a4ff4965e53b44404226eccb9e95f150402a6c09
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 /*
164 * The default hierarchy, reserved for the subsystems that are otherwise
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
167 */
168 struct cgroup_root cgrp_dfl_root;
169 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
170
171 /*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175 static bool cgrp_dfl_root_visible;
176
177 /*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181 static bool cgroup_legacy_files_on_dfl;
182
183 /* some controllers are not supported in the default hierarchy */
184 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185
186 /* The list of hierarchy roots */
187
188 static LIST_HEAD(cgroup_roots);
189 static int cgroup_root_count;
190
191 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
192 static DEFINE_IDR(cgroup_hierarchy_idr);
193
194 /*
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
200 */
201 static u64 css_serial_nr_next = 1;
202
203 /*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
207 */
208 static unsigned long have_fork_callback __read_mostly;
209 static unsigned long have_exit_callback __read_mostly;
210
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
225 bool is_add);
226
227 /**
228 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
229 * @ssid: subsys ID of interest
230 *
231 * cgroup_subsys_enabled() can only be used with literal subsys names which
232 * is fine for individual subsystems but unsuitable for cgroup core. This
233 * is slower static_key_enabled() based test indexed by @ssid.
234 */
235 static bool cgroup_ssid_enabled(int ssid)
236 {
237 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
238 }
239
240 /**
241 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
242 * @cgrp: the cgroup of interest
243 *
244 * The default hierarchy is the v2 interface of cgroup and this function
245 * can be used to test whether a cgroup is on the default hierarchy for
246 * cases where a subsystem should behave differnetly depending on the
247 * interface version.
248 *
249 * The set of behaviors which change on the default hierarchy are still
250 * being determined and the mount option is prefixed with __DEVEL__.
251 *
252 * List of changed behaviors:
253 *
254 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
255 * and "name" are disallowed.
256 *
257 * - When mounting an existing superblock, mount options should match.
258 *
259 * - Remount is disallowed.
260 *
261 * - rename(2) is disallowed.
262 *
263 * - "tasks" is removed. Everything should be at process granularity. Use
264 * "cgroup.procs" instead.
265 *
266 * - "cgroup.procs" is not sorted. pids will be unique unless they got
267 * recycled inbetween reads.
268 *
269 * - "release_agent" and "notify_on_release" are removed. Replacement
270 * notification mechanism will be implemented.
271 *
272 * - "cgroup.clone_children" is removed.
273 *
274 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
275 * and its descendants contain no task; otherwise, 1. The file also
276 * generates kernfs notification which can be monitored through poll and
277 * [di]notify when the value of the file changes.
278 *
279 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
280 * take masks of ancestors with non-empty cpus/mems, instead of being
281 * moved to an ancestor.
282 *
283 * - cpuset: a task can be moved into an empty cpuset, and again it takes
284 * masks of ancestors.
285 *
286 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
287 * is not created.
288 *
289 * - blkcg: blk-throttle becomes properly hierarchical.
290 *
291 * - debug: disallowed on the default hierarchy.
292 */
293 static bool cgroup_on_dfl(const struct cgroup *cgrp)
294 {
295 return cgrp->root == &cgrp_dfl_root;
296 }
297
298 /* IDR wrappers which synchronize using cgroup_idr_lock */
299 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
300 gfp_t gfp_mask)
301 {
302 int ret;
303
304 idr_preload(gfp_mask);
305 spin_lock_bh(&cgroup_idr_lock);
306 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
307 spin_unlock_bh(&cgroup_idr_lock);
308 idr_preload_end();
309 return ret;
310 }
311
312 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
313 {
314 void *ret;
315
316 spin_lock_bh(&cgroup_idr_lock);
317 ret = idr_replace(idr, ptr, id);
318 spin_unlock_bh(&cgroup_idr_lock);
319 return ret;
320 }
321
322 static void cgroup_idr_remove(struct idr *idr, int id)
323 {
324 spin_lock_bh(&cgroup_idr_lock);
325 idr_remove(idr, id);
326 spin_unlock_bh(&cgroup_idr_lock);
327 }
328
329 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
330 {
331 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
332
333 if (parent_css)
334 return container_of(parent_css, struct cgroup, self);
335 return NULL;
336 }
337
338 /**
339 * cgroup_css - obtain a cgroup's css for the specified subsystem
340 * @cgrp: the cgroup of interest
341 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
342 *
343 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
344 * function must be called either under cgroup_mutex or rcu_read_lock() and
345 * the caller is responsible for pinning the returned css if it wants to
346 * keep accessing it outside the said locks. This function may return
347 * %NULL if @cgrp doesn't have @subsys_id enabled.
348 */
349 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
350 struct cgroup_subsys *ss)
351 {
352 if (ss)
353 return rcu_dereference_check(cgrp->subsys[ss->id],
354 lockdep_is_held(&cgroup_mutex));
355 else
356 return &cgrp->self;
357 }
358
359 /**
360 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
361 * @cgrp: the cgroup of interest
362 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
363 *
364 * Similar to cgroup_css() but returns the effective css, which is defined
365 * as the matching css of the nearest ancestor including self which has @ss
366 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
367 * function is guaranteed to return non-NULL css.
368 */
369 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
370 struct cgroup_subsys *ss)
371 {
372 lockdep_assert_held(&cgroup_mutex);
373
374 if (!ss)
375 return &cgrp->self;
376
377 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
378 return NULL;
379
380 /*
381 * This function is used while updating css associations and thus
382 * can't test the csses directly. Use ->child_subsys_mask.
383 */
384 while (cgroup_parent(cgrp) &&
385 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
386 cgrp = cgroup_parent(cgrp);
387
388 return cgroup_css(cgrp, ss);
389 }
390
391 /**
392 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
393 * @cgrp: the cgroup of interest
394 * @ss: the subsystem of interest
395 *
396 * Find and get the effective css of @cgrp for @ss. The effective css is
397 * defined as the matching css of the nearest ancestor including self which
398 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
399 * the root css is returned, so this function always returns a valid css.
400 * The returned css must be put using css_put().
401 */
402 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
403 struct cgroup_subsys *ss)
404 {
405 struct cgroup_subsys_state *css;
406
407 rcu_read_lock();
408
409 do {
410 css = cgroup_css(cgrp, ss);
411
412 if (css && css_tryget_online(css))
413 goto out_unlock;
414 cgrp = cgroup_parent(cgrp);
415 } while (cgrp);
416
417 css = init_css_set.subsys[ss->id];
418 css_get(css);
419 out_unlock:
420 rcu_read_unlock();
421 return css;
422 }
423
424 /* convenient tests for these bits */
425 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
426 {
427 return !(cgrp->self.flags & CSS_ONLINE);
428 }
429
430 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
431 {
432 struct cgroup *cgrp = of->kn->parent->priv;
433 struct cftype *cft = of_cft(of);
434
435 /*
436 * This is open and unprotected implementation of cgroup_css().
437 * seq_css() is only called from a kernfs file operation which has
438 * an active reference on the file. Because all the subsystem
439 * files are drained before a css is disassociated with a cgroup,
440 * the matching css from the cgroup's subsys table is guaranteed to
441 * be and stay valid until the enclosing operation is complete.
442 */
443 if (cft->ss)
444 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
445 else
446 return &cgrp->self;
447 }
448 EXPORT_SYMBOL_GPL(of_css);
449
450 /**
451 * cgroup_is_descendant - test ancestry
452 * @cgrp: the cgroup to be tested
453 * @ancestor: possible ancestor of @cgrp
454 *
455 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
456 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
457 * and @ancestor are accessible.
458 */
459 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
460 {
461 while (cgrp) {
462 if (cgrp == ancestor)
463 return true;
464 cgrp = cgroup_parent(cgrp);
465 }
466 return false;
467 }
468
469 static int notify_on_release(const struct cgroup *cgrp)
470 {
471 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
472 }
473
474 /**
475 * for_each_css - iterate all css's of a cgroup
476 * @css: the iteration cursor
477 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
478 * @cgrp: the target cgroup to iterate css's of
479 *
480 * Should be called under cgroup_[tree_]mutex.
481 */
482 #define for_each_css(css, ssid, cgrp) \
483 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
484 if (!((css) = rcu_dereference_check( \
485 (cgrp)->subsys[(ssid)], \
486 lockdep_is_held(&cgroup_mutex)))) { } \
487 else
488
489 /**
490 * for_each_e_css - iterate all effective css's of a cgroup
491 * @css: the iteration cursor
492 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
493 * @cgrp: the target cgroup to iterate css's of
494 *
495 * Should be called under cgroup_[tree_]mutex.
496 */
497 #define for_each_e_css(css, ssid, cgrp) \
498 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
499 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
500 ; \
501 else
502
503 /**
504 * for_each_subsys - iterate all enabled cgroup subsystems
505 * @ss: the iteration cursor
506 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
507 */
508 #define for_each_subsys(ss, ssid) \
509 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
510 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
511
512 /**
513 * for_each_subsys_which - filter for_each_subsys with a bitmask
514 * @ss: the iteration cursor
515 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
516 * @ss_maskp: a pointer to the bitmask
517 *
518 * The block will only run for cases where the ssid-th bit (1 << ssid) of
519 * mask is set to 1.
520 */
521 #define for_each_subsys_which(ss, ssid, ss_maskp) \
522 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
523 (ssid) = 0; \
524 else \
525 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
526 if (((ss) = cgroup_subsys[ssid]) && false) \
527 break; \
528 else
529
530 /* iterate across the hierarchies */
531 #define for_each_root(root) \
532 list_for_each_entry((root), &cgroup_roots, root_list)
533
534 /* iterate over child cgrps, lock should be held throughout iteration */
535 #define cgroup_for_each_live_child(child, cgrp) \
536 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
537 if (({ lockdep_assert_held(&cgroup_mutex); \
538 cgroup_is_dead(child); })) \
539 ; \
540 else
541
542 static void cgroup_release_agent(struct work_struct *work);
543 static void check_for_release(struct cgroup *cgrp);
544
545 /*
546 * A cgroup can be associated with multiple css_sets as different tasks may
547 * belong to different cgroups on different hierarchies. In the other
548 * direction, a css_set is naturally associated with multiple cgroups.
549 * This M:N relationship is represented by the following link structure
550 * which exists for each association and allows traversing the associations
551 * from both sides.
552 */
553 struct cgrp_cset_link {
554 /* the cgroup and css_set this link associates */
555 struct cgroup *cgrp;
556 struct css_set *cset;
557
558 /* list of cgrp_cset_links anchored at cgrp->cset_links */
559 struct list_head cset_link;
560
561 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
562 struct list_head cgrp_link;
563 };
564
565 /*
566 * The default css_set - used by init and its children prior to any
567 * hierarchies being mounted. It contains a pointer to the root state
568 * for each subsystem. Also used to anchor the list of css_sets. Not
569 * reference-counted, to improve performance when child cgroups
570 * haven't been created.
571 */
572 struct css_set init_css_set = {
573 .refcount = ATOMIC_INIT(1),
574 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
575 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
576 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
577 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
578 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
579 };
580
581 static int css_set_count = 1; /* 1 for init_css_set */
582
583 /**
584 * cgroup_update_populated - updated populated count of a cgroup
585 * @cgrp: the target cgroup
586 * @populated: inc or dec populated count
587 *
588 * @cgrp is either getting the first task (css_set) or losing the last.
589 * Update @cgrp->populated_cnt accordingly. The count is propagated
590 * towards root so that a given cgroup's populated_cnt is zero iff the
591 * cgroup and all its descendants are empty.
592 *
593 * @cgrp's interface file "cgroup.populated" is zero if
594 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
595 * changes from or to zero, userland is notified that the content of the
596 * interface file has changed. This can be used to detect when @cgrp and
597 * its descendants become populated or empty.
598 */
599 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
600 {
601 lockdep_assert_held(&css_set_rwsem);
602
603 do {
604 bool trigger;
605
606 if (populated)
607 trigger = !cgrp->populated_cnt++;
608 else
609 trigger = !--cgrp->populated_cnt;
610
611 if (!trigger)
612 break;
613
614 if (cgrp->events_kn)
615 kernfs_notify(cgrp->events_kn);
616 cgrp = cgroup_parent(cgrp);
617 } while (cgrp);
618 }
619
620 /*
621 * hash table for cgroup groups. This improves the performance to find
622 * an existing css_set. This hash doesn't (currently) take into
623 * account cgroups in empty hierarchies.
624 */
625 #define CSS_SET_HASH_BITS 7
626 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
627
628 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
629 {
630 unsigned long key = 0UL;
631 struct cgroup_subsys *ss;
632 int i;
633
634 for_each_subsys(ss, i)
635 key += (unsigned long)css[i];
636 key = (key >> 16) ^ key;
637
638 return key;
639 }
640
641 static void put_css_set_locked(struct css_set *cset)
642 {
643 struct cgrp_cset_link *link, *tmp_link;
644 struct cgroup_subsys *ss;
645 int ssid;
646
647 lockdep_assert_held(&css_set_rwsem);
648
649 if (!atomic_dec_and_test(&cset->refcount))
650 return;
651
652 /* This css_set is dead. unlink it and release cgroup refcounts */
653 for_each_subsys(ss, ssid)
654 list_del(&cset->e_cset_node[ssid]);
655 hash_del(&cset->hlist);
656 css_set_count--;
657
658 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
659 struct cgroup *cgrp = link->cgrp;
660
661 list_del(&link->cset_link);
662 list_del(&link->cgrp_link);
663
664 /* @cgrp can't go away while we're holding css_set_rwsem */
665 if (list_empty(&cgrp->cset_links)) {
666 cgroup_update_populated(cgrp, false);
667 check_for_release(cgrp);
668 }
669
670 kfree(link);
671 }
672
673 kfree_rcu(cset, rcu_head);
674 }
675
676 static void put_css_set(struct css_set *cset)
677 {
678 /*
679 * Ensure that the refcount doesn't hit zero while any readers
680 * can see it. Similar to atomic_dec_and_lock(), but for an
681 * rwlock
682 */
683 if (atomic_add_unless(&cset->refcount, -1, 1))
684 return;
685
686 down_write(&css_set_rwsem);
687 put_css_set_locked(cset);
688 up_write(&css_set_rwsem);
689 }
690
691 /*
692 * refcounted get/put for css_set objects
693 */
694 static inline void get_css_set(struct css_set *cset)
695 {
696 atomic_inc(&cset->refcount);
697 }
698
699 /**
700 * compare_css_sets - helper function for find_existing_css_set().
701 * @cset: candidate css_set being tested
702 * @old_cset: existing css_set for a task
703 * @new_cgrp: cgroup that's being entered by the task
704 * @template: desired set of css pointers in css_set (pre-calculated)
705 *
706 * Returns true if "cset" matches "old_cset" except for the hierarchy
707 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
708 */
709 static bool compare_css_sets(struct css_set *cset,
710 struct css_set *old_cset,
711 struct cgroup *new_cgrp,
712 struct cgroup_subsys_state *template[])
713 {
714 struct list_head *l1, *l2;
715
716 /*
717 * On the default hierarchy, there can be csets which are
718 * associated with the same set of cgroups but different csses.
719 * Let's first ensure that csses match.
720 */
721 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
722 return false;
723
724 /*
725 * Compare cgroup pointers in order to distinguish between
726 * different cgroups in hierarchies. As different cgroups may
727 * share the same effective css, this comparison is always
728 * necessary.
729 */
730 l1 = &cset->cgrp_links;
731 l2 = &old_cset->cgrp_links;
732 while (1) {
733 struct cgrp_cset_link *link1, *link2;
734 struct cgroup *cgrp1, *cgrp2;
735
736 l1 = l1->next;
737 l2 = l2->next;
738 /* See if we reached the end - both lists are equal length. */
739 if (l1 == &cset->cgrp_links) {
740 BUG_ON(l2 != &old_cset->cgrp_links);
741 break;
742 } else {
743 BUG_ON(l2 == &old_cset->cgrp_links);
744 }
745 /* Locate the cgroups associated with these links. */
746 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
747 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
748 cgrp1 = link1->cgrp;
749 cgrp2 = link2->cgrp;
750 /* Hierarchies should be linked in the same order. */
751 BUG_ON(cgrp1->root != cgrp2->root);
752
753 /*
754 * If this hierarchy is the hierarchy of the cgroup
755 * that's changing, then we need to check that this
756 * css_set points to the new cgroup; if it's any other
757 * hierarchy, then this css_set should point to the
758 * same cgroup as the old css_set.
759 */
760 if (cgrp1->root == new_cgrp->root) {
761 if (cgrp1 != new_cgrp)
762 return false;
763 } else {
764 if (cgrp1 != cgrp2)
765 return false;
766 }
767 }
768 return true;
769 }
770
771 /**
772 * find_existing_css_set - init css array and find the matching css_set
773 * @old_cset: the css_set that we're using before the cgroup transition
774 * @cgrp: the cgroup that we're moving into
775 * @template: out param for the new set of csses, should be clear on entry
776 */
777 static struct css_set *find_existing_css_set(struct css_set *old_cset,
778 struct cgroup *cgrp,
779 struct cgroup_subsys_state *template[])
780 {
781 struct cgroup_root *root = cgrp->root;
782 struct cgroup_subsys *ss;
783 struct css_set *cset;
784 unsigned long key;
785 int i;
786
787 /*
788 * Build the set of subsystem state objects that we want to see in the
789 * new css_set. while subsystems can change globally, the entries here
790 * won't change, so no need for locking.
791 */
792 for_each_subsys(ss, i) {
793 if (root->subsys_mask & (1UL << i)) {
794 /*
795 * @ss is in this hierarchy, so we want the
796 * effective css from @cgrp.
797 */
798 template[i] = cgroup_e_css(cgrp, ss);
799 } else {
800 /*
801 * @ss is not in this hierarchy, so we don't want
802 * to change the css.
803 */
804 template[i] = old_cset->subsys[i];
805 }
806 }
807
808 key = css_set_hash(template);
809 hash_for_each_possible(css_set_table, cset, hlist, key) {
810 if (!compare_css_sets(cset, old_cset, cgrp, template))
811 continue;
812
813 /* This css_set matches what we need */
814 return cset;
815 }
816
817 /* No existing cgroup group matched */
818 return NULL;
819 }
820
821 static void free_cgrp_cset_links(struct list_head *links_to_free)
822 {
823 struct cgrp_cset_link *link, *tmp_link;
824
825 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
826 list_del(&link->cset_link);
827 kfree(link);
828 }
829 }
830
831 /**
832 * allocate_cgrp_cset_links - allocate cgrp_cset_links
833 * @count: the number of links to allocate
834 * @tmp_links: list_head the allocated links are put on
835 *
836 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
837 * through ->cset_link. Returns 0 on success or -errno.
838 */
839 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
840 {
841 struct cgrp_cset_link *link;
842 int i;
843
844 INIT_LIST_HEAD(tmp_links);
845
846 for (i = 0; i < count; i++) {
847 link = kzalloc(sizeof(*link), GFP_KERNEL);
848 if (!link) {
849 free_cgrp_cset_links(tmp_links);
850 return -ENOMEM;
851 }
852 list_add(&link->cset_link, tmp_links);
853 }
854 return 0;
855 }
856
857 /**
858 * link_css_set - a helper function to link a css_set to a cgroup
859 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
860 * @cset: the css_set to be linked
861 * @cgrp: the destination cgroup
862 */
863 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
864 struct cgroup *cgrp)
865 {
866 struct cgrp_cset_link *link;
867
868 BUG_ON(list_empty(tmp_links));
869
870 if (cgroup_on_dfl(cgrp))
871 cset->dfl_cgrp = cgrp;
872
873 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
874 link->cset = cset;
875 link->cgrp = cgrp;
876
877 if (list_empty(&cgrp->cset_links))
878 cgroup_update_populated(cgrp, true);
879 list_move(&link->cset_link, &cgrp->cset_links);
880
881 /*
882 * Always add links to the tail of the list so that the list
883 * is sorted by order of hierarchy creation
884 */
885 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
886 }
887
888 /**
889 * find_css_set - return a new css_set with one cgroup updated
890 * @old_cset: the baseline css_set
891 * @cgrp: the cgroup to be updated
892 *
893 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
894 * substituted into the appropriate hierarchy.
