Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
107
108 #define cgroup_assert_mutex_or_rcu_locked() \
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
111 "cgroup_mutex or RCU read lock required");
112
113 /*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119 static struct workqueue_struct *cgroup_destroy_wq;
120
121 /*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 static struct cgroup_subsys *cgroup_subsys[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142 #define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
148 #undef SUBSYS
149
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true *cgroup_subsys_enabled_key[] = {
152 #include <linux/cgroup_subsys.h>
153 };
154 #undef SUBSYS
155
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161
162 /*
163 * The default hierarchy, reserved for the subsystems that are otherwise
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
166 */
167 struct cgroup_root cgrp_dfl_root;
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169
170 /*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174 static bool cgrp_dfl_root_visible;
175
176 /* some controllers are not supported in the default hierarchy */
177 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
178
179 /* The list of hierarchy roots */
180
181 static LIST_HEAD(cgroup_roots);
182 static int cgroup_root_count;
183
184 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
185 static DEFINE_IDR(cgroup_hierarchy_idr);
186
187 /*
188 * Assign a monotonically increasing serial number to csses. It guarantees
189 * cgroups with bigger numbers are newer than those with smaller numbers.
190 * Also, as csses are always appended to the parent's ->children list, it
191 * guarantees that sibling csses are always sorted in the ascending serial
192 * number order on the list. Protected by cgroup_mutex.
193 */
194 static u64 css_serial_nr_next = 1;
195
196 /*
197 * These bitmask flags indicate whether tasks in the fork and exit paths have
198 * fork/exit handlers to call. This avoids us having to do extra work in the
199 * fork/exit path to check which subsystems have fork/exit callbacks.
200 */
201 static unsigned long have_fork_callback __read_mostly;
202 static unsigned long have_exit_callback __read_mostly;
203 static unsigned long have_free_callback __read_mostly;
204
205 /* Ditto for the can_fork callback. */
206 static unsigned long have_canfork_callback __read_mostly;
207
208 static struct cftype cgroup_dfl_base_files[];
209 static struct cftype cgroup_legacy_base_files[];
210
211 static int rebind_subsystems(struct cgroup_root *dst_root,
212 unsigned long ss_mask);
213 static void css_task_iter_advance(struct css_task_iter *it);
214 static int cgroup_destroy_locked(struct cgroup *cgrp);
215 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
216 bool visible);
217 static void css_release(struct percpu_ref *ref);
218 static void kill_css(struct cgroup_subsys_state *css);
219 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
220 struct cgroup *cgrp, struct cftype cfts[],
221 bool is_add);
222
223 /**
224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
225 * @ssid: subsys ID of interest
226 *
227 * cgroup_subsys_enabled() can only be used with literal subsys names which
228 * is fine for individual subsystems but unsuitable for cgroup core. This
229 * is slower static_key_enabled() based test indexed by @ssid.
230 */
231 static bool cgroup_ssid_enabled(int ssid)
232 {
233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
234 }
235
236 /**
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
239 *
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
243 * interface version.
244 *
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
247 *
248 * List of changed behaviors:
249 *
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
252 *
253 * - When mounting an existing superblock, mount options should match.
254 *
255 * - Remount is disallowed.
256 *
257 * - rename(2) is disallowed.
258 *
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
261 *
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
264 *
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
267 *
268 * - "cgroup.clone_children" is removed.
269 *
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
274 *
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
278 *
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
281 *
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
283 * is not created.
284 *
285 * - blkcg: blk-throttle becomes properly hierarchical.
286 *
287 * - debug: disallowed on the default hierarchy.
288 */
289 static bool cgroup_on_dfl(const struct cgroup *cgrp)
290 {
291 return cgrp->root == &cgrp_dfl_root;
292 }
293
294 /* IDR wrappers which synchronize using cgroup_idr_lock */
295 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
296 gfp_t gfp_mask)
297 {
298 int ret;
299
300 idr_preload(gfp_mask);
301 spin_lock_bh(&cgroup_idr_lock);
302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
303 spin_unlock_bh(&cgroup_idr_lock);
304 idr_preload_end();
305 return ret;
306 }
307
308 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
309 {
310 void *ret;
311
312 spin_lock_bh(&cgroup_idr_lock);
313 ret = idr_replace(idr, ptr, id);
314 spin_unlock_bh(&cgroup_idr_lock);
315 return ret;
316 }
317
318 static void cgroup_idr_remove(struct idr *idr, int id)
319 {
320 spin_lock_bh(&cgroup_idr_lock);
321 idr_remove(idr, id);
322 spin_unlock_bh(&cgroup_idr_lock);
323 }
324
325 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
326 {
327 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
328
329 if (parent_css)
330 return container_of(parent_css, struct cgroup, self);
331 return NULL;
332 }
333
334 /**
335 * cgroup_css - obtain a cgroup's css for the specified subsystem
336 * @cgrp: the cgroup of interest
337 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
338 *
339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
340 * function must be called either under cgroup_mutex or rcu_read_lock() and
341 * the caller is responsible for pinning the returned css if it wants to
342 * keep accessing it outside the said locks. This function may return
343 * %NULL if @cgrp doesn't have @subsys_id enabled.
344 */
345 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
346 struct cgroup_subsys *ss)
347 {
348 if (ss)
349 return rcu_dereference_check(cgrp->subsys[ss->id],
350 lockdep_is_held(&cgroup_mutex));
351 else
352 return &cgrp->self;
353 }
354
355 /**
356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
357 * @cgrp: the cgroup of interest
358 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
359 *
360 * Similar to cgroup_css() but returns the effective css, which is defined
361 * as the matching css of the nearest ancestor including self which has @ss
362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
363 * function is guaranteed to return non-NULL css.
364 */
365 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367 {
368 lockdep_assert_held(&cgroup_mutex);
369
370 if (!ss)
371 return &cgrp->self;
372
373 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
374 return NULL;
375
376 /*
377 * This function is used while updating css associations and thus
378 * can't test the csses directly. Use ->child_subsys_mask.
379 */
380 while (cgroup_parent(cgrp) &&
381 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
382 cgrp = cgroup_parent(cgrp);
383
384 return cgroup_css(cgrp, ss);
385 }
386
387 /**
388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
389 * @cgrp: the cgroup of interest
390 * @ss: the subsystem of interest
391 *
392 * Find and get the effective css of @cgrp for @ss. The effective css is
393 * defined as the matching css of the nearest ancestor including self which
394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
395 * the root css is returned, so this function always returns a valid css.
396 * The returned css must be put using css_put().
397 */
398 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
399 struct cgroup_subsys *ss)
400 {
401 struct cgroup_subsys_state *css;
402
403 rcu_read_lock();
404
405 do {
406 css = cgroup_css(cgrp, ss);
407
408 if (css && css_tryget_online(css))
409 goto out_unlock;
410 cgrp = cgroup_parent(cgrp);
411 } while (cgrp);
412
413 css = init_css_set.subsys[ss->id];
414 css_get(css);
415 out_unlock:
416 rcu_read_unlock();
417 return css;
418 }
419
420 /* convenient tests for these bits */
421 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
422 {
423 return !(cgrp->self.flags & CSS_ONLINE);
424 }
425
426 static void cgroup_get(struct cgroup *cgrp)
427 {
428 WARN_ON_ONCE(cgroup_is_dead(cgrp));
429 css_get(&cgrp->self);
430 }
431
432 static bool cgroup_tryget(struct cgroup *cgrp)
433 {
434 return css_tryget(&cgrp->self);
435 }
436
437 static void cgroup_put(struct cgroup *cgrp)
438 {
439 css_put(&cgrp->self);
440 }
441
442 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
443 {
444 struct cgroup *cgrp = of->kn->parent->priv;
445 struct cftype *cft = of_cft(of);
446
447 /*
448 * This is open and unprotected implementation of cgroup_css().
449 * seq_css() is only called from a kernfs file operation which has
450 * an active reference on the file. Because all the subsystem
451 * files are drained before a css is disassociated with a cgroup,
452 * the matching css from the cgroup's subsys table is guaranteed to
453 * be and stay valid until the enclosing operation is complete.
454 */
455 if (cft->ss)
456 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
457 else
458 return &cgrp->self;
459 }
460 EXPORT_SYMBOL_GPL(of_css);
461
462 /**
463 * cgroup_is_descendant - test ancestry
464 * @cgrp: the cgroup to be tested
465 * @ancestor: possible ancestor of @cgrp
466 *
467 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
468 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
469 * and @ancestor are accessible.
470 */
471 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
472 {
473 while (cgrp) {
474 if (cgrp == ancestor)
475 return true;
476 cgrp = cgroup_parent(cgrp);
477 }
478 return false;
479 }
480
481 static int notify_on_release(const struct cgroup *cgrp)
482 {
483 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
484 }
485
486 /**
487 * for_each_css - iterate all css's of a cgroup
488 * @css: the iteration cursor
489 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
490 * @cgrp: the target cgroup to iterate css's of
491 *
492 * Should be called under cgroup_[tree_]mutex.
493 */
494 #define for_each_css(css, ssid, cgrp) \
495 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
496 if (!((css) = rcu_dereference_check( \
497 (cgrp)->subsys[(ssid)], \
498 lockdep_is_held(&cgroup_mutex)))) { } \
499 else
500
501 /**
502 * for_each_e_css - iterate all effective css's of a cgroup
503 * @css: the iteration cursor
504 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
505 * @cgrp: the target cgroup to iterate css's of
506 *
507 * Should be called under cgroup_[tree_]mutex.
508 */
509 #define for_each_e_css(css, ssid, cgrp) \
510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
511 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
512 ; \
513 else
514
515 /**
516 * for_each_subsys - iterate all enabled cgroup subsystems
517 * @ss: the iteration cursor
518 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
519 */
520 #define for_each_subsys(ss, ssid) \
521 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
522 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
523
524 /**
525 * for_each_subsys_which - filter for_each_subsys with a bitmask
526 * @ss: the iteration cursor
527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
528 * @ss_maskp: a pointer to the bitmask
529 *
530 * The block will only run for cases where the ssid-th bit (1 << ssid) of
531 * mask is set to 1.
532 */
533 #define for_each_subsys_which(ss, ssid, ss_maskp) \
534 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
535 (ssid) = 0; \
536 else \
537 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
538 if (((ss) = cgroup_subsys[ssid]) && false) \
539 break; \
540 else
541
542 /* iterate across the hierarchies */
543 #define for_each_root(root) \
544 list_for_each_entry((root), &cgroup_roots, root_list)
545
546 /* iterate over child cgrps, lock should be held throughout iteration */
547 #define cgroup_for_each_live_child(child, cgrp) \
548 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
549 if (({ lockdep_assert_held(&cgroup_mutex); \
550 cgroup_is_dead(child); })) \
551 ; \
552 else
553
554 static void cgroup_release_agent(struct work_struct *work);
555 static void check_for_release(struct cgroup *cgrp);
556
557 /*
558 * A cgroup can be associated with multiple css_sets as different tasks may
559 * belong to different cgroups on different hierarchies. In the other
560 * direction, a css_set is naturally associated with multiple cgroups.
561 * This M:N relationship is represented by the following link structure
562 * which exists for each association and allows traversing the associations
563 * from both sides.
564 */
565 struct cgrp_cset_link {
566 /* the cgroup and css_set this link associates */
567 struct cgroup *cgrp;
568 struct css_set *cset;
569
570 /* list of cgrp_cset_links anchored at cgrp->cset_links */
571 struct list_head cset_link;
572
573 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
574 struct list_head cgrp_link;
575 };
576
577 /*
578 * The default css_set - used by init and its children prior to any
579 * hierarchies being mounted. It contains a pointer to the root state
580 * for each subsystem. Also used to anchor the list of css_sets. Not
581 * reference-counted, to improve performance when child cgroups
582 * haven't been created.
583 */
584 struct css_set init_css_set = {
585 .refcount = ATOMIC_INIT(1),
586 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
587 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
588 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
589 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
590 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
591 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
592 };
593
594 static int css_set_count = 1; /* 1 for init_css_set */
595
596 /**
597 * css_set_populated - does a css_set contain any tasks?
598 * @cset: target css_set
599 */
600 static bool css_set_populated(struct css_set *cset)
601 {
602 lockdep_assert_held(&css_set_lock);
603
604 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
605 }
606
607 /**
608 * cgroup_update_populated - updated populated count of a cgroup
609 * @cgrp: the target cgroup
610 * @populated: inc or dec populated count
611 *
612 * One of the css_sets associated with @cgrp is either getting its first
613 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
614 * count is propagated towards root so that a given cgroup's populated_cnt
615 * is zero iff the cgroup and all its descendants don't contain any tasks.
616 *
617 * @cgrp's interface file "cgroup.populated" is zero if
618 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
619 * changes from or to zero, userland is notified that the content of the
620 * interface file has changed. This can be used to detect when @cgrp and
621 * its descendants become populated or empty.
622 */
623 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
624 {
625 lockdep_assert_held(&css_set_lock);
626
627 do {
628 bool trigger;
629
630 if (populated)
631 trigger = !cgrp->populated_cnt++;
632 else
633 trigger = !--cgrp->populated_cnt;
634
635 if (!trigger)
636 break;
637
638 check_for_release(cgrp);
639 cgroup_file_notify(&cgrp->events_file);
640
641 cgrp = cgroup_parent(cgrp);
642 } while (cgrp);
643 }
644
645 /**
646 * css_set_update_populated - update populated state of a css_set
647 * @cset: target css_set
648 * @populated: whether @cset is populated or depopulated
649 *
650 * @cset is either getting the first task or losing the last. Update the
651 * ->populated_cnt of all associated cgroups accordingly.
652 */
653 static void css_set_update_populated(struct css_set *cset, bool populated)
654 {
655 struct cgrp_cset_link *link;
656
657 lockdep_assert_held(&css_set_lock);
658
659 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
660 cgroup_update_populated(link->cgrp, populated);
661 }
662
663 /**
664 * css_set_move_task - move a task from one css_set to another
665 * @task: task being moved
666 * @from_cset: css_set @task currently belongs to (may be NULL)
667 * @to_cset: new css_set @task is being moved to (may be NULL)
668 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
669 *
670 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
671 * css_set, @from_cset can be NULL. If @task is being disassociated
672 * instead of moved, @to_cset can be NULL.
673 *
674 * This function automatically handles populated_cnt updates and
675 * css_task_iter adjustments but the caller is responsible for managing
676 * @from_cset and @to_cset's reference counts.
677 */
678 static void css_set_move_task(struct task_struct *task,
679 struct css_set *from_cset, struct css_set *to_cset,
680 bool use_mg_tasks)
681 {
682 lockdep_assert_held(&css_set_lock);
683
684 if (from_cset) {
685 struct css_task_iter *it, *pos;
686
687 WARN_ON_ONCE(list_empty(&task->cg_list));
688
689 /*
690 * @task is leaving, advance task iterators which are
691 * pointing to it so that they can resume at the next
692 * position. Advancing an iterator might remove it from
693 * the list, use safe walk. See css_task_iter_advance*()
694 * for details.
695 */
696 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
697 iters_node)
698 if (it->task_pos == &task->cg_list)
699 css_task_iter_advance(it);
700
701 list_del_init(&task->cg_list);
702 if (!css_set_populated(from_cset))
703 css_set_update_populated(from_cset, false);
704 } else {
705 WARN_ON_ONCE(!list_empty(&task->cg_list));
706 }
707
708 if (to_cset) {
709 /*
710 * We are synchronized through cgroup_threadgroup_rwsem
711 * against PF_EXITING setting such that we can't race
712 * against cgroup_exit() changing the css_set to
713 * init_css_set and dropping the old one.
714 */
715 WARN_ON_ONCE(task->flags & PF_EXITING);
716
717 if (!css_set_populated(to_cset))
718 css_set_update_populated(to_cset, true);
719 rcu_assign_pointer(task->cgroups, to_cset);
720 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
721 &to_cset->tasks);
722 }
723 }
724
725 /*
726 * hash table for cgroup groups. This improves the performance to find
727 * an existing css_set. This hash doesn't (currently) take into
728 * account cgroups in empty hierarchies.
729 */
730 #define CSS_SET_HASH_BITS 7
731 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
732
733 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
734 {
735 unsigned long key = 0UL;
736 struct cgroup_subsys *ss;
737 int i;
738
739 for_each_subsys(ss, i)
740 key += (unsigned long)css[i];
741 key = (key >> 16) ^ key;
742
743 return key;
744 }
745
746 static void put_css_set_locked(struct css_set *cset)
747 {
748 struct cgrp_cset_link *link, *tmp_link;
749 struct cgroup_subsys *ss;
750 int ssid;
751
752 lockdep_assert_held(&css_set_lock);
753
754 if (!atomic_dec_and_test(&cset->refcount))
755 return;
756
757 /* This css_set is dead. unlink it and release cgroup refcounts */
758 for_each_subsys(ss, ssid)
759 list_del(&cset->e_cset_node[ssid]);
760 hash_del(&cset->hlist);
761 css_set_count--;
762
763 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
764 list_del(&link->cset_link);
765 list_del(&link->cgrp_link);
766 if (cgroup_parent(link->cgrp))
767 cgroup_put(link->cgrp);
768 kfree(link);
769 }
770
771 kfree_rcu(cset, rcu_head);
772 }
773
774 static void put_css_set(struct css_set *cset)
775 {
776 /*
777 * Ensure that the refcount doesn't hit zero while any readers
778 * can see it. Similar to atomic_dec_and_lock(), but for an
779 * rwlock
780 */
781 if (atomic_add_unless(&cset->refcount, -1, 1))
782 return;
783
784 spin_lock_bh(&css_set_lock);
785 put_css_set_locked(cset);
786 spin_unlock_bh(&css_set_lock);
787 }
788
789 /*
790 * refcounted get/put for css_set objects
791 */
792 static inline void get_css_set(struct css_set *cset)
793 {
794 atomic_inc(&cset->refcount);
795 }
796
797 /**
798 * compare_css_sets - helper function for find_existing_css_set().
799 * @cset: candidate css_set being tested
800 * @old_cset: existing css_set for a task
801 * @new_cgrp: cgroup that's being entered by the task
802 * @template: desired set of css pointers in css_set (pre-calculated)
803 *
804 * Returns true if "cset" matches "old_cset" except for the hierarchy
805 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
806 */
807 static bool compare_css_sets(struct css_set *cset,
808 struct css_set *old_cset,
809 struct cgroup *new_cgrp,
810 struct cgroup_subsys_state *template[])
811 {
812 struct list_head *l1, *l2;
813
814 /*
815 * On the default hierarchy, there can be csets which are
816 * associated with the same set of cgroups but different csses.
817 * Let's first ensure that csses match.
818 */
819 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
820 return false;
821
822 /*
823 * Compare cgroup pointers in order to distinguish between
824 * different cgroups in hierarchies. As different cgroups may
825 * share the same effective css, this comparison is always
826 * necessary.
827 */
828 l1 = &cset->cgrp_links;
829 l2 = &old_cset->cgrp_links;
830 while (1) {
831 struct cgrp_cset_link *link1, *link2;
832 struct cgroup *cgrp1, *cgrp2;
833
834 l1 = l1->next;
835 l2 = l2->next;
836 /* See if we reached the end - both lists are equal length. */
837 if (l1 == &cset->cgrp_links) {
838 BUG_ON(l2 != &old_cset->cgrp_links);
839 break;
840 } else {
841 BUG_ON(l2 == &old_cset->cgrp_links);
842 }
843 /* Locate the cgroups associated with these links. */
844 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
845 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
846 cgrp1 = link1->cgrp;
847 cgrp2 = link2->cgrp;
848 /* Hierarchies should be linked in the same order. */
849 BUG_ON(cgrp1->root != cgrp2->root);
850
851 /*
852 * If this hierarchy is the hierarchy of the cgroup
853 * that's changing, then we need to check that this
854 * css_set points to the new cgroup; if it's any other
855 * hierarchy, then this css_set should point to the
856 * same cgroup as the old css_set.
857 */
858 if (cgrp1->root == new_cgrp->root) {
859 if (cgrp1 != new_cgrp)
860 return false;
861 } else {
862 if (cgrp1 != cgrp2)
863 return false;
864 }
865 }
866 return true;
867 }
868
869 /**
870 * find_existing_css_set - init css array and find the matching css_set
871 * @old_cset: the css_set that we're using before the cgroup transition
872 * @cgrp: the cgroup that we're moving into
873 * @template: out param for the new set of csses, should be clear on entry
874 */
875 static struct css_set *find_existing_css_set(struct css_set *old_cset,
876 struct cgroup *cgrp,
877 struct cgroup_subsys_state *template[])
878 {
879 struct cgroup_root *root = cgrp->root;
880 struct cgroup_subsys *ss;
881 struct css_set *cset;
882 unsigned long key;
883 int i;
884
885 /*
886 * Build the set of subsystem state objects that we want to see in the
887 * new css_set. while subsystems can change globally, the entries here
888 * won't change, so no need for locking.
889 */
890 for_each_subsys(ss, i) {
891 if (root->subsys_mask & (1UL << i)) {
892 /*
893 * @ss is in this hierarchy, so we want the
894 * effective css from @cgrp.
895 */
896 template[i] = cgroup_e_css(cgrp, ss);
897 } else {
898 /*
899 * @ss is not in this hierarchy, so we don't want
900 * to change the css.
901 */
902 template[i] = old_cset->subsys[i];
903 }
904 }
905
906 key = css_set_hash(template);
907 hash_for_each_possible(css_set_table, cset, hlist, key) {
908 if (!compare_css_sets(cset, old_cset, cgrp, template))
909 continue;
910
911 /* This css_set matches what we need */
912 return cset;
913 }
914
915 /* No existing cgroup group matched */
916 return NULL;
917 }
918
919 static void free_cgrp_cset_links(struct list_head *links_to_free)
920 {
921 struct cgrp_cset_link *link, *tmp_link;
922
923 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
924 list_del(&link->cset_link);
925 kfree(link);
926 }
927 }
928
929 /**
930 * allocate_cgrp_cset_links - allocate cgrp_cset_links
931 * @count: the number of links to allocate
932 * @tmp_links: list_head the allocated links are put on
933 *
934 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
935 * through ->cset_link. Returns 0 on success or -errno.
