cgroup, cpuset: don't use ss->pre_attach()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84
85 /*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97
98 /*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103 struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
132
133 /* The path to use for release notifications. */
134 char release_agent_path[PATH_MAX];
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
138 };
139
140 /*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145 static struct cgroupfs_root rootnode;
146
147 /*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151 #define CSS_ID_MAX (65535)
152 struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
160 struct cgroup_subsys_state __rcu *css;
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177 };
178
179 /*
180 * cgroup_event represents events which userspace want to receive.
181 */
182 struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207 };
208
209 /* The list of hierarchy roots */
210
211 static LIST_HEAD(roots);
212 static int root_count;
213
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
217
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
220
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
225 */
226 static int need_forkexit_callback __read_mostly;
227
228 #ifdef CONFIG_PROVE_LOCKING
229 int cgroup_lock_is_held(void)
230 {
231 return lockdep_is_held(&cgroup_mutex);
232 }
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
234 int cgroup_lock_is_held(void)
235 {
236 return mutex_is_locked(&cgroup_mutex);
237 }
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
242 /* convenient tests for these bits */
243 inline int cgroup_is_removed(const struct cgroup *cgrp)
244 {
245 return test_bit(CGRP_REMOVED, &cgrp->flags);
246 }
247
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251 };
252
253 static int cgroup_is_releasable(const struct cgroup *cgrp)
254 {
255 const int bits =
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
259 }
260
261 static int notify_on_release(const struct cgroup *cgrp)
262 {
263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 }
265
266 static int clone_children(const struct cgroup *cgrp)
267 {
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269 }
270
271 /*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
281
282 /* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
289
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
296 struct list_head cgrp_link_list;
297 struct cgroup *cgrp;
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304 };
305
306 /* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
315
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
318
319 /* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
324
325 /*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
330 #define CSS_SET_HASH_BITS 7
331 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335 {
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347 }
348
349 /* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
354
355 static void __put_css_set(struct css_set *cg, int taskexit)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
371
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
383 if (taskexit)
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
386 }
387
388 kfree(link);
389 }
390
391 write_unlock(&css_set_lock);
392 kfree_rcu(cg, rcu_head);
393 }
394
395 /*
396 * refcounted get/put for css_set objects
397 */
398 static inline void get_css_set(struct css_set *cg)
399 {
400 atomic_inc(&cg->refcount);
401 }
402
403 static inline void put_css_set(struct css_set *cg)
404 {
405 __put_css_set(cg, 0);
406 }
407
408 static inline void put_css_set_taskexit(struct css_set *cg)
409 {
410 __put_css_set(cg, 1);
411 }
412
413 /*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423 static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427 {
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483 }
484
485 /*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
488 * css_set is suitable.
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
493 * cgrp: the cgroup that we're moving into
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
498 static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
500 struct cgroup *cgrp,
501 struct cgroup_subsys_state *template[])
502 {
503 int i;
504 struct cgroupfs_root *root = cgrp->root;
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
508
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
515 if (root->subsys_bits & (1UL << i)) {
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
519 template[i] = cgrp->subsys[i];
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
534 }
535
536 /* No existing cgroup group matched */
537 return NULL;
538 }
539
540 static void free_cg_links(struct list_head *tmp)
541 {
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549 }
550
551 /*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554 * success or a negative error
555 */
556 static int allocate_cg_links(int count, struct list_head *tmp)
557 {
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
564 free_cg_links(tmp);
565 return -ENOMEM;
566 }
567 list_add(&link->cgrp_link_list, tmp);
568 }
569 return 0;
570 }
571
572 /**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578 static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580 {
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
587 link->cgrp = cgrp;
588 atomic_inc(&cgrp->count);
589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
595 }
596
597 /*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
604 static struct css_set *find_css_set(
605 struct css_set *oldcg, struct cgroup *cgrp)
606 {
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
609
610 struct list_head tmp_cg_links;
611
612 struct hlist_head *hhead;
613 struct cg_cgroup_link *link;
614
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
617 read_lock(&css_set_lock);
618 res = find_existing_css_set(oldcg, cgrp, template);
619 if (res)
620 get_css_set(res);
621 read_unlock(&css_set_lock);
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
636 atomic_set(&res->refcount, 1);
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
639 INIT_HLIST_NODE(&res->hlist);
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
656 css_set_count++;
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
662 write_unlock(&css_set_lock);
663
664 return res;
665 }
666
667 /*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673 {
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700 }
701
702 /*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
712 * cgroup_attach_task() can increment it again. Because a count of zero
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
740 * another. It does so using cgroup_mutex, however there are
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
749 * update of a tasks cgroup pointer by cgroup_attach_task()
750 */
751
752 /**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
756 void cgroup_lock(void)
757 {
758 mutex_lock(&cgroup_mutex);
759 }
760 EXPORT_SYMBOL_GPL(cgroup_lock);
761
762 /**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
767 void cgroup_unlock(void)
768 {
769 mutex_unlock(&cgroup_mutex);
770 }
771 EXPORT_SYMBOL_GPL(cgroup_unlock);
772
773 /*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
780 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
781 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783 static int cgroup_populate_dir(struct cgroup *cgrp);
784 static const struct inode_operations cgroup_dir_inode_operations;
785 static const struct file_operations proc_cgroupstats_operations;
786
787 static struct backing_dev_info cgroup_backing_dev_info = {
788 .name = "cgroup",
789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
790 };
791
792 static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
795 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
796 {
797 struct inode *inode = new_inode(sb);
798
799 if (inode) {
800 inode->i_ino = get_next_ino();
801 inode->i_mode = mode;
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808 }
809
810 /*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
814 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
815 {
816 struct cgroup_subsys *ss;
817 int ret = 0;
818
819 for_each_subsys(cgrp->root, ss)
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(ss, cgrp);
822 if (ret)
823 break;
824 }
825
826 return ret;
827 }
828
829 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830 {
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
833 struct cgroup *cgrp = dentry->d_fsdata;
834 struct cgroup_subsys *ss;
835 BUG_ON(!(cgroup_is_removed(cgrp)));
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(ss, cgrp);
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
858 deactivate_super(cgrp->root->sb);
859
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
866 kfree_rcu(cgrp, rcu_head);
867 }
868 iput(inode);
869 }
870
871 static int cgroup_delete(const struct dentry *d)
872 {
873 return 1;
874 }
875
876 static void remove_dir(struct dentry *d)
877 {
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883 }
884
885 static void cgroup_clear_directory(struct dentry *dentry)
886 {
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
890 spin_lock(&dentry->d_lock);
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
901 dget_dlock(d);
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
910 node = dentry->d_subdirs.next;
911 }
912 spin_unlock(&dentry->d_lock);
913 }
914
915 /*
916 * NOTE : the dentry must have been dget()'ed
917 */
918 static void cgroup_d_remove_dir(struct dentry *dentry)
919 {
920 struct dentry *parent;
921
922 cgroup_clear_directory(dentry);
923
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927 list_del_init(&dentry->d_u.d_child);
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
930 remove_dir(dentry);
931 }
932
933 /*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
940 */
941 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942
943 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
944 {
945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 wake_up_all(&cgroup_rmdir_waitq);
947 }
948
949 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950 {
951 css_get(css);
952 }
953
954 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955 {
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958 }
959
960 /*
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
964 */
965 static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967 {
968 unsigned long added_bits, removed_bits;
969 struct cgroup *cgrp = &root->top_cgroup;
970 int i;
971
972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
974
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
979 unsigned long bit = 1UL << i;
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
999 if (root->number_of_cgroups > 1)
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
1008 BUG_ON(ss == NULL);
1009 BUG_ON(cgrp->subsys[i]);
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012 mutex_lock(&ss->hierarchy_mutex);
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
1015 list_move(&ss->sibling, &root->subsys_list);
1016 ss->root = root;
1017 if (ss->bind)
1018 ss->bind(ss, cgrp);
1019 mutex_unlock(&ss->hierarchy_mutex);
1020 /* refcount was already taken, and we're keeping it */
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
1023 BUG_ON(ss == NULL);
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026 mutex_lock(&ss->hierarchy_mutex);
1027 if (ss->bind)
1028 ss->bind(ss, dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
1030 cgrp->subsys[i] = NULL;
1031 subsys[i]->root = &rootnode;
1032 list_move(&ss->sibling, &rootnode.subsys_list);
1033 mutex_unlock(&ss->hierarchy_mutex);
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
1038 BUG_ON(ss == NULL);
1039 BUG_ON(!cgrp->subsys[i]);
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045 #ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047 #endif
1048 } else {
1049 /* Subsystem state shouldn't exist */
1050 BUG_ON(cgrp->subsys[i]);
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057 }
1058
1059 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1060 {
1061 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1063
1064 mutex_lock(&cgroup_root_mutex);
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
1075 mutex_unlock(&cgroup_root_mutex);
1076 return 0;
1077 }
1078
1079 struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
1082 char *release_agent;
1083 bool clone_children;
1084 char *name;
1085 /* User explicitly requested empty subsystem */
1086 bool none;
1087
1088 struct cgroupfs_root *new_root;
1089
1090 };
1091
1092 /*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
1097 */
1098 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1099 {
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
1102 unsigned long mask = (unsigned long)-1;
1103 int i;
1104 bool module_pin_failed = false;
1105
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
1108 #ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110 #endif
1111
1112 memset(opts, 0, sizeof(*opts));
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
1117 if (!strcmp(token, "none")) {
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
1130 set_bit(ROOT_NOPREFIX, &opts->flags);
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
1134 opts->clone_children = true;
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
1141 opts->release_agent =
1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 if (!opts->release_agent)
1144 return -ENOMEM;
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
1165 MAX_CGROUP_ROOT_NAMELEN - 1,
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise 'all, 'none' and a subsystem name options were not
1197 * specified, let's default to 'all'
1198 */
1199 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
1207 }
1208 }
1209
1210 /* Consistency checks */
1211
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
1230 if (!opts->subsys_bits && !opts->name)
1231 return -EINVAL;
1232
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
1266 return 0;
1267 }
1268
1269 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270 {
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279 }
1280
1281 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282 {
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
1285 struct cgroup *cgrp = &root->top_cgroup;
1286 struct cgroup_sb_opts opts;
1287
1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289 mutex_lock(&cgroup_mutex);
1290 mutex_lock(&cgroup_root_mutex);
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
1300 ret = -EINVAL;
1301 drop_parsed_module_refcounts(opts.subsys_bits);
1302 goto out_unlock;
1303 }
1304
1305 ret = rebind_subsystems(root, opts.subsys_bits);
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
1308 goto out_unlock;
1309 }
1310
1311 /* (re)populate subsystem files */
1312 cgroup_populate_dir(cgrp);
1313
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
1316 out_unlock:
1317 kfree(opts.release_agent);
1318 kfree(opts.name);
1319 mutex_unlock(&cgroup_root_mutex);
1320 mutex_unlock(&cgroup_mutex);
1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 return ret;
1323 }
1324
1325 static const struct super_operations cgroup_ops = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330 };
1331
1332 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333 {
