cgroup: make cgroup subsystem masks u16
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <net/sock.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_lock protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DEFINE_SPINLOCK(css_set_lock);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_lock);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DEFINE_SPINLOCK(css_set_lock);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
107 /*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111 static DEFINE_SPINLOCK(release_agent_path_lock);
112
113 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
115 #define cgroup_assert_mutex_or_rcu_locked() \
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
118 "cgroup_mutex or RCU read lock required");
119
120 /*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126 static struct workqueue_struct *cgroup_destroy_wq;
127
128 /*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
134 /* generate an array of cgroup subsystem pointers */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
136 static struct cgroup_subsys *cgroup_subsys[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of cgroup subsystem names */
142 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143 static const char *cgroup_subsys_name[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149 #define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154 #include <linux/cgroup_subsys.h>
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158 static struct static_key_true *cgroup_subsys_enabled_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165 #include <linux/cgroup_subsys.h>
166 };
167 #undef SUBSYS
168
169 /*
170 * The default hierarchy, reserved for the subsystems that are otherwise
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
173 */
174 struct cgroup_root cgrp_dfl_root;
175 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
176
177 /*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181 static bool cgrp_dfl_root_visible;
182
183 /* Controllers blocked by the commandline in v1 */
184 static u16 cgroup_no_v1_mask;
185
186 /* some controllers are not supported in the default hierarchy */
187 static u16 cgrp_dfl_root_inhibit_ss_mask;
188
189 /* The list of hierarchy roots */
190
191 static LIST_HEAD(cgroup_roots);
192 static int cgroup_root_count;
193
194 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
195 static DEFINE_IDR(cgroup_hierarchy_idr);
196
197 /*
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
203 */
204 static u64 css_serial_nr_next = 1;
205
206 /*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
210 */
211 static u16 have_fork_callback __read_mostly;
212 static u16 have_exit_callback __read_mostly;
213 static u16 have_free_callback __read_mostly;
214
215 /* Ditto for the can_fork callback. */
216 static u16 have_canfork_callback __read_mostly;
217
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_dfl_base_files[];
220 static struct cftype cgroup_legacy_base_files[];
221
222 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
223 static void css_task_iter_advance(struct css_task_iter *it);
224 static int cgroup_destroy_locked(struct cgroup *cgrp);
225 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
226 bool visible);
227 static void css_release(struct percpu_ref *ref);
228 static void kill_css(struct cgroup_subsys_state *css);
229 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
230 struct cgroup *cgrp, struct cftype cfts[],
231 bool is_add);
232
233 /**
234 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
235 * @ssid: subsys ID of interest
236 *
237 * cgroup_subsys_enabled() can only be used with literal subsys names which
238 * is fine for individual subsystems but unsuitable for cgroup core. This
239 * is slower static_key_enabled() based test indexed by @ssid.
240 */
241 static bool cgroup_ssid_enabled(int ssid)
242 {
243 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
244 }
245
246 static bool cgroup_ssid_no_v1(int ssid)
247 {
248 return cgroup_no_v1_mask & (1 << ssid);
249 }
250
251 /**
252 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
253 * @cgrp: the cgroup of interest
254 *
255 * The default hierarchy is the v2 interface of cgroup and this function
256 * can be used to test whether a cgroup is on the default hierarchy for
257 * cases where a subsystem should behave differnetly depending on the
258 * interface version.
259 *
260 * The set of behaviors which change on the default hierarchy are still
261 * being determined and the mount option is prefixed with __DEVEL__.
262 *
263 * List of changed behaviors:
264 *
265 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
266 * and "name" are disallowed.
267 *
268 * - When mounting an existing superblock, mount options should match.
269 *
270 * - Remount is disallowed.
271 *
272 * - rename(2) is disallowed.
273 *
274 * - "tasks" is removed. Everything should be at process granularity. Use
275 * "cgroup.procs" instead.
276 *
277 * - "cgroup.procs" is not sorted. pids will be unique unless they got
278 * recycled inbetween reads.
279 *
280 * - "release_agent" and "notify_on_release" are removed. Replacement
281 * notification mechanism will be implemented.
282 *
283 * - "cgroup.clone_children" is removed.
284 *
285 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
286 * and its descendants contain no task; otherwise, 1. The file also
287 * generates kernfs notification which can be monitored through poll and
288 * [di]notify when the value of the file changes.
289 *
290 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
291 * take masks of ancestors with non-empty cpus/mems, instead of being
292 * moved to an ancestor.
293 *
294 * - cpuset: a task can be moved into an empty cpuset, and again it takes
295 * masks of ancestors.
296 *
297 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
298 * is not created.
299 *
300 * - blkcg: blk-throttle becomes properly hierarchical.
301 *
302 * - debug: disallowed on the default hierarchy.
303 */
304 static bool cgroup_on_dfl(const struct cgroup *cgrp)
305 {
306 return cgrp->root == &cgrp_dfl_root;
307 }
308
309 /* IDR wrappers which synchronize using cgroup_idr_lock */
310 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
311 gfp_t gfp_mask)
312 {
313 int ret;
314
315 idr_preload(gfp_mask);
316 spin_lock_bh(&cgroup_idr_lock);
317 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
318 spin_unlock_bh(&cgroup_idr_lock);
319 idr_preload_end();
320 return ret;
321 }
322
323 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
324 {
325 void *ret;
326
327 spin_lock_bh(&cgroup_idr_lock);
328 ret = idr_replace(idr, ptr, id);
329 spin_unlock_bh(&cgroup_idr_lock);
330 return ret;
331 }
332
333 static void cgroup_idr_remove(struct idr *idr, int id)
334 {
335 spin_lock_bh(&cgroup_idr_lock);
336 idr_remove(idr, id);
337 spin_unlock_bh(&cgroup_idr_lock);
338 }
339
340 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
341 {
342 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
343
344 if (parent_css)
345 return container_of(parent_css, struct cgroup, self);
346 return NULL;
347 }
348
349 /**
350 * cgroup_css - obtain a cgroup's css for the specified subsystem
351 * @cgrp: the cgroup of interest
352 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
353 *
354 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
355 * function must be called either under cgroup_mutex or rcu_read_lock() and
356 * the caller is responsible for pinning the returned css if it wants to
357 * keep accessing it outside the said locks. This function may return
358 * %NULL if @cgrp doesn't have @subsys_id enabled.
359 */
360 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
361 struct cgroup_subsys *ss)
362 {
363 if (ss)
364 return rcu_dereference_check(cgrp->subsys[ss->id],
365 lockdep_is_held(&cgroup_mutex));
366 else
367 return &cgrp->self;
368 }
369
370 /**
371 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
372 * @cgrp: the cgroup of interest
373 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
374 *
375 * Similar to cgroup_css() but returns the effective css, which is defined
376 * as the matching css of the nearest ancestor including self which has @ss
377 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
378 * function is guaranteed to return non-NULL css.
379 */
380 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
381 struct cgroup_subsys *ss)
382 {
383 lockdep_assert_held(&cgroup_mutex);
384
385 if (!ss)
386 return &cgrp->self;
387
388 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
389 return NULL;
390
391 /*
392 * This function is used while updating css associations and thus
393 * can't test the csses directly. Use ->subtree_ss_mask.
394 */
395 while (cgroup_parent(cgrp) &&
396 !(cgroup_parent(cgrp)->subtree_ss_mask & (1 << ss->id)))
397 cgrp = cgroup_parent(cgrp);
398
399 return cgroup_css(cgrp, ss);
400 }
401
402 /**
403 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
404 * @cgrp: the cgroup of interest
405 * @ss: the subsystem of interest
406 *
407 * Find and get the effective css of @cgrp for @ss. The effective css is
408 * defined as the matching css of the nearest ancestor including self which
409 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
410 * the root css is returned, so this function always returns a valid css.
411 * The returned css must be put using css_put().
412 */
413 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
414 struct cgroup_subsys *ss)
415 {
416 struct cgroup_subsys_state *css;
417
418 rcu_read_lock();
419
420 do {
421 css = cgroup_css(cgrp, ss);
422
423 if (css && css_tryget_online(css))
424 goto out_unlock;
425 cgrp = cgroup_parent(cgrp);
426 } while (cgrp);
427
428 css = init_css_set.subsys[ss->id];
429 css_get(css);
430 out_unlock:
431 rcu_read_unlock();
432 return css;
433 }
434
435 /* convenient tests for these bits */
436 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
437 {
438 return !(cgrp->self.flags & CSS_ONLINE);
439 }
440
441 static void cgroup_get(struct cgroup *cgrp)
442 {
443 WARN_ON_ONCE(cgroup_is_dead(cgrp));
444 css_get(&cgrp->self);
445 }
446
447 static bool cgroup_tryget(struct cgroup *cgrp)
448 {
449 return css_tryget(&cgrp->self);
450 }
451
452 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
453 {
454 struct cgroup *cgrp = of->kn->parent->priv;
455 struct cftype *cft = of_cft(of);
456
457 /*
458 * This is open and unprotected implementation of cgroup_css().
459 * seq_css() is only called from a kernfs file operation which has
460 * an active reference on the file. Because all the subsystem
461 * files are drained before a css is disassociated with a cgroup,
462 * the matching css from the cgroup's subsys table is guaranteed to
463 * be and stay valid until the enclosing operation is complete.
464 */
465 if (cft->ss)
466 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
467 else
468 return &cgrp->self;
469 }
470 EXPORT_SYMBOL_GPL(of_css);
471
472 static int notify_on_release(const struct cgroup *cgrp)
473 {
474 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
475 }
476
477 /**
478 * for_each_css - iterate all css's of a cgroup
479 * @css: the iteration cursor
480 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
481 * @cgrp: the target cgroup to iterate css's of
482 *
483 * Should be called under cgroup_[tree_]mutex.
484 */
485 #define for_each_css(css, ssid, cgrp) \
486 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
487 if (!((css) = rcu_dereference_check( \
488 (cgrp)->subsys[(ssid)], \
489 lockdep_is_held(&cgroup_mutex)))) { } \
490 else
491
492 /**
493 * for_each_e_css - iterate all effective css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
498 * Should be called under cgroup_[tree_]mutex.
499 */
500 #define for_each_e_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
503 ; \
504 else
505
506 /**
507 * for_each_subsys - iterate all enabled cgroup subsystems
508 * @ss: the iteration cursor
509 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
510 */
511 #define for_each_subsys(ss, ssid) \
512 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
513 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
514
515 /**
516 * do_each_subsys_mask - filter for_each_subsys with a bitmask
517 * @ss: the iteration cursor
518 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
519 * @ss_mask: the bitmask
520 *
521 * The block will only run for cases where the ssid-th bit (1 << ssid) of
522 * @ss_mask is set.
523 */
524 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
525 unsigned long __ss_mask = (ss_mask); \
526 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
527 (ssid) = 0; \
528 break; \
529 } \
530 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
531 (ss) = cgroup_subsys[ssid]; \
532 {
533
534 #define while_each_subsys_mask() \
535 } \
536 } \
537 } while (false)
538
539 /* iterate across the hierarchies */
540 #define for_each_root(root) \
541 list_for_each_entry((root), &cgroup_roots, root_list)
542
543 /* iterate over child cgrps, lock should be held throughout iteration */
544 #define cgroup_for_each_live_child(child, cgrp) \
545 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
546 if (({ lockdep_assert_held(&cgroup_mutex); \
547 cgroup_is_dead(child); })) \
548 ; \
549 else
550
551 static void cgroup_release_agent(struct work_struct *work);
552 static void check_for_release(struct cgroup *cgrp);
553
554 /*
555 * A cgroup can be associated with multiple css_sets as different tasks may
556 * belong to different cgroups on different hierarchies. In the other
557 * direction, a css_set is naturally associated with multiple cgroups.
558 * This M:N relationship is represented by the following link structure
559 * which exists for each association and allows traversing the associations
560 * from both sides.
561 */
562 struct cgrp_cset_link {
563 /* the cgroup and css_set this link associates */
564 struct cgroup *cgrp;
565 struct css_set *cset;
566
567 /* list of cgrp_cset_links anchored at cgrp->cset_links */
568 struct list_head cset_link;
569
570 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
571 struct list_head cgrp_link;
572 };
573
574 /*
575 * The default css_set - used by init and its children prior to any
576 * hierarchies being mounted. It contains a pointer to the root state
577 * for each subsystem. Also used to anchor the list of css_sets. Not
578 * reference-counted, to improve performance when child cgroups
579 * haven't been created.
580 */
581 struct css_set init_css_set = {
582 .refcount = ATOMIC_INIT(1),
583 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
584 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
585 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
586 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
587 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
588 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
589 };
590
591 static int css_set_count = 1; /* 1 for init_css_set */
592
593 /**
594 * css_set_populated - does a css_set contain any tasks?
595 * @cset: target css_set
596 */
597 static bool css_set_populated(struct css_set *cset)
598 {
599 lockdep_assert_held(&css_set_lock);
600
601 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
602 }
603
604 /**
605 * cgroup_update_populated - updated populated count of a cgroup
606 * @cgrp: the target cgroup
607 * @populated: inc or dec populated count
608 *
609 * One of the css_sets associated with @cgrp is either getting its first
610 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
611 * count is propagated towards root so that a given cgroup's populated_cnt
612 * is zero iff the cgroup and all its descendants don't contain any tasks.
613 *
614 * @cgrp's interface file "cgroup.populated" is zero if
615 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
616 * changes from or to zero, userland is notified that the content of the
617 * interface file has changed. This can be used to detect when @cgrp and
618 * its descendants become populated or empty.
619 */
620 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
621 {
622 lockdep_assert_held(&css_set_lock);
623
624 do {
625 bool trigger;
626
627 if (populated)
628 trigger = !cgrp->populated_cnt++;
629 else
630 trigger = !--cgrp->populated_cnt;
631
632 if (!trigger)
633 break;
634
635 check_for_release(cgrp);
636 cgroup_file_notify(&cgrp->events_file);
637
638 cgrp = cgroup_parent(cgrp);
639 } while (cgrp);
640 }
641
642 /**
643 * css_set_update_populated - update populated state of a css_set
644 * @cset: target css_set
645 * @populated: whether @cset is populated or depopulated
646 *
647 * @cset is either getting the first task or losing the last. Update the
648 * ->populated_cnt of all associated cgroups accordingly.
649 */
650 static void css_set_update_populated(struct css_set *cset, bool populated)
651 {
652 struct cgrp_cset_link *link;
653
654 lockdep_assert_held(&css_set_lock);
655
656 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
657 cgroup_update_populated(link->cgrp, populated);
658 }
659
660 /**
661 * css_set_move_task - move a task from one css_set to another
662 * @task: task being moved
663 * @from_cset: css_set @task currently belongs to (may be NULL)
664 * @to_cset: new css_set @task is being moved to (may be NULL)
665 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
666 *
667 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
668 * css_set, @from_cset can be NULL. If @task is being disassociated
669 * instead of moved, @to_cset can be NULL.
670 *
671 * This function automatically handles populated_cnt updates and
672 * css_task_iter adjustments but the caller is responsible for managing
673 * @from_cset and @to_cset's reference counts.
674 */
675 static void css_set_move_task(struct task_struct *task,
676 struct css_set *from_cset, struct css_set *to_cset,
677 bool use_mg_tasks)
678 {
679 lockdep_assert_held(&css_set_lock);
680
681 if (from_cset) {
682 struct css_task_iter *it, *pos;
683
684 WARN_ON_ONCE(list_empty(&task->cg_list));
685
686 /*
687 * @task is leaving, advance task iterators which are
688 * pointing to it so that they can resume at the next
689 * position. Advancing an iterator might remove it from
690 * the list, use safe walk. See css_task_iter_advance*()
691 * for details.
692 */
693 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
694 iters_node)
695 if (it->task_pos == &task->cg_list)
696 css_task_iter_advance(it);
697
698 list_del_init(&task->cg_list);
699 if (!css_set_populated(from_cset))
700 css_set_update_populated(from_cset, false);
701 } else {
702 WARN_ON_ONCE(!list_empty(&task->cg_list));
703 }
704
705 if (to_cset) {
706 /*
707 * We are synchronized through cgroup_threadgroup_rwsem
708 * against PF_EXITING setting such that we can't race
709 * against cgroup_exit() changing the css_set to
710 * init_css_set and dropping the old one.
711 */
712 WARN_ON_ONCE(task->flags & PF_EXITING);
713
714 if (!css_set_populated(to_cset))
715 css_set_update_populated(to_cset, true);
716 rcu_assign_pointer(task->cgroups, to_cset);
717 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
718 &to_cset->tasks);
719 }
720 }
721
722 /*
723 * hash table for cgroup groups. This improves the performance to find
724 * an existing css_set. This hash doesn't (currently) take into
725 * account cgroups in empty hierarchies.
726 */
727 #define CSS_SET_HASH_BITS 7
728 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
729
730 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
731 {
732 unsigned long key = 0UL;
733 struct cgroup_subsys *ss;
734 int i;
735
736 for_each_subsys(ss, i)
737 key += (unsigned long)css[i];
738 key = (key >> 16) ^ key;
739
740 return key;
741 }
742
743 static void put_css_set_locked(struct css_set *cset)
744 {
745 struct cgrp_cset_link *link, *tmp_link;
746 struct cgroup_subsys *ss;
747 int ssid;
748
749 lockdep_assert_held(&css_set_lock);
750
751 if (!atomic_dec_and_test(&cset->refcount))
752 return;
753
754 /* This css_set is dead. unlink it and release cgroup and css refs */
755 for_each_subsys(ss, ssid) {
756 list_del(&cset->e_cset_node[ssid]);
757 css_put(cset->subsys[ssid]);
758 }
759 hash_del(&cset->hlist);
760 css_set_count--;
761
762 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
763 list_del(&link->cset_link);
764 list_del(&link->cgrp_link);
765 if (cgroup_parent(link->cgrp))
766 cgroup_put(link->cgrp);
767 kfree(link);
768 }
769
770 kfree_rcu(cset, rcu_head);
771 }
772
773 static void put_css_set(struct css_set *cset)
774 {
775 /*
776 * Ensure that the refcount doesn't hit zero while any readers
777 * can see it. Similar to atomic_dec_and_lock(), but for an
778 * rwlock
779 */
780 if (atomic_add_unless(&cset->refcount, -1, 1))
781 return;
782
783 spin_lock_bh(&css_set_lock);
784 put_css_set_locked(cset);
785 spin_unlock_bh(&css_set_lock);
786 }
787
788 /*
789 * refcounted get/put for css_set objects
790 */
791 static inline void get_css_set(struct css_set *cset)
792 {
793 atomic_inc(&cset->refcount);
794 }
795
796 /**
797 * compare_css_sets - helper function for find_existing_css_set().
798 * @cset: candidate css_set being tested
799 * @old_cset: existing css_set for a task
800 * @new_cgrp: cgroup that's being entered by the task
801 * @template: desired set of css pointers in css_set (pre-calculated)
802 *
803 * Returns true if "cset" matches "old_cset" except for the hierarchy
804 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
805 */
806 static bool compare_css_sets(struct css_set *cset,
807 struct css_set *old_cset,
808 struct cgroup *new_cgrp,
809 struct cgroup_subsys_state *template[])
810 {
811 struct list_head *l1, *l2;
812
813 /*
814 * On the default hierarchy, there can be csets which are
815 * associated with the same set of cgroups but different csses.
816 * Let's first ensure that csses match.
817 */
818 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
819 return false;
820
821 /*
822 * Compare cgroup pointers in order to distinguish between
823 * different cgroups in hierarchies. As different cgroups may
824 * share the same effective css, this comparison is always
825 * necessary.
826 */
827 l1 = &cset->cgrp_links;
828 l2 = &old_cset->cgrp_links;
829 while (1) {
830 struct cgrp_cset_link *link1, *link2;
831 struct cgroup *cgrp1, *cgrp2;
832
833 l1 = l1->next;
834 l2 = l2->next;
835 /* See if we reached the end - both lists are equal length. */
836 if (l1 == &cset->cgrp_links) {
837 BUG_ON(l2 != &old_cset->cgrp_links);
838 break;
839 } else {
840 BUG_ON(l2 == &old_cset->cgrp_links);
841 }
842 /* Locate the cgroups associated with these links. */
843 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
844 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
845 cgrp1 = link1->cgrp;
846 cgrp2 = link2->cgrp;
847 /* Hierarchies should be linked in the same order. */
848 BUG_ON(cgrp1->root != cgrp2->root);
849
850 /*
851 * If this hierarchy is the hierarchy of the cgroup
852 * that's changing, then we need to check that this
853 * css_set points to the new cgroup; if it's any other
854 * hierarchy, then this css_set should point to the
855 * same cgroup as the old css_set.
856 */
857 if (cgrp1->root == new_cgrp->root) {
858 if (cgrp1 != new_cgrp)
859 return false;
860 } else {
861 if (cgrp1 != cgrp2)
862 return false;
863 }
864 }
865 return true;
866 }
867
868 /**
869 * find_existing_css_set - init css array and find the matching css_set
870 * @old_cset: the css_set that we're using before the cgroup transition
871 * @cgrp: the cgroup that we're moving into
872 * @template: out param for the new set of csses, should be clear on entry
873 */
874 static struct css_set *find_existing_css_set(struct css_set *old_cset,
875 struct cgroup *cgrp,
876 struct cgroup_subsys_state *template[])
877 {
878 struct cgroup_root *root = cgrp->root;
879 struct cgroup_subsys *ss;
880 struct css_set *cset;
881 unsigned long key;
882 int i;
883
884 /*
885 * Build the set of subsystem state objects that we want to see in the
886 * new css_set. while subsystems can change globally, the entries here
887 * won't change, so no need for locking.
888 */
889 for_each_subsys(ss, i) {
890 if (root->subsys_mask & (1UL << i)) {
891 /*
892 * @ss is in this hierarchy, so we want the
893 * effective css from @cgrp.
894 */
895 template[i] = cgroup_e_css(cgrp, ss);
896 } else {
897 /*
898 * @ss is not in this hierarchy, so we don't want
899 * to change the css.
900 */
901 template[i] = old_cset->subsys[i];
902 }
903 }
904
905 key = css_set_hash(template);
906 hash_for_each_possible(css_set_table, cset, hlist, key) {
907 if (!compare_css_sets(cset, old_cset, cgrp, template))
908 continue;
909
910 /* This css_set matches what we need */
911 return cset;
912 }
913
914 /* No existing cgroup group matched */
915 return NULL;
916 }
917
918 static void free_cgrp_cset_links(struct list_head *links_to_free)
919 {
920 struct cgrp_cset_link *link, *tmp_link;
921
922 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
923 list_del(&link->cset_link);
924 kfree(link);
925 }
926 }
927
928 /**
929 * allocate_cgrp_cset_links - allocate cgrp_cset_links
930 * @count: the number of links to allocate
931 * @tmp_links: list_head the allocated links are put on
932 *
933 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
934 * through ->cset_link. Returns 0 on success or -errno.