895 */
896 static struct css_set *find_css_set(struct css_set *old_cset,
897 struct cgroup *cgrp)
898 {
899 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
900 struct css_set *cset;
901 struct list_head tmp_links;
902 struct cgrp_cset_link *link;
903 struct cgroup_subsys *ss;
904 unsigned long key;
905 int ssid;
906
907 lockdep_assert_held(&cgroup_mutex);
908
909 /* First see if we already have a cgroup group that matches
910 * the desired set */
911 down_read(&css_set_rwsem);
912 cset = find_existing_css_set(old_cset, cgrp, template);
913 if (cset)
914 get_css_set(cset);
915 up_read(&css_set_rwsem);
916
917 if (cset)
918 return cset;
919
920 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
921 if (!cset)
922 return NULL;
923
924 /* Allocate all the cgrp_cset_link objects that we'll need */
925 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
926 kfree(cset);
927 return NULL;
928 }
929
930 atomic_set(&cset->refcount, 1);
931 INIT_LIST_HEAD(&cset->cgrp_links);
932 INIT_LIST_HEAD(&cset->tasks);
933 INIT_LIST_HEAD(&cset->mg_tasks);
934 INIT_LIST_HEAD(&cset->mg_preload_node);
935 INIT_LIST_HEAD(&cset->mg_node);
936 INIT_HLIST_NODE(&cset->hlist);
937
938 /* Copy the set of subsystem state objects generated in
939 * find_existing_css_set() */
940 memcpy(cset->subsys, template, sizeof(cset->subsys));
941
942 down_write(&css_set_rwsem);
943 /* Add reference counts and links from the new css_set. */
944 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
945 struct cgroup *c = link->cgrp;
946
947 if (c->root == cgrp->root)
948 c = cgrp;
949 link_css_set(&tmp_links, cset, c);
950 }
951
952 BUG_ON(!list_empty(&tmp_links));
953
954 css_set_count++;
955
956 /* Add @cset to the hash table */
957 key = css_set_hash(cset->subsys);
958 hash_add(css_set_table, &cset->hlist, key);
959
960 for_each_subsys(ss, ssid)
961 list_add_tail(&cset->e_cset_node[ssid],
962 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
963
964 up_write(&css_set_rwsem);
965
966 return cset;
967 }
968
969 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
970 {
971 struct cgroup *root_cgrp = kf_root->kn->priv;
972
973 return root_cgrp->root;
974 }
975
976 static int cgroup_init_root_id(struct cgroup_root *root)
977 {
978 int id;
979
980 lockdep_assert_held(&cgroup_mutex);
981
982 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
983 if (id < 0)
984 return id;
985
986 root->hierarchy_id = id;
987 return 0;
988 }
989
990 static void cgroup_exit_root_id(struct cgroup_root *root)
991 {
992 lockdep_assert_held(&cgroup_mutex);
993
994 if (root->hierarchy_id) {
995 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
996 root->hierarchy_id = 0;
997 }
998 }
999
1000 static void cgroup_free_root(struct cgroup_root *root)
1001 {
1002 if (root) {
1003 /* hierarchy ID should already have been released */
1004 WARN_ON_ONCE(root->hierarchy_id);
1005
1006 idr_destroy(&root->cgroup_idr);
1007 kfree(root);
1008 }
1009 }
1010
1011 static void cgroup_destroy_root(struct cgroup_root *root)
1012 {
1013 struct cgroup *cgrp = &root->cgrp;
1014 struct cgrp_cset_link *link, *tmp_link;
1015
1016 mutex_lock(&cgroup_mutex);
1017
1018 BUG_ON(atomic_read(&root->nr_cgrps));
1019 BUG_ON(!list_empty(&cgrp->self.children));
1020
1021 /* Rebind all subsystems back to the default hierarchy */
1022 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1023
1024 /*
1025 * Release all the links from cset_links to this hierarchy's
1026 * root cgroup
1027 */
1028 down_write(&css_set_rwsem);
1029
1030 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1031 list_del(&link->cset_link);
1032 list_del(&link->cgrp_link);
1033 kfree(link);
1034 }
1035 up_write(&css_set_rwsem);
1036
1037 if (!list_empty(&root->root_list)) {
1038 list_del(&root->root_list);
1039 cgroup_root_count--;
1040 }
1041
1042 cgroup_exit_root_id(root);
1043
1044 mutex_unlock(&cgroup_mutex);
1045
1046 kernfs_destroy_root(root->kf_root);
1047 cgroup_free_root(root);
1048 }
1049
1050 /* look up cgroup associated with given css_set on the specified hierarchy */
1051 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1052 struct cgroup_root *root)
1053 {
1054 struct cgroup *res = NULL;
1055
1056 lockdep_assert_held(&cgroup_mutex);
1057 lockdep_assert_held(&css_set_rwsem);
1058
1059 if (cset == &init_css_set) {
1060 res = &root->cgrp;
1061 } else {
1062 struct cgrp_cset_link *link;
1063
1064 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1065 struct cgroup *c = link->cgrp;
1066
1067 if (c->root == root) {
1068 res = c;
1069 break;
1070 }
1071 }
1072 }
1073
1074 BUG_ON(!res);
1075 return res;
1076 }
1077
1078 /*
1079 * Return the cgroup for "task" from the given hierarchy. Must be
1080 * called with cgroup_mutex and css_set_rwsem held.
1081 */
1082 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1083 struct cgroup_root *root)
1084 {
1085 /*
1086 * No need to lock the task - since we hold cgroup_mutex the
1087 * task can't change groups, so the only thing that can happen
1088 * is that it exits and its css is set back to init_css_set.
1089 */
1090 return cset_cgroup_from_root(task_css_set(task), root);
1091 }
1092
1093 /*
1094 * A task must hold cgroup_mutex to modify cgroups.
1095 *
1096 * Any task can increment and decrement the count field without lock.
1097 * So in general, code holding cgroup_mutex can't rely on the count
1098 * field not changing. However, if the count goes to zero, then only
1099 * cgroup_attach_task() can increment it again. Because a count of zero
1100 * means that no tasks are currently attached, therefore there is no
1101 * way a task attached to that cgroup can fork (the other way to
1102 * increment the count). So code holding cgroup_mutex can safely
1103 * assume that if the count is zero, it will stay zero. Similarly, if
1104 * a task holds cgroup_mutex on a cgroup with zero count, it
1105 * knows that the cgroup won't be removed, as cgroup_rmdir()
1106 * needs that mutex.
1107 *
1108 * A cgroup can only be deleted if both its 'count' of using tasks
1109 * is zero, and its list of 'children' cgroups is empty. Since all
1110 * tasks in the system use _some_ cgroup, and since there is always at
1111 * least one task in the system (init, pid == 1), therefore, root cgroup
1112 * always has either children cgroups and/or using tasks. So we don't
1113 * need a special hack to ensure that root cgroup cannot be deleted.
1114 *
1115 * P.S. One more locking exception. RCU is used to guard the
1116 * update of a tasks cgroup pointer by cgroup_attach_task()
1117 */
1118
1119 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1120 static const struct file_operations proc_cgroupstats_operations;
1121
1122 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1123 char *buf)
1124 {
1125 struct cgroup_subsys *ss = cft->ss;
1126
1127 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1128 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1129 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1130 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1131 cft->name);
1132 else
1133 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1134 return buf;
1135 }
1136
1137 /**
1138 * cgroup_file_mode - deduce file mode of a control file
1139 * @cft: the control file in question
1140 *
1141 * S_IRUGO for read, S_IWUSR for write.
1142 */
1143 static umode_t cgroup_file_mode(const struct cftype *cft)
1144 {
1145 umode_t mode = 0;
1146
1147 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1148 mode |= S_IRUGO;
1149
1150 if (cft->write_u64 || cft->write_s64 || cft->write) {
1151 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1152 mode |= S_IWUGO;
1153 else
1154 mode |= S_IWUSR;
1155 }
1156
1157 return mode;
1158 }
1159
1160 static void cgroup_get(struct cgroup *cgrp)
1161 {
1162 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1163 css_get(&cgrp->self);
1164 }
1165
1166 static bool cgroup_tryget(struct cgroup *cgrp)
1167 {
1168 return css_tryget(&cgrp->self);
1169 }
1170
1171 static void cgroup_put(struct cgroup *cgrp)
1172 {
1173 css_put(&cgrp->self);
1174 }
1175
1176 /**
1177 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1178 * @cgrp: the target cgroup
1179 * @subtree_control: the new subtree_control mask to consider
1180 *
1181 * On the default hierarchy, a subsystem may request other subsystems to be
1182 * enabled together through its ->depends_on mask. In such cases, more
1183 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1184 *
1185 * This function calculates which subsystems need to be enabled if
1186 * @subtree_control is to be applied to @cgrp. The returned mask is always
1187 * a superset of @subtree_control and follows the usual hierarchy rules.
1188 */
1189 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1190 unsigned long subtree_control)
1191 {
1192 struct cgroup *parent = cgroup_parent(cgrp);
1193 unsigned long cur_ss_mask = subtree_control;
1194 struct cgroup_subsys *ss;
1195 int ssid;
1196
1197 lockdep_assert_held(&cgroup_mutex);
1198
1199 if (!cgroup_on_dfl(cgrp))
1200 return cur_ss_mask;
1201
1202 while (true) {
1203 unsigned long new_ss_mask = cur_ss_mask;
1204
1205 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1206 new_ss_mask |= ss->depends_on;
1207
1208 /*
1209 * Mask out subsystems which aren't available. This can
1210 * happen only if some depended-upon subsystems were bound
1211 * to non-default hierarchies.
1212 */
1213 if (parent)
1214 new_ss_mask &= parent->child_subsys_mask;
1215 else
1216 new_ss_mask &= cgrp->root->subsys_mask;
1217
1218 if (new_ss_mask == cur_ss_mask)
1219 break;
1220 cur_ss_mask = new_ss_mask;
1221 }
1222
1223 return cur_ss_mask;
1224 }
1225
1226 /**
1227 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1228 * @cgrp: the target cgroup
1229 *
1230 * Update @cgrp->child_subsys_mask according to the current
1231 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1232 */
1233 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1234 {
1235 cgrp->child_subsys_mask =
1236 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1237 }
1238
1239 /**
1240 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1241 * @kn: the kernfs_node being serviced
1242 *
1243 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1244 * the method finishes if locking succeeded. Note that once this function
1245 * returns the cgroup returned by cgroup_kn_lock_live() may become
1246 * inaccessible any time. If the caller intends to continue to access the
1247 * cgroup, it should pin it before invoking this function.
1248 */
1249 static void cgroup_kn_unlock(struct kernfs_node *kn)
1250 {
1251 struct cgroup *cgrp;
1252
1253 if (kernfs_type(kn) == KERNFS_DIR)
1254 cgrp = kn->priv;
1255 else
1256 cgrp = kn->parent->priv;
1257
1258 mutex_unlock(&cgroup_mutex);
1259
1260 kernfs_unbreak_active_protection(kn);
1261 cgroup_put(cgrp);
1262 }
1263
1264 /**
1265 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1266 * @kn: the kernfs_node being serviced
1267 *
1268 * This helper is to be used by a cgroup kernfs method currently servicing
1269 * @kn. It breaks the active protection, performs cgroup locking and
1270 * verifies that the associated cgroup is alive. Returns the cgroup if
1271 * alive; otherwise, %NULL. A successful return should be undone by a
1272 * matching cgroup_kn_unlock() invocation.
1273 *
1274 * Any cgroup kernfs method implementation which requires locking the
1275 * associated cgroup should use this helper. It avoids nesting cgroup
1276 * locking under kernfs active protection and allows all kernfs operations
1277 * including self-removal.
1278 */
1279 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1280 {
1281 struct cgroup *cgrp;
1282
1283 if (kernfs_type(kn) == KERNFS_DIR)
1284 cgrp = kn->priv;
1285 else
1286 cgrp = kn->parent->priv;
1287
1288 /*
1289 * We're gonna grab cgroup_mutex which nests outside kernfs
1290 * active_ref. cgroup liveliness check alone provides enough
1291 * protection against removal. Ensure @cgrp stays accessible and
1292 * break the active_ref protection.
1293 */
1294 if (!cgroup_tryget(cgrp))
1295 return NULL;
1296 kernfs_break_active_protection(kn);
1297
1298 mutex_lock(&cgroup_mutex);
1299
1300 if (!cgroup_is_dead(cgrp))
1301 return cgrp;
1302
1303 cgroup_kn_unlock(kn);
1304 return NULL;
1305 }
1306
1307 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1308 {
1309 char name[CGROUP_FILE_NAME_MAX];
1310
1311 lockdep_assert_held(&cgroup_mutex);
1312 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1313 }
1314
1315 /**
1316 * cgroup_clear_dir - remove subsys files in a cgroup directory
1317 * @cgrp: target cgroup
1318 * @subsys_mask: mask of the subsystem ids whose files should be removed
1319 */
1320 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1321 {
1322 struct cgroup_subsys *ss;
1323 int i;
1324
1325 for_each_subsys(ss, i) {
1326 struct cftype *cfts;
1327
1328 if (!(subsys_mask & (1 << i)))
1329 continue;
1330 list_for_each_entry(cfts, &ss->cfts, node)
1331 cgroup_addrm_files(cgrp, cfts, false);
1332 }
1333 }
1334
1335 /**
1336 * cgroup_populate_dir - create subsys files in a cgroup directory
1337 * @cgrp: target cgroup
1338 * @subsys_mask: mask of the subsystem ids whose files should be added
1339 *
1340 * On failure, no file is added.
1341 */
1342 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1343 {
1344 struct cgroup_subsys *ss;
1345 int i, ret = 0;
1346
1347 /* process cftsets of each subsystem */
1348 for_each_subsys(ss, i) {
1349 struct cftype *cfts;
1350
1351 if (!(subsys_mask & (1 << i)))
1352 continue;
1353
1354 list_for_each_entry(cfts, &ss->cfts, node) {
1355 ret = cgroup_addrm_files(cgrp, cfts, true);
1356 if (ret < 0)
1357 goto err;
1358 }
1359 }
1360 return 0;
1361 err:
1362 cgroup_clear_dir(cgrp, subsys_mask);
1363 return ret;
1364 }
1365
1366 static int rebind_subsystems(struct cgroup_root *dst_root,
1367 unsigned long ss_mask)
1368 {
1369 struct cgroup *dcgrp = &dst_root->cgrp;
1370 struct cgroup_subsys *ss;
1371 unsigned long tmp_ss_mask;
1372 int ssid, i, ret;
1373
1374 lockdep_assert_held(&cgroup_mutex);
1375
1376 for_each_subsys_which(ss, ssid, &ss_mask) {
1377 /* if @ss has non-root csses attached to it, can't move */
1378 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1379 return -EBUSY;
1380
1381 /* can't move between two non-dummy roots either */
1382 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1383 return -EBUSY;
1384 }
1385
1386 /* skip creating root files on dfl_root for inhibited subsystems */
1387 tmp_ss_mask = ss_mask;
1388 if (dst_root == &cgrp_dfl_root)
1389 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1390
1391 ret = cgroup_populate_dir(dcgrp, tmp_ss_mask);
1392 if (ret) {
1393 if (dst_root != &cgrp_dfl_root)
1394 return ret;
1395
1396 /*
1397 * Rebinding back to the default root is not allowed to
1398 * fail. Using both default and non-default roots should
1399 * be rare. Moving subsystems back and forth even more so.
1400 * Just warn about it and continue.
1401 */
1402 if (cgrp_dfl_root_visible) {
1403 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1404 ret, ss_mask);
1405 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1406 }
1407 }
1408
1409 /*
1410 * Nothing can fail from this point on. Remove files for the
1411 * removed subsystems and rebind each subsystem.
1412 */
1413 for_each_subsys_which(ss, ssid, &ss_mask)
1414 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1415
1416 for_each_subsys_which(ss, ssid, &ss_mask) {
1417 struct cgroup_root *src_root = ss->root;
1418 struct cgroup *scgrp = &src_root->cgrp;
1419 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1420 struct css_set *cset;
1421
1422 WARN_ON(!css || cgroup_css(dcgrp, ss));
1423
1424 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1425 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1426 ss->root = dst_root;
1427 css->cgroup = dcgrp;
1428
1429 down_write(&css_set_rwsem);
1430 hash_for_each(css_set_table, i, cset, hlist)
1431 list_move_tail(&cset->e_cset_node[ss->id],
1432 &dcgrp->e_csets[ss->id]);
1433 up_write(&css_set_rwsem);
1434
1435 src_root->subsys_mask &= ~(1 << ssid);
1436 scgrp->subtree_control &= ~(1 << ssid);
1437 cgroup_refresh_child_subsys_mask(scgrp);
1438
1439 /* default hierarchy doesn't enable controllers by default */
1440 dst_root->subsys_mask |= 1 << ssid;
1441 if (dst_root == &cgrp_dfl_root) {
1442 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1443 } else {
1444 dcgrp->subtree_control |= 1 << ssid;
1445 cgroup_refresh_child_subsys_mask(dcgrp);
1446 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1447 }
1448
1449 if (ss->bind)
1450 ss->bind(css);
1451 }
1452
1453 kernfs_activate(dcgrp->kn);
1454 return 0;
1455 }
1456
1457 static int cgroup_show_options(struct seq_file *seq,
1458 struct kernfs_root *kf_root)
1459 {
1460 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1461 struct cgroup_subsys *ss;
1462 int ssid;
1463
1464 if (root != &cgrp_dfl_root)
1465 for_each_subsys(ss, ssid)
1466 if (root->subsys_mask & (1 << ssid))
1467 seq_show_option(seq, ss->legacy_name, NULL);
1468 if (root->flags & CGRP_ROOT_NOPREFIX)
1469 seq_puts(seq, ",noprefix");
1470 if (root->flags & CGRP_ROOT_XATTR)
1471 seq_puts(seq, ",xattr");
1472
1473 spin_lock(&release_agent_path_lock);
1474 if (strlen(root->release_agent_path))
1475 seq_show_option(seq, "release_agent",
1476 root->release_agent_path);
1477 spin_unlock(&release_agent_path_lock);
1478
1479 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1480 seq_puts(seq, ",clone_children");
1481 if (strlen(root->name))
1482 seq_show_option(seq, "name", root->name);
1483 return 0;
1484 }
1485
1486 struct cgroup_sb_opts {
1487 unsigned long subsys_mask;
1488 unsigned int flags;
1489 char *release_agent;
1490 bool cpuset_clone_children;
1491 char *name;
1492 /* User explicitly requested empty subsystem */
1493 bool none;
1494 };
1495
1496 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1497 {
1498 char *token, *o = data;
1499 bool all_ss = false, one_ss = false;
1500 unsigned long mask = -1UL;
1501 struct cgroup_subsys *ss;
1502 int nr_opts = 0;
1503 int i;
1504
1505 #ifdef CONFIG_CPUSETS
1506 mask = ~(1U << cpuset_cgrp_id);
1507 #endif
1508
1509 memset(opts, 0, sizeof(*opts));
1510
1511 while ((token = strsep(&o, ",")) != NULL) {
1512 nr_opts++;
1513
1514 if (!*token)
1515 return -EINVAL;
1516 if (!strcmp(token, "none")) {
1517 /* Explicitly have no subsystems */
1518 opts->none = true;
1519 continue;
1520 }
1521 if (!strcmp(token, "all")) {
1522 /* Mutually exclusive option 'all' + subsystem name */
1523 if (one_ss)
1524 return -EINVAL;
1525 all_ss = true;
1526 continue;
1527 }
1528 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1529 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1530 continue;
1531 }
1532 if (!strcmp(token, "noprefix")) {
1533 opts->flags |= CGRP_ROOT_NOPREFIX;
1534 continue;
1535 }
1536 if (!strcmp(token, "clone_children")) {
1537 opts->cpuset_clone_children = true;
1538 continue;
1539 }
1540 if (!strcmp(token, "xattr")) {
1541 opts->flags |= CGRP_ROOT_XATTR;
1542 continue;
1543 }
1544 if (!strncmp(token, "release_agent=", 14)) {
1545 /* Specifying two release agents is forbidden */
1546 if (opts->release_agent)
1547 return -EINVAL;
1548 opts->release_agent =
1549 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1550 if (!opts->release_agent)
1551 return -ENOMEM;
1552 continue;
1553 }
1554 if (!strncmp(token, "name=", 5)) {
1555 const char *name = token + 5;
1556 /* Can't specify an empty name */
1557 if (!strlen(name))
1558 return -EINVAL;
1559 /* Must match [\w.-]+ */
1560 for (i = 0; i < strlen(name); i++) {
1561 char c = name[i];
1562 if (isalnum(c))
1563 continue;
1564 if ((c == '.') || (c == '-') || (c == '_'))
1565 continue;
1566 return -EINVAL;
1567 }
1568 /* Specifying two names is forbidden */
1569 if (opts->name)
1570 return -EINVAL;
1571 opts->name = kstrndup(name,
1572 MAX_CGROUP_ROOT_NAMELEN - 1,
1573 GFP_KERNEL);
1574 if (!opts->name)
1575 return -ENOMEM;
1576
1577 continue;
1578 }
1579
1580 for_each_subsys(ss, i) {
1581 if (strcmp(token, ss->legacy_name))
1582 continue;
1583 if (!cgroup_ssid_enabled(i))
1584 continue;
1585
1586 /* Mutually exclusive option 'all' + subsystem name */
1587 if (all_ss)
1588 return -EINVAL;
1589 opts->subsys_mask |= (1 << i);
1590 one_ss = true;
1591
1592 break;
1593 }
1594 if (i == CGROUP_SUBSYS_COUNT)
1595 return -ENOENT;
1596 }
1597
1598 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1599 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1600 if (nr_opts != 1) {
1601 pr_err("sane_behavior: no other mount options allowed\n");
1602 return -EINVAL;
1603 }
1604 return 0;
1605 }
1606
1607 /*
1608 * If the 'all' option was specified select all the subsystems,
1609 * otherwise if 'none', 'name=' and a subsystem name options were
1610 * not specified, let's default to 'all'
1611 */
1612 if (all_ss || (!one_ss && !opts->none && !opts->name))
1613 for_each_subsys(ss, i)
1614 if (cgroup_ssid_enabled(i))
1615 opts->subsys_mask |= (1 << i);
1616
1617 /*
1618 * We either have to specify by name or by subsystems. (So all
1619 * empty hierarchies must have a name).