936 */
937 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
938 {
939 struct cgrp_cset_link *link;
940 int i;
941
942 INIT_LIST_HEAD(tmp_links);
943
944 for (i = 0; i < count; i++) {
945 link = kzalloc(sizeof(*link), GFP_KERNEL);
946 if (!link) {
947 free_cgrp_cset_links(tmp_links);
948 return -ENOMEM;
949 }
950 list_add(&link->cset_link, tmp_links);
951 }
952 return 0;
953 }
954
955 /**
956 * link_css_set - a helper function to link a css_set to a cgroup
957 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
958 * @cset: the css_set to be linked
959 * @cgrp: the destination cgroup
960 */
961 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
962 struct cgroup *cgrp)
963 {
964 struct cgrp_cset_link *link;
965
966 BUG_ON(list_empty(tmp_links));
967
968 if (cgroup_on_dfl(cgrp))
969 cset->dfl_cgrp = cgrp;
970
971 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
972 link->cset = cset;
973 link->cgrp = cgrp;
974
975 /*
976 * Always add links to the tail of the lists so that the lists are
977 * in choronological order.
978 */
979 list_move_tail(&link->cset_link, &cgrp->cset_links);
980 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
981
982 if (cgroup_parent(cgrp))
983 cgroup_get(cgrp);
984 }
985
986 /**
987 * find_css_set - return a new css_set with one cgroup updated
988 * @old_cset: the baseline css_set
989 * @cgrp: the cgroup to be updated
990 *
991 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
992 * substituted into the appropriate hierarchy.
993 */
994 static struct css_set *find_css_set(struct css_set *old_cset,
995 struct cgroup *cgrp)
996 {
997 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
998 struct css_set *cset;
999 struct list_head tmp_links;
1000 struct cgrp_cset_link *link;
1001 struct cgroup_subsys *ss;
1002 unsigned long key;
1003 int ssid;
1004
1005 lockdep_assert_held(&cgroup_mutex);
1006
1007 /* First see if we already have a cgroup group that matches
1008 * the desired set */
1009 spin_lock_bh(&css_set_lock);
1010 cset = find_existing_css_set(old_cset, cgrp, template);
1011 if (cset)
1012 get_css_set(cset);
1013 spin_unlock_bh(&css_set_lock);
1014
1015 if (cset)
1016 return cset;
1017
1018 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1019 if (!cset)
1020 return NULL;
1021
1022 /* Allocate all the cgrp_cset_link objects that we'll need */
1023 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1024 kfree(cset);
1025 return NULL;
1026 }
1027
1028 atomic_set(&cset->refcount, 1);
1029 INIT_LIST_HEAD(&cset->cgrp_links);
1030 INIT_LIST_HEAD(&cset->tasks);
1031 INIT_LIST_HEAD(&cset->mg_tasks);
1032 INIT_LIST_HEAD(&cset->mg_preload_node);
1033 INIT_LIST_HEAD(&cset->mg_node);
1034 INIT_LIST_HEAD(&cset->task_iters);
1035 INIT_HLIST_NODE(&cset->hlist);
1036
1037 /* Copy the set of subsystem state objects generated in
1038 * find_existing_css_set() */
1039 memcpy(cset->subsys, template, sizeof(cset->subsys));
1040
1041 spin_lock_bh(&css_set_lock);
1042 /* Add reference counts and links from the new css_set. */
1043 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1044 struct cgroup *c = link->cgrp;
1045
1046 if (c->root == cgrp->root)
1047 c = cgrp;
1048 link_css_set(&tmp_links, cset, c);
1049 }
1050
1051 BUG_ON(!list_empty(&tmp_links));
1052
1053 css_set_count++;
1054
1055 /* Add @cset to the hash table */
1056 key = css_set_hash(cset->subsys);
1057 hash_add(css_set_table, &cset->hlist, key);
1058
1059 for_each_subsys(ss, ssid)
1060 list_add_tail(&cset->e_cset_node[ssid],
1061 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1062
1063 spin_unlock_bh(&css_set_lock);
1064
1065 return cset;
1066 }
1067
1068 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1069 {
1070 struct cgroup *root_cgrp = kf_root->kn->priv;
1071
1072 return root_cgrp->root;
1073 }
1074
1075 static int cgroup_init_root_id(struct cgroup_root *root)
1076 {
1077 int id;
1078
1079 lockdep_assert_held(&cgroup_mutex);
1080
1081 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1082 if (id < 0)
1083 return id;
1084
1085 root->hierarchy_id = id;
1086 return 0;
1087 }
1088
1089 static void cgroup_exit_root_id(struct cgroup_root *root)
1090 {
1091 lockdep_assert_held(&cgroup_mutex);
1092
1093 if (root->hierarchy_id) {
1094 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1095 root->hierarchy_id = 0;
1096 }
1097 }
1098
1099 static void cgroup_free_root(struct cgroup_root *root)
1100 {
1101 if (root) {
1102 /* hierarchy ID should already have been released */
1103 WARN_ON_ONCE(root->hierarchy_id);
1104
1105 idr_destroy(&root->cgroup_idr);
1106 kfree(root);
1107 }
1108 }
1109
1110 static void cgroup_destroy_root(struct cgroup_root *root)
1111 {
1112 struct cgroup *cgrp = &root->cgrp;
1113 struct cgrp_cset_link *link, *tmp_link;
1114
1115 mutex_lock(&cgroup_mutex);
1116
1117 BUG_ON(atomic_read(&root->nr_cgrps));
1118 BUG_ON(!list_empty(&cgrp->self.children));
1119
1120 /* Rebind all subsystems back to the default hierarchy */
1121 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1122
1123 /*
1124 * Release all the links from cset_links to this hierarchy's
1125 * root cgroup
1126 */
1127 spin_lock_bh(&css_set_lock);
1128
1129 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1130 list_del(&link->cset_link);
1131 list_del(&link->cgrp_link);
1132 kfree(link);
1133 }
1134
1135 spin_unlock_bh(&css_set_lock);
1136
1137 if (!list_empty(&root->root_list)) {
1138 list_del(&root->root_list);
1139 cgroup_root_count--;
1140 }
1141
1142 cgroup_exit_root_id(root);
1143
1144 mutex_unlock(&cgroup_mutex);
1145
1146 kernfs_destroy_root(root->kf_root);
1147 cgroup_free_root(root);
1148 }
1149
1150 /* look up cgroup associated with given css_set on the specified hierarchy */
1151 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1152 struct cgroup_root *root)
1153 {
1154 struct cgroup *res = NULL;
1155
1156 lockdep_assert_held(&cgroup_mutex);
1157 lockdep_assert_held(&css_set_lock);
1158
1159 if (cset == &init_css_set) {
1160 res = &root->cgrp;
1161 } else {
1162 struct cgrp_cset_link *link;
1163
1164 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1165 struct cgroup *c = link->cgrp;
1166
1167 if (c->root == root) {
1168 res = c;
1169 break;
1170 }
1171 }
1172 }
1173
1174 BUG_ON(!res);
1175 return res;
1176 }
1177
1178 /*
1179 * Return the cgroup for "task" from the given hierarchy. Must be
1180 * called with cgroup_mutex and css_set_lock held.
1181 */
1182 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1183 struct cgroup_root *root)
1184 {
1185 /*
1186 * No need to lock the task - since we hold cgroup_mutex the
1187 * task can't change groups, so the only thing that can happen
1188 * is that it exits and its css is set back to init_css_set.
1189 */
1190 return cset_cgroup_from_root(task_css_set(task), root);
1191 }
1192
1193 /*
1194 * A task must hold cgroup_mutex to modify cgroups.
1195 *
1196 * Any task can increment and decrement the count field without lock.
1197 * So in general, code holding cgroup_mutex can't rely on the count
1198 * field not changing. However, if the count goes to zero, then only
1199 * cgroup_attach_task() can increment it again. Because a count of zero
1200 * means that no tasks are currently attached, therefore there is no
1201 * way a task attached to that cgroup can fork (the other way to
1202 * increment the count). So code holding cgroup_mutex can safely
1203 * assume that if the count is zero, it will stay zero. Similarly, if
1204 * a task holds cgroup_mutex on a cgroup with zero count, it
1205 * knows that the cgroup won't be removed, as cgroup_rmdir()
1206 * needs that mutex.
1207 *
1208 * A cgroup can only be deleted if both its 'count' of using tasks
1209 * is zero, and its list of 'children' cgroups is empty. Since all
1210 * tasks in the system use _some_ cgroup, and since there is always at
1211 * least one task in the system (init, pid == 1), therefore, root cgroup
1212 * always has either children cgroups and/or using tasks. So we don't
1213 * need a special hack to ensure that root cgroup cannot be deleted.
1214 *
1215 * P.S. One more locking exception. RCU is used to guard the
1216 * update of a tasks cgroup pointer by cgroup_attach_task()
1217 */
1218
1219 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1220 static const struct file_operations proc_cgroupstats_operations;
1221
1222 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1223 char *buf)
1224 {
1225 struct cgroup_subsys *ss = cft->ss;
1226
1227 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1228 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1229 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1230 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1231 cft->name);
1232 else
1233 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1234 return buf;
1235 }
1236
1237 /**
1238 * cgroup_file_mode - deduce file mode of a control file
1239 * @cft: the control file in question
1240 *
1241 * S_IRUGO for read, S_IWUSR for write.
1242 */
1243 static umode_t cgroup_file_mode(const struct cftype *cft)
1244 {
1245 umode_t mode = 0;
1246
1247 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1248 mode |= S_IRUGO;
1249
1250 if (cft->write_u64 || cft->write_s64 || cft->write) {
1251 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1252 mode |= S_IWUGO;
1253 else
1254 mode |= S_IWUSR;
1255 }
1256
1257 return mode;
1258 }
1259
1260 /**
1261 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1262 * @cgrp: the target cgroup
1263 * @subtree_control: the new subtree_control mask to consider
1264 *
1265 * On the default hierarchy, a subsystem may request other subsystems to be
1266 * enabled together through its ->depends_on mask. In such cases, more
1267 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1268 *
1269 * This function calculates which subsystems need to be enabled if
1270 * @subtree_control is to be applied to @cgrp. The returned mask is always
1271 * a superset of @subtree_control and follows the usual hierarchy rules.
1272 */
1273 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1274 unsigned long subtree_control)
1275 {
1276 struct cgroup *parent = cgroup_parent(cgrp);
1277 unsigned long cur_ss_mask = subtree_control;
1278 struct cgroup_subsys *ss;
1279 int ssid;
1280
1281 lockdep_assert_held(&cgroup_mutex);
1282
1283 if (!cgroup_on_dfl(cgrp))
1284 return cur_ss_mask;
1285
1286 while (true) {
1287 unsigned long new_ss_mask = cur_ss_mask;
1288
1289 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1290 new_ss_mask |= ss->depends_on;
1291
1292 /*
1293 * Mask out subsystems which aren't available. This can
1294 * happen only if some depended-upon subsystems were bound
1295 * to non-default hierarchies.
1296 */
1297 if (parent)
1298 new_ss_mask &= parent->child_subsys_mask;
1299 else
1300 new_ss_mask &= cgrp->root->subsys_mask;
1301
1302 if (new_ss_mask == cur_ss_mask)
1303 break;
1304 cur_ss_mask = new_ss_mask;
1305 }
1306
1307 return cur_ss_mask;
1308 }
1309
1310 /**
1311 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1312 * @cgrp: the target cgroup
1313 *
1314 * Update @cgrp->child_subsys_mask according to the current
1315 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1316 */
1317 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1318 {
1319 cgrp->child_subsys_mask =
1320 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1321 }
1322
1323 /**
1324 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1325 * @kn: the kernfs_node being serviced
1326 *
1327 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1328 * the method finishes if locking succeeded. Note that once this function
1329 * returns the cgroup returned by cgroup_kn_lock_live() may become
1330 * inaccessible any time. If the caller intends to continue to access the
1331 * cgroup, it should pin it before invoking this function.
1332 */
1333 static void cgroup_kn_unlock(struct kernfs_node *kn)
1334 {
1335 struct cgroup *cgrp;
1336
1337 if (kernfs_type(kn) == KERNFS_DIR)
1338 cgrp = kn->priv;
1339 else
1340 cgrp = kn->parent->priv;
1341
1342 mutex_unlock(&cgroup_mutex);
1343
1344 kernfs_unbreak_active_protection(kn);
1345 cgroup_put(cgrp);
1346 }
1347
1348 /**
1349 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1350 * @kn: the kernfs_node being serviced
1351 *
1352 * This helper is to be used by a cgroup kernfs method currently servicing
1353 * @kn. It breaks the active protection, performs cgroup locking and
1354 * verifies that the associated cgroup is alive. Returns the cgroup if
1355 * alive; otherwise, %NULL. A successful return should be undone by a
1356 * matching cgroup_kn_unlock() invocation.
1357 *
1358 * Any cgroup kernfs method implementation which requires locking the
1359 * associated cgroup should use this helper. It avoids nesting cgroup
1360 * locking under kernfs active protection and allows all kernfs operations
1361 * including self-removal.
1362 */
1363 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1364 {
1365 struct cgroup *cgrp;
1366
1367 if (kernfs_type(kn) == KERNFS_DIR)
1368 cgrp = kn->priv;
1369 else
1370 cgrp = kn->parent->priv;
1371
1372 /*
1373 * We're gonna grab cgroup_mutex which nests outside kernfs
1374 * active_ref. cgroup liveliness check alone provides enough
1375 * protection against removal. Ensure @cgrp stays accessible and
1376 * break the active_ref protection.
1377 */
1378 if (!cgroup_tryget(cgrp))
1379 return NULL;
1380 kernfs_break_active_protection(kn);
1381
1382 mutex_lock(&cgroup_mutex);
1383
1384 if (!cgroup_is_dead(cgrp))
1385 return cgrp;
1386
1387 cgroup_kn_unlock(kn);
1388 return NULL;
1389 }
1390
1391 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1392 {
1393 char name[CGROUP_FILE_NAME_MAX];
1394
1395 lockdep_assert_held(&cgroup_mutex);
1396 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1397 }
1398
1399 /**
1400 * css_clear_dir - remove subsys files in a cgroup directory
1401 * @css: taget css
1402 * @cgrp_override: specify if target cgroup is different from css->cgroup
1403 */
1404 static void css_clear_dir(struct cgroup_subsys_state *css,
1405 struct cgroup *cgrp_override)
1406 {
1407 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1408 struct cftype *cfts;
1409
1410 list_for_each_entry(cfts, &css->ss->cfts, node)
1411 cgroup_addrm_files(css, cgrp, cfts, false);
1412 }
1413
1414 /**
1415 * css_populate_dir - create subsys files in a cgroup directory
1416 * @css: target css
1417 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1418 *
1419 * On failure, no file is added.
1420 */
1421 static int css_populate_dir(struct cgroup_subsys_state *css,
1422 struct cgroup *cgrp_override)
1423 {
1424 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1425 struct cftype *cfts, *failed_cfts;
1426 int ret;
1427
1428 if (!css->ss) {
1429 if (cgroup_on_dfl(cgrp))
1430 cfts = cgroup_dfl_base_files;
1431 else
1432 cfts = cgroup_legacy_base_files;
1433
1434 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1435 }
1436
1437 list_for_each_entry(cfts, &css->ss->cfts, node) {
1438 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1439 if (ret < 0) {
1440 failed_cfts = cfts;
1441 goto err;
1442 }
1443 }
1444 return 0;
1445 err:
1446 list_for_each_entry(cfts, &css->ss->cfts, node) {
1447 if (cfts == failed_cfts)
1448 break;
1449 cgroup_addrm_files(css, cgrp, cfts, false);
1450 }
1451 return ret;
1452 }
1453
1454 static int rebind_subsystems(struct cgroup_root *dst_root,
1455 unsigned long ss_mask)
1456 {
1457 struct cgroup *dcgrp = &dst_root->cgrp;
1458 struct cgroup_subsys *ss;
1459 unsigned long tmp_ss_mask;
1460 int ssid, i, ret;
1461
1462 lockdep_assert_held(&cgroup_mutex);
1463
1464 for_each_subsys_which(ss, ssid, &ss_mask) {
1465 /* if @ss has non-root csses attached to it, can't move */
1466 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1467 return -EBUSY;
1468
1469 /* can't move between two non-dummy roots either */
1470 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1471 return -EBUSY;
1472 }
1473
1474 /* skip creating root files on dfl_root for inhibited subsystems */
1475 tmp_ss_mask = ss_mask;
1476 if (dst_root == &cgrp_dfl_root)
1477 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1478
1479 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1480 struct cgroup *scgrp = &ss->root->cgrp;
1481 int tssid;
1482
1483 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1484 if (!ret)
1485 continue;
1486
1487 /*
1488 * Rebinding back to the default root is not allowed to
1489 * fail. Using both default and non-default roots should
1490 * be rare. Moving subsystems back and forth even more so.
1491 * Just warn about it and continue.
1492 */
1493 if (dst_root == &cgrp_dfl_root) {
1494 if (cgrp_dfl_root_visible) {
1495 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1496 ret, ss_mask);
1497 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1498 }
1499 continue;
1500 }
1501
1502 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1503 if (tssid == ssid)
1504 break;
1505 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * Nothing can fail from this point on. Remove files for the
1512 * removed subsystems and rebind each subsystem.
1513 */
1514 for_each_subsys_which(ss, ssid, &ss_mask) {
1515 struct cgroup_root *src_root = ss->root;
1516 struct cgroup *scgrp = &src_root->cgrp;
1517 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1518 struct css_set *cset;
1519
1520 WARN_ON(!css || cgroup_css(dcgrp, ss));
1521
1522 css_clear_dir(css, NULL);
1523
1524 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1525 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1526 ss->root = dst_root;
1527 css->cgroup = dcgrp;
1528
1529 spin_lock_bh(&css_set_lock);
1530 hash_for_each(css_set_table, i, cset, hlist)
1531 list_move_tail(&cset->e_cset_node[ss->id],
1532 &dcgrp->e_csets[ss->id]);
1533 spin_unlock_bh(&css_set_lock);
1534
1535 src_root->subsys_mask &= ~(1 << ssid);
1536 scgrp->subtree_control &= ~(1 << ssid);
1537 cgroup_refresh_child_subsys_mask(scgrp);
1538
1539 /* default hierarchy doesn't enable controllers by default */
1540 dst_root->subsys_mask |= 1 << ssid;
1541 if (dst_root == &cgrp_dfl_root) {
1542 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1543 } else {
1544 dcgrp->subtree_control |= 1 << ssid;
1545 cgroup_refresh_child_subsys_mask(dcgrp);
1546 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1547 }
1548
1549 if (ss->bind)
1550 ss->bind(css);
1551 }
1552
1553 kernfs_activate(dcgrp->kn);
1554 return 0;
1555 }
1556
1557 static int cgroup_show_options(struct seq_file *seq,
1558 struct kernfs_root *kf_root)
1559 {
1560 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1561 struct cgroup_subsys *ss;
1562 int ssid;
1563
1564 if (root != &cgrp_dfl_root)
1565 for_each_subsys(ss, ssid)
1566 if (root->subsys_mask & (1 << ssid))
1567 seq_show_option(seq, ss->legacy_name, NULL);
1568 if (root->flags & CGRP_ROOT_NOPREFIX)
1569 seq_puts(seq, ",noprefix");
1570 if (root->flags & CGRP_ROOT_XATTR)
1571 seq_puts(seq, ",xattr");
1572
1573 spin_lock(&release_agent_path_lock);
1574 if (strlen(root->release_agent_path))
1575 seq_show_option(seq, "release_agent",
1576 root->release_agent_path);
1577 spin_unlock(&release_agent_path_lock);
1578
1579 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1580 seq_puts(seq, ",clone_children");
1581 if (strlen(root->name))
1582 seq_show_option(seq, "name", root->name);
1583 return 0;
1584 }
1585
1586 struct cgroup_sb_opts {
1587 unsigned long subsys_mask;
1588 unsigned int flags;
1589 char *release_agent;
1590 bool cpuset_clone_children;
1591 char *name;
1592 /* User explicitly requested empty subsystem */
1593 bool none;
1594 };
1595
1596 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1597 {
1598 char *token, *o = data;
1599 bool all_ss = false, one_ss = false;
1600 unsigned long mask = -1UL;
1601 struct cgroup_subsys *ss;
1602 int nr_opts = 0;
1603 int i;
1604
1605 #ifdef CONFIG_CPUSETS
1606 mask = ~(1U << cpuset_cgrp_id);
1607 #endif
1608
1609 memset(opts, 0, sizeof(*opts));
1610
1611 while ((token = strsep(&o, ",")) != NULL) {
1612 nr_opts++;
1613
1614 if (!*token)
1615 return -EINVAL;
1616 if (!strcmp(token, "none")) {
1617 /* Explicitly have no subsystems */
1618 opts->none = true;
1619 continue;
1620 }
1621 if (!strcmp(token, "all")) {
1622 /* Mutually exclusive option 'all' + subsystem name */
1623 if (one_ss)
1624 return -EINVAL;
1625 all_ss = true;
1626 continue;
1627 }
1628 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1629 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1630 continue;
1631 }
1632 if (!strcmp(token, "noprefix")) {
1633 opts->flags |= CGRP_ROOT_NOPREFIX;
1634 continue;
1635 }
1636 if (!strcmp(token, "clone_children")) {
1637 opts->cpuset_clone_children = true;
1638 continue;
1639 }
1640 if (!strcmp(token, "xattr")) {
1641 opts->flags |= CGRP_ROOT_XATTR;
1642 continue;
1643 }
1644 if (!strncmp(token, "release_agent=", 14)) {
1645 /* Specifying two release agents is forbidden */
1646 if (opts->release_agent)
1647 return -EINVAL;
1648 opts->release_agent =
1649 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1650 if (!opts->release_agent)
1651 return -ENOMEM;
1652 continue;
1653 }
1654 if (!strncmp(token, "name=", 5)) {
1655 const char *name = token + 5;
1656 /* Can't specify an empty name */
1657 if (!strlen(name))
1658 return -EINVAL;
1659 /* Must match [\w.-]+ */
1660 for (i = 0; i < strlen(name); i++) {
1661 char c = name[i];
1662 if (isalnum(c))
1663 continue;
1664 if ((c == '.') || (c == '-') || (c == '_'))
1665 continue;
1666 return -EINVAL;
1667 }
1668 /* Specifying two names is forbidden */
1669 if (opts->name)
1670 return -EINVAL;
1671 opts->name = kstrndup(name,
1672 MAX_CGROUP_ROOT_NAMELEN - 1,
1673 GFP_KERNEL);
1674 if (!opts->name)
1675 return -ENOMEM;
1676
1677 continue;
1678 }
1679
1680 for_each_subsys(ss, i) {
1681 if (strcmp(token, ss->legacy_name))
1682 continue;
1683 if (!cgroup_ssid_enabled(i))
1684 continue;
1685
1686 /* Mutually exclusive option 'all' + subsystem name */
1687 if (all_ss)
1688 return -EINVAL;
1689 opts->subsys_mask |= (1 << i);
1690 one_ss = true;
1691
1692 break;
1693 }
1694 if (i == CGROUP_SUBSYS_COUNT)
1695 return -ENOENT;
1696 }
1697
1698 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1699 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1700 if (nr_opts != 1) {
1701 pr_err("sane_behavior: no other mount options allowed\n");
1702 return -EINVAL;
1703 }
1704 return 0;
1705 }
1706
1707 /*
1708 * If the 'all' option was specified select all the subsystems,
1709 * otherwise if 'none', 'name=' and a subsystem name options were
1710 * not specified, let's default to 'all'
1711 */
1712 if (all_ss || (!one_ss && !opts->none && !opts->name))
1713 for_each_subsys(ss, i)
1714 if (cgroup_ssid_enabled(i))
1715 opts->subsys_mask |= (1 << i);
1716
1717 /*
1718 * We either have to specify by name or by subsystems. (So all
1719 * empty hierarchies must have a name).