935 */
936 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
937 {
938 struct cgrp_cset_link *link;
939 int i;
940
941 INIT_LIST_HEAD(tmp_links);
942
943 for (i = 0; i < count; i++) {
944 link = kzalloc(sizeof(*link), GFP_KERNEL);
945 if (!link) {
946 free_cgrp_cset_links(tmp_links);
947 return -ENOMEM;
948 }
949 list_add(&link->cset_link, tmp_links);
950 }
951 return 0;
952 }
953
954 /**
955 * link_css_set - a helper function to link a css_set to a cgroup
956 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
957 * @cset: the css_set to be linked
958 * @cgrp: the destination cgroup
959 */
960 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
961 struct cgroup *cgrp)
962 {
963 struct cgrp_cset_link *link;
964
965 BUG_ON(list_empty(tmp_links));
966
967 if (cgroup_on_dfl(cgrp))
968 cset->dfl_cgrp = cgrp;
969
970 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
971 link->cset = cset;
972 link->cgrp = cgrp;
973
974 /*
975 * Always add links to the tail of the lists so that the lists are
976 * in choronological order.
977 */
978 list_move_tail(&link->cset_link, &cgrp->cset_links);
979 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
980
981 if (cgroup_parent(cgrp))
982 cgroup_get(cgrp);
983 }
984
985 /**
986 * find_css_set - return a new css_set with one cgroup updated
987 * @old_cset: the baseline css_set
988 * @cgrp: the cgroup to be updated
989 *
990 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
991 * substituted into the appropriate hierarchy.
992 */
993 static struct css_set *find_css_set(struct css_set *old_cset,
994 struct cgroup *cgrp)
995 {
996 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
997 struct css_set *cset;
998 struct list_head tmp_links;
999 struct cgrp_cset_link *link;
1000 struct cgroup_subsys *ss;
1001 unsigned long key;
1002 int ssid;
1003
1004 lockdep_assert_held(&cgroup_mutex);
1005
1006 /* First see if we already have a cgroup group that matches
1007 * the desired set */
1008 spin_lock_bh(&css_set_lock);
1009 cset = find_existing_css_set(old_cset, cgrp, template);
1010 if (cset)
1011 get_css_set(cset);
1012 spin_unlock_bh(&css_set_lock);
1013
1014 if (cset)
1015 return cset;
1016
1017 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1018 if (!cset)
1019 return NULL;
1020
1021 /* Allocate all the cgrp_cset_link objects that we'll need */
1022 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1023 kfree(cset);
1024 return NULL;
1025 }
1026
1027 atomic_set(&cset->refcount, 1);
1028 INIT_LIST_HEAD(&cset->cgrp_links);
1029 INIT_LIST_HEAD(&cset->tasks);
1030 INIT_LIST_HEAD(&cset->mg_tasks);
1031 INIT_LIST_HEAD(&cset->mg_preload_node);
1032 INIT_LIST_HEAD(&cset->mg_node);
1033 INIT_LIST_HEAD(&cset->task_iters);
1034 INIT_HLIST_NODE(&cset->hlist);
1035
1036 /* Copy the set of subsystem state objects generated in
1037 * find_existing_css_set() */
1038 memcpy(cset->subsys, template, sizeof(cset->subsys));
1039
1040 spin_lock_bh(&css_set_lock);
1041 /* Add reference counts and links from the new css_set. */
1042 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1043 struct cgroup *c = link->cgrp;
1044
1045 if (c->root == cgrp->root)
1046 c = cgrp;
1047 link_css_set(&tmp_links, cset, c);
1048 }
1049
1050 BUG_ON(!list_empty(&tmp_links));
1051
1052 css_set_count++;
1053
1054 /* Add @cset to the hash table */
1055 key = css_set_hash(cset->subsys);
1056 hash_add(css_set_table, &cset->hlist, key);
1057
1058 for_each_subsys(ss, ssid) {
1059 struct cgroup_subsys_state *css = cset->subsys[ssid];
1060
1061 list_add_tail(&cset->e_cset_node[ssid],
1062 &css->cgroup->e_csets[ssid]);
1063 css_get(css);
1064 }
1065
1066 spin_unlock_bh(&css_set_lock);
1067
1068 return cset;
1069 }
1070
1071 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1072 {
1073 struct cgroup *root_cgrp = kf_root->kn->priv;
1074
1075 return root_cgrp->root;
1076 }
1077
1078 static int cgroup_init_root_id(struct cgroup_root *root)
1079 {
1080 int id;
1081
1082 lockdep_assert_held(&cgroup_mutex);
1083
1084 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1085 if (id < 0)
1086 return id;
1087
1088 root->hierarchy_id = id;
1089 return 0;
1090 }
1091
1092 static void cgroup_exit_root_id(struct cgroup_root *root)
1093 {
1094 lockdep_assert_held(&cgroup_mutex);
1095
1096 if (root->hierarchy_id) {
1097 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1098 root->hierarchy_id = 0;
1099 }
1100 }
1101
1102 static void cgroup_free_root(struct cgroup_root *root)
1103 {
1104 if (root) {
1105 /* hierarchy ID should already have been released */
1106 WARN_ON_ONCE(root->hierarchy_id);
1107
1108 idr_destroy(&root->cgroup_idr);
1109 kfree(root);
1110 }
1111 }
1112
1113 static void cgroup_destroy_root(struct cgroup_root *root)
1114 {
1115 struct cgroup *cgrp = &root->cgrp;
1116 struct cgrp_cset_link *link, *tmp_link;
1117
1118 mutex_lock(&cgroup_mutex);
1119
1120 BUG_ON(atomic_read(&root->nr_cgrps));
1121 BUG_ON(!list_empty(&cgrp->self.children));
1122
1123 /* Rebind all subsystems back to the default hierarchy */
1124 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1125
1126 /*
1127 * Release all the links from cset_links to this hierarchy's
1128 * root cgroup
1129 */
1130 spin_lock_bh(&css_set_lock);
1131
1132 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1133 list_del(&link->cset_link);
1134 list_del(&link->cgrp_link);
1135 kfree(link);
1136 }
1137
1138 spin_unlock_bh(&css_set_lock);
1139
1140 if (!list_empty(&root->root_list)) {
1141 list_del(&root->root_list);
1142 cgroup_root_count--;
1143 }
1144
1145 cgroup_exit_root_id(root);
1146
1147 mutex_unlock(&cgroup_mutex);
1148
1149 kernfs_destroy_root(root->kf_root);
1150 cgroup_free_root(root);
1151 }
1152
1153 /* look up cgroup associated with given css_set on the specified hierarchy */
1154 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1155 struct cgroup_root *root)
1156 {
1157 struct cgroup *res = NULL;
1158
1159 lockdep_assert_held(&cgroup_mutex);
1160 lockdep_assert_held(&css_set_lock);
1161
1162 if (cset == &init_css_set) {
1163 res = &root->cgrp;
1164 } else {
1165 struct cgrp_cset_link *link;
1166
1167 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1168 struct cgroup *c = link->cgrp;
1169
1170 if (c->root == root) {
1171 res = c;
1172 break;
1173 }
1174 }
1175 }
1176
1177 BUG_ON(!res);
1178 return res;
1179 }
1180
1181 /*
1182 * Return the cgroup for "task" from the given hierarchy. Must be
1183 * called with cgroup_mutex and css_set_lock held.
1184 */
1185 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1186 struct cgroup_root *root)
1187 {
1188 /*
1189 * No need to lock the task - since we hold cgroup_mutex the
1190 * task can't change groups, so the only thing that can happen
1191 * is that it exits and its css is set back to init_css_set.
1192 */
1193 return cset_cgroup_from_root(task_css_set(task), root);
1194 }
1195
1196 /*
1197 * A task must hold cgroup_mutex to modify cgroups.
1198 *
1199 * Any task can increment and decrement the count field without lock.
1200 * So in general, code holding cgroup_mutex can't rely on the count
1201 * field not changing. However, if the count goes to zero, then only
1202 * cgroup_attach_task() can increment it again. Because a count of zero
1203 * means that no tasks are currently attached, therefore there is no
1204 * way a task attached to that cgroup can fork (the other way to
1205 * increment the count). So code holding cgroup_mutex can safely
1206 * assume that if the count is zero, it will stay zero. Similarly, if
1207 * a task holds cgroup_mutex on a cgroup with zero count, it
1208 * knows that the cgroup won't be removed, as cgroup_rmdir()
1209 * needs that mutex.
1210 *
1211 * A cgroup can only be deleted if both its 'count' of using tasks
1212 * is zero, and its list of 'children' cgroups is empty. Since all
1213 * tasks in the system use _some_ cgroup, and since there is always at
1214 * least one task in the system (init, pid == 1), therefore, root cgroup
1215 * always has either children cgroups and/or using tasks. So we don't
1216 * need a special hack to ensure that root cgroup cannot be deleted.
1217 *
1218 * P.S. One more locking exception. RCU is used to guard the
1219 * update of a tasks cgroup pointer by cgroup_attach_task()
1220 */
1221
1222 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1223 static const struct file_operations proc_cgroupstats_operations;
1224
1225 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1226 char *buf)
1227 {
1228 struct cgroup_subsys *ss = cft->ss;
1229
1230 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1231 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1232 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1233 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1234 cft->name);
1235 else
1236 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1237 return buf;
1238 }
1239
1240 /**
1241 * cgroup_file_mode - deduce file mode of a control file
1242 * @cft: the control file in question
1243 *
1244 * S_IRUGO for read, S_IWUSR for write.
1245 */
1246 static umode_t cgroup_file_mode(const struct cftype *cft)
1247 {
1248 umode_t mode = 0;
1249
1250 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1251 mode |= S_IRUGO;
1252
1253 if (cft->write_u64 || cft->write_s64 || cft->write) {
1254 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1255 mode |= S_IWUGO;
1256 else
1257 mode |= S_IWUSR;
1258 }
1259
1260 return mode;
1261 }
1262
1263 /**
1264 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1265 * @cgrp: the target cgroup
1266 * @subtree_control: the new subtree_control mask to consider
1267 *
1268 * On the default hierarchy, a subsystem may request other subsystems to be
1269 * enabled together through its ->depends_on mask. In such cases, more
1270 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1271 *
1272 * This function calculates which subsystems need to be enabled if
1273 * @subtree_control is to be applied to @cgrp. The returned mask is always
1274 * a superset of @subtree_control and follows the usual hierarchy rules.
1275 */
1276 static u16 cgroup_calc_subtree_ss_mask(struct cgroup *cgrp, u16 subtree_control)
1277 {
1278 struct cgroup *parent = cgroup_parent(cgrp);
1279 u16 cur_ss_mask = subtree_control;
1280 struct cgroup_subsys *ss;
1281 int ssid;
1282
1283 lockdep_assert_held(&cgroup_mutex);
1284
1285 if (!cgroup_on_dfl(cgrp))
1286 return cur_ss_mask;
1287
1288 while (true) {
1289 u16 new_ss_mask = cur_ss_mask;
1290
1291 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1292 new_ss_mask |= ss->depends_on;
1293 } while_each_subsys_mask();
1294
1295 /*
1296 * Mask out subsystems which aren't available. This can
1297 * happen only if some depended-upon subsystems were bound
1298 * to non-default hierarchies.
1299 */
1300 if (parent)
1301 new_ss_mask &= parent->subtree_ss_mask;
1302 else
1303 new_ss_mask &= cgrp->root->subsys_mask;
1304
1305 if (new_ss_mask == cur_ss_mask)
1306 break;
1307 cur_ss_mask = new_ss_mask;
1308 }
1309
1310 return cur_ss_mask;
1311 }
1312
1313 /**
1314 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
1315 * @cgrp: the target cgroup
1316 *
1317 * Update @cgrp->subtree_ss_mask according to the current
1318 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
1319 */
1320 static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
1321 {
1322 cgrp->subtree_ss_mask =
1323 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
1324 }
1325
1326 /**
1327 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1328 * @kn: the kernfs_node being serviced
1329 *
1330 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1331 * the method finishes if locking succeeded. Note that once this function
1332 * returns the cgroup returned by cgroup_kn_lock_live() may become
1333 * inaccessible any time. If the caller intends to continue to access the
1334 * cgroup, it should pin it before invoking this function.
1335 */
1336 static void cgroup_kn_unlock(struct kernfs_node *kn)
1337 {
1338 struct cgroup *cgrp;
1339
1340 if (kernfs_type(kn) == KERNFS_DIR)
1341 cgrp = kn->priv;
1342 else
1343 cgrp = kn->parent->priv;
1344
1345 mutex_unlock(&cgroup_mutex);
1346
1347 kernfs_unbreak_active_protection(kn);
1348 cgroup_put(cgrp);
1349 }
1350
1351 /**
1352 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1353 * @kn: the kernfs_node being serviced
1354 *
1355 * This helper is to be used by a cgroup kernfs method currently servicing
1356 * @kn. It breaks the active protection, performs cgroup locking and
1357 * verifies that the associated cgroup is alive. Returns the cgroup if
1358 * alive; otherwise, %NULL. A successful return should be undone by a
1359 * matching cgroup_kn_unlock() invocation.
1360 *
1361 * Any cgroup kernfs method implementation which requires locking the
1362 * associated cgroup should use this helper. It avoids nesting cgroup
1363 * locking under kernfs active protection and allows all kernfs operations
1364 * including self-removal.
1365 */
1366 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1367 {
1368 struct cgroup *cgrp;
1369
1370 if (kernfs_type(kn) == KERNFS_DIR)
1371 cgrp = kn->priv;
1372 else
1373 cgrp = kn->parent->priv;
1374
1375 /*
1376 * We're gonna grab cgroup_mutex which nests outside kernfs
1377 * active_ref. cgroup liveliness check alone provides enough
1378 * protection against removal. Ensure @cgrp stays accessible and
1379 * break the active_ref protection.
1380 */
1381 if (!cgroup_tryget(cgrp))
1382 return NULL;
1383 kernfs_break_active_protection(kn);
1384
1385 mutex_lock(&cgroup_mutex);
1386
1387 if (!cgroup_is_dead(cgrp))
1388 return cgrp;
1389
1390 cgroup_kn_unlock(kn);
1391 return NULL;
1392 }
1393
1394 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1395 {
1396 char name[CGROUP_FILE_NAME_MAX];
1397
1398 lockdep_assert_held(&cgroup_mutex);
1399
1400 if (cft->file_offset) {
1401 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1402 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1403
1404 spin_lock_irq(&cgroup_file_kn_lock);
1405 cfile->kn = NULL;
1406 spin_unlock_irq(&cgroup_file_kn_lock);
1407 }
1408
1409 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1410 }
1411
1412 /**
1413 * css_clear_dir - remove subsys files in a cgroup directory
1414 * @css: taget css
1415 * @cgrp_override: specify if target cgroup is different from css->cgroup
1416 */
1417 static void css_clear_dir(struct cgroup_subsys_state *css,
1418 struct cgroup *cgrp_override)
1419 {
1420 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1421 struct cftype *cfts;
1422
1423 list_for_each_entry(cfts, &css->ss->cfts, node)
1424 cgroup_addrm_files(css, cgrp, cfts, false);
1425 }
1426
1427 /**
1428 * css_populate_dir - create subsys files in a cgroup directory
1429 * @css: target css
1430 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1431 *
1432 * On failure, no file is added.
1433 */
1434 static int css_populate_dir(struct cgroup_subsys_state *css,
1435 struct cgroup *cgrp_override)
1436 {
1437 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1438 struct cftype *cfts, *failed_cfts;
1439 int ret;
1440
1441 if (!css->ss) {
1442 if (cgroup_on_dfl(cgrp))
1443 cfts = cgroup_dfl_base_files;
1444 else
1445 cfts = cgroup_legacy_base_files;
1446
1447 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1448 }
1449
1450 list_for_each_entry(cfts, &css->ss->cfts, node) {
1451 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1452 if (ret < 0) {
1453 failed_cfts = cfts;
1454 goto err;
1455 }
1456 }
1457 return 0;
1458 err:
1459 list_for_each_entry(cfts, &css->ss->cfts, node) {
1460 if (cfts == failed_cfts)
1461 break;
1462 cgroup_addrm_files(css, cgrp, cfts, false);
1463 }
1464 return ret;
1465 }
1466
1467 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1468 {
1469 struct cgroup *dcgrp = &dst_root->cgrp;
1470 struct cgroup_subsys *ss;
1471 u16 tmp_ss_mask;
1472 int ssid, i, ret;
1473
1474 lockdep_assert_held(&cgroup_mutex);
1475
1476 do_each_subsys_mask(ss, ssid, ss_mask) {
1477 /* if @ss has non-root csses attached to it, can't move */
1478 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1479 return -EBUSY;
1480
1481 /* can't move between two non-dummy roots either */
1482 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1483 return -EBUSY;
1484 } while_each_subsys_mask();
1485
1486 /* skip creating root files on dfl_root for inhibited subsystems */
1487 tmp_ss_mask = ss_mask;
1488 if (dst_root == &cgrp_dfl_root)
1489 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1490
1491 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
1492 struct cgroup *scgrp = &ss->root->cgrp;
1493 int tssid;
1494
1495 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1496 if (!ret)
1497 continue;
1498
1499 /*
1500 * Rebinding back to the default root is not allowed to
1501 * fail. Using both default and non-default roots should
1502 * be rare. Moving subsystems back and forth even more so.
1503 * Just warn about it and continue.
1504 */
1505 if (dst_root == &cgrp_dfl_root) {
1506 if (cgrp_dfl_root_visible) {
1507 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1508 ret, ss_mask);
1509 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1510 }
1511 continue;
1512 }
1513
1514 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
1515 if (tssid == ssid)
1516 break;
1517 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1518 } while_each_subsys_mask();
1519 return ret;
1520 } while_each_subsys_mask();
1521
1522 /*
1523 * Nothing can fail from this point on. Remove files for the
1524 * removed subsystems and rebind each subsystem.
1525 */
1526 do_each_subsys_mask(ss, ssid, ss_mask) {
1527 struct cgroup_root *src_root = ss->root;
1528 struct cgroup *scgrp = &src_root->cgrp;
1529 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1530 struct css_set *cset;
1531
1532 WARN_ON(!css || cgroup_css(dcgrp, ss));
1533
1534 css_clear_dir(css, NULL);
1535
1536 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1537 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1538 ss->root = dst_root;
1539 css->cgroup = dcgrp;
1540
1541 spin_lock_bh(&css_set_lock);
1542 hash_for_each(css_set_table, i, cset, hlist)
1543 list_move_tail(&cset->e_cset_node[ss->id],
1544 &dcgrp->e_csets[ss->id]);
1545 spin_unlock_bh(&css_set_lock);
1546
1547 src_root->subsys_mask &= ~(1 << ssid);
1548 scgrp->subtree_control &= ~(1 << ssid);
1549 cgroup_refresh_subtree_ss_mask(scgrp);
1550
1551 /* default hierarchy doesn't enable controllers by default */
1552 dst_root->subsys_mask |= 1 << ssid;
1553 if (dst_root == &cgrp_dfl_root) {
1554 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1555 } else {
1556 dcgrp->subtree_control |= 1 << ssid;
1557 cgroup_refresh_subtree_ss_mask(dcgrp);
1558 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1559 }
1560
1561 if (ss->bind)
1562 ss->bind(css);
1563 } while_each_subsys_mask();
1564
1565 kernfs_activate(dcgrp->kn);
1566 return 0;
1567 }
1568
1569 static int cgroup_show_options(struct seq_file *seq,
1570 struct kernfs_root *kf_root)
1571 {
1572 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1573 struct cgroup_subsys *ss;
1574 int ssid;
1575
1576 if (root != &cgrp_dfl_root)
1577 for_each_subsys(ss, ssid)
1578 if (root->subsys_mask & (1 << ssid))
1579 seq_show_option(seq, ss->legacy_name, NULL);
1580 if (root->flags & CGRP_ROOT_NOPREFIX)
1581 seq_puts(seq, ",noprefix");
1582 if (root->flags & CGRP_ROOT_XATTR)
1583 seq_puts(seq, ",xattr");
1584
1585 spin_lock(&release_agent_path_lock);
1586 if (strlen(root->release_agent_path))
1587 seq_show_option(seq, "release_agent",
1588 root->release_agent_path);
1589 spin_unlock(&release_agent_path_lock);
1590
1591 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1592 seq_puts(seq, ",clone_children");
1593 if (strlen(root->name))
1594 seq_show_option(seq, "name", root->name);
1595 return 0;
1596 }
1597
1598 struct cgroup_sb_opts {
1599 u16 subsys_mask;
1600 unsigned int flags;
1601 char *release_agent;
1602 bool cpuset_clone_children;
1603 char *name;
1604 /* User explicitly requested empty subsystem */
1605 bool none;
1606 };
1607
1608 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1609 {
1610 char *token, *o = data;
1611 bool all_ss = false, one_ss = false;
1612 u16 mask = U16_MAX;
1613 struct cgroup_subsys *ss;
1614 int nr_opts = 0;
1615 int i;
1616
1617 #ifdef CONFIG_CPUSETS
1618 mask = ~((u16)1 << cpuset_cgrp_id);
1619 #endif
1620
1621 memset(opts, 0, sizeof(*opts));
1622
1623 while ((token = strsep(&o, ",")) != NULL) {
1624 nr_opts++;
1625
1626 if (!*token)
1627 return -EINVAL;
1628 if (!strcmp(token, "none")) {
1629 /* Explicitly have no subsystems */
1630 opts->none = true;
1631 continue;
1632 }
1633 if (!strcmp(token, "all")) {
1634 /* Mutually exclusive option 'all' + subsystem name */
1635 if (one_ss)
1636 return -EINVAL;
1637 all_ss = true;
1638 continue;
1639 }
1640 if (!strcmp(token, "noprefix")) {
1641 opts->flags |= CGRP_ROOT_NOPREFIX;
1642 continue;
1643 }
1644 if (!strcmp(token, "clone_children")) {
1645 opts->cpuset_clone_children = true;
1646 continue;
1647 }
1648 if (!strcmp(token, "xattr")) {
1649 opts->flags |= CGRP_ROOT_XATTR;
1650 continue;
1651 }
1652 if (!strncmp(token, "release_agent=", 14)) {
1653 /* Specifying two release agents is forbidden */
1654 if (opts->release_agent)
1655 return -EINVAL;
1656 opts->release_agent =
1657 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1658 if (!opts->release_agent)
1659 return -ENOMEM;
1660 continue;
1661 }
1662 if (!strncmp(token, "name=", 5)) {
1663 const char *name = token + 5;
1664 /* Can't specify an empty name */
1665 if (!strlen(name))
1666 return -EINVAL;
1667 /* Must match [\w.-]+ */
1668 for (i = 0; i < strlen(name); i++) {
1669 char c = name[i];
1670 if (isalnum(c))
1671 continue;
1672 if ((c == '.') || (c == '-') || (c == '_'))
1673 continue;
1674 return -EINVAL;
1675 }
1676 /* Specifying two names is forbidden */
1677 if (opts->name)
1678 return -EINVAL;
1679 opts->name = kstrndup(name,
1680 MAX_CGROUP_ROOT_NAMELEN - 1,
1681 GFP_KERNEL);
1682 if (!opts->name)
1683 return -ENOMEM;
1684
1685 continue;
1686 }
1687
1688 for_each_subsys(ss, i) {
1689 if (strcmp(token, ss->legacy_name))
1690 continue;
1691 if (!cgroup_ssid_enabled(i))
1692 continue;
1693 if (cgroup_ssid_no_v1(i))
1694 continue;
1695
1696 /* Mutually exclusive option 'all' + subsystem name */
1697 if (all_ss)
1698 return -EINVAL;
1699 opts->subsys_mask |= (1 << i);
1700 one_ss = true;
1701
1702 break;
1703 }
1704 if (i == CGROUP_SUBSYS_COUNT)
1705 return -ENOENT;
1706 }
1707
1708 /*
1709 * If the 'all' option was specified select all the subsystems,
1710 * otherwise if 'none', 'name=' and a subsystem name options were
1711 * not specified, let's default to 'all'
1712 */
1713 if (all_ss || (!one_ss && !opts->none && !opts->name))
1714 for_each_subsys(ss, i)
1715 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1716 opts->subsys_mask |= (1 << i);
1717
1718 /*
1719 * We either have to specify by name or by subsystems. (So all
1720 * empty hierarchies must have a name).
