;
1497 }
1498 } else
1499 memset(&ax->attr, 0, sizeof(ax->attr));
1500
1501 ax->oflag = oflag;
1502 ax->mode = mode;
1503
1504 ax->d.type = AUDIT_MQ_OPEN;
1505 ax->d.next = context->aux;
1506 context->aux = (void *)ax;
1507 return 0;
1508 }
1509
1510 /**
1511 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1512 * @mqdes: MQ descriptor
1513 * @msg_len: Message length
1514 * @msg_prio: Message priority
1515 * @u_abs_timeout: Message timeout in absolute time
1516 *
1517 * Returns 0 for success or NULL context or < 0 on error.
1518 */
1519 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1520 const struct timespec __user *u_abs_timeout)
1521 {
1522 struct audit_aux_data_mq_sendrecv *ax;
1523 struct audit_context *context = current->audit_context;
1524
1525 if (!audit_enabled)
1526 return 0;
1527
1528 if (likely(!context))
1529 return 0;
1530
1531 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1532 if (!ax)
1533 return -ENOMEM;
1534
1535 if (u_abs_timeout != NULL) {
1536 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1537 kfree(ax);
1538 return -EFAULT;
1539 }
1540 } else
1541 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1542
1543 ax->mqdes = mqdes;
1544 ax->msg_len = msg_len;
1545 ax->msg_prio = msg_prio;
1546
1547 ax->d.type = AUDIT_MQ_SENDRECV;
1548 ax->d.next = context->aux;
1549 context->aux = (void *)ax;
1550 return 0;
1551 }
1552
1553 /**
1554 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1555 * @mqdes: MQ descriptor
1556 * @msg_len: Message length
1557 * @u_msg_prio: Message priority
1558 * @u_abs_timeout: Message timeout in absolute time
1559 *
1560 * Returns 0 for success or NULL context or < 0 on error.
1561 */
1562 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1563 unsigned int __user *u_msg_prio,
1564 const struct timespec __user *u_abs_timeout)
1565 {
1566 struct audit_aux_data_mq_sendrecv *ax;
1567 struct audit_context *context = current->audit_context;
1568
1569 if (!audit_enabled)
1570 return 0;
1571
1572 if (likely(!context))
1573 return 0;
1574
1575 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1576 if (!ax)
1577 return -ENOMEM;
1578
1579 if (u_msg_prio != NULL) {
1580 if (get_user(ax->msg_prio, u_msg_prio)) {
1581 kfree(ax);
1582 return -EFAULT;
1583 }
1584 } else
1585 ax->msg_prio = 0;
1586
1587 if (u_abs_timeout != NULL) {
1588 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1589 kfree(ax);
1590 return -EFAULT;
1591 }
1592 } else
1593 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1594
1595 ax->mqdes = mqdes;
1596 ax->msg_len = msg_len;
1597
1598 ax->d.type = AUDIT_MQ_SENDRECV;
1599 ax->d.next = context->aux;
1600 context->aux = (void *)ax;
1601 return 0;
1602 }
1603
1604 /**
1605 * __audit_mq_notify - record audit data for a POSIX MQ notify
1606 * @mqdes: MQ descriptor
1607 * @u_notification: Notification event
1608 *
1609 * Returns 0 for success or NULL context or < 0 on error.
1610 */
1611
1612 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1613 {
1614 struct audit_aux_data_mq_notify *ax;
1615 struct audit_context *context = current->audit_context;
1616
1617 if (!audit_enabled)
1618 return 0;
1619
1620 if (likely(!context))
1621 return 0;
1622
1623 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1624 if (!ax)
1625 return -ENOMEM;
1626
1627 if (u_notification != NULL) {
1628 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1629 kfree(ax);
1630 return -EFAULT;
1631 }
1632 } else
1633 memset(&ax->notification, 0, sizeof(ax->notification));
1634
1635 ax->mqdes = mqdes;
1636
1637 ax->d.type = AUDIT_MQ_NOTIFY;
1638 ax->d.next = context->aux;
1639 context->aux = (void *)ax;
1640 return 0;
1641 }
1642
1643 /**
1644 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1645 * @mqdes: MQ descriptor
1646 * @mqstat: MQ flags
1647 *
1648 * Returns 0 for success or NULL context or < 0 on error.
1649 */
1650 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1651 {
1652 struct audit_aux_data_mq_getsetattr *ax;
1653 struct audit_context *context = current->audit_context;
1654
1655 if (!audit_enabled)
1656 return 0;
1657
1658 if (likely(!context))
1659 return 0;
1660
1661 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1662 if (!ax)
1663 return -ENOMEM;
1664
1665 ax->mqdes = mqdes;
1666 ax->mqstat = *mqstat;
1667
1668 ax->d.type = AUDIT_MQ_GETSETATTR;
1669 ax->d.next = context->aux;
1670 context->aux = (void *)ax;
1671 return 0;
1672 }
1673
1674 /**
1675 * audit_ipc_obj - record audit data for ipc object
1676 * @ipcp: ipc permissions
1677 *
1678 * Returns 0 for success or NULL context or < 0 on error.