1720 */
1721 if (!opts->subsys_mask && !opts->name)
1722 return -EINVAL;
1723
1724 /*
1725 * Option noprefix was introduced just for backward compatibility
1726 * with the old cpuset, so we allow noprefix only if mounting just
1727 * the cpuset subsystem.
1728 */
1729 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1730 return -EINVAL;
1731
1732 /* Can't specify "none" and some subsystems */
1733 if (opts->subsys_mask && opts->none)
1734 return -EINVAL;
1735
1736 return 0;
1737 }
1738
1739 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1740 {
1741 int ret = 0;
1742 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1743 struct cgroup_sb_opts opts;
1744 unsigned long added_mask, removed_mask;
1745
1746 if (root == &cgrp_dfl_root) {
1747 pr_err("remount is not allowed\n");
1748 return -EINVAL;
1749 }
1750
1751 mutex_lock(&cgroup_mutex);
1752
1753 /* See what subsystems are wanted */
1754 ret = parse_cgroupfs_options(data, &opts);
1755 if (ret)
1756 goto out_unlock;
1757
1758 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1759 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1760 task_tgid_nr(current), current->comm);
1761
1762 added_mask = opts.subsys_mask & ~root->subsys_mask;
1763 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1764
1765 /* Don't allow flags or name to change at remount */
1766 if ((opts.flags ^ root->flags) ||
1767 (opts.name && strcmp(opts.name, root->name))) {
1768 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1769 opts.flags, opts.name ?: "", root->flags, root->name);
1770 ret = -EINVAL;
1771 goto out_unlock;
1772 }
1773
1774 /* remounting is not allowed for populated hierarchies */
1775 if (!list_empty(&root->cgrp.self.children)) {
1776 ret = -EBUSY;
1777 goto out_unlock;
1778 }
1779
1780 ret = rebind_subsystems(root, added_mask);
1781 if (ret)
1782 goto out_unlock;
1783
1784 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1785
1786 if (opts.release_agent) {
1787 spin_lock(&release_agent_path_lock);
1788 strcpy(root->release_agent_path, opts.release_agent);
1789 spin_unlock(&release_agent_path_lock);
1790 }
1791 out_unlock:
1792 kfree(opts.release_agent);
1793 kfree(opts.name);
1794 mutex_unlock(&cgroup_mutex);
1795 return ret;
1796 }
1797
1798 /*
1799 * To reduce the fork() overhead for systems that are not actually using
1800 * their cgroups capability, we don't maintain the lists running through
1801 * each css_set to its tasks until we see the list actually used - in other
1802 * words after the first mount.
1803 */
1804 static bool use_task_css_set_links __read_mostly;
1805
1806 static void cgroup_enable_task_cg_lists(void)
1807 {
1808 struct task_struct *p, *g;
1809
1810 spin_lock_bh(&css_set_lock);
1811
1812 if (use_task_css_set_links)
1813 goto out_unlock;
1814
1815 use_task_css_set_links = true;
1816
1817 /*
1818 * We need tasklist_lock because RCU is not safe against
1819 * while_each_thread(). Besides, a forking task that has passed
1820 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1821 * is not guaranteed to have its child immediately visible in the
1822 * tasklist if we walk through it with RCU.
1823 */
1824 read_lock(&tasklist_lock);
1825 do_each_thread(g, p) {
1826 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1827 task_css_set(p) != &init_css_set);
1828
1829 /*
1830 * We should check if the process is exiting, otherwise
1831 * it will race with cgroup_exit() in that the list
1832 * entry won't be deleted though the process has exited.
1833 * Do it while holding siglock so that we don't end up
1834 * racing against cgroup_exit().
1835 */
1836 spin_lock_irq(&p->sighand->siglock);
1837 if (!(p->flags & PF_EXITING)) {
1838 struct css_set *cset = task_css_set(p);
1839
1840 if (!css_set_populated(cset))
1841 css_set_update_populated(cset, true);
1842 list_add_tail(&p->cg_list, &cset->tasks);
1843 get_css_set(cset);
1844 }
1845 spin_unlock_irq(&p->sighand->siglock);
1846 } while_each_thread(g, p);
1847 read_unlock(&tasklist_lock);
1848 out_unlock:
1849 spin_unlock_bh(&css_set_lock);
1850 }
1851
1852 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1853 {
1854 struct cgroup_subsys *ss;
1855 int ssid;
1856
1857 INIT_LIST_HEAD(&cgrp->self.sibling);
1858 INIT_LIST_HEAD(&cgrp->self.children);
1859 INIT_LIST_HEAD(&cgrp->self.files);
1860 INIT_LIST_HEAD(&cgrp->cset_links);
1861 INIT_LIST_HEAD(&cgrp->pidlists);
1862 mutex_init(&cgrp->pidlist_mutex);
1863 cgrp->self.cgroup = cgrp;
1864 cgrp->self.flags |= CSS_ONLINE;
1865
1866 for_each_subsys(ss, ssid)
1867 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1868
1869 init_waitqueue_head(&cgrp->offline_waitq);
1870 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1871 }
1872
1873 static void init_cgroup_root(struct cgroup_root *root,
1874 struct cgroup_sb_opts *opts)
1875 {
1876 struct cgroup *cgrp = &root->cgrp;
1877
1878 INIT_LIST_HEAD(&root->root_list);
1879 atomic_set(&root->nr_cgrps, 1);
1880 cgrp->root = root;
1881 init_cgroup_housekeeping(cgrp);
1882 idr_init(&root->cgroup_idr);
1883
1884 root->flags = opts->flags;
1885 if (opts->release_agent)
1886 strcpy(root->release_agent_path, opts->release_agent);
1887 if (opts->name)
1888 strcpy(root->name, opts->name);
1889 if (opts->cpuset_clone_children)
1890 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1891 }
1892
1893 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1894 {
1895 LIST_HEAD(tmp_links);
1896 struct cgroup *root_cgrp = &root->cgrp;
1897 struct css_set *cset;
1898 int i, ret;
1899
1900 lockdep_assert_held(&cgroup_mutex);
1901
1902 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1903 if (ret < 0)
1904 goto out;
1905 root_cgrp->id = ret;
1906
1907 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1908 GFP_KERNEL);
1909 if (ret)
1910 goto out;
1911
1912 /*
1913 * We're accessing css_set_count without locking css_set_lock here,
1914 * but that's OK - it can only be increased by someone holding
1915 * cgroup_lock, and that's us. The worst that can happen is that we
1916 * have some link structures left over
1917 */
1918 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1919 if (ret)
1920 goto cancel_ref;
1921
1922 ret = cgroup_init_root_id(root);
1923 if (ret)
1924 goto cancel_ref;
1925
1926 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1927 KERNFS_ROOT_CREATE_DEACTIVATED,
1928 root_cgrp);
1929 if (IS_ERR(root->kf_root)) {
1930 ret = PTR_ERR(root->kf_root);
1931 goto exit_root_id;
1932 }
1933 root_cgrp->kn = root->kf_root->kn;
1934
1935 ret = css_populate_dir(&root_cgrp->self, NULL);
1936 if (ret)
1937 goto destroy_root;
1938
1939 ret = rebind_subsystems(root, ss_mask);
1940 if (ret)
1941 goto destroy_root;
1942
1943 /*
1944 * There must be no failure case after here, since rebinding takes
1945 * care of subsystems' refcounts, which are explicitly dropped in
1946 * the failure exit path.
1947 */
1948 list_add(&root->root_list, &cgroup_roots);
1949 cgroup_root_count++;
1950
1951 /*
1952 * Link the root cgroup in this hierarchy into all the css_set
1953 * objects.
1954 */
1955 spin_lock_bh(&css_set_lock);
1956 hash_for_each(css_set_table, i, cset, hlist) {
1957 link_css_set(&tmp_links, cset, root_cgrp);
1958 if (css_set_populated(cset))
1959 cgroup_update_populated(root_cgrp, true);
1960 }
1961 spin_unlock_bh(&css_set_lock);
1962
1963 BUG_ON(!list_empty(&root_cgrp->self.children));
1964 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1965
1966 kernfs_activate(root_cgrp->kn);
1967 ret = 0;
1968 goto out;
1969
1970 destroy_root:
1971 kernfs_destroy_root(root->kf_root);
1972 root->kf_root = NULL;
1973 exit_root_id:
1974 cgroup_exit_root_id(root);
1975 cancel_ref:
1976 percpu_ref_exit(&root_cgrp->self.refcnt);
1977 out:
1978 free_cgrp_cset_links(&tmp_links);
1979 return ret;
1980 }
1981
1982 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1983 int flags, const char *unused_dev_name,
1984 void *data)
1985 {
1986 struct super_block *pinned_sb = NULL;
1987 struct cgroup_subsys *ss;
1988 struct cgroup_root *root;
1989 struct cgroup_sb_opts opts;
1990 struct dentry *dentry;
1991 int ret;
1992 int i;
1993 bool new_sb;
1994
1995 /*
1996 * The first time anyone tries to mount a cgroup, enable the list
1997 * linking each css_set to its tasks and fix up all existing tasks.
1998 */
1999 if (!use_task_css_set_links)
2000 cgroup_enable_task_cg_lists();
2001
2002 mutex_lock(&cgroup_mutex);
2003
2004 /* First find the desired set of subsystems */
2005 ret = parse_cgroupfs_options(data, &opts);
2006 if (ret)
2007 goto out_unlock;
2008
2009 /* look for a matching existing root */
2010 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2011 cgrp_dfl_root_visible = true;
2012 root = &cgrp_dfl_root;
2013 cgroup_get(&root->cgrp);
2014 ret = 0;
2015 goto out_unlock;
2016 }
2017
2018 /*
2019 * Destruction of cgroup root is asynchronous, so subsystems may
2020 * still be dying after the previous unmount. Let's drain the
2021 * dying subsystems. We just need to ensure that the ones
2022 * unmounted previously finish dying and don't care about new ones
2023 * starting. Testing ref liveliness is good enough.
2024 */
2025 for_each_subsys(ss, i) {
2026 if (!(opts.subsys_mask & (1 << i)) ||
2027 ss->root == &cgrp_dfl_root)
2028 continue;
2029
2030 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2031 mutex_unlock(&cgroup_mutex);
2032 msleep(10);
2033 ret = restart_syscall();
2034 goto out_free;
2035 }
2036 cgroup_put(&ss->root->cgrp);
2037 }
2038
2039 for_each_root(root) {
2040 bool name_match = false;
2041
2042 if (root == &cgrp_dfl_root)
2043 continue;
2044
2045 /*
2046 * If we asked for a name then it must match. Also, if
2047 * name matches but sybsys_mask doesn't, we should fail.
2048 * Remember whether name matched.
2049 */
2050 if (opts.name) {
2051 if (strcmp(opts.name, root->name))
2052 continue;
2053 name_match = true;
2054 }
2055
2056 /*
2057 * If we asked for subsystems (or explicitly for no
2058 * subsystems) then they must match.
2059 */
2060 if ((opts.subsys_mask || opts.none) &&
2061 (opts.subsys_mask != root->subsys_mask)) {
2062 if (!name_match)
2063 continue;
2064 ret = -EBUSY;
2065 goto out_unlock;
2066 }
2067
2068 if (root->flags ^ opts.flags)
2069 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2070
2071 /*
2072 * We want to reuse @root whose lifetime is governed by its
2073 * ->cgrp. Let's check whether @root is alive and keep it
2074 * that way. As cgroup_kill_sb() can happen anytime, we
2075 * want to block it by pinning the sb so that @root doesn't
2076 * get killed before mount is complete.
2077 *
2078 * With the sb pinned, tryget_live can reliably indicate
2079 * whether @root can be reused. If it's being killed,
2080 * drain it. We can use wait_queue for the wait but this
2081 * path is super cold. Let's just sleep a bit and retry.
2082 */
2083 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2084 if (IS_ERR(pinned_sb) ||
2085 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2086 mutex_unlock(&cgroup_mutex);
2087 if (!IS_ERR_OR_NULL(pinned_sb))
2088 deactivate_super(pinned_sb);
2089 msleep(10);
2090 ret = restart_syscall();
2091 goto out_free;
2092 }
2093
2094 ret = 0;
2095 goto out_unlock;
2096 }
2097
2098 /*
2099 * No such thing, create a new one. name= matching without subsys
2100 * specification is allowed for already existing hierarchies but we
2101 * can't create new one without subsys specification.
2102 */
2103 if (!opts.subsys_mask && !opts.none) {
2104 ret = -EINVAL;
2105 goto out_unlock;
2106 }
2107
2108 root = kzalloc(sizeof(*root), GFP_KERNEL);
2109 if (!root) {
2110 ret = -ENOMEM;
2111 goto out_unlock;
2112 }
2113
2114 init_cgroup_root(root, &opts);
2115
2116 ret = cgroup_setup_root(root, opts.subsys_mask);
2117 if (ret)
2118 cgroup_free_root(root);
2119
2120 out_unlock:
2121 mutex_unlock(&cgroup_mutex);
2122 out_free:
2123 kfree(opts.release_agent);
2124 kfree(opts.name);
2125
2126 if (ret)
2127 return ERR_PTR(ret);
2128
2129 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2130 CGROUP_SUPER_MAGIC, &new_sb);
2131 if (IS_ERR(dentry) || !new_sb)
2132 cgroup_put(&root->cgrp);
2133
2134 /*
2135 * If @pinned_sb, we're reusing an existing root and holding an
2136 * extra ref on its sb. Mount is complete. Put the extra ref.
2137 */
2138 if (pinned_sb) {
2139 WARN_ON(new_sb);
2140 deactivate_super(pinned_sb);
2141 }
2142
2143 return dentry;
2144 }
2145
2146 static void cgroup_kill_sb(struct super_block *sb)
2147 {
2148 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2149 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2150
2151 /*
2152 * If @root doesn't have any mounts or children, start killing it.
2153 * This prevents new mounts by disabling percpu_ref_tryget_live().
2154 * cgroup_mount() may wait for @root's release.
2155 *
2156 * And don't kill the default root.
2157 */
2158 if (!list_empty(&root->cgrp.self.children) ||
2159 root == &cgrp_dfl_root)
2160 cgroup_put(&root->cgrp);
2161 else
2162 percpu_ref_kill(&root->cgrp.self.refcnt);
2163
2164 kernfs_kill_sb(sb);
2165 }
2166
2167 static struct file_system_type cgroup_fs_type = {
2168 .name = "cgroup",
2169 .mount = cgroup_mount,
2170 .kill_sb = cgroup_kill_sb,
2171 };
2172
2173 /**
2174 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2175 * @task: target task
2176 * @buf: the buffer to write the path into
2177 * @buflen: the length of the buffer
2178 *
2179 * Determine @task's cgroup on the first (the one with the lowest non-zero
2180 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2181 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2182 * cgroup controller callbacks.
2183 *
2184 * Return value is the same as kernfs_path().
2185 */
2186 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2187 {
2188 struct cgroup_root *root;
2189 struct cgroup *cgrp;
2190 int hierarchy_id = 1;
2191 char *path = NULL;
2192
2193 mutex_lock(&cgroup_mutex);
2194 spin_lock_bh(&css_set_lock);
2195
2196 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2197
2198 if (root) {
2199 cgrp = task_cgroup_from_root(task, root);
2200 path = cgroup_path(cgrp, buf, buflen);
2201 } else {
2202 /* if no hierarchy exists, everyone is in "/" */
2203 if (strlcpy(buf, "/", buflen) < buflen)
2204 path = buf;
2205 }
2206
2207 spin_unlock_bh(&css_set_lock);
2208 mutex_unlock(&cgroup_mutex);
2209 return path;
2210 }
2211 EXPORT_SYMBOL_GPL(task_cgroup_path);
2212
2213 /* used to track tasks and other necessary states during migration */
2214 struct cgroup_taskset {
2215 /* the src and dst cset list running through cset->mg_node */
2216 struct list_head src_csets;
2217 struct list_head dst_csets;
2218
2219 /*
2220 * Fields for cgroup_taskset_*() iteration.
2221 *
2222 * Before migration is committed, the target migration tasks are on
2223 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2224 * the csets on ->dst_csets. ->csets point to either ->src_csets
2225 * or ->dst_csets depending on whether migration is committed.
2226 *
2227 * ->cur_csets and ->cur_task point to the current task position
2228 * during iteration.
2229 */
2230 struct list_head *csets;
2231 struct css_set *cur_cset;
2232 struct task_struct *cur_task;
2233 };
2234
2235 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2236 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2237 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2238 .csets = &tset.src_csets, \
2239 }
2240
2241 /**
2242 * cgroup_taskset_add - try to add a migration target task to a taskset
2243 * @task: target task
2244 * @tset: target taskset
2245 *
2246 * Add @task, which is a migration target, to @tset. This function becomes
2247 * noop if @task doesn't need to be migrated. @task's css_set should have
2248 * been added as a migration source and @task->cg_list will be moved from
2249 * the css_set's tasks list to mg_tasks one.
2250 */
2251 static void cgroup_taskset_add(struct task_struct *task,
2252 struct cgroup_taskset *tset)
2253 {
2254 struct css_set *cset;
2255
2256 lockdep_assert_held(&css_set_lock);
2257
2258 /* @task either already exited or can't exit until the end */
2259 if (task->flags & PF_EXITING)
2260 return;
2261
2262 /* leave @task alone if post_fork() hasn't linked it yet */
2263 if (list_empty(&task->cg_list))
2264 return;
2265
2266 cset = task_css_set(task);
2267 if (!cset->mg_src_cgrp)
2268 return;
2269
2270 list_move_tail(&task->cg_list, &cset->mg_tasks);
2271 if (list_empty(&cset->mg_node))
2272 list_add_tail(&cset->mg_node, &tset->src_csets);
2273 if (list_empty(&cset->mg_dst_cset->mg_node))
2274 list_move_tail(&cset->mg_dst_cset->mg_node,
2275 &tset->dst_csets);
2276 }
2277
2278 /**
2279 * cgroup_taskset_first - reset taskset and return the first task
2280 * @tset: taskset of interest
2281 *
2282 * @tset iteration is initialized and the first task is returned.
2283 */
2284 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2285 {
2286 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2287 tset->cur_task = NULL;
2288
2289 return cgroup_taskset_next(tset);
2290 }
2291
2292 /**
2293 * cgroup_taskset_next - iterate to the next task in taskset
2294 * @tset: taskset of interest
2295 *
2296 * Return the next task in @tset. Iteration must have been initialized
2297 * with cgroup_taskset_first().
2298 */
2299 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2300 {
2301 struct css_set *cset = tset->cur_cset;
2302 struct task_struct *task = tset->cur_task;
2303
2304 while (&cset->mg_node != tset->csets) {
2305 if (!task)
2306 task = list_first_entry(&cset->mg_tasks,
2307 struct task_struct, cg_list);
2308 else
2309 task = list_next_entry(task, cg_list);
2310
2311 if (&task->cg_list != &cset->mg_tasks) {
2312 tset->cur_cset = cset;
2313 tset->cur_task = task;
2314 return task;
2315 }
2316
2317 cset = list_next_entry(cset, mg_node);
2318 task = NULL;
2319 }
2320
2321 return NULL;
2322 }
2323
2324 /**
2325 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2326 * @tset: taget taskset
2327 * @dst_cgrp: destination cgroup
2328 *
2329 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2330 * ->can_attach callbacks fails and guarantees that either all or none of
2331 * the tasks in @tset are migrated. @tset is consumed regardless of
2332 * success.