1721 */
1722 if (!opts->subsys_mask && !opts->name)
1723 return -EINVAL;
1724
1725 /*
1726 * Option noprefix was introduced just for backward compatibility
1727 * with the old cpuset, so we allow noprefix only if mounting just
1728 * the cpuset subsystem.
1729 */
1730 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1731 return -EINVAL;
1732
1733 /* Can't specify "none" and some subsystems */
1734 if (opts->subsys_mask && opts->none)
1735 return -EINVAL;
1736
1737 return 0;
1738 }
1739
1740 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1741 {
1742 int ret = 0;
1743 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1744 struct cgroup_sb_opts opts;
1745 u16 added_mask, removed_mask;
1746
1747 if (root == &cgrp_dfl_root) {
1748 pr_err("remount is not allowed\n");
1749 return -EINVAL;
1750 }
1751
1752 mutex_lock(&cgroup_mutex);
1753
1754 /* See what subsystems are wanted */
1755 ret = parse_cgroupfs_options(data, &opts);
1756 if (ret)
1757 goto out_unlock;
1758
1759 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1760 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1761 task_tgid_nr(current), current->comm);
1762
1763 added_mask = opts.subsys_mask & ~root->subsys_mask;
1764 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1765
1766 /* Don't allow flags or name to change at remount */
1767 if ((opts.flags ^ root->flags) ||
1768 (opts.name && strcmp(opts.name, root->name))) {
1769 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1770 opts.flags, opts.name ?: "", root->flags, root->name);
1771 ret = -EINVAL;
1772 goto out_unlock;
1773 }
1774
1775 /* remounting is not allowed for populated hierarchies */
1776 if (!list_empty(&root->cgrp.self.children)) {
1777 ret = -EBUSY;
1778 goto out_unlock;
1779 }
1780
1781 ret = rebind_subsystems(root, added_mask);
1782 if (ret)
1783 goto out_unlock;
1784
1785 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1786
1787 if (opts.release_agent) {
1788 spin_lock(&release_agent_path_lock);
1789 strcpy(root->release_agent_path, opts.release_agent);
1790 spin_unlock(&release_agent_path_lock);
1791 }
1792 out_unlock:
1793 kfree(opts.release_agent);
1794 kfree(opts.name);
1795 mutex_unlock(&cgroup_mutex);
1796 return ret;
1797 }
1798
1799 /*
1800 * To reduce the fork() overhead for systems that are not actually using
1801 * their cgroups capability, we don't maintain the lists running through
1802 * each css_set to its tasks until we see the list actually used - in other
1803 * words after the first mount.
1804 */
1805 static bool use_task_css_set_links __read_mostly;
1806
1807 static void cgroup_enable_task_cg_lists(void)
1808 {
1809 struct task_struct *p, *g;
1810
1811 spin_lock_bh(&css_set_lock);
1812
1813 if (use_task_css_set_links)
1814 goto out_unlock;
1815
1816 use_task_css_set_links = true;
1817
1818 /*
1819 * We need tasklist_lock because RCU is not safe against
1820 * while_each_thread(). Besides, a forking task that has passed
1821 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1822 * is not guaranteed to have its child immediately visible in the
1823 * tasklist if we walk through it with RCU.
1824 */
1825 read_lock(&tasklist_lock);
1826 do_each_thread(g, p) {
1827 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1828 task_css_set(p) != &init_css_set);
1829
1830 /*
1831 * We should check if the process is exiting, otherwise
1832 * it will race with cgroup_exit() in that the list
1833 * entry won't be deleted though the process has exited.
1834 * Do it while holding siglock so that we don't end up
1835 * racing against cgroup_exit().
1836 */
1837 spin_lock_irq(&p->sighand->siglock);
1838 if (!(p->flags & PF_EXITING)) {
1839 struct css_set *cset = task_css_set(p);
1840
1841 if (!css_set_populated(cset))
1842 css_set_update_populated(cset, true);
1843 list_add_tail(&p->cg_list, &cset->tasks);
1844 get_css_set(cset);
1845 }
1846 spin_unlock_irq(&p->sighand->siglock);
1847 } while_each_thread(g, p);
1848 read_unlock(&tasklist_lock);
1849 out_unlock:
1850 spin_unlock_bh(&css_set_lock);
1851 }
1852
1853 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1854 {
1855 struct cgroup_subsys *ss;
1856 int ssid;
1857
1858 INIT_LIST_HEAD(&cgrp->self.sibling);
1859 INIT_LIST_HEAD(&cgrp->self.children);
1860 INIT_LIST_HEAD(&cgrp->cset_links);
1861 INIT_LIST_HEAD(&cgrp->pidlists);
1862 mutex_init(&cgrp->pidlist_mutex);
1863 cgrp->self.cgroup = cgrp;
1864 cgrp->self.flags |= CSS_ONLINE;
1865
1866 for_each_subsys(ss, ssid)
1867 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1868
1869 init_waitqueue_head(&cgrp->offline_waitq);
1870 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1871 }
1872
1873 static void init_cgroup_root(struct cgroup_root *root,
1874 struct cgroup_sb_opts *opts)
1875 {
1876 struct cgroup *cgrp = &root->cgrp;
1877
1878 INIT_LIST_HEAD(&root->root_list);
1879 atomic_set(&root->nr_cgrps, 1);
1880 cgrp->root = root;
1881 init_cgroup_housekeeping(cgrp);
1882 idr_init(&root->cgroup_idr);
1883
1884 root->flags = opts->flags;
1885 if (opts->release_agent)
1886 strcpy(root->release_agent_path, opts->release_agent);
1887 if (opts->name)
1888 strcpy(root->name, opts->name);
1889 if (opts->cpuset_clone_children)
1890 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1891 }
1892
1893 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1894 {
1895 LIST_HEAD(tmp_links);
1896 struct cgroup *root_cgrp = &root->cgrp;
1897 struct css_set *cset;
1898 int i, ret;
1899
1900 lockdep_assert_held(&cgroup_mutex);
1901
1902 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1903 if (ret < 0)
1904 goto out;
1905 root_cgrp->id = ret;
1906 root_cgrp->ancestor_ids[0] = ret;
1907
1908 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1909 GFP_KERNEL);
1910 if (ret)
1911 goto out;
1912
1913 /*
1914 * We're accessing css_set_count without locking css_set_lock here,
1915 * but that's OK - it can only be increased by someone holding
1916 * cgroup_lock, and that's us. The worst that can happen is that we
1917 * have some link structures left over
1918 */
1919 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1920 if (ret)
1921 goto cancel_ref;
1922
1923 ret = cgroup_init_root_id(root);
1924 if (ret)
1925 goto cancel_ref;
1926
1927 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1928 KERNFS_ROOT_CREATE_DEACTIVATED,
1929 root_cgrp);
1930 if (IS_ERR(root->kf_root)) {
1931 ret = PTR_ERR(root->kf_root);
1932 goto exit_root_id;
1933 }
1934 root_cgrp->kn = root->kf_root->kn;
1935
1936 ret = css_populate_dir(&root_cgrp->self, NULL);
1937 if (ret)
1938 goto destroy_root;
1939
1940 ret = rebind_subsystems(root, ss_mask);
1941 if (ret)
1942 goto destroy_root;
1943
1944 /*
1945 * There must be no failure case after here, since rebinding takes
1946 * care of subsystems' refcounts, which are explicitly dropped in
1947 * the failure exit path.
1948 */
1949 list_add(&root->root_list, &cgroup_roots);
1950 cgroup_root_count++;
1951
1952 /*
1953 * Link the root cgroup in this hierarchy into all the css_set
1954 * objects.
1955 */
1956 spin_lock_bh(&css_set_lock);
1957 hash_for_each(css_set_table, i, cset, hlist) {
1958 link_css_set(&tmp_links, cset, root_cgrp);
1959 if (css_set_populated(cset))
1960 cgroup_update_populated(root_cgrp, true);
1961 }
1962 spin_unlock_bh(&css_set_lock);
1963
1964 BUG_ON(!list_empty(&root_cgrp->self.children));
1965 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1966
1967 kernfs_activate(root_cgrp->kn);
1968 ret = 0;
1969 goto out;
1970
1971 destroy_root:
1972 kernfs_destroy_root(root->kf_root);
1973 root->kf_root = NULL;
1974 exit_root_id:
1975 cgroup_exit_root_id(root);
1976 cancel_ref:
1977 percpu_ref_exit(&root_cgrp->self.refcnt);
1978 out:
1979 free_cgrp_cset_links(&tmp_links);
1980 return ret;
1981 }
1982
1983 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1984 int flags, const char *unused_dev_name,
1985 void *data)
1986 {
1987 bool is_v2 = fs_type == &cgroup2_fs_type;
1988 struct super_block *pinned_sb = NULL;
1989 struct cgroup_subsys *ss;
1990 struct cgroup_root *root;
1991 struct cgroup_sb_opts opts;
1992 struct dentry *dentry;
1993 int ret;
1994 int i;
1995 bool new_sb;
1996
1997 /*
1998 * The first time anyone tries to mount a cgroup, enable the list
1999 * linking each css_set to its tasks and fix up all existing tasks.
2000 */
2001 if (!use_task_css_set_links)
2002 cgroup_enable_task_cg_lists();
2003
2004 if (is_v2) {
2005 if (data) {
2006 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2007 return ERR_PTR(-EINVAL);
2008 }
2009 cgrp_dfl_root_visible = true;
2010 root = &cgrp_dfl_root;
2011 cgroup_get(&root->cgrp);
2012 goto out_mount;
2013 }
2014
2015 mutex_lock(&cgroup_mutex);
2016
2017 /* First find the desired set of subsystems */
2018 ret = parse_cgroupfs_options(data, &opts);
2019 if (ret)
2020 goto out_unlock;
2021
2022 /*
2023 * Destruction of cgroup root is asynchronous, so subsystems may
2024 * still be dying after the previous unmount. Let's drain the
2025 * dying subsystems. We just need to ensure that the ones
2026 * unmounted previously finish dying and don't care about new ones
2027 * starting. Testing ref liveliness is good enough.
2028 */
2029 for_each_subsys(ss, i) {
2030 if (!(opts.subsys_mask & (1 << i)) ||
2031 ss->root == &cgrp_dfl_root)
2032 continue;
2033
2034 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2035 mutex_unlock(&cgroup_mutex);
2036 msleep(10);
2037 ret = restart_syscall();
2038 goto out_free;
2039 }
2040 cgroup_put(&ss->root->cgrp);
2041 }
2042
2043 for_each_root(root) {
2044 bool name_match = false;
2045
2046 if (root == &cgrp_dfl_root)
2047 continue;
2048
2049 /*
2050 * If we asked for a name then it must match. Also, if
2051 * name matches but sybsys_mask doesn't, we should fail.
2052 * Remember whether name matched.
2053 */
2054 if (opts.name) {
2055 if (strcmp(opts.name, root->name))
2056 continue;
2057 name_match = true;
2058 }
2059
2060 /*
2061 * If we asked for subsystems (or explicitly for no
2062 * subsystems) then they must match.
2063 */
2064 if ((opts.subsys_mask || opts.none) &&
2065 (opts.subsys_mask != root->subsys_mask)) {
2066 if (!name_match)
2067 continue;
2068 ret = -EBUSY;
2069 goto out_unlock;
2070 }
2071
2072 if (root->flags ^ opts.flags)
2073 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2074
2075 /*
2076 * We want to reuse @root whose lifetime is governed by its
2077 * ->cgrp. Let's check whether @root is alive and keep it
2078 * that way. As cgroup_kill_sb() can happen anytime, we
2079 * want to block it by pinning the sb so that @root doesn't
2080 * get killed before mount is complete.
2081 *
2082 * With the sb pinned, tryget_live can reliably indicate
2083 * whether @root can be reused. If it's being killed,
2084 * drain it. We can use wait_queue for the wait but this
2085 * path is super cold. Let's just sleep a bit and retry.
2086 */
2087 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2088 if (IS_ERR(pinned_sb) ||
2089 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2090 mutex_unlock(&cgroup_mutex);
2091 if (!IS_ERR_OR_NULL(pinned_sb))
2092 deactivate_super(pinned_sb);
2093 msleep(10);
2094 ret = restart_syscall();
2095 goto out_free;
2096 }
2097
2098 ret = 0;
2099 goto out_unlock;
2100 }
2101
2102 /*
2103 * No such thing, create a new one. name= matching without subsys
2104 * specification is allowed for already existing hierarchies but we
2105 * can't create new one without subsys specification.
2106 */
2107 if (!opts.subsys_mask && !opts.none) {
2108 ret = -EINVAL;
2109 goto out_unlock;
2110 }
2111
2112 root = kzalloc(sizeof(*root), GFP_KERNEL);
2113 if (!root) {
2114 ret = -ENOMEM;
2115 goto out_unlock;
2116 }
2117
2118 init_cgroup_root(root, &opts);
2119
2120 ret = cgroup_setup_root(root, opts.subsys_mask);
2121 if (ret)
2122 cgroup_free_root(root);
2123
2124 out_unlock:
2125 mutex_unlock(&cgroup_mutex);
2126 out_free:
2127 kfree(opts.release_agent);
2128 kfree(opts.name);
2129
2130 if (ret)
2131 return ERR_PTR(ret);
2132 out_mount:
2133 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2134 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2135 &new_sb);
2136 if (IS_ERR(dentry) || !new_sb)
2137 cgroup_put(&root->cgrp);
2138
2139 /*
2140 * If @pinned_sb, we're reusing an existing root and holding an
2141 * extra ref on its sb. Mount is complete. Put the extra ref.
2142 */
2143 if (pinned_sb) {
2144 WARN_ON(new_sb);
2145 deactivate_super(pinned_sb);
2146 }
2147
2148 return dentry;
2149 }
2150
2151 static void cgroup_kill_sb(struct super_block *sb)
2152 {
2153 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2154 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2155
2156 /*
2157 * If @root doesn't have any mounts or children, start killing it.
2158 * This prevents new mounts by disabling percpu_ref_tryget_live().
2159 * cgroup_mount() may wait for @root's release.
2160 *
2161 * And don't kill the default root.
2162 */
2163 if (!list_empty(&root->cgrp.self.children) ||
2164 root == &cgrp_dfl_root)
2165 cgroup_put(&root->cgrp);
2166 else
2167 percpu_ref_kill(&root->cgrp.self.refcnt);
2168
2169 kernfs_kill_sb(sb);
2170 }
2171
2172 static struct file_system_type cgroup_fs_type = {
2173 .name = "cgroup",
2174 .mount = cgroup_mount,
2175 .kill_sb = cgroup_kill_sb,
2176 };
2177
2178 static struct file_system_type cgroup2_fs_type = {
2179 .name = "cgroup2",
2180 .mount = cgroup_mount,
2181 .kill_sb = cgroup_kill_sb,
2182 };
2183
2184 /**
2185 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2186 * @task: target task
2187 * @buf: the buffer to write the path into
2188 * @buflen: the length of the buffer
2189 *
2190 * Determine @task's cgroup on the first (the one with the lowest non-zero
2191 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2192 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2193 * cgroup controller callbacks.
2194 *
2195 * Return value is the same as kernfs_path().
2196 */
2197 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2198 {
2199 struct cgroup_root *root;
2200 struct cgroup *cgrp;
2201 int hierarchy_id = 1;
2202 char *path = NULL;
2203
2204 mutex_lock(&cgroup_mutex);
2205 spin_lock_bh(&css_set_lock);
2206
2207 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2208
2209 if (root) {
2210 cgrp = task_cgroup_from_root(task, root);
2211 path = cgroup_path(cgrp, buf, buflen);
2212 } else {
2213 /* if no hierarchy exists, everyone is in "/" */
2214 if (strlcpy(buf, "/", buflen) < buflen)
2215 path = buf;
2216 }
2217
2218 spin_unlock_bh(&css_set_lock);
2219 mutex_unlock(&cgroup_mutex);
2220 return path;
2221 }
2222 EXPORT_SYMBOL_GPL(task_cgroup_path);
2223
2224 /* used to track tasks and other necessary states during migration */
2225 struct cgroup_taskset {
2226 /* the src and dst cset list running through cset->mg_node */
2227 struct list_head src_csets;
2228 struct list_head dst_csets;
2229
2230 /* the subsys currently being processed */
2231 int ssid;
2232
2233 /*
2234 * Fields for cgroup_taskset_*() iteration.
2235 *
2236 * Before migration is committed, the target migration tasks are on
2237 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2238 * the csets on ->dst_csets. ->csets point to either ->src_csets
2239 * or ->dst_csets depending on whether migration is committed.
2240 *
2241 * ->cur_csets and ->cur_task point to the current task position
2242 * during iteration.
2243 */
2244 struct list_head *csets;
2245 struct css_set *cur_cset;
2246 struct task_struct *cur_task;
2247 };
2248
2249 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2250 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2251 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2252 .csets = &tset.src_csets, \
2253 }
2254
2255 /**
2256 * cgroup_taskset_add - try to add a migration target task to a taskset
2257 * @task: target task
2258 * @tset: target taskset
2259 *
2260 * Add @task, which is a migration target, to @tset. This function becomes
2261 * noop if @task doesn't need to be migrated. @task's css_set should have
2262 * been added as a migration source and @task->cg_list will be moved from
2263 * the css_set's tasks list to mg_tasks one.
2264 */
2265 static void cgroup_taskset_add(struct task_struct *task,
2266 struct cgroup_taskset *tset)
2267 {
2268 struct css_set *cset;
2269
2270 lockdep_assert_held(&css_set_lock);
2271
2272 /* @task either already exited or can't exit until the end */
2273 if (task->flags & PF_EXITING)
2274 return;
2275
2276 /* leave @task alone if post_fork() hasn't linked it yet */
2277 if (list_empty(&task->cg_list))
2278 return;
2279
2280 cset = task_css_set(task);
2281 if (!cset->mg_src_cgrp)
2282 return;
2283
2284 list_move_tail(&task->cg_list, &cset->mg_tasks);
2285 if (list_empty(&cset->mg_node))
2286 list_add_tail(&cset->mg_node, &tset->src_csets);
2287 if (list_empty(&cset->mg_dst_cset->mg_node))
2288 list_move_tail(&cset->mg_dst_cset->mg_node,
2289 &tset->dst_csets);
2290 }
2291
2292 /**
2293 * cgroup_taskset_first - reset taskset and return the first task
2294 * @tset: taskset of interest
2295 * @dst_cssp: output variable for the destination css
2296 *
2297 * @tset iteration is initialized and the first task is returned.
2298 */
2299 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2300 struct cgroup_subsys_state **dst_cssp)
2301 {
2302 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2303 tset->cur_task = NULL;
2304
2305 return cgroup_taskset_next(tset, dst_cssp);
2306 }
2307
2308 /**
2309 * cgroup_taskset_next - iterate to the next task in taskset
2310 * @tset: taskset of interest
2311 * @dst_cssp: output variable for the destination css
2312 *
2313 * Return the next task in @tset. Iteration must have been initialized
2314 * with cgroup_taskset_first().
2315 */
2316 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2317 struct cgroup_subsys_state **dst_cssp)
2318 {
2319 struct css_set *cset = tset->cur_cset;
2320 struct task_struct *task = tset->cur_task;
2321
2322 while (&cset->mg_node != tset->csets) {
2323 if (!task)
2324 task = list_first_entry(&cset->mg_tasks,
2325 struct task_struct, cg_list);
2326 else
2327 task = list_next_entry(task, cg_list);
2328
2329 if (&task->cg_list != &cset->mg_tasks) {
2330 tset->cur_cset = cset;
2331 tset->cur_task = task;
2332
2333 /*
2334 * This function may be called both before and
2335 * after cgroup_taskset_migrate(). The two cases
2336 * can be distinguished by looking at whether @cset
2337 * has its ->mg_dst_cset set.
2338 */
2339 if (cset->mg_dst_cset)
2340 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2341 else
2342 *dst_cssp = cset->subsys[tset->ssid];
2343
2344 return task;
2345 }
2346
2347 cset = list_next_entry(cset, mg_node);
2348 task = NULL;
2349 }
2350
2351 return NULL;
2352 }
2353
2354 /**
2355 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2356 * @tset: taget taskset
2357 * @dst_cgrp: destination cgroup
2358 *
2359 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2360 * ->can_attach callbacks fails and guarantees that either all or none of
2361 * the tasks in @tset are migrated. @tset is consumed regardless of
2362 * success.