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
1342 }
1343
1344 static void init_cgroup_root(struct cgroupfs_root *root)
1345 {
1346 struct cgroup *cgrp = &root->top_cgroup;
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
1352 init_cgroup_housekeeping(cgrp);
1353 }
1354
1355 static bool init_root_id(struct cgroupfs_root *root)
1356 {
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378 }
1379
1380 static int cgroup_test_super(struct super_block *sb, void *data)
1381 {
1382 struct cgroup_sb_opts *opts = data;
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
1388
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
1395 return 0;
1396
1397 return 1;
1398 }
1399
1400 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401 {
1402 struct cgroupfs_root *root;
1403
1404 if (!opts->subsys_bits && !opts->none)
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
1415 init_cgroup_root(root);
1416
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 return root;
1426 }
1427
1428 static void cgroup_drop_root(struct cgroupfs_root *root)
1429 {
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438 }
1439
1440 static int cgroup_set_super(struct super_block *sb, void *data)
1441 {
1442 int ret;
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
1449 BUG_ON(!opts->subsys_bits && !opts->none);
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464 }
1465
1466 static int cgroup_get_rootdir(struct super_block *sb)
1467 {
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
1470 .d_delete = cgroup_delete,
1471 };
1472
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1476
1477 if (!inode)
1478 return -ENOMEM;
1479
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1488 }
1489 sb->s_root = dentry;
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
1492 return 0;
1493 }
1494
1495 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1496 int flags, const char *unused_dev_name,
1497 void *data)
1498 {
1499 struct cgroup_sb_opts opts;
1500 struct cgroupfs_root *root;
1501 int ret = 0;
1502 struct super_block *sb;
1503 struct cgroupfs_root *new_root;
1504 struct inode *inode;
1505
1506 /* First find the desired set of subsystems */
1507 mutex_lock(&cgroup_mutex);
1508 ret = parse_cgroupfs_options(data, &opts);
1509 mutex_unlock(&cgroup_mutex);
1510 if (ret)
1511 goto out_err;
1512
1513 /*
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1516 */
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
1520 goto drop_modules;
1521 }
1522 opts.new_root = new_root;
1523
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1526 if (IS_ERR(sb)) {
1527 ret = PTR_ERR(sb);
1528 cgroup_drop_root(opts.new_root);
1529 goto drop_modules;
1530 }
1531
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
1537 struct cgroup *root_cgrp = &root->top_cgroup;
1538 struct cgroupfs_root *existing_root;
1539 const struct cred *cred;
1540 int i;
1541
1542 BUG_ON(sb->s_root != NULL);
1543
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
1547 inode = sb->s_root->d_inode;
1548
1549 mutex_lock(&inode->i_mutex);
1550 mutex_lock(&cgroup_mutex);
1551 mutex_lock(&cgroup_root_mutex);
1552
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
1559
1560 /*
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1566 */
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1568 if (ret)
1569 goto unlock_drop;
1570
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
1573 free_cg_links(&tmp_cg_links);
1574 goto unlock_drop;
1575 }
1576 /*
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1580 */
1581
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1584
1585 list_add(&root->root_list, &roots);
1586 root_count++;
1587
1588 sb->s_root->d_fsdata = root_cgrp;
1589 root->top_cgroup.dentry = sb->s_root;
1590
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
1597 struct css_set *cg;
1598
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
1601 }
1602 write_unlock(&css_set_lock);
1603
1604 free_cg_links(&tmp_cg_links);
1605
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
1608 BUG_ON(root->number_of_cgroups != 1);
1609
1610 cred = override_creds(&init_cred);
1611 cgroup_populate_dir(root_cgrp);
1612 revert_creds(cred);
1613 mutex_unlock(&cgroup_root_mutex);
1614 mutex_unlock(&cgroup_mutex);
1615 mutex_unlock(&inode->i_mutex);
1616 } else {
1617 /*
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1620 */
1621 cgroup_drop_root(opts.new_root);
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
1624 }
1625
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
1628 return dget(sb->s_root);
1629
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
1634 drop_new_super:
1635 deactivate_locked_super(sb);
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
1641 return ERR_PTR(ret);
1642 }
1643
1644 static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
1646 struct cgroup *cgrp = &root->top_cgroup;
1647 int ret;
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
1650
1651 BUG_ON(!root);
1652
1653 BUG_ON(root->number_of_cgroups != 1);
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
1656
1657 mutex_lock(&cgroup_mutex);
1658 mutex_lock(&cgroup_root_mutex);
1659
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1664
1665 /*
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1668 */
1669 write_lock(&css_set_lock);
1670
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
1673 list_del(&link->cg_link_list);
1674 list_del(&link->cgrp_link_list);
1675 kfree(link);
1676 }
1677 write_unlock(&css_set_lock);
1678
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1682 }
1683
1684 mutex_unlock(&cgroup_root_mutex);
1685 mutex_unlock(&cgroup_mutex);
1686
1687 kill_litter_super(sb);
1688 cgroup_drop_root(root);
1689 }
1690
1691 static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
1693 .mount = cgroup_mount,
1694 .kill_sb = cgroup_kill_sb,
1695 };
1696
1697 static struct kobject *cgroup_kobj;
1698
1699 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1700 {
1701 return dentry->d_fsdata;
1702 }
1703
1704 static inline struct cftype *__d_cft(struct dentry *dentry)
1705 {
1706 return dentry->d_fsdata;
1707 }
1708
1709 /**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
1718 */
1719 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1720 {
1721 char *start;
1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1723 cgroup_lock_is_held());
1724
1725 if (!dentry || cgrp == dummytop) {
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
1738 int len = dentry->d_name.len;
1739
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
1742 memcpy(start, dentry->d_name.name, len);
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
1745 break;
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
1748 cgroup_lock_is_held());
1749 if (!cgrp->parent)
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757 }
1758 EXPORT_SYMBOL_GPL(cgroup_path);
1759
1760 /*
1761 * Control Group taskset
1762 */
1763 struct task_and_cgroup {
1764 struct task_struct *task;
1765 struct cgroup *cgrp;
1766 };
1767
1768 struct cgroup_taskset {
1769 struct task_and_cgroup single;
1770 struct flex_array *tc_array;
1771 int tc_array_len;
1772 int idx;
1773 struct cgroup *cur_cgrp;
1774 };
1775
1776 /**
1777 * cgroup_taskset_first - reset taskset and return the first task
1778 * @tset: taskset of interest
1779 *
1780 * @tset iteration is initialized and the first task is returned.
1781 */
1782 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1783 {
1784 if (tset->tc_array) {
1785 tset->idx = 0;
1786 return cgroup_taskset_next(tset);
1787 } else {
1788 tset->cur_cgrp = tset->single.cgrp;
1789 return tset->single.task;
1790 }
1791 }
1792 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1793
1794 /**
1795 * cgroup_taskset_next - iterate to the next task in taskset
1796 * @tset: taskset of interest
1797 *
1798 * Return the next task in @tset. Iteration must have been initialized
1799 * with cgroup_taskset_first().
1800 */
1801 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1802 {
1803 struct task_and_cgroup *tc;
1804
1805 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1806 return NULL;
1807
1808 tc = flex_array_get(tset->tc_array, tset->idx++);
1809 tset->cur_cgrp = tc->cgrp;
1810 return tc->task;
1811 }
1812 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1813
1814 /**
1815 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1816 * @tset: taskset of interest
1817 *
1818 * Return the cgroup for the current (last returned) task of @tset. This
1819 * function must be preceded by either cgroup_taskset_first() or
1820 * cgroup_taskset_next().
1821 */
1822 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1823 {
1824 return tset->cur_cgrp;
1825 }
1826 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1827
1828 /**
1829 * cgroup_taskset_size - return the number of tasks in taskset
1830 * @tset: taskset of interest
1831 */
1832 int cgroup_taskset_size(struct cgroup_taskset *tset)
1833 {
1834 return tset->tc_array ? tset->tc_array_len : 1;
1835 }
1836 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1837
1838
1839 /*
1840 * cgroup_task_migrate - move a task from one cgroup to another.
1841 *
1842 * 'guarantee' is set if the caller promises that a new css_set for the task
1843 * will already exist. If not set, this function might sleep, and can fail with
1844 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1845 */
1846 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1847 struct task_struct *tsk, bool guarantee)
1848 {
1849 struct css_set *oldcg;
1850 struct css_set *newcg;
1851
1852 /*
1853 * get old css_set. we need to take task_lock and refcount it, because
1854 * an exiting task can change its css_set to init_css_set and drop its
1855 * old one without taking cgroup_mutex.
1856 */
1857 task_lock(tsk);
1858 oldcg = tsk->cgroups;
1859 get_css_set(oldcg);
1860 task_unlock(tsk);
1861
1862 /* locate or allocate a new css_set for this task. */
1863 if (guarantee) {
1864 /* we know the css_set we want already exists. */
1865 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1866 read_lock(&css_set_lock);
1867 newcg = find_existing_css_set(oldcg, cgrp, template);
1868 BUG_ON(!newcg);
1869 get_css_set(newcg);
1870 read_unlock(&css_set_lock);
1871 } else {
1872 might_sleep();
1873 /* find_css_set will give us newcg already referenced. */
1874 newcg = find_css_set(oldcg, cgrp);
1875 if (!newcg) {
1876 put_css_set(oldcg);
1877 return -ENOMEM;
1878 }
1879 }
1880 put_css_set(oldcg);
1881
1882 /* @tsk can't exit as its threadgroup is locked */
1883 task_lock(tsk);
1884 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1885 rcu_assign_pointer(tsk->cgroups, newcg);
1886 task_unlock(tsk);
1887
1888 /* Update the css_set linked lists if we're using them */
1889 write_lock(&css_set_lock);
1890 if (!list_empty(&tsk->cg_list))
1891 list_move(&tsk->cg_list, &newcg->tasks);
1892 write_unlock(&css_set_lock);
1893
1894 /*
1895 * We just gained a reference on oldcg by taking it from the task. As
1896 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1897 * it here; it will be freed under RCU.
1898 */
1899 put_css_set(oldcg);
1900
1901 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1902 return 0;
1903 }
1904
1905 /**
1906 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1907 * @cgrp: the cgroup the task is attaching to
1908 * @tsk: the task to be attached
1909 *
1910 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1911 * @tsk during call.
1912 */
1913 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1914 {
1915 int retval;
1916 struct cgroup_subsys *ss, *failed_ss = NULL;
1917 struct cgroup *oldcgrp;
1918 struct cgroupfs_root *root = cgrp->root;
1919 struct cgroup_taskset tset = { };
1920
1921 /* @tsk either already exited or can't exit until the end */
1922 if (tsk->flags & PF_EXITING)
1923 return -ESRCH;
1924
1925 /* Nothing to do if the task is already in that cgroup */
1926 oldcgrp = task_cgroup_from_root(tsk, root);
1927 if (cgrp == oldcgrp)
1928 return 0;
1929
1930 tset.single.task = tsk;
1931 tset.single.cgrp = oldcgrp;
1932
1933 for_each_subsys(root, ss) {
1934 if (ss->can_attach) {
1935 retval = ss->can_attach(ss, cgrp, &tset);
1936 if (retval) {
1937 /*
1938 * Remember on which subsystem the can_attach()
1939 * failed, so that we only call cancel_attach()
1940 * against the subsystems whose can_attach()
1941 * succeeded. (See below)
1942 */
1943 failed_ss = ss;
1944 goto out;
1945 }
1946 }
1947 if (ss->can_attach_task) {
1948 retval = ss->can_attach_task(cgrp, tsk);
1949 if (retval) {
1950 failed_ss = ss;
1951 goto out;
1952 }
1953 }
1954 }
1955
1956 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1957 if (retval)
1958 goto out;
1959
1960 for_each_subsys(root, ss) {
1961 if (ss->pre_attach)
1962 ss->pre_attach(cgrp);
1963 if (ss->attach_task)
1964 ss->attach_task(cgrp, tsk);
1965 if (ss->attach)
1966 ss->attach(ss, cgrp, &tset);
1967 }
1968
1969 synchronize_rcu();
1970
1971 /*
1972 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1973 * is no longer empty.
1974 */
1975 cgroup_wakeup_rmdir_waiter(cgrp);
1976 out:
1977 if (retval) {
1978 for_each_subsys(root, ss) {
1979 if (ss == failed_ss)
1980 /*
1981 * This subsystem was the one that failed the
1982 * can_attach() check earlier, so we don't need
1983 * to call cancel_attach() against it or any
1984 * remaining subsystems.
1985 */
1986 break;
1987 if (ss->cancel_attach)
1988 ss->cancel_attach(ss, cgrp, &tset);
1989 }
1990 }
1991 return retval;
1992 }
1993
1994 /**
1995 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1996 * @from: attach to all cgroups of a given task
1997 * @tsk: the task to be attached
1998 */
1999 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2000 {
2001 struct cgroupfs_root *root;
2002 int retval = 0;
2003
2004 cgroup_lock();
2005 for_each_active_root(root) {
2006 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2007
2008 retval = cgroup_attach_task(from_cg, tsk);
2009 if (retval)
2010 break;
2011 }
2012 cgroup_unlock();
2013
2014 return retval;
2015 }
2016 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2017
2018 /*
2019 * cgroup_attach_proc works in two stages, the first of which prefetches all
2020 * new css_sets needed (to make sure we have enough memory before committing
2021 * to the move) and stores them in a list of entries of the following type.
2022 * TODO: possible optimization: use css_set->rcu_head for chaining instead
2023 */
2024 struct cg_list_entry {
2025 struct css_set *cg;
2026 struct list_head links;
2027 };
2028
2029 static bool css_set_check_fetched(struct cgroup *cgrp,
2030 struct task_struct *tsk, struct css_set *cg,
2031 struct list_head *newcg_list)
2032 {
2033 struct css_set *newcg;
2034 struct cg_list_entry *cg_entry;
2035 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
2036
2037 read_lock(&css_set_lock);
2038 newcg = find_existing_css_set(cg, cgrp, template);
2039 if (newcg)
2040 get_css_set(newcg);
2041 read_unlock(&css_set_lock);
2042
2043 /* doesn't exist at all? */
2044 if (!newcg)
2045 return false;
2046 /* see if it's already in the list */
2047 list_for_each_entry(cg_entry, newcg_list, links) {
2048 if (cg_entry->cg == newcg) {
2049 put_css_set(newcg);
2050 return true;
2051 }
2052 }
2053
2054 /* not found */
2055 put_css_set(newcg);
2056 return false;
2057 }
2058
2059 /*
2060 * Find the new css_set and store it in the list in preparation for moving the
2061 * given task to the given cgroup. Returns 0 or -ENOMEM.