1620 */
1621 if (!opts->subsys_mask && !opts->name)
1622 return -EINVAL;
1623
1624 /*
1625 * Option noprefix was introduced just for backward compatibility
1626 * with the old cpuset, so we allow noprefix only if mounting just
1627 * the cpuset subsystem.
1628 */
1629 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1630 return -EINVAL;
1631
1632 /* Can't specify "none" and some subsystems */
1633 if (opts->subsys_mask && opts->none)
1634 return -EINVAL;
1635
1636 return 0;
1637 }
1638
1639 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1640 {
1641 int ret = 0;
1642 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1643 struct cgroup_sb_opts opts;
1644 unsigned long added_mask, removed_mask;
1645
1646 if (root == &cgrp_dfl_root) {
1647 pr_err("remount is not allowed\n");
1648 return -EINVAL;
1649 }
1650
1651 mutex_lock(&cgroup_mutex);
1652
1653 /* See what subsystems are wanted */
1654 ret = parse_cgroupfs_options(data, &opts);
1655 if (ret)
1656 goto out_unlock;
1657
1658 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1659 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1660 task_tgid_nr(current), current->comm);
1661
1662 added_mask = opts.subsys_mask & ~root->subsys_mask;
1663 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1664
1665 /* Don't allow flags or name to change at remount */
1666 if ((opts.flags ^ root->flags) ||
1667 (opts.name && strcmp(opts.name, root->name))) {
1668 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1669 opts.flags, opts.name ?: "", root->flags, root->name);
1670 ret = -EINVAL;
1671 goto out_unlock;
1672 }
1673
1674 /* remounting is not allowed for populated hierarchies */
1675 if (!list_empty(&root->cgrp.self.children)) {
1676 ret = -EBUSY;
1677 goto out_unlock;
1678 }
1679
1680 ret = rebind_subsystems(root, added_mask);
1681 if (ret)
1682 goto out_unlock;
1683
1684 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1685
1686 if (opts.release_agent) {
1687 spin_lock(&release_agent_path_lock);
1688 strcpy(root->release_agent_path, opts.release_agent);
1689 spin_unlock(&release_agent_path_lock);
1690 }
1691 out_unlock:
1692 kfree(opts.release_agent);
1693 kfree(opts.name);
1694 mutex_unlock(&cgroup_mutex);
1695 return ret;
1696 }
1697
1698 /*
1699 * To reduce the fork() overhead for systems that are not actually using
1700 * their cgroups capability, we don't maintain the lists running through
1701 * each css_set to its tasks until we see the list actually used - in other
1702 * words after the first mount.
1703 */
1704 static bool use_task_css_set_links __read_mostly;
1705
1706 static void cgroup_enable_task_cg_lists(void)
1707 {
1708 struct task_struct *p, *g;
1709
1710 down_write(&css_set_rwsem);
1711
1712 if (use_task_css_set_links)
1713 goto out_unlock;
1714
1715 use_task_css_set_links = true;
1716
1717 /*
1718 * We need tasklist_lock because RCU is not safe against
1719 * while_each_thread(). Besides, a forking task that has passed
1720 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1721 * is not guaranteed to have its child immediately visible in the
1722 * tasklist if we walk through it with RCU.
1723 */
1724 read_lock(&tasklist_lock);
1725 do_each_thread(g, p) {
1726 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1727 task_css_set(p) != &init_css_set);
1728
1729 /*
1730 * We should check if the process is exiting, otherwise
1731 * it will race with cgroup_exit() in that the list
1732 * entry won't be deleted though the process has exited.
1733 * Do it while holding siglock so that we don't end up
1734 * racing against cgroup_exit().
1735 */
1736 spin_lock_irq(&p->sighand->siglock);
1737 if (!(p->flags & PF_EXITING)) {
1738 struct css_set *cset = task_css_set(p);
1739
1740 list_add(&p->cg_list, &cset->tasks);
1741 get_css_set(cset);
1742 }
1743 spin_unlock_irq(&p->sighand->siglock);
1744 } while_each_thread(g, p);
1745 read_unlock(&tasklist_lock);
1746 out_unlock:
1747 up_write(&css_set_rwsem);
1748 }
1749
1750 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1751 {
1752 struct cgroup_subsys *ss;
1753 int ssid;
1754
1755 INIT_LIST_HEAD(&cgrp->self.sibling);
1756 INIT_LIST_HEAD(&cgrp->self.children);
1757 INIT_LIST_HEAD(&cgrp->cset_links);
1758 INIT_LIST_HEAD(&cgrp->pidlists);
1759 mutex_init(&cgrp->pidlist_mutex);
1760 cgrp->self.cgroup = cgrp;
1761 cgrp->self.flags |= CSS_ONLINE;
1762
1763 for_each_subsys(ss, ssid)
1764 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1765
1766 init_waitqueue_head(&cgrp->offline_waitq);
1767 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1768 }
1769
1770 static void init_cgroup_root(struct cgroup_root *root,
1771 struct cgroup_sb_opts *opts)
1772 {
1773 struct cgroup *cgrp = &root->cgrp;
1774
1775 INIT_LIST_HEAD(&root->root_list);
1776 atomic_set(&root->nr_cgrps, 1);
1777 cgrp->root = root;
1778 init_cgroup_housekeeping(cgrp);
1779 idr_init(&root->cgroup_idr);
1780
1781 root->flags = opts->flags;
1782 if (opts->release_agent)
1783 strcpy(root->release_agent_path, opts->release_agent);
1784 if (opts->name)
1785 strcpy(root->name, opts->name);
1786 if (opts->cpuset_clone_children)
1787 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1788 }
1789
1790 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1791 {
1792 LIST_HEAD(tmp_links);
1793 struct cgroup *root_cgrp = &root->cgrp;
1794 struct cftype *base_files;
1795 struct css_set *cset;
1796 int i, ret;
1797
1798 lockdep_assert_held(&cgroup_mutex);
1799
1800 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1801 if (ret < 0)
1802 goto out;
1803 root_cgrp->id = ret;
1804
1805 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1806 GFP_KERNEL);
1807 if (ret)
1808 goto out;
1809
1810 /*
1811 * We're accessing css_set_count without locking css_set_rwsem here,
1812 * but that's OK - it can only be increased by someone holding
1813 * cgroup_lock, and that's us. The worst that can happen is that we
1814 * have some link structures left over
1815 */
1816 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1817 if (ret)
1818 goto cancel_ref;
1819
1820 ret = cgroup_init_root_id(root);
1821 if (ret)
1822 goto cancel_ref;
1823
1824 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1825 KERNFS_ROOT_CREATE_DEACTIVATED,
1826 root_cgrp);
1827 if (IS_ERR(root->kf_root)) {
1828 ret = PTR_ERR(root->kf_root);
1829 goto exit_root_id;
1830 }
1831 root_cgrp->kn = root->kf_root->kn;
1832
1833 if (root == &cgrp_dfl_root)
1834 base_files = cgroup_dfl_base_files;
1835 else
1836 base_files = cgroup_legacy_base_files;
1837
1838 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1839 if (ret)
1840 goto destroy_root;
1841
1842 ret = rebind_subsystems(root, ss_mask);
1843 if (ret)
1844 goto destroy_root;
1845
1846 /*
1847 * There must be no failure case after here, since rebinding takes
1848 * care of subsystems' refcounts, which are explicitly dropped in
1849 * the failure exit path.
1850 */
1851 list_add(&root->root_list, &cgroup_roots);
1852 cgroup_root_count++;
1853
1854 /*
1855 * Link the root cgroup in this hierarchy into all the css_set
1856 * objects.
1857 */
1858 down_write(&css_set_rwsem);
1859 hash_for_each(css_set_table, i, cset, hlist)
1860 link_css_set(&tmp_links, cset, root_cgrp);
1861 up_write(&css_set_rwsem);
1862
1863 BUG_ON(!list_empty(&root_cgrp->self.children));
1864 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1865
1866 kernfs_activate(root_cgrp->kn);
1867 ret = 0;
1868 goto out;
1869
1870 destroy_root:
1871 kernfs_destroy_root(root->kf_root);
1872 root->kf_root = NULL;
1873 exit_root_id:
1874 cgroup_exit_root_id(root);
1875 cancel_ref:
1876 percpu_ref_exit(&root_cgrp->self.refcnt);
1877 out:
1878 free_cgrp_cset_links(&tmp_links);
1879 return ret;
1880 }
1881
1882 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1883 int flags, const char *unused_dev_name,
1884 void *data)
1885 {
1886 struct super_block *pinned_sb = NULL;
1887 struct cgroup_subsys *ss;
1888 struct cgroup_root *root;
1889 struct cgroup_sb_opts opts;
1890 struct dentry *dentry;
1891 int ret;
1892 int i;
1893 bool new_sb;
1894
1895 /*
1896 * The first time anyone tries to mount a cgroup, enable the list
1897 * linking each css_set to its tasks and fix up all existing tasks.
1898 */
1899 if (!use_task_css_set_links)
1900 cgroup_enable_task_cg_lists();
1901
1902 mutex_lock(&cgroup_mutex);
1903
1904 /* First find the desired set of subsystems */
1905 ret = parse_cgroupfs_options(data, &opts);
1906 if (ret)
1907 goto out_unlock;
1908
1909 /* look for a matching existing root */
1910 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1911 cgrp_dfl_root_visible = true;
1912 root = &cgrp_dfl_root;
1913 cgroup_get(&root->cgrp);
1914 ret = 0;
1915 goto out_unlock;
1916 }
1917
1918 /*
1919 * Destruction of cgroup root is asynchronous, so subsystems may
1920 * still be dying after the previous unmount. Let's drain the
1921 * dying subsystems. We just need to ensure that the ones
1922 * unmounted previously finish dying and don't care about new ones
1923 * starting. Testing ref liveliness is good enough.
1924 */
1925 for_each_subsys(ss, i) {
1926 if (!(opts.subsys_mask & (1 << i)) ||
1927 ss->root == &cgrp_dfl_root)
1928 continue;
1929
1930 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1931 mutex_unlock(&cgroup_mutex);
1932 msleep(10);
1933 ret = restart_syscall();
1934 goto out_free;
1935 }
1936 cgroup_put(&ss->root->cgrp);
1937 }
1938
1939 for_each_root(root) {
1940 bool name_match = false;
1941
1942 if (root == &cgrp_dfl_root)
1943 continue;
1944
1945 /*
1946 * If we asked for a name then it must match. Also, if
1947 * name matches but sybsys_mask doesn't, we should fail.
1948 * Remember whether name matched.
1949 */
1950 if (opts.name) {
1951 if (strcmp(opts.name, root->name))
1952 continue;
1953 name_match = true;
1954 }
1955
1956 /*
1957 * If we asked for subsystems (or explicitly for no
1958 * subsystems) then they must match.
1959 */
1960 if ((opts.subsys_mask || opts.none) &&
1961 (opts.subsys_mask != root->subsys_mask)) {
1962 if (!name_match)
1963 continue;
1964 ret = -EBUSY;
1965 goto out_unlock;
1966 }
1967
1968 if (root->flags ^ opts.flags)
1969 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1970
1971 /*
1972 * We want to reuse @root whose lifetime is governed by its
1973 * ->cgrp. Let's check whether @root is alive and keep it
1974 * that way. As cgroup_kill_sb() can happen anytime, we
1975 * want to block it by pinning the sb so that @root doesn't
1976 * get killed before mount is complete.
1977 *
1978 * With the sb pinned, tryget_live can reliably indicate
1979 * whether @root can be reused. If it's being killed,
1980 * drain it. We can use wait_queue for the wait but this
1981 * path is super cold. Let's just sleep a bit and retry.
1982 */
1983 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1984 if (IS_ERR(pinned_sb) ||
1985 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1986 mutex_unlock(&cgroup_mutex);
1987 if (!IS_ERR_OR_NULL(pinned_sb))
1988 deactivate_super(pinned_sb);
1989 msleep(10);
1990 ret = restart_syscall();
1991 goto out_free;
1992 }
1993
1994 ret = 0;
1995 goto out_unlock;
1996 }
1997
1998 /*
1999 * No such thing, create a new one. name= matching without subsys
2000 * specification is allowed for already existing hierarchies but we
2001 * can't create new one without subsys specification.
2002 */
2003 if (!opts.subsys_mask && !opts.none) {
2004 ret = -EINVAL;
2005 goto out_unlock;
2006 }
2007
2008 root = kzalloc(sizeof(*root), GFP_KERNEL);
2009 if (!root) {
2010 ret = -ENOMEM;
2011 goto out_unlock;
2012 }
2013
2014 init_cgroup_root(root, &opts);
2015
2016 ret = cgroup_setup_root(root, opts.subsys_mask);
2017 if (ret)
2018 cgroup_free_root(root);
2019
2020 out_unlock:
2021 mutex_unlock(&cgroup_mutex);
2022 out_free:
2023 kfree(opts.release_agent);
2024 kfree(opts.name);
2025
2026 if (ret)
2027 return ERR_PTR(ret);
2028
2029 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2030 CGROUP_SUPER_MAGIC, &new_sb);
2031 if (IS_ERR(dentry) || !new_sb)
2032 cgroup_put(&root->cgrp);
2033
2034 /*
2035 * If @pinned_sb, we're reusing an existing root and holding an
2036 * extra ref on its sb. Mount is complete. Put the extra ref.
2037 */
2038 if (pinned_sb) {
2039 WARN_ON(new_sb);
2040 deactivate_super(pinned_sb);
2041 }
2042
2043 return dentry;
2044 }
2045
2046 static void cgroup_kill_sb(struct super_block *sb)
2047 {
2048 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2049 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2050
2051 /*
2052 * If @root doesn't have any mounts or children, start killing it.
2053 * This prevents new mounts by disabling percpu_ref_tryget_live().
2054 * cgroup_mount() may wait for @root's release.
2055 *
2056 * And don't kill the default root.
2057 */
2058 if (!list_empty(&root->cgrp.self.children) ||
2059 root == &cgrp_dfl_root)
2060 cgroup_put(&root->cgrp);
2061 else
2062 percpu_ref_kill(&root->cgrp.self.refcnt);
2063
2064 kernfs_kill_sb(sb);
2065 }
2066
2067 static struct file_system_type cgroup_fs_type = {
2068 .name = "cgroup",
2069 .mount = cgroup_mount,
2070 .kill_sb = cgroup_kill_sb,
2071 };
2072
2073 /**
2074 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2075 * @task: target task
2076 * @buf: the buffer to write the path into
2077 * @buflen: the length of the buffer
2078 *
2079 * Determine @task's cgroup on the first (the one with the lowest non-zero
2080 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2081 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2082 * cgroup controller callbacks.
2083 *
2084 * Return value is the same as kernfs_path().
2085 */
2086 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2087 {
2088 struct cgroup_root *root;
2089 struct cgroup *cgrp;
2090 int hierarchy_id = 1;
2091 char *path = NULL;
2092
2093 mutex_lock(&cgroup_mutex);
2094 down_read(&css_set_rwsem);
2095
2096 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2097
2098 if (root) {
2099 cgrp = task_cgroup_from_root(task, root);
2100 path = cgroup_path(cgrp, buf, buflen);
2101 } else {
2102 /* if no hierarchy exists, everyone is in "/" */
2103 if (strlcpy(buf, "/", buflen) < buflen)
2104 path = buf;
2105 }
2106
2107 up_read(&css_set_rwsem);
2108 mutex_unlock(&cgroup_mutex);
2109 return path;
2110 }
2111 EXPORT_SYMBOL_GPL(task_cgroup_path);
2112
2113 /* used to track tasks and other necessary states during migration */
2114 struct cgroup_taskset {
2115 /* the src and dst cset list running through cset->mg_node */
2116 struct list_head src_csets;
2117 struct list_head dst_csets;
2118
2119 /*
2120 * Fields for cgroup_taskset_*() iteration.
2121 *
2122 * Before migration is committed, the target migration tasks are on
2123 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2124 * the csets on ->dst_csets. ->csets point to either ->src_csets
2125 * or ->dst_csets depending on whether migration is committed.
2126 *
2127 * ->cur_csets and ->cur_task point to the current task position
2128 * during iteration.
2129 */
2130 struct list_head *csets;
2131 struct css_set *cur_cset;
2132 struct task_struct *cur_task;
2133 };
2134
2135 /**
2136 * cgroup_taskset_first - reset taskset and return the first task
2137 * @tset: taskset of interest
2138 *
2139 * @tset iteration is initialized and the first task is returned.
2140 */
2141 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2142 {
2143 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2144 tset->cur_task = NULL;
2145
2146 return cgroup_taskset_next(tset);
2147 }
2148
2149 /**
2150 * cgroup_taskset_next - iterate to the next task in taskset
2151 * @tset: taskset of interest
2152 *
2153 * Return the next task in @tset. Iteration must have been initialized
2154 * with cgroup_taskset_first().
2155 */
2156 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2157 {
2158 struct css_set *cset = tset->cur_cset;
2159 struct task_struct *task = tset->cur_task;
2160
2161 while (&cset->mg_node != tset->csets) {
2162 if (!task)
2163 task = list_first_entry(&cset->mg_tasks,
2164 struct task_struct, cg_list);
2165 else
2166 task = list_next_entry(task, cg_list);
2167
2168 if (&task->cg_list != &cset->mg_tasks) {
2169 tset->cur_cset = cset;
2170 tset->cur_task = task;
2171 return task;
2172 }
2173
2174 cset = list_next_entry(cset, mg_node);
2175 task = NULL;
2176 }
2177
2178 return NULL;
2179 }
2180
2181 /**
2182 * cgroup_task_migrate - move a task from one cgroup to another.
2183 * @old_cgrp: the cgroup @tsk is being migrated from
2184 * @tsk: the task being migrated
2185 * @new_cset: the new css_set @tsk is being attached to
2186 *
2187 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2188 */
2189 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2190 struct task_struct *tsk,
2191 struct css_set *new_cset)
2192 {
2193 struct css_set *old_cset;
2194
2195 lockdep_assert_held(&cgroup_mutex);
2196 lockdep_assert_held(&css_set_rwsem);
2197
2198 /*
2199 * We are synchronized through cgroup_threadgroup_rwsem against
2200 * PF_EXITING setting such that we can't race against cgroup_exit()
2201 * changing the css_set to init_css_set and dropping the old one.
2202 */
2203 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2204 old_cset = task_css_set(tsk);
2205
2206 get_css_set(new_cset);
2207 rcu_assign_pointer(tsk->cgroups, new_cset);
2208
2209 /*
2210 * Use move_tail so that cgroup_taskset_first() still returns the
2211 * leader after migration. This works because cgroup_migrate()
2212 * ensures that the dst_cset of the leader is the first on the
2213 * tset's dst_csets list.
2214 */
2215 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2216
2217 /*
2218 * We just gained a reference on old_cset by taking it from the
2219 * task. As trading it for new_cset is protected by cgroup_mutex,
2220 * we're safe to drop it here; it will be freed under RCU.
2221 */
2222 put_css_set_locked(old_cset);
2223 }
2224
2225 /**
2226 * cgroup_migrate_finish - cleanup after attach
2227 * @preloaded_csets: list of preloaded css_sets
2228 *
2229 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2230 * those functions for details.
2231 */
2232 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2233 {
2234 struct css_set *cset, *tmp_cset;
2235
2236 lockdep_assert_held(&cgroup_mutex);
2237
2238 down_write(&css_set_rwsem);
2239 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2240 cset->mg_src_cgrp = NULL;
2241 cset->mg_dst_cset = NULL;
2242 list_del_init(&cset->mg_preload_node);
2243 put_css_set_locked(cset);
2244 }
2245 up_write(&css_set_rwsem);
2246 }
2247
2248 /**
2249 * cgroup_migrate_add_src - add a migration source css_set
2250 * @src_cset: the source css_set to add
2251 * @dst_cgrp: the destination cgroup
2252 * @preloaded_csets: list of preloaded css_sets
2253 *
2254 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2255 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2256 * up by cgroup_migrate_finish().
2257 *
2258 * This function may be called without holding cgroup_threadgroup_rwsem
2259 * even if the target is a process. Threads may be created and destroyed
2260 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2261 * into play and the preloaded css_sets are guaranteed to cover all
2262 * migrations.
2263 */
2264 static void cgroup_migrate_add_src(struct css_set *src_cset,
2265 struct cgroup *dst_cgrp,
2266 struct list_head *preloaded_csets)
2267 {
2268 struct cgroup *src_cgrp;
2269
2270 lockdep_assert_held(&cgroup_mutex);
2271 lockdep_assert_held(&css_set_rwsem);
2272
2273 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2274
2275 if (!list_empty(&src_cset->mg_preload_node))
2276 return;
2277
2278 WARN_ON(src_cset->mg_src_cgrp);
2279 WARN_ON(!list_empty(&src_cset->mg_tasks));
2280 WARN_ON(!list_empty(&src_cset->mg_node));
2281
2282 src_cset->mg_src_cgrp = src_cgrp;
2283 get_css_set(src_cset);
2284 list_add(&src_cset->mg_preload_node, preloaded_csets);
2285 }
2286
2287 /**
2288 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2289 * @dst_cgrp: the destination cgroup (may be %NULL)
2290 * @preloaded_csets: list of preloaded source css_sets
2291 *
2292 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2293 * have been preloaded to @preloaded_csets. This function looks up and
2294 * pins all destination css_sets, links each to its source, and append them
2295 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2296 * source css_set is assumed to be its cgroup on the default hierarchy.