1679 */
1680 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1681 {
1682 struct audit_aux_data_ipcctl *ax;
1683 struct audit_context *context = current->audit_context;
1684
1685 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1686 if (!ax)
1687 return -ENOMEM;
1688
1689 ax->uid = ipcp->uid;
1690 ax->gid = ipcp->gid;
1691 ax->mode = ipcp->mode;
1692 selinux_get_ipc_sid(ipcp, &ax->osid);
1693
1694 ax->d.type = AUDIT_IPC;
1695 ax->d.next = context->aux;
1696 context->aux = (void *)ax;
1697 return 0;
1698 }
1699
1700 /**
1701 * audit_ipc_set_perm - record audit data for new ipc permissions
1702 * @qbytes: msgq bytes
1703 * @uid: msgq user id
1704 * @gid: msgq group id
1705 * @mode: msgq mode (permissions)
1706 *
1707 * Returns 0 for success or NULL context or < 0 on error.
1708 */
1709 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1710 {
1711 struct audit_aux_data_ipcctl *ax;
1712 struct audit_context *context = current->audit_context;
1713
1714 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1715 if (!ax)
1716 return -ENOMEM;
1717
1718 ax->qbytes = qbytes;
1719 ax->uid = uid;
1720 ax->gid = gid;
1721 ax->mode = mode;
1722
1723 ax->d.type = AUDIT_IPC_SET_PERM;
1724 ax->d.next = context->aux;
1725 context->aux = (void *)ax;
1726 return 0;
1727 }
1728
1729 int audit_bprm(struct linux_binprm *bprm)
1730 {
1731 struct audit_aux_data_execve *ax;
1732 struct audit_context *context = current->audit_context;
1733 unsigned long p, next;
1734 void *to;
1735
1736 if (likely(!audit_enabled || !context || context->dummy))
1737 return 0;
1738
1739 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1740 GFP_KERNEL);
1741 if (!ax)
1742 return -ENOMEM;
1743
1744 ax->argc = bprm->argc;
1745 ax->envc = bprm->envc;
1746 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1747 struct page *page = bprm->page[p / PAGE_SIZE];
1748 void *kaddr = kmap(page);
1749 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1750 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1751 to += next - p;
1752 kunmap(page);
1753 }
1754
1755 ax->d.type = AUDIT_EXECVE;
1756 ax->d.next = context->aux;
1757 context->aux = (void *)ax;
1758 return 0;
1759 }
1760
1761
1762 /**
1763 * audit_socketcall - record audit data for sys_socketcall
1764 * @nargs: number of args
1765 * @args: args array
1766 *
1767 * Returns 0 for success or NULL context or < 0 on error.
1768 */
1769 int audit_socketcall(int nargs, unsigned long *args)
1770 {
1771 struct audit_aux_data_socketcall *ax;
1772 struct audit_context *context = current->audit_context;
1773
1774 if (likely(!context || context->dummy))
1775 return 0;
1776
1777 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1778 if (!ax)
1779 return -ENOMEM;
1780
1781 ax->nargs = nargs;
1782 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1783
1784 ax->d.type = AUDIT_SOCKETCALL;
1785 ax->d.next = context->aux;
1786 context->aux = (void *)ax;
1787 return 0;
1788 }
1789
1790 /**
1791 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1792 * @len: data length in user space
1793 * @a: data address in kernel space
1794 *
1795 * Returns 0 for success or NULL context or < 0 on error.
1796 */
1797 int audit_sockaddr(int len, void *a)
1798 {
1799 struct audit_aux_data_sockaddr *ax;
1800 struct audit_context *context = current->audit_context;
1801
1802 if (likely(!context || context->dummy))
1803 return 0;
1804
1805 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1806 if (!ax)
1807 return -ENOMEM;
1808
1809 ax->len = len;
1810 memcpy(ax->a, a, len);
1811
1812 ax->d.type = AUDIT_SOCKADDR;
1813 ax->d.next = context->aux;
1814 context->aux = (void *)ax;
1815 return 0;
1816 }
1817
1818 /**
1819 * audit_avc_path - record the granting or denial of permissions
1820 * @dentry: dentry to record
1821 * @mnt: mnt to record
1822 *
1823 * Returns 0 for success or NULL context or < 0 on error.
1824 *
1825 * Called from security/selinux/avc.c::avc_audit()
1826 */
1827 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1828 {
1829 struct audit_aux_data_path *ax;
1830 struct audit_context *context = current->audit_context;
1831
1832 if (likely(!context))
1833 return 0;
1834
1835 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1836 if (!ax)
1837 return -ENOMEM;
1838
1839 ax->dentry = dget(dentry);
1840 ax->mnt = mntget(mnt);
1841
1842 ax->d.type = AUDIT_AVC_PATH;
1843 ax->d.next = context->aux;
1844 context->aux = (void *)ax;
1845 return 0;
1846 }
1847
1848 /**
1849 * audit_signal_info - record signal info for shutting down audit subsystem
1850 * @sig: signal value
1851 * @t: task being signaled
1852 *
1853 * If the audit subsystem is being terminated, record the task (pid)
1854 * and uid that is doing that.
1855 */
1856 void __audit_signal_info(int sig, struct task_struct *t)
1857 {
1858 extern pid_t audit_sig_pid;
1859 extern uid_t audit_sig_uid;
1860 extern u32 audit_sig_sid;
1861
1862 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1863 struct task_struct *tsk = current;
1864 struct audit_context *ctx = tsk->audit_context;
1865 audit_sig_pid = tsk->pid;
1866 if (ctx)
1867 audit_sig_uid = ctx->loginuid;
1868 else
1869 audit_sig_uid = tsk->uid;
1870 selinux_get_task_sid(tsk, &audit_sig_sid);
1871 }
1872 }
This page took 0.067685 seconds and 6 git commands to generate.