2062 */
2063 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
2064 struct list_head *newcg_list)
2065 {
2066 struct css_set *newcg;
2067 struct cg_list_entry *cg_entry;
2068
2069 /* ensure a new css_set will exist for this thread */
2070 newcg = find_css_set(cg, cgrp);
2071 if (!newcg)
2072 return -ENOMEM;
2073 /* add it to the list */
2074 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
2075 if (!cg_entry) {
2076 put_css_set(newcg);
2077 return -ENOMEM;
2078 }
2079 cg_entry->cg = newcg;
2080 list_add(&cg_entry->links, newcg_list);
2081 return 0;
2082 }
2083
2084 /**
2085 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2086 * @cgrp: the cgroup to attach to
2087 * @leader: the threadgroup leader task_struct of the group to be attached
2088 *
2089 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2090 * task_lock of each thread in leader's threadgroup individually in turn.
2091 */
2092 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2093 {
2094 int retval, i, group_size, nr_migrating_tasks;
2095 struct cgroup_subsys *ss, *failed_ss = NULL;
2096 bool cancel_failed_ss = false;
2097 /* guaranteed to be initialized later, but the compiler needs this */
2098 struct css_set *oldcg;
2099 struct cgroupfs_root *root = cgrp->root;
2100 /* threadgroup list cursor and array */
2101 struct task_struct *tsk;
2102 struct task_and_cgroup *tc;
2103 struct flex_array *group;
2104 struct cgroup_taskset tset = { };
2105 /*
2106 * we need to make sure we have css_sets for all the tasks we're
2107 * going to move -before- we actually start moving them, so that in
2108 * case we get an ENOMEM we can bail out before making any changes.
2109 */
2110 struct list_head newcg_list;
2111 struct cg_list_entry *cg_entry, *temp_nobe;
2112
2113 /*
2114 * step 0: in order to do expensive, possibly blocking operations for
2115 * every thread, we cannot iterate the thread group list, since it needs
2116 * rcu or tasklist locked. instead, build an array of all threads in the
2117 * group - group_rwsem prevents new threads from appearing, and if
2118 * threads exit, this will just be an over-estimate.
2119 */
2120 group_size = get_nr_threads(leader);
2121 /* flex_array supports very large thread-groups better than kmalloc. */
2122 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2123 if (!group)
2124 return -ENOMEM;
2125 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2126 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2127 if (retval)
2128 goto out_free_group_list;
2129
2130 /* prevent changes to the threadgroup list while we take a snapshot. */
2131 read_lock(&tasklist_lock);
2132 if (!thread_group_leader(leader)) {
2133 /*
2134 * a race with de_thread from another thread's exec() may strip
2135 * us of our leadership, making while_each_thread unsafe to use
2136 * on this task. if this happens, there is no choice but to
2137 * throw this task away and try again (from cgroup_procs_write);
2138 * this is "double-double-toil-and-trouble-check locking".
2139 */
2140 read_unlock(&tasklist_lock);
2141 retval = -EAGAIN;
2142 goto out_free_group_list;
2143 }
2144 /* take a reference on each task in the group to go in the array. */
2145 tsk = leader;
2146 i = nr_migrating_tasks = 0;
2147 do {
2148 struct task_and_cgroup ent;
2149
2150 /* @tsk either already exited or can't exit until the end */
2151 if (tsk->flags & PF_EXITING)
2152 continue;
2153
2154 /* as per above, nr_threads may decrease, but not increase. */
2155 BUG_ON(i >= group_size);
2156 get_task_struct(tsk);
2157 /*
2158 * saying GFP_ATOMIC has no effect here because we did prealloc
2159 * earlier, but it's good form to communicate our expectations.
2160 */
2161 ent.task = tsk;
2162 ent.cgrp = task_cgroup_from_root(tsk, root);
2163 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2164 BUG_ON(retval != 0);
2165 i++;
2166 if (ent.cgrp != cgrp)
2167 nr_migrating_tasks++;
2168 } while_each_thread(leader, tsk);
2169 /* remember the number of threads in the array for later. */
2170 group_size = i;
2171 tset.tc_array = group;
2172 tset.tc_array_len = group_size;
2173 read_unlock(&tasklist_lock);
2174
2175 /* methods shouldn't be called if no task is actually migrating */
2176 retval = 0;
2177 if (!nr_migrating_tasks)
2178 goto out_put_tasks;
2179
2180 /*
2181 * step 1: check that we can legitimately attach to the cgroup.
2182 */
2183 for_each_subsys(root, ss) {
2184 if (ss->can_attach) {
2185 retval = ss->can_attach(ss, cgrp, &tset);
2186 if (retval) {
2187 failed_ss = ss;
2188 goto out_cancel_attach;
2189 }
2190 }
2191 /* a callback to be run on every thread in the threadgroup. */
2192 if (ss->can_attach_task) {
2193 /* run on each task in the threadgroup. */
2194 for (i = 0; i < group_size; i++) {
2195 tc = flex_array_get(group, i);
2196 if (tc->cgrp == cgrp)
2197 continue;
2198 retval = ss->can_attach_task(cgrp, tc->task);
2199 if (retval) {
2200 failed_ss = ss;
2201 cancel_failed_ss = true;
2202 goto out_cancel_attach;
2203 }
2204 }
2205 }
2206 }
2207
2208 /*
2209 * step 2: make sure css_sets exist for all threads to be migrated.
2210 * we use find_css_set, which allocates a new one if necessary.
2211 */
2212 INIT_LIST_HEAD(&newcg_list);
2213 for (i = 0; i < group_size; i++) {
2214 tc = flex_array_get(group, i);
2215 /* nothing to do if this task is already in the cgroup */
2216 if (tc->cgrp == cgrp)
2217 continue;
2218 /* get old css_set pointer */
2219 task_lock(tc->task);
2220 oldcg = tc->task->cgroups;
2221 get_css_set(oldcg);
2222 task_unlock(tc->task);
2223 /* see if the new one for us is already in the list? */
2224 if (css_set_check_fetched(cgrp, tc->task, oldcg, &newcg_list)) {
2225 /* was already there, nothing to do. */
2226 put_css_set(oldcg);
2227 } else {
2228 /* we don't already have it. get new one. */
2229 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2230 put_css_set(oldcg);
2231 if (retval)
2232 goto out_list_teardown;
2233 }
2234 }
2235
2236 /*
2237 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2238 * to move all tasks to the new cgroup, calling ss->attach_task for each
2239 * one along the way. there are no failure cases after here, so this is
2240 * the commit point.
2241 */
2242 for_each_subsys(root, ss) {
2243 if (ss->pre_attach)
2244 ss->pre_attach(cgrp);
2245 }
2246 for (i = 0; i < group_size; i++) {
2247 tc = flex_array_get(group, i);
2248 /* leave current thread as it is if it's already there */
2249 if (tc->cgrp == cgrp)
2250 continue;
2251 retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
2252 BUG_ON(retval);
2253 /* attach each task to each subsystem */
2254 for_each_subsys(root, ss) {
2255 if (ss->attach_task)
2256 ss->attach_task(cgrp, tc->task);
2257 }
2258 }
2259 /* nothing is sensitive to fork() after this point. */
2260
2261 /*
2262 * step 4: do expensive, non-thread-specific subsystem callbacks.
2263 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2264 * being moved, this call will need to be reworked to communicate that.
2265 */
2266 for_each_subsys(root, ss) {
2267 if (ss->attach)
2268 ss->attach(ss, cgrp, &tset);
2269 }
2270
2271 /*
2272 * step 5: success! and cleanup
2273 */
2274 synchronize_rcu();
2275 cgroup_wakeup_rmdir_waiter(cgrp);
2276 retval = 0;
2277 out_list_teardown:
2278 /* clean up the list of prefetched css_sets. */
2279 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2280 list_del(&cg_entry->links);
2281 put_css_set(cg_entry->cg);
2282 kfree(cg_entry);
2283 }
2284 out_cancel_attach:
2285 /* same deal as in cgroup_attach_task */
2286 if (retval) {
2287 for_each_subsys(root, ss) {
2288 if (ss == failed_ss) {
2289 if (cancel_failed_ss && ss->cancel_attach)
2290 ss->cancel_attach(ss, cgrp, &tset);
2291 break;
2292 }
2293 if (ss->cancel_attach)
2294 ss->cancel_attach(ss, cgrp, &tset);
2295 }
2296 }
2297 out_put_tasks:
2298 /* clean up the array of referenced threads in the group. */
2299 for (i = 0; i < group_size; i++) {
2300 tc = flex_array_get(group, i);
2301 put_task_struct(tc->task);
2302 }
2303 out_free_group_list:
2304 flex_array_free(group);
2305 return retval;
2306 }
2307
2308 /*
2309 * Find the task_struct of the task to attach by vpid and pass it along to the
2310 * function to attach either it or all tasks in its threadgroup. Will lock
2311 * cgroup_mutex and threadgroup; may take task_lock of task.
2312 */
2313 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2314 {
2315 struct task_struct *tsk;
2316 const struct cred *cred = current_cred(), *tcred;
2317 int ret;
2318
2319 if (!cgroup_lock_live_group(cgrp))
2320 return -ENODEV;
2321
2322 if (pid) {
2323 rcu_read_lock();
2324 tsk = find_task_by_vpid(pid);
2325 if (!tsk) {
2326 rcu_read_unlock();
2327 cgroup_unlock();
2328 return -ESRCH;
2329 }
2330 if (threadgroup) {
2331 /*
2332 * RCU protects this access, since tsk was found in the
2333 * tid map. a race with de_thread may cause group_leader
2334 * to stop being the leader, but cgroup_attach_proc will
2335 * detect it later.
2336 */
2337 tsk = tsk->group_leader;
2338 }
2339 /*
2340 * even if we're attaching all tasks in the thread group, we
2341 * only need to check permissions on one of them.
2342 */
2343 tcred = __task_cred(tsk);
2344 if (cred->euid &&
2345 cred->euid != tcred->uid &&
2346 cred->euid != tcred->suid) {
2347 rcu_read_unlock();
2348 cgroup_unlock();
2349 return -EACCES;
2350 }
2351 get_task_struct(tsk);
2352 rcu_read_unlock();
2353 } else {
2354 if (threadgroup)
2355 tsk = current->group_leader;
2356 else
2357 tsk = current;
2358 get_task_struct(tsk);
2359 }
2360
2361 threadgroup_lock(tsk);
2362
2363 if (threadgroup)
2364 ret = cgroup_attach_proc(cgrp, tsk);
2365 else
2366 ret = cgroup_attach_task(cgrp, tsk);
2367
2368 threadgroup_unlock(tsk);
2369
2370 put_task_struct(tsk);
2371 cgroup_unlock();
2372 return ret;
2373 }
2374
2375 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2376 {
2377 return attach_task_by_pid(cgrp, pid, false);
2378 }
2379
2380 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2381 {
2382 int ret;
2383 do {
2384 /*
2385 * attach_proc fails with -EAGAIN if threadgroup leadership
2386 * changes in the middle of the operation, in which case we need
2387 * to find the task_struct for the new leader and start over.
2388 */
2389 ret = attach_task_by_pid(cgrp, tgid, true);
2390 } while (ret == -EAGAIN);
2391 return ret;
2392 }
2393
2394 /**
2395 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2396 * @cgrp: the cgroup to be checked for liveness
2397 *
2398 * On success, returns true; the lock should be later released with
2399 * cgroup_unlock(). On failure returns false with no lock held.