2297 *
2298 * This function must be called after cgroup_migrate_add_src() has been
2299 * called on each migration source css_set. After migration is performed
2300 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2301 * @preloaded_csets.
2302 */
2303 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2304 struct list_head *preloaded_csets)
2305 {
2306 LIST_HEAD(csets);
2307 struct css_set *src_cset, *tmp_cset;
2308
2309 lockdep_assert_held(&cgroup_mutex);
2310
2311 /*
2312 * Except for the root, child_subsys_mask must be zero for a cgroup
2313 * with tasks so that child cgroups don't compete against tasks.
2314 */
2315 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2316 dst_cgrp->child_subsys_mask)
2317 return -EBUSY;
2318
2319 /* look up the dst cset for each src cset and link it to src */
2320 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2321 struct css_set *dst_cset;
2322
2323 dst_cset = find_css_set(src_cset,
2324 dst_cgrp ?: src_cset->dfl_cgrp);
2325 if (!dst_cset)
2326 goto err;
2327
2328 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2329
2330 /*
2331 * If src cset equals dst, it's noop. Drop the src.
2332 * cgroup_migrate() will skip the cset too. Note that we
2333 * can't handle src == dst as some nodes are used by both.
2334 */
2335 if (src_cset == dst_cset) {
2336 src_cset->mg_src_cgrp = NULL;
2337 list_del_init(&src_cset->mg_preload_node);
2338 put_css_set(src_cset);
2339 put_css_set(dst_cset);
2340 continue;
2341 }
2342
2343 src_cset->mg_dst_cset = dst_cset;
2344
2345 if (list_empty(&dst_cset->mg_preload_node))
2346 list_add(&dst_cset->mg_preload_node, &csets);
2347 else
2348 put_css_set(dst_cset);
2349 }
2350
2351 list_splice_tail(&csets, preloaded_csets);
2352 return 0;
2353 err:
2354 cgroup_migrate_finish(&csets);
2355 return -ENOMEM;
2356 }
2357
2358 /**
2359 * cgroup_migrate - migrate a process or task to a cgroup
2360 * @cgrp: the destination cgroup
2361 * @leader: the leader of the process or the task to migrate
2362 * @threadgroup: whether @leader points to the whole process or a single task
2363 *
2364 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2365 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2366 * caller is also responsible for invoking cgroup_migrate_add_src() and
2367 * cgroup_migrate_prepare_dst() on the targets before invoking this
2368 * function and following up with cgroup_migrate_finish().
2369 *
2370 * As long as a controller's ->can_attach() doesn't fail, this function is
2371 * guaranteed to succeed. This means that, excluding ->can_attach()
2372 * failure, when migrating multiple targets, the success or failure can be
2373 * decided for all targets by invoking group_migrate_prepare_dst() before
2374 * actually starting migrating.
2375 */
2376 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2377 bool threadgroup)
2378 {
2379 struct cgroup_taskset tset = {
2380 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2381 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2382 .csets = &tset.src_csets,
2383 };
2384 struct cgroup_subsys_state *css, *failed_css = NULL;
2385 struct css_set *cset, *tmp_cset;
2386 struct task_struct *task, *tmp_task;
2387 int i, ret;
2388
2389 /*
2390 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2391 * already PF_EXITING could be freed from underneath us unless we
2392 * take an rcu_read_lock.
2393 */
2394 down_write(&css_set_rwsem);
2395 rcu_read_lock();
2396 task = leader;
2397 do {
2398 /* @task either already exited or can't exit until the end */
2399 if (task->flags & PF_EXITING)
2400 goto next;
2401
2402 /* leave @task alone if post_fork() hasn't linked it yet */
2403 if (list_empty(&task->cg_list))
2404 goto next;
2405
2406 cset = task_css_set(task);
2407 if (!cset->mg_src_cgrp)
2408 goto next;
2409
2410 /*
2411 * cgroup_taskset_first() must always return the leader.
2412 * Take care to avoid disturbing the ordering.
2413 */
2414 list_move_tail(&task->cg_list, &cset->mg_tasks);
2415 if (list_empty(&cset->mg_node))
2416 list_add_tail(&cset->mg_node, &tset.src_csets);
2417 if (list_empty(&cset->mg_dst_cset->mg_node))
2418 list_move_tail(&cset->mg_dst_cset->mg_node,
2419 &tset.dst_csets);
2420 next:
2421 if (!threadgroup)
2422 break;
2423 } while_each_thread(leader, task);
2424 rcu_read_unlock();
2425 up_write(&css_set_rwsem);
2426
2427 /* methods shouldn't be called if no task is actually migrating */
2428 if (list_empty(&tset.src_csets))
2429 return 0;
2430
2431 /* check that we can legitimately attach to the cgroup */
2432 for_each_e_css(css, i, cgrp) {
2433 if (css->ss->can_attach) {
2434 ret = css->ss->can_attach(css, &tset);
2435 if (ret) {
2436 failed_css = css;
2437 goto out_cancel_attach;
2438 }
2439 }
2440 }
2441
2442 /*
2443 * Now that we're guaranteed success, proceed to move all tasks to
2444 * the new cgroup. There are no failure cases after here, so this
2445 * is the commit point.
2446 */
2447 down_write(&css_set_rwsem);
2448 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2449 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2450 cgroup_task_migrate(cset->mg_src_cgrp, task,
2451 cset->mg_dst_cset);
2452 }
2453 up_write(&css_set_rwsem);
2454
2455 /*
2456 * Migration is committed, all target tasks are now on dst_csets.
2457 * Nothing is sensitive to fork() after this point. Notify
2458 * controllers that migration is complete.
2459 */
2460 tset.csets = &tset.dst_csets;
2461
2462 for_each_e_css(css, i, cgrp)
2463 if (css->ss->attach)
2464 css->ss->attach(css, &tset);
2465
2466 ret = 0;
2467 goto out_release_tset;
2468
2469 out_cancel_attach:
2470 for_each_e_css(css, i, cgrp) {
2471 if (css == failed_css)
2472 break;
2473 if (css->ss->cancel_attach)
2474 css->ss->cancel_attach(css, &tset);
2475 }
2476 out_release_tset:
2477 down_write(&css_set_rwsem);
2478 list_splice_init(&tset.dst_csets, &tset.src_csets);
2479 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2480 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2481 list_del_init(&cset->mg_node);
2482 }
2483 up_write(&css_set_rwsem);
2484 return ret;
2485 }
2486
2487 /**
2488 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2489 * @dst_cgrp: the cgroup to attach to
2490 * @leader: the task or the leader of the threadgroup to be attached
2491 * @threadgroup: attach the whole threadgroup?
2492 *
2493 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2494 */
2495 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2496 struct task_struct *leader, bool threadgroup)
2497 {
2498 LIST_HEAD(preloaded_csets);
2499 struct task_struct *task;
2500 int ret;
2501
2502 /* look up all src csets */
2503 down_read(&css_set_rwsem);
2504 rcu_read_lock();
2505 task = leader;
2506 do {
2507 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2508 &preloaded_csets);
2509 if (!threadgroup)
2510 break;
2511 } while_each_thread(leader, task);
2512 rcu_read_unlock();
2513 up_read(&css_set_rwsem);
2514
2515 /* prepare dst csets and commit */
2516 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2517 if (!ret)
2518 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2519
2520 cgroup_migrate_finish(&preloaded_csets);
2521 return ret;
2522 }
2523
2524 static int cgroup_procs_write_permission(struct task_struct *task,
2525 struct cgroup *dst_cgrp,
2526 struct kernfs_open_file *of)
2527 {
2528 const struct cred *cred = current_cred();
2529 const struct cred *tcred = get_task_cred(task);
2530 int ret = 0;
2531
2532 /*
2533 * even if we're attaching all tasks in the thread group, we only
2534 * need to check permissions on one of them.
2535 */
2536 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2537 !uid_eq(cred->euid, tcred->uid) &&
2538 !uid_eq(cred->euid, tcred->suid))
2539 ret = -EACCES;
2540
2541 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2542 struct super_block *sb = of->file->f_path.dentry->d_sb;
2543 struct cgroup *cgrp;
2544 struct inode *inode;
2545
2546 down_read(&css_set_rwsem);
2547 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2548 up_read(&css_set_rwsem);
2549
2550 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2551 cgrp = cgroup_parent(cgrp);
2552
2553 ret = -ENOMEM;
2554 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2555 if (inode) {
2556 ret = inode_permission(inode, MAY_WRITE);
2557 iput(inode);
2558 }
2559 }
2560
2561 put_cred(tcred);
2562 return ret;
2563 }
2564
2565 /*
2566 * Find the task_struct of the task to attach by vpid and pass it along to the
2567 * function to attach either it or all tasks in its threadgroup. Will lock
2568 * cgroup_mutex and threadgroup.
2569 */
2570 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2571 size_t nbytes, loff_t off, bool threadgroup)
2572 {
2573 struct task_struct *tsk;
2574 struct cgroup *cgrp;
2575 pid_t pid;
2576 int ret;
2577
2578 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2579 return -EINVAL;
2580
2581 cgrp = cgroup_kn_lock_live(of->kn);
2582 if (!cgrp)
2583 return -ENODEV;
2584
2585 percpu_down_write(&cgroup_threadgroup_rwsem);
2586 rcu_read_lock();
2587 if (pid) {
2588 tsk = find_task_by_vpid(pid);
2589 if (!tsk) {
2590 ret = -ESRCH;
2591 goto out_unlock_rcu;
2592 }
2593 } else {
2594 tsk = current;
2595 }
2596
2597 if (threadgroup)
2598 tsk = tsk->group_leader;
2599
2600 /*
2601 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2602 * trapped in a cpuset, or RT worker may be born in a cgroup
2603 * with no rt_runtime allocated. Just say no.
2604 */
2605 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2606 ret = -EINVAL;
2607 goto out_unlock_rcu;
2608 }
2609
2610 get_task_struct(tsk);
2611 rcu_read_unlock();
2612
2613 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2614 if (!ret)
2615 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2616
2617 put_task_struct(tsk);
2618 goto out_unlock_threadgroup;
2619
2620 out_unlock_rcu:
2621 rcu_read_unlock();
2622 out_unlock_threadgroup:
2623 percpu_up_write(&cgroup_threadgroup_rwsem);
2624 cgroup_kn_unlock(of->kn);
2625 return ret ?: nbytes;
2626 }
2627
2628 /**
2629 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2630 * @from: attach to all cgroups of a given task
2631 * @tsk: the task to be attached
2632 */
2633 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2634 {
2635 struct cgroup_root *root;
2636 int retval = 0;
2637
2638 mutex_lock(&cgroup_mutex);
2639 for_each_root(root) {
2640 struct cgroup *from_cgrp;
2641
2642 if (root == &cgrp_dfl_root)
2643 continue;
2644
2645 down_read(&css_set_rwsem);
2646 from_cgrp = task_cgroup_from_root(from, root);
2647 up_read(&css_set_rwsem);
2648
2649 retval = cgroup_attach_task(from_cgrp, tsk, false);
2650 if (retval)
2651 break;
2652 }
2653 mutex_unlock(&cgroup_mutex);
2654
2655 return retval;
2656 }
2657 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2658
2659 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2660 char *buf, size_t nbytes, loff_t off)
2661 {
2662 return __cgroup_procs_write(of, buf, nbytes, off, false);
2663 }
2664
2665 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2666 char *buf, size_t nbytes, loff_t off)
2667 {
2668 return __cgroup_procs_write(of, buf, nbytes, off, true);
2669 }
2670
2671 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2672 char *buf, size_t nbytes, loff_t off)
2673 {
2674 struct cgroup *cgrp;
2675
2676 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2677
2678 cgrp = cgroup_kn_lock_live(of->kn);
2679 if (!cgrp)
2680 return -ENODEV;
2681 spin_lock(&release_agent_path_lock);
2682 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2683 sizeof(cgrp->root->release_agent_path));
2684 spin_unlock(&release_agent_path_lock);
2685 cgroup_kn_unlock(of->kn);
2686 return nbytes;
2687 }
2688
2689 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2690 {
2691 struct cgroup *cgrp = seq_css(seq)->cgroup;
2692
2693 spin_lock(&release_agent_path_lock);
2694 seq_puts(seq, cgrp->root->release_agent_path);
2695 spin_unlock(&release_agent_path_lock);
2696 seq_putc(seq, '\n');
2697 return 0;
2698 }
2699
2700 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2701 {
2702 seq_puts(seq, "0\n");
2703 return 0;
2704 }
2705
2706 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2707 {
2708 struct cgroup_subsys *ss;
2709 bool printed = false;
2710 int ssid;
2711
2712 for_each_subsys_which(ss, ssid, &ss_mask) {
2713 if (printed)
2714 seq_putc(seq, ' ');
2715 seq_printf(seq, "%s", ss->name);
2716 printed = true;
2717 }
2718 if (printed)
2719 seq_putc(seq, '\n');
2720 }
2721
2722 /* show controllers which are currently attached to the default hierarchy */
2723 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2724 {
2725 struct cgroup *cgrp = seq_css(seq)->cgroup;
2726
2727 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2728 ~cgrp_dfl_root_inhibit_ss_mask);
2729 return 0;
2730 }
2731
2732 /* show controllers which are enabled from the parent */
2733 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2734 {
2735 struct cgroup *cgrp = seq_css(seq)->cgroup;
2736
2737 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2738 return 0;
2739 }
2740
2741 /* show controllers which are enabled for a given cgroup's children */
2742 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2743 {
2744 struct cgroup *cgrp = seq_css(seq)->cgroup;
2745
2746 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2747 return 0;
2748 }
2749
2750 /**
2751 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2752 * @cgrp: root of the subtree to update csses for
2753 *
2754 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2755 * css associations need to be updated accordingly. This function looks up
2756 * all css_sets which are attached to the subtree, creates the matching
2757 * updated css_sets and migrates the tasks to the new ones.
2758 */
2759 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2760 {
2761 LIST_HEAD(preloaded_csets);
2762 struct cgroup_subsys_state *css;
2763 struct css_set *src_cset;
2764 int ret;
2765
2766 lockdep_assert_held(&cgroup_mutex);
2767
2768 percpu_down_write(&cgroup_threadgroup_rwsem);
2769
2770 /* look up all csses currently attached to @cgrp's subtree */
2771 down_read(&css_set_rwsem);
2772 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2773 struct cgrp_cset_link *link;
2774
2775 /* self is not affected by child_subsys_mask change */
2776 if (css->cgroup == cgrp)
2777 continue;
2778
2779 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2780 cgroup_migrate_add_src(link->cset, cgrp,
2781 &preloaded_csets);
2782 }
2783 up_read(&css_set_rwsem);
2784
2785 /* NULL dst indicates self on default hierarchy */
2786 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2787 if (ret)
2788 goto out_finish;
2789
2790 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2791 struct task_struct *last_task = NULL, *task;
2792
2793 /* src_csets precede dst_csets, break on the first dst_cset */
2794 if (!src_cset->mg_src_cgrp)
2795 break;
2796
2797 /*
2798 * All tasks in src_cset need to be migrated to the
2799 * matching dst_cset. Empty it process by process. We
2800 * walk tasks but migrate processes. The leader might even
2801 * belong to a different cset but such src_cset would also
2802 * be among the target src_csets because the default
2803 * hierarchy enforces per-process membership.
2804 */
2805 while (true) {
2806 down_read(&css_set_rwsem);
2807 task = list_first_entry_or_null(&src_cset->tasks,
2808 struct task_struct, cg_list);
2809 if (task) {
2810 task = task->group_leader;
2811 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2812 get_task_struct(task);
2813 }
2814 up_read(&css_set_rwsem);
2815
2816 if (!task)
2817 break;
2818
2819 /* guard against possible infinite loop */
2820 if (WARN(last_task == task,
2821 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2822 goto out_finish;
2823 last_task = task;
2824
2825 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2826
2827 put_task_struct(task);
2828
2829 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2830 goto out_finish;
2831 }
2832 }
2833
2834 out_finish:
2835 cgroup_migrate_finish(&preloaded_csets);
2836 percpu_up_write(&cgroup_threadgroup_rwsem);
2837 return ret;
2838 }
2839
2840 /* change the enabled child controllers for a cgroup in the default hierarchy */
2841 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2842 char *buf, size_t nbytes,
2843 loff_t off)
2844 {
2845 unsigned long enable = 0, disable = 0;
2846 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2847 struct cgroup *cgrp, *child;
2848 struct cgroup_subsys *ss;
2849 char *tok;
2850 int ssid, ret;
2851
2852 /*
2853 * Parse input - space separated list of subsystem names prefixed
2854 * with either + or -.
2855 */
2856 buf = strstrip(buf);
2857 while ((tok = strsep(&buf, " "))) {
2858 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2859
2860 if (tok[0] == '\0')
2861 continue;
2862 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2863 if (!cgroup_ssid_enabled(ssid) ||
2864 strcmp(tok + 1, ss->name))
2865 continue;
2866
2867 if (*tok == '+') {
2868 enable |= 1 << ssid;
2869 disable &= ~(1 << ssid);
2870 } else if (*tok == '-') {
2871 disable |= 1 << ssid;
2872 enable &= ~(1 << ssid);
2873 } else {
2874 return -EINVAL;
2875 }
2876 break;
2877 }
2878 if (ssid == CGROUP_SUBSYS_COUNT)
2879 return -EINVAL;
2880 }
2881
2882 cgrp = cgroup_kn_lock_live(of->kn);
2883 if (!cgrp)
2884 return -ENODEV;
2885
2886 for_each_subsys(ss, ssid) {
2887 if (enable & (1 << ssid)) {
2888 if (cgrp->subtree_control & (1 << ssid)) {
2889 enable &= ~(1 << ssid);
2890 continue;
2891 }
2892
2893 /* unavailable or not enabled on the parent? */
2894 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2895 (cgroup_parent(cgrp) &&
2896 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2897 ret = -ENOENT;
2898 goto out_unlock;
2899 }
2900 } else if (disable & (1 << ssid)) {
2901 if (!(cgrp->subtree_control & (1 << ssid))) {
2902 disable &= ~(1 << ssid);
2903 continue;
2904 }
2905
2906 /* a child has it enabled? */
2907 cgroup_for_each_live_child(child, cgrp) {
2908 if (child->subtree_control & (1 << ssid)) {
2909 ret = -EBUSY;
2910 goto out_unlock;
2911 }
2912 }
2913 }
2914 }
2915
2916 if (!enable && !disable) {
2917 ret = 0;
2918 goto out_unlock;
2919 }
2920
2921 /*
2922 * Except for the root, subtree_control must be zero for a cgroup
2923 * with tasks so that child cgroups don't compete against tasks.
2924 */
2925 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2926 ret = -EBUSY;
2927 goto out_unlock;
2928 }
2929
2930 /*
2931 * Update subsys masks and calculate what needs to be done. More
2932 * subsystems than specified may need to be enabled or disabled
2933 * depending on subsystem dependencies.
2934 */
2935 old_sc = cgrp->subtree_control;
2936 old_ss = cgrp->child_subsys_mask;
2937 new_sc = (old_sc | enable) & ~disable;
2938 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2939
2940 css_enable = ~old_ss & new_ss;
2941 css_disable = old_ss & ~new_ss;
2942 enable |= css_enable;
2943 disable |= css_disable;
2944
2945 /*
2946 * Because css offlining is asynchronous, userland might try to
2947 * re-enable the same controller while the previous instance is
2948 * still around. In such cases, wait till it's gone using
2949 * offline_waitq.
2950 */
2951 for_each_subsys_which(ss, ssid, &css_enable) {
2952 cgroup_for_each_live_child(child, cgrp) {
2953 DEFINE_WAIT(wait);
2954
2955 if (!cgroup_css(child, ss))
2956 continue;
2957
2958 cgroup_get(child);
2959 prepare_to_wait(&child->offline_waitq, &wait,
2960 TASK_UNINTERRUPTIBLE);
2961 cgroup_kn_unlock(of->kn);
2962 schedule();
2963 finish_wait(&child->offline_waitq, &wait);
2964 cgroup_put(child);
2965
2966 return restart_syscall();
2967 }
2968 }
2969
2970 cgrp->subtree_control = new_sc;
2971 cgrp->child_subsys_mask = new_ss;
2972
2973 /*
2974 * Create new csses or make the existing ones visible. A css is
2975 * created invisible if it's being implicitly enabled through
2976 * dependency. An invisible css is made visible when the userland
2977 * explicitly enables it.
2978 */
2979 for_each_subsys(ss, ssid) {
2980 if (!(enable & (1 << ssid)))
2981 continue;
2982
2983 cgroup_for_each_live_child(child, cgrp) {
2984 if (css_enable & (1 << ssid))
2985 ret = create_css(child, ss,
2986 cgrp->subtree_control & (1 << ssid));
2987 else
2988 ret = cgroup_populate_dir(child, 1 << ssid);
2989 if (ret)
2990 goto err_undo_css;
2991 }
2992 }
2993
2994 /*
2995 * At this point, cgroup_e_css() results reflect the new csses
2996 * making the following cgroup_update_dfl_csses() properly update
2997 * css associations of all tasks in the subtree.