2333 */
2334 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2335 struct cgroup *dst_cgrp)
2336 {
2337 struct cgroup_subsys_state *css, *failed_css = NULL;
2338 struct task_struct *task, *tmp_task;
2339 struct css_set *cset, *tmp_cset;
2340 int i, ret;
2341
2342 /* methods shouldn't be called if no task is actually migrating */
2343 if (list_empty(&tset->src_csets))
2344 return 0;
2345
2346 /* check that we can legitimately attach to the cgroup */
2347 for_each_e_css(css, i, dst_cgrp) {
2348 if (css->ss->can_attach) {
2349 ret = css->ss->can_attach(css, tset);
2350 if (ret) {
2351 failed_css = css;
2352 goto out_cancel_attach;
2353 }
2354 }
2355 }
2356
2357 /*
2358 * Now that we're guaranteed success, proceed to move all tasks to
2359 * the new cgroup. There are no failure cases after here, so this
2360 * is the commit point.
2361 */
2362 spin_lock_bh(&css_set_lock);
2363 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2364 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2365 struct css_set *from_cset = task_css_set(task);
2366 struct css_set *to_cset = cset->mg_dst_cset;
2367
2368 get_css_set(to_cset);
2369 css_set_move_task(task, from_cset, to_cset, true);
2370 put_css_set_locked(from_cset);
2371 }
2372 }
2373 spin_unlock_bh(&css_set_lock);
2374
2375 /*
2376 * Migration is committed, all target tasks are now on dst_csets.
2377 * Nothing is sensitive to fork() after this point. Notify
2378 * controllers that migration is complete.
2379 */
2380 tset->csets = &tset->dst_csets;
2381
2382 for_each_e_css(css, i, dst_cgrp)
2383 if (css->ss->attach)
2384 css->ss->attach(css, tset);
2385
2386 ret = 0;
2387 goto out_release_tset;
2388
2389 out_cancel_attach:
2390 for_each_e_css(css, i, dst_cgrp) {
2391 if (css == failed_css)
2392 break;
2393 if (css->ss->cancel_attach)
2394 css->ss->cancel_attach(css, tset);
2395 }
2396 out_release_tset:
2397 spin_lock_bh(&css_set_lock);
2398 list_splice_init(&tset->dst_csets, &tset->src_csets);
2399 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2400 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2401 list_del_init(&cset->mg_node);
2402 }
2403 spin_unlock_bh(&css_set_lock);
2404 return ret;
2405 }
2406
2407 /**
2408 * cgroup_migrate_finish - cleanup after attach
2409 * @preloaded_csets: list of preloaded css_sets
2410 *
2411 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2412 * those functions for details.
2413 */
2414 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2415 {
2416 struct css_set *cset, *tmp_cset;
2417
2418 lockdep_assert_held(&cgroup_mutex);
2419
2420 spin_lock_bh(&css_set_lock);
2421 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2422 cset->mg_src_cgrp = NULL;
2423 cset->mg_dst_cset = NULL;
2424 list_del_init(&cset->mg_preload_node);
2425 put_css_set_locked(cset);
2426 }
2427 spin_unlock_bh(&css_set_lock);
2428 }
2429
2430 /**
2431 * cgroup_migrate_add_src - add a migration source css_set
2432 * @src_cset: the source css_set to add
2433 * @dst_cgrp: the destination cgroup
2434 * @preloaded_csets: list of preloaded css_sets
2435 *
2436 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2437 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2438 * up by cgroup_migrate_finish().
2439 *
2440 * This function may be called without holding cgroup_threadgroup_rwsem
2441 * even if the target is a process. Threads may be created and destroyed
2442 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2443 * into play and the preloaded css_sets are guaranteed to cover all
2444 * migrations.
2445 */
2446 static void cgroup_migrate_add_src(struct css_set *src_cset,
2447 struct cgroup *dst_cgrp,
2448 struct list_head *preloaded_csets)
2449 {
2450 struct cgroup *src_cgrp;
2451
2452 lockdep_assert_held(&cgroup_mutex);
2453 lockdep_assert_held(&css_set_lock);
2454
2455 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2456
2457 if (!list_empty(&src_cset->mg_preload_node))
2458 return;
2459
2460 WARN_ON(src_cset->mg_src_cgrp);
2461 WARN_ON(!list_empty(&src_cset->mg_tasks));
2462 WARN_ON(!list_empty(&src_cset->mg_node));
2463
2464 src_cset->mg_src_cgrp = src_cgrp;
2465 get_css_set(src_cset);
2466 list_add(&src_cset->mg_preload_node, preloaded_csets);
2467 }
2468
2469 /**
2470 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2471 * @dst_cgrp: the destination cgroup (may be %NULL)
2472 * @preloaded_csets: list of preloaded source css_sets
2473 *
2474 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2475 * have been preloaded to @preloaded_csets. This function looks up and
2476 * pins all destination css_sets, links each to its source, and append them
2477 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2478 * source css_set is assumed to be its cgroup on the default hierarchy.
2479 *
2480 * This function must be called after cgroup_migrate_add_src() has been
2481 * called on each migration source css_set. After migration is performed
2482 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2483 * @preloaded_csets.
2484 */
2485 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2486 struct list_head *preloaded_csets)
2487 {
2488 LIST_HEAD(csets);
2489 struct css_set *src_cset, *tmp_cset;
2490
2491 lockdep_assert_held(&cgroup_mutex);
2492
2493 /*
2494 * Except for the root, child_subsys_mask must be zero for a cgroup
2495 * with tasks so that child cgroups don't compete against tasks.
2496 */
2497 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2498 dst_cgrp->child_subsys_mask)
2499 return -EBUSY;
2500
2501 /* look up the dst cset for each src cset and link it to src */
2502 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2503 struct css_set *dst_cset;
2504
2505 dst_cset = find_css_set(src_cset,
2506 dst_cgrp ?: src_cset->dfl_cgrp);
2507 if (!dst_cset)
2508 goto err;
2509
2510 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2511
2512 /*
2513 * If src cset equals dst, it's noop. Drop the src.
2514 * cgroup_migrate() will skip the cset too. Note that we
2515 * can't handle src == dst as some nodes are used by both.
2516 */
2517 if (src_cset == dst_cset) {
2518 src_cset->mg_src_cgrp = NULL;
2519 list_del_init(&src_cset->mg_preload_node);
2520 put_css_set(src_cset);
2521 put_css_set(dst_cset);
2522 continue;
2523 }
2524
2525 src_cset->mg_dst_cset = dst_cset;
2526
2527 if (list_empty(&dst_cset->mg_preload_node))
2528 list_add(&dst_cset->mg_preload_node, &csets);
2529 else
2530 put_css_set(dst_cset);
2531 }
2532
2533 list_splice_tail(&csets, preloaded_csets);
2534 return 0;
2535 err:
2536 cgroup_migrate_finish(&csets);
2537 return -ENOMEM;
2538 }
2539
2540 /**
2541 * cgroup_migrate - migrate a process or task to a cgroup
2542 * @leader: the leader of the process or the task to migrate
2543 * @threadgroup: whether @leader points to the whole process or a single task
2544 * @cgrp: the destination cgroup
2545 *
2546 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2547 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2548 * caller is also responsible for invoking cgroup_migrate_add_src() and
2549 * cgroup_migrate_prepare_dst() on the targets before invoking this
2550 * function and following up with cgroup_migrate_finish().
2551 *
2552 * As long as a controller's ->can_attach() doesn't fail, this function is
2553 * guaranteed to succeed. This means that, excluding ->can_attach()
2554 * failure, when migrating multiple targets, the success or failure can be
2555 * decided for all targets by invoking group_migrate_prepare_dst() before
2556 * actually starting migrating.
2557 */
2558 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2559 struct cgroup *cgrp)
2560 {
2561 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2562 struct task_struct *task;
2563
2564 /*
2565 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2566 * already PF_EXITING could be freed from underneath us unless we
2567 * take an rcu_read_lock.
2568 */
2569 spin_lock_bh(&css_set_lock);
2570 rcu_read_lock();
2571 task = leader;
2572 do {
2573 cgroup_taskset_add(task, &tset);
2574 if (!threadgroup)
2575 break;
2576 } while_each_thread(leader, task);
2577 rcu_read_unlock();
2578 spin_unlock_bh(&css_set_lock);
2579
2580 return cgroup_taskset_migrate(&tset, cgrp);
2581 }
2582
2583 /**
2584 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2585 * @dst_cgrp: the cgroup to attach to
2586 * @leader: the task or the leader of the threadgroup to be attached
2587 * @threadgroup: attach the whole threadgroup?
2588 *
2589 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2590 */
2591 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2592 struct task_struct *leader, bool threadgroup)
2593 {
2594 LIST_HEAD(preloaded_csets);
2595 struct task_struct *task;
2596 int ret;
2597
2598 /* look up all src csets */
2599 spin_lock_bh(&css_set_lock);
2600 rcu_read_lock();
2601 task = leader;
2602 do {
2603 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2604 &preloaded_csets);
2605 if (!threadgroup)
2606 break;
2607 } while_each_thread(leader, task);
2608 rcu_read_unlock();
2609 spin_unlock_bh(&css_set_lock);
2610
2611 /* prepare dst csets and commit */
2612 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2613 if (!ret)
2614 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2615
2616 cgroup_migrate_finish(&preloaded_csets);
2617 return ret;
2618 }
2619
2620 static int cgroup_procs_write_permission(struct task_struct *task,
2621 struct cgroup *dst_cgrp,
2622 struct kernfs_open_file *of)
2623 {
2624 const struct cred *cred = current_cred();
2625 const struct cred *tcred = get_task_cred(task);
2626 int ret = 0;
2627
2628 /*
2629 * even if we're attaching all tasks in the thread group, we only
2630 * need to check permissions on one of them.
2631 */
2632 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2633 !uid_eq(cred->euid, tcred->uid) &&
2634 !uid_eq(cred->euid, tcred->suid))
2635 ret = -EACCES;
2636
2637 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2638 struct super_block *sb = of->file->f_path.dentry->d_sb;
2639 struct cgroup *cgrp;
2640 struct inode *inode;
2641
2642 spin_lock_bh(&css_set_lock);
2643 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2644 spin_unlock_bh(&css_set_lock);
2645
2646 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2647 cgrp = cgroup_parent(cgrp);
2648
2649 ret = -ENOMEM;
2650 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2651 if (inode) {
2652 ret = inode_permission(inode, MAY_WRITE);
2653 iput(inode);
2654 }
2655 }
2656
2657 put_cred(tcred);
2658 return ret;
2659 }
2660
2661 /*
2662 * Find the task_struct of the task to attach by vpid and pass it along to the
2663 * function to attach either it or all tasks in its threadgroup. Will lock
2664 * cgroup_mutex and threadgroup.
2665 */
2666 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2667 size_t nbytes, loff_t off, bool threadgroup)
2668 {
2669 struct task_struct *tsk;
2670 struct cgroup *cgrp;
2671 pid_t pid;
2672 int ret;
2673
2674 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2675 return -EINVAL;
2676
2677 cgrp = cgroup_kn_lock_live(of->kn);
2678 if (!cgrp)
2679 return -ENODEV;
2680
2681 percpu_down_write(&cgroup_threadgroup_rwsem);
2682 rcu_read_lock();
2683 if (pid) {
2684 tsk = find_task_by_vpid(pid);
2685 if (!tsk) {
2686 ret = -ESRCH;
2687 goto out_unlock_rcu;
2688 }
2689 } else {
2690 tsk = current;
2691 }
2692
2693 if (threadgroup)
2694 tsk = tsk->group_leader;
2695
2696 /*
2697 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2698 * trapped in a cpuset, or RT worker may be born in a cgroup
2699 * with no rt_runtime allocated. Just say no.
2700 */
2701 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2702 ret = -EINVAL;
2703 goto out_unlock_rcu;
2704 }
2705
2706 get_task_struct(tsk);
2707 rcu_read_unlock();
2708
2709 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2710 if (!ret)
2711 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2712
2713 put_task_struct(tsk);
2714 goto out_unlock_threadgroup;
2715
2716 out_unlock_rcu:
2717 rcu_read_unlock();
2718 out_unlock_threadgroup:
2719 percpu_up_write(&cgroup_threadgroup_rwsem);
2720 cgroup_kn_unlock(of->kn);
2721 return ret ?: nbytes;
2722 }
2723
2724 /**
2725 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2726 * @from: attach to all cgroups of a given task
2727 * @tsk: the task to be attached
2728 */
2729 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2730 {
2731 struct cgroup_root *root;
2732 int retval = 0;
2733
2734 mutex_lock(&cgroup_mutex);
2735 for_each_root(root) {
2736 struct cgroup *from_cgrp;
2737
2738 if (root == &cgrp_dfl_root)
2739 continue;
2740
2741 spin_lock_bh(&css_set_lock);
2742 from_cgrp = task_cgroup_from_root(from, root);
2743 spin_unlock_bh(&css_set_lock);
2744
2745 retval = cgroup_attach_task(from_cgrp, tsk, false);
2746 if (retval)
2747 break;
2748 }
2749 mutex_unlock(&cgroup_mutex);
2750
2751 return retval;
2752 }
2753 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2754
2755 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2756 char *buf, size_t nbytes, loff_t off)
2757 {
2758 return __cgroup_procs_write(of, buf, nbytes, off, false);
2759 }
2760
2761 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2762 char *buf, size_t nbytes, loff_t off)
2763 {
2764 return __cgroup_procs_write(of, buf, nbytes, off, true);
2765 }
2766
2767 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2768 char *buf, size_t nbytes, loff_t off)
2769 {
2770 struct cgroup *cgrp;
2771
2772 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2773
2774 cgrp = cgroup_kn_lock_live(of->kn);
2775 if (!cgrp)
2776 return -ENODEV;
2777 spin_lock(&release_agent_path_lock);
2778 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2779 sizeof(cgrp->root->release_agent_path));
2780 spin_unlock(&release_agent_path_lock);
2781 cgroup_kn_unlock(of->kn);
2782 return nbytes;
2783 }
2784
2785 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2786 {
2787 struct cgroup *cgrp = seq_css(seq)->cgroup;
2788
2789 spin_lock(&release_agent_path_lock);
2790 seq_puts(seq, cgrp->root->release_agent_path);
2791 spin_unlock(&release_agent_path_lock);
2792 seq_putc(seq, '\n');
2793 return 0;
2794 }
2795
2796 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2797 {
2798 seq_puts(seq, "0\n");
2799 return 0;
2800 }
2801
2802 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2803 {
2804 struct cgroup_subsys *ss;
2805 bool printed = false;
2806 int ssid;
2807
2808 for_each_subsys_which(ss, ssid, &ss_mask) {
2809 if (printed)
2810 seq_putc(seq, ' ');
2811 seq_printf(seq, "%s", ss->name);
2812 printed = true;
2813 }
2814 if (printed)
2815 seq_putc(seq, '\n');
2816 }
2817
2818 /* show controllers which are currently attached to the default hierarchy */
2819 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2820 {
2821 struct cgroup *cgrp = seq_css(seq)->cgroup;
2822
2823 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2824 ~cgrp_dfl_root_inhibit_ss_mask);
2825 return 0;
2826 }
2827
2828 /* show controllers which are enabled from the parent */
2829 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2830 {
2831 struct cgroup *cgrp = seq_css(seq)->cgroup;
2832
2833 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2834 return 0;
2835 }
2836
2837 /* show controllers which are enabled for a given cgroup's children */
2838 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2839 {
2840 struct cgroup *cgrp = seq_css(seq)->cgroup;
2841
2842 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2843 return 0;
2844 }
2845
2846 /**
2847 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2848 * @cgrp: root of the subtree to update csses for
2849 *
2850 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2851 * css associations need to be updated accordingly. This function looks up
2852 * all css_sets which are attached to the subtree, creates the matching
2853 * updated css_sets and migrates the tasks to the new ones.
2854 */
2855 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2856 {
2857 LIST_HEAD(preloaded_csets);
2858 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2859 struct cgroup_subsys_state *css;
2860 struct css_set *src_cset;
2861 int ret;
2862
2863 lockdep_assert_held(&cgroup_mutex);
2864
2865 percpu_down_write(&cgroup_threadgroup_rwsem);
2866
2867 /* look up all csses currently attached to @cgrp's subtree */
2868 spin_lock_bh(&css_set_lock);
2869 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2870 struct cgrp_cset_link *link;
2871
2872 /* self is not affected by child_subsys_mask change */
2873 if (css->cgroup == cgrp)
2874 continue;
2875
2876 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2877 cgroup_migrate_add_src(link->cset, cgrp,
2878 &preloaded_csets);
2879 }
2880 spin_unlock_bh(&css_set_lock);
2881
2882 /* NULL dst indicates self on default hierarchy */
2883 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2884 if (ret)
2885 goto out_finish;
2886
2887 spin_lock_bh(&css_set_lock);
2888 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2889 struct task_struct *task, *ntask;
2890
2891 /* src_csets precede dst_csets, break on the first dst_cset */
2892 if (!src_cset->mg_src_cgrp)
2893 break;
2894
2895 /* all tasks in src_csets need to be migrated */
2896 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2897 cgroup_taskset_add(task, &tset);
2898 }
2899 spin_unlock_bh(&css_set_lock);
2900
2901 ret = cgroup_taskset_migrate(&tset, cgrp);
2902 out_finish:
2903 cgroup_migrate_finish(&preloaded_csets);
2904 percpu_up_write(&cgroup_threadgroup_rwsem);
2905 return ret;
2906 }
2907
2908 /* change the enabled child controllers for a cgroup in the default hierarchy */
2909 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2910 char *buf, size_t nbytes,
2911 loff_t off)
2912 {
2913 unsigned long enable = 0, disable = 0;
2914 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2915 struct cgroup *cgrp, *child;
2916 struct cgroup_subsys *ss;
2917 char *tok;
2918 int ssid, ret;
2919
2920 /*
2921 * Parse input - space separated list of subsystem names prefixed
2922 * with either + or -.
2923 */
2924 buf = strstrip(buf);
2925 while ((tok = strsep(&buf, " "))) {
2926 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2927
2928 if (tok[0] == '\0')
2929 continue;
2930 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2931 if (!cgroup_ssid_enabled(ssid) ||
2932 strcmp(tok + 1, ss->name))
2933 continue;
2934
2935 if (*tok == '+') {
2936 enable |= 1 << ssid;
2937 disable &= ~(1 << ssid);
2938 } else if (*tok == '-') {
2939 disable |= 1 << ssid;
2940 enable &= ~(1 << ssid);
2941 } else {
2942 return -EINVAL;
2943 }
2944 break;
2945 }
2946 if (ssid == CGROUP_SUBSYS_COUNT)
2947 return -EINVAL;
2948 }
2949
2950 cgrp = cgroup_kn_lock_live(of->kn);
2951 if (!cgrp)
2952 return -ENODEV;
2953
2954 for_each_subsys(ss, ssid) {
2955 if (enable & (1 << ssid)) {
2956 if (cgrp->subtree_control & (1 << ssid)) {
2957 enable &= ~(1 << ssid);
2958 continue;
2959 }
2960
2961 /* unavailable or not enabled on the parent? */
2962 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2963 (cgroup_parent(cgrp) &&
2964 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2965 ret = -ENOENT;
2966 goto out_unlock;
2967 }
2968 } else if (disable & (1 << ssid)) {
2969 if (!(cgrp->subtree_control & (1 << ssid))) {
2970 disable &= ~(1 << ssid);
2971 continue;
2972 }
2973
2974 /* a child has it enabled? */
2975 cgroup_for_each_live_child(child, cgrp) {
2976 if (child->subtree_control & (1 << ssid)) {
2977 ret = -EBUSY;
2978 goto out_unlock;
2979 }
2980 }
2981 }
2982 }
2983
2984 if (!enable && !disable) {
2985 ret = 0;
2986 goto out_unlock;
2987 }
2988
2989 /*
2990 * Except for the root, subtree_control must be zero for a cgroup
2991 * with tasks so that child cgroups don't compete against tasks.
2992 */
2993 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2994 ret = -EBUSY;
2995 goto out_unlock;
2996 }
2997
2998 /*
2999 * Update subsys masks and calculate what needs to be done. More
3000 * subsystems than specified may need to be enabled or disabled
3001 * depending on subsystem dependencies.
3002 */
3003 old_sc = cgrp->subtree_control;
3004 old_ss = cgrp->child_subsys_mask;
3005 new_sc = (old_sc | enable) & ~disable;
3006 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3007
3008 css_enable = ~old_ss & new_ss;
3009 css_disable = old_ss & ~new_ss;
3010 enable |= css_enable;
3011 disable |= css_disable;
3012
3013 /*
3014 * Because css offlining is asynchronous, userland might try to
3015 * re-enable the same controller while the previous instance is
3016 * still around. In such cases, wait till it's gone using
3017 * offline_waitq.
3018 */
3019 for_each_subsys_which(ss, ssid, &css_enable) {
3020 cgroup_for_each_live_child(child, cgrp) {
3021 DEFINE_WAIT(wait);
3022
3023 if (!cgroup_css(child, ss))
3024 continue;
3025
3026 cgroup_get(child);
3027 prepare_to_wait(&child->offline_waitq, &wait,
3028 TASK_UNINTERRUPTIBLE);
3029 cgroup_kn_unlock(of->kn);
3030 schedule();
3031 finish_wait(&child->offline_waitq, &wait);
3032 cgroup_put(child);
3033
3034 return restart_syscall();
3035 }
3036 }
3037
3038 cgrp->subtree_control = new_sc;
3039 cgrp->child_subsys_mask = new_ss;
3040
3041 /*
3042 * Create new csses or make the existing ones visible. A css is
3043 * created invisible if it's being implicitly enabled through
3044 * dependency. An invisible css is made visible when the userland
3045 * explicitly enables it.