2400 */
2401 bool cgroup_lock_live_group(struct cgroup *cgrp)
2402 {
2403 mutex_lock(&cgroup_mutex);
2404 if (cgroup_is_removed(cgrp)) {
2405 mutex_unlock(&cgroup_mutex);
2406 return false;
2407 }
2408 return true;
2409 }
2410 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2411
2412 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2413 const char *buffer)
2414 {
2415 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2416 if (strlen(buffer) >= PATH_MAX)
2417 return -EINVAL;
2418 if (!cgroup_lock_live_group(cgrp))
2419 return -ENODEV;
2420 mutex_lock(&cgroup_root_mutex);
2421 strcpy(cgrp->root->release_agent_path, buffer);
2422 mutex_unlock(&cgroup_root_mutex);
2423 cgroup_unlock();
2424 return 0;
2425 }
2426
2427 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2428 struct seq_file *seq)
2429 {
2430 if (!cgroup_lock_live_group(cgrp))
2431 return -ENODEV;
2432 seq_puts(seq, cgrp->root->release_agent_path);
2433 seq_putc(seq, '\n');
2434 cgroup_unlock();
2435 return 0;
2436 }
2437
2438 /* A buffer size big enough for numbers or short strings */
2439 #define CGROUP_LOCAL_BUFFER_SIZE 64
2440
2441 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2442 struct file *file,
2443 const char __user *userbuf,
2444 size_t nbytes, loff_t *unused_ppos)
2445 {
2446 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2447 int retval = 0;
2448 char *end;
2449
2450 if (!nbytes)
2451 return -EINVAL;
2452 if (nbytes >= sizeof(buffer))
2453 return -E2BIG;
2454 if (copy_from_user(buffer, userbuf, nbytes))
2455 return -EFAULT;
2456
2457 buffer[nbytes] = 0; /* nul-terminate */
2458 if (cft->write_u64) {
2459 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2460 if (*end)
2461 return -EINVAL;
2462 retval = cft->write_u64(cgrp, cft, val);
2463 } else {
2464 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2465 if (*end)
2466 return -EINVAL;
2467 retval = cft->write_s64(cgrp, cft, val);
2468 }
2469 if (!retval)
2470 retval = nbytes;
2471 return retval;
2472 }
2473
2474 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2475 struct file *file,
2476 const char __user *userbuf,
2477 size_t nbytes, loff_t *unused_ppos)
2478 {
2479 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2480 int retval = 0;
2481 size_t max_bytes = cft->max_write_len;
2482 char *buffer = local_buffer;
2483
2484 if (!max_bytes)
2485 max_bytes = sizeof(local_buffer) - 1;
2486 if (nbytes >= max_bytes)
2487 return -E2BIG;
2488 /* Allocate a dynamic buffer if we need one */
2489 if (nbytes >= sizeof(local_buffer)) {
2490 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2491 if (buffer == NULL)
2492 return -ENOMEM;
2493 }
2494 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2495 retval = -EFAULT;
2496 goto out;
2497 }
2498
2499 buffer[nbytes] = 0; /* nul-terminate */
2500 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2501 if (!retval)
2502 retval = nbytes;
2503 out:
2504 if (buffer != local_buffer)
2505 kfree(buffer);
2506 return retval;
2507 }
2508
2509 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2510 size_t nbytes, loff_t *ppos)
2511 {
2512 struct cftype *cft = __d_cft(file->f_dentry);
2513 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2514
2515 if (cgroup_is_removed(cgrp))
2516 return -ENODEV;
2517 if (cft->write)
2518 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2519 if (cft->write_u64 || cft->write_s64)
2520 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2521 if (cft->write_string)
2522 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2523 if (cft->trigger) {
2524 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2525 return ret ? ret : nbytes;
2526 }
2527 return -EINVAL;
2528 }
2529
2530 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2531 struct file *file,
2532 char __user *buf, size_t nbytes,
2533 loff_t *ppos)
2534 {
2535 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2536 u64 val = cft->read_u64(cgrp, cft);
2537 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2538
2539 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2540 }
2541
2542 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2543 struct file *file,
2544 char __user *buf, size_t nbytes,
2545 loff_t *ppos)
2546 {
2547 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2548 s64 val = cft->read_s64(cgrp, cft);
2549 int len = sprintf(tmp, "%lld\n", (long long) val);
2550
2551 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2552 }
2553
2554 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2555 size_t nbytes, loff_t *ppos)
2556 {
2557 struct cftype *cft = __d_cft(file->f_dentry);
2558 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2559
2560 if (cgroup_is_removed(cgrp))
2561 return -ENODEV;
2562
2563 if (cft->read)
2564 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2565 if (cft->read_u64)
2566 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2567 if (cft->read_s64)
2568 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2569 return -EINVAL;
2570 }
2571
2572 /*
2573 * seqfile ops/methods for returning structured data. Currently just
2574 * supports string->u64 maps, but can be extended in future.
2575 */
2576
2577 struct cgroup_seqfile_state {
2578 struct cftype *cft;
2579 struct cgroup *cgroup;
2580 };
2581
2582 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2583 {
2584 struct seq_file *sf = cb->state;
2585 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2586 }
2587
2588 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2589 {
2590 struct cgroup_seqfile_state *state = m->private;
2591 struct cftype *cft = state->cft;
2592 if (cft->read_map) {
2593 struct cgroup_map_cb cb = {
2594 .fill = cgroup_map_add,
2595 .state = m,
2596 };
2597 return cft->read_map(state->cgroup, cft, &cb);
2598 }
2599 return cft->read_seq_string(state->cgroup, cft, m);
2600 }
2601
2602 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2603 {
2604 struct seq_file *seq = file->private_data;
2605 kfree(seq->private);
2606 return single_release(inode, file);
2607 }
2608
2609 static const struct file_operations cgroup_seqfile_operations = {
2610 .read = seq_read,
2611 .write = cgroup_file_write,
2612 .llseek = seq_lseek,
2613 .release = cgroup_seqfile_release,
2614 };
2615
2616 static int cgroup_file_open(struct inode *inode, struct file *file)
2617 {
2618 int err;
2619 struct cftype *cft;
2620
2621 err = generic_file_open(inode, file);
2622 if (err)
2623 return err;
2624 cft = __d_cft(file->f_dentry);
2625
2626 if (cft->read_map || cft->read_seq_string) {
2627 struct cgroup_seqfile_state *state =
2628 kzalloc(sizeof(*state), GFP_USER);
2629 if (!state)
2630 return -ENOMEM;
2631 state->cft = cft;
2632 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2633 file->f_op = &cgroup_seqfile_operations;
2634 err = single_open(file, cgroup_seqfile_show, state);
2635 if (err < 0)
2636 kfree(state);
2637 } else if (cft->open)
2638 err = cft->open(inode, file);
2639 else
2640 err = 0;
2641
2642 return err;
2643 }
2644
2645 static int cgroup_file_release(struct inode *inode, struct file *file)
2646 {
2647 struct cftype *cft = __d_cft(file->f_dentry);
2648 if (cft->release)
2649 return cft->release(inode, file);
2650 return 0;
2651 }
2652
2653 /*
2654 * cgroup_rename - Only allow simple rename of directories in place.
2655 */
2656 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2657 struct inode *new_dir, struct dentry *new_dentry)
2658 {
2659 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2660 return -ENOTDIR;
2661 if (new_dentry->d_inode)
2662 return -EEXIST;
2663 if (old_dir != new_dir)
2664 return -EIO;
2665 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2666 }
2667
2668 static const struct file_operations cgroup_file_operations = {
2669 .read = cgroup_file_read,
2670 .write = cgroup_file_write,
2671 .llseek = generic_file_llseek,
2672 .open = cgroup_file_open,
2673 .release = cgroup_file_release,
2674 };
2675
2676 static const struct inode_operations cgroup_dir_inode_operations = {
2677 .lookup = cgroup_lookup,
2678 .mkdir = cgroup_mkdir,
2679 .rmdir = cgroup_rmdir,
2680 .rename = cgroup_rename,
2681 };
2682
2683 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2684 {
2685 if (dentry->d_name.len > NAME_MAX)
2686 return ERR_PTR(-ENAMETOOLONG);
2687 d_add(dentry, NULL);
2688 return NULL;
2689 }
2690
2691 /*
2692 * Check if a file is a control file
2693 */
2694 static inline struct cftype *__file_cft(struct file *file)
2695 {
2696 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2697 return ERR_PTR(-EINVAL);
2698 return __d_cft(file->f_dentry);
2699 }
2700
2701 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2702 struct super_block *sb)
2703 {
2704 struct inode *inode;
2705
2706 if (!dentry)
2707 return -ENOENT;
2708 if (dentry->d_inode)
2709 return -EEXIST;
2710
2711 inode = cgroup_new_inode(mode, sb);
2712 if (!inode)
2713 return -ENOMEM;
2714
2715 if (S_ISDIR(mode)) {
2716 inode->i_op = &cgroup_dir_inode_operations;
2717 inode->i_fop = &simple_dir_operations;
2718
2719 /* start off with i_nlink == 2 (for "." entry) */
2720 inc_nlink(inode);
2721
2722 /* start with the directory inode held, so that we can
2723 * populate it without racing with another mkdir */
2724 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2725 } else if (S_ISREG(mode)) {
2726 inode->i_size = 0;
2727 inode->i_fop = &cgroup_file_operations;
2728 }
2729 d_instantiate(dentry, inode);
2730 dget(dentry); /* Extra count - pin the dentry in core */
2731 return 0;
2732 }
2733
2734 /*
2735 * cgroup_create_dir - create a directory for an object.
2736 * @cgrp: the cgroup we create the directory for. It must have a valid
2737 * ->parent field. And we are going to fill its ->dentry field.
2738 * @dentry: dentry of the new cgroup
2739 * @mode: mode to set on new directory.
2740 */
2741 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2742 mode_t mode)
2743 {
2744 struct dentry *parent;
2745 int error = 0;
2746
2747 parent = cgrp->parent->dentry;
2748 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2749 if (!error) {
2750 dentry->d_fsdata = cgrp;
2751 inc_nlink(parent->d_inode);
2752 rcu_assign_pointer(cgrp->dentry, dentry);
2753 dget(dentry);
2754 }
2755 dput(dentry);
2756
2757 return error;
2758 }
2759
2760 /**
2761 * cgroup_file_mode - deduce file mode of a control file
2762 * @cft: the control file in question
2763 *
2764 * returns cft->mode if ->mode is not 0
2765 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2766 * returns S_IRUGO if it has only a read handler
2767 * returns S_IWUSR if it has only a write hander
2768 */
2769 static mode_t cgroup_file_mode(const struct cftype *cft)
2770 {
2771 mode_t mode = 0;
2772
2773 if (cft->mode)
2774 return cft->mode;
2775
2776 if (cft->read || cft->read_u64 || cft->read_s64 ||
2777 cft->read_map || cft->read_seq_string)
2778 mode |= S_IRUGO;
2779
2780 if (cft->write || cft->write_u64 || cft->write_s64 ||
2781 cft->write_string || cft->trigger)
2782 mode |= S_IWUSR;
2783
2784 return mode;
2785 }
2786
2787 int cgroup_add_file(struct cgroup *cgrp,
2788 struct cgroup_subsys *subsys,
2789 const struct cftype *cft)
2790 {
2791 struct dentry *dir = cgrp->dentry;
2792 struct dentry *dentry;
2793 int error;
2794 mode_t mode;
2795
2796 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2797 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2798 strcpy(name, subsys->name);
2799 strcat(name, ".");
2800 }
2801 strcat(name, cft->name);
2802 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2803 dentry = lookup_one_len(name, dir, strlen(name));
2804 if (!IS_ERR(dentry)) {
2805 mode = cgroup_file_mode(cft);
2806 error = cgroup_create_file(dentry, mode | S_IFREG,
2807 cgrp->root->sb);
2808 if (!error)
2809 dentry->d_fsdata = (void *)cft;
2810 dput(dentry);
2811 } else
2812 error = PTR_ERR(dentry);
2813 return error;
2814 }
2815 EXPORT_SYMBOL_GPL(cgroup_add_file);
2816
2817 int cgroup_add_files(struct cgroup *cgrp,
2818 struct cgroup_subsys *subsys,
2819 const struct cftype cft[],
2820 int count)
2821 {
2822 int i, err;
2823 for (i = 0; i < count; i++) {
2824 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2825 if (err)
2826 return err;
2827 }
2828 return 0;
2829 }
2830 EXPORT_SYMBOL_GPL(cgroup_add_files);
2831
2832 /**
2833 * cgroup_task_count - count the number of tasks in a cgroup.
2834 * @cgrp: the cgroup in question
2835 *
2836 * Return the number of tasks in the cgroup.
2837 */
2838 int cgroup_task_count(const struct cgroup *cgrp)
2839 {
2840 int count = 0;
2841 struct cg_cgroup_link *link;
2842
2843 read_lock(&css_set_lock);
2844 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2845 count += atomic_read(&link->cg->refcount);
2846 }
2847 read_unlock(&css_set_lock);
2848 return count;
2849 }
2850
2851 /*
2852 * Advance a list_head iterator. The iterator should be positioned at
2853 * the start of a css_set
2854 */
2855 static void cgroup_advance_iter(struct cgroup *cgrp,
2856 struct cgroup_iter *it)
2857 {
2858 struct list_head *l = it->cg_link;
2859 struct cg_cgroup_link *link;
2860 struct css_set *cg;
2861
2862 /* Advance to the next non-empty css_set */
2863 do {
2864 l = l->next;
2865 if (l == &cgrp->css_sets) {
2866 it->cg_link = NULL;
2867 return;
2868 }
2869 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2870 cg = link->cg;
2871 } while (list_empty(&cg->tasks));
2872 it->cg_link = l;
2873 it->task = cg->tasks.next;
2874 }
2875
2876 /*
2877 * To reduce the fork() overhead for systems that are not actually
2878 * using their cgroups capability, we don't maintain the lists running
2879 * through each css_set to its tasks until we see the list actually
2880 * used - in other words after the first call to cgroup_iter_start().