2998 */
2999 ret = cgroup_update_dfl_csses(cgrp);
3000 if (ret)
3001 goto err_undo_css;
3002
3003 /*
3004 * All tasks are migrated out of disabled csses. Kill or hide
3005 * them. A css is hidden when the userland requests it to be
3006 * disabled while other subsystems are still depending on it. The
3007 * css must not actively control resources and be in the vanilla
3008 * state if it's made visible again later. Controllers which may
3009 * be depended upon should provide ->css_reset() for this purpose.
3010 */
3011 for_each_subsys(ss, ssid) {
3012 if (!(disable & (1 << ssid)))
3013 continue;
3014
3015 cgroup_for_each_live_child(child, cgrp) {
3016 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3017
3018 if (css_disable & (1 << ssid)) {
3019 kill_css(css);
3020 } else {
3021 cgroup_clear_dir(child, 1 << ssid);
3022 if (ss->css_reset)
3023 ss->css_reset(css);
3024 }
3025 }
3026 }
3027
3028 /*
3029 * The effective csses of all the descendants (excluding @cgrp) may
3030 * have changed. Subsystems can optionally subscribe to this event
3031 * by implementing ->css_e_css_changed() which is invoked if any of
3032 * the effective csses seen from the css's cgroup may have changed.
3033 */
3034 for_each_subsys(ss, ssid) {
3035 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3036 struct cgroup_subsys_state *css;
3037
3038 if (!ss->css_e_css_changed || !this_css)
3039 continue;
3040
3041 css_for_each_descendant_pre(css, this_css)
3042 if (css != this_css)
3043 ss->css_e_css_changed(css);
3044 }
3045
3046 kernfs_activate(cgrp->kn);
3047 ret = 0;
3048 out_unlock:
3049 cgroup_kn_unlock(of->kn);
3050 return ret ?: nbytes;
3051
3052 err_undo_css:
3053 cgrp->subtree_control = old_sc;
3054 cgrp->child_subsys_mask = old_ss;
3055
3056 for_each_subsys(ss, ssid) {
3057 if (!(enable & (1 << ssid)))
3058 continue;
3059
3060 cgroup_for_each_live_child(child, cgrp) {
3061 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3062
3063 if (!css)
3064 continue;
3065
3066 if (css_enable & (1 << ssid))
3067 kill_css(css);
3068 else
3069 cgroup_clear_dir(child, 1 << ssid);
3070 }
3071 }
3072 goto out_unlock;
3073 }
3074
3075 static int cgroup_events_show(struct seq_file *seq, void *v)
3076 {
3077 seq_printf(seq, "populated %d\n",
3078 (bool)seq_css(seq)->cgroup->populated_cnt);
3079 return 0;
3080 }
3081
3082 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3083 size_t nbytes, loff_t off)
3084 {
3085 struct cgroup *cgrp = of->kn->parent->priv;
3086 struct cftype *cft = of->kn->priv;
3087 struct cgroup_subsys_state *css;
3088 int ret;
3089
3090 if (cft->write)
3091 return cft->write(of, buf, nbytes, off);
3092
3093 /*
3094 * kernfs guarantees that a file isn't deleted with operations in
3095 * flight, which means that the matching css is and stays alive and
3096 * doesn't need to be pinned. The RCU locking is not necessary
3097 * either. It's just for the convenience of using cgroup_css().
3098 */
3099 rcu_read_lock();
3100 css = cgroup_css(cgrp, cft->ss);
3101 rcu_read_unlock();
3102
3103 if (cft->write_u64) {
3104 unsigned long long v;
3105 ret = kstrtoull(buf, 0, &v);
3106 if (!ret)
3107 ret = cft->write_u64(css, cft, v);
3108 } else if (cft->write_s64) {
3109 long long v;
3110 ret = kstrtoll(buf, 0, &v);
3111 if (!ret)
3112 ret = cft->write_s64(css, cft, v);
3113 } else {
3114 ret = -EINVAL;
3115 }
3116
3117 return ret ?: nbytes;
3118 }
3119
3120 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3121 {
3122 return seq_cft(seq)->seq_start(seq, ppos);
3123 }
3124
3125 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3126 {
3127 return seq_cft(seq)->seq_next(seq, v, ppos);
3128 }
3129
3130 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3131 {
3132 seq_cft(seq)->seq_stop(seq, v);
3133 }
3134
3135 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3136 {
3137 struct cftype *cft = seq_cft(m);
3138 struct cgroup_subsys_state *css = seq_css(m);
3139
3140 if (cft->seq_show)
3141 return cft->seq_show(m, arg);
3142
3143 if (cft->read_u64)
3144 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3145 else if (cft->read_s64)
3146 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3147 else
3148 return -EINVAL;
3149 return 0;
3150 }
3151
3152 static struct kernfs_ops cgroup_kf_single_ops = {
3153 .atomic_write_len = PAGE_SIZE,
3154 .write = cgroup_file_write,
3155 .seq_show = cgroup_seqfile_show,
3156 };
3157
3158 static struct kernfs_ops cgroup_kf_ops = {
3159 .atomic_write_len = PAGE_SIZE,
3160 .write = cgroup_file_write,
3161 .seq_start = cgroup_seqfile_start,
3162 .seq_next = cgroup_seqfile_next,
3163 .seq_stop = cgroup_seqfile_stop,
3164 .seq_show = cgroup_seqfile_show,
3165 };
3166
3167 /*
3168 * cgroup_rename - Only allow simple rename of directories in place.
3169 */
3170 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3171 const char *new_name_str)
3172 {
3173 struct cgroup *cgrp = kn->priv;
3174 int ret;
3175
3176 if (kernfs_type(kn) != KERNFS_DIR)
3177 return -ENOTDIR;
3178 if (kn->parent != new_parent)
3179 return -EIO;
3180
3181 /*
3182 * This isn't a proper migration and its usefulness is very
3183 * limited. Disallow on the default hierarchy.
3184 */
3185 if (cgroup_on_dfl(cgrp))
3186 return -EPERM;
3187
3188 /*
3189 * We're gonna grab cgroup_mutex which nests outside kernfs
3190 * active_ref. kernfs_rename() doesn't require active_ref
3191 * protection. Break them before grabbing cgroup_mutex.
3192 */
3193 kernfs_break_active_protection(new_parent);
3194 kernfs_break_active_protection(kn);
3195
3196 mutex_lock(&cgroup_mutex);
3197
3198 ret = kernfs_rename(kn, new_parent, new_name_str);
3199
3200 mutex_unlock(&cgroup_mutex);
3201
3202 kernfs_unbreak_active_protection(kn);
3203 kernfs_unbreak_active_protection(new_parent);
3204 return ret;
3205 }
3206
3207 /* set uid and gid of cgroup dirs and files to that of the creator */
3208 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3209 {
3210 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3211 .ia_uid = current_fsuid(),
3212 .ia_gid = current_fsgid(), };
3213
3214 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3215 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3216 return 0;
3217
3218 return kernfs_setattr(kn, &iattr);
3219 }
3220
3221 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3222 {
3223 char name[CGROUP_FILE_NAME_MAX];
3224 struct kernfs_node *kn;
3225 struct lock_class_key *key = NULL;
3226 int ret;
3227
3228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3229 key = &cft->lockdep_key;
3230 #endif
3231 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3232 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3233 NULL, key);
3234 if (IS_ERR(kn))
3235 return PTR_ERR(kn);
3236
3237 ret = cgroup_kn_set_ugid(kn);
3238 if (ret) {
3239 kernfs_remove(kn);
3240 return ret;
3241 }
3242
3243 if (cft->write == cgroup_procs_write)
3244 cgrp->procs_kn = kn;
3245 else if (cft->seq_show == cgroup_events_show)
3246 cgrp->events_kn = kn;
3247 return 0;
3248 }
3249
3250 /**
3251 * cgroup_addrm_files - add or remove files to a cgroup directory
3252 * @cgrp: the target cgroup
3253 * @cfts: array of cftypes to be added
3254 * @is_add: whether to add or remove
3255 *
3256 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3257 * For removals, this function never fails.
3258 */
3259 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3260 bool is_add)
3261 {
3262 struct cftype *cft, *cft_end = NULL;
3263 int ret;
3264
3265 lockdep_assert_held(&cgroup_mutex);
3266
3267 restart:
3268 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3269 /* does cft->flags tell us to skip this file on @cgrp? */
3270 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3271 continue;
3272 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3273 continue;
3274 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3275 continue;
3276 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3277 continue;
3278
3279 if (is_add) {
3280 ret = cgroup_add_file(cgrp, cft);
3281 if (ret) {
3282 pr_warn("%s: failed to add %s, err=%d\n",
3283 __func__, cft->name, ret);
3284 cft_end = cft;
3285 is_add = false;
3286 goto restart;
3287 }
3288 } else {
3289 cgroup_rm_file(cgrp, cft);
3290 }
3291 }
3292 return 0;
3293 }
3294
3295 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3296 {
3297 LIST_HEAD(pending);
3298 struct cgroup_subsys *ss = cfts[0].ss;
3299 struct cgroup *root = &ss->root->cgrp;
3300 struct cgroup_subsys_state *css;
3301 int ret = 0;
3302
3303 lockdep_assert_held(&cgroup_mutex);
3304
3305 /* add/rm files for all cgroups created before */
3306 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3307 struct cgroup *cgrp = css->cgroup;
3308
3309 if (cgroup_is_dead(cgrp))
3310 continue;
3311
3312 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3313 if (ret)
3314 break;
3315 }
3316
3317 if (is_add && !ret)
3318 kernfs_activate(root->kn);
3319 return ret;
3320 }
3321
3322 static void cgroup_exit_cftypes(struct cftype *cfts)
3323 {
3324 struct cftype *cft;
3325
3326 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3327 /* free copy for custom atomic_write_len, see init_cftypes() */
3328 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3329 kfree(cft->kf_ops);
3330 cft->kf_ops = NULL;
3331 cft->ss = NULL;
3332
3333 /* revert flags set by cgroup core while adding @cfts */
3334 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3335 }
3336 }
3337
3338 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3339 {
3340 struct cftype *cft;
3341
3342 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3343 struct kernfs_ops *kf_ops;
3344
3345 WARN_ON(cft->ss || cft->kf_ops);
3346
3347 if (cft->seq_start)
3348 kf_ops = &cgroup_kf_ops;
3349 else
3350 kf_ops = &cgroup_kf_single_ops;
3351
3352 /*
3353 * Ugh... if @cft wants a custom max_write_len, we need to
3354 * make a copy of kf_ops to set its atomic_write_len.
3355 */
3356 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3357 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3358 if (!kf_ops) {
3359 cgroup_exit_cftypes(cfts);
3360 return -ENOMEM;
3361 }
3362 kf_ops->atomic_write_len = cft->max_write_len;
3363 }
3364
3365 cft->kf_ops = kf_ops;
3366 cft->ss = ss;
3367 }
3368
3369 return 0;
3370 }
3371
3372 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3373 {
3374 lockdep_assert_held(&cgroup_mutex);
3375
3376 if (!cfts || !cfts[0].ss)
3377 return -ENOENT;
3378
3379 list_del(&cfts->node);
3380 cgroup_apply_cftypes(cfts, false);
3381 cgroup_exit_cftypes(cfts);
3382 return 0;
3383 }
3384
3385 /**
3386 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3387 * @cfts: zero-length name terminated array of cftypes
3388 *
3389 * Unregister @cfts. Files described by @cfts are removed from all
3390 * existing cgroups and all future cgroups won't have them either. This
3391 * function can be called anytime whether @cfts' subsys is attached or not.
3392 *
3393 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3394 * registered.
3395 */
3396 int cgroup_rm_cftypes(struct cftype *cfts)
3397 {
3398 int ret;
3399
3400 mutex_lock(&cgroup_mutex);
3401 ret = cgroup_rm_cftypes_locked(cfts);
3402 mutex_unlock(&cgroup_mutex);
3403 return ret;
3404 }
3405
3406 /**
3407 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3408 * @ss: target cgroup subsystem
3409 * @cfts: zero-length name terminated array of cftypes
3410 *
3411 * Register @cfts to @ss. Files described by @cfts are created for all
3412 * existing cgroups to which @ss is attached and all future cgroups will
3413 * have them too. This function can be called anytime whether @ss is
3414 * attached or not.
3415 *
3416 * Returns 0 on successful registration, -errno on failure. Note that this
3417 * function currently returns 0 as long as @cfts registration is successful
3418 * even if some file creation attempts on existing cgroups fail.
3419 */
3420 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3421 {
3422 int ret;
3423
3424 if (!cgroup_ssid_enabled(ss->id))
3425 return 0;
3426
3427 if (!cfts || cfts[0].name[0] == '\0')
3428 return 0;
3429
3430 ret = cgroup_init_cftypes(ss, cfts);
3431 if (ret)
3432 return ret;
3433
3434 mutex_lock(&cgroup_mutex);
3435
3436 list_add_tail(&cfts->node, &ss->cfts);
3437 ret = cgroup_apply_cftypes(cfts, true);
3438 if (ret)
3439 cgroup_rm_cftypes_locked(cfts);
3440
3441 mutex_unlock(&cgroup_mutex);
3442 return ret;
3443 }
3444
3445 /**
3446 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3447 * @ss: target cgroup subsystem
3448 * @cfts: zero-length name terminated array of cftypes
3449 *
3450 * Similar to cgroup_add_cftypes() but the added files are only used for
3451 * the default hierarchy.
3452 */
3453 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3454 {
3455 struct cftype *cft;
3456
3457 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3458 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3459 return cgroup_add_cftypes(ss, cfts);
3460 }
3461
3462 /**
3463 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3464 * @ss: target cgroup subsystem
3465 * @cfts: zero-length name terminated array of cftypes
3466 *
3467 * Similar to cgroup_add_cftypes() but the added files are only used for
3468 * the legacy hierarchies.
3469 */
3470 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3471 {
3472 struct cftype *cft;
3473
3474 /*
3475 * If legacy_flies_on_dfl, we want to show the legacy files on the
3476 * dfl hierarchy but iff the target subsystem hasn't been updated
3477 * for the dfl hierarchy yet.
3478 */
3479 if (!cgroup_legacy_files_on_dfl ||
3480 ss->dfl_cftypes != ss->legacy_cftypes) {
3481 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3482 cft->flags |= __CFTYPE_NOT_ON_DFL;
3483 }
3484
3485 return cgroup_add_cftypes(ss, cfts);
3486 }
3487
3488 /**
3489 * cgroup_task_count - count the number of tasks in a cgroup.
3490 * @cgrp: the cgroup in question
3491 *
3492 * Return the number of tasks in the cgroup.
3493 */
3494 static int cgroup_task_count(const struct cgroup *cgrp)
3495 {
3496 int count = 0;
3497 struct cgrp_cset_link *link;
3498
3499 down_read(&css_set_rwsem);
3500 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3501 count += atomic_read(&link->cset->refcount);
3502 up_read(&css_set_rwsem);
3503 return count;
3504 }
3505
3506 /**
3507 * css_next_child - find the next child of a given css
3508 * @pos: the current position (%NULL to initiate traversal)
3509 * @parent: css whose children to walk
3510 *
3511 * This function returns the next child of @parent and should be called
3512 * under either cgroup_mutex or RCU read lock. The only requirement is
3513 * that @parent and @pos are accessible. The next sibling is guaranteed to
3514 * be returned regardless of their states.
3515 *
3516 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3517 * css which finished ->css_online() is guaranteed to be visible in the
3518 * future iterations and will stay visible until the last reference is put.
3519 * A css which hasn't finished ->css_online() or already finished
3520 * ->css_offline() may show up during traversal. It's each subsystem's
3521 * responsibility to synchronize against on/offlining.
3522 */
3523 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3524 struct cgroup_subsys_state *parent)
3525 {
3526 struct cgroup_subsys_state *next;
3527
3528 cgroup_assert_mutex_or_rcu_locked();
3529
3530 /*
3531 * @pos could already have been unlinked from the sibling list.
3532 * Once a cgroup is removed, its ->sibling.next is no longer
3533 * updated when its next sibling changes. CSS_RELEASED is set when
3534 * @pos is taken off list, at which time its next pointer is valid,
3535 * and, as releases are serialized, the one pointed to by the next
3536 * pointer is guaranteed to not have started release yet. This
3537 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3538 * critical section, the one pointed to by its next pointer is
3539 * guaranteed to not have finished its RCU grace period even if we
3540 * have dropped rcu_read_lock() inbetween iterations.
3541 *
3542 * If @pos has CSS_RELEASED set, its next pointer can't be
3543 * dereferenced; however, as each css is given a monotonically
3544 * increasing unique serial number and always appended to the
3545 * sibling list, the next one can be found by walking the parent's
3546 * children until the first css with higher serial number than
3547 * @pos's. While this path can be slower, it happens iff iteration
3548 * races against release and the race window is very small.
3549 */
3550 if (!pos) {
3551 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3552 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3553 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3554 } else {
3555 list_for_each_entry_rcu(next, &parent->children, sibling)
3556 if (next->serial_nr > pos->serial_nr)
3557 break;
3558 }
3559
3560 /*
3561 * @next, if not pointing to the head, can be dereferenced and is
3562 * the next sibling.
3563 */
3564 if (&next->sibling != &parent->children)
3565 return next;
3566 return NULL;
3567 }
3568
3569 /**
3570 * css_next_descendant_pre - find the next descendant for pre-order walk
3571 * @pos: the current position (%NULL to initiate traversal)
3572 * @root: css whose descendants to walk
3573 *
3574 * To be used by css_for_each_descendant_pre(). Find the next descendant
3575 * to visit for pre-order traversal of @root's descendants. @root is
3576 * included in the iteration and the first node to be visited.
3577 *
3578 * While this function requires cgroup_mutex or RCU read locking, it
3579 * doesn't require the whole traversal to be contained in a single critical
3580 * section. This function will return the correct next descendant as long
3581 * as both @pos and @root are accessible and @pos is a descendant of @root.
3582 *
3583 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3584 * css which finished ->css_online() is guaranteed to be visible in the
3585 * future iterations and will stay visible until the last reference is put.
3586 * A css which hasn't finished ->css_online() or already finished
3587 * ->css_offline() may show up during traversal. It's each subsystem's
3588 * responsibility to synchronize against on/offlining.
3589 */
3590 struct cgroup_subsys_state *
3591 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3592 struct cgroup_subsys_state *root)
3593 {
3594 struct cgroup_subsys_state *next;
3595
3596 cgroup_assert_mutex_or_rcu_locked();
3597
3598 /* if first iteration, visit @root */
3599 if (!pos)
3600 return root;
3601
3602 /* visit the first child if exists */
3603 next = css_next_child(NULL, pos);
3604 if (next)
3605 return next;
3606
3607 /* no child, visit my or the closest ancestor's next sibling */
3608 while (pos != root) {
3609 next = css_next_child(pos, pos->parent);
3610 if (next)
3611 return next;
3612 pos = pos->parent;
3613 }
3614
3615 return NULL;
3616 }
3617
3618 /**
3619 * css_rightmost_descendant - return the rightmost descendant of a css
3620 * @pos: css of interest
3621 *
3622 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3623 * is returned. This can be used during pre-order traversal to skip
3624 * subtree of @pos.
3625 *
3626 * While this function requires cgroup_mutex or RCU read locking, it
3627 * doesn't require the whole traversal to be contained in a single critical
3628 * section. This function will return the correct rightmost descendant as
3629 * long as @pos is accessible.
3630 */
3631 struct cgroup_subsys_state *
3632 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3633 {
3634 struct cgroup_subsys_state *last, *tmp;
3635
3636 cgroup_assert_mutex_or_rcu_locked();
3637
3638 do {
3639 last = pos;
3640 /* ->prev isn't RCU safe, walk ->next till the end */
3641 pos = NULL;
3642 css_for_each_child(tmp, last)
3643 pos = tmp;
3644 } while (pos);
3645
3646 return last;
3647 }
3648
3649 static struct cgroup_subsys_state *
3650 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3651 {
3652 struct cgroup_subsys_state *last;
3653
3654 do {
3655 last = pos;
3656 pos = css_next_child(NULL, pos);
3657 } while (pos);
3658
3659 return last;
3660 }
3661
3662 /**
3663 * css_next_descendant_post - find the next descendant for post-order walk
3664 * @pos: the current position (%NULL to initiate traversal)
3665 * @root: css whose descendants to walk
3666 *
3667 * To be used by css_for_each_descendant_post(). Find the next descendant
3668 * to visit for post-order traversal of @root's descendants. @root is
3669 * included in the iteration and the last node to be visited.
3670 *
3671 * While this function requires cgroup_mutex or RCU read locking, it
3672 * doesn't require the whole traversal to be contained in a single critical
3673 * section. This function will return the correct next descendant as long
3674 * as both @pos and @cgroup are accessible and @pos is a descendant of
3675 * @cgroup.
3676 *
3677 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3678 * css which finished ->css_online() is guaranteed to be visible in the
3679 * future iterations and will stay visible until the last reference is put.
3680 * A css which hasn't finished ->css_online() or already finished
3681 * ->css_offline() may show up during traversal. It's each subsystem's
3682 * responsibility to synchronize against on/offlining.