3046 */
3047 for_each_subsys(ss, ssid) {
3048 if (!(enable & (1 << ssid)))
3049 continue;
3050
3051 cgroup_for_each_live_child(child, cgrp) {
3052 if (css_enable & (1 << ssid))
3053 ret = create_css(child, ss,
3054 cgrp->subtree_control & (1 << ssid));
3055 else
3056 ret = css_populate_dir(cgroup_css(child, ss),
3057 NULL);
3058 if (ret)
3059 goto err_undo_css;
3060 }
3061 }
3062
3063 /*
3064 * At this point, cgroup_e_css() results reflect the new csses
3065 * making the following cgroup_update_dfl_csses() properly update
3066 * css associations of all tasks in the subtree.
3067 */
3068 ret = cgroup_update_dfl_csses(cgrp);
3069 if (ret)
3070 goto err_undo_css;
3071
3072 /*
3073 * All tasks are migrated out of disabled csses. Kill or hide
3074 * them. A css is hidden when the userland requests it to be
3075 * disabled while other subsystems are still depending on it. The
3076 * css must not actively control resources and be in the vanilla
3077 * state if it's made visible again later. Controllers which may
3078 * be depended upon should provide ->css_reset() for this purpose.
3079 */
3080 for_each_subsys(ss, ssid) {
3081 if (!(disable & (1 << ssid)))
3082 continue;
3083
3084 cgroup_for_each_live_child(child, cgrp) {
3085 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3086
3087 if (css_disable & (1 << ssid)) {
3088 kill_css(css);
3089 } else {
3090 css_clear_dir(css, NULL);
3091 if (ss->css_reset)
3092 ss->css_reset(css);
3093 }
3094 }
3095 }
3096
3097 /*
3098 * The effective csses of all the descendants (excluding @cgrp) may
3099 * have changed. Subsystems can optionally subscribe to this event
3100 * by implementing ->css_e_css_changed() which is invoked if any of
3101 * the effective csses seen from the css's cgroup may have changed.
3102 */
3103 for_each_subsys(ss, ssid) {
3104 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3105 struct cgroup_subsys_state *css;
3106
3107 if (!ss->css_e_css_changed || !this_css)
3108 continue;
3109
3110 css_for_each_descendant_pre(css, this_css)
3111 if (css != this_css)
3112 ss->css_e_css_changed(css);
3113 }
3114
3115 kernfs_activate(cgrp->kn);
3116 ret = 0;
3117 out_unlock:
3118 cgroup_kn_unlock(of->kn);
3119 return ret ?: nbytes;
3120
3121 err_undo_css:
3122 cgrp->subtree_control = old_sc;
3123 cgrp->child_subsys_mask = old_ss;
3124
3125 for_each_subsys(ss, ssid) {
3126 if (!(enable & (1 << ssid)))
3127 continue;
3128
3129 cgroup_for_each_live_child(child, cgrp) {
3130 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3131
3132 if (!css)
3133 continue;
3134
3135 if (css_enable & (1 << ssid))
3136 kill_css(css);
3137 else
3138 css_clear_dir(css, NULL);
3139 }
3140 }
3141 goto out_unlock;
3142 }
3143
3144 static int cgroup_events_show(struct seq_file *seq, void *v)
3145 {
3146 seq_printf(seq, "populated %d\n",
3147 cgroup_is_populated(seq_css(seq)->cgroup));
3148 return 0;
3149 }
3150
3151 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3152 size_t nbytes, loff_t off)
3153 {
3154 struct cgroup *cgrp = of->kn->parent->priv;
3155 struct cftype *cft = of->kn->priv;
3156 struct cgroup_subsys_state *css;
3157 int ret;
3158
3159 if (cft->write)
3160 return cft->write(of, buf, nbytes, off);
3161
3162 /*
3163 * kernfs guarantees that a file isn't deleted with operations in
3164 * flight, which means that the matching css is and stays alive and
3165 * doesn't need to be pinned. The RCU locking is not necessary
3166 * either. It's just for the convenience of using cgroup_css().
3167 */
3168 rcu_read_lock();
3169 css = cgroup_css(cgrp, cft->ss);
3170 rcu_read_unlock();
3171
3172 if (cft->write_u64) {
3173 unsigned long long v;
3174 ret = kstrtoull(buf, 0, &v);
3175 if (!ret)
3176 ret = cft->write_u64(css, cft, v);
3177 } else if (cft->write_s64) {
3178 long long v;
3179 ret = kstrtoll(buf, 0, &v);
3180 if (!ret)
3181 ret = cft->write_s64(css, cft, v);
3182 } else {
3183 ret = -EINVAL;
3184 }
3185
3186 return ret ?: nbytes;
3187 }
3188
3189 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3190 {
3191 return seq_cft(seq)->seq_start(seq, ppos);
3192 }
3193
3194 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3195 {
3196 return seq_cft(seq)->seq_next(seq, v, ppos);
3197 }
3198
3199 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3200 {
3201 seq_cft(seq)->seq_stop(seq, v);
3202 }
3203
3204 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3205 {
3206 struct cftype *cft = seq_cft(m);
3207 struct cgroup_subsys_state *css = seq_css(m);
3208
3209 if (cft->seq_show)
3210 return cft->seq_show(m, arg);
3211
3212 if (cft->read_u64)
3213 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3214 else if (cft->read_s64)
3215 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3216 else
3217 return -EINVAL;
3218 return 0;
3219 }
3220
3221 static struct kernfs_ops cgroup_kf_single_ops = {
3222 .atomic_write_len = PAGE_SIZE,
3223 .write = cgroup_file_write,
3224 .seq_show = cgroup_seqfile_show,
3225 };
3226
3227 static struct kernfs_ops cgroup_kf_ops = {
3228 .atomic_write_len = PAGE_SIZE,
3229 .write = cgroup_file_write,
3230 .seq_start = cgroup_seqfile_start,
3231 .seq_next = cgroup_seqfile_next,
3232 .seq_stop = cgroup_seqfile_stop,
3233 .seq_show = cgroup_seqfile_show,
3234 };
3235
3236 /*
3237 * cgroup_rename - Only allow simple rename of directories in place.
3238 */
3239 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3240 const char *new_name_str)
3241 {
3242 struct cgroup *cgrp = kn->priv;
3243 int ret;
3244
3245 if (kernfs_type(kn) != KERNFS_DIR)
3246 return -ENOTDIR;
3247 if (kn->parent != new_parent)
3248 return -EIO;
3249
3250 /*
3251 * This isn't a proper migration and its usefulness is very
3252 * limited. Disallow on the default hierarchy.
3253 */
3254 if (cgroup_on_dfl(cgrp))
3255 return -EPERM;
3256
3257 /*
3258 * We're gonna grab cgroup_mutex which nests outside kernfs
3259 * active_ref. kernfs_rename() doesn't require active_ref
3260 * protection. Break them before grabbing cgroup_mutex.
3261 */
3262 kernfs_break_active_protection(new_parent);
3263 kernfs_break_active_protection(kn);
3264
3265 mutex_lock(&cgroup_mutex);
3266
3267 ret = kernfs_rename(kn, new_parent, new_name_str);
3268
3269 mutex_unlock(&cgroup_mutex);
3270
3271 kernfs_unbreak_active_protection(kn);
3272 kernfs_unbreak_active_protection(new_parent);
3273 return ret;
3274 }
3275
3276 /* set uid and gid of cgroup dirs and files to that of the creator */
3277 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3278 {
3279 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3280 .ia_uid = current_fsuid(),
3281 .ia_gid = current_fsgid(), };
3282
3283 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3284 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3285 return 0;
3286
3287 return kernfs_setattr(kn, &iattr);
3288 }
3289
3290 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3291 struct cftype *cft)
3292 {
3293 char name[CGROUP_FILE_NAME_MAX];
3294 struct kernfs_node *kn;
3295 struct lock_class_key *key = NULL;
3296 int ret;
3297
3298 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3299 key = &cft->lockdep_key;
3300 #endif
3301 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3302 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3303 NULL, key);
3304 if (IS_ERR(kn))
3305 return PTR_ERR(kn);
3306
3307 ret = cgroup_kn_set_ugid(kn);
3308 if (ret) {
3309 kernfs_remove(kn);
3310 return ret;
3311 }
3312
3313 if (cft->file_offset) {
3314 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3315
3316 kernfs_get(kn);
3317 cfile->kn = kn;
3318 list_add(&cfile->node, &css->files);
3319 }
3320
3321 return 0;
3322 }
3323
3324 /**
3325 * cgroup_addrm_files - add or remove files to a cgroup directory
3326 * @css: the target css
3327 * @cgrp: the target cgroup (usually css->cgroup)
3328 * @cfts: array of cftypes to be added
3329 * @is_add: whether to add or remove
3330 *
3331 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3332 * For removals, this function never fails.
3333 */
3334 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3335 struct cgroup *cgrp, struct cftype cfts[],
3336 bool is_add)
3337 {
3338 struct cftype *cft, *cft_end = NULL;
3339 int ret;
3340
3341 lockdep_assert_held(&cgroup_mutex);
3342
3343 restart:
3344 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3345 /* does cft->flags tell us to skip this file on @cgrp? */
3346 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3347 continue;
3348 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3349 continue;
3350 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3351 continue;
3352 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3353 continue;
3354
3355 if (is_add) {
3356 ret = cgroup_add_file(css, cgrp, cft);
3357 if (ret) {
3358 pr_warn("%s: failed to add %s, err=%d\n",
3359 __func__, cft->name, ret);
3360 cft_end = cft;
3361 is_add = false;
3362 goto restart;
3363 }
3364 } else {
3365 cgroup_rm_file(cgrp, cft);
3366 }
3367 }
3368 return 0;
3369 }
3370
3371 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3372 {
3373 LIST_HEAD(pending);
3374 struct cgroup_subsys *ss = cfts[0].ss;
3375 struct cgroup *root = &ss->root->cgrp;
3376 struct cgroup_subsys_state *css;
3377 int ret = 0;
3378
3379 lockdep_assert_held(&cgroup_mutex);
3380
3381 /* add/rm files for all cgroups created before */
3382 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3383 struct cgroup *cgrp = css->cgroup;
3384
3385 if (cgroup_is_dead(cgrp))
3386 continue;
3387
3388 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3389 if (ret)
3390 break;
3391 }
3392
3393 if (is_add && !ret)
3394 kernfs_activate(root->kn);
3395 return ret;
3396 }
3397
3398 static void cgroup_exit_cftypes(struct cftype *cfts)
3399 {
3400 struct cftype *cft;
3401
3402 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3403 /* free copy for custom atomic_write_len, see init_cftypes() */
3404 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3405 kfree(cft->kf_ops);
3406 cft->kf_ops = NULL;
3407 cft->ss = NULL;
3408
3409 /* revert flags set by cgroup core while adding @cfts */
3410 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3411 }
3412 }
3413
3414 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3415 {
3416 struct cftype *cft;
3417
3418 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3419 struct kernfs_ops *kf_ops;
3420
3421 WARN_ON(cft->ss || cft->kf_ops);
3422
3423 if (cft->seq_start)
3424 kf_ops = &cgroup_kf_ops;
3425 else
3426 kf_ops = &cgroup_kf_single_ops;
3427
3428 /*
3429 * Ugh... if @cft wants a custom max_write_len, we need to
3430 * make a copy of kf_ops to set its atomic_write_len.
3431 */
3432 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3433 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3434 if (!kf_ops) {
3435 cgroup_exit_cftypes(cfts);
3436 return -ENOMEM;
3437 }
3438 kf_ops->atomic_write_len = cft->max_write_len;
3439 }
3440
3441 cft->kf_ops = kf_ops;
3442 cft->ss = ss;
3443 }
3444
3445 return 0;
3446 }
3447
3448 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3449 {
3450 lockdep_assert_held(&cgroup_mutex);
3451
3452 if (!cfts || !cfts[0].ss)
3453 return -ENOENT;
3454
3455 list_del(&cfts->node);
3456 cgroup_apply_cftypes(cfts, false);
3457 cgroup_exit_cftypes(cfts);
3458 return 0;
3459 }
3460
3461 /**
3462 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3463 * @cfts: zero-length name terminated array of cftypes
3464 *
3465 * Unregister @cfts. Files described by @cfts are removed from all
3466 * existing cgroups and all future cgroups won't have them either. This
3467 * function can be called anytime whether @cfts' subsys is attached or not.
3468 *
3469 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3470 * registered.
3471 */
3472 int cgroup_rm_cftypes(struct cftype *cfts)
3473 {
3474 int ret;
3475
3476 mutex_lock(&cgroup_mutex);
3477 ret = cgroup_rm_cftypes_locked(cfts);
3478 mutex_unlock(&cgroup_mutex);
3479 return ret;
3480 }
3481
3482 /**
3483 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3484 * @ss: target cgroup subsystem
3485 * @cfts: zero-length name terminated array of cftypes
3486 *
3487 * Register @cfts to @ss. Files described by @cfts are created for all
3488 * existing cgroups to which @ss is attached and all future cgroups will
3489 * have them too. This function can be called anytime whether @ss is
3490 * attached or not.
3491 *
3492 * Returns 0 on successful registration, -errno on failure. Note that this
3493 * function currently returns 0 as long as @cfts registration is successful
3494 * even if some file creation attempts on existing cgroups fail.
3495 */
3496 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3497 {
3498 int ret;
3499
3500 if (!cgroup_ssid_enabled(ss->id))
3501 return 0;
3502
3503 if (!cfts || cfts[0].name[0] == '\0')
3504 return 0;
3505
3506 ret = cgroup_init_cftypes(ss, cfts);
3507 if (ret)
3508 return ret;
3509
3510 mutex_lock(&cgroup_mutex);
3511
3512 list_add_tail(&cfts->node, &ss->cfts);
3513 ret = cgroup_apply_cftypes(cfts, true);
3514 if (ret)
3515 cgroup_rm_cftypes_locked(cfts);
3516
3517 mutex_unlock(&cgroup_mutex);
3518 return ret;
3519 }
3520
3521 /**
3522 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3523 * @ss: target cgroup subsystem
3524 * @cfts: zero-length name terminated array of cftypes
3525 *
3526 * Similar to cgroup_add_cftypes() but the added files are only used for
3527 * the default hierarchy.
3528 */
3529 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3530 {
3531 struct cftype *cft;
3532
3533 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3534 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3535 return cgroup_add_cftypes(ss, cfts);
3536 }
3537
3538 /**
3539 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3540 * @ss: target cgroup subsystem
3541 * @cfts: zero-length name terminated array of cftypes
3542 *
3543 * Similar to cgroup_add_cftypes() but the added files are only used for
3544 * the legacy hierarchies.
3545 */
3546 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3547 {
3548 struct cftype *cft;
3549
3550 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3551 cft->flags |= __CFTYPE_NOT_ON_DFL;
3552 return cgroup_add_cftypes(ss, cfts);
3553 }
3554
3555 /**
3556 * cgroup_task_count - count the number of tasks in a cgroup.
3557 * @cgrp: the cgroup in question
3558 *
3559 * Return the number of tasks in the cgroup.
3560 */
3561 static int cgroup_task_count(const struct cgroup *cgrp)
3562 {
3563 int count = 0;
3564 struct cgrp_cset_link *link;
3565
3566 spin_lock_bh(&css_set_lock);
3567 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3568 count += atomic_read(&link->cset->refcount);
3569 spin_unlock_bh(&css_set_lock);
3570 return count;
3571 }
3572
3573 /**
3574 * css_next_child - find the next child of a given css
3575 * @pos: the current position (%NULL to initiate traversal)
3576 * @parent: css whose children to walk
3577 *
3578 * This function returns the next child of @parent and should be called
3579 * under either cgroup_mutex or RCU read lock. The only requirement is
3580 * that @parent and @pos are accessible. The next sibling is guaranteed to
3581 * be returned regardless of their states.
3582 *
3583 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3584 * css which finished ->css_online() is guaranteed to be visible in the
3585 * future iterations and will stay visible until the last reference is put.
3586 * A css which hasn't finished ->css_online() or already finished
3587 * ->css_offline() may show up during traversal. It's each subsystem's
3588 * responsibility to synchronize against on/offlining.
3589 */
3590 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3591 struct cgroup_subsys_state *parent)
3592 {
3593 struct cgroup_subsys_state *next;
3594
3595 cgroup_assert_mutex_or_rcu_locked();
3596
3597 /*
3598 * @pos could already have been unlinked from the sibling list.
3599 * Once a cgroup is removed, its ->sibling.next is no longer
3600 * updated when its next sibling changes. CSS_RELEASED is set when
3601 * @pos is taken off list, at which time its next pointer is valid,
3602 * and, as releases are serialized, the one pointed to by the next
3603 * pointer is guaranteed to not have started release yet. This
3604 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3605 * critical section, the one pointed to by its next pointer is
3606 * guaranteed to not have finished its RCU grace period even if we
3607 * have dropped rcu_read_lock() inbetween iterations.
3608 *
3609 * If @pos has CSS_RELEASED set, its next pointer can't be
3610 * dereferenced; however, as each css is given a monotonically
3611 * increasing unique serial number and always appended to the
3612 * sibling list, the next one can be found by walking the parent's
3613 * children until the first css with higher serial number than
3614 * @pos's. While this path can be slower, it happens iff iteration
3615 * races against release and the race window is very small.
3616 */
3617 if (!pos) {
3618 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3619 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3620 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3621 } else {
3622 list_for_each_entry_rcu(next, &parent->children, sibling)
3623 if (next->serial_nr > pos->serial_nr)
3624 break;
3625 }
3626
3627 /*
3628 * @next, if not pointing to the head, can be dereferenced and is
3629 * the next sibling.
3630 */
3631 if (&next->sibling != &parent->children)
3632 return next;
3633 return NULL;
3634 }
3635
3636 /**
3637 * css_next_descendant_pre - find the next descendant for pre-order walk
3638 * @pos: the current position (%NULL to initiate traversal)
3639 * @root: css whose descendants to walk
3640 *
3641 * To be used by css_for_each_descendant_pre(). Find the next descendant
3642 * to visit for pre-order traversal of @root's descendants. @root is
3643 * included in the iteration and the first node to be visited.
3644 *
3645 * While this function requires cgroup_mutex or RCU read locking, it
3646 * doesn't require the whole traversal to be contained in a single critical
3647 * section. This function will return the correct next descendant as long
3648 * as both @pos and @root are accessible and @pos is a descendant of @root.
3649 *
3650 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3651 * css which finished ->css_online() is guaranteed to be visible in the
3652 * future iterations and will stay visible until the last reference is put.
3653 * A css which hasn't finished ->css_online() or already finished
3654 * ->css_offline() may show up during traversal. It's each subsystem's
3655 * responsibility to synchronize against on/offlining.
3656 */
3657 struct cgroup_subsys_state *
3658 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3659 struct cgroup_subsys_state *root)
3660 {
3661 struct cgroup_subsys_state *next;
3662
3663 cgroup_assert_mutex_or_rcu_locked();
3664
3665 /* if first iteration, visit @root */
3666 if (!pos)
3667 return root;
3668
3669 /* visit the first child if exists */
3670 next = css_next_child(NULL, pos);
3671 if (next)
3672 return next;
3673
3674 /* no child, visit my or the closest ancestor's next sibling */
3675 while (pos != root) {
3676 next = css_next_child(pos, pos->parent);
3677 if (next)
3678 return next;
3679 pos = pos->parent;
3680 }
3681
3682 return NULL;
3683 }
3684
3685 /**
3686 * css_rightmost_descendant - return the rightmost descendant of a css
3687 * @pos: css of interest
3688 *
3689 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3690 * is returned. This can be used during pre-order traversal to skip
3691 * subtree of @pos.
3692 *
3693 * While this function requires cgroup_mutex or RCU read locking, it
3694 * doesn't require the whole traversal to be contained in a single critical
3695 * section. This function will return the correct rightmost descendant as
3696 * long as @pos is accessible.
3697 */
3698 struct cgroup_subsys_state *
3699 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3700 {
3701 struct cgroup_subsys_state *last, *tmp;
3702
3703 cgroup_assert_mutex_or_rcu_locked();
3704
3705 do {
3706 last = pos;
3707 /* ->prev isn't RCU safe, walk ->next till the end */
3708 pos = NULL;
3709 css_for_each_child(tmp, last)
3710 pos = tmp;
3711 } while (pos);
3712
3713 return last;
3714 }
3715
3716 static struct cgroup_subsys_state *
3717 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3718 {
3719 struct cgroup_subsys_state *last;
3720
3721 do {
3722 last = pos;
3723 pos = css_next_child(NULL, pos);
3724 } while (pos);
3725
3726 return last;
3727 }
3728
3729 /**
3730 * css_next_descendant_post - find the next descendant for post-order walk
3731 * @pos: the current position (%NULL to initiate traversal)
3732 * @root: css whose descendants to walk
3733 *
3734 * To be used by css_for_each_descendant_post(). Find the next descendant
3735 * to visit for post-order traversal of @root's descendants. @root is
3736 * included in the iteration and the last node to be visited.
3737 *
3738 * While this function requires cgroup_mutex or RCU read locking, it
3739 * doesn't require the whole traversal to be contained in a single critical
3740 * section. This function will return the correct next descendant as long
3741 * as both @pos and @cgroup are accessible and @pos is a descendant of
3742 * @cgroup.
3743 *
3744 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3745 * css which finished ->css_online() is guaranteed to be visible in the
3746 * future iterations and will stay visible until the last reference is put.
3747 * A css which hasn't finished ->css_online() or already finished
3748 * ->css_offline() may show up during traversal. It's each subsystem's
3749 * responsibility to synchronize against on/offlining.