2881 *
2882 * The tasklist_lock is not held here, as do_each_thread() and
2883 * while_each_thread() are protected by RCU.
2884 */
2885 static void cgroup_enable_task_cg_lists(void)
2886 {
2887 struct task_struct *p, *g;
2888 write_lock(&css_set_lock);
2889 use_task_css_set_links = 1;
2890 do_each_thread(g, p) {
2891 task_lock(p);
2892 /*
2893 * We should check if the process is exiting, otherwise
2894 * it will race with cgroup_exit() in that the list
2895 * entry won't be deleted though the process has exited.
2896 */
2897 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2898 list_add(&p->cg_list, &p->cgroups->tasks);
2899 task_unlock(p);
2900 } while_each_thread(g, p);
2901 write_unlock(&css_set_lock);
2902 }
2903
2904 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2905 {
2906 /*
2907 * The first time anyone tries to iterate across a cgroup,
2908 * we need to enable the list linking each css_set to its
2909 * tasks, and fix up all existing tasks.
2910 */
2911 if (!use_task_css_set_links)
2912 cgroup_enable_task_cg_lists();
2913
2914 read_lock(&css_set_lock);
2915 it->cg_link = &cgrp->css_sets;
2916 cgroup_advance_iter(cgrp, it);
2917 }
2918
2919 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2920 struct cgroup_iter *it)
2921 {
2922 struct task_struct *res;
2923 struct list_head *l = it->task;
2924 struct cg_cgroup_link *link;
2925
2926 /* If the iterator cg is NULL, we have no tasks */
2927 if (!it->cg_link)
2928 return NULL;
2929 res = list_entry(l, struct task_struct, cg_list);
2930 /* Advance iterator to find next entry */
2931 l = l->next;
2932 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2933 if (l == &link->cg->tasks) {
2934 /* We reached the end of this task list - move on to
2935 * the next cg_cgroup_link */
2936 cgroup_advance_iter(cgrp, it);
2937 } else {
2938 it->task = l;
2939 }
2940 return res;
2941 }
2942
2943 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2944 {
2945 read_unlock(&css_set_lock);
2946 }
2947
2948 static inline int started_after_time(struct task_struct *t1,
2949 struct timespec *time,
2950 struct task_struct *t2)
2951 {
2952 int start_diff = timespec_compare(&t1->start_time, time);
2953 if (start_diff > 0) {
2954 return 1;
2955 } else if (start_diff < 0) {
2956 return 0;
2957 } else {
2958 /*
2959 * Arbitrarily, if two processes started at the same
2960 * time, we'll say that the lower pointer value
2961 * started first. Note that t2 may have exited by now
2962 * so this may not be a valid pointer any longer, but
2963 * that's fine - it still serves to distinguish
2964 * between two tasks started (effectively) simultaneously.
2965 */
2966 return t1 > t2;
2967 }
2968 }
2969
2970 /*
2971 * This function is a callback from heap_insert() and is used to order
2972 * the heap.
2973 * In this case we order the heap in descending task start time.
2974 */
2975 static inline int started_after(void *p1, void *p2)
2976 {
2977 struct task_struct *t1 = p1;
2978 struct task_struct *t2 = p2;
2979 return started_after_time(t1, &t2->start_time, t2);
2980 }
2981
2982 /**
2983 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2984 * @scan: struct cgroup_scanner containing arguments for the scan
2985 *
2986 * Arguments include pointers to callback functions test_task() and
2987 * process_task().
2988 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2989 * and if it returns true, call process_task() for it also.
2990 * The test_task pointer may be NULL, meaning always true (select all tasks).
2991 * Effectively duplicates cgroup_iter_{start,next,end}()
2992 * but does not lock css_set_lock for the call to process_task().
2993 * The struct cgroup_scanner may be embedded in any structure of the caller's
2994 * creation.
2995 * It is guaranteed that process_task() will act on every task that
2996 * is a member of the cgroup for the duration of this call. This
2997 * function may or may not call process_task() for tasks that exit
2998 * or move to a different cgroup during the call, or are forked or
2999 * move into the cgroup during the call.
3000 *
3001 * Note that test_task() may be called with locks held, and may in some
3002 * situations be called multiple times for the same task, so it should
3003 * be cheap.
3004 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3005 * pre-allocated and will be used for heap operations (and its "gt" member will
3006 * be overwritten), else a temporary heap will be used (allocation of which
3007 * may cause this function to fail).
3008 */
3009 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3010 {
3011 int retval, i;
3012 struct cgroup_iter it;
3013 struct task_struct *p, *dropped;
3014 /* Never dereference latest_task, since it's not refcounted */
3015 struct task_struct *latest_task = NULL;
3016 struct ptr_heap tmp_heap;
3017 struct ptr_heap *heap;
3018 struct timespec latest_time = { 0, 0 };
3019
3020 if (scan->heap) {
3021 /* The caller supplied our heap and pre-allocated its memory */
3022 heap = scan->heap;
3023 heap->gt = &started_after;
3024 } else {
3025 /* We need to allocate our own heap memory */
3026 heap = &tmp_heap;
3027 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3028 if (retval)
3029 /* cannot allocate the heap */
3030 return retval;
3031 }
3032
3033 again:
3034 /*
3035 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3036 * to determine which are of interest, and using the scanner's
3037 * "process_task" callback to process any of them that need an update.
3038 * Since we don't want to hold any locks during the task updates,
3039 * gather tasks to be processed in a heap structure.
3040 * The heap is sorted by descending task start time.
3041 * If the statically-sized heap fills up, we overflow tasks that
3042 * started later, and in future iterations only consider tasks that
3043 * started after the latest task in the previous pass. This
3044 * guarantees forward progress and that we don't miss any tasks.
3045 */
3046 heap->size = 0;
3047 cgroup_iter_start(scan->cg, &it);
3048 while ((p = cgroup_iter_next(scan->cg, &it))) {
3049 /*
3050 * Only affect tasks that qualify per the caller's callback,
3051 * if he provided one
3052 */
3053 if (scan->test_task && !scan->test_task(p, scan))
3054 continue;
3055 /*
3056 * Only process tasks that started after the last task
3057 * we processed
3058 */
3059 if (!started_after_time(p, &latest_time, latest_task))
3060 continue;
3061 dropped = heap_insert(heap, p);
3062 if (dropped == NULL) {
3063 /*
3064 * The new task was inserted; the heap wasn't
3065 * previously full
3066 */
3067 get_task_struct(p);
3068 } else if (dropped != p) {
3069 /*
3070 * The new task was inserted, and pushed out a
3071 * different task
3072 */
3073 get_task_struct(p);
3074 put_task_struct(dropped);
3075 }
3076 /*
3077 * Else the new task was newer than anything already in
3078 * the heap and wasn't inserted
3079 */
3080 }
3081 cgroup_iter_end(scan->cg, &it);
3082
3083 if (heap->size) {
3084 for (i = 0; i < heap->size; i++) {
3085 struct task_struct *q = heap->ptrs[i];
3086 if (i == 0) {
3087 latest_time = q->start_time;
3088 latest_task = q;
3089 }
3090 /* Process the task per the caller's callback */
3091 scan->process_task(q, scan);
3092 put_task_struct(q);
3093 }
3094 /*
3095 * If we had to process any tasks at all, scan again
3096 * in case some of them were in the middle of forking
3097 * children that didn't get processed.
3098 * Not the most efficient way to do it, but it avoids
3099 * having to take callback_mutex in the fork path
3100 */
3101 goto again;
3102 }
3103 if (heap == &tmp_heap)
3104 heap_free(&tmp_heap);
3105 return 0;
3106 }
3107
3108 /*
3109 * Stuff for reading the 'tasks'/'procs' files.
3110 *
3111 * Reading this file can return large amounts of data if a cgroup has
3112 * *lots* of attached tasks. So it may need several calls to read(),
3113 * but we cannot guarantee that the information we produce is correct
3114 * unless we produce it entirely atomically.
3115 *
3116 */
3117
3118 /*
3119 * The following two functions "fix" the issue where there are more pids
3120 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3121 * TODO: replace with a kernel-wide solution to this problem
3122 */
3123 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3124 static void *pidlist_allocate(int count)
3125 {
3126 if (PIDLIST_TOO_LARGE(count))
3127 return vmalloc(count * sizeof(pid_t));
3128 else
3129 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3130 }
3131 static void pidlist_free(void *p)
3132 {
3133 if (is_vmalloc_addr(p))
3134 vfree(p);
3135 else
3136 kfree(p);
3137 }
3138 static void *pidlist_resize(void *p, int newcount)
3139 {
3140 void *newlist;
3141 /* note: if new alloc fails, old p will still be valid either way */
3142 if (is_vmalloc_addr(p)) {
3143 newlist = vmalloc(newcount * sizeof(pid_t));
3144 if (!newlist)
3145 return NULL;
3146 memcpy(newlist, p, newcount * sizeof(pid_t));
3147 vfree(p);
3148 } else {
3149 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3150 }
3151 return newlist;
3152 }
3153
3154 /*
3155 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3156 * If the new stripped list is sufficiently smaller and there's enough memory
3157 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3158 * number of unique elements.
3159 */
3160 /* is the size difference enough that we should re-allocate the array? */
3161 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3162 static int pidlist_uniq(pid_t **p, int length)
3163 {
3164 int src, dest = 1;
3165 pid_t *list = *p;
3166 pid_t *newlist;
3167
3168 /*
3169 * we presume the 0th element is unique, so i starts at 1. trivial
3170 * edge cases first; no work needs to be done for either
3171 */
3172 if (length == 0 || length == 1)
3173 return length;
3174 /* src and dest walk down the list; dest counts unique elements */
3175 for (src = 1; src < length; src++) {
3176 /* find next unique element */
3177 while (list[src] == list[src-1]) {
3178 src++;
3179 if (src == length)
3180 goto after;
3181 }
3182 /* dest always points to where the next unique element goes */
3183 list[dest] = list[src];
3184 dest++;
3185 }
3186 after:
3187 /*
3188 * if the length difference is large enough, we want to allocate a
3189 * smaller buffer to save memory. if this fails due to out of memory,
3190 * we'll just stay with what we've got.
3191 */
3192 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3193 newlist = pidlist_resize(list, dest);
3194 if (newlist)
3195 *p = newlist;
3196 }
3197 return dest;
3198 }
3199
3200 static int cmppid(const void *a, const void *b)
3201 {
3202 return *(pid_t *)a - *(pid_t *)b;
3203 }
3204
3205 /*
3206 * find the appropriate pidlist for our purpose (given procs vs tasks)
3207 * returns with the lock on that pidlist already held, and takes care
3208 * of the use count, or returns NULL with no locks held if we're out of
3209 * memory.
3210 */
3211 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3212 enum cgroup_filetype type)
3213 {
3214 struct cgroup_pidlist *l;
3215 /* don't need task_nsproxy() if we're looking at ourself */
3216 struct pid_namespace *ns = current->nsproxy->pid_ns;
3217
3218 /*
3219 * We can't drop the pidlist_mutex before taking the l->mutex in case
3220 * the last ref-holder is trying to remove l from the list at the same
3221 * time. Holding the pidlist_mutex precludes somebody taking whichever
3222 * list we find out from under us - compare release_pid_array().
3223 */
3224 mutex_lock(&cgrp->pidlist_mutex);
3225 list_for_each_entry(l, &cgrp->pidlists, links) {
3226 if (l->key.type == type && l->key.ns == ns) {
3227 /* make sure l doesn't vanish out from under us */
3228 down_write(&l->mutex);
3229 mutex_unlock(&cgrp->pidlist_mutex);
3230 return l;
3231 }
3232 }
3233 /* entry not found; create a new one */
3234 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3235 if (!l) {
3236 mutex_unlock(&cgrp->pidlist_mutex);
3237 return l;
3238 }
3239 init_rwsem(&l->mutex);
3240 down_write(&l->mutex);
3241 l->key.type = type;
3242 l->key.ns = get_pid_ns(ns);
3243 l->use_count = 0; /* don't increment here */
3244 l->list = NULL;
3245 l->owner = cgrp;
3246 list_add(&l->links, &cgrp->pidlists);
3247 mutex_unlock(&cgrp->pidlist_mutex);
3248 return l;
3249 }
3250
3251 /*
3252 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3253 */
3254 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3255 struct cgroup_pidlist **lp)
3256 {
3257 pid_t *array;
3258 int length;
3259 int pid, n = 0; /* used for populating the array */
3260 struct cgroup_iter it;
3261 struct task_struct *tsk;
3262 struct cgroup_pidlist *l;
3263
3264 /*
3265 * If cgroup gets more users after we read count, we won't have
3266 * enough space - tough. This race is indistinguishable to the
3267 * caller from the case that the additional cgroup users didn't
3268 * show up until sometime later on.