2363 */
2364 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2365 struct cgroup *dst_cgrp)
2366 {
2367 struct cgroup_subsys_state *css, *failed_css = NULL;
2368 struct task_struct *task, *tmp_task;
2369 struct css_set *cset, *tmp_cset;
2370 int i, ret;
2371
2372 /* methods shouldn't be called if no task is actually migrating */
2373 if (list_empty(&tset->src_csets))
2374 return 0;
2375
2376 /* check that we can legitimately attach to the cgroup */
2377 for_each_e_css(css, i, dst_cgrp) {
2378 if (css->ss->can_attach) {
2379 tset->ssid = i;
2380 ret = css->ss->can_attach(tset);
2381 if (ret) {
2382 failed_css = css;
2383 goto out_cancel_attach;
2384 }
2385 }
2386 }
2387
2388 /*
2389 * Now that we're guaranteed success, proceed to move all tasks to
2390 * the new cgroup. There are no failure cases after here, so this
2391 * is the commit point.
2392 */
2393 spin_lock_bh(&css_set_lock);
2394 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2395 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2396 struct css_set *from_cset = task_css_set(task);
2397 struct css_set *to_cset = cset->mg_dst_cset;
2398
2399 get_css_set(to_cset);
2400 css_set_move_task(task, from_cset, to_cset, true);
2401 put_css_set_locked(from_cset);
2402 }
2403 }
2404 spin_unlock_bh(&css_set_lock);
2405
2406 /*
2407 * Migration is committed, all target tasks are now on dst_csets.
2408 * Nothing is sensitive to fork() after this point. Notify
2409 * controllers that migration is complete.
2410 */
2411 tset->csets = &tset->dst_csets;
2412
2413 for_each_e_css(css, i, dst_cgrp) {
2414 if (css->ss->attach) {
2415 tset->ssid = i;
2416 css->ss->attach(tset);
2417 }
2418 }
2419
2420 ret = 0;
2421 goto out_release_tset;
2422
2423 out_cancel_attach:
2424 for_each_e_css(css, i, dst_cgrp) {
2425 if (css == failed_css)
2426 break;
2427 if (css->ss->cancel_attach) {
2428 tset->ssid = i;
2429 css->ss->cancel_attach(tset);
2430 }
2431 }
2432 out_release_tset:
2433 spin_lock_bh(&css_set_lock);
2434 list_splice_init(&tset->dst_csets, &tset->src_csets);
2435 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2436 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2437 list_del_init(&cset->mg_node);
2438 }
2439 spin_unlock_bh(&css_set_lock);
2440 return ret;
2441 }
2442
2443 /**
2444 * cgroup_migrate_finish - cleanup after attach
2445 * @preloaded_csets: list of preloaded css_sets
2446 *
2447 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2448 * those functions for details.
2449 */
2450 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2451 {
2452 struct css_set *cset, *tmp_cset;
2453
2454 lockdep_assert_held(&cgroup_mutex);
2455
2456 spin_lock_bh(&css_set_lock);
2457 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2458 cset->mg_src_cgrp = NULL;
2459 cset->mg_dst_cset = NULL;
2460 list_del_init(&cset->mg_preload_node);
2461 put_css_set_locked(cset);
2462 }
2463 spin_unlock_bh(&css_set_lock);
2464 }
2465
2466 /**
2467 * cgroup_migrate_add_src - add a migration source css_set
2468 * @src_cset: the source css_set to add
2469 * @dst_cgrp: the destination cgroup
2470 * @preloaded_csets: list of preloaded css_sets
2471 *
2472 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2473 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2474 * up by cgroup_migrate_finish().
2475 *
2476 * This function may be called without holding cgroup_threadgroup_rwsem
2477 * even if the target is a process. Threads may be created and destroyed
2478 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2479 * into play and the preloaded css_sets are guaranteed to cover all
2480 * migrations.
2481 */
2482 static void cgroup_migrate_add_src(struct css_set *src_cset,
2483 struct cgroup *dst_cgrp,
2484 struct list_head *preloaded_csets)
2485 {
2486 struct cgroup *src_cgrp;
2487
2488 lockdep_assert_held(&cgroup_mutex);
2489 lockdep_assert_held(&css_set_lock);
2490
2491 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2492
2493 if (!list_empty(&src_cset->mg_preload_node))
2494 return;
2495
2496 WARN_ON(src_cset->mg_src_cgrp);
2497 WARN_ON(!list_empty(&src_cset->mg_tasks));
2498 WARN_ON(!list_empty(&src_cset->mg_node));
2499
2500 src_cset->mg_src_cgrp = src_cgrp;
2501 get_css_set(src_cset);
2502 list_add(&src_cset->mg_preload_node, preloaded_csets);
2503 }
2504
2505 /**
2506 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2507 * @dst_cgrp: the destination cgroup (may be %NULL)
2508 * @preloaded_csets: list of preloaded source css_sets
2509 *
2510 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2511 * have been preloaded to @preloaded_csets. This function looks up and
2512 * pins all destination css_sets, links each to its source, and append them
2513 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2514 * source css_set is assumed to be its cgroup on the default hierarchy.
2515 *
2516 * This function must be called after cgroup_migrate_add_src() has been
2517 * called on each migration source css_set. After migration is performed
2518 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2519 * @preloaded_csets.
2520 */
2521 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2522 struct list_head *preloaded_csets)
2523 {
2524 LIST_HEAD(csets);
2525 struct css_set *src_cset, *tmp_cset;
2526
2527 lockdep_assert_held(&cgroup_mutex);
2528
2529 /*
2530 * Except for the root, subtree_ss_mask must be zero for a cgroup
2531 * with tasks so that child cgroups don't compete against tasks.
2532 */
2533 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2534 dst_cgrp->subtree_ss_mask)
2535 return -EBUSY;
2536
2537 /* look up the dst cset for each src cset and link it to src */
2538 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2539 struct css_set *dst_cset;
2540
2541 dst_cset = find_css_set(src_cset,
2542 dst_cgrp ?: src_cset->dfl_cgrp);
2543 if (!dst_cset)
2544 goto err;
2545
2546 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2547
2548 /*
2549 * If src cset equals dst, it's noop. Drop the src.
2550 * cgroup_migrate() will skip the cset too. Note that we
2551 * can't handle src == dst as some nodes are used by both.
2552 */
2553 if (src_cset == dst_cset) {
2554 src_cset->mg_src_cgrp = NULL;
2555 list_del_init(&src_cset->mg_preload_node);
2556 put_css_set(src_cset);
2557 put_css_set(dst_cset);
2558 continue;
2559 }
2560
2561 src_cset->mg_dst_cset = dst_cset;
2562
2563 if (list_empty(&dst_cset->mg_preload_node))
2564 list_add(&dst_cset->mg_preload_node, &csets);
2565 else
2566 put_css_set(dst_cset);
2567 }
2568
2569 list_splice_tail(&csets, preloaded_csets);
2570 return 0;
2571 err:
2572 cgroup_migrate_finish(&csets);
2573 return -ENOMEM;
2574 }
2575
2576 /**
2577 * cgroup_migrate - migrate a process or task to a cgroup
2578 * @leader: the leader of the process or the task to migrate
2579 * @threadgroup: whether @leader points to the whole process or a single task
2580 * @cgrp: the destination cgroup
2581 *
2582 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2583 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2584 * caller is also responsible for invoking cgroup_migrate_add_src() and
2585 * cgroup_migrate_prepare_dst() on the targets before invoking this
2586 * function and following up with cgroup_migrate_finish().
2587 *
2588 * As long as a controller's ->can_attach() doesn't fail, this function is
2589 * guaranteed to succeed. This means that, excluding ->can_attach()
2590 * failure, when migrating multiple targets, the success or failure can be
2591 * decided for all targets by invoking group_migrate_prepare_dst() before
2592 * actually starting migrating.
2593 */
2594 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2595 struct cgroup *cgrp)
2596 {
2597 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2598 struct task_struct *task;
2599
2600 /*
2601 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2602 * already PF_EXITING could be freed from underneath us unless we
2603 * take an rcu_read_lock.
2604 */
2605 spin_lock_bh(&css_set_lock);
2606 rcu_read_lock();
2607 task = leader;
2608 do {
2609 cgroup_taskset_add(task, &tset);
2610 if (!threadgroup)
2611 break;
2612 } while_each_thread(leader, task);
2613 rcu_read_unlock();
2614 spin_unlock_bh(&css_set_lock);
2615
2616 return cgroup_taskset_migrate(&tset, cgrp);
2617 }
2618
2619 /**
2620 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2621 * @dst_cgrp: the cgroup to attach to
2622 * @leader: the task or the leader of the threadgroup to be attached
2623 * @threadgroup: attach the whole threadgroup?
2624 *
2625 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2626 */
2627 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2628 struct task_struct *leader, bool threadgroup)
2629 {
2630 LIST_HEAD(preloaded_csets);
2631 struct task_struct *task;
2632 int ret;
2633
2634 /* look up all src csets */
2635 spin_lock_bh(&css_set_lock);
2636 rcu_read_lock();
2637 task = leader;
2638 do {
2639 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2640 &preloaded_csets);
2641 if (!threadgroup)
2642 break;
2643 } while_each_thread(leader, task);
2644 rcu_read_unlock();
2645 spin_unlock_bh(&css_set_lock);
2646
2647 /* prepare dst csets and commit */
2648 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2649 if (!ret)
2650 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2651
2652 cgroup_migrate_finish(&preloaded_csets);
2653 return ret;
2654 }
2655
2656 static int cgroup_procs_write_permission(struct task_struct *task,
2657 struct cgroup *dst_cgrp,
2658 struct kernfs_open_file *of)
2659 {
2660 const struct cred *cred = current_cred();
2661 const struct cred *tcred = get_task_cred(task);
2662 int ret = 0;
2663
2664 /*
2665 * even if we're attaching all tasks in the thread group, we only
2666 * need to check permissions on one of them.
2667 */
2668 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2669 !uid_eq(cred->euid, tcred->uid) &&
2670 !uid_eq(cred->euid, tcred->suid))
2671 ret = -EACCES;
2672
2673 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2674 struct super_block *sb = of->file->f_path.dentry->d_sb;
2675 struct cgroup *cgrp;
2676 struct inode *inode;
2677
2678 spin_lock_bh(&css_set_lock);
2679 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2680 spin_unlock_bh(&css_set_lock);
2681
2682 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2683 cgrp = cgroup_parent(cgrp);
2684
2685 ret = -ENOMEM;
2686 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2687 if (inode) {
2688 ret = inode_permission(inode, MAY_WRITE);
2689 iput(inode);
2690 }
2691 }
2692
2693 put_cred(tcred);
2694 return ret;
2695 }
2696
2697 /*
2698 * Find the task_struct of the task to attach by vpid and pass it along to the
2699 * function to attach either it or all tasks in its threadgroup. Will lock
2700 * cgroup_mutex and threadgroup.
2701 */
2702 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2703 size_t nbytes, loff_t off, bool threadgroup)
2704 {
2705 struct task_struct *tsk;
2706 struct cgroup *cgrp;
2707 pid_t pid;
2708 int ret;
2709
2710 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2711 return -EINVAL;
2712
2713 cgrp = cgroup_kn_lock_live(of->kn);
2714 if (!cgrp)
2715 return -ENODEV;
2716
2717 percpu_down_write(&cgroup_threadgroup_rwsem);
2718 rcu_read_lock();
2719 if (pid) {
2720 tsk = find_task_by_vpid(pid);
2721 if (!tsk) {
2722 ret = -ESRCH;
2723 goto out_unlock_rcu;
2724 }
2725 } else {
2726 tsk = current;
2727 }
2728
2729 if (threadgroup)
2730 tsk = tsk->group_leader;
2731
2732 /*
2733 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2734 * trapped in a cpuset, or RT worker may be born in a cgroup
2735 * with no rt_runtime allocated. Just say no.
2736 */
2737 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2738 ret = -EINVAL;
2739 goto out_unlock_rcu;
2740 }
2741
2742 get_task_struct(tsk);
2743 rcu_read_unlock();
2744
2745 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2746 if (!ret)
2747 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2748
2749 put_task_struct(tsk);
2750 goto out_unlock_threadgroup;
2751
2752 out_unlock_rcu:
2753 rcu_read_unlock();
2754 out_unlock_threadgroup:
2755 percpu_up_write(&cgroup_threadgroup_rwsem);
2756 cgroup_kn_unlock(of->kn);
2757 cpuset_post_attach_flush();
2758 return ret ?: nbytes;
2759 }
2760
2761 /**
2762 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2763 * @from: attach to all cgroups of a given task
2764 * @tsk: the task to be attached
2765 */
2766 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2767 {
2768 struct cgroup_root *root;
2769 int retval = 0;
2770
2771 mutex_lock(&cgroup_mutex);
2772 for_each_root(root) {
2773 struct cgroup *from_cgrp;
2774
2775 if (root == &cgrp_dfl_root)
2776 continue;
2777
2778 spin_lock_bh(&css_set_lock);
2779 from_cgrp = task_cgroup_from_root(from, root);
2780 spin_unlock_bh(&css_set_lock);
2781
2782 retval = cgroup_attach_task(from_cgrp, tsk, false);
2783 if (retval)
2784 break;
2785 }
2786 mutex_unlock(&cgroup_mutex);
2787
2788 return retval;
2789 }
2790 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2791
2792 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2793 char *buf, size_t nbytes, loff_t off)
2794 {
2795 return __cgroup_procs_write(of, buf, nbytes, off, false);
2796 }
2797
2798 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2799 char *buf, size_t nbytes, loff_t off)
2800 {
2801 return __cgroup_procs_write(of, buf, nbytes, off, true);
2802 }
2803
2804 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2805 char *buf, size_t nbytes, loff_t off)
2806 {
2807 struct cgroup *cgrp;
2808
2809 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2810
2811 cgrp = cgroup_kn_lock_live(of->kn);
2812 if (!cgrp)
2813 return -ENODEV;
2814 spin_lock(&release_agent_path_lock);
2815 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2816 sizeof(cgrp->root->release_agent_path));
2817 spin_unlock(&release_agent_path_lock);
2818 cgroup_kn_unlock(of->kn);
2819 return nbytes;
2820 }
2821
2822 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2823 {
2824 struct cgroup *cgrp = seq_css(seq)->cgroup;
2825
2826 spin_lock(&release_agent_path_lock);
2827 seq_puts(seq, cgrp->root->release_agent_path);
2828 spin_unlock(&release_agent_path_lock);
2829 seq_putc(seq, '\n');
2830 return 0;
2831 }
2832
2833 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2834 {
2835 seq_puts(seq, "0\n");
2836 return 0;
2837 }
2838
2839 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2840 {
2841 struct cgroup_subsys *ss;
2842 bool printed = false;
2843 int ssid;
2844
2845 do_each_subsys_mask(ss, ssid, ss_mask) {
2846 if (printed)
2847 seq_putc(seq, ' ');
2848 seq_printf(seq, "%s", ss->name);
2849 printed = true;
2850 } while_each_subsys_mask();
2851 if (printed)
2852 seq_putc(seq, '\n');
2853 }
2854
2855 /* show controllers which are currently attached to the default hierarchy */
2856 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2857 {
2858 struct cgroup *cgrp = seq_css(seq)->cgroup;
2859
2860 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2861 ~cgrp_dfl_root_inhibit_ss_mask);
2862 return 0;
2863 }
2864
2865 /* show controllers which are enabled from the parent */
2866 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2867 {
2868 struct cgroup *cgrp = seq_css(seq)->cgroup;
2869
2870 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2871 return 0;
2872 }
2873
2874 /* show controllers which are enabled for a given cgroup's children */
2875 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2876 {
2877 struct cgroup *cgrp = seq_css(seq)->cgroup;
2878
2879 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2880 return 0;
2881 }
2882
2883 /**
2884 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2885 * @cgrp: root of the subtree to update csses for
2886 *
2887 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
2888 * css associations need to be updated accordingly. This function looks up
2889 * all css_sets which are attached to the subtree, creates the matching
2890 * updated css_sets and migrates the tasks to the new ones.
2891 */
2892 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2893 {
2894 LIST_HEAD(preloaded_csets);
2895 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2896 struct cgroup_subsys_state *css;
2897 struct css_set *src_cset;
2898 int ret;
2899
2900 lockdep_assert_held(&cgroup_mutex);
2901
2902 percpu_down_write(&cgroup_threadgroup_rwsem);
2903
2904 /* look up all csses currently attached to @cgrp's subtree */
2905 spin_lock_bh(&css_set_lock);
2906 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2907 struct cgrp_cset_link *link;
2908
2909 /* self is not affected by subtree_ss_mask change */
2910 if (css->cgroup == cgrp)
2911 continue;
2912
2913 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2914 cgroup_migrate_add_src(link->cset, cgrp,
2915 &preloaded_csets);
2916 }
2917 spin_unlock_bh(&css_set_lock);
2918
2919 /* NULL dst indicates self on default hierarchy */
2920 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2921 if (ret)
2922 goto out_finish;
2923
2924 spin_lock_bh(&css_set_lock);
2925 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2926 struct task_struct *task, *ntask;
2927
2928 /* src_csets precede dst_csets, break on the first dst_cset */
2929 if (!src_cset->mg_src_cgrp)
2930 break;
2931
2932 /* all tasks in src_csets need to be migrated */
2933 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2934 cgroup_taskset_add(task, &tset);
2935 }
2936 spin_unlock_bh(&css_set_lock);
2937
2938 ret = cgroup_taskset_migrate(&tset, cgrp);
2939 out_finish:
2940 cgroup_migrate_finish(&preloaded_csets);
2941 percpu_up_write(&cgroup_threadgroup_rwsem);
2942 return ret;
2943 }
2944
2945 /* change the enabled child controllers for a cgroup in the default hierarchy */
2946 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2947 char *buf, size_t nbytes,
2948 loff_t off)
2949 {
2950 u16 enable = 0, disable = 0;
2951 u16 css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2952 struct cgroup *cgrp, *child;
2953 struct cgroup_subsys *ss;
2954 char *tok;
2955 int ssid, ret;
2956
2957 /*
2958 * Parse input - space separated list of subsystem names prefixed
2959 * with either + or -.
2960 */
2961 buf = strstrip(buf);
2962 while ((tok = strsep(&buf, " "))) {
2963 if (tok[0] == '\0')
2964 continue;
2965 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_root_inhibit_ss_mask) {
2966 if (!cgroup_ssid_enabled(ssid) ||
2967 strcmp(tok + 1, ss->name))
2968 continue;
2969
2970 if (*tok == '+') {
2971 enable |= 1 << ssid;
2972 disable &= ~(1 << ssid);
2973 } else if (*tok == '-') {
2974 disable |= 1 << ssid;
2975 enable &= ~(1 << ssid);
2976 } else {
2977 return -EINVAL;
2978 }
2979 break;
2980 } while_each_subsys_mask();
2981 if (ssid == CGROUP_SUBSYS_COUNT)
2982 return -EINVAL;
2983 }
2984
2985 cgrp = cgroup_kn_lock_live(of->kn);
2986 if (!cgrp)
2987 return -ENODEV;
2988
2989 for_each_subsys(ss, ssid) {
2990 if (enable & (1 << ssid)) {
2991 if (cgrp->subtree_control & (1 << ssid)) {
2992 enable &= ~(1 << ssid);
2993 continue;
2994 }
2995
2996 /* unavailable or not enabled on the parent? */
2997 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2998 (cgroup_parent(cgrp) &&
2999 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3000 ret = -ENOENT;
3001 goto out_unlock;
3002 }
3003 } else if (disable & (1 << ssid)) {
3004 if (!(cgrp->subtree_control & (1 << ssid))) {
3005 disable &= ~(1 << ssid);
3006 continue;
3007 }
3008
3009 /* a child has it enabled? */
3010 cgroup_for_each_live_child(child, cgrp) {
3011 if (child->subtree_control & (1 << ssid)) {
3012 ret = -EBUSY;
3013 goto out_unlock;
3014 }
3015 }
3016 }
3017 }
3018
3019 if (!enable && !disable) {
3020 ret = 0;
3021 goto out_unlock;
3022 }
3023
3024 /*
3025 * Except for the root, subtree_control must be zero for a cgroup
3026 * with tasks so that child cgroups don't compete against tasks.
3027 */
3028 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3029 ret = -EBUSY;
3030 goto out_unlock;
3031 }
3032
3033 /*
3034 * Update subsys masks and calculate what needs to be done. More
3035 * subsystems than specified may need to be enabled or disabled
3036 * depending on subsystem dependencies.
3037 */
3038 old_sc = cgrp->subtree_control;
3039 old_ss = cgrp->subtree_ss_mask;
3040 new_sc = (old_sc | enable) & ~disable;
3041 new_ss = cgroup_calc_subtree_ss_mask(cgrp, new_sc);
3042
3043 css_enable = ~old_ss & new_ss;
3044 css_disable = old_ss & ~new_ss;
3045 enable |= css_enable;
3046 disable |= css_disable;
3047
3048 /*
3049 * Because css offlining is asynchronous, userland might try to
3050 * re-enable the same controller while the previous instance is
3051 * still around. In such cases, wait till it's gone using
3052 * offline_waitq.
3053 */
3054 do_each_subsys_mask(ss, ssid, css_enable) {
3055 cgroup_for_each_live_child(child, cgrp) {
3056 DEFINE_WAIT(wait);
3057
3058 if (!cgroup_css(child, ss))
3059 continue;
3060
3061 cgroup_get(child);
3062 prepare_to_wait(&child->offline_waitq, &wait,
3063 TASK_UNINTERRUPTIBLE);
3064 cgroup_kn_unlock(of->kn);
3065 schedule();
3066 finish_wait(&child->offline_waitq, &wait);
3067 cgroup_put(child);
3068
3069 return restart_syscall();
3070 }
3071 } while_each_subsys_mask();
3072
3073 cgrp->subtree_control = new_sc;
3074 cgrp->subtree_ss_mask = new_ss;
3075
3076 /*
3077 * Create new csses or make the existing ones visible. A css is
3078 * created invisible if it's being implicitly enabled through
3079 * dependency. An invisible css is made visible when the userland
3080 * explicitly enables it.
3081 */
3082 do_each_subsys_mask(ss, ssid, enable) {
3083 cgroup_for_each_live_child(child, cgrp) {
3084 if (css_enable & (1 << ssid))
3085 ret = create_css(child, ss,
3086 cgrp->subtree_control & (1 << ssid));
3087 else
3088 ret = css_populate_dir(cgroup_css(child, ss),
3089 NULL);
3090 if (ret)
3091 goto err_undo_css;
3092 }
3093 } while_each_subsys_mask();
3094
3095 /*
3096 * At this point, cgroup_e_css() results reflect the new csses
3097 * making the following cgroup_update_dfl_csses() properly update
3098 * css associations of all tasks in the subtree.