3750 */
3751 struct cgroup_subsys_state *
3752 css_next_descendant_post(struct cgroup_subsys_state *pos,
3753 struct cgroup_subsys_state *root)
3754 {
3755 struct cgroup_subsys_state *next;
3756
3757 cgroup_assert_mutex_or_rcu_locked();
3758
3759 /* if first iteration, visit leftmost descendant which may be @root */
3760 if (!pos)
3761 return css_leftmost_descendant(root);
3762
3763 /* if we visited @root, we're done */
3764 if (pos == root)
3765 return NULL;
3766
3767 /* if there's an unvisited sibling, visit its leftmost descendant */
3768 next = css_next_child(pos, pos->parent);
3769 if (next)
3770 return css_leftmost_descendant(next);
3771
3772 /* no sibling left, visit parent */
3773 return pos->parent;
3774 }
3775
3776 /**
3777 * css_has_online_children - does a css have online children
3778 * @css: the target css
3779 *
3780 * Returns %true if @css has any online children; otherwise, %false. This
3781 * function can be called from any context but the caller is responsible
3782 * for synchronizing against on/offlining as necessary.
3783 */
3784 bool css_has_online_children(struct cgroup_subsys_state *css)
3785 {
3786 struct cgroup_subsys_state *child;
3787 bool ret = false;
3788
3789 rcu_read_lock();
3790 css_for_each_child(child, css) {
3791 if (child->flags & CSS_ONLINE) {
3792 ret = true;
3793 break;
3794 }
3795 }
3796 rcu_read_unlock();
3797 return ret;
3798 }
3799
3800 /**
3801 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3802 * @it: the iterator to advance
3803 *
3804 * Advance @it to the next css_set to walk.
3805 */
3806 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3807 {
3808 struct list_head *l = it->cset_pos;
3809 struct cgrp_cset_link *link;
3810 struct css_set *cset;
3811
3812 lockdep_assert_held(&css_set_lock);
3813
3814 /* Advance to the next non-empty css_set */
3815 do {
3816 l = l->next;
3817 if (l == it->cset_head) {
3818 it->cset_pos = NULL;
3819 it->task_pos = NULL;
3820 return;
3821 }
3822
3823 if (it->ss) {
3824 cset = container_of(l, struct css_set,
3825 e_cset_node[it->ss->id]);
3826 } else {
3827 link = list_entry(l, struct cgrp_cset_link, cset_link);
3828 cset = link->cset;
3829 }
3830 } while (!css_set_populated(cset));
3831
3832 it->cset_pos = l;
3833
3834 if (!list_empty(&cset->tasks))
3835 it->task_pos = cset->tasks.next;
3836 else
3837 it->task_pos = cset->mg_tasks.next;
3838
3839 it->tasks_head = &cset->tasks;
3840 it->mg_tasks_head = &cset->mg_tasks;
3841
3842 /*
3843 * We don't keep css_sets locked across iteration steps and thus
3844 * need to take steps to ensure that iteration can be resumed after
3845 * the lock is re-acquired. Iteration is performed at two levels -
3846 * css_sets and tasks in them.
3847 *
3848 * Once created, a css_set never leaves its cgroup lists, so a
3849 * pinned css_set is guaranteed to stay put and we can resume
3850 * iteration afterwards.
3851 *
3852 * Tasks may leave @cset across iteration steps. This is resolved
3853 * by registering each iterator with the css_set currently being
3854 * walked and making css_set_move_task() advance iterators whose
3855 * next task is leaving.
3856 */
3857 if (it->cur_cset) {
3858 list_del(&it->iters_node);
3859 put_css_set_locked(it->cur_cset);
3860 }
3861 get_css_set(cset);
3862 it->cur_cset = cset;
3863 list_add(&it->iters_node, &cset->task_iters);
3864 }
3865
3866 static void css_task_iter_advance(struct css_task_iter *it)
3867 {
3868 struct list_head *l = it->task_pos;
3869
3870 lockdep_assert_held(&css_set_lock);
3871 WARN_ON_ONCE(!l);
3872
3873 /*
3874 * Advance iterator to find next entry. cset->tasks is consumed
3875 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3876 * next cset.
3877 */
3878 l = l->next;
3879
3880 if (l == it->tasks_head)
3881 l = it->mg_tasks_head->next;
3882
3883 if (l == it->mg_tasks_head)
3884 css_task_iter_advance_css_set(it);
3885 else
3886 it->task_pos = l;
3887 }
3888
3889 /**
3890 * css_task_iter_start - initiate task iteration
3891 * @css: the css to walk tasks of
3892 * @it: the task iterator to use
3893 *
3894 * Initiate iteration through the tasks of @css. The caller can call
3895 * css_task_iter_next() to walk through the tasks until the function
3896 * returns NULL. On completion of iteration, css_task_iter_end() must be
3897 * called.
3898 */
3899 void css_task_iter_start(struct cgroup_subsys_state *css,
3900 struct css_task_iter *it)
3901 {
3902 /* no one should try to iterate before mounting cgroups */
3903 WARN_ON_ONCE(!use_task_css_set_links);
3904
3905 memset(it, 0, sizeof(*it));
3906
3907 spin_lock_bh(&css_set_lock);
3908
3909 it->ss = css->ss;
3910
3911 if (it->ss)
3912 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3913 else
3914 it->cset_pos = &css->cgroup->cset_links;
3915
3916 it->cset_head = it->cset_pos;
3917
3918 css_task_iter_advance_css_set(it);
3919
3920 spin_unlock_bh(&css_set_lock);
3921 }
3922
3923 /**
3924 * css_task_iter_next - return the next task for the iterator
3925 * @it: the task iterator being iterated
3926 *
3927 * The "next" function for task iteration. @it should have been
3928 * initialized via css_task_iter_start(). Returns NULL when the iteration
3929 * reaches the end.
3930 */
3931 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3932 {
3933 if (it->cur_task) {
3934 put_task_struct(it->cur_task);
3935 it->cur_task = NULL;
3936 }
3937
3938 spin_lock_bh(&css_set_lock);
3939
3940 if (it->task_pos) {
3941 it->cur_task = list_entry(it->task_pos, struct task_struct,
3942 cg_list);
3943 get_task_struct(it->cur_task);
3944 css_task_iter_advance(it);
3945 }
3946
3947 spin_unlock_bh(&css_set_lock);
3948
3949 return it->cur_task;
3950 }
3951
3952 /**
3953 * css_task_iter_end - finish task iteration
3954 * @it: the task iterator to finish
3955 *
3956 * Finish task iteration started by css_task_iter_start().
3957 */
3958 void css_task_iter_end(struct css_task_iter *it)
3959 {
3960 if (it->cur_cset) {
3961 spin_lock_bh(&css_set_lock);
3962 list_del(&it->iters_node);
3963 put_css_set_locked(it->cur_cset);
3964 spin_unlock_bh(&css_set_lock);
3965 }
3966
3967 if (it->cur_task)
3968 put_task_struct(it->cur_task);
3969 }
3970
3971 /**
3972 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3973 * @to: cgroup to which the tasks will be moved
3974 * @from: cgroup in which the tasks currently reside
3975 *
3976 * Locking rules between cgroup_post_fork() and the migration path
3977 * guarantee that, if a task is forking while being migrated, the new child
3978 * is guaranteed to be either visible in the source cgroup after the
3979 * parent's migration is complete or put into the target cgroup. No task
3980 * can slip out of migration through forking.
3981 */
3982 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3983 {
3984 LIST_HEAD(preloaded_csets);
3985 struct cgrp_cset_link *link;
3986 struct css_task_iter it;
3987 struct task_struct *task;
3988 int ret;
3989
3990 mutex_lock(&cgroup_mutex);
3991
3992 /* all tasks in @from are being moved, all csets are source */
3993 spin_lock_bh(&css_set_lock);
3994 list_for_each_entry(link, &from->cset_links, cset_link)
3995 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3996 spin_unlock_bh(&css_set_lock);
3997
3998 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3999 if (ret)
4000 goto out_err;
4001
4002 /*
4003 * Migrate tasks one-by-one until @form is empty. This fails iff
4004 * ->can_attach() fails.
4005 */
4006 do {
4007 css_task_iter_start(&from->self, &it);
4008 task = css_task_iter_next(&it);
4009 if (task)
4010 get_task_struct(task);
4011 css_task_iter_end(&it);
4012
4013 if (task) {
4014 ret = cgroup_migrate(task, false, to);
4015 put_task_struct(task);
4016 }
4017 } while (task && !ret);
4018 out_err:
4019 cgroup_migrate_finish(&preloaded_csets);
4020 mutex_unlock(&cgroup_mutex);
4021 return ret;
4022 }
4023
4024 /*
4025 * Stuff for reading the 'tasks'/'procs' files.
4026 *
4027 * Reading this file can return large amounts of data if a cgroup has
4028 * *lots* of attached tasks. So it may need several calls to read(),
4029 * but we cannot guarantee that the information we produce is correct
4030 * unless we produce it entirely atomically.
4031 *
4032 */
4033
4034 /* which pidlist file are we talking about? */
4035 enum cgroup_filetype {
4036 CGROUP_FILE_PROCS,
4037 CGROUP_FILE_TASKS,
4038 };
4039
4040 /*
4041 * A pidlist is a list of pids that virtually represents the contents of one
4042 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4043 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4044 * to the cgroup.
4045 */
4046 struct cgroup_pidlist {
4047 /*
4048 * used to find which pidlist is wanted. doesn't change as long as
4049 * this particular list stays in the list.
4050 */
4051 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4052 /* array of xids */
4053 pid_t *list;
4054 /* how many elements the above list has */
4055 int length;
4056 /* each of these stored in a list by its cgroup */
4057 struct list_head links;
4058 /* pointer to the cgroup we belong to, for list removal purposes */
4059 struct cgroup *owner;
4060 /* for delayed destruction */
4061 struct delayed_work destroy_dwork;
4062 };
4063
4064 /*
4065 * The following two functions "fix" the issue where there are more pids
4066 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4067 * TODO: replace with a kernel-wide solution to this problem
4068 */
4069 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4070 static void *pidlist_allocate(int count)
4071 {
4072 if (PIDLIST_TOO_LARGE(count))
4073 return vmalloc(count * sizeof(pid_t));
4074 else
4075 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4076 }
4077
4078 static void pidlist_free(void *p)
4079 {
4080 kvfree(p);
4081 }
4082
4083 /*
4084 * Used to destroy all pidlists lingering waiting for destroy timer. None
4085 * should be left afterwards.
4086 */
4087 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4088 {
4089 struct cgroup_pidlist *l, *tmp_l;
4090
4091 mutex_lock(&cgrp->pidlist_mutex);
4092 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4093 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4094 mutex_unlock(&cgrp->pidlist_mutex);
4095
4096 flush_workqueue(cgroup_pidlist_destroy_wq);
4097 BUG_ON(!list_empty(&cgrp->pidlists));
4098 }
4099
4100 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4101 {
4102 struct delayed_work *dwork = to_delayed_work(work);
4103 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4104 destroy_dwork);
4105 struct cgroup_pidlist *tofree = NULL;
4106
4107 mutex_lock(&l->owner->pidlist_mutex);
4108
4109 /*
4110 * Destroy iff we didn't get queued again. The state won't change
4111 * as destroy_dwork can only be queued while locked.
4112 */
4113 if (!delayed_work_pending(dwork)) {
4114 list_del(&l->links);
4115 pidlist_free(l->list);
4116 put_pid_ns(l->key.ns);
4117 tofree = l;
4118 }
4119
4120 mutex_unlock(&l->owner->pidlist_mutex);
4121 kfree(tofree);
4122 }
4123
4124 /*
4125 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4126 * Returns the number of unique elements.
4127 */
4128 static int pidlist_uniq(pid_t *list, int length)
4129 {
4130 int src, dest = 1;
4131
4132 /*
4133 * we presume the 0th element is unique, so i starts at 1. trivial
4134 * edge cases first; no work needs to be done for either
4135 */
4136 if (length == 0 || length == 1)
4137 return length;
4138 /* src and dest walk down the list; dest counts unique elements */
4139 for (src = 1; src < length; src++) {
4140 /* find next unique element */
4141 while (list[src] == list[src-1]) {
4142 src++;
4143 if (src == length)
4144 goto after;
4145 }
4146 /* dest always points to where the next unique element goes */
4147 list[dest] = list[src];
4148 dest++;
4149 }
4150 after:
4151 return dest;
4152 }
4153
4154 /*
4155 * The two pid files - task and cgroup.procs - guaranteed that the result
4156 * is sorted, which forced this whole pidlist fiasco. As pid order is
4157 * different per namespace, each namespace needs differently sorted list,
4158 * making it impossible to use, for example, single rbtree of member tasks
4159 * sorted by task pointer. As pidlists can be fairly large, allocating one
4160 * per open file is dangerous, so cgroup had to implement shared pool of
4161 * pidlists keyed by cgroup and namespace.
4162 *
4163 * All this extra complexity was caused by the original implementation
4164 * committing to an entirely unnecessary property. In the long term, we
4165 * want to do away with it. Explicitly scramble sort order if on the
4166 * default hierarchy so that no such expectation exists in the new
4167 * interface.
4168 *
4169 * Scrambling is done by swapping every two consecutive bits, which is
4170 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4171 */
4172 static pid_t pid_fry(pid_t pid)
4173 {
4174 unsigned a = pid & 0x55555555;
4175 unsigned b = pid & 0xAAAAAAAA;
4176
4177 return (a << 1) | (b >> 1);
4178 }
4179
4180 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4181 {
4182 if (cgroup_on_dfl(cgrp))
4183 return pid_fry(pid);
4184 else
4185 return pid;
4186 }
4187
4188 static int cmppid(const void *a, const void *b)
4189 {
4190 return *(pid_t *)a - *(pid_t *)b;
4191 }
4192
4193 static int fried_cmppid(const void *a, const void *b)
4194 {
4195 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4196 }
4197
4198 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4199 enum cgroup_filetype type)
4200 {
4201 struct cgroup_pidlist *l;
4202 /* don't need task_nsproxy() if we're looking at ourself */
4203 struct pid_namespace *ns = task_active_pid_ns(current);
4204
4205 lockdep_assert_held(&cgrp->pidlist_mutex);
4206
4207 list_for_each_entry(l, &cgrp->pidlists, links)
4208 if (l->key.type == type && l->key.ns == ns)
4209 return l;
4210 return NULL;
4211 }
4212
4213 /*
4214 * find the appropriate pidlist for our purpose (given procs vs tasks)
4215 * returns with the lock on that pidlist already held, and takes care
4216 * of the use count, or returns NULL with no locks held if we're out of
4217 * memory.
4218 */
4219 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4220 enum cgroup_filetype type)
4221 {
4222 struct cgroup_pidlist *l;
4223
4224 lockdep_assert_held(&cgrp->pidlist_mutex);
4225
4226 l = cgroup_pidlist_find(cgrp, type);
4227 if (l)
4228 return l;
4229
4230 /* entry not found; create a new one */
4231 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4232 if (!l)
4233 return l;
4234
4235 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4236 l->key.type = type;
4237 /* don't need task_nsproxy() if we're looking at ourself */
4238 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4239 l->owner = cgrp;
4240 list_add(&l->links, &cgrp->pidlists);
4241 return l;
4242 }
4243
4244 /*
4245 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4246 */
4247 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4248 struct cgroup_pidlist **lp)
4249 {
4250 pid_t *array;
4251 int length;
4252 int pid, n = 0; /* used for populating the array */
4253 struct css_task_iter it;
4254 struct task_struct *tsk;
4255 struct cgroup_pidlist *l;
4256
4257 lockdep_assert_held(&cgrp->pidlist_mutex);
4258
4259 /*
4260 * If cgroup gets more users after we read count, we won't have
4261 * enough space - tough. This race is indistinguishable to the
4262 * caller from the case that the additional cgroup users didn't
4263 * show up until sometime later on.
4264 */
4265 length = cgroup_task_count(cgrp);
4266 array = pidlist_allocate(length);
4267 if (!array)
4268 return -ENOMEM;
4269 /* now, populate the array */
4270 css_task_iter_start(&cgrp->self, &it);
4271 while ((tsk = css_task_iter_next(&it))) {
4272 if (unlikely(n == length))
4273 break;
4274 /* get tgid or pid for procs or tasks file respectively */
4275 if (type == CGROUP_FILE_PROCS)
4276 pid = task_tgid_vnr(tsk);
4277 else
4278 pid = task_pid_vnr(tsk);
4279 if (pid > 0) /* make sure to only use valid results */
4280 array[n++] = pid;
4281 }
4282 css_task_iter_end(&it);
4283 length = n;
4284 /* now sort & (if procs) strip out duplicates */
4285 if (cgroup_on_dfl(cgrp))
4286 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4287 else
4288 sort(array, length, sizeof(pid_t), cmppid, NULL);
4289 if (type == CGROUP_FILE_PROCS)
4290 length = pidlist_uniq(array, length);
4291
4292 l = cgroup_pidlist_find_create(cgrp, type);
4293 if (!l) {
4294 pidlist_free(array);
4295 return -ENOMEM;
4296 }
4297
4298 /* store array, freeing old if necessary */
4299 pidlist_free(l->list);
4300 l->list = array;
4301 l->length = length;
4302 *lp = l;
4303 return 0;
4304 }
4305
4306 /**
4307 * cgroupstats_build - build and fill cgroupstats
4308 * @stats: cgroupstats to fill information into
4309 * @dentry: A dentry entry belonging to the cgroup for which stats have
4310 * been requested.
4311 *
4312 * Build and fill cgroupstats so that taskstats can export it to user
4313 * space.
4314 */
4315 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4316 {
4317 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4318 struct cgroup *cgrp;
4319 struct css_task_iter it;
4320 struct task_struct *tsk;
4321
4322 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4323 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4324 kernfs_type(kn) != KERNFS_DIR)
4325 return -EINVAL;
4326
4327 mutex_lock(&cgroup_mutex);
4328
4329 /*
4330 * We aren't being called from kernfs and there's no guarantee on
4331 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4332 * @kn->priv is RCU safe. Let's do the RCU dancing.
4333 */
4334 rcu_read_lock();
4335 cgrp = rcu_dereference(kn->priv);
4336 if (!cgrp || cgroup_is_dead(cgrp)) {
4337 rcu_read_unlock();
4338 mutex_unlock(&cgroup_mutex);
4339 return -ENOENT;
4340 }
4341 rcu_read_unlock();
4342
4343 css_task_iter_start(&cgrp->self, &it);
4344 while ((tsk = css_task_iter_next(&it))) {
4345 switch (tsk->state) {
4346 case TASK_RUNNING:
4347 stats->nr_running++;
4348 break;
4349 case TASK_INTERRUPTIBLE:
4350 stats->nr_sleeping++;
4351 break;
4352 case TASK_UNINTERRUPTIBLE:
4353 stats->nr_uninterruptible++;
4354 break;
4355 case TASK_STOPPED:
4356 stats->nr_stopped++;
4357 break;
4358 default:
4359 if (delayacct_is_task_waiting_on_io(tsk))
4360 stats->nr_io_wait++;
4361 break;
4362 }
4363 }
4364 css_task_iter_end(&it);
4365
4366 mutex_unlock(&cgroup_mutex);
4367 return 0;
4368 }
4369
4370
4371 /*
4372 * seq_file methods for the tasks/procs files. The seq_file position is the
4373 * next pid to display; the seq_file iterator is a pointer to the pid
4374 * in the cgroup->l->list array.
4375 */
4376
4377 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4378 {
4379 /*
4380 * Initially we receive a position value that corresponds to
4381 * one more than the last pid shown (or 0 on the first call or
4382 * after a seek to the start). Use a binary-search to find the
4383 * next pid to display, if any
4384 */
4385 struct kernfs_open_file *of = s->private;
4386 struct cgroup *cgrp = seq_css(s)->cgroup;
4387 struct cgroup_pidlist *l;
4388 enum cgroup_filetype type = seq_cft(s)->private;
4389 int index = 0, pid = *pos;
4390 int *iter, ret;
4391
4392 mutex_lock(&cgrp->pidlist_mutex);
4393
4394 /*
4395 * !NULL @of->priv indicates that this isn't the first start()
4396 * after open. If the matching pidlist is around, we can use that.
4397 * Look for it. Note that @of->priv can't be used directly. It
4398 * could already have been destroyed.
4399 */
4400 if (of->priv)
4401 of->priv = cgroup_pidlist_find(cgrp, type);
4402
4403 /*
4404 * Either this is the first start() after open or the matching
4405 * pidlist has been destroyed inbetween. Create a new one.