3269 */
3270 length = cgroup_task_count(cgrp);
3271 array = pidlist_allocate(length);
3272 if (!array)
3273 return -ENOMEM;
3274 /* now, populate the array */
3275 cgroup_iter_start(cgrp, &it);
3276 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3277 if (unlikely(n == length))
3278 break;
3279 /* get tgid or pid for procs or tasks file respectively */
3280 if (type == CGROUP_FILE_PROCS)
3281 pid = task_tgid_vnr(tsk);
3282 else
3283 pid = task_pid_vnr(tsk);
3284 if (pid > 0) /* make sure to only use valid results */
3285 array[n++] = pid;
3286 }
3287 cgroup_iter_end(cgrp, &it);
3288 length = n;
3289 /* now sort & (if procs) strip out duplicates */
3290 sort(array, length, sizeof(pid_t), cmppid, NULL);
3291 if (type == CGROUP_FILE_PROCS)
3292 length = pidlist_uniq(&array, length);
3293 l = cgroup_pidlist_find(cgrp, type);
3294 if (!l) {
3295 pidlist_free(array);
3296 return -ENOMEM;
3297 }
3298 /* store array, freeing old if necessary - lock already held */
3299 pidlist_free(l->list);
3300 l->list = array;
3301 l->length = length;
3302 l->use_count++;
3303 up_write(&l->mutex);
3304 *lp = l;
3305 return 0;
3306 }
3307
3308 /**
3309 * cgroupstats_build - build and fill cgroupstats
3310 * @stats: cgroupstats to fill information into
3311 * @dentry: A dentry entry belonging to the cgroup for which stats have
3312 * been requested.
3313 *
3314 * Build and fill cgroupstats so that taskstats can export it to user
3315 * space.
3316 */
3317 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3318 {
3319 int ret = -EINVAL;
3320 struct cgroup *cgrp;
3321 struct cgroup_iter it;
3322 struct task_struct *tsk;
3323
3324 /*
3325 * Validate dentry by checking the superblock operations,
3326 * and make sure it's a directory.
3327 */
3328 if (dentry->d_sb->s_op != &cgroup_ops ||
3329 !S_ISDIR(dentry->d_inode->i_mode))
3330 goto err;
3331
3332 ret = 0;
3333 cgrp = dentry->d_fsdata;
3334
3335 cgroup_iter_start(cgrp, &it);
3336 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3337 switch (tsk->state) {
3338 case TASK_RUNNING:
3339 stats->nr_running++;
3340 break;
3341 case TASK_INTERRUPTIBLE:
3342 stats->nr_sleeping++;
3343 break;
3344 case TASK_UNINTERRUPTIBLE:
3345 stats->nr_uninterruptible++;
3346 break;
3347 case TASK_STOPPED:
3348 stats->nr_stopped++;
3349 break;
3350 default:
3351 if (delayacct_is_task_waiting_on_io(tsk))
3352 stats->nr_io_wait++;
3353 break;
3354 }
3355 }
3356 cgroup_iter_end(cgrp, &it);
3357
3358 err:
3359 return ret;
3360 }
3361
3362
3363 /*
3364 * seq_file methods for the tasks/procs files. The seq_file position is the
3365 * next pid to display; the seq_file iterator is a pointer to the pid
3366 * in the cgroup->l->list array.
3367 */
3368
3369 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3370 {
3371 /*
3372 * Initially we receive a position value that corresponds to
3373 * one more than the last pid shown (or 0 on the first call or
3374 * after a seek to the start). Use a binary-search to find the
3375 * next pid to display, if any
3376 */
3377 struct cgroup_pidlist *l = s->private;
3378 int index = 0, pid = *pos;
3379 int *iter;
3380
3381 down_read(&l->mutex);
3382 if (pid) {
3383 int end = l->length;
3384
3385 while (index < end) {
3386 int mid = (index + end) / 2;
3387 if (l->list[mid] == pid) {
3388 index = mid;
3389 break;
3390 } else if (l->list[mid] <= pid)
3391 index = mid + 1;
3392 else
3393 end = mid;
3394 }
3395 }
3396 /* If we're off the end of the array, we're done */
3397 if (index >= l->length)
3398 return NULL;
3399 /* Update the abstract position to be the actual pid that we found */
3400 iter = l->list + index;
3401 *pos = *iter;
3402 return iter;
3403 }
3404
3405 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3406 {
3407 struct cgroup_pidlist *l = s->private;
3408 up_read(&l->mutex);
3409 }
3410
3411 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3412 {
3413 struct cgroup_pidlist *l = s->private;
3414 pid_t *p = v;
3415 pid_t *end = l->list + l->length;
3416 /*
3417 * Advance to the next pid in the array. If this goes off the
3418 * end, we're done
3419 */
3420 p++;
3421 if (p >= end) {
3422 return NULL;
3423 } else {
3424 *pos = *p;
3425 return p;
3426 }
3427 }
3428
3429 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3430 {
3431 return seq_printf(s, "%d\n", *(int *)v);
3432 }
3433
3434 /*
3435 * seq_operations functions for iterating on pidlists through seq_file -
3436 * independent of whether it's tasks or procs
3437 */
3438 static const struct seq_operations cgroup_pidlist_seq_operations = {
3439 .start = cgroup_pidlist_start,
3440 .stop = cgroup_pidlist_stop,
3441 .next = cgroup_pidlist_next,
3442 .show = cgroup_pidlist_show,
3443 };
3444
3445 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3446 {
3447 /*
3448 * the case where we're the last user of this particular pidlist will
3449 * have us remove it from the cgroup's list, which entails taking the
3450 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3451 * pidlist_mutex, we have to take pidlist_mutex first.
3452 */
3453 mutex_lock(&l->owner->pidlist_mutex);
3454 down_write(&l->mutex);
3455 BUG_ON(!l->use_count);
3456 if (!--l->use_count) {
3457 /* we're the last user if refcount is 0; remove and free */
3458 list_del(&l->links);
3459 mutex_unlock(&l->owner->pidlist_mutex);
3460 pidlist_free(l->list);
3461 put_pid_ns(l->key.ns);
3462 up_write(&l->mutex);
3463 kfree(l);
3464 return;
3465 }
3466 mutex_unlock(&l->owner->pidlist_mutex);
3467 up_write(&l->mutex);
3468 }
3469
3470 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3471 {
3472 struct cgroup_pidlist *l;
3473 if (!(file->f_mode & FMODE_READ))
3474 return 0;
3475 /*
3476 * the seq_file will only be initialized if the file was opened for
3477 * reading; hence we check if it's not null only in that case.
3478 */
3479 l = ((struct seq_file *)file->private_data)->private;
3480 cgroup_release_pid_array(l);
3481 return seq_release(inode, file);
3482 }
3483
3484 static const struct file_operations cgroup_pidlist_operations = {
3485 .read = seq_read,
3486 .llseek = seq_lseek,
3487 .write = cgroup_file_write,
3488 .release = cgroup_pidlist_release,
3489 };
3490
3491 /*
3492 * The following functions handle opens on a file that displays a pidlist
3493 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3494 * in the cgroup.
3495 */
3496 /* helper function for the two below it */
3497 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3498 {
3499 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3500 struct cgroup_pidlist *l;
3501 int retval;
3502
3503 /* Nothing to do for write-only files */
3504 if (!(file->f_mode & FMODE_READ))
3505 return 0;
3506
3507 /* have the array populated */
3508 retval = pidlist_array_load(cgrp, type, &l);
3509 if (retval)
3510 return retval;
3511 /* configure file information */
3512 file->f_op = &cgroup_pidlist_operations;
3513
3514 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3515 if (retval) {
3516 cgroup_release_pid_array(l);
3517 return retval;
3518 }
3519 ((struct seq_file *)file->private_data)->private = l;
3520 return 0;
3521 }
3522 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3523 {
3524 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3525 }
3526 static int cgroup_procs_open(struct inode *unused, struct file *file)
3527 {
3528 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3529 }
3530
3531 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3532 struct cftype *cft)
3533 {
3534 return notify_on_release(cgrp);
3535 }
3536
3537 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3538 struct cftype *cft,
3539 u64 val)
3540 {
3541 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3542 if (val)
3543 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3544 else
3545 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3546 return 0;
3547 }
3548
3549 /*
3550 * Unregister event and free resources.
3551 *
3552 * Gets called from workqueue.
3553 */
3554 static void cgroup_event_remove(struct work_struct *work)
3555 {
3556 struct cgroup_event *event = container_of(work, struct cgroup_event,
3557 remove);
3558 struct cgroup *cgrp = event->cgrp;
3559
3560 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3561
3562 eventfd_ctx_put(event->eventfd);
3563 kfree(event);
3564 dput(cgrp->dentry);
3565 }
3566
3567 /*
3568 * Gets called on POLLHUP on eventfd when user closes it.
3569 *
3570 * Called with wqh->lock held and interrupts disabled.
3571 */
3572 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3573 int sync, void *key)
3574 {
3575 struct cgroup_event *event = container_of(wait,
3576 struct cgroup_event, wait);
3577 struct cgroup *cgrp = event->cgrp;
3578 unsigned long flags = (unsigned long)key;
3579
3580 if (flags & POLLHUP) {
3581 __remove_wait_queue(event->wqh, &event->wait);
3582 spin_lock(&cgrp->event_list_lock);
3583 list_del(&event->list);
3584 spin_unlock(&cgrp->event_list_lock);
3585 /*
3586 * We are in atomic context, but cgroup_event_remove() may
3587 * sleep, so we have to call it in workqueue.
3588 */
3589 schedule_work(&event->remove);
3590 }
3591
3592 return 0;
3593 }
3594
3595 static void cgroup_event_ptable_queue_proc(struct file *file,
3596 wait_queue_head_t *wqh, poll_table *pt)
3597 {
3598 struct cgroup_event *event = container_of(pt,
3599 struct cgroup_event, pt);
3600
3601 event->wqh = wqh;
3602 add_wait_queue(wqh, &event->wait);
3603 }
3604
3605 /*
3606 * Parse input and register new cgroup event handler.
3607 *
3608 * Input must be in format '<event_fd> <control_fd> <args>'.
3609 * Interpretation of args is defined by control file implementation.
3610 */
3611 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3612 const char *buffer)
3613 {
3614 struct cgroup_event *event = NULL;
3615 unsigned int efd, cfd;
3616 struct file *efile = NULL;
3617 struct file *cfile = NULL;
3618 char *endp;
3619 int ret;
3620
3621 efd = simple_strtoul(buffer, &endp, 10);
3622 if (*endp != ' ')
3623 return -EINVAL;
3624 buffer = endp + 1;
3625
3626 cfd = simple_strtoul(buffer, &endp, 10);
3627 if ((*endp != ' ') && (*endp != '\0'))
3628 return -EINVAL;
3629 buffer = endp + 1;
3630
3631 event = kzalloc(sizeof(*event), GFP_KERNEL);
3632 if (!event)
3633 return -ENOMEM;
3634 event->cgrp = cgrp;
3635 INIT_LIST_HEAD(&event->list);
3636 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3637 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3638 INIT_WORK(&event->remove, cgroup_event_remove);
3639
3640 efile = eventfd_fget(efd);
3641 if (IS_ERR(efile)) {
3642 ret = PTR_ERR(efile);
3643 goto fail;
3644 }
3645
3646 event->eventfd = eventfd_ctx_fileget(efile);
3647 if (IS_ERR(event->eventfd)) {
3648 ret = PTR_ERR(event->eventfd);
3649 goto fail;
3650 }
3651
3652 cfile = fget(cfd);
3653 if (!cfile) {
3654 ret = -EBADF;
3655 goto fail;
3656 }
3657
3658 /* the process need read permission on control file */
3659 /* AV: shouldn't we check that it's been opened for read instead? */
3660 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3661 if (ret < 0)
3662 goto fail;
3663
3664 event->cft = __file_cft(cfile);
3665 if (IS_ERR(event->cft)) {
3666 ret = PTR_ERR(event->cft);
3667 goto fail;
3668 }
3669
3670 if (!event->cft->register_event || !event->cft->unregister_event) {
3671 ret = -EINVAL;
3672 goto fail;
3673 }
3674
3675 ret = event->cft->register_event(cgrp, event->cft,
3676 event->eventfd, buffer);
3677 if (ret)
3678 goto fail;
3679
3680 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3681 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3682 ret = 0;
3683 goto fail;
3684 }
3685
3686 /*
3687 * Events should be removed after rmdir of cgroup directory, but before
3688 * destroying subsystem state objects. Let's take reference to cgroup
3689 * directory dentry to do that.