3683 */
3684 struct cgroup_subsys_state *
3685 css_next_descendant_post(struct cgroup_subsys_state *pos,
3686 struct cgroup_subsys_state *root)
3687 {
3688 struct cgroup_subsys_state *next;
3689
3690 cgroup_assert_mutex_or_rcu_locked();
3691
3692 /* if first iteration, visit leftmost descendant which may be @root */
3693 if (!pos)
3694 return css_leftmost_descendant(root);
3695
3696 /* if we visited @root, we're done */
3697 if (pos == root)
3698 return NULL;
3699
3700 /* if there's an unvisited sibling, visit its leftmost descendant */
3701 next = css_next_child(pos, pos->parent);
3702 if (next)
3703 return css_leftmost_descendant(next);
3704
3705 /* no sibling left, visit parent */
3706 return pos->parent;
3707 }
3708
3709 /**
3710 * css_has_online_children - does a css have online children
3711 * @css: the target css
3712 *
3713 * Returns %true if @css has any online children; otherwise, %false. This
3714 * function can be called from any context but the caller is responsible
3715 * for synchronizing against on/offlining as necessary.
3716 */
3717 bool css_has_online_children(struct cgroup_subsys_state *css)
3718 {
3719 struct cgroup_subsys_state *child;
3720 bool ret = false;
3721
3722 rcu_read_lock();
3723 css_for_each_child(child, css) {
3724 if (child->flags & CSS_ONLINE) {
3725 ret = true;
3726 break;
3727 }
3728 }
3729 rcu_read_unlock();
3730 return ret;
3731 }
3732
3733 /**
3734 * css_advance_task_iter - advance a task itererator to the next css_set
3735 * @it: the iterator to advance
3736 *
3737 * Advance @it to the next css_set to walk.
3738 */
3739 static void css_advance_task_iter(struct css_task_iter *it)
3740 {
3741 struct list_head *l = it->cset_pos;
3742 struct cgrp_cset_link *link;
3743 struct css_set *cset;
3744
3745 /* Advance to the next non-empty css_set */
3746 do {
3747 l = l->next;
3748 if (l == it->cset_head) {
3749 it->cset_pos = NULL;
3750 return;
3751 }
3752
3753 if (it->ss) {
3754 cset = container_of(l, struct css_set,
3755 e_cset_node[it->ss->id]);
3756 } else {
3757 link = list_entry(l, struct cgrp_cset_link, cset_link);
3758 cset = link->cset;
3759 }
3760 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3761
3762 it->cset_pos = l;
3763
3764 if (!list_empty(&cset->tasks))
3765 it->task_pos = cset->tasks.next;
3766 else
3767 it->task_pos = cset->mg_tasks.next;
3768
3769 it->tasks_head = &cset->tasks;
3770 it->mg_tasks_head = &cset->mg_tasks;
3771 }
3772
3773 /**
3774 * css_task_iter_start - initiate task iteration
3775 * @css: the css to walk tasks of
3776 * @it: the task iterator to use
3777 *
3778 * Initiate iteration through the tasks of @css. The caller can call
3779 * css_task_iter_next() to walk through the tasks until the function
3780 * returns NULL. On completion of iteration, css_task_iter_end() must be
3781 * called.
3782 *
3783 * Note that this function acquires a lock which is released when the
3784 * iteration finishes. The caller can't sleep while iteration is in
3785 * progress.
3786 */
3787 void css_task_iter_start(struct cgroup_subsys_state *css,
3788 struct css_task_iter *it)
3789 __acquires(css_set_rwsem)
3790 {
3791 /* no one should try to iterate before mounting cgroups */
3792 WARN_ON_ONCE(!use_task_css_set_links);
3793
3794 down_read(&css_set_rwsem);
3795
3796 it->ss = css->ss;
3797
3798 if (it->ss)
3799 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3800 else
3801 it->cset_pos = &css->cgroup->cset_links;
3802
3803 it->cset_head = it->cset_pos;
3804
3805 css_advance_task_iter(it);
3806 }
3807
3808 /**
3809 * css_task_iter_next - return the next task for the iterator
3810 * @it: the task iterator being iterated
3811 *
3812 * The "next" function for task iteration. @it should have been
3813 * initialized via css_task_iter_start(). Returns NULL when the iteration
3814 * reaches the end.
3815 */
3816 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3817 {
3818 struct task_struct *res;
3819 struct list_head *l = it->task_pos;
3820
3821 /* If the iterator cg is NULL, we have no tasks */
3822 if (!it->cset_pos)
3823 return NULL;
3824 res = list_entry(l, struct task_struct, cg_list);
3825
3826 /*
3827 * Advance iterator to find next entry. cset->tasks is consumed
3828 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3829 * next cset.
3830 */
3831 l = l->next;
3832
3833 if (l == it->tasks_head)
3834 l = it->mg_tasks_head->next;
3835
3836 if (l == it->mg_tasks_head)
3837 css_advance_task_iter(it);
3838 else
3839 it->task_pos = l;
3840
3841 return res;
3842 }
3843
3844 /**
3845 * css_task_iter_end - finish task iteration
3846 * @it: the task iterator to finish
3847 *
3848 * Finish task iteration started by css_task_iter_start().
3849 */
3850 void css_task_iter_end(struct css_task_iter *it)
3851 __releases(css_set_rwsem)
3852 {
3853 up_read(&css_set_rwsem);
3854 }
3855
3856 /**
3857 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3858 * @to: cgroup to which the tasks will be moved
3859 * @from: cgroup in which the tasks currently reside
3860 *
3861 * Locking rules between cgroup_post_fork() and the migration path
3862 * guarantee that, if a task is forking while being migrated, the new child
3863 * is guaranteed to be either visible in the source cgroup after the
3864 * parent's migration is complete or put into the target cgroup. No task
3865 * can slip out of migration through forking.
3866 */
3867 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3868 {
3869 LIST_HEAD(preloaded_csets);
3870 struct cgrp_cset_link *link;
3871 struct css_task_iter it;
3872 struct task_struct *task;
3873 int ret;
3874
3875 mutex_lock(&cgroup_mutex);
3876
3877 /* all tasks in @from are being moved, all csets are source */
3878 down_read(&css_set_rwsem);
3879 list_for_each_entry(link, &from->cset_links, cset_link)
3880 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3881 up_read(&css_set_rwsem);
3882
3883 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3884 if (ret)
3885 goto out_err;
3886
3887 /*
3888 * Migrate tasks one-by-one until @form is empty. This fails iff
3889 * ->can_attach() fails.
3890 */
3891 do {
3892 css_task_iter_start(&from->self, &it);
3893 task = css_task_iter_next(&it);
3894 if (task)
3895 get_task_struct(task);
3896 css_task_iter_end(&it);
3897
3898 if (task) {
3899 ret = cgroup_migrate(to, task, false);
3900 put_task_struct(task);
3901 }
3902 } while (task && !ret);
3903 out_err:
3904 cgroup_migrate_finish(&preloaded_csets);
3905 mutex_unlock(&cgroup_mutex);
3906 return ret;
3907 }
3908
3909 /*
3910 * Stuff for reading the 'tasks'/'procs' files.
3911 *
3912 * Reading this file can return large amounts of data if a cgroup has
3913 * *lots* of attached tasks. So it may need several calls to read(),
3914 * but we cannot guarantee that the information we produce is correct
3915 * unless we produce it entirely atomically.
3916 *
3917 */
3918
3919 /* which pidlist file are we talking about? */
3920 enum cgroup_filetype {
3921 CGROUP_FILE_PROCS,
3922 CGROUP_FILE_TASKS,
3923 };
3924
3925 /*
3926 * A pidlist is a list of pids that virtually represents the contents of one
3927 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3928 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3929 * to the cgroup.
3930 */
3931 struct cgroup_pidlist {
3932 /*
3933 * used to find which pidlist is wanted. doesn't change as long as
3934 * this particular list stays in the list.
3935 */
3936 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3937 /* array of xids */
3938 pid_t *list;
3939 /* how many elements the above list has */
3940 int length;
3941 /* each of these stored in a list by its cgroup */
3942 struct list_head links;
3943 /* pointer to the cgroup we belong to, for list removal purposes */
3944 struct cgroup *owner;
3945 /* for delayed destruction */
3946 struct delayed_work destroy_dwork;
3947 };
3948
3949 /*
3950 * The following two functions "fix" the issue where there are more pids
3951 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3952 * TODO: replace with a kernel-wide solution to this problem
3953 */
3954 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3955 static void *pidlist_allocate(int count)
3956 {
3957 if (PIDLIST_TOO_LARGE(count))
3958 return vmalloc(count * sizeof(pid_t));
3959 else
3960 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3961 }
3962
3963 static void pidlist_free(void *p)
3964 {
3965 kvfree(p);
3966 }
3967
3968 /*
3969 * Used to destroy all pidlists lingering waiting for destroy timer. None
3970 * should be left afterwards.
3971 */
3972 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3973 {
3974 struct cgroup_pidlist *l, *tmp_l;
3975
3976 mutex_lock(&cgrp->pidlist_mutex);
3977 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3978 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3979 mutex_unlock(&cgrp->pidlist_mutex);
3980
3981 flush_workqueue(cgroup_pidlist_destroy_wq);
3982 BUG_ON(!list_empty(&cgrp->pidlists));
3983 }
3984
3985 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3986 {
3987 struct delayed_work *dwork = to_delayed_work(work);
3988 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3989 destroy_dwork);
3990 struct cgroup_pidlist *tofree = NULL;
3991
3992 mutex_lock(&l->owner->pidlist_mutex);
3993
3994 /*
3995 * Destroy iff we didn't get queued again. The state won't change
3996 * as destroy_dwork can only be queued while locked.
3997 */
3998 if (!delayed_work_pending(dwork)) {
3999 list_del(&l->links);
4000 pidlist_free(l->list);
4001 put_pid_ns(l->key.ns);
4002 tofree = l;
4003 }
4004
4005 mutex_unlock(&l->owner->pidlist_mutex);
4006 kfree(tofree);
4007 }
4008
4009 /*
4010 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4011 * Returns the number of unique elements.
4012 */
4013 static int pidlist_uniq(pid_t *list, int length)
4014 {
4015 int src, dest = 1;
4016
4017 /*
4018 * we presume the 0th element is unique, so i starts at 1. trivial
4019 * edge cases first; no work needs to be done for either
4020 */
4021 if (length == 0 || length == 1)
4022 return length;
4023 /* src and dest walk down the list; dest counts unique elements */
4024 for (src = 1; src < length; src++) {
4025 /* find next unique element */
4026 while (list[src] == list[src-1]) {
4027 src++;
4028 if (src == length)
4029 goto after;
4030 }
4031 /* dest always points to where the next unique element goes */
4032 list[dest] = list[src];
4033 dest++;
4034 }
4035 after:
4036 return dest;
4037 }
4038
4039 /*
4040 * The two pid files - task and cgroup.procs - guaranteed that the result
4041 * is sorted, which forced this whole pidlist fiasco. As pid order is
4042 * different per namespace, each namespace needs differently sorted list,
4043 * making it impossible to use, for example, single rbtree of member tasks
4044 * sorted by task pointer. As pidlists can be fairly large, allocating one
4045 * per open file is dangerous, so cgroup had to implement shared pool of
4046 * pidlists keyed by cgroup and namespace.
4047 *
4048 * All this extra complexity was caused by the original implementation
4049 * committing to an entirely unnecessary property. In the long term, we
4050 * want to do away with it. Explicitly scramble sort order if on the
4051 * default hierarchy so that no such expectation exists in the new
4052 * interface.
4053 *
4054 * Scrambling is done by swapping every two consecutive bits, which is
4055 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4056 */
4057 static pid_t pid_fry(pid_t pid)
4058 {
4059 unsigned a = pid & 0x55555555;
4060 unsigned b = pid & 0xAAAAAAAA;
4061
4062 return (a << 1) | (b >> 1);
4063 }
4064
4065 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4066 {
4067 if (cgroup_on_dfl(cgrp))
4068 return pid_fry(pid);
4069 else
4070 return pid;
4071 }
4072
4073 static int cmppid(const void *a, const void *b)
4074 {
4075 return *(pid_t *)a - *(pid_t *)b;
4076 }
4077
4078 static int fried_cmppid(const void *a, const void *b)
4079 {
4080 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4081 }
4082
4083 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4084 enum cgroup_filetype type)
4085 {
4086 struct cgroup_pidlist *l;
4087 /* don't need task_nsproxy() if we're looking at ourself */
4088 struct pid_namespace *ns = task_active_pid_ns(current);
4089
4090 lockdep_assert_held(&cgrp->pidlist_mutex);
4091
4092 list_for_each_entry(l, &cgrp->pidlists, links)
4093 if (l->key.type == type && l->key.ns == ns)
4094 return l;
4095 return NULL;
4096 }
4097
4098 /*
4099 * find the appropriate pidlist for our purpose (given procs vs tasks)
4100 * returns with the lock on that pidlist already held, and takes care
4101 * of the use count, or returns NULL with no locks held if we're out of
4102 * memory.
4103 */
4104 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4105 enum cgroup_filetype type)
4106 {
4107 struct cgroup_pidlist *l;
4108
4109 lockdep_assert_held(&cgrp->pidlist_mutex);
4110
4111 l = cgroup_pidlist_find(cgrp, type);
4112 if (l)
4113 return l;
4114
4115 /* entry not found; create a new one */
4116 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4117 if (!l)
4118 return l;
4119
4120 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4121 l->key.type = type;
4122 /* don't need task_nsproxy() if we're looking at ourself */
4123 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4124 l->owner = cgrp;
4125 list_add(&l->links, &cgrp->pidlists);
4126 return l;
4127 }
4128
4129 /*
4130 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4131 */
4132 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4133 struct cgroup_pidlist **lp)
4134 {
4135 pid_t *array;
4136 int length;
4137 int pid, n = 0; /* used for populating the array */
4138 struct css_task_iter it;
4139 struct task_struct *tsk;
4140 struct cgroup_pidlist *l;
4141
4142 lockdep_assert_held(&cgrp->pidlist_mutex);
4143
4144 /*
4145 * If cgroup gets more users after we read count, we won't have
4146 * enough space - tough. This race is indistinguishable to the
4147 * caller from the case that the additional cgroup users didn't
4148 * show up until sometime later on.
4149 */
4150 length = cgroup_task_count(cgrp);
4151 array = pidlist_allocate(length);
4152 if (!array)
4153 return -ENOMEM;
4154 /* now, populate the array */
4155 css_task_iter_start(&cgrp->self, &it);
4156 while ((tsk = css_task_iter_next(&it))) {
4157 if (unlikely(n == length))
4158 break;
4159 /* get tgid or pid for procs or tasks file respectively */
4160 if (type == CGROUP_FILE_PROCS)
4161 pid = task_tgid_vnr(tsk);
4162 else
4163 pid = task_pid_vnr(tsk);
4164 if (pid > 0) /* make sure to only use valid results */
4165 array[n++] = pid;
4166 }
4167 css_task_iter_end(&it);
4168 length = n;
4169 /* now sort & (if procs) strip out duplicates */
4170 if (cgroup_on_dfl(cgrp))
4171 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4172 else
4173 sort(array, length, sizeof(pid_t), cmppid, NULL);
4174 if (type == CGROUP_FILE_PROCS)
4175 length = pidlist_uniq(array, length);
4176
4177 l = cgroup_pidlist_find_create(cgrp, type);
4178 if (!l) {
4179 pidlist_free(array);
4180 return -ENOMEM;
4181 }
4182
4183 /* store array, freeing old if necessary */
4184 pidlist_free(l->list);
4185 l->list = array;
4186 l->length = length;
4187 *lp = l;
4188 return 0;
4189 }
4190
4191 /**
4192 * cgroupstats_build - build and fill cgroupstats
4193 * @stats: cgroupstats to fill information into
4194 * @dentry: A dentry entry belonging to the cgroup for which stats have
4195 * been requested.
4196 *
4197 * Build and fill cgroupstats so that taskstats can export it to user
4198 * space.
4199 */
4200 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4201 {
4202 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4203 struct cgroup *cgrp;
4204 struct css_task_iter it;
4205 struct task_struct *tsk;
4206
4207 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4208 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4209 kernfs_type(kn) != KERNFS_DIR)
4210 return -EINVAL;
4211
4212 mutex_lock(&cgroup_mutex);
4213
4214 /*
4215 * We aren't being called from kernfs and there's no guarantee on
4216 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4217 * @kn->priv is RCU safe. Let's do the RCU dancing.
4218 */
4219 rcu_read_lock();
4220 cgrp = rcu_dereference(kn->priv);
4221 if (!cgrp || cgroup_is_dead(cgrp)) {
4222 rcu_read_unlock();
4223 mutex_unlock(&cgroup_mutex);
4224 return -ENOENT;
4225 }
4226 rcu_read_unlock();
4227
4228 css_task_iter_start(&cgrp->self, &it);
4229 while ((tsk = css_task_iter_next(&it))) {
4230 switch (tsk->state) {
4231 case TASK_RUNNING:
4232 stats->nr_running++;
4233 break;
4234 case TASK_INTERRUPTIBLE:
4235 stats->nr_sleeping++;
4236 break;
4237 case TASK_UNINTERRUPTIBLE:
4238 stats->nr_uninterruptible++;
4239 break;
4240 case TASK_STOPPED:
4241 stats->nr_stopped++;
4242 break;
4243 default:
4244 if (delayacct_is_task_waiting_on_io(tsk))
4245 stats->nr_io_wait++;
4246 break;
4247 }
4248 }
4249 css_task_iter_end(&it);
4250
4251 mutex_unlock(&cgroup_mutex);
4252 return 0;
4253 }
4254
4255
4256 /*
4257 * seq_file methods for the tasks/procs files. The seq_file position is the
4258 * next pid to display; the seq_file iterator is a pointer to the pid
4259 * in the cgroup->l->list array.
4260 */
4261
4262 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4263 {
4264 /*
4265 * Initially we receive a position value that corresponds to
4266 * one more than the last pid shown (or 0 on the first call or
4267 * after a seek to the start). Use a binary-search to find the
4268 * next pid to display, if any
4269 */
4270 struct kernfs_open_file *of = s->private;
4271 struct cgroup *cgrp = seq_css(s)->cgroup;
4272 struct cgroup_pidlist *l;
4273 enum cgroup_filetype type = seq_cft(s)->private;
4274 int index = 0, pid = *pos;
4275 int *iter, ret;
4276
4277 mutex_lock(&cgrp->pidlist_mutex);
4278
4279 /*
4280 * !NULL @of->priv indicates that this isn't the first start()
4281 * after open. If the matching pidlist is around, we can use that.
4282 * Look for it. Note that @of->priv can't be used directly. It
4283 * could already have been destroyed.
4284 */
4285 if (of->priv)
4286 of->priv = cgroup_pidlist_find(cgrp, type);
4287
4288 /*
4289 * Either this is the first start() after open or the matching
4290 * pidlist has been destroyed inbetween. Create a new one.