4406 */
4407 if (!of->priv) {
4408 ret = pidlist_array_load(cgrp, type,
4409 (struct cgroup_pidlist **)&of->priv);
4410 if (ret)
4411 return ERR_PTR(ret);
4412 }
4413 l = of->priv;
4414
4415 if (pid) {
4416 int end = l->length;
4417
4418 while (index < end) {
4419 int mid = (index + end) / 2;
4420 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4421 index = mid;
4422 break;
4423 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4424 index = mid + 1;
4425 else
4426 end = mid;
4427 }
4428 }
4429 /* If we're off the end of the array, we're done */
4430 if (index >= l->length)
4431 return NULL;
4432 /* Update the abstract position to be the actual pid that we found */
4433 iter = l->list + index;
4434 *pos = cgroup_pid_fry(cgrp, *iter);
4435 return iter;
4436 }
4437
4438 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4439 {
4440 struct kernfs_open_file *of = s->private;
4441 struct cgroup_pidlist *l = of->priv;
4442
4443 if (l)
4444 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4445 CGROUP_PIDLIST_DESTROY_DELAY);
4446 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4447 }
4448
4449 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4450 {
4451 struct kernfs_open_file *of = s->private;
4452 struct cgroup_pidlist *l = of->priv;
4453 pid_t *p = v;
4454 pid_t *end = l->list + l->length;
4455 /*
4456 * Advance to the next pid in the array. If this goes off the
4457 * end, we're done
4458 */
4459 p++;
4460 if (p >= end) {
4461 return NULL;
4462 } else {
4463 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4464 return p;
4465 }
4466 }
4467
4468 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4469 {
4470 seq_printf(s, "%d\n", *(int *)v);
4471
4472 return 0;
4473 }
4474
4475 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4476 struct cftype *cft)
4477 {
4478 return notify_on_release(css->cgroup);
4479 }
4480
4481 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4482 struct cftype *cft, u64 val)
4483 {
4484 if (val)
4485 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4486 else
4487 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4488 return 0;
4489 }
4490
4491 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4492 struct cftype *cft)
4493 {
4494 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4495 }
4496
4497 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4498 struct cftype *cft, u64 val)
4499 {
4500 if (val)
4501 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4502 else
4503 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4504 return 0;
4505 }
4506
4507 /* cgroup core interface files for the default hierarchy */
4508 static struct cftype cgroup_dfl_base_files[] = {
4509 {
4510 .name = "cgroup.procs",
4511 .file_offset = offsetof(struct cgroup, procs_file),
4512 .seq_start = cgroup_pidlist_start,
4513 .seq_next = cgroup_pidlist_next,
4514 .seq_stop = cgroup_pidlist_stop,
4515 .seq_show = cgroup_pidlist_show,
4516 .private = CGROUP_FILE_PROCS,
4517 .write = cgroup_procs_write,
4518 },
4519 {
4520 .name = "cgroup.controllers",
4521 .flags = CFTYPE_ONLY_ON_ROOT,
4522 .seq_show = cgroup_root_controllers_show,
4523 },
4524 {
4525 .name = "cgroup.controllers",
4526 .flags = CFTYPE_NOT_ON_ROOT,
4527 .seq_show = cgroup_controllers_show,
4528 },
4529 {
4530 .name = "cgroup.subtree_control",
4531 .seq_show = cgroup_subtree_control_show,
4532 .write = cgroup_subtree_control_write,
4533 },
4534 {
4535 .name = "cgroup.events",
4536 .flags = CFTYPE_NOT_ON_ROOT,
4537 .file_offset = offsetof(struct cgroup, events_file),
4538 .seq_show = cgroup_events_show,
4539 },
4540 { } /* terminate */
4541 };
4542
4543 /* cgroup core interface files for the legacy hierarchies */
4544 static struct cftype cgroup_legacy_base_files[] = {
4545 {
4546 .name = "cgroup.procs",
4547 .seq_start = cgroup_pidlist_start,
4548 .seq_next = cgroup_pidlist_next,
4549 .seq_stop = cgroup_pidlist_stop,
4550 .seq_show = cgroup_pidlist_show,
4551 .private = CGROUP_FILE_PROCS,
4552 .write = cgroup_procs_write,
4553 },
4554 {
4555 .name = "cgroup.clone_children",
4556 .read_u64 = cgroup_clone_children_read,
4557 .write_u64 = cgroup_clone_children_write,
4558 },
4559 {
4560 .name = "cgroup.sane_behavior",
4561 .flags = CFTYPE_ONLY_ON_ROOT,
4562 .seq_show = cgroup_sane_behavior_show,
4563 },
4564 {
4565 .name = "tasks",
4566 .seq_start = cgroup_pidlist_start,
4567 .seq_next = cgroup_pidlist_next,
4568 .seq_stop = cgroup_pidlist_stop,
4569 .seq_show = cgroup_pidlist_show,
4570 .private = CGROUP_FILE_TASKS,
4571 .write = cgroup_tasks_write,
4572 },
4573 {
4574 .name = "notify_on_release",
4575 .read_u64 = cgroup_read_notify_on_release,
4576 .write_u64 = cgroup_write_notify_on_release,
4577 },
4578 {
4579 .name = "release_agent",
4580 .flags = CFTYPE_ONLY_ON_ROOT,
4581 .seq_show = cgroup_release_agent_show,
4582 .write = cgroup_release_agent_write,
4583 .max_write_len = PATH_MAX - 1,
4584 },
4585 { } /* terminate */
4586 };
4587
4588 /*
4589 * css destruction is four-stage process.
4590 *
4591 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4592 * Implemented in kill_css().
4593 *
4594 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4595 * and thus css_tryget_online() is guaranteed to fail, the css can be
4596 * offlined by invoking offline_css(). After offlining, the base ref is
4597 * put. Implemented in css_killed_work_fn().
4598 *
4599 * 3. When the percpu_ref reaches zero, the only possible remaining
4600 * accessors are inside RCU read sections. css_release() schedules the
4601 * RCU callback.
4602 *
4603 * 4. After the grace period, the css can be freed. Implemented in
4604 * css_free_work_fn().
4605 *
4606 * It is actually hairier because both step 2 and 4 require process context
4607 * and thus involve punting to css->destroy_work adding two additional
4608 * steps to the already complex sequence.
4609 */
4610 static void css_free_work_fn(struct work_struct *work)
4611 {
4612 struct cgroup_subsys_state *css =
4613 container_of(work, struct cgroup_subsys_state, destroy_work);
4614 struct cgroup_subsys *ss = css->ss;
4615 struct cgroup *cgrp = css->cgroup;
4616 struct cgroup_file *cfile;
4617
4618 percpu_ref_exit(&css->refcnt);
4619
4620 list_for_each_entry(cfile, &css->files, node)
4621 kernfs_put(cfile->kn);
4622
4623 if (ss) {
4624 /* css free path */
4625 int id = css->id;
4626
4627 if (css->parent)
4628 css_put(css->parent);
4629
4630 ss->css_free(css);
4631 cgroup_idr_remove(&ss->css_idr, id);
4632 cgroup_put(cgrp);
4633 } else {
4634 /* cgroup free path */
4635 atomic_dec(&cgrp->root->nr_cgrps);
4636 cgroup_pidlist_destroy_all(cgrp);
4637 cancel_work_sync(&cgrp->release_agent_work);
4638
4639 if (cgroup_parent(cgrp)) {
4640 /*
4641 * We get a ref to the parent, and put the ref when
4642 * this cgroup is being freed, so it's guaranteed
4643 * that the parent won't be destroyed before its
4644 * children.
4645 */
4646 cgroup_put(cgroup_parent(cgrp));
4647 kernfs_put(cgrp->kn);
4648 kfree(cgrp);
4649 } else {
4650 /*
4651 * This is root cgroup's refcnt reaching zero,
4652 * which indicates that the root should be
4653 * released.
4654 */
4655 cgroup_destroy_root(cgrp->root);
4656 }
4657 }
4658 }
4659
4660 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4661 {
4662 struct cgroup_subsys_state *css =
4663 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4664
4665 INIT_WORK(&css->destroy_work, css_free_work_fn);
4666 queue_work(cgroup_destroy_wq, &css->destroy_work);
4667 }
4668
4669 static void css_release_work_fn(struct work_struct *work)
4670 {
4671 struct cgroup_subsys_state *css =
4672 container_of(work, struct cgroup_subsys_state, destroy_work);
4673 struct cgroup_subsys *ss = css->ss;
4674 struct cgroup *cgrp = css->cgroup;
4675
4676 mutex_lock(&cgroup_mutex);
4677
4678 css->flags |= CSS_RELEASED;
4679 list_del_rcu(&css->sibling);
4680
4681 if (ss) {
4682 /* css release path */
4683 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4684 if (ss->css_released)
4685 ss->css_released(css);
4686 } else {
4687 /* cgroup release path */
4688 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4689 cgrp->id = -1;
4690
4691 /*
4692 * There are two control paths which try to determine
4693 * cgroup from dentry without going through kernfs -
4694 * cgroupstats_build() and css_tryget_online_from_dir().
4695 * Those are supported by RCU protecting clearing of
4696 * cgrp->kn->priv backpointer.
4697 */
4698 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4699 }
4700
4701 mutex_unlock(&cgroup_mutex);
4702
4703 call_rcu(&css->rcu_head, css_free_rcu_fn);
4704 }
4705
4706 static void css_release(struct percpu_ref *ref)
4707 {
4708 struct cgroup_subsys_state *css =
4709 container_of(ref, struct cgroup_subsys_state, refcnt);
4710
4711 INIT_WORK(&css->destroy_work, css_release_work_fn);
4712 queue_work(cgroup_destroy_wq, &css->destroy_work);
4713 }
4714
4715 static void init_and_link_css(struct cgroup_subsys_state *css,
4716 struct cgroup_subsys *ss, struct cgroup *cgrp)
4717 {
4718 lockdep_assert_held(&cgroup_mutex);
4719
4720 cgroup_get(cgrp);
4721
4722 memset(css, 0, sizeof(*css));
4723 css->cgroup = cgrp;
4724 css->ss = ss;
4725 INIT_LIST_HEAD(&css->sibling);
4726 INIT_LIST_HEAD(&css->children);
4727 INIT_LIST_HEAD(&css->files);
4728 css->serial_nr = css_serial_nr_next++;
4729
4730 if (cgroup_parent(cgrp)) {
4731 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4732 css_get(css->parent);
4733 }
4734
4735 BUG_ON(cgroup_css(cgrp, ss));
4736 }
4737
4738 /* invoke ->css_online() on a new CSS and mark it online if successful */
4739 static int online_css(struct cgroup_subsys_state *css)
4740 {
4741 struct cgroup_subsys *ss = css->ss;
4742 int ret = 0;
4743
4744 lockdep_assert_held(&cgroup_mutex);
4745
4746 if (ss->css_online)
4747 ret = ss->css_online(css);
4748 if (!ret) {
4749 css->flags |= CSS_ONLINE;
4750 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4751 }
4752 return ret;
4753 }
4754
4755 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4756 static void offline_css(struct cgroup_subsys_state *css)
4757 {
4758 struct cgroup_subsys *ss = css->ss;
4759
4760 lockdep_assert_held(&cgroup_mutex);
4761
4762 if (!(css->flags & CSS_ONLINE))
4763 return;
4764
4765 if (ss->css_offline)
4766 ss->css_offline(css);
4767
4768 css->flags &= ~CSS_ONLINE;
4769 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4770
4771 wake_up_all(&css->cgroup->offline_waitq);
4772 }
4773
4774 /**
4775 * create_css - create a cgroup_subsys_state
4776 * @cgrp: the cgroup new css will be associated with
4777 * @ss: the subsys of new css
4778 * @visible: whether to create control knobs for the new css or not
4779 *
4780 * Create a new css associated with @cgrp - @ss pair. On success, the new
4781 * css is online and installed in @cgrp with all interface files created if
4782 * @visible. Returns 0 on success, -errno on failure.
4783 */
4784 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4785 bool visible)
4786 {
4787 struct cgroup *parent = cgroup_parent(cgrp);
4788 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4789 struct cgroup_subsys_state *css;
4790 int err;
4791
4792 lockdep_assert_held(&cgroup_mutex);
4793
4794 css = ss->css_alloc(parent_css);
4795 if (IS_ERR(css))
4796 return PTR_ERR(css);
4797
4798 init_and_link_css(css, ss, cgrp);
4799
4800 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4801 if (err)
4802 goto err_free_css;
4803
4804 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4805 if (err < 0)
4806 goto err_free_percpu_ref;
4807 css->id = err;
4808
4809 if (visible) {
4810 err = css_populate_dir(css, NULL);
4811 if (err)
4812 goto err_free_id;
4813 }
4814
4815 /* @css is ready to be brought online now, make it visible */
4816 list_add_tail_rcu(&css->sibling, &parent_css->children);
4817 cgroup_idr_replace(&ss->css_idr, css, css->id);
4818
4819 err = online_css(css);
4820 if (err)
4821 goto err_list_del;
4822
4823 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4824 cgroup_parent(parent)) {
4825 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4826 current->comm, current->pid, ss->name);
4827 if (!strcmp(ss->name, "memory"))
4828 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4829 ss->warned_broken_hierarchy = true;
4830 }
4831
4832 return 0;
4833
4834 err_list_del:
4835 list_del_rcu(&css->sibling);
4836 css_clear_dir(css, NULL);
4837 err_free_id:
4838 cgroup_idr_remove(&ss->css_idr, css->id);
4839 err_free_percpu_ref:
4840 percpu_ref_exit(&css->refcnt);
4841 err_free_css:
4842 call_rcu(&css->rcu_head, css_free_rcu_fn);
4843 return err;
4844 }
4845
4846 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4847 umode_t mode)
4848 {
4849 struct cgroup *parent, *cgrp;
4850 struct cgroup_root *root;
4851 struct cgroup_subsys *ss;
4852 struct kernfs_node *kn;
4853 int ssid, ret;
4854
4855 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4856 */
4857 if (strchr(name, '\n'))
4858 return -EINVAL;
4859
4860 parent = cgroup_kn_lock_live(parent_kn);
4861 if (!parent)
4862 return -ENODEV;
4863 root = parent->root;
4864
4865 /* allocate the cgroup and its ID, 0 is reserved for the root */
4866 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4867 if (!cgrp) {
4868 ret = -ENOMEM;
4869 goto out_unlock;
4870 }
4871
4872 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4873 if (ret)
4874 goto out_free_cgrp;
4875
4876 /*
4877 * Temporarily set the pointer to NULL, so idr_find() won't return
4878 * a half-baked cgroup.
4879 */
4880 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4881 if (cgrp->id < 0) {
4882 ret = -ENOMEM;
4883 goto out_cancel_ref;
4884 }
4885
4886 init_cgroup_housekeeping(cgrp);
4887
4888 cgrp->self.parent = &parent->self;
4889 cgrp->root = root;
4890
4891 if (notify_on_release(parent))
4892 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4893
4894 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4895 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4896
4897 /* create the directory */
4898 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4899 if (IS_ERR(kn)) {
4900 ret = PTR_ERR(kn);
4901 goto out_free_id;
4902 }
4903 cgrp->kn = kn;
4904
4905 /*
4906 * This extra ref will be put in cgroup_free_fn() and guarantees
4907 * that @cgrp->kn is always accessible.
4908 */
4909 kernfs_get(kn);
4910
4911 cgrp->self.serial_nr = css_serial_nr_next++;
4912
4913 /* allocation complete, commit to creation */
4914 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4915 atomic_inc(&root->nr_cgrps);
4916 cgroup_get(parent);
4917
4918 /*
4919 * @cgrp is now fully operational. If something fails after this
4920 * point, it'll be released via the normal destruction path.
4921 */
4922 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4923
4924 ret = cgroup_kn_set_ugid(kn);
4925 if (ret)
4926 goto out_destroy;
4927
4928 ret = css_populate_dir(&cgrp->self, NULL);
4929 if (ret)
4930 goto out_destroy;
4931
4932 /* let's create and online css's */
4933 for_each_subsys(ss, ssid) {
4934 if (parent->child_subsys_mask & (1 << ssid)) {
4935 ret = create_css(cgrp, ss,
4936 parent->subtree_control & (1 << ssid));
4937 if (ret)
4938 goto out_destroy;
4939 }
4940 }
4941
4942 /*
4943 * On the default hierarchy, a child doesn't automatically inherit
4944 * subtree_control from the parent. Each is configured manually.
4945 */
4946 if (!cgroup_on_dfl(cgrp)) {
4947 cgrp->subtree_control = parent->subtree_control;
4948 cgroup_refresh_child_subsys_mask(cgrp);
4949 }
4950
4951 kernfs_activate(kn);
4952
4953 ret = 0;
4954 goto out_unlock;
4955
4956 out_free_id:
4957 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4958 out_cancel_ref:
4959 percpu_ref_exit(&cgrp->self.refcnt);
4960 out_free_cgrp:
4961 kfree(cgrp);
4962 out_unlock:
4963 cgroup_kn_unlock(parent_kn);
4964 return ret;
4965
4966 out_destroy:
4967 cgroup_destroy_locked(cgrp);
4968 goto out_unlock;
4969 }
4970
4971 /*
4972 * This is called when the refcnt of a css is confirmed to be killed.
4973 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4974 * initate destruction and put the css ref from kill_css().
4975 */
4976 static void css_killed_work_fn(struct work_struct *work)
4977 {
4978 struct cgroup_subsys_state *css =
4979 container_of(work, struct cgroup_subsys_state, destroy_work);
4980
4981 mutex_lock(&cgroup_mutex);
4982 offline_css(css);
4983 mutex_unlock(&cgroup_mutex);
4984
4985 css_put(css);
4986 }
4987
4988 /* css kill confirmation processing requires process context, bounce */
4989 static void css_killed_ref_fn(struct percpu_ref *ref)
4990 {
4991 struct cgroup_subsys_state *css =
4992 container_of(ref, struct cgroup_subsys_state, refcnt);
4993
4994 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4995 queue_work(cgroup_destroy_wq, &css->destroy_work);
4996 }
4997
4998 /**
4999 * kill_css - destroy a css
5000 * @css: css to destroy
5001 *
5002 * This function initiates destruction of @css by removing cgroup interface
5003 * files and putting its base reference. ->css_offline() will be invoked
5004 * asynchronously once css_tryget_online() is guaranteed to fail and when
5005 * the reference count reaches zero, @css will be released.
5006 */
5007 static void kill_css(struct cgroup_subsys_state *css)
5008 {
5009 lockdep_assert_held(&cgroup_mutex);
5010
5011 /*
5012 * This must happen before css is disassociated with its cgroup.
5013 * See seq_css() for details.
5014 */
5015 css_clear_dir(css, NULL);
5016
5017 /*
5018 * Killing would put the base ref, but we need to keep it alive
5019 * until after ->css_offline().
5020 */
5021 css_get(css);
5022
5023 /*
5024 * cgroup core guarantees that, by the time ->css_offline() is
5025 * invoked, no new css reference will be given out via
5026 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5027 * proceed to offlining css's because percpu_ref_kill() doesn't
5028 * guarantee that the ref is seen as killed on all CPUs on return.
5029 *
5030 * Use percpu_ref_kill_and_confirm() to get notifications as each
5031 * css is confirmed to be seen as killed on all CPUs.
5032 */
5033 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5034 }
5035
5036 /**
5037 * cgroup_destroy_locked - the first stage of cgroup destruction
5038 * @cgrp: cgroup to be destroyed
5039 *
5040 * css's make use of percpu refcnts whose killing latency shouldn't be
5041 * exposed to userland and are RCU protected. Also, cgroup core needs to
5042 * guarantee that css_tryget_online() won't succeed by the time
5043 * ->css_offline() is invoked. To satisfy all the requirements,
5044 * destruction is implemented in the following two steps.
5045 *
5046 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5047 * userland visible parts and start killing the percpu refcnts of
5048 * css's. Set up so that the next stage will be kicked off once all
5049 * the percpu refcnts are confirmed to be killed.
5050 *
5051 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5052 * rest of destruction. Once all cgroup references are gone, the
5053 * cgroup is RCU-freed.
5054 *
5055 * This function implements s1. After this step, @cgrp is gone as far as
5056 * the userland is concerned and a new cgroup with the same name may be
5057 * created. As cgroup doesn't care about the names internally, this
5058 * doesn't cause any problem.
5059 */
5060 static int cgroup_destroy_locked(struct cgroup *cgrp)
5061 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5062 {
5063 struct cgroup_subsys_state *css;
5064 int ssid;
5065
5066 lockdep_assert_held(&cgroup_mutex);
5067
5068 /*
5069 * Only migration can raise populated from zero and we're already
5070 * holding cgroup_mutex.
5071 */
5072 if (cgroup_is_populated(cgrp))
5073 return -EBUSY;
5074
5075 /*
5076 * Make sure there's no live children. We can't test emptiness of
5077 * ->self.children as dead children linger on it while being
5078 * drained; otherwise, "rmdir parent/child parent" may fail.
5079 */
5080 if (css_has_online_children(&cgrp->self))
5081 return -EBUSY;
5082
5083 /*
5084 * Mark @cgrp dead. This prevents further task migration and child
5085 * creation by disabling cgroup_lock_live_group().
5086 */
5087 cgrp->self.flags &= ~CSS_ONLINE;
5088
5089 /* initiate massacre of all css's */
5090 for_each_css(css, ssid, cgrp)
5091 kill_css(css);
5092
5093 /*
5094 * Remove @cgrp directory along with the base files. @cgrp has an
5095 * extra ref on its kn.
5096 */
5097 kernfs_remove(cgrp->kn);
5098
5099 check_for_release(cgroup_parent(cgrp));
5100
5101 /* put the base reference */
5102 percpu_ref_kill(&cgrp->self.refcnt);
5103
5104 return 0;
5105 };
5106
5107 static int cgroup_rmdir(struct kernfs_node *kn)
5108 {
5109 struct cgroup *cgrp;
5110 int ret = 0;
5111
5112 cgrp = cgroup_kn_lock_live(kn);
5113 if (!cgrp)
5114 return 0;
5115
5116 ret = cgroup_destroy_locked(cgrp);
5117
5118 cgroup_kn_unlock(kn);
5119 return ret;
5120 }
5121
5122 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5123 .remount_fs = cgroup_remount,
5124 .show_options = cgroup_show_options,
5125 .mkdir = cgroup_mkdir,
5126 .rmdir = cgroup_rmdir,
5127 .rename = cgroup_rename,
5128 };
5129
5130 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5131 {
5132 struct cgroup_subsys_state *css;
5133
5134 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5135
5136 mutex_lock(&cgroup_mutex);
5137
5138 idr_init(&ss->css_idr);
5139 INIT_LIST_HEAD(&ss->cfts);
5140
5141 /* Create the root cgroup state for this subsystem */
5142 ss->root = &cgrp_dfl_root;
5143 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5144 /* We don't handle early failures gracefully */
5145 BUG_ON(IS_ERR(css));
5146 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5147
5148 /*
5149 * Root csses are never destroyed and we can't initialize
5150 * percpu_ref during early init. Disable refcnting.