3690 */
3691 dget(cgrp->dentry);
3692
3693 spin_lock(&cgrp->event_list_lock);
3694 list_add(&event->list, &cgrp->event_list);
3695 spin_unlock(&cgrp->event_list_lock);
3696
3697 fput(cfile);
3698 fput(efile);
3699
3700 return 0;
3701
3702 fail:
3703 if (cfile)
3704 fput(cfile);
3705
3706 if (event && event->eventfd && !IS_ERR(event->eventfd))
3707 eventfd_ctx_put(event->eventfd);
3708
3709 if (!IS_ERR_OR_NULL(efile))
3710 fput(efile);
3711
3712 kfree(event);
3713
3714 return ret;
3715 }
3716
3717 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3718 struct cftype *cft)
3719 {
3720 return clone_children(cgrp);
3721 }
3722
3723 static int cgroup_clone_children_write(struct cgroup *cgrp,
3724 struct cftype *cft,
3725 u64 val)
3726 {
3727 if (val)
3728 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3729 else
3730 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3731 return 0;
3732 }
3733
3734 /*
3735 * for the common functions, 'private' gives the type of file
3736 */
3737 /* for hysterical raisins, we can't put this on the older files */
3738 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3739 static struct cftype files[] = {
3740 {
3741 .name = "tasks",
3742 .open = cgroup_tasks_open,
3743 .write_u64 = cgroup_tasks_write,
3744 .release = cgroup_pidlist_release,
3745 .mode = S_IRUGO | S_IWUSR,
3746 },
3747 {
3748 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3749 .open = cgroup_procs_open,
3750 .write_u64 = cgroup_procs_write,
3751 .release = cgroup_pidlist_release,
3752 .mode = S_IRUGO | S_IWUSR,
3753 },
3754 {
3755 .name = "notify_on_release",
3756 .read_u64 = cgroup_read_notify_on_release,
3757 .write_u64 = cgroup_write_notify_on_release,
3758 },
3759 {
3760 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3761 .write_string = cgroup_write_event_control,
3762 .mode = S_IWUGO,
3763 },
3764 {
3765 .name = "cgroup.clone_children",
3766 .read_u64 = cgroup_clone_children_read,
3767 .write_u64 = cgroup_clone_children_write,
3768 },
3769 };
3770
3771 static struct cftype cft_release_agent = {
3772 .name = "release_agent",
3773 .read_seq_string = cgroup_release_agent_show,
3774 .write_string = cgroup_release_agent_write,
3775 .max_write_len = PATH_MAX,
3776 };
3777
3778 static int cgroup_populate_dir(struct cgroup *cgrp)
3779 {
3780 int err;
3781 struct cgroup_subsys *ss;
3782
3783 /* First clear out any existing files */
3784 cgroup_clear_directory(cgrp->dentry);
3785
3786 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3787 if (err < 0)
3788 return err;
3789
3790 if (cgrp == cgrp->top_cgroup) {
3791 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3792 return err;
3793 }
3794
3795 for_each_subsys(cgrp->root, ss) {
3796 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3797 return err;
3798 }
3799 /* This cgroup is ready now */
3800 for_each_subsys(cgrp->root, ss) {
3801 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3802 /*
3803 * Update id->css pointer and make this css visible from
3804 * CSS ID functions. This pointer will be dereferened
3805 * from RCU-read-side without locks.
3806 */
3807 if (css->id)
3808 rcu_assign_pointer(css->id->css, css);
3809 }
3810
3811 return 0;
3812 }
3813
3814 static void init_cgroup_css(struct cgroup_subsys_state *css,
3815 struct cgroup_subsys *ss,
3816 struct cgroup *cgrp)
3817 {
3818 css->cgroup = cgrp;
3819 atomic_set(&css->refcnt, 1);
3820 css->flags = 0;
3821 css->id = NULL;
3822 if (cgrp == dummytop)
3823 set_bit(CSS_ROOT, &css->flags);
3824 BUG_ON(cgrp->subsys[ss->subsys_id]);
3825 cgrp->subsys[ss->subsys_id] = css;
3826 }
3827
3828 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3829 {
3830 /* We need to take each hierarchy_mutex in a consistent order */
3831 int i;
3832
3833 /*
3834 * No worry about a race with rebind_subsystems that might mess up the
3835 * locking order, since both parties are under cgroup_mutex.
3836 */
3837 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3838 struct cgroup_subsys *ss = subsys[i];
3839 if (ss == NULL)
3840 continue;
3841 if (ss->root == root)
3842 mutex_lock(&ss->hierarchy_mutex);
3843 }
3844 }
3845
3846 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3847 {
3848 int i;
3849
3850 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3851 struct cgroup_subsys *ss = subsys[i];
3852 if (ss == NULL)
3853 continue;
3854 if (ss->root == root)
3855 mutex_unlock(&ss->hierarchy_mutex);
3856 }
3857 }
3858
3859 /*
3860 * cgroup_create - create a cgroup
3861 * @parent: cgroup that will be parent of the new cgroup
3862 * @dentry: dentry of the new cgroup
3863 * @mode: mode to set on new inode
3864 *
3865 * Must be called with the mutex on the parent inode held
3866 */
3867 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3868 mode_t mode)
3869 {
3870 struct cgroup *cgrp;
3871 struct cgroupfs_root *root = parent->root;
3872 int err = 0;
3873 struct cgroup_subsys *ss;
3874 struct super_block *sb = root->sb;
3875
3876 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3877 if (!cgrp)
3878 return -ENOMEM;
3879
3880 /* Grab a reference on the superblock so the hierarchy doesn't
3881 * get deleted on unmount if there are child cgroups. This
3882 * can be done outside cgroup_mutex, since the sb can't
3883 * disappear while someone has an open control file on the
3884 * fs */
3885 atomic_inc(&sb->s_active);
3886
3887 mutex_lock(&cgroup_mutex);
3888
3889 init_cgroup_housekeeping(cgrp);
3890
3891 cgrp->parent = parent;
3892 cgrp->root = parent->root;
3893 cgrp->top_cgroup = parent->top_cgroup;
3894
3895 if (notify_on_release(parent))
3896 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3897
3898 if (clone_children(parent))
3899 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3900
3901 for_each_subsys(root, ss) {
3902 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3903
3904 if (IS_ERR(css)) {
3905 err = PTR_ERR(css);
3906 goto err_destroy;
3907 }
3908 init_cgroup_css(css, ss, cgrp);
3909 if (ss->use_id) {
3910 err = alloc_css_id(ss, parent, cgrp);
3911 if (err)
3912 goto err_destroy;
3913 }
3914 /* At error, ->destroy() callback has to free assigned ID. */
3915 if (clone_children(parent) && ss->post_clone)
3916 ss->post_clone(ss, cgrp);
3917 }
3918
3919 cgroup_lock_hierarchy(root);
3920 list_add(&cgrp->sibling, &cgrp->parent->children);
3921 cgroup_unlock_hierarchy(root);
3922 root->number_of_cgroups++;
3923
3924 err = cgroup_create_dir(cgrp, dentry, mode);
3925 if (err < 0)
3926 goto err_remove;
3927
3928 /* The cgroup directory was pre-locked for us */
3929 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3930
3931 err = cgroup_populate_dir(cgrp);
3932 /* If err < 0, we have a half-filled directory - oh well ;) */
3933
3934 mutex_unlock(&cgroup_mutex);
3935 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3936
3937 return 0;
3938
3939 err_remove:
3940
3941 cgroup_lock_hierarchy(root);
3942 list_del(&cgrp->sibling);
3943 cgroup_unlock_hierarchy(root);
3944 root->number_of_cgroups--;
3945
3946 err_destroy:
3947
3948 for_each_subsys(root, ss) {
3949 if (cgrp->subsys[ss->subsys_id])
3950 ss->destroy(ss, cgrp);
3951 }
3952
3953 mutex_unlock(&cgroup_mutex);
3954
3955 /* Release the reference count that we took on the superblock */
3956 deactivate_super(sb);
3957
3958 kfree(cgrp);
3959 return err;
3960 }
3961
3962 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3963 {
3964 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3965
3966 /* the vfs holds inode->i_mutex already */
3967 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3968 }
3969
3970 static int cgroup_has_css_refs(struct cgroup *cgrp)
3971 {
3972 /* Check the reference count on each subsystem. Since we
3973 * already established that there are no tasks in the
3974 * cgroup, if the css refcount is also 1, then there should
3975 * be no outstanding references, so the subsystem is safe to
3976 * destroy. We scan across all subsystems rather than using
3977 * the per-hierarchy linked list of mounted subsystems since
3978 * we can be called via check_for_release() with no
3979 * synchronization other than RCU, and the subsystem linked
3980 * list isn't RCU-safe */
3981 int i;
3982 /*
3983 * We won't need to lock the subsys array, because the subsystems
3984 * we're concerned about aren't going anywhere since our cgroup root
3985 * has a reference on them.
3986 */
3987 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3988 struct cgroup_subsys *ss = subsys[i];
3989 struct cgroup_subsys_state *css;
3990 /* Skip subsystems not present or not in this hierarchy */
3991 if (ss == NULL || ss->root != cgrp->root)
3992 continue;
3993 css = cgrp->subsys[ss->subsys_id];
3994 /* When called from check_for_release() it's possible
3995 * that by this point the cgroup has been removed
3996 * and the css deleted. But a false-positive doesn't
3997 * matter, since it can only happen if the cgroup
3998 * has been deleted and hence no longer needs the
3999 * release agent to be called anyway. */
4000 if (css && (atomic_read(&css->refcnt) > 1))
4001 return 1;
4002 }
4003 return 0;
4004 }
4005
4006 /*
4007 * Atomically mark all (or else none) of the cgroup's CSS objects as
4008 * CSS_REMOVED. Return true on success, or false if the cgroup has
4009 * busy subsystems. Call with cgroup_mutex held
4010 */
4011
4012 static int cgroup_clear_css_refs(struct cgroup *cgrp)
4013 {
4014 struct cgroup_subsys *ss;
4015 unsigned long flags;
4016 bool failed = false;
4017 local_irq_save(flags);
4018 for_each_subsys(cgrp->root, ss) {
4019 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4020 int refcnt;
4021 while (1) {
4022 /* We can only remove a CSS with a refcnt==1 */
4023 refcnt = atomic_read(&css->refcnt);
4024 if (refcnt > 1) {
4025 failed = true;
4026 goto done;
4027 }
4028 BUG_ON(!refcnt);
4029 /*
4030 * Drop the refcnt to 0 while we check other
4031 * subsystems. This will cause any racing
4032 * css_tryget() to spin until we set the
4033 * CSS_REMOVED bits or abort
4034 */
4035 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
4036 break;
4037 cpu_relax();
4038 }
4039 }
4040 done:
4041 for_each_subsys(cgrp->root, ss) {
4042 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4043 if (failed) {
4044 /*
4045 * Restore old refcnt if we previously managed
4046 * to clear it from 1 to 0
4047 */
4048 if (!atomic_read(&css->refcnt))
4049 atomic_set(&css->refcnt, 1);
4050 } else {
4051 /* Commit the fact that the CSS is removed */
4052 set_bit(CSS_REMOVED, &css->flags);
4053 }
4054 }
4055 local_irq_restore(flags);
4056 return !failed;
4057 }
4058
4059 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4060 {
4061 struct cgroup *cgrp = dentry->d_fsdata;
4062 struct dentry *d;
4063 struct cgroup *parent;
4064 DEFINE_WAIT(wait);
4065 struct cgroup_event *event, *tmp;
4066 int ret;
4067
4068 /* the vfs holds both inode->i_mutex already */
4069 again:
4070 mutex_lock(&cgroup_mutex);
4071 if (atomic_read(&cgrp->count) != 0) {
4072 mutex_unlock(&cgroup_mutex);
4073 return -EBUSY;
4074 }
4075 if (!list_empty(&cgrp->children)) {
4076 mutex_unlock(&cgroup_mutex);
4077 return -EBUSY;
4078 }
4079 mutex_unlock(&cgroup_mutex);
4080
4081 /*
4082 * In general, subsystem has no css->refcnt after pre_destroy(). But
4083 * in racy cases, subsystem may have to get css->refcnt after
4084 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4085 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4086 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4087 * and subsystem's reference count handling. Please see css_get/put
4088 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4089 */
4090 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4091
4092 /*
4093 * Call pre_destroy handlers of subsys. Notify subsystems
4094 * that rmdir() request comes.
4095 */
4096 ret = cgroup_call_pre_destroy(cgrp);
4097 if (ret) {
4098 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4099 return ret;
4100 }
4101
4102 mutex_lock(&cgroup_mutex);
4103 parent = cgrp->parent;
4104 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4105 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4106 mutex_unlock(&cgroup_mutex);
4107 return -EBUSY;
4108 }
4109 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4110 if (!cgroup_clear_css_refs(cgrp)) {
4111 mutex_unlock(&cgroup_mutex);
4112 /*
4113 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4114 * prepare_to_wait(), we need to check this flag.