4291 */
4292 if (!of->priv) {
4293 ret = pidlist_array_load(cgrp, type,
4294 (struct cgroup_pidlist **)&of->priv);
4295 if (ret)
4296 return ERR_PTR(ret);
4297 }
4298 l = of->priv;
4299
4300 if (pid) {
4301 int end = l->length;
4302
4303 while (index < end) {
4304 int mid = (index + end) / 2;
4305 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4306 index = mid;
4307 break;
4308 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4309 index = mid + 1;
4310 else
4311 end = mid;
4312 }
4313 }
4314 /* If we're off the end of the array, we're done */
4315 if (index >= l->length)
4316 return NULL;
4317 /* Update the abstract position to be the actual pid that we found */
4318 iter = l->list + index;
4319 *pos = cgroup_pid_fry(cgrp, *iter);
4320 return iter;
4321 }
4322
4323 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4324 {
4325 struct kernfs_open_file *of = s->private;
4326 struct cgroup_pidlist *l = of->priv;
4327
4328 if (l)
4329 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4330 CGROUP_PIDLIST_DESTROY_DELAY);
4331 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4332 }
4333
4334 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4335 {
4336 struct kernfs_open_file *of = s->private;
4337 struct cgroup_pidlist *l = of->priv;
4338 pid_t *p = v;
4339 pid_t *end = l->list + l->length;
4340 /*
4341 * Advance to the next pid in the array. If this goes off the
4342 * end, we're done
4343 */
4344 p++;
4345 if (p >= end) {
4346 return NULL;
4347 } else {
4348 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4349 return p;
4350 }
4351 }
4352
4353 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4354 {
4355 seq_printf(s, "%d\n", *(int *)v);
4356
4357 return 0;
4358 }
4359
4360 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4361 struct cftype *cft)
4362 {
4363 return notify_on_release(css->cgroup);
4364 }
4365
4366 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4367 struct cftype *cft, u64 val)
4368 {
4369 if (val)
4370 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4371 else
4372 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4373 return 0;
4374 }
4375
4376 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4377 struct cftype *cft)
4378 {
4379 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4380 }
4381
4382 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4383 struct cftype *cft, u64 val)
4384 {
4385 if (val)
4386 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4387 else
4388 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4389 return 0;
4390 }
4391
4392 /* cgroup core interface files for the default hierarchy */
4393 static struct cftype cgroup_dfl_base_files[] = {
4394 {
4395 .name = "cgroup.procs",
4396 .seq_start = cgroup_pidlist_start,
4397 .seq_next = cgroup_pidlist_next,
4398 .seq_stop = cgroup_pidlist_stop,
4399 .seq_show = cgroup_pidlist_show,
4400 .private = CGROUP_FILE_PROCS,
4401 .write = cgroup_procs_write,
4402 },
4403 {
4404 .name = "cgroup.controllers",
4405 .flags = CFTYPE_ONLY_ON_ROOT,
4406 .seq_show = cgroup_root_controllers_show,
4407 },
4408 {
4409 .name = "cgroup.controllers",
4410 .flags = CFTYPE_NOT_ON_ROOT,
4411 .seq_show = cgroup_controllers_show,
4412 },
4413 {
4414 .name = "cgroup.subtree_control",
4415 .seq_show = cgroup_subtree_control_show,
4416 .write = cgroup_subtree_control_write,
4417 },
4418 {
4419 .name = "cgroup.events",
4420 .flags = CFTYPE_NOT_ON_ROOT,
4421 .seq_show = cgroup_events_show,
4422 },
4423 { } /* terminate */
4424 };
4425
4426 /* cgroup core interface files for the legacy hierarchies */
4427 static struct cftype cgroup_legacy_base_files[] = {
4428 {
4429 .name = "cgroup.procs",
4430 .seq_start = cgroup_pidlist_start,
4431 .seq_next = cgroup_pidlist_next,
4432 .seq_stop = cgroup_pidlist_stop,
4433 .seq_show = cgroup_pidlist_show,
4434 .private = CGROUP_FILE_PROCS,
4435 .write = cgroup_procs_write,
4436 },
4437 {
4438 .name = "cgroup.clone_children",
4439 .read_u64 = cgroup_clone_children_read,
4440 .write_u64 = cgroup_clone_children_write,
4441 },
4442 {
4443 .name = "cgroup.sane_behavior",
4444 .flags = CFTYPE_ONLY_ON_ROOT,
4445 .seq_show = cgroup_sane_behavior_show,
4446 },
4447 {
4448 .name = "tasks",
4449 .seq_start = cgroup_pidlist_start,
4450 .seq_next = cgroup_pidlist_next,
4451 .seq_stop = cgroup_pidlist_stop,
4452 .seq_show = cgroup_pidlist_show,
4453 .private = CGROUP_FILE_TASKS,
4454 .write = cgroup_tasks_write,
4455 },
4456 {
4457 .name = "notify_on_release",
4458 .read_u64 = cgroup_read_notify_on_release,
4459 .write_u64 = cgroup_write_notify_on_release,
4460 },
4461 {
4462 .name = "release_agent",
4463 .flags = CFTYPE_ONLY_ON_ROOT,
4464 .seq_show = cgroup_release_agent_show,
4465 .write = cgroup_release_agent_write,
4466 .max_write_len = PATH_MAX - 1,
4467 },
4468 { } /* terminate */
4469 };
4470
4471 /*
4472 * css destruction is four-stage process.
4473 *
4474 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4475 * Implemented in kill_css().
4476 *
4477 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4478 * and thus css_tryget_online() is guaranteed to fail, the css can be
4479 * offlined by invoking offline_css(). After offlining, the base ref is
4480 * put. Implemented in css_killed_work_fn().
4481 *
4482 * 3. When the percpu_ref reaches zero, the only possible remaining
4483 * accessors are inside RCU read sections. css_release() schedules the
4484 * RCU callback.
4485 *
4486 * 4. After the grace period, the css can be freed. Implemented in
4487 * css_free_work_fn().
4488 *
4489 * It is actually hairier because both step 2 and 4 require process context
4490 * and thus involve punting to css->destroy_work adding two additional
4491 * steps to the already complex sequence.
4492 */
4493 static void css_free_work_fn(struct work_struct *work)
4494 {
4495 struct cgroup_subsys_state *css =
4496 container_of(work, struct cgroup_subsys_state, destroy_work);
4497 struct cgroup_subsys *ss = css->ss;
4498 struct cgroup *cgrp = css->cgroup;
4499
4500 percpu_ref_exit(&css->refcnt);
4501
4502 if (ss) {
4503 /* css free path */
4504 int id = css->id;
4505
4506 if (css->parent)
4507 css_put(css->parent);
4508
4509 ss->css_free(css);
4510 cgroup_idr_remove(&ss->css_idr, id);
4511 cgroup_put(cgrp);
4512 } else {
4513 /* cgroup free path */
4514 atomic_dec(&cgrp->root->nr_cgrps);
4515 cgroup_pidlist_destroy_all(cgrp);
4516 cancel_work_sync(&cgrp->release_agent_work);
4517
4518 if (cgroup_parent(cgrp)) {
4519 /*
4520 * We get a ref to the parent, and put the ref when
4521 * this cgroup is being freed, so it's guaranteed
4522 * that the parent won't be destroyed before its
4523 * children.
4524 */
4525 cgroup_put(cgroup_parent(cgrp));
4526 kernfs_put(cgrp->kn);
4527 kfree(cgrp);
4528 } else {
4529 /*
4530 * This is root cgroup's refcnt reaching zero,
4531 * which indicates that the root should be
4532 * released.
4533 */
4534 cgroup_destroy_root(cgrp->root);
4535 }
4536 }
4537 }
4538
4539 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4540 {
4541 struct cgroup_subsys_state *css =
4542 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4543
4544 INIT_WORK(&css->destroy_work, css_free_work_fn);
4545 queue_work(cgroup_destroy_wq, &css->destroy_work);
4546 }
4547
4548 static void css_release_work_fn(struct work_struct *work)
4549 {
4550 struct cgroup_subsys_state *css =
4551 container_of(work, struct cgroup_subsys_state, destroy_work);
4552 struct cgroup_subsys *ss = css->ss;
4553 struct cgroup *cgrp = css->cgroup;
4554
4555 mutex_lock(&cgroup_mutex);
4556
4557 css->flags |= CSS_RELEASED;
4558 list_del_rcu(&css->sibling);
4559
4560 if (ss) {
4561 /* css release path */
4562 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4563 if (ss->css_released)
4564 ss->css_released(css);
4565 } else {
4566 /* cgroup release path */
4567 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4568 cgrp->id = -1;
4569
4570 /*
4571 * There are two control paths which try to determine
4572 * cgroup from dentry without going through kernfs -
4573 * cgroupstats_build() and css_tryget_online_from_dir().
4574 * Those are supported by RCU protecting clearing of
4575 * cgrp->kn->priv backpointer.
4576 */
4577 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4578 }
4579
4580 mutex_unlock(&cgroup_mutex);
4581
4582 call_rcu(&css->rcu_head, css_free_rcu_fn);
4583 }
4584
4585 static void css_release(struct percpu_ref *ref)
4586 {
4587 struct cgroup_subsys_state *css =
4588 container_of(ref, struct cgroup_subsys_state, refcnt);
4589
4590 INIT_WORK(&css->destroy_work, css_release_work_fn);
4591 queue_work(cgroup_destroy_wq, &css->destroy_work);
4592 }
4593
4594 static void init_and_link_css(struct cgroup_subsys_state *css,
4595 struct cgroup_subsys *ss, struct cgroup *cgrp)
4596 {
4597 lockdep_assert_held(&cgroup_mutex);
4598
4599 cgroup_get(cgrp);
4600
4601 memset(css, 0, sizeof(*css));
4602 css->cgroup = cgrp;
4603 css->ss = ss;
4604 INIT_LIST_HEAD(&css->sibling);
4605 INIT_LIST_HEAD(&css->children);
4606 css->serial_nr = css_serial_nr_next++;
4607
4608 if (cgroup_parent(cgrp)) {
4609 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4610 css_get(css->parent);
4611 }
4612
4613 BUG_ON(cgroup_css(cgrp, ss));
4614 }
4615
4616 /* invoke ->css_online() on a new CSS and mark it online if successful */
4617 static int online_css(struct cgroup_subsys_state *css)
4618 {
4619 struct cgroup_subsys *ss = css->ss;
4620 int ret = 0;
4621
4622 lockdep_assert_held(&cgroup_mutex);
4623
4624 if (ss->css_online)
4625 ret = ss->css_online(css);
4626 if (!ret) {
4627 css->flags |= CSS_ONLINE;
4628 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4629 }
4630 return ret;
4631 }
4632
4633 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4634 static void offline_css(struct cgroup_subsys_state *css)
4635 {
4636 struct cgroup_subsys *ss = css->ss;
4637
4638 lockdep_assert_held(&cgroup_mutex);
4639
4640 if (!(css->flags & CSS_ONLINE))
4641 return;
4642
4643 if (ss->css_offline)
4644 ss->css_offline(css);
4645
4646 css->flags &= ~CSS_ONLINE;
4647 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4648
4649 wake_up_all(&css->cgroup->offline_waitq);
4650 }
4651
4652 /**
4653 * create_css - create a cgroup_subsys_state
4654 * @cgrp: the cgroup new css will be associated with
4655 * @ss: the subsys of new css
4656 * @visible: whether to create control knobs for the new css or not
4657 *
4658 * Create a new css associated with @cgrp - @ss pair. On success, the new
4659 * css is online and installed in @cgrp with all interface files created if
4660 * @visible. Returns 0 on success, -errno on failure.
4661 */
4662 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4663 bool visible)
4664 {
4665 struct cgroup *parent = cgroup_parent(cgrp);
4666 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4667 struct cgroup_subsys_state *css;
4668 int err;
4669
4670 lockdep_assert_held(&cgroup_mutex);
4671
4672 css = ss->css_alloc(parent_css);
4673 if (IS_ERR(css))
4674 return PTR_ERR(css);
4675
4676 init_and_link_css(css, ss, cgrp);
4677
4678 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4679 if (err)
4680 goto err_free_css;
4681
4682 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4683 if (err < 0)
4684 goto err_free_percpu_ref;
4685 css->id = err;
4686
4687 if (visible) {
4688 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4689 if (err)
4690 goto err_free_id;
4691 }
4692
4693 /* @css is ready to be brought online now, make it visible */
4694 list_add_tail_rcu(&css->sibling, &parent_css->children);
4695 cgroup_idr_replace(&ss->css_idr, css, css->id);
4696
4697 err = online_css(css);
4698 if (err)
4699 goto err_list_del;
4700
4701 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4702 cgroup_parent(parent)) {
4703 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4704 current->comm, current->pid, ss->name);
4705 if (!strcmp(ss->name, "memory"))
4706 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4707 ss->warned_broken_hierarchy = true;
4708 }
4709
4710 return 0;
4711
4712 err_list_del:
4713 list_del_rcu(&css->sibling);
4714 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4715 err_free_id:
4716 cgroup_idr_remove(&ss->css_idr, css->id);
4717 err_free_percpu_ref:
4718 percpu_ref_exit(&css->refcnt);
4719 err_free_css:
4720 call_rcu(&css->rcu_head, css_free_rcu_fn);
4721 return err;
4722 }
4723
4724 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4725 umode_t mode)
4726 {
4727 struct cgroup *parent, *cgrp;
4728 struct cgroup_root *root;
4729 struct cgroup_subsys *ss;
4730 struct kernfs_node *kn;
4731 struct cftype *base_files;
4732 int ssid, ret;
4733
4734 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4735 */
4736 if (strchr(name, '\n'))
4737 return -EINVAL;
4738
4739 parent = cgroup_kn_lock_live(parent_kn);
4740 if (!parent)
4741 return -ENODEV;
4742 root = parent->root;
4743
4744 /* allocate the cgroup and its ID, 0 is reserved for the root */
4745 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4746 if (!cgrp) {
4747 ret = -ENOMEM;
4748 goto out_unlock;
4749 }
4750
4751 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4752 if (ret)
4753 goto out_free_cgrp;
4754
4755 /*
4756 * Temporarily set the pointer to NULL, so idr_find() won't return
4757 * a half-baked cgroup.
4758 */
4759 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4760 if (cgrp->id < 0) {
4761 ret = -ENOMEM;
4762 goto out_cancel_ref;
4763 }
4764
4765 init_cgroup_housekeeping(cgrp);
4766
4767 cgrp->self.parent = &parent->self;
4768 cgrp->root = root;
4769
4770 if (notify_on_release(parent))
4771 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4772
4773 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4774 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4775
4776 /* create the directory */
4777 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4778 if (IS_ERR(kn)) {
4779 ret = PTR_ERR(kn);
4780 goto out_free_id;
4781 }
4782 cgrp->kn = kn;
4783
4784 /*
4785 * This extra ref will be put in cgroup_free_fn() and guarantees
4786 * that @cgrp->kn is always accessible.
4787 */
4788 kernfs_get(kn);
4789
4790 cgrp->self.serial_nr = css_serial_nr_next++;
4791
4792 /* allocation complete, commit to creation */
4793 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4794 atomic_inc(&root->nr_cgrps);
4795 cgroup_get(parent);
4796
4797 /*
4798 * @cgrp is now fully operational. If something fails after this
4799 * point, it'll be released via the normal destruction path.
4800 */
4801 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4802
4803 ret = cgroup_kn_set_ugid(kn);
4804 if (ret)
4805 goto out_destroy;
4806
4807 if (cgroup_on_dfl(cgrp))
4808 base_files = cgroup_dfl_base_files;
4809 else
4810 base_files = cgroup_legacy_base_files;
4811
4812 ret = cgroup_addrm_files(cgrp, base_files, true);
4813 if (ret)
4814 goto out_destroy;
4815
4816 /* let's create and online css's */
4817 for_each_subsys(ss, ssid) {
4818 if (parent->child_subsys_mask & (1 << ssid)) {
4819 ret = create_css(cgrp, ss,
4820 parent->subtree_control & (1 << ssid));
4821 if (ret)
4822 goto out_destroy;
4823 }
4824 }
4825
4826 /*
4827 * On the default hierarchy, a child doesn't automatically inherit
4828 * subtree_control from the parent. Each is configured manually.
4829 */
4830 if (!cgroup_on_dfl(cgrp)) {
4831 cgrp->subtree_control = parent->subtree_control;
4832 cgroup_refresh_child_subsys_mask(cgrp);
4833 }
4834
4835 kernfs_activate(kn);
4836
4837 ret = 0;
4838 goto out_unlock;
4839
4840 out_free_id:
4841 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4842 out_cancel_ref:
4843 percpu_ref_exit(&cgrp->self.refcnt);
4844 out_free_cgrp:
4845 kfree(cgrp);
4846 out_unlock:
4847 cgroup_kn_unlock(parent_kn);
4848 return ret;
4849
4850 out_destroy:
4851 cgroup_destroy_locked(cgrp);
4852 goto out_unlock;
4853 }
4854
4855 /*
4856 * This is called when the refcnt of a css is confirmed to be killed.
4857 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4858 * initate destruction and put the css ref from kill_css().
4859 */
4860 static void css_killed_work_fn(struct work_struct *work)
4861 {
4862 struct cgroup_subsys_state *css =
4863 container_of(work, struct cgroup_subsys_state, destroy_work);
4864
4865 mutex_lock(&cgroup_mutex);
4866 offline_css(css);
4867 mutex_unlock(&cgroup_mutex);
4868
4869 css_put(css);
4870 }
4871
4872 /* css kill confirmation processing requires process context, bounce */
4873 static void css_killed_ref_fn(struct percpu_ref *ref)
4874 {
4875 struct cgroup_subsys_state *css =
4876 container_of(ref, struct cgroup_subsys_state, refcnt);
4877
4878 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4879 queue_work(cgroup_destroy_wq, &css->destroy_work);
4880 }
4881
4882 /**
4883 * kill_css - destroy a css
4884 * @css: css to destroy
4885 *
4886 * This function initiates destruction of @css by removing cgroup interface
4887 * files and putting its base reference. ->css_offline() will be invoked
4888 * asynchronously once css_tryget_online() is guaranteed to fail and when
4889 * the reference count reaches zero, @css will be released.
4890 */
4891 static void kill_css(struct cgroup_subsys_state *css)
4892 {
4893 lockdep_assert_held(&cgroup_mutex);
4894
4895 /*
4896 * This must happen before css is disassociated with its cgroup.
4897 * See seq_css() for details.
4898 */
4899 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4900
4901 /*
4902 * Killing would put the base ref, but we need to keep it alive
4903 * until after ->css_offline().
4904 */
4905 css_get(css);
4906
4907 /*
4908 * cgroup core guarantees that, by the time ->css_offline() is
4909 * invoked, no new css reference will be given out via
4910 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4911 * proceed to offlining css's because percpu_ref_kill() doesn't
4912 * guarantee that the ref is seen as killed on all CPUs on return.
4913 *
4914 * Use percpu_ref_kill_and_confirm() to get notifications as each
4915 * css is confirmed to be seen as killed on all CPUs.
4916 */
4917 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4918 }
4919
4920 /**
4921 * cgroup_destroy_locked - the first stage of cgroup destruction
4922 * @cgrp: cgroup to be destroyed
4923 *
4924 * css's make use of percpu refcnts whose killing latency shouldn't be
4925 * exposed to userland and are RCU protected. Also, cgroup core needs to
4926 * guarantee that css_tryget_online() won't succeed by the time
4927 * ->css_offline() is invoked. To satisfy all the requirements,
4928 * destruction is implemented in the following two steps.
4929 *
4930 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4931 * userland visible parts and start killing the percpu refcnts of
4932 * css's. Set up so that the next stage will be kicked off once all
4933 * the percpu refcnts are confirmed to be killed.
4934 *
4935 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4936 * rest of destruction. Once all cgroup references are gone, the
4937 * cgroup is RCU-freed.
4938 *
4939 * This function implements s1. After this step, @cgrp is gone as far as
4940 * the userland is concerned and a new cgroup with the same name may be
4941 * created. As cgroup doesn't care about the names internally, this
4942 * doesn't cause any problem.
4943 */
4944 static int cgroup_destroy_locked(struct cgroup *cgrp)
4945 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4946 {
4947 struct cgroup_subsys_state *css;
4948 bool empty;
4949 int ssid;
4950
4951 lockdep_assert_held(&cgroup_mutex);
4952
4953 /*
4954 * css_set_rwsem synchronizes access to ->cset_links and prevents
4955 * @cgrp from being removed while put_css_set() is in progress.
4956 */
4957 down_read(&css_set_rwsem);
4958 empty = list_empty(&cgrp->cset_links);
4959 up_read(&css_set_rwsem);
4960 if (!empty)
4961 return -EBUSY;
4962
4963 /*
4964 * Make sure there's no live children. We can't test emptiness of
4965 * ->self.children as dead children linger on it while being
4966 * drained; otherwise, "rmdir parent/child parent" may fail.
4967 */
4968 if (css_has_online_children(&cgrp->self))
4969 return -EBUSY;
4970
4971 /*
4972 * Mark @cgrp dead. This prevents further task migration and child
4973 * creation by disabling cgroup_lock_live_group().
4974 */
4975 cgrp->self.flags &= ~CSS_ONLINE;
4976
4977 /* initiate massacre of all css's */
4978 for_each_css(css, ssid, cgrp)
4979 kill_css(css);
4980
4981 /*
4982 * Remove @cgrp directory along with the base files. @cgrp has an
4983 * extra ref on its kn.
4984 */
4985 kernfs_remove(cgrp->kn);
4986
4987 check_for_release(cgroup_parent(cgrp));
4988
4989 /* put the base reference */
4990 percpu_ref_kill(&cgrp->self.refcnt);
4991
4992 return 0;
4993 };
4994
4995 static int cgroup_rmdir(struct kernfs_node *kn)
4996 {
4997 struct cgroup *cgrp;
4998 int ret = 0;
4999
5000 cgrp = cgroup_kn_lock_live(kn);
5001 if (!cgrp)
5002 return 0;
5003
5004 ret = cgroup_destroy_locked(cgrp);
5005
5006 cgroup_kn_unlock(kn);
5007 return ret;
5008 }
5009
5010 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5011 .remount_fs = cgroup_remount,
5012 .show_options = cgroup_show_options,
5013 .mkdir = cgroup_mkdir,
5014 .rmdir = cgroup_rmdir,
5015 .rename = cgroup_rename,
5016 };
5017
5018 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5019 {
5020 struct cgroup_subsys_state *css;
5021
5022 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5023
5024 mutex_lock(&cgroup_mutex);
5025
5026 idr_init(&ss->css_idr);
5027 INIT_LIST_HEAD(&ss->cfts);
5028
5029 /* Create the root cgroup state for this subsystem */
5030 ss->root = &cgrp_dfl_root;
5031 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5032 /* We don't handle early failures gracefully */
5033 BUG_ON(IS_ERR(css));
5034 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5035
5036 /*
5037 * Root csses are never destroyed and we can't initialize
5038 * percpu_ref during early init. Disable refcnting.
5039 */
5040 css->flags |= CSS_NO_REF;
5041
5042 if (early) {
5043 /* allocation can't be done safely during early init */
5044 css->id = 1;
5045 } else {
5046 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5047 BUG_ON(css->id < 0);
5048 }
5049
5050 /* Update the init_css_set to contain a subsys
5051 * pointer to this state - since the subsystem is
5052 * newly registered, all tasks and hence the
5053 * init_css_set is in the subsystem's root cgroup. */
5054 init_css_set.subsys[ss->id] = css;
5055
5056 have_fork_callback |= (bool)ss->fork << ss->id;
5057 have_exit_callback |= (bool)ss->exit << ss->id;
5058 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5059
5060 /* At system boot, before all subsystems have been
5061 * registered, no tasks have been forked, so we don't
5062 * need to invoke fork callbacks here. */
5063 BUG_ON(!list_empty(&init_task.tasks));
5064
5065 BUG_ON(online_css(css));
5066
5067 mutex_unlock(&cgroup_mutex);
5068 }
5069
5070 /**
5071 * cgroup_init_early - cgroup initialization at system boot
5072 *
5073 * Initialize cgroups at system boot, and initialize any
5074 * subsystems that request early init.