3099 */
3100 ret = cgroup_update_dfl_csses(cgrp);
3101 if (ret)
3102 goto err_undo_css;
3103
3104 /*
3105 * All tasks are migrated out of disabled csses. Kill or hide
3106 * them. A css is hidden when the userland requests it to be
3107 * disabled while other subsystems are still depending on it. The
3108 * css must not actively control resources and be in the vanilla
3109 * state if it's made visible again later. Controllers which may
3110 * be depended upon should provide ->css_reset() for this purpose.
3111 */
3112 do_each_subsys_mask(ss, ssid, disable) {
3113 cgroup_for_each_live_child(child, cgrp) {
3114 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3115
3116 if (css_disable & (1 << ssid)) {
3117 kill_css(css);
3118 } else {
3119 css_clear_dir(css, NULL);
3120 if (ss->css_reset)
3121 ss->css_reset(css);
3122 }
3123 }
3124 } while_each_subsys_mask();
3125
3126 kernfs_activate(cgrp->kn);
3127 ret = 0;
3128 out_unlock:
3129 cgroup_kn_unlock(of->kn);
3130 return ret ?: nbytes;
3131
3132 err_undo_css:
3133 cgrp->subtree_control = old_sc;
3134 cgrp->subtree_ss_mask = old_ss;
3135
3136 do_each_subsys_mask(ss, ssid, enable) {
3137 cgroup_for_each_live_child(child, cgrp) {
3138 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3139
3140 if (!css)
3141 continue;
3142
3143 if (css_enable & (1 << ssid))
3144 kill_css(css);
3145 else
3146 css_clear_dir(css, NULL);
3147 }
3148 } while_each_subsys_mask();
3149 goto out_unlock;
3150 }
3151
3152 static int cgroup_events_show(struct seq_file *seq, void *v)
3153 {
3154 seq_printf(seq, "populated %d\n",
3155 cgroup_is_populated(seq_css(seq)->cgroup));
3156 return 0;
3157 }
3158
3159 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3160 size_t nbytes, loff_t off)
3161 {
3162 struct cgroup *cgrp = of->kn->parent->priv;
3163 struct cftype *cft = of->kn->priv;
3164 struct cgroup_subsys_state *css;
3165 int ret;
3166
3167 if (cft->write)
3168 return cft->write(of, buf, nbytes, off);
3169
3170 /*
3171 * kernfs guarantees that a file isn't deleted with operations in
3172 * flight, which means that the matching css is and stays alive and
3173 * doesn't need to be pinned. The RCU locking is not necessary
3174 * either. It's just for the convenience of using cgroup_css().
3175 */
3176 rcu_read_lock();
3177 css = cgroup_css(cgrp, cft->ss);
3178 rcu_read_unlock();
3179
3180 if (cft->write_u64) {
3181 unsigned long long v;
3182 ret = kstrtoull(buf, 0, &v);
3183 if (!ret)
3184 ret = cft->write_u64(css, cft, v);
3185 } else if (cft->write_s64) {
3186 long long v;
3187 ret = kstrtoll(buf, 0, &v);
3188 if (!ret)
3189 ret = cft->write_s64(css, cft, v);
3190 } else {
3191 ret = -EINVAL;
3192 }
3193
3194 return ret ?: nbytes;
3195 }
3196
3197 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3198 {
3199 return seq_cft(seq)->seq_start(seq, ppos);
3200 }
3201
3202 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3203 {
3204 return seq_cft(seq)->seq_next(seq, v, ppos);
3205 }
3206
3207 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3208 {
3209 seq_cft(seq)->seq_stop(seq, v);
3210 }
3211
3212 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3213 {
3214 struct cftype *cft = seq_cft(m);
3215 struct cgroup_subsys_state *css = seq_css(m);
3216
3217 if (cft->seq_show)
3218 return cft->seq_show(m, arg);
3219
3220 if (cft->read_u64)
3221 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3222 else if (cft->read_s64)
3223 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3224 else
3225 return -EINVAL;
3226 return 0;
3227 }
3228
3229 static struct kernfs_ops cgroup_kf_single_ops = {
3230 .atomic_write_len = PAGE_SIZE,
3231 .write = cgroup_file_write,
3232 .seq_show = cgroup_seqfile_show,
3233 };
3234
3235 static struct kernfs_ops cgroup_kf_ops = {
3236 .atomic_write_len = PAGE_SIZE,
3237 .write = cgroup_file_write,
3238 .seq_start = cgroup_seqfile_start,
3239 .seq_next = cgroup_seqfile_next,
3240 .seq_stop = cgroup_seqfile_stop,
3241 .seq_show = cgroup_seqfile_show,
3242 };
3243
3244 /*
3245 * cgroup_rename - Only allow simple rename of directories in place.
3246 */
3247 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3248 const char *new_name_str)
3249 {
3250 struct cgroup *cgrp = kn->priv;
3251 int ret;
3252
3253 if (kernfs_type(kn) != KERNFS_DIR)
3254 return -ENOTDIR;
3255 if (kn->parent != new_parent)
3256 return -EIO;
3257
3258 /*
3259 * This isn't a proper migration and its usefulness is very
3260 * limited. Disallow on the default hierarchy.
3261 */
3262 if (cgroup_on_dfl(cgrp))
3263 return -EPERM;
3264
3265 /*
3266 * We're gonna grab cgroup_mutex which nests outside kernfs
3267 * active_ref. kernfs_rename() doesn't require active_ref
3268 * protection. Break them before grabbing cgroup_mutex.
3269 */
3270 kernfs_break_active_protection(new_parent);
3271 kernfs_break_active_protection(kn);
3272
3273 mutex_lock(&cgroup_mutex);
3274
3275 ret = kernfs_rename(kn, new_parent, new_name_str);
3276
3277 mutex_unlock(&cgroup_mutex);
3278
3279 kernfs_unbreak_active_protection(kn);
3280 kernfs_unbreak_active_protection(new_parent);
3281 return ret;
3282 }
3283
3284 /* set uid and gid of cgroup dirs and files to that of the creator */
3285 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3286 {
3287 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3288 .ia_uid = current_fsuid(),
3289 .ia_gid = current_fsgid(), };
3290
3291 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3292 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3293 return 0;
3294
3295 return kernfs_setattr(kn, &iattr);
3296 }
3297
3298 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3299 struct cftype *cft)
3300 {
3301 char name[CGROUP_FILE_NAME_MAX];
3302 struct kernfs_node *kn;
3303 struct lock_class_key *key = NULL;
3304 int ret;
3305
3306 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3307 key = &cft->lockdep_key;
3308 #endif
3309 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3310 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3311 NULL, key);
3312 if (IS_ERR(kn))
3313 return PTR_ERR(kn);
3314
3315 ret = cgroup_kn_set_ugid(kn);
3316 if (ret) {
3317 kernfs_remove(kn);
3318 return ret;
3319 }
3320
3321 if (cft->file_offset) {
3322 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3323
3324 spin_lock_irq(&cgroup_file_kn_lock);
3325 cfile->kn = kn;
3326 spin_unlock_irq(&cgroup_file_kn_lock);
3327 }
3328
3329 return 0;
3330 }
3331
3332 /**
3333 * cgroup_addrm_files - add or remove files to a cgroup directory
3334 * @css: the target css
3335 * @cgrp: the target cgroup (usually css->cgroup)
3336 * @cfts: array of cftypes to be added
3337 * @is_add: whether to add or remove
3338 *
3339 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3340 * For removals, this function never fails.
3341 */
3342 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3343 struct cgroup *cgrp, struct cftype cfts[],
3344 bool is_add)
3345 {
3346 struct cftype *cft, *cft_end = NULL;
3347 int ret = 0;
3348
3349 lockdep_assert_held(&cgroup_mutex);
3350
3351 restart:
3352 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3353 /* does cft->flags tell us to skip this file on @cgrp? */
3354 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3355 continue;
3356 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3357 continue;
3358 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3359 continue;
3360 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3361 continue;
3362
3363 if (is_add) {
3364 ret = cgroup_add_file(css, cgrp, cft);
3365 if (ret) {
3366 pr_warn("%s: failed to add %s, err=%d\n",
3367 __func__, cft->name, ret);
3368 cft_end = cft;
3369 is_add = false;
3370 goto restart;
3371 }
3372 } else {
3373 cgroup_rm_file(cgrp, cft);
3374 }
3375 }
3376 return ret;
3377 }
3378
3379 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3380 {
3381 LIST_HEAD(pending);
3382 struct cgroup_subsys *ss = cfts[0].ss;
3383 struct cgroup *root = &ss->root->cgrp;
3384 struct cgroup_subsys_state *css;
3385 int ret = 0;
3386
3387 lockdep_assert_held(&cgroup_mutex);
3388
3389 /* add/rm files for all cgroups created before */
3390 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3391 struct cgroup *cgrp = css->cgroup;
3392
3393 if (cgroup_is_dead(cgrp))
3394 continue;
3395
3396 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3397 if (ret)
3398 break;
3399 }
3400
3401 if (is_add && !ret)
3402 kernfs_activate(root->kn);
3403 return ret;
3404 }
3405
3406 static void cgroup_exit_cftypes(struct cftype *cfts)
3407 {
3408 struct cftype *cft;
3409
3410 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3411 /* free copy for custom atomic_write_len, see init_cftypes() */
3412 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3413 kfree(cft->kf_ops);
3414 cft->kf_ops = NULL;
3415 cft->ss = NULL;
3416
3417 /* revert flags set by cgroup core while adding @cfts */
3418 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3419 }
3420 }
3421
3422 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3423 {
3424 struct cftype *cft;
3425
3426 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3427 struct kernfs_ops *kf_ops;
3428
3429 WARN_ON(cft->ss || cft->kf_ops);
3430
3431 if (cft->seq_start)
3432 kf_ops = &cgroup_kf_ops;
3433 else
3434 kf_ops = &cgroup_kf_single_ops;
3435
3436 /*
3437 * Ugh... if @cft wants a custom max_write_len, we need to
3438 * make a copy of kf_ops to set its atomic_write_len.
3439 */
3440 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3441 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3442 if (!kf_ops) {
3443 cgroup_exit_cftypes(cfts);
3444 return -ENOMEM;
3445 }
3446 kf_ops->atomic_write_len = cft->max_write_len;
3447 }
3448
3449 cft->kf_ops = kf_ops;
3450 cft->ss = ss;
3451 }
3452
3453 return 0;
3454 }
3455
3456 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3457 {
3458 lockdep_assert_held(&cgroup_mutex);
3459
3460 if (!cfts || !cfts[0].ss)
3461 return -ENOENT;
3462
3463 list_del(&cfts->node);
3464 cgroup_apply_cftypes(cfts, false);
3465 cgroup_exit_cftypes(cfts);
3466 return 0;
3467 }
3468
3469 /**
3470 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3471 * @cfts: zero-length name terminated array of cftypes
3472 *
3473 * Unregister @cfts. Files described by @cfts are removed from all
3474 * existing cgroups and all future cgroups won't have them either. This
3475 * function can be called anytime whether @cfts' subsys is attached or not.
3476 *
3477 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3478 * registered.
3479 */
3480 int cgroup_rm_cftypes(struct cftype *cfts)
3481 {
3482 int ret;
3483
3484 mutex_lock(&cgroup_mutex);
3485 ret = cgroup_rm_cftypes_locked(cfts);
3486 mutex_unlock(&cgroup_mutex);
3487 return ret;
3488 }
3489
3490 /**
3491 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3492 * @ss: target cgroup subsystem
3493 * @cfts: zero-length name terminated array of cftypes
3494 *
3495 * Register @cfts to @ss. Files described by @cfts are created for all
3496 * existing cgroups to which @ss is attached and all future cgroups will
3497 * have them too. This function can be called anytime whether @ss is
3498 * attached or not.
3499 *
3500 * Returns 0 on successful registration, -errno on failure. Note that this
3501 * function currently returns 0 as long as @cfts registration is successful
3502 * even if some file creation attempts on existing cgroups fail.
3503 */
3504 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3505 {
3506 int ret;
3507
3508 if (!cgroup_ssid_enabled(ss->id))
3509 return 0;
3510
3511 if (!cfts || cfts[0].name[0] == '\0')
3512 return 0;
3513
3514 ret = cgroup_init_cftypes(ss, cfts);
3515 if (ret)
3516 return ret;
3517
3518 mutex_lock(&cgroup_mutex);
3519
3520 list_add_tail(&cfts->node, &ss->cfts);
3521 ret = cgroup_apply_cftypes(cfts, true);
3522 if (ret)
3523 cgroup_rm_cftypes_locked(cfts);
3524
3525 mutex_unlock(&cgroup_mutex);
3526 return ret;
3527 }
3528
3529 /**
3530 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3531 * @ss: target cgroup subsystem
3532 * @cfts: zero-length name terminated array of cftypes
3533 *
3534 * Similar to cgroup_add_cftypes() but the added files are only used for
3535 * the default hierarchy.
3536 */
3537 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3538 {
3539 struct cftype *cft;
3540
3541 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3542 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3543 return cgroup_add_cftypes(ss, cfts);
3544 }
3545
3546 /**
3547 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3548 * @ss: target cgroup subsystem
3549 * @cfts: zero-length name terminated array of cftypes
3550 *
3551 * Similar to cgroup_add_cftypes() but the added files are only used for
3552 * the legacy hierarchies.
3553 */
3554 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3555 {
3556 struct cftype *cft;
3557
3558 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3559 cft->flags |= __CFTYPE_NOT_ON_DFL;
3560 return cgroup_add_cftypes(ss, cfts);
3561 }
3562
3563 /**
3564 * cgroup_file_notify - generate a file modified event for a cgroup_file
3565 * @cfile: target cgroup_file
3566 *
3567 * @cfile must have been obtained by setting cftype->file_offset.
3568 */
3569 void cgroup_file_notify(struct cgroup_file *cfile)
3570 {
3571 unsigned long flags;
3572
3573 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3574 if (cfile->kn)
3575 kernfs_notify(cfile->kn);
3576 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3577 }
3578
3579 /**
3580 * cgroup_task_count - count the number of tasks in a cgroup.
3581 * @cgrp: the cgroup in question
3582 *
3583 * Return the number of tasks in the cgroup.
3584 */
3585 static int cgroup_task_count(const struct cgroup *cgrp)
3586 {
3587 int count = 0;
3588 struct cgrp_cset_link *link;
3589
3590 spin_lock_bh(&css_set_lock);
3591 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3592 count += atomic_read(&link->cset->refcount);
3593 spin_unlock_bh(&css_set_lock);
3594 return count;
3595 }
3596
3597 /**
3598 * css_next_child - find the next child of a given css
3599 * @pos: the current position (%NULL to initiate traversal)
3600 * @parent: css whose children to walk
3601 *
3602 * This function returns the next child of @parent and should be called
3603 * under either cgroup_mutex or RCU read lock. The only requirement is
3604 * that @parent and @pos are accessible. The next sibling is guaranteed to
3605 * be returned regardless of their states.
3606 *
3607 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3608 * css which finished ->css_online() is guaranteed to be visible in the
3609 * future iterations and will stay visible until the last reference is put.
3610 * A css which hasn't finished ->css_online() or already finished
3611 * ->css_offline() may show up during traversal. It's each subsystem's
3612 * responsibility to synchronize against on/offlining.
3613 */
3614 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3615 struct cgroup_subsys_state *parent)
3616 {
3617 struct cgroup_subsys_state *next;
3618
3619 cgroup_assert_mutex_or_rcu_locked();
3620
3621 /*
3622 * @pos could already have been unlinked from the sibling list.
3623 * Once a cgroup is removed, its ->sibling.next is no longer
3624 * updated when its next sibling changes. CSS_RELEASED is set when
3625 * @pos is taken off list, at which time its next pointer is valid,
3626 * and, as releases are serialized, the one pointed to by the next
3627 * pointer is guaranteed to not have started release yet. This
3628 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3629 * critical section, the one pointed to by its next pointer is
3630 * guaranteed to not have finished its RCU grace period even if we
3631 * have dropped rcu_read_lock() inbetween iterations.
3632 *
3633 * If @pos has CSS_RELEASED set, its next pointer can't be
3634 * dereferenced; however, as each css is given a monotonically
3635 * increasing unique serial number and always appended to the
3636 * sibling list, the next one can be found by walking the parent's
3637 * children until the first css with higher serial number than
3638 * @pos's. While this path can be slower, it happens iff iteration
3639 * races against release and the race window is very small.
3640 */
3641 if (!pos) {
3642 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3643 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3644 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3645 } else {
3646 list_for_each_entry_rcu(next, &parent->children, sibling)
3647 if (next->serial_nr > pos->serial_nr)
3648 break;
3649 }
3650
3651 /*
3652 * @next, if not pointing to the head, can be dereferenced and is
3653 * the next sibling.
3654 */
3655 if (&next->sibling != &parent->children)
3656 return next;
3657 return NULL;
3658 }
3659
3660 /**
3661 * css_next_descendant_pre - find the next descendant for pre-order walk
3662 * @pos: the current position (%NULL to initiate traversal)
3663 * @root: css whose descendants to walk
3664 *
3665 * To be used by css_for_each_descendant_pre(). Find the next descendant
3666 * to visit for pre-order traversal of @root's descendants. @root is
3667 * included in the iteration and the first node to be visited.
3668 *
3669 * While this function requires cgroup_mutex or RCU read locking, it
3670 * doesn't require the whole traversal to be contained in a single critical
3671 * section. This function will return the correct next descendant as long
3672 * as both @pos and @root are accessible and @pos is a descendant of @root.
3673 *
3674 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3675 * css which finished ->css_online() is guaranteed to be visible in the
3676 * future iterations and will stay visible until the last reference is put.
3677 * A css which hasn't finished ->css_online() or already finished
3678 * ->css_offline() may show up during traversal. It's each subsystem's
3679 * responsibility to synchronize against on/offlining.
3680 */
3681 struct cgroup_subsys_state *
3682 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3683 struct cgroup_subsys_state *root)
3684 {
3685 struct cgroup_subsys_state *next;
3686
3687 cgroup_assert_mutex_or_rcu_locked();
3688
3689 /* if first iteration, visit @root */
3690 if (!pos)
3691 return root;
3692
3693 /* visit the first child if exists */
3694 next = css_next_child(NULL, pos);
3695 if (next)
3696 return next;
3697
3698 /* no child, visit my or the closest ancestor's next sibling */
3699 while (pos != root) {
3700 next = css_next_child(pos, pos->parent);
3701 if (next)
3702 return next;
3703 pos = pos->parent;
3704 }
3705
3706 return NULL;
3707 }
3708
3709 /**
3710 * css_rightmost_descendant - return the rightmost descendant of a css
3711 * @pos: css of interest
3712 *
3713 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3714 * is returned. This can be used during pre-order traversal to skip
3715 * subtree of @pos.
3716 *
3717 * While this function requires cgroup_mutex or RCU read locking, it
3718 * doesn't require the whole traversal to be contained in a single critical
3719 * section. This function will return the correct rightmost descendant as
3720 * long as @pos is accessible.
3721 */
3722 struct cgroup_subsys_state *
3723 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3724 {
3725 struct cgroup_subsys_state *last, *tmp;
3726
3727 cgroup_assert_mutex_or_rcu_locked();
3728
3729 do {
3730 last = pos;
3731 /* ->prev isn't RCU safe, walk ->next till the end */
3732 pos = NULL;
3733 css_for_each_child(tmp, last)
3734 pos = tmp;
3735 } while (pos);
3736
3737 return last;
3738 }
3739
3740 static struct cgroup_subsys_state *
3741 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3742 {
3743 struct cgroup_subsys_state *last;
3744
3745 do {
3746 last = pos;
3747 pos = css_next_child(NULL, pos);
3748 } while (pos);
3749
3750 return last;
3751 }
3752
3753 /**
3754 * css_next_descendant_post - find the next descendant for post-order walk
3755 * @pos: the current position (%NULL to initiate traversal)
3756 * @root: css whose descendants to walk
3757 *
3758 * To be used by css_for_each_descendant_post(). Find the next descendant
3759 * to visit for post-order traversal of @root's descendants. @root is
3760 * included in the iteration and the last node to be visited.
3761 *
3762 * While this function requires cgroup_mutex or RCU read locking, it
3763 * doesn't require the whole traversal to be contained in a single critical
3764 * section. This function will return the correct next descendant as long
3765 * as both @pos and @cgroup are accessible and @pos is a descendant of
3766 * @cgroup.
3767 *
3768 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3769 * css which finished ->css_online() is guaranteed to be visible in the
3770 * future iterations and will stay visible until the last reference is put.
3771 * A css which hasn't finished ->css_online() or already finished
3772 * ->css_offline() may show up during traversal. It's each subsystem's
3773 * responsibility to synchronize against on/offlining.
3774 */
3775 struct cgroup_subsys_state *
3776 css_next_descendant_post(struct cgroup_subsys_state *pos,
3777 struct cgroup_subsys_state *root)
3778 {
3779 struct cgroup_subsys_state *next;
3780
3781 cgroup_assert_mutex_or_rcu_locked();
3782
3783 /* if first iteration, visit leftmost descendant which may be @root */
3784 if (!pos)
3785 return css_leftmost_descendant(root);
3786
3787 /* if we visited @root, we're done */
3788 if (pos == root)
3789 return NULL;
3790
3791 /* if there's an unvisited sibling, visit its leftmost descendant */
3792 next = css_next_child(pos, pos->parent);
3793 if (next)
3794 return css_leftmost_descendant(next);
3795
3796 /* no sibling left, visit parent */
3797 return pos->parent;
3798 }
3799
3800 /**
3801 * css_has_online_children - does a css have online children
3802 * @css: the target css
3803 *
3804 * Returns %true if @css has any online children; otherwise, %false. This
3805 * function can be called from any context but the caller is responsible
3806 * for synchronizing against on/offlining as necessary.
3807 */
3808 bool css_has_online_children(struct cgroup_subsys_state *css)
3809 {
3810 struct cgroup_subsys_state *child;
3811 bool ret = false;
3812
3813 rcu_read_lock();
3814 css_for_each_child(child, css) {
3815 if (child->flags & CSS_ONLINE) {
3816 ret = true;
3817 break;
3818 }
3819 }
3820 rcu_read_unlock();
3821 return ret;
3822 }
3823
3824 /**
3825 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3826 * @it: the iterator to advance
3827 *
3828 * Advance @it to the next css_set to walk.