5151 */
5152 css->flags |= CSS_NO_REF;
5153
5154 if (early) {
5155 /* allocation can't be done safely during early init */
5156 css->id = 1;
5157 } else {
5158 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5159 BUG_ON(css->id < 0);
5160 }
5161
5162 /* Update the init_css_set to contain a subsys
5163 * pointer to this state - since the subsystem is
5164 * newly registered, all tasks and hence the
5165 * init_css_set is in the subsystem's root cgroup. */
5166 init_css_set.subsys[ss->id] = css;
5167
5168 have_fork_callback |= (bool)ss->fork << ss->id;
5169 have_exit_callback |= (bool)ss->exit << ss->id;
5170 have_free_callback |= (bool)ss->free << ss->id;
5171 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5172
5173 /* At system boot, before all subsystems have been
5174 * registered, no tasks have been forked, so we don't
5175 * need to invoke fork callbacks here. */
5176 BUG_ON(!list_empty(&init_task.tasks));
5177
5178 BUG_ON(online_css(css));
5179
5180 mutex_unlock(&cgroup_mutex);
5181 }
5182
5183 /**
5184 * cgroup_init_early - cgroup initialization at system boot
5185 *
5186 * Initialize cgroups at system boot, and initialize any
5187 * subsystems that request early init.
5188 */
5189 int __init cgroup_init_early(void)
5190 {
5191 static struct cgroup_sb_opts __initdata opts;
5192 struct cgroup_subsys *ss;
5193 int i;
5194
5195 init_cgroup_root(&cgrp_dfl_root, &opts);
5196 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5197
5198 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5199
5200 for_each_subsys(ss, i) {
5201 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5202 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5203 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5204 ss->id, ss->name);
5205 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5206 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5207
5208 ss->id = i;
5209 ss->name = cgroup_subsys_name[i];
5210 if (!ss->legacy_name)
5211 ss->legacy_name = cgroup_subsys_name[i];
5212
5213 if (ss->early_init)
5214 cgroup_init_subsys(ss, true);
5215 }
5216 return 0;
5217 }
5218
5219 static unsigned long cgroup_disable_mask __initdata;
5220
5221 /**
5222 * cgroup_init - cgroup initialization
5223 *
5224 * Register cgroup filesystem and /proc file, and initialize
5225 * any subsystems that didn't request early init.
5226 */
5227 int __init cgroup_init(void)
5228 {
5229 struct cgroup_subsys *ss;
5230 unsigned long key;
5231 int ssid;
5232
5233 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5234 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5235 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5236
5237 mutex_lock(&cgroup_mutex);
5238
5239 /* Add init_css_set to the hash table */
5240 key = css_set_hash(init_css_set.subsys);
5241 hash_add(css_set_table, &init_css_set.hlist, key);
5242
5243 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5244
5245 mutex_unlock(&cgroup_mutex);
5246
5247 for_each_subsys(ss, ssid) {
5248 if (ss->early_init) {
5249 struct cgroup_subsys_state *css =
5250 init_css_set.subsys[ss->id];
5251
5252 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5253 GFP_KERNEL);
5254 BUG_ON(css->id < 0);
5255 } else {
5256 cgroup_init_subsys(ss, false);
5257 }
5258
5259 list_add_tail(&init_css_set.e_cset_node[ssid],
5260 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5261
5262 /*
5263 * Setting dfl_root subsys_mask needs to consider the
5264 * disabled flag and cftype registration needs kmalloc,
5265 * both of which aren't available during early_init.
5266 */
5267 if (cgroup_disable_mask & (1 << ssid)) {
5268 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5269 printk(KERN_INFO "Disabling %s control group subsystem\n",
5270 ss->name);
5271 continue;
5272 }
5273
5274 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5275
5276 if (!ss->dfl_cftypes)
5277 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5278
5279 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5280 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5281 } else {
5282 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5283 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5284 }
5285
5286 if (ss->bind)
5287 ss->bind(init_css_set.subsys[ssid]);
5288 }
5289
5290 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5291 WARN_ON(register_filesystem(&cgroup_fs_type));
5292 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5293
5294 return 0;
5295 }
5296
5297 static int __init cgroup_wq_init(void)
5298 {
5299 /*
5300 * There isn't much point in executing destruction path in
5301 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5302 * Use 1 for @max_active.
5303 *
5304 * We would prefer to do this in cgroup_init() above, but that
5305 * is called before init_workqueues(): so leave this until after.
5306 */
5307 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5308 BUG_ON(!cgroup_destroy_wq);
5309
5310 /*
5311 * Used to destroy pidlists and separate to serve as flush domain.
5312 * Cap @max_active to 1 too.
5313 */
5314 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5315 0, 1);
5316 BUG_ON(!cgroup_pidlist_destroy_wq);
5317
5318 return 0;
5319 }
5320 core_initcall(cgroup_wq_init);
5321
5322 /*
5323 * proc_cgroup_show()
5324 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5325 * - Used for /proc/<pid>/cgroup.
5326 */
5327 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5328 struct pid *pid, struct task_struct *tsk)
5329 {
5330 char *buf, *path;
5331 int retval;
5332 struct cgroup_root *root;
5333
5334 retval = -ENOMEM;
5335 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5336 if (!buf)
5337 goto out;
5338
5339 mutex_lock(&cgroup_mutex);
5340 spin_lock_bh(&css_set_lock);
5341
5342 for_each_root(root) {
5343 struct cgroup_subsys *ss;
5344 struct cgroup *cgrp;
5345 int ssid, count = 0;
5346
5347 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5348 continue;
5349
5350 seq_printf(m, "%d:", root->hierarchy_id);
5351 if (root != &cgrp_dfl_root)
5352 for_each_subsys(ss, ssid)
5353 if (root->subsys_mask & (1 << ssid))
5354 seq_printf(m, "%s%s", count++ ? "," : "",
5355 ss->legacy_name);
5356 if (strlen(root->name))
5357 seq_printf(m, "%sname=%s", count ? "," : "",
5358 root->name);
5359 seq_putc(m, ':');
5360
5361 cgrp = task_cgroup_from_root(tsk, root);
5362
5363 /*
5364 * On traditional hierarchies, all zombie tasks show up as
5365 * belonging to the root cgroup. On the default hierarchy,
5366 * while a zombie doesn't show up in "cgroup.procs" and
5367 * thus can't be migrated, its /proc/PID/cgroup keeps
5368 * reporting the cgroup it belonged to before exiting. If
5369 * the cgroup is removed before the zombie is reaped,
5370 * " (deleted)" is appended to the cgroup path.
5371 */
5372 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5373 path = cgroup_path(cgrp, buf, PATH_MAX);
5374 if (!path) {
5375 retval = -ENAMETOOLONG;
5376 goto out_unlock;
5377 }
5378 } else {
5379 path = "/";
5380 }
5381
5382 seq_puts(m, path);
5383
5384 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5385 seq_puts(m, " (deleted)\n");
5386 else
5387 seq_putc(m, '\n');
5388 }
5389
5390 retval = 0;
5391 out_unlock:
5392 spin_unlock_bh(&css_set_lock);
5393 mutex_unlock(&cgroup_mutex);
5394 kfree(buf);
5395 out:
5396 return retval;
5397 }
5398
5399 /* Display information about each subsystem and each hierarchy */
5400 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5401 {
5402 struct cgroup_subsys *ss;
5403 int i;
5404
5405 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5406 /*
5407 * ideally we don't want subsystems moving around while we do this.
5408 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5409 * subsys/hierarchy state.
5410 */
5411 mutex_lock(&cgroup_mutex);
5412
5413 for_each_subsys(ss, i)
5414 seq_printf(m, "%s\t%d\t%d\t%d\n",
5415 ss->legacy_name, ss->root->hierarchy_id,
5416 atomic_read(&ss->root->nr_cgrps),
5417 cgroup_ssid_enabled(i));
5418
5419 mutex_unlock(&cgroup_mutex);
5420 return 0;
5421 }
5422
5423 static int cgroupstats_open(struct inode *inode, struct file *file)
5424 {
5425 return single_open(file, proc_cgroupstats_show, NULL);
5426 }
5427
5428 static const struct file_operations proc_cgroupstats_operations = {
5429 .open = cgroupstats_open,
5430 .read = seq_read,
5431 .llseek = seq_lseek,
5432 .release = single_release,
5433 };
5434
5435 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5436 {
5437 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5438 return &ss_priv[i - CGROUP_CANFORK_START];
5439 return NULL;
5440 }
5441
5442 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5443 {
5444 void **private = subsys_canfork_priv_p(ss_priv, i);
5445 return private ? *private : NULL;
5446 }
5447
5448 /**
5449 * cgroup_fork - initialize cgroup related fields during copy_process()
5450 * @child: pointer to task_struct of forking parent process.
5451 *
5452 * A task is associated with the init_css_set until cgroup_post_fork()
5453 * attaches it to the parent's css_set. Empty cg_list indicates that
5454 * @child isn't holding reference to its css_set.
5455 */
5456 void cgroup_fork(struct task_struct *child)
5457 {
5458 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5459 INIT_LIST_HEAD(&child->cg_list);
5460 }
5461
5462 /**
5463 * cgroup_can_fork - called on a new task before the process is exposed
5464 * @child: the task in question.
5465 *
5466 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5467 * returns an error, the fork aborts with that error code. This allows for
5468 * a cgroup subsystem to conditionally allow or deny new forks.
5469 */
5470 int cgroup_can_fork(struct task_struct *child,
5471 void *ss_priv[CGROUP_CANFORK_COUNT])
5472 {
5473 struct cgroup_subsys *ss;
5474 int i, j, ret;
5475
5476 for_each_subsys_which(ss, i, &have_canfork_callback) {
5477 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5478 if (ret)
5479 goto out_revert;
5480 }
5481
5482 return 0;
5483
5484 out_revert:
5485 for_each_subsys(ss, j) {
5486 if (j >= i)
5487 break;
5488 if (ss->cancel_fork)
5489 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5490 }
5491
5492 return ret;
5493 }
5494
5495 /**
5496 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5497 * @child: the task in question
5498 *
5499 * This calls the cancel_fork() callbacks if a fork failed *after*
5500 * cgroup_can_fork() succeded.
5501 */
5502 void cgroup_cancel_fork(struct task_struct *child,
5503 void *ss_priv[CGROUP_CANFORK_COUNT])
5504 {
5505 struct cgroup_subsys *ss;
5506 int i;
5507
5508 for_each_subsys(ss, i)
5509 if (ss->cancel_fork)
5510 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5511 }
5512
5513 /**
5514 * cgroup_post_fork - called on a new task after adding it to the task list
5515 * @child: the task in question
5516 *
5517 * Adds the task to the list running through its css_set if necessary and
5518 * call the subsystem fork() callbacks. Has to be after the task is
5519 * visible on the task list in case we race with the first call to
5520 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5521 * list.
5522 */
5523 void cgroup_post_fork(struct task_struct *child,
5524 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5525 {
5526 struct cgroup_subsys *ss;
5527 int i;
5528
5529 /*
5530 * This may race against cgroup_enable_task_cg_lists(). As that
5531 * function sets use_task_css_set_links before grabbing
5532 * tasklist_lock and we just went through tasklist_lock to add
5533 * @child, it's guaranteed that either we see the set
5534 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5535 * @child during its iteration.
5536 *
5537 * If we won the race, @child is associated with %current's
5538 * css_set. Grabbing css_set_lock guarantees both that the
5539 * association is stable, and, on completion of the parent's
5540 * migration, @child is visible in the source of migration or
5541 * already in the destination cgroup. This guarantee is necessary
5542 * when implementing operations which need to migrate all tasks of
5543 * a cgroup to another.
5544 *
5545 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5546 * will remain in init_css_set. This is safe because all tasks are
5547 * in the init_css_set before cg_links is enabled and there's no
5548 * operation which transfers all tasks out of init_css_set.
5549 */
5550 if (use_task_css_set_links) {
5551 struct css_set *cset;
5552
5553 spin_lock_bh(&css_set_lock);
5554 cset = task_css_set(current);
5555 if (list_empty(&child->cg_list)) {
5556 get_css_set(cset);
5557 css_set_move_task(child, NULL, cset, false);
5558 }
5559 spin_unlock_bh(&css_set_lock);
5560 }
5561
5562 /*
5563 * Call ss->fork(). This must happen after @child is linked on
5564 * css_set; otherwise, @child might change state between ->fork()
5565 * and addition to css_set.
5566 */
5567 for_each_subsys_which(ss, i, &have_fork_callback)
5568 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5569 }
5570
5571 /**
5572 * cgroup_exit - detach cgroup from exiting task
5573 * @tsk: pointer to task_struct of exiting process
5574 *
5575 * Description: Detach cgroup from @tsk and release it.
5576 *
5577 * Note that cgroups marked notify_on_release force every task in
5578 * them to take the global cgroup_mutex mutex when exiting.
5579 * This could impact scaling on very large systems. Be reluctant to
5580 * use notify_on_release cgroups where very high task exit scaling
5581 * is required on large systems.
5582 *
5583 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5584 * call cgroup_exit() while the task is still competent to handle
5585 * notify_on_release(), then leave the task attached to the root cgroup in
5586 * each hierarchy for the remainder of its exit. No need to bother with
5587 * init_css_set refcnting. init_css_set never goes away and we can't race
5588 * with migration path - PF_EXITING is visible to migration path.
5589 */
5590 void cgroup_exit(struct task_struct *tsk)
5591 {
5592 struct cgroup_subsys *ss;
5593 struct css_set *cset;
5594 int i;
5595
5596 /*
5597 * Unlink from @tsk from its css_set. As migration path can't race
5598 * with us, we can check css_set and cg_list without synchronization.
5599 */
5600 cset = task_css_set(tsk);
5601
5602 if (!list_empty(&tsk->cg_list)) {
5603 spin_lock_bh(&css_set_lock);
5604 css_set_move_task(tsk, cset, NULL, false);
5605 spin_unlock_bh(&css_set_lock);
5606 } else {
5607 get_css_set(cset);
5608 }
5609
5610 /* see cgroup_post_fork() for details */
5611 for_each_subsys_which(ss, i, &have_exit_callback)
5612 ss->exit(tsk);
5613 }
5614
5615 void cgroup_free(struct task_struct *task)
5616 {
5617 struct css_set *cset = task_css_set(task);
5618 struct cgroup_subsys *ss;
5619 int ssid;
5620
5621 for_each_subsys_which(ss, ssid, &have_free_callback)
5622 ss->free(task);
5623
5624 put_css_set(cset);
5625 }
5626
5627 static void check_for_release(struct cgroup *cgrp)
5628 {
5629 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5630 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5631 schedule_work(&cgrp->release_agent_work);
5632 }
5633
5634 /*
5635 * Notify userspace when a cgroup is released, by running the
5636 * configured release agent with the name of the cgroup (path
5637 * relative to the root of cgroup file system) as the argument.
5638 *
5639 * Most likely, this user command will try to rmdir this cgroup.
5640 *
5641 * This races with the possibility that some other task will be
5642 * attached to this cgroup before it is removed, or that some other
5643 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5644 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5645 * unused, and this cgroup will be reprieved from its death sentence,
5646 * to continue to serve a useful existence. Next time it's released,
5647 * we will get notified again, if it still has 'notify_on_release' set.
5648 *
5649 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5650 * means only wait until the task is successfully execve()'d. The
5651 * separate release agent task is forked by call_usermodehelper(),
5652 * then control in this thread returns here, without waiting for the
5653 * release agent task. We don't bother to wait because the caller of
5654 * this routine has no use for the exit status of the release agent
5655 * task, so no sense holding our caller up for that.
5656 */
5657 static void cgroup_release_agent(struct work_struct *work)
5658 {
5659 struct cgroup *cgrp =
5660 container_of(work, struct cgroup, release_agent_work);
5661 char *pathbuf = NULL, *agentbuf = NULL, *path;
5662 char *argv[3], *envp[3];
5663
5664 mutex_lock(&cgroup_mutex);
5665
5666 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5667 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5668 if (!pathbuf || !agentbuf)
5669 goto out;
5670
5671 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5672 if (!path)
5673 goto out;
5674
5675 argv[0] = agentbuf;
5676 argv[1] = path;
5677 argv[2] = NULL;
5678
5679 /* minimal command environment */
5680 envp[0] = "HOME=/";
5681 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5682 envp[2] = NULL;
5683
5684 mutex_unlock(&cgroup_mutex);
5685 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5686 goto out_free;
5687 out:
5688 mutex_unlock(&cgroup_mutex);
5689 out_free:
5690 kfree(agentbuf);
5691 kfree(pathbuf);
5692 }
5693
5694 static int __init cgroup_disable(char *str)
5695 {
5696 struct cgroup_subsys *ss;
5697 char *token;
5698 int i;
5699
5700 while ((token = strsep(&str, ",")) != NULL) {
5701 if (!*token)
5702 continue;
5703
5704 for_each_subsys(ss, i) {
5705 if (strcmp(token, ss->name) &&
5706 strcmp(token, ss->legacy_name))
5707 continue;
5708 cgroup_disable_mask |= 1 << i;
5709 }
5710 }
5711 return 1;
5712 }
5713 __setup("cgroup_disable=", cgroup_disable);
5714
5715 /**
5716 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5717 * @dentry: directory dentry of interest
5718 * @ss: subsystem of interest
5719 *
5720 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5721 * to get the corresponding css and return it. If such css doesn't exist
5722 * or can't be pinned, an ERR_PTR value is returned.
5723 */
5724 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5725 struct cgroup_subsys *ss)
5726 {
5727 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5728 struct cgroup_subsys_state *css = NULL;
5729 struct cgroup *cgrp;
5730
5731 /* is @dentry a cgroup dir? */
5732 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5733 kernfs_type(kn) != KERNFS_DIR)
5734 return ERR_PTR(-EBADF);
5735
5736 rcu_read_lock();
5737
5738 /*
5739 * This path doesn't originate from kernfs and @kn could already
5740 * have been or be removed at any point. @kn->priv is RCU
5741 * protected for this access. See css_release_work_fn() for details.
5742 */
5743 cgrp = rcu_dereference(kn->priv);
5744 if (cgrp)
5745 css = cgroup_css(cgrp, ss);
5746
5747 if (!css || !css_tryget_online(css))
5748 css = ERR_PTR(-ENOENT);
5749
5750 rcu_read_unlock();
5751 return css;
5752 }
5753
5754 /**
5755 * css_from_id - lookup css by id
5756 * @id: the cgroup id
5757 * @ss: cgroup subsys to be looked into
5758 *
5759 * Returns the css if there's valid one with @id, otherwise returns NULL.
5760 * Should be called under rcu_read_lock().
5761 */
5762 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5763 {
5764 WARN_ON_ONCE(!rcu_read_lock_held());
5765 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5766 }
5767
5768 #ifdef CONFIG_CGROUP_DEBUG
5769 static struct cgroup_subsys_state *
5770 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5771 {
5772 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5773
5774 if (!css)
5775 return ERR_PTR(-ENOMEM);
5776
5777 return css;
5778 }
5779
5780 static void debug_css_free(struct cgroup_subsys_state *css)
5781 {
5782 kfree(css);
5783 }
5784
5785 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5786 struct cftype *cft)
5787 {
5788 return cgroup_task_count(css->cgroup);
5789 }
5790
5791 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5792 struct cftype *cft)
5793 {
5794 return (u64)(unsigned long)current->cgroups;
5795 }
5796
5797 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5798 struct cftype *cft)
5799 {
5800 u64 count;
5801
5802 rcu_read_lock();
5803 count = atomic_read(&task_css_set(current)->refcount);
5804 rcu_read_unlock();
5805 return count;
5806 }
5807
5808 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5809 {
5810 struct cgrp_cset_link *link;
5811 struct css_set *cset;
5812 char *name_buf;
5813
5814 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5815 if (!name_buf)
5816 return -ENOMEM;
5817
5818 spin_lock_bh(&css_set_lock);
5819 rcu_read_lock();
5820 cset = rcu_dereference(current->cgroups);
5821 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5822 struct cgroup *c = link->cgrp;
5823
5824 cgroup_name(c, name_buf, NAME_MAX + 1);
5825 seq_printf(seq, "Root %d group %s\n",
5826 c->root->hierarchy_id, name_buf);
5827 }
5828 rcu_read_unlock();
5829 spin_unlock_bh(&css_set_lock);
5830 kfree(name_buf);
5831 return 0;
5832 }
5833
5834 #define MAX_TASKS_SHOWN_PER_CSS 25
5835 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5836 {
5837 struct cgroup_subsys_state *css = seq_css(seq);
5838 struct cgrp_cset_link *link;
5839
5840 spin_lock_bh(&css_set_lock);
5841 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5842 struct css_set *cset = link->cset;
5843 struct task_struct *task;
5844 int count = 0;
5845
5846 seq_printf(seq, "css_set %p\n", cset);
5847
5848 list_for_each_entry(task, &cset->tasks, cg_list) {
5849 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5850 goto overflow;
5851 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5852 }
5853
5854 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5855 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5856 goto overflow;
5857 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5858 }
5859 continue;
5860 overflow:
5861 seq_puts(seq, " ...\n");
5862 }
5863 spin_unlock_bh(&css_set_lock);
5864 return 0;
5865 }
5866
5867 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5868 {
5869 return (!cgroup_is_populated(css->cgroup) &&
5870 !css_has_online_children(&css->cgroup->self));
5871 }
5872
5873 static struct cftype debug_files[] = {
5874 {
5875 .name = "taskcount",
5876 .read_u64 = debug_taskcount_read,
5877 },
5878
5879 {
5880 .name = "current_css_set",
5881 .read_u64 = current_css_set_read,
5882 },
5883
5884 {
5885 .name = "current_css_set_refcount",
5886 .read_u64 = current_css_set_refcount_read,
5887 },
5888
5889 {
5890 .name = "current_css_set_cg_links",
5891 .seq_show = current_css_set_cg_links_read,
5892 },
5893
5894 {
5895 .name = "cgroup_css_links",
5896 .seq_show = cgroup_css_links_read,
5897 },
5898
5899 {
5900 .name = "releasable",
5901 .read_u64 = releasable_read,
5902 },
5903
5904 { } /* terminate */
5905 };
5906
5907 struct cgroup_subsys debug_cgrp_subsys = {
5908 .css_alloc = debug_css_alloc,
5909 .css_free = debug_css_free,
5910 .legacy_cftypes = debug_files,
5911 };
5912 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.209481 seconds and 6 git commands to generate.