5075 */
5076 int __init cgroup_init_early(void)
5077 {
5078 static struct cgroup_sb_opts __initdata opts;
5079 struct cgroup_subsys *ss;
5080 int i;
5081
5082 init_cgroup_root(&cgrp_dfl_root, &opts);
5083 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5084
5085 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5086
5087 for_each_subsys(ss, i) {
5088 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5089 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5090 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5091 ss->id, ss->name);
5092 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5093 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5094
5095 ss->id = i;
5096 ss->name = cgroup_subsys_name[i];
5097 if (!ss->legacy_name)
5098 ss->legacy_name = cgroup_subsys_name[i];
5099
5100 if (ss->early_init)
5101 cgroup_init_subsys(ss, true);
5102 }
5103 return 0;
5104 }
5105
5106 /**
5107 * cgroup_init - cgroup initialization
5108 *
5109 * Register cgroup filesystem and /proc file, and initialize
5110 * any subsystems that didn't request early init.
5111 */
5112 int __init cgroup_init(void)
5113 {
5114 struct cgroup_subsys *ss;
5115 unsigned long key;
5116 int ssid, err;
5117
5118 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5119 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5120 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5121
5122 mutex_lock(&cgroup_mutex);
5123
5124 /* Add init_css_set to the hash table */
5125 key = css_set_hash(init_css_set.subsys);
5126 hash_add(css_set_table, &init_css_set.hlist, key);
5127
5128 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5129
5130 mutex_unlock(&cgroup_mutex);
5131
5132 for_each_subsys(ss, ssid) {
5133 if (ss->early_init) {
5134 struct cgroup_subsys_state *css =
5135 init_css_set.subsys[ss->id];
5136
5137 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5138 GFP_KERNEL);
5139 BUG_ON(css->id < 0);
5140 } else {
5141 cgroup_init_subsys(ss, false);
5142 }
5143
5144 list_add_tail(&init_css_set.e_cset_node[ssid],
5145 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5146
5147 /*
5148 * Setting dfl_root subsys_mask needs to consider the
5149 * disabled flag and cftype registration needs kmalloc,
5150 * both of which aren't available during early_init.
5151 */
5152 if (!cgroup_ssid_enabled(ssid))
5153 continue;
5154
5155 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5156
5157 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5158 ss->dfl_cftypes = ss->legacy_cftypes;
5159
5160 if (!ss->dfl_cftypes)
5161 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5162
5163 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5164 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5165 } else {
5166 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5167 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5168 }
5169
5170 if (ss->bind)
5171 ss->bind(init_css_set.subsys[ssid]);
5172 }
5173
5174 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5175 if (err)
5176 return err;
5177
5178 err = register_filesystem(&cgroup_fs_type);
5179 if (err < 0) {
5180 sysfs_remove_mount_point(fs_kobj, "cgroup");
5181 return err;
5182 }
5183
5184 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5185 return 0;
5186 }
5187
5188 static int __init cgroup_wq_init(void)
5189 {
5190 /*
5191 * There isn't much point in executing destruction path in
5192 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5193 * Use 1 for @max_active.
5194 *
5195 * We would prefer to do this in cgroup_init() above, but that
5196 * is called before init_workqueues(): so leave this until after.
5197 */
5198 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5199 BUG_ON(!cgroup_destroy_wq);
5200
5201 /*
5202 * Used to destroy pidlists and separate to serve as flush domain.
5203 * Cap @max_active to 1 too.
5204 */
5205 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5206 0, 1);
5207 BUG_ON(!cgroup_pidlist_destroy_wq);
5208
5209 return 0;
5210 }
5211 core_initcall(cgroup_wq_init);
5212
5213 /*
5214 * proc_cgroup_show()
5215 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5216 * - Used for /proc/<pid>/cgroup.
5217 */
5218 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5219 struct pid *pid, struct task_struct *tsk)
5220 {
5221 char *buf, *path;
5222 int retval;
5223 struct cgroup_root *root;
5224
5225 retval = -ENOMEM;
5226 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5227 if (!buf)
5228 goto out;
5229
5230 mutex_lock(&cgroup_mutex);
5231 down_read(&css_set_rwsem);
5232
5233 for_each_root(root) {
5234 struct cgroup_subsys *ss;
5235 struct cgroup *cgrp;
5236 int ssid, count = 0;
5237
5238 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5239 continue;
5240
5241 seq_printf(m, "%d:", root->hierarchy_id);
5242 if (root != &cgrp_dfl_root)
5243 for_each_subsys(ss, ssid)
5244 if (root->subsys_mask & (1 << ssid))
5245 seq_printf(m, "%s%s", count++ ? "," : "",
5246 ss->legacy_name);
5247 if (strlen(root->name))
5248 seq_printf(m, "%sname=%s", count ? "," : "",
5249 root->name);
5250 seq_putc(m, ':');
5251 cgrp = task_cgroup_from_root(tsk, root);
5252 path = cgroup_path(cgrp, buf, PATH_MAX);
5253 if (!path) {
5254 retval = -ENAMETOOLONG;
5255 goto out_unlock;
5256 }
5257 seq_puts(m, path);
5258 seq_putc(m, '\n');
5259 }
5260
5261 retval = 0;
5262 out_unlock:
5263 up_read(&css_set_rwsem);
5264 mutex_unlock(&cgroup_mutex);
5265 kfree(buf);
5266 out:
5267 return retval;
5268 }
5269
5270 /* Display information about each subsystem and each hierarchy */
5271 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5272 {
5273 struct cgroup_subsys *ss;
5274 int i;
5275
5276 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5277 /*
5278 * ideally we don't want subsystems moving around while we do this.
5279 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5280 * subsys/hierarchy state.
5281 */
5282 mutex_lock(&cgroup_mutex);
5283
5284 for_each_subsys(ss, i)
5285 seq_printf(m, "%s\t%d\t%d\t%d\n",
5286 ss->legacy_name, ss->root->hierarchy_id,
5287 atomic_read(&ss->root->nr_cgrps),
5288 cgroup_ssid_enabled(i));
5289
5290 mutex_unlock(&cgroup_mutex);
5291 return 0;
5292 }
5293
5294 static int cgroupstats_open(struct inode *inode, struct file *file)
5295 {
5296 return single_open(file, proc_cgroupstats_show, NULL);
5297 }
5298
5299 static const struct file_operations proc_cgroupstats_operations = {
5300 .open = cgroupstats_open,
5301 .read = seq_read,
5302 .llseek = seq_lseek,
5303 .release = single_release,
5304 };
5305
5306 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5307 {
5308 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5309 return &ss_priv[i - CGROUP_CANFORK_START];
5310 return NULL;
5311 }
5312
5313 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5314 {
5315 void **private = subsys_canfork_priv_p(ss_priv, i);
5316 return private ? *private : NULL;
5317 }
5318
5319 /**
5320 * cgroup_fork - initialize cgroup related fields during copy_process()
5321 * @child: pointer to task_struct of forking parent process.
5322 *
5323 * A task is associated with the init_css_set until cgroup_post_fork()
5324 * attaches it to the parent's css_set. Empty cg_list indicates that
5325 * @child isn't holding reference to its css_set.
5326 */
5327 void cgroup_fork(struct task_struct *child)
5328 {
5329 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5330 INIT_LIST_HEAD(&child->cg_list);
5331 }
5332
5333 /**
5334 * cgroup_can_fork - called on a new task before the process is exposed
5335 * @child: the task in question.
5336 *
5337 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5338 * returns an error, the fork aborts with that error code. This allows for
5339 * a cgroup subsystem to conditionally allow or deny new forks.
5340 */
5341 int cgroup_can_fork(struct task_struct *child,
5342 void *ss_priv[CGROUP_CANFORK_COUNT])
5343 {
5344 struct cgroup_subsys *ss;
5345 int i, j, ret;
5346
5347 for_each_subsys_which(ss, i, &have_canfork_callback) {
5348 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5349 if (ret)
5350 goto out_revert;
5351 }
5352
5353 return 0;
5354
5355 out_revert:
5356 for_each_subsys(ss, j) {
5357 if (j >= i)
5358 break;
5359 if (ss->cancel_fork)
5360 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5361 }
5362
5363 return ret;
5364 }
5365
5366 /**
5367 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5368 * @child: the task in question
5369 *
5370 * This calls the cancel_fork() callbacks if a fork failed *after*
5371 * cgroup_can_fork() succeded.
5372 */
5373 void cgroup_cancel_fork(struct task_struct *child,
5374 void *ss_priv[CGROUP_CANFORK_COUNT])
5375 {
5376 struct cgroup_subsys *ss;
5377 int i;
5378
5379 for_each_subsys(ss, i)
5380 if (ss->cancel_fork)
5381 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5382 }
5383
5384 /**
5385 * cgroup_post_fork - called on a new task after adding it to the task list
5386 * @child: the task in question
5387 *
5388 * Adds the task to the list running through its css_set if necessary and
5389 * call the subsystem fork() callbacks. Has to be after the task is
5390 * visible on the task list in case we race with the first call to
5391 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5392 * list.
5393 */
5394 void cgroup_post_fork(struct task_struct *child,
5395 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5396 {
5397 struct cgroup_subsys *ss;
5398 int i;
5399
5400 /*
5401 * This may race against cgroup_enable_task_cg_lists(). As that
5402 * function sets use_task_css_set_links before grabbing
5403 * tasklist_lock and we just went through tasklist_lock to add
5404 * @child, it's guaranteed that either we see the set
5405 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5406 * @child during its iteration.
5407 *
5408 * If we won the race, @child is associated with %current's
5409 * css_set. Grabbing css_set_rwsem guarantees both that the
5410 * association is stable, and, on completion of the parent's
5411 * migration, @child is visible in the source of migration or
5412 * already in the destination cgroup. This guarantee is necessary
5413 * when implementing operations which need to migrate all tasks of
5414 * a cgroup to another.
5415 *
5416 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5417 * will remain in init_css_set. This is safe because all tasks are
5418 * in the init_css_set before cg_links is enabled and there's no
5419 * operation which transfers all tasks out of init_css_set.
5420 */
5421 if (use_task_css_set_links) {
5422 struct css_set *cset;
5423
5424 down_write(&css_set_rwsem);
5425 cset = task_css_set(current);
5426 if (list_empty(&child->cg_list)) {
5427 rcu_assign_pointer(child->cgroups, cset);
5428 list_add(&child->cg_list, &cset->tasks);
5429 get_css_set(cset);
5430 }
5431 up_write(&css_set_rwsem);
5432 }
5433
5434 /*
5435 * Call ss->fork(). This must happen after @child is linked on
5436 * css_set; otherwise, @child might change state between ->fork()
5437 * and addition to css_set.
5438 */
5439 for_each_subsys_which(ss, i, &have_fork_callback)
5440 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5441 }
5442
5443 /**
5444 * cgroup_exit - detach cgroup from exiting task
5445 * @tsk: pointer to task_struct of exiting process
5446 *
5447 * Description: Detach cgroup from @tsk and release it.
5448 *
5449 * Note that cgroups marked notify_on_release force every task in
5450 * them to take the global cgroup_mutex mutex when exiting.
5451 * This could impact scaling on very large systems. Be reluctant to
5452 * use notify_on_release cgroups where very high task exit scaling
5453 * is required on large systems.
5454 *
5455 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5456 * call cgroup_exit() while the task is still competent to handle
5457 * notify_on_release(), then leave the task attached to the root cgroup in
5458 * each hierarchy for the remainder of its exit. No need to bother with
5459 * init_css_set refcnting. init_css_set never goes away and we can't race
5460 * with migration path - PF_EXITING is visible to migration path.
5461 */
5462 void cgroup_exit(struct task_struct *tsk)
5463 {
5464 struct cgroup_subsys *ss;
5465 struct css_set *cset;
5466 bool put_cset = false;
5467 int i;
5468
5469 /*
5470 * Unlink from @tsk from its css_set. As migration path can't race
5471 * with us, we can check cg_list without grabbing css_set_rwsem.
5472 */
5473 if (!list_empty(&tsk->cg_list)) {
5474 down_write(&css_set_rwsem);
5475 list_del_init(&tsk->cg_list);
5476 up_write(&css_set_rwsem);
5477 put_cset = true;
5478 }
5479
5480 /* Reassign the task to the init_css_set. */
5481 cset = task_css_set(tsk);
5482 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5483
5484 /* see cgroup_post_fork() for details */
5485 for_each_subsys_which(ss, i, &have_exit_callback) {
5486 struct cgroup_subsys_state *old_css = cset->subsys[i];
5487 struct cgroup_subsys_state *css = task_css(tsk, i);
5488
5489 ss->exit(css, old_css, tsk);
5490 }
5491
5492 if (put_cset)
5493 put_css_set(cset);
5494 }
5495
5496 static void check_for_release(struct cgroup *cgrp)
5497 {
5498 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5499 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5500 schedule_work(&cgrp->release_agent_work);
5501 }
5502
5503 /*
5504 * Notify userspace when a cgroup is released, by running the
5505 * configured release agent with the name of the cgroup (path
5506 * relative to the root of cgroup file system) as the argument.
5507 *
5508 * Most likely, this user command will try to rmdir this cgroup.
5509 *
5510 * This races with the possibility that some other task will be
5511 * attached to this cgroup before it is removed, or that some other
5512 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5513 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5514 * unused, and this cgroup will be reprieved from its death sentence,
5515 * to continue to serve a useful existence. Next time it's released,
5516 * we will get notified again, if it still has 'notify_on_release' set.
5517 *
5518 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5519 * means only wait until the task is successfully execve()'d. The
5520 * separate release agent task is forked by call_usermodehelper(),
5521 * then control in this thread returns here, without waiting for the
5522 * release agent task. We don't bother to wait because the caller of
5523 * this routine has no use for the exit status of the release agent
5524 * task, so no sense holding our caller up for that.
5525 */
5526 static void cgroup_release_agent(struct work_struct *work)
5527 {
5528 struct cgroup *cgrp =
5529 container_of(work, struct cgroup, release_agent_work);
5530 char *pathbuf = NULL, *agentbuf = NULL, *path;
5531 char *argv[3], *envp[3];
5532
5533 mutex_lock(&cgroup_mutex);
5534
5535 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5536 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5537 if (!pathbuf || !agentbuf)
5538 goto out;
5539
5540 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5541 if (!path)
5542 goto out;
5543
5544 argv[0] = agentbuf;
5545 argv[1] = path;
5546 argv[2] = NULL;
5547
5548 /* minimal command environment */
5549 envp[0] = "HOME=/";
5550 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5551 envp[2] = NULL;
5552
5553 mutex_unlock(&cgroup_mutex);
5554 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5555 goto out_free;
5556 out:
5557 mutex_unlock(&cgroup_mutex);
5558 out_free:
5559 kfree(agentbuf);
5560 kfree(pathbuf);
5561 }
5562
5563 static int __init cgroup_disable(char *str)
5564 {
5565 struct cgroup_subsys *ss;
5566 char *token;
5567 int i;
5568
5569 while ((token = strsep(&str, ",")) != NULL) {
5570 if (!*token)
5571 continue;
5572
5573 for_each_subsys(ss, i) {
5574 if (strcmp(token, ss->name) &&
5575 strcmp(token, ss->legacy_name))
5576 continue;
5577
5578 static_branch_disable(cgroup_subsys_enabled_key[i]);
5579 printk(KERN_INFO "Disabling %s control group subsystem\n",
5580 ss->name);
5581 break;
5582 }
5583 }
5584 return 1;
5585 }
5586 __setup("cgroup_disable=", cgroup_disable);
5587
5588 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5589 {
5590 printk("cgroup: using legacy files on the default hierarchy\n");
5591 cgroup_legacy_files_on_dfl = true;
5592 return 0;
5593 }
5594 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5595
5596 /**
5597 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5598 * @dentry: directory dentry of interest
5599 * @ss: subsystem of interest
5600 *
5601 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5602 * to get the corresponding css and return it. If such css doesn't exist
5603 * or can't be pinned, an ERR_PTR value is returned.
5604 */
5605 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5606 struct cgroup_subsys *ss)
5607 {
5608 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5609 struct cgroup_subsys_state *css = NULL;
5610 struct cgroup *cgrp;
5611
5612 /* is @dentry a cgroup dir? */
5613 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5614 kernfs_type(kn) != KERNFS_DIR)
5615 return ERR_PTR(-EBADF);
5616
5617 rcu_read_lock();
5618
5619 /*
5620 * This path doesn't originate from kernfs and @kn could already
5621 * have been or be removed at any point. @kn->priv is RCU
5622 * protected for this access. See css_release_work_fn() for details.
5623 */
5624 cgrp = rcu_dereference(kn->priv);
5625 if (cgrp)
5626 css = cgroup_css(cgrp, ss);
5627
5628 if (!css || !css_tryget_online(css))
5629 css = ERR_PTR(-ENOENT);
5630
5631 rcu_read_unlock();
5632 return css;
5633 }
5634
5635 /**
5636 * css_from_id - lookup css by id
5637 * @id: the cgroup id
5638 * @ss: cgroup subsys to be looked into
5639 *
5640 * Returns the css if there's valid one with @id, otherwise returns NULL.
5641 * Should be called under rcu_read_lock().
5642 */
5643 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5644 {
5645 WARN_ON_ONCE(!rcu_read_lock_held());
5646 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5647 }
5648
5649 #ifdef CONFIG_CGROUP_DEBUG
5650 static struct cgroup_subsys_state *
5651 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5652 {
5653 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5654
5655 if (!css)
5656 return ERR_PTR(-ENOMEM);
5657
5658 return css;
5659 }
5660
5661 static void debug_css_free(struct cgroup_subsys_state *css)
5662 {
5663 kfree(css);
5664 }
5665
5666 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5667 struct cftype *cft)
5668 {
5669 return cgroup_task_count(css->cgroup);
5670 }
5671
5672 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5673 struct cftype *cft)
5674 {
5675 return (u64)(unsigned long)current->cgroups;
5676 }
5677
5678 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5679 struct cftype *cft)
5680 {
5681 u64 count;
5682
5683 rcu_read_lock();
5684 count = atomic_read(&task_css_set(current)->refcount);
5685 rcu_read_unlock();
5686 return count;
5687 }
5688
5689 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5690 {
5691 struct cgrp_cset_link *link;
5692 struct css_set *cset;
5693 char *name_buf;
5694
5695 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5696 if (!name_buf)
5697 return -ENOMEM;
5698
5699 down_read(&css_set_rwsem);
5700 rcu_read_lock();
5701 cset = rcu_dereference(current->cgroups);
5702 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5703 struct cgroup *c = link->cgrp;
5704
5705 cgroup_name(c, name_buf, NAME_MAX + 1);
5706 seq_printf(seq, "Root %d group %s\n",
5707 c->root->hierarchy_id, name_buf);
5708 }
5709 rcu_read_unlock();
5710 up_read(&css_set_rwsem);
5711 kfree(name_buf);
5712 return 0;
5713 }
5714
5715 #define MAX_TASKS_SHOWN_PER_CSS 25
5716 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5717 {
5718 struct cgroup_subsys_state *css = seq_css(seq);
5719 struct cgrp_cset_link *link;
5720
5721 down_read(&css_set_rwsem);
5722 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5723 struct css_set *cset = link->cset;
5724 struct task_struct *task;
5725 int count = 0;
5726
5727 seq_printf(seq, "css_set %p\n", cset);
5728
5729 list_for_each_entry(task, &cset->tasks, cg_list) {
5730 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5731 goto overflow;
5732 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5733 }
5734
5735 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5736 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5737 goto overflow;
5738 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5739 }
5740 continue;
5741 overflow:
5742 seq_puts(seq, " ...\n");
5743 }
5744 up_read(&css_set_rwsem);
5745 return 0;
5746 }
5747
5748 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5749 {
5750 return (!cgroup_has_tasks(css->cgroup) &&
5751 !css_has_online_children(&css->cgroup->self));
5752 }
5753
5754 static struct cftype debug_files[] = {
5755 {
5756 .name = "taskcount",
5757 .read_u64 = debug_taskcount_read,
5758 },
5759
5760 {
5761 .name = "current_css_set",
5762 .read_u64 = current_css_set_read,
5763 },
5764
5765 {
5766 .name = "current_css_set_refcount",
5767 .read_u64 = current_css_set_refcount_read,
5768 },
5769
5770 {
5771 .name = "current_css_set_cg_links",
5772 .seq_show = current_css_set_cg_links_read,
5773 },
5774
5775 {
5776 .name = "cgroup_css_links",
5777 .seq_show = cgroup_css_links_read,
5778 },
5779
5780 {
5781 .name = "releasable",
5782 .read_u64 = releasable_read,
5783 },
5784
5785 { } /* terminate */
5786 };
5787
5788 struct cgroup_subsys debug_cgrp_subsys = {
5789 .css_alloc = debug_css_alloc,
5790 .css_free = debug_css_free,
5791 .legacy_cftypes = debug_files,
5792 };
5793 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.437002 seconds and 4 git commands to generate.