3829 */
3830 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3831 {
3832 struct list_head *l = it->cset_pos;
3833 struct cgrp_cset_link *link;
3834 struct css_set *cset;
3835
3836 lockdep_assert_held(&css_set_lock);
3837
3838 /* Advance to the next non-empty css_set */
3839 do {
3840 l = l->next;
3841 if (l == it->cset_head) {
3842 it->cset_pos = NULL;
3843 it->task_pos = NULL;
3844 return;
3845 }
3846
3847 if (it->ss) {
3848 cset = container_of(l, struct css_set,
3849 e_cset_node[it->ss->id]);
3850 } else {
3851 link = list_entry(l, struct cgrp_cset_link, cset_link);
3852 cset = link->cset;
3853 }
3854 } while (!css_set_populated(cset));
3855
3856 it->cset_pos = l;
3857
3858 if (!list_empty(&cset->tasks))
3859 it->task_pos = cset->tasks.next;
3860 else
3861 it->task_pos = cset->mg_tasks.next;
3862
3863 it->tasks_head = &cset->tasks;
3864 it->mg_tasks_head = &cset->mg_tasks;
3865
3866 /*
3867 * We don't keep css_sets locked across iteration steps and thus
3868 * need to take steps to ensure that iteration can be resumed after
3869 * the lock is re-acquired. Iteration is performed at two levels -
3870 * css_sets and tasks in them.
3871 *
3872 * Once created, a css_set never leaves its cgroup lists, so a
3873 * pinned css_set is guaranteed to stay put and we can resume
3874 * iteration afterwards.
3875 *
3876 * Tasks may leave @cset across iteration steps. This is resolved
3877 * by registering each iterator with the css_set currently being
3878 * walked and making css_set_move_task() advance iterators whose
3879 * next task is leaving.
3880 */
3881 if (it->cur_cset) {
3882 list_del(&it->iters_node);
3883 put_css_set_locked(it->cur_cset);
3884 }
3885 get_css_set(cset);
3886 it->cur_cset = cset;
3887 list_add(&it->iters_node, &cset->task_iters);
3888 }
3889
3890 static void css_task_iter_advance(struct css_task_iter *it)
3891 {
3892 struct list_head *l = it->task_pos;
3893
3894 lockdep_assert_held(&css_set_lock);
3895 WARN_ON_ONCE(!l);
3896
3897 /*
3898 * Advance iterator to find next entry. cset->tasks is consumed
3899 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3900 * next cset.
3901 */
3902 l = l->next;
3903
3904 if (l == it->tasks_head)
3905 l = it->mg_tasks_head->next;
3906
3907 if (l == it->mg_tasks_head)
3908 css_task_iter_advance_css_set(it);
3909 else
3910 it->task_pos = l;
3911 }
3912
3913 /**
3914 * css_task_iter_start - initiate task iteration
3915 * @css: the css to walk tasks of
3916 * @it: the task iterator to use
3917 *
3918 * Initiate iteration through the tasks of @css. The caller can call
3919 * css_task_iter_next() to walk through the tasks until the function
3920 * returns NULL. On completion of iteration, css_task_iter_end() must be
3921 * called.
3922 */
3923 void css_task_iter_start(struct cgroup_subsys_state *css,
3924 struct css_task_iter *it)
3925 {
3926 /* no one should try to iterate before mounting cgroups */
3927 WARN_ON_ONCE(!use_task_css_set_links);
3928
3929 memset(it, 0, sizeof(*it));
3930
3931 spin_lock_bh(&css_set_lock);
3932
3933 it->ss = css->ss;
3934
3935 if (it->ss)
3936 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3937 else
3938 it->cset_pos = &css->cgroup->cset_links;
3939
3940 it->cset_head = it->cset_pos;
3941
3942 css_task_iter_advance_css_set(it);
3943
3944 spin_unlock_bh(&css_set_lock);
3945 }
3946
3947 /**
3948 * css_task_iter_next - return the next task for the iterator
3949 * @it: the task iterator being iterated
3950 *
3951 * The "next" function for task iteration. @it should have been
3952 * initialized via css_task_iter_start(). Returns NULL when the iteration
3953 * reaches the end.
3954 */
3955 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3956 {
3957 if (it->cur_task) {
3958 put_task_struct(it->cur_task);
3959 it->cur_task = NULL;
3960 }
3961
3962 spin_lock_bh(&css_set_lock);
3963
3964 if (it->task_pos) {
3965 it->cur_task = list_entry(it->task_pos, struct task_struct,
3966 cg_list);
3967 get_task_struct(it->cur_task);
3968 css_task_iter_advance(it);
3969 }
3970
3971 spin_unlock_bh(&css_set_lock);
3972
3973 return it->cur_task;
3974 }
3975
3976 /**
3977 * css_task_iter_end - finish task iteration
3978 * @it: the task iterator to finish
3979 *
3980 * Finish task iteration started by css_task_iter_start().
3981 */
3982 void css_task_iter_end(struct css_task_iter *it)
3983 {
3984 if (it->cur_cset) {
3985 spin_lock_bh(&css_set_lock);
3986 list_del(&it->iters_node);
3987 put_css_set_locked(it->cur_cset);
3988 spin_unlock_bh(&css_set_lock);
3989 }
3990
3991 if (it->cur_task)
3992 put_task_struct(it->cur_task);
3993 }
3994
3995 /**
3996 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3997 * @to: cgroup to which the tasks will be moved
3998 * @from: cgroup in which the tasks currently reside
3999 *
4000 * Locking rules between cgroup_post_fork() and the migration path
4001 * guarantee that, if a task is forking while being migrated, the new child
4002 * is guaranteed to be either visible in the source cgroup after the
4003 * parent's migration is complete or put into the target cgroup. No task
4004 * can slip out of migration through forking.
4005 */
4006 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4007 {
4008 LIST_HEAD(preloaded_csets);
4009 struct cgrp_cset_link *link;
4010 struct css_task_iter it;
4011 struct task_struct *task;
4012 int ret;
4013
4014 mutex_lock(&cgroup_mutex);
4015
4016 /* all tasks in @from are being moved, all csets are source */
4017 spin_lock_bh(&css_set_lock);
4018 list_for_each_entry(link, &from->cset_links, cset_link)
4019 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4020 spin_unlock_bh(&css_set_lock);
4021
4022 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4023 if (ret)
4024 goto out_err;
4025
4026 /*
4027 * Migrate tasks one-by-one until @from is empty. This fails iff
4028 * ->can_attach() fails.
4029 */
4030 do {
4031 css_task_iter_start(&from->self, &it);
4032 task = css_task_iter_next(&it);
4033 if (task)
4034 get_task_struct(task);
4035 css_task_iter_end(&it);
4036
4037 if (task) {
4038 ret = cgroup_migrate(task, false, to);
4039 put_task_struct(task);
4040 }
4041 } while (task && !ret);
4042 out_err:
4043 cgroup_migrate_finish(&preloaded_csets);
4044 mutex_unlock(&cgroup_mutex);
4045 return ret;
4046 }
4047
4048 /*
4049 * Stuff for reading the 'tasks'/'procs' files.
4050 *
4051 * Reading this file can return large amounts of data if a cgroup has
4052 * *lots* of attached tasks. So it may need several calls to read(),
4053 * but we cannot guarantee that the information we produce is correct
4054 * unless we produce it entirely atomically.
4055 *
4056 */
4057
4058 /* which pidlist file are we talking about? */
4059 enum cgroup_filetype {
4060 CGROUP_FILE_PROCS,
4061 CGROUP_FILE_TASKS,
4062 };
4063
4064 /*
4065 * A pidlist is a list of pids that virtually represents the contents of one
4066 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4067 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4068 * to the cgroup.
4069 */
4070 struct cgroup_pidlist {
4071 /*
4072 * used to find which pidlist is wanted. doesn't change as long as
4073 * this particular list stays in the list.
4074 */
4075 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4076 /* array of xids */
4077 pid_t *list;
4078 /* how many elements the above list has */
4079 int length;
4080 /* each of these stored in a list by its cgroup */
4081 struct list_head links;
4082 /* pointer to the cgroup we belong to, for list removal purposes */
4083 struct cgroup *owner;
4084 /* for delayed destruction */
4085 struct delayed_work destroy_dwork;
4086 };
4087
4088 /*
4089 * The following two functions "fix" the issue where there are more pids
4090 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4091 * TODO: replace with a kernel-wide solution to this problem
4092 */
4093 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4094 static void *pidlist_allocate(int count)
4095 {
4096 if (PIDLIST_TOO_LARGE(count))
4097 return vmalloc(count * sizeof(pid_t));
4098 else
4099 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4100 }
4101
4102 static void pidlist_free(void *p)
4103 {
4104 kvfree(p);
4105 }
4106
4107 /*
4108 * Used to destroy all pidlists lingering waiting for destroy timer. None
4109 * should be left afterwards.
4110 */
4111 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4112 {
4113 struct cgroup_pidlist *l, *tmp_l;
4114
4115 mutex_lock(&cgrp->pidlist_mutex);
4116 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4117 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4118 mutex_unlock(&cgrp->pidlist_mutex);
4119
4120 flush_workqueue(cgroup_pidlist_destroy_wq);
4121 BUG_ON(!list_empty(&cgrp->pidlists));
4122 }
4123
4124 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4125 {
4126 struct delayed_work *dwork = to_delayed_work(work);
4127 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4128 destroy_dwork);
4129 struct cgroup_pidlist *tofree = NULL;
4130
4131 mutex_lock(&l->owner->pidlist_mutex);
4132
4133 /*
4134 * Destroy iff we didn't get queued again. The state won't change
4135 * as destroy_dwork can only be queued while locked.
4136 */
4137 if (!delayed_work_pending(dwork)) {
4138 list_del(&l->links);
4139 pidlist_free(l->list);
4140 put_pid_ns(l->key.ns);
4141 tofree = l;
4142 }
4143
4144 mutex_unlock(&l->owner->pidlist_mutex);
4145 kfree(tofree);
4146 }
4147
4148 /*
4149 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4150 * Returns the number of unique elements.
4151 */
4152 static int pidlist_uniq(pid_t *list, int length)
4153 {
4154 int src, dest = 1;
4155
4156 /*
4157 * we presume the 0th element is unique, so i starts at 1. trivial
4158 * edge cases first; no work needs to be done for either
4159 */
4160 if (length == 0 || length == 1)
4161 return length;
4162 /* src and dest walk down the list; dest counts unique elements */
4163 for (src = 1; src < length; src++) {
4164 /* find next unique element */
4165 while (list[src] == list[src-1]) {
4166 src++;
4167 if (src == length)
4168 goto after;
4169 }
4170 /* dest always points to where the next unique element goes */
4171 list[dest] = list[src];
4172 dest++;
4173 }
4174 after:
4175 return dest;
4176 }
4177
4178 /*
4179 * The two pid files - task and cgroup.procs - guaranteed that the result
4180 * is sorted, which forced this whole pidlist fiasco. As pid order is
4181 * different per namespace, each namespace needs differently sorted list,
4182 * making it impossible to use, for example, single rbtree of member tasks
4183 * sorted by task pointer. As pidlists can be fairly large, allocating one
4184 * per open file is dangerous, so cgroup had to implement shared pool of
4185 * pidlists keyed by cgroup and namespace.
4186 *
4187 * All this extra complexity was caused by the original implementation
4188 * committing to an entirely unnecessary property. In the long term, we
4189 * want to do away with it. Explicitly scramble sort order if on the
4190 * default hierarchy so that no such expectation exists in the new
4191 * interface.
4192 *
4193 * Scrambling is done by swapping every two consecutive bits, which is
4194 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4195 */
4196 static pid_t pid_fry(pid_t pid)
4197 {
4198 unsigned a = pid & 0x55555555;
4199 unsigned b = pid & 0xAAAAAAAA;
4200
4201 return (a << 1) | (b >> 1);
4202 }
4203
4204 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4205 {
4206 if (cgroup_on_dfl(cgrp))
4207 return pid_fry(pid);
4208 else
4209 return pid;
4210 }
4211
4212 static int cmppid(const void *a, const void *b)
4213 {
4214 return *(pid_t *)a - *(pid_t *)b;
4215 }
4216
4217 static int fried_cmppid(const void *a, const void *b)
4218 {
4219 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4220 }
4221
4222 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4223 enum cgroup_filetype type)
4224 {
4225 struct cgroup_pidlist *l;
4226 /* don't need task_nsproxy() if we're looking at ourself */
4227 struct pid_namespace *ns = task_active_pid_ns(current);
4228
4229 lockdep_assert_held(&cgrp->pidlist_mutex);
4230
4231 list_for_each_entry(l, &cgrp->pidlists, links)
4232 if (l->key.type == type && l->key.ns == ns)
4233 return l;
4234 return NULL;
4235 }
4236
4237 /*
4238 * find the appropriate pidlist for our purpose (given procs vs tasks)
4239 * returns with the lock on that pidlist already held, and takes care
4240 * of the use count, or returns NULL with no locks held if we're out of
4241 * memory.
4242 */
4243 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4244 enum cgroup_filetype type)
4245 {
4246 struct cgroup_pidlist *l;
4247
4248 lockdep_assert_held(&cgrp->pidlist_mutex);
4249
4250 l = cgroup_pidlist_find(cgrp, type);
4251 if (l)
4252 return l;
4253
4254 /* entry not found; create a new one */
4255 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4256 if (!l)
4257 return l;
4258
4259 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4260 l->key.type = type;
4261 /* don't need task_nsproxy() if we're looking at ourself */
4262 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4263 l->owner = cgrp;
4264 list_add(&l->links, &cgrp->pidlists);
4265 return l;
4266 }
4267
4268 /*
4269 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4270 */
4271 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4272 struct cgroup_pidlist **lp)
4273 {
4274 pid_t *array;
4275 int length;
4276 int pid, n = 0; /* used for populating the array */
4277 struct css_task_iter it;
4278 struct task_struct *tsk;
4279 struct cgroup_pidlist *l;
4280
4281 lockdep_assert_held(&cgrp->pidlist_mutex);
4282
4283 /*
4284 * If cgroup gets more users after we read count, we won't have
4285 * enough space - tough. This race is indistinguishable to the
4286 * caller from the case that the additional cgroup users didn't
4287 * show up until sometime later on.
4288 */
4289 length = cgroup_task_count(cgrp);
4290 array = pidlist_allocate(length);
4291 if (!array)
4292 return -ENOMEM;
4293 /* now, populate the array */
4294 css_task_iter_start(&cgrp->self, &it);
4295 while ((tsk = css_task_iter_next(&it))) {
4296 if (unlikely(n == length))
4297 break;
4298 /* get tgid or pid for procs or tasks file respectively */
4299 if (type == CGROUP_FILE_PROCS)
4300 pid = task_tgid_vnr(tsk);
4301 else
4302 pid = task_pid_vnr(tsk);
4303 if (pid > 0) /* make sure to only use valid results */
4304 array[n++] = pid;
4305 }
4306 css_task_iter_end(&it);
4307 length = n;
4308 /* now sort & (if procs) strip out duplicates */
4309 if (cgroup_on_dfl(cgrp))
4310 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4311 else
4312 sort(array, length, sizeof(pid_t), cmppid, NULL);
4313 if (type == CGROUP_FILE_PROCS)
4314 length = pidlist_uniq(array, length);
4315
4316 l = cgroup_pidlist_find_create(cgrp, type);
4317 if (!l) {
4318 pidlist_free(array);
4319 return -ENOMEM;
4320 }
4321
4322 /* store array, freeing old if necessary */
4323 pidlist_free(l->list);
4324 l->list = array;
4325 l->length = length;
4326 *lp = l;
4327 return 0;
4328 }
4329
4330 /**
4331 * cgroupstats_build - build and fill cgroupstats
4332 * @stats: cgroupstats to fill information into
4333 * @dentry: A dentry entry belonging to the cgroup for which stats have
4334 * been requested.
4335 *
4336 * Build and fill cgroupstats so that taskstats can export it to user
4337 * space.
4338 */
4339 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4340 {
4341 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4342 struct cgroup *cgrp;
4343 struct css_task_iter it;
4344 struct task_struct *tsk;
4345
4346 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4347 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4348 kernfs_type(kn) != KERNFS_DIR)
4349 return -EINVAL;
4350
4351 mutex_lock(&cgroup_mutex);
4352
4353 /*
4354 * We aren't being called from kernfs and there's no guarantee on
4355 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4356 * @kn->priv is RCU safe. Let's do the RCU dancing.
4357 */
4358 rcu_read_lock();
4359 cgrp = rcu_dereference(kn->priv);
4360 if (!cgrp || cgroup_is_dead(cgrp)) {
4361 rcu_read_unlock();
4362 mutex_unlock(&cgroup_mutex);
4363 return -ENOENT;
4364 }
4365 rcu_read_unlock();
4366
4367 css_task_iter_start(&cgrp->self, &it);
4368 while ((tsk = css_task_iter_next(&it))) {
4369 switch (tsk->state) {
4370 case TASK_RUNNING:
4371 stats->nr_running++;
4372 break;
4373 case TASK_INTERRUPTIBLE:
4374 stats->nr_sleeping++;
4375 break;
4376 case TASK_UNINTERRUPTIBLE:
4377 stats->nr_uninterruptible++;
4378 break;
4379 case TASK_STOPPED:
4380 stats->nr_stopped++;
4381 break;
4382 default:
4383 if (delayacct_is_task_waiting_on_io(tsk))
4384 stats->nr_io_wait++;
4385 break;
4386 }
4387 }
4388 css_task_iter_end(&it);
4389
4390 mutex_unlock(&cgroup_mutex);
4391 return 0;
4392 }
4393
4394
4395 /*
4396 * seq_file methods for the tasks/procs files. The seq_file position is the
4397 * next pid to display; the seq_file iterator is a pointer to the pid
4398 * in the cgroup->l->list array.
4399 */
4400
4401 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4402 {
4403 /*
4404 * Initially we receive a position value that corresponds to
4405 * one more than the last pid shown (or 0 on the first call or
4406 * after a seek to the start). Use a binary-search to find the
4407 * next pid to display, if any
4408 */
4409 struct kernfs_open_file *of = s->private;
4410 struct cgroup *cgrp = seq_css(s)->cgroup;
4411 struct cgroup_pidlist *l;
4412 enum cgroup_filetype type = seq_cft(s)->private;
4413 int index = 0, pid = *pos;
4414 int *iter, ret;
4415
4416 mutex_lock(&cgrp->pidlist_mutex);
4417
4418 /*
4419 * !NULL @of->priv indicates that this isn't the first start()
4420 * after open. If the matching pidlist is around, we can use that.
4421 * Look for it. Note that @of->priv can't be used directly. It
4422 * could already have been destroyed.
4423 */
4424 if (of->priv)
4425 of->priv = cgroup_pidlist_find(cgrp, type);
4426
4427 /*
4428 * Either this is the first start() after open or the matching
4429 * pidlist has been destroyed inbetween. Create a new one.
4430 */
4431 if (!of->priv) {
4432 ret = pidlist_array_load(cgrp, type,
4433 (struct cgroup_pidlist **)&of->priv);
4434 if (ret)
4435 return ERR_PTR(ret);
4436 }
4437 l = of->priv;
4438
4439 if (pid) {
4440 int end = l->length;
4441
4442 while (index < end) {
4443 int mid = (index + end) / 2;
4444 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4445 index = mid;
4446 break;
4447 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4448 index = mid + 1;
4449 else
4450 end = mid;
4451 }
4452 }
4453 /* If we're off the end of the array, we're done */
4454 if (index >= l->length)
4455 return NULL;
4456 /* Update the abstract position to be the actual pid that we found */
4457 iter = l->list + index;
4458 *pos = cgroup_pid_fry(cgrp, *iter);
4459 return iter;
4460 }
4461
4462 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4463 {
4464 struct kernfs_open_file *of = s->private;
4465 struct cgroup_pidlist *l = of->priv;
4466
4467 if (l)
4468 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4469 CGROUP_PIDLIST_DESTROY_DELAY);
4470 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4471 }
4472
4473 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4474 {
4475 struct kernfs_open_file *of = s->private;
4476 struct cgroup_pidlist *l = of->priv;
4477 pid_t *p = v;
4478 pid_t *end = l->list + l->length;
4479 /*
4480 * Advance to the next pid in the array. If this goes off the
4481 * end, we're done
4482 */
4483 p++;
4484 if (p >= end) {
4485 return NULL;
4486 } else {
4487 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4488 return p;
4489 }
4490 }
4491
4492 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4493 {
4494 seq_printf(s, "%d\n", *(int *)v);
4495
4496 return 0;
4497 }
4498
4499 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4500 struct cftype *cft)
4501 {
4502 return notify_on_release(css->cgroup);
4503 }
4504
4505 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4506 struct cftype *cft, u64 val)
4507 {
4508 if (val)
4509 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4510 else
4511 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4512 return 0;
4513 }
4514
4515 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4516 struct cftype *cft)
4517 {
4518 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4519 }
4520
4521 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4522 struct cftype *cft, u64 val)
4523 {
4524 if (val)
4525 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4526 else
4527 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4528 return 0;
4529 }
4530
4531 /* cgroup core interface files for the default hierarchy */
4532 static struct cftype cgroup_dfl_base_files[] = {
4533 {
4534 .name = "cgroup.procs",
4535 .file_offset = offsetof(struct cgroup, procs_file),
4536 .seq_start = cgroup_pidlist_start,
4537 .seq_next = cgroup_pidlist_next,
4538 .seq_stop = cgroup_pidlist_stop,
4539 .seq_show = cgroup_pidlist_show,
4540 .private = CGROUP_FILE_PROCS,
4541 .write = cgroup_procs_write,
4542 },
4543 {
4544 .name = "cgroup.controllers",
4545 .flags = CFTYPE_ONLY_ON_ROOT,
4546 .seq_show = cgroup_root_controllers_show,
4547 },
4548 {
4549 .name = "cgroup.controllers",
4550 .flags = CFTYPE_NOT_ON_ROOT,
4551 .seq_show = cgroup_controllers_show,
4552 },
4553 {
4554 .name = "cgroup.subtree_control",
4555 .seq_show = cgroup_subtree_control_show,
4556 .write = cgroup_subtree_control_write,
4557 },
4558 {
4559 .name = "cgroup.events",
4560 .flags = CFTYPE_NOT_ON_ROOT,
4561 .file_offset = offsetof(struct cgroup, events_file),
4562 .seq_show = cgroup_events_show,
4563 },
4564 { } /* terminate */
4565 };
4566
4567 /* cgroup core interface files for the legacy hierarchies */
4568 static struct cftype cgroup_legacy_base_files[] = {
4569 {
4570 .name = "cgroup.procs",
4571 .seq_start = cgroup_pidlist_start,
4572 .seq_next = cgroup_pidlist_next,
4573 .seq_stop = cgroup_pidlist_stop,
4574 .seq_show = cgroup_pidlist_show,
4575 .private = CGROUP_FILE_PROCS,
4576 .write = cgroup_procs_write,
4577 },
4578 {
4579 .name = "cgroup.clone_children",
4580 .read_u64 = cgroup_clone_children_read,
4581 .write_u64 = cgroup_clone_children_write,
4582 },
4583 {
4584 .name = "cgroup.sane_behavior",
4585 .flags = CFTYPE_ONLY_ON_ROOT,
4586 .seq_show = cgroup_sane_behavior_show,
4587 },
4588 {
4589 .name = "tasks",
4590 .seq_start = cgroup_pidlist_start,
4591 .seq_next = cgroup_pidlist_next,
4592 .seq_stop = cgroup_pidlist_stop,
4593 .seq_show = cgroup_pidlist_show,
4594 .private = CGROUP_FILE_TASKS,
4595 .write = cgroup_tasks_write,
4596 },
4597 {
4598 .name = "notify_on_release",
4599 .read_u64 = cgroup_read_notify_on_release,
4600 .write_u64 = cgroup_write_notify_on_release,
4601 },
4602 {
4603 .name = "release_agent",
4604 .flags = CFTYPE_ONLY_ON_ROOT,
4605 .seq_show = cgroup_release_agent_show,
4606 .write = cgroup_release_agent_write,
4607 .max_write_len = PATH_MAX - 1,
4608 },
4609 { } /* terminate */
4610 };
4611
4612 /*
4613 * css destruction is four-stage process.
4614 *
4615 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4616 * Implemented in kill_css().
4617 *
4618 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4619 * and thus css_tryget_online() is guaranteed to fail, the css can be
4620 * offlined by invoking offline_css(). After offlining, the base ref is
4621 * put. Implemented in css_killed_work_fn().
4622 *
4623 * 3. When the percpu_ref reaches zero, the only possible remaining
4624 * accessors are inside RCU read sections. css_release() schedules the
4625 * RCU callback.
4626 *
4627 * 4. After the grace period, the css can be freed. Implemented in
4628 * css_free_work_fn().
4629 *
4630 * It is actually hairier because both step 2 and 4 require process context
4631 * and thus involve punting to css->destroy_work adding two additional
4632 * steps to the already complex sequence.
4633 */
4634 static void css_free_work_fn(struct work_struct *work)
4635 {
4636 struct cgroup_subsys_state *css =
4637 container_of(work, struct cgroup_subsys_state, destroy_work);
4638 struct cgroup_subsys *ss = css->ss;
4639 struct cgroup *cgrp = css->cgroup;
4640
4641 percpu_ref_exit(&css->refcnt);
4642
4643 if (ss) {
4644 /* css free path */
4645 struct cgroup_subsys_state *parent = css->parent;
4646 int id = css->id;
4647
4648 ss->css_free(css);
4649 cgroup_idr_remove(&ss->css_idr, id);
4650 cgroup_put(cgrp);
4651
4652 if (parent)
4653 css_put(parent);
4654 } else {
4655 /* cgroup free path */
4656 atomic_dec(&cgrp->root->nr_cgrps);
4657 cgroup_pidlist_destroy_all(cgrp);
4658 cancel_work_sync(&cgrp->release_agent_work);
4659
4660 if (cgroup_parent(cgrp)) {
4661 /*
4662 * We get a ref to the parent, and put the ref when
4663 * this cgroup is being freed, so it's guaranteed
4664 * that the parent won't be destroyed before its
4665 * children.
4666 */
4667 cgroup_put(cgroup_parent(cgrp));
4668 kernfs_put(cgrp->kn);
4669 kfree(cgrp);
4670 } else {
4671 /*
4672 * This is root cgroup's refcnt reaching zero,
4673 * which indicates that the root should be
4674 * released.
4675 */
4676 cgroup_destroy_root(cgrp->root);
4677 }
4678 }
4679 }
4680
4681 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4682 {
4683 struct cgroup_subsys_state *css =
4684 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4685
4686 INIT_WORK(&css->destroy_work, css_free_work_fn);
4687 queue_work(cgroup_destroy_wq, &css->destroy_work);
4688 }
4689
4690 static void css_release_work_fn(struct work_struct *work)
4691 {
4692 struct cgroup_subsys_state *css =
4693 container_of(work, struct cgroup_subsys_state, destroy_work);
4694 struct cgroup_subsys *ss = css->ss;
4695 struct cgroup *cgrp = css->cgroup;
4696
4697 mutex_lock(&cgroup_mutex);
4698
4699 css->flags |= CSS_RELEASED;
4700 list_del_rcu(&css->sibling);
4701
4702 if (ss) {
4703 /* css release path */
4704 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4705 if (ss->css_released)
4706 ss->css_released(css);
4707 } else {
4708 /* cgroup release path */
4709 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4710 cgrp->id = -1;
4711
4712 /*
4713 * There are two control paths which try to determine
4714 * cgroup from dentry without going through kernfs -
4715 * cgroupstats_build() and css_tryget_online_from_dir().
4716 * Those are supported by RCU protecting clearing of
4717 * cgrp->kn->priv backpointer.
4718 */
4719 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4720 }
4721
4722 mutex_unlock(&cgroup_mutex);
4723
4724 call_rcu(&css->rcu_head, css_free_rcu_fn);
4725 }
4726
4727 static void css_release(struct percpu_ref *ref)
4728 {
4729 struct cgroup_subsys_state *css =
4730 container_of(ref, struct cgroup_subsys_state, refcnt);
4731
4732 INIT_WORK(&css->destroy_work, css_release_work_fn);
4733 queue_work(cgroup_destroy_wq, &css->destroy_work);
4734 }
4735
4736 static void init_and_link_css(struct cgroup_subsys_state *css,
4737 struct cgroup_subsys *ss, struct cgroup *cgrp)
4738 {
4739 lockdep_assert_held(&cgroup_mutex);
4740
4741 cgroup_get(cgrp);
4742
4743 memset(css, 0, sizeof(*css));
4744 css->cgroup = cgrp;
4745 css->ss = ss;
4746 INIT_LIST_HEAD(&css->sibling);
4747 INIT_LIST_HEAD(&css->children);
4748 css->serial_nr = css_serial_nr_next++;
4749 atomic_set(&css->online_cnt, 0);
4750
4751 if (cgroup_parent(cgrp)) {
4752 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4753 css_get(css->parent);
4754 }
4755
4756 BUG_ON(cgroup_css(cgrp, ss));
4757 }
4758
4759 /* invoke ->css_online() on a new CSS and mark it online if successful */
4760 static int online_css(struct cgroup_subsys_state *css)
4761 {
4762 struct cgroup_subsys *ss = css->ss;
4763 int ret = 0;
4764
4765 lockdep_assert_held(&cgroup_mutex);
4766
4767 if (ss->css_online)
4768 ret = ss->css_online(css);
4769 if (!ret) {
4770 css->flags |= CSS_ONLINE;
4771 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4772
4773 atomic_inc(&css->online_cnt);
4774 if (css->parent)
4775 atomic_inc(&css->parent->online_cnt);
4776 }
4777 return ret;
4778 }
4779
4780 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4781 static void offline_css(struct cgroup_subsys_state *css)
4782 {
4783 struct cgroup_subsys *ss = css->ss;
4784
4785 lockdep_assert_held(&cgroup_mutex);
4786
4787 if (!(css->flags & CSS_ONLINE))
4788 return;
4789
4790 if (ss->css_offline)
4791 ss->css_offline(css);
4792
4793 css->flags &= ~CSS_ONLINE;
4794 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4795
4796 wake_up_all(&css->cgroup->offline_waitq);
4797 }
4798
4799 /**
4800 * create_css - create a cgroup_subsys_state
4801 * @cgrp: the cgroup new css will be associated with
4802 * @ss: the subsys of new css
4803 * @visible: whether to create control knobs for the new css or not
4804 *
4805 * Create a new css associated with @cgrp - @ss pair. On success, the new
4806 * css is online and installed in @cgrp with all interface files created if
4807 * @visible. Returns 0 on success, -errno on failure.
4808 */
4809 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4810 bool visible)
4811 {
4812 struct cgroup *parent = cgroup_parent(cgrp);
4813 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4814 struct cgroup_subsys_state *css;
4815 int err;
4816
4817 lockdep_assert_held(&cgroup_mutex);
4818
4819 css = ss->css_alloc(parent_css);
4820 if (IS_ERR(css))
4821 return PTR_ERR(css);
4822
4823 init_and_link_css(css, ss, cgrp);
4824
4825 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4826 if (err)
4827 goto err_free_css;
4828
4829 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4830 if (err < 0)
4831 goto err_free_percpu_ref;
4832 css->id = err;
4833
4834 if (visible) {
4835 err = css_populate_dir(css, NULL);
4836 if (err)
4837 goto err_free_id;
4838 }
4839
4840 /* @css is ready to be brought online now, make it visible */
4841 list_add_tail_rcu(&css->sibling, &parent_css->children);
4842 cgroup_idr_replace(&ss->css_idr, css, css->id);
4843
4844 err = online_css(css);
4845 if (err)
4846 goto err_list_del;
4847
4848 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4849 cgroup_parent(parent)) {
4850 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4851 current->comm, current->pid, ss->name);
4852 if (!strcmp(ss->name, "memory"))
4853 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4854 ss->warned_broken_hierarchy = true;
4855 }
4856
4857 return 0;
4858
4859 err_list_del:
4860 list_del_rcu(&css->sibling);
4861 css_clear_dir(css, NULL);
4862 err_free_id:
4863 cgroup_idr_remove(&ss->css_idr, css->id);
4864 err_free_percpu_ref:
4865 percpu_ref_exit(&css->refcnt);
4866 err_free_css:
4867 call_rcu(&css->rcu_head, css_free_rcu_fn);
4868 return err;
4869 }
4870
4871 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4872 umode_t mode)
4873 {
4874 struct cgroup *parent, *cgrp, *tcgrp;
4875 struct cgroup_root *root;
4876 struct cgroup_subsys *ss;
4877 struct kernfs_node *kn;
4878 int level, ssid, ret;
4879
4880 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4881 */
4882 if (strchr(name, '\n'))
4883 return -EINVAL;
4884
4885 parent = cgroup_kn_lock_live(parent_kn);
4886 if (!parent)
4887 return -ENODEV;
4888 root = parent->root;
4889 level = parent->level + 1;
4890
4891 /* allocate the cgroup and its ID, 0 is reserved for the root */
4892 cgrp = kzalloc(sizeof(*cgrp) +
4893 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4894 if (!cgrp) {
4895 ret = -ENOMEM;
4896 goto out_unlock;
4897 }
4898
4899 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4900 if (ret)
4901 goto out_free_cgrp;
4902
4903 /*
4904 * Temporarily set the pointer to NULL, so idr_find() won't return
4905 * a half-baked cgroup.
4906 */
4907 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4908 if (cgrp->id < 0) {
4909 ret = -ENOMEM;
4910 goto out_cancel_ref;
4911 }
4912
4913 init_cgroup_housekeeping(cgrp);
4914
4915 cgrp->self.parent = &parent->self;
4916 cgrp->root = root;
4917 cgrp->level = level;
4918
4919 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4920 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4921
4922 if (notify_on_release(parent))
4923 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4924
4925 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4926 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4927
4928 /* create the directory */
4929 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4930 if (IS_ERR(kn)) {
4931 ret = PTR_ERR(kn);
4932 goto out_free_id;
4933 }
4934 cgrp->kn = kn;
4935
4936 /*
4937 * This extra ref will be put in cgroup_free_fn() and guarantees
4938 * that @cgrp->kn is always accessible.
4939 */
4940 kernfs_get(kn);
4941
4942 cgrp->self.serial_nr = css_serial_nr_next++;
4943
4944 /* allocation complete, commit to creation */
4945 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4946 atomic_inc(&root->nr_cgrps);
4947 cgroup_get(parent);
4948
4949 /*
4950 * @cgrp is now fully operational. If something fails after this
4951 * point, it'll be released via the normal destruction path.
4952 */
4953 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4954
4955 ret = cgroup_kn_set_ugid(kn);
4956 if (ret)
4957 goto out_destroy;
4958
4959 ret = css_populate_dir(&cgrp->self, NULL);
4960 if (ret)
4961 goto out_destroy;
4962
4963 /* let's create and online css's */
4964 do_each_subsys_mask(ss, ssid, parent->subtree_ss_mask) {
4965 ret = create_css(cgrp, ss,
4966 parent->subtree_control & (1 << ssid));
4967 if (ret)
4968 goto out_destroy;
4969 } while_each_subsys_mask();
4970
4971 /*
4972 * On the default hierarchy, a child doesn't automatically inherit
4973 * subtree_control from the parent. Each is configured manually.
4974 */
4975 if (!cgroup_on_dfl(cgrp)) {
4976 cgrp->subtree_control = parent->subtree_control;
4977 cgroup_refresh_subtree_ss_mask(cgrp);
4978 }
4979
4980 kernfs_activate(kn);
4981
4982 ret = 0;
4983 goto out_unlock;
4984
4985 out_free_id:
4986 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4987 out_cancel_ref:
4988 percpu_ref_exit(&cgrp->self.refcnt);
4989 out_free_cgrp:
4990 kfree(cgrp);
4991 out_unlock:
4992 cgroup_kn_unlock(parent_kn);
4993 return ret;
4994
4995 out_destroy:
4996 cgroup_destroy_locked(cgrp);
4997 goto out_unlock;
4998 }
4999
5000 /*
5001 * This is called when the refcnt of a css is confirmed to be killed.
5002 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5003 * initate destruction and put the css ref from kill_css().
5004 */
5005 static void css_killed_work_fn(struct work_struct *work)
5006 {
5007 struct cgroup_subsys_state *css =
5008 container_of(work, struct cgroup_subsys_state, destroy_work);
5009
5010 mutex_lock(&cgroup_mutex);
5011
5012 do {
5013 offline_css(css);
5014 css_put(css);
5015 /* @css can't go away while we're holding cgroup_mutex */
5016 css = css->parent;
5017 } while (css && atomic_dec_and_test(&css->online_cnt));
5018
5019 mutex_unlock(&cgroup_mutex);
5020 }
5021
5022 /* css kill confirmation processing requires process context, bounce */
5023 static void css_killed_ref_fn(struct percpu_ref *ref)
5024 {
5025 struct cgroup_subsys_state *css =
5026 container_of(ref, struct cgroup_subsys_state, refcnt);
5027
5028 if (atomic_dec_and_test(&css->online_cnt)) {
5029 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5030 queue_work(cgroup_destroy_wq, &css->destroy_work);
5031 }
5032 }
5033
5034 /**
5035 * kill_css - destroy a css
5036 * @css: css to destroy
5037 *
5038 * This function initiates destruction of @css by removing cgroup interface
5039 * files and putting its base reference. ->css_offline() will be invoked
5040 * asynchronously once css_tryget_online() is guaranteed to fail and when
5041 * the reference count reaches zero, @css will be released.
5042 */
5043 static void kill_css(struct cgroup_subsys_state *css)
5044 {
5045 lockdep_assert_held(&cgroup_mutex);
5046
5047 /*
5048 * This must happen before css is disassociated with its cgroup.
5049 * See seq_css() for details.
5050 */
5051 css_clear_dir(css, NULL);
5052
5053 /*
5054 * Killing would put the base ref, but we need to keep it alive
5055 * until after ->css_offline().
5056 */
5057 css_get(css);
5058
5059 /*
5060 * cgroup core guarantees that, by the time ->css_offline() is
5061 * invoked, no new css reference will be given out via
5062 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5063 * proceed to offlining css's because percpu_ref_kill() doesn't
5064 * guarantee that the ref is seen as killed on all CPUs on return.
5065 *
5066 * Use percpu_ref_kill_and_confirm() to get notifications as each
5067 * css is confirmed to be seen as killed on all CPUs.
5068 */
5069 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5070 }
5071
5072 /**
5073 * cgroup_destroy_locked - the first stage of cgroup destruction
5074 * @cgrp: cgroup to be destroyed
5075 *
5076 * css's make use of percpu refcnts whose killing latency shouldn't be
5077 * exposed to userland and are RCU protected. Also, cgroup core needs to
5078 * guarantee that css_tryget_online() won't succeed by the time
5079 * ->css_offline() is invoked. To satisfy all the requirements,
5080 * destruction is implemented in the following two steps.
5081 *
5082 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5083 * userland visible parts and start killing the percpu refcnts of
5084 * css's. Set up so that the next stage will be kicked off once all
5085 * the percpu refcnts are confirmed to be killed.
5086 *
5087 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5088 * rest of destruction. Once all cgroup references are gone, the
5089 * cgroup is RCU-freed.
5090 *
5091 * This function implements s1. After this step, @cgrp is gone as far as
5092 * the userland is concerned and a new cgroup with the same name may be
5093 * created. As cgroup doesn't care about the names internally, this
5094 * doesn't cause any problem.
5095 */
5096 static int cgroup_destroy_locked(struct cgroup *cgrp)
5097 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5098 {
5099 struct cgroup_subsys_state *css;
5100 int ssid;
5101
5102 lockdep_assert_held(&cgroup_mutex);
5103
5104 /*
5105 * Only migration can raise populated from zero and we're already
5106 * holding cgroup_mutex.
5107 */
5108 if (cgroup_is_populated(cgrp))
5109 return -EBUSY;
5110
5111 /*
5112 * Make sure there's no live children. We can't test emptiness of
5113 * ->self.children as dead children linger on it while being
5114 * drained; otherwise, "rmdir parent/child parent" may fail.
5115 */
5116 if (css_has_online_children(&cgrp->self))
5117 return -EBUSY;
5118
5119 /*
5120 * Mark @cgrp dead. This prevents further task migration and child
5121 * creation by disabling cgroup_lock_live_group().
5122 */
5123 cgrp->self.flags &= ~CSS_ONLINE;
5124
5125 /* initiate massacre of all css's */
5126 for_each_css(css, ssid, cgrp)
5127 kill_css(css);
5128
5129 /*
5130 * Remove @cgrp directory along with the base files. @cgrp has an
5131 * extra ref on its kn.
5132 */
5133 kernfs_remove(cgrp->kn);
5134
5135 check_for_release(cgroup_parent(cgrp));
5136
5137 /* put the base reference */
5138 percpu_ref_kill(&cgrp->self.refcnt);
5139
5140 return 0;
5141 };
5142
5143 static int cgroup_rmdir(struct kernfs_node *kn)
5144 {
5145 struct cgroup *cgrp;
5146 int ret = 0;
5147
5148 cgrp = cgroup_kn_lock_live(kn);
5149 if (!cgrp)
5150 return 0;
5151
5152 ret = cgroup_destroy_locked(cgrp);
5153
5154 cgroup_kn_unlock(kn);
5155 return ret;
5156 }
5157
5158 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5159 .remount_fs = cgroup_remount,
5160 .show_options = cgroup_show_options,
5161 .mkdir = cgroup_mkdir,
5162 .rmdir = cgroup_rmdir,
5163 .rename = cgroup_rename,
5164 };
5165
5166 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5167 {
5168 struct cgroup_subsys_state *css;
5169
5170 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5171
5172 mutex_lock(&cgroup_mutex);
5173
5174 idr_init(&ss->css_idr);
5175 INIT_LIST_HEAD(&ss->cfts);
5176
5177 /* Create the root cgroup state for this subsystem */
5178 ss->root = &cgrp_dfl_root;
5179 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5180 /* We don't handle early failures gracefully */
5181 BUG_ON(IS_ERR(css));
5182 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5183
5184 /*
5185 * Root csses are never destroyed and we can't initialize
5186 * percpu_ref during early init. Disable refcnting.
5187 */
5188 css->flags |= CSS_NO_REF;
5189
5190 if (early) {
5191 /* allocation can't be done safely during early init */
5192 css->id = 1;
5193 } else {
5194 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5195 BUG_ON(css->id < 0);
5196 }
5197
5198 /* Update the init_css_set to contain a subsys
5199 * pointer to this state - since the subsystem is
5200 * newly registered, all tasks and hence the
5201 * init_css_set is in the subsystem's root cgroup. */
5202 init_css_set.subsys[ss->id] = css;
5203
5204 have_fork_callback |= (bool)ss->fork << ss->id;
5205 have_exit_callback |= (bool)ss->exit << ss->id;
5206 have_free_callback |= (bool)ss->free << ss->id;
5207 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5208
5209 /* At system boot, before all subsystems have been
5210 * registered, no tasks have been forked, so we don't
5211 * need to invoke fork callbacks here. */
5212 BUG_ON(!list_empty(&init_task.tasks));
5213
5214 BUG_ON(online_css(css));
5215
5216 mutex_unlock(&cgroup_mutex);
5217 }
5218
5219 /**
5220 * cgroup_init_early - cgroup initialization at system boot
5221 *
5222 * Initialize cgroups at system boot, and initialize any
5223 * subsystems that request early init.
5224 */
5225 int __init cgroup_init_early(void)
5226 {
5227 static struct cgroup_sb_opts __initdata opts;
5228 struct cgroup_subsys *ss;
5229 int i;
5230
5231 init_cgroup_root(&cgrp_dfl_root, &opts);
5232 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5233
5234 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5235
5236 for_each_subsys(ss, i) {
5237 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5238 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5239 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5240 ss->id, ss->name);
5241 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5242 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5243
5244 ss->id = i;
5245 ss->name = cgroup_subsys_name[i];
5246 if (!ss->legacy_name)
5247 ss->legacy_name = cgroup_subsys_name[i];
5248
5249 if (ss->early_init)
5250 cgroup_init_subsys(ss, true);
5251 }
5252 return 0;
5253 }
5254
5255 static u16 cgroup_disable_mask __initdata;
5256
5257 /**
5258 * cgroup_init - cgroup initialization
5259 *
5260 * Register cgroup filesystem and /proc file, and initialize
5261 * any subsystems that didn't request early init.
5262 */
5263 int __init cgroup_init(void)
5264 {
5265 struct cgroup_subsys *ss;
5266 unsigned long key;
5267 int ssid;
5268
5269 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5270 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5271 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5272 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5273
5274 mutex_lock(&cgroup_mutex);
5275
5276 /* Add init_css_set to the hash table */
5277 key = css_set_hash(init_css_set.subsys);
5278 hash_add(css_set_table, &init_css_set.hlist, key);
5279
5280 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5281
5282 mutex_unlock(&cgroup_mutex);
5283
5284 for_each_subsys(ss, ssid) {
5285 if (ss->early_init) {
5286 struct cgroup_subsys_state *css =
5287 init_css_set.subsys[ss->id];
5288
5289 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5290 GFP_KERNEL);
5291 BUG_ON(css->id < 0);
5292 } else {
5293 cgroup_init_subsys(ss, false);
5294 }
5295
5296 list_add_tail(&init_css_set.e_cset_node[ssid],
5297 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5298
5299 /*
5300 * Setting dfl_root subsys_mask needs to consider the
5301 * disabled flag and cftype registration needs kmalloc,
5302 * both of which aren't available during early_init.
5303 */
5304 if (cgroup_disable_mask & (1 << ssid)) {
5305 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5306 printk(KERN_INFO "Disabling %s control group subsystem\n",
5307 ss->name);
5308 continue;
5309 }
5310
5311 if (cgroup_ssid_no_v1(ssid))
5312 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5313 ss->name);
5314
5315 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5316
5317 if (!ss->dfl_cftypes)
5318 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5319
5320 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5321 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5322 } else {
5323 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5324 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5325 }
5326
5327 if (ss->bind)
5328 ss->bind(init_css_set.subsys[ssid]);
5329 }
5330
5331 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5332 WARN_ON(register_filesystem(&cgroup_fs_type));
5333 WARN_ON(register_filesystem(&cgroup2_fs_type));
5334 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5335
5336 return 0;
5337 }
5338
5339 static int __init cgroup_wq_init(void)
5340 {
5341 /*
5342 * There isn't much point in executing destruction path in
5343 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5344 * Use 1 for @max_active.
5345 *
5346 * We would prefer to do this in cgroup_init() above, but that
5347 * is called before init_workqueues(): so leave this until after.
5348 */
5349 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5350 BUG_ON(!cgroup_destroy_wq);
5351
5352 /*
5353 * Used to destroy pidlists and separate to serve as flush domain.
5354 * Cap @max_active to 1 too.
5355 */
5356 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5357 0, 1);
5358 BUG_ON(!cgroup_pidlist_destroy_wq);
5359
5360 return 0;
5361 }
5362 core_initcall(cgroup_wq_init);
5363
5364 /*
5365 * proc_cgroup_show()
5366 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5367 * - Used for /proc/<pid>/cgroup.
5368 */
5369 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5370 struct pid *pid, struct task_struct *tsk)
5371 {
5372 char *buf, *path;
5373 int retval;
5374 struct cgroup_root *root;
5375
5376 retval = -ENOMEM;
5377 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5378 if (!buf)
5379 goto out;
5380
5381 mutex_lock(&cgroup_mutex);
5382 spin_lock_bh(&css_set_lock);
5383
5384 for_each_root(root) {
5385 struct cgroup_subsys *ss;
5386 struct cgroup *cgrp;
5387 int ssid, count = 0;
5388
5389 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5390 continue;
5391
5392 seq_printf(m, "%d:", root->hierarchy_id);
5393 if (root != &cgrp_dfl_root)
5394 for_each_subsys(ss, ssid)
5395 if (root->subsys_mask & (1 << ssid))
5396 seq_printf(m, "%s%s", count++ ? "," : "",
5397 ss->legacy_name);
5398 if (strlen(root->name))
5399 seq_printf(m, "%sname=%s", count ? "," : "",
5400 root->name);
5401 seq_putc(m, ':');
5402
5403 cgrp = task_cgroup_from_root(tsk, root);
5404
5405 /*
5406 * On traditional hierarchies, all zombie tasks show up as
5407 * belonging to the root cgroup. On the default hierarchy,
5408 * while a zombie doesn't show up in "cgroup.procs" and
5409 * thus can't be migrated, its /proc/PID/cgroup keeps
5410 * reporting the cgroup it belonged to before exiting. If
5411 * the cgroup is removed before the zombie is reaped,
5412 * " (deleted)" is appended to the cgroup path.
5413 */
5414 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5415 path = cgroup_path(cgrp, buf, PATH_MAX);
5416 if (!path) {
5417 retval = -ENAMETOOLONG;
5418 goto out_unlock;
5419 }
5420 } else {
5421 path = "/";
5422 }
5423
5424 seq_puts(m, path);
5425
5426 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5427 seq_puts(m, " (deleted)\n");
5428 else
5429 seq_putc(m, '\n');
5430 }
5431
5432 retval = 0;
5433 out_unlock:
5434 spin_unlock_bh(&css_set_lock);
5435 mutex_unlock(&cgroup_mutex);
5436 kfree(buf);
5437 out:
5438 return retval;
5439 }
5440
5441 /* Display information about each subsystem and each hierarchy */
5442 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5443 {
5444 struct cgroup_subsys *ss;
5445 int i;
5446
5447 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5448 /*
5449 * ideally we don't want subsystems moving around while we do this.
5450 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5451 * subsys/hierarchy state.
5452 */
5453 mutex_lock(&cgroup_mutex);
5454
5455 for_each_subsys(ss, i)
5456 seq_printf(m, "%s\t%d\t%d\t%d\n",
5457 ss->legacy_name, ss->root->hierarchy_id,
5458 atomic_read(&ss->root->nr_cgrps),
5459 cgroup_ssid_enabled(i));
5460
5461 mutex_unlock(&cgroup_mutex);
5462 return 0;
5463 }
5464
5465 static int cgroupstats_open(struct inode *inode, struct file *file)
5466 {
5467 return single_open(file, proc_cgroupstats_show, NULL);
5468 }
5469
5470 static const struct file_operations proc_cgroupstats_operations = {
5471 .open = cgroupstats_open,
5472 .read = seq_read,
5473 .llseek = seq_lseek,
5474 .release = single_release,
5475 };
5476
5477 /**
5478 * cgroup_fork - initialize cgroup related fields during copy_process()
5479 * @child: pointer to task_struct of forking parent process.
5480 *
5481 * A task is associated with the init_css_set until cgroup_post_fork()
5482 * attaches it to the parent's css_set. Empty cg_list indicates that
5483 * @child isn't holding reference to its css_set.
5484 */
5485 void cgroup_fork(struct task_struct *child)
5486 {
5487 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5488 INIT_LIST_HEAD(&child->cg_list);
5489 }
5490
5491 /**
5492 * cgroup_can_fork - called on a new task before the process is exposed
5493 * @child: the task in question.
5494 *
5495 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5496 * returns an error, the fork aborts with that error code. This allows for
5497 * a cgroup subsystem to conditionally allow or deny new forks.
5498 */
5499 int cgroup_can_fork(struct task_struct *child)
5500 {
5501 struct cgroup_subsys *ss;
5502 int i, j, ret;
5503
5504 do_each_subsys_mask(ss, i, have_canfork_callback) {
5505 ret = ss->can_fork(child);
5506 if (ret)
5507 goto out_revert;
5508 } while_each_subsys_mask();
5509
5510 return 0;
5511
5512 out_revert:
5513 for_each_subsys(ss, j) {
5514 if (j >= i)
5515 break;
5516 if (ss->cancel_fork)
5517 ss->cancel_fork(child);
5518 }
5519
5520 return ret;
5521 }
5522
5523 /**
5524 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5525 * @child: the task in question
5526 *
5527 * This calls the cancel_fork() callbacks if a fork failed *after*
5528 * cgroup_can_fork() succeded.
5529 */
5530 void cgroup_cancel_fork(struct task_struct *child)
5531 {
5532 struct cgroup_subsys *ss;
5533 int i;
5534
5535 for_each_subsys(ss, i)
5536 if (ss->cancel_fork)
5537 ss->cancel_fork(child);
5538 }
5539
5540 /**
5541 * cgroup_post_fork - called on a new task after adding it to the task list
5542 * @child: the task in question
5543 *
5544 * Adds the task to the list running through its css_set if necessary and
5545 * call the subsystem fork() callbacks. Has to be after the task is
5546 * visible on the task list in case we race with the first call to
5547 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5548 * list.
5549 */
5550 void cgroup_post_fork(struct task_struct *child)
5551 {
5552 struct cgroup_subsys *ss;
5553 int i;
5554
5555 /*
5556 * This may race against cgroup_enable_task_cg_lists(). As that
5557 * function sets use_task_css_set_links before grabbing
5558 * tasklist_lock and we just went through tasklist_lock to add
5559 * @child, it's guaranteed that either we see the set
5560 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5561 * @child during its iteration.
5562 *
5563 * If we won the race, @child is associated with %current's
5564 * css_set. Grabbing css_set_lock guarantees both that the
5565 * association is stable, and, on completion of the parent's
5566 * migration, @child is visible in the source of migration or
5567 * already in the destination cgroup. This guarantee is necessary
5568 * when implementing operations which need to migrate all tasks of
5569 * a cgroup to another.
5570 *
5571 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5572 * will remain in init_css_set. This is safe because all tasks are
5573 * in the init_css_set before cg_links is enabled and there's no
5574 * operation which transfers all tasks out of init_css_set.
5575 */
5576 if (use_task_css_set_links) {
5577 struct css_set *cset;
5578
5579 spin_lock_bh(&css_set_lock);
5580 cset = task_css_set(current);
5581 if (list_empty(&child->cg_list)) {
5582 get_css_set(cset);
5583 css_set_move_task(child, NULL, cset, false);
5584 }
5585 spin_unlock_bh(&css_set_lock);
5586 }
5587
5588 /*
5589 * Call ss->fork(). This must happen after @child is linked on
5590 * css_set; otherwise, @child might change state between ->fork()
5591 * and addition to css_set.
5592 */
5593 do_each_subsys_mask(ss, i, have_fork_callback) {
5594 ss->fork(child);
5595 } while_each_subsys_mask();
5596 }
5597
5598 /**
5599 * cgroup_exit - detach cgroup from exiting task
5600 * @tsk: pointer to task_struct of exiting process
5601 *
5602 * Description: Detach cgroup from @tsk and release it.
5603 *
5604 * Note that cgroups marked notify_on_release force every task in
5605 * them to take the global cgroup_mutex mutex when exiting.
5606 * This could impact scaling on very large systems. Be reluctant to
5607 * use notify_on_release cgroups where very high task exit scaling
5608 * is required on large systems.
5609 *
5610 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5611 * call cgroup_exit() while the task is still competent to handle
5612 * notify_on_release(), then leave the task attached to the root cgroup in
5613 * each hierarchy for the remainder of its exit. No need to bother with
5614 * init_css_set refcnting. init_css_set never goes away and we can't race
5615 * with migration path - PF_EXITING is visible to migration path.
5616 */
5617 void cgroup_exit(struct task_struct *tsk)
5618 {
5619 struct cgroup_subsys *ss;
5620 struct css_set *cset;
5621 int i;
5622
5623 /*
5624 * Unlink from @tsk from its css_set. As migration path can't race
5625 * with us, we can check css_set and cg_list without synchronization.
5626 */
5627 cset = task_css_set(tsk);
5628
5629 if (!list_empty(&tsk->cg_list)) {
5630 spin_lock_bh(&css_set_lock);
5631 css_set_move_task(tsk, cset, NULL, false);
5632 spin_unlock_bh(&css_set_lock);
5633 } else {
5634 get_css_set(cset);
5635 }
5636
5637 /* see cgroup_post_fork() for details */
5638 do_each_subsys_mask(ss, i, have_exit_callback) {
5639 ss->exit(tsk);
5640 } while_each_subsys_mask();
5641 }
5642
5643 void cgroup_free(struct task_struct *task)
5644 {
5645 struct css_set *cset = task_css_set(task);
5646 struct cgroup_subsys *ss;
5647 int ssid;
5648
5649 do_each_subsys_mask(ss, ssid, have_free_callback) {
5650 ss->free(task);
5651 } while_each_subsys_mask();
5652
5653 put_css_set(cset);
5654 }
5655
5656 static void check_for_release(struct cgroup *cgrp)
5657 {
5658 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5659 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5660 schedule_work(&cgrp->release_agent_work);
5661 }
5662
5663 /*
5664 * Notify userspace when a cgroup is released, by running the
5665 * configured release agent with the name of the cgroup (path
5666 * relative to the root of cgroup file system) as the argument.
5667 *
5668 * Most likely, this user command will try to rmdir this cgroup.
5669 *
5670 * This races with the possibility that some other task will be
5671 * attached to this cgroup before it is removed, or that some other
5672 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5673 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5674 * unused, and this cgroup will be reprieved from its death sentence,
5675 * to continue to serve a useful existence. Next time it's released,
5676 * we will get notified again, if it still has 'notify_on_release' set.
5677 *
5678 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5679 * means only wait until the task is successfully execve()'d. The
5680 * separate release agent task is forked by call_usermodehelper(),
5681 * then control in this thread returns here, without waiting for the
5682 * release agent task. We don't bother to wait because the caller of
5683 * this routine has no use for the exit status of the release agent
5684 * task, so no sense holding our caller up for that.
5685 */
5686 static void cgroup_release_agent(struct work_struct *work)
5687 {
5688 struct cgroup *cgrp =
5689 container_of(work, struct cgroup, release_agent_work);
5690 char *pathbuf = NULL, *agentbuf = NULL, *path;
5691 char *argv[3], *envp[3];
5692
5693 mutex_lock(&cgroup_mutex);
5694
5695 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5696 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5697 if (!pathbuf || !agentbuf)
5698 goto out;
5699
5700 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5701 if (!path)
5702 goto out;
5703
5704 argv[0] = agentbuf;
5705 argv[1] = path;
5706 argv[2] = NULL;
5707
5708 /* minimal command environment */
5709 envp[0] = "HOME=/";
5710 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5711 envp[2] = NULL;
5712
5713 mutex_unlock(&cgroup_mutex);
5714 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5715 goto out_free;
5716 out:
5717 mutex_unlock(&cgroup_mutex);
5718 out_free:
5719 kfree(agentbuf);
5720 kfree(pathbuf);
5721 }
5722
5723 static int __init cgroup_disable(char *str)
5724 {
5725 struct cgroup_subsys *ss;
5726 char *token;
5727 int i;
5728
5729 while ((token = strsep(&str, ",")) != NULL) {
5730 if (!*token)
5731 continue;
5732
5733 for_each_subsys(ss, i) {
5734 if (strcmp(token, ss->name) &&
5735 strcmp(token, ss->legacy_name))
5736 continue;
5737 cgroup_disable_mask |= 1 << i;
5738 }
5739 }
5740 return 1;
5741 }
5742 __setup("cgroup_disable=", cgroup_disable);
5743
5744 static int __init cgroup_no_v1(char *str)
5745 {
5746 struct cgroup_subsys *ss;
5747 char *token;
5748 int i;
5749
5750 while ((token = strsep(&str, ",")) != NULL) {
5751 if (!*token)
5752 continue;
5753
5754 if (!strcmp(token, "all")) {
5755 cgroup_no_v1_mask = U16_MAX;
5756 break;
5757 }
5758
5759 for_each_subsys(ss, i) {
5760 if (strcmp(token, ss->name) &&
5761 strcmp(token, ss->legacy_name))
5762 continue;
5763
5764 cgroup_no_v1_mask |= 1 << i;
5765 }
5766 }
5767 return 1;
5768 }
5769 __setup("cgroup_no_v1=", cgroup_no_v1);
5770
5771 /**
5772 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5773 * @dentry: directory dentry of interest
5774 * @ss: subsystem of interest
5775 *
5776 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5777 * to get the corresponding css and return it. If such css doesn't exist
5778 * or can't be pinned, an ERR_PTR value is returned.
5779 */
5780 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5781 struct cgroup_subsys *ss)
5782 {
5783 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5784 struct cgroup_subsys_state *css = NULL;
5785 struct cgroup *cgrp;
5786
5787 /* is @dentry a cgroup dir? */
5788 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5789 kernfs_type(kn) != KERNFS_DIR)
5790 return ERR_PTR(-EBADF);
5791
5792 rcu_read_lock();
5793
5794 /*
5795 * This path doesn't originate from kernfs and @kn could already
5796 * have been or be removed at any point. @kn->priv is RCU
5797 * protected for this access. See css_release_work_fn() for details.
5798 */
5799 cgrp = rcu_dereference(kn->priv);
5800 if (cgrp)
5801 css = cgroup_css(cgrp, ss);
5802
5803 if (!css || !css_tryget_online(css))
5804 css = ERR_PTR(-ENOENT);
5805
5806 rcu_read_unlock();
5807 return css;
5808 }
5809
5810 /**
5811 * css_from_id - lookup css by id
5812 * @id: the cgroup id
5813 * @ss: cgroup subsys to be looked into
5814 *
5815 * Returns the css if there's valid one with @id, otherwise returns NULL.
5816 * Should be called under rcu_read_lock().
5817 */
5818 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5819 {
5820 WARN_ON_ONCE(!rcu_read_lock_held());
5821 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5822 }
5823
5824 /**
5825 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5826 * @path: path on the default hierarchy
5827 *
5828 * Find the cgroup at @path on the default hierarchy, increment its
5829 * reference count and return it. Returns pointer to the found cgroup on
5830 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5831 * if @path points to a non-directory.
5832 */
5833 struct cgroup *cgroup_get_from_path(const char *path)
5834 {
5835 struct kernfs_node *kn;
5836 struct cgroup *cgrp;
5837
5838 mutex_lock(&cgroup_mutex);
5839
5840 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5841 if (kn) {
5842 if (kernfs_type(kn) == KERNFS_DIR) {
5843 cgrp = kn->priv;
5844 cgroup_get(cgrp);
5845 } else {
5846 cgrp = ERR_PTR(-ENOTDIR);
5847 }
5848 kernfs_put(kn);
5849 } else {
5850 cgrp = ERR_PTR(-ENOENT);
5851 }
5852
5853 mutex_unlock(&cgroup_mutex);
5854 return cgrp;
5855 }
5856 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5857
5858 /*
5859 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5860 * definition in cgroup-defs.h.
5861 */
5862 #ifdef CONFIG_SOCK_CGROUP_DATA
5863
5864 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5865
5866 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5867 static bool cgroup_sk_alloc_disabled __read_mostly;
5868
5869 void cgroup_sk_alloc_disable(void)
5870 {
5871 if (cgroup_sk_alloc_disabled)
5872 return;
5873 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5874 cgroup_sk_alloc_disabled = true;
5875 }
5876
5877 #else
5878
5879 #define cgroup_sk_alloc_disabled false
5880
5881 #endif
5882
5883 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5884 {
5885 if (cgroup_sk_alloc_disabled)
5886 return;
5887
5888 rcu_read_lock();
5889
5890 while (true) {
5891 struct css_set *cset;
5892
5893 cset = task_css_set(current);
5894 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5895 skcd->val = (unsigned long)cset->dfl_cgrp;
5896 break;
5897 }
5898 cpu_relax();
5899 }
5900
5901 rcu_read_unlock();
5902 }
5903
5904 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5905 {
5906 cgroup_put(sock_cgroup_ptr(skcd));
5907 }
5908
5909 #endif /* CONFIG_SOCK_CGROUP_DATA */
5910
5911 #ifdef CONFIG_CGROUP_DEBUG
5912 static struct cgroup_subsys_state *
5913 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5914 {
5915 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5916
5917 if (!css)
5918 return ERR_PTR(-ENOMEM);
5919
5920 return css;
5921 }
5922
5923 static void debug_css_free(struct cgroup_subsys_state *css)
5924 {
5925 kfree(css);
5926 }
5927
5928 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5929 struct cftype *cft)
5930 {
5931 return cgroup_task_count(css->cgroup);
5932 }
5933
5934 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5935 struct cftype *cft)
5936 {
5937 return (u64)(unsigned long)current->cgroups;
5938 }
5939
5940 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5941 struct cftype *cft)
5942 {
5943 u64 count;
5944
5945 rcu_read_lock();
5946 count = atomic_read(&task_css_set(current)->refcount);
5947 rcu_read_unlock();
5948 return count;
5949 }
5950
5951 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5952 {
5953 struct cgrp_cset_link *link;
5954 struct css_set *cset;
5955 char *name_buf;
5956
5957 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5958 if (!name_buf)
5959 return -ENOMEM;
5960
5961 spin_lock_bh(&css_set_lock);
5962 rcu_read_lock();
5963 cset = rcu_dereference(current->cgroups);
5964 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5965 struct cgroup *c = link->cgrp;
5966
5967 cgroup_name(c, name_buf, NAME_MAX + 1);
5968 seq_printf(seq, "Root %d group %s\n",
5969 c->root->hierarchy_id, name_buf);
5970 }
5971 rcu_read_unlock();
5972 spin_unlock_bh(&css_set_lock);
5973 kfree(name_buf);
5974 return 0;
5975 }
5976
5977 #define MAX_TASKS_SHOWN_PER_CSS 25
5978 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5979 {
5980 struct cgroup_subsys_state *css = seq_css(seq);
5981 struct cgrp_cset_link *link;
5982
5983 spin_lock_bh(&css_set_lock);
5984 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5985 struct css_set *cset = link->cset;
5986 struct task_struct *task;
5987 int count = 0;
5988
5989 seq_printf(seq, "css_set %p\n", cset);
5990
5991 list_for_each_entry(task, &cset->tasks, cg_list) {
5992 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5993 goto overflow;
5994 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5995 }
5996
5997 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5998 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5999 goto overflow;
6000 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6001 }
6002 continue;
6003 overflow:
6004 seq_puts(seq, " ...\n");
6005 }
6006 spin_unlock_bh(&css_set_lock);
6007 return 0;
6008 }
6009
6010 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6011 {
6012 return (!cgroup_is_populated(css->cgroup) &&
6013 !css_has_online_children(&css->cgroup->self));
6014 }
6015
6016 static struct cftype debug_files[] = {
6017 {
6018 .name = "taskcount",
6019 .read_u64 = debug_taskcount_read,
6020 },
6021
6022 {
6023 .name = "current_css_set",
6024 .read_u64 = current_css_set_read,
6025 },
6026
6027 {
6028 .name = "current_css_set_refcount",
6029 .read_u64 = current_css_set_refcount_read,
6030 },
6031
6032 {
6033 .name = "current_css_set_cg_links",
6034 .seq_show = current_css_set_cg_links_read,
6035 },
6036
6037 {
6038 .name = "cgroup_css_links",
6039 .seq_show = cgroup_css_links_read,
6040 },
6041
6042 {
6043 .name = "releasable",
6044 .read_u64 = releasable_read,
6045 },
6046
6047 { } /* terminate */
6048 };
6049
6050 struct cgroup_subsys debug_cgrp_subsys = {
6051 .css_alloc = debug_css_alloc,
6052 .css_free = debug_css_free,
6053 .legacy_cftypes = debug_files,
6054 };
6055 #endif /* CONFIG_CGROUP_DEBUG */
This page took 3.03606 seconds and 5 git commands to generate.