4115 */
4116 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4117 schedule();
4118 finish_wait(&cgroup_rmdir_waitq, &wait);
4119 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4120 if (signal_pending(current))
4121 return -EINTR;
4122 goto again;
4123 }
4124 /* NO css_tryget() can success after here. */
4125 finish_wait(&cgroup_rmdir_waitq, &wait);
4126 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4127
4128 raw_spin_lock(&release_list_lock);
4129 set_bit(CGRP_REMOVED, &cgrp->flags);
4130 if (!list_empty(&cgrp->release_list))
4131 list_del_init(&cgrp->release_list);
4132 raw_spin_unlock(&release_list_lock);
4133
4134 cgroup_lock_hierarchy(cgrp->root);
4135 /* delete this cgroup from parent->children */
4136 list_del_init(&cgrp->sibling);
4137 cgroup_unlock_hierarchy(cgrp->root);
4138
4139 d = dget(cgrp->dentry);
4140
4141 cgroup_d_remove_dir(d);
4142 dput(d);
4143
4144 set_bit(CGRP_RELEASABLE, &parent->flags);
4145 check_for_release(parent);
4146
4147 /*
4148 * Unregister events and notify userspace.
4149 * Notify userspace about cgroup removing only after rmdir of cgroup
4150 * directory to avoid race between userspace and kernelspace
4151 */
4152 spin_lock(&cgrp->event_list_lock);
4153 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4154 list_del(&event->list);
4155 remove_wait_queue(event->wqh, &event->wait);
4156 eventfd_signal(event->eventfd, 1);
4157 schedule_work(&event->remove);
4158 }
4159 spin_unlock(&cgrp->event_list_lock);
4160
4161 mutex_unlock(&cgroup_mutex);
4162 return 0;
4163 }
4164
4165 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4166 {
4167 struct cgroup_subsys_state *css;
4168
4169 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4170
4171 /* Create the top cgroup state for this subsystem */
4172 list_add(&ss->sibling, &rootnode.subsys_list);
4173 ss->root = &rootnode;
4174 css = ss->create(ss, dummytop);
4175 /* We don't handle early failures gracefully */
4176 BUG_ON(IS_ERR(css));
4177 init_cgroup_css(css, ss, dummytop);
4178
4179 /* Update the init_css_set to contain a subsys
4180 * pointer to this state - since the subsystem is
4181 * newly registered, all tasks and hence the
4182 * init_css_set is in the subsystem's top cgroup. */
4183 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4184
4185 need_forkexit_callback |= ss->fork || ss->exit;
4186
4187 /* At system boot, before all subsystems have been
4188 * registered, no tasks have been forked, so we don't
4189 * need to invoke fork callbacks here. */
4190 BUG_ON(!list_empty(&init_task.tasks));
4191
4192 mutex_init(&ss->hierarchy_mutex);
4193 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4194 ss->active = 1;
4195
4196 /* this function shouldn't be used with modular subsystems, since they
4197 * need to register a subsys_id, among other things */
4198 BUG_ON(ss->module);
4199 }
4200
4201 /**
4202 * cgroup_load_subsys: load and register a modular subsystem at runtime
4203 * @ss: the subsystem to load
4204 *
4205 * This function should be called in a modular subsystem's initcall. If the
4206 * subsystem is built as a module, it will be assigned a new subsys_id and set
4207 * up for use. If the subsystem is built-in anyway, work is delegated to the
4208 * simpler cgroup_init_subsys.
4209 */
4210 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4211 {
4212 int i;
4213 struct cgroup_subsys_state *css;
4214
4215 /* check name and function validity */
4216 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4217 ss->create == NULL || ss->destroy == NULL)
4218 return -EINVAL;
4219
4220 /*
4221 * we don't support callbacks in modular subsystems. this check is
4222 * before the ss->module check for consistency; a subsystem that could
4223 * be a module should still have no callbacks even if the user isn't
4224 * compiling it as one.
4225 */
4226 if (ss->fork || ss->exit)
4227 return -EINVAL;
4228
4229 /*
4230 * an optionally modular subsystem is built-in: we want to do nothing,
4231 * since cgroup_init_subsys will have already taken care of it.
4232 */
4233 if (ss->module == NULL) {
4234 /* a few sanity checks */
4235 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4236 BUG_ON(subsys[ss->subsys_id] != ss);
4237 return 0;
4238 }
4239
4240 /*
4241 * need to register a subsys id before anything else - for example,
4242 * init_cgroup_css needs it.
4243 */
4244 mutex_lock(&cgroup_mutex);
4245 /* find the first empty slot in the array */
4246 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4247 if (subsys[i] == NULL)
4248 break;
4249 }
4250 if (i == CGROUP_SUBSYS_COUNT) {
4251 /* maximum number of subsystems already registered! */
4252 mutex_unlock(&cgroup_mutex);
4253 return -EBUSY;
4254 }
4255 /* assign ourselves the subsys_id */
4256 ss->subsys_id = i;
4257 subsys[i] = ss;
4258
4259 /*
4260 * no ss->create seems to need anything important in the ss struct, so
4261 * this can happen first (i.e. before the rootnode attachment).
4262 */
4263 css = ss->create(ss, dummytop);
4264 if (IS_ERR(css)) {
4265 /* failure case - need to deassign the subsys[] slot. */
4266 subsys[i] = NULL;
4267 mutex_unlock(&cgroup_mutex);
4268 return PTR_ERR(css);
4269 }
4270
4271 list_add(&ss->sibling, &rootnode.subsys_list);
4272 ss->root = &rootnode;
4273
4274 /* our new subsystem will be attached to the dummy hierarchy. */
4275 init_cgroup_css(css, ss, dummytop);
4276 /* init_idr must be after init_cgroup_css because it sets css->id. */
4277 if (ss->use_id) {
4278 int ret = cgroup_init_idr(ss, css);
4279 if (ret) {
4280 dummytop->subsys[ss->subsys_id] = NULL;
4281 ss->destroy(ss, dummytop);
4282 subsys[i] = NULL;
4283 mutex_unlock(&cgroup_mutex);
4284 return ret;
4285 }
4286 }
4287
4288 /*
4289 * Now we need to entangle the css into the existing css_sets. unlike
4290 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4291 * will need a new pointer to it; done by iterating the css_set_table.
4292 * furthermore, modifying the existing css_sets will corrupt the hash
4293 * table state, so each changed css_set will need its hash recomputed.
4294 * this is all done under the css_set_lock.
4295 */
4296 write_lock(&css_set_lock);
4297 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4298 struct css_set *cg;
4299 struct hlist_node *node, *tmp;
4300 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4301
4302 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4303 /* skip entries that we already rehashed */
4304 if (cg->subsys[ss->subsys_id])
4305 continue;
4306 /* remove existing entry */
4307 hlist_del(&cg->hlist);
4308 /* set new value */
4309 cg->subsys[ss->subsys_id] = css;
4310 /* recompute hash and restore entry */
4311 new_bucket = css_set_hash(cg->subsys);
4312 hlist_add_head(&cg->hlist, new_bucket);
4313 }
4314 }
4315 write_unlock(&css_set_lock);
4316
4317 mutex_init(&ss->hierarchy_mutex);
4318 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4319 ss->active = 1;
4320
4321 /* success! */
4322 mutex_unlock(&cgroup_mutex);
4323 return 0;
4324 }
4325 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4326
4327 /**
4328 * cgroup_unload_subsys: unload a modular subsystem
4329 * @ss: the subsystem to unload
4330 *
4331 * This function should be called in a modular subsystem's exitcall. When this
4332 * function is invoked, the refcount on the subsystem's module will be 0, so
4333 * the subsystem will not be attached to any hierarchy.
4334 */
4335 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4336 {
4337 struct cg_cgroup_link *link;
4338 struct hlist_head *hhead;
4339
4340 BUG_ON(ss->module == NULL);
4341
4342 /*
4343 * we shouldn't be called if the subsystem is in use, and the use of
4344 * try_module_get in parse_cgroupfs_options should ensure that it
4345 * doesn't start being used while we're killing it off.
4346 */
4347 BUG_ON(ss->root != &rootnode);
4348
4349 mutex_lock(&cgroup_mutex);
4350 /* deassign the subsys_id */
4351 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4352 subsys[ss->subsys_id] = NULL;
4353
4354 /* remove subsystem from rootnode's list of subsystems */
4355 list_del_init(&ss->sibling);
4356
4357 /*
4358 * disentangle the css from all css_sets attached to the dummytop. as
4359 * in loading, we need to pay our respects to the hashtable gods.
4360 */
4361 write_lock(&css_set_lock);
4362 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4363 struct css_set *cg = link->cg;
4364
4365 hlist_del(&cg->hlist);
4366 BUG_ON(!cg->subsys[ss->subsys_id]);
4367 cg->subsys[ss->subsys_id] = NULL;
4368 hhead = css_set_hash(cg->subsys);
4369 hlist_add_head(&cg->hlist, hhead);
4370 }
4371 write_unlock(&css_set_lock);
4372
4373 /*
4374 * remove subsystem's css from the dummytop and free it - need to free
4375 * before marking as null because ss->destroy needs the cgrp->subsys
4376 * pointer to find their state. note that this also takes care of
4377 * freeing the css_id.
4378 */
4379 ss->destroy(ss, dummytop);
4380 dummytop->subsys[ss->subsys_id] = NULL;
4381
4382 mutex_unlock(&cgroup_mutex);
4383 }
4384 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4385
4386 /**
4387 * cgroup_init_early - cgroup initialization at system boot
4388 *
4389 * Initialize cgroups at system boot, and initialize any
4390 * subsystems that request early init.
4391 */
4392 int __init cgroup_init_early(void)
4393 {
4394 int i;
4395 atomic_set(&init_css_set.refcount, 1);
4396 INIT_LIST_HEAD(&init_css_set.cg_links);
4397 INIT_LIST_HEAD(&init_css_set.tasks);
4398 INIT_HLIST_NODE(&init_css_set.hlist);
4399 css_set_count = 1;
4400 init_cgroup_root(&rootnode);
4401 root_count = 1;
4402 init_task.cgroups = &init_css_set;
4403
4404 init_css_set_link.cg = &init_css_set;
4405 init_css_set_link.cgrp = dummytop;
4406 list_add(&init_css_set_link.cgrp_link_list,
4407 &rootnode.top_cgroup.css_sets);
4408 list_add(&init_css_set_link.cg_link_list,
4409 &init_css_set.cg_links);
4410
4411 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4412 INIT_HLIST_HEAD(&css_set_table[i]);
4413
4414 /* at bootup time, we don't worry about modular subsystems */
4415 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4416 struct cgroup_subsys *ss = subsys[i];
4417
4418 BUG_ON(!ss->name);
4419 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4420 BUG_ON(!ss->create);
4421 BUG_ON(!ss->destroy);
4422 if (ss->subsys_id != i) {
4423 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4424 ss->name, ss->subsys_id);
4425 BUG();
4426 }
4427
4428 if (ss->early_init)
4429 cgroup_init_subsys(ss);
4430 }
4431 return 0;
4432 }
4433
4434 /**
4435 * cgroup_init - cgroup initialization
4436 *
4437 * Register cgroup filesystem and /proc file, and initialize
4438 * any subsystems that didn't request early init.
4439 */
4440 int __init cgroup_init(void)
4441 {
4442 int err;
4443 int i;
4444 struct hlist_head *hhead;
4445
4446 err = bdi_init(&cgroup_backing_dev_info);
4447 if (err)
4448 return err;
4449
4450 /* at bootup time, we don't worry about modular subsystems */
4451 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4452 struct cgroup_subsys *ss = subsys[i];
4453 if (!ss->early_init)
4454 cgroup_init_subsys(ss);
4455 if (ss->use_id)
4456 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4457 }
4458
4459 /* Add init_css_set to the hash table */
4460 hhead = css_set_hash(init_css_set.subsys);
4461 hlist_add_head(&init_css_set.hlist, hhead);
4462 BUG_ON(!init_root_id(&rootnode));
4463
4464 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4465 if (!cgroup_kobj) {
4466 err = -ENOMEM;
4467 goto out;
4468 }
4469
4470 err = register_filesystem(&cgroup_fs_type);
4471 if (err < 0) {
4472 kobject_put(cgroup_kobj);
4473 goto out;
4474 }
4475
4476 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4477
4478 out:
4479 if (err)
4480 bdi_destroy(&cgroup_backing_dev_info);
4481
4482 return err;
4483 }
4484
4485 /*
4486 * proc_cgroup_show()
4487 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4488 * - Used for /proc/<pid>/cgroup.
4489 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4490 * doesn't really matter if tsk->cgroup changes after we read it,
4491 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4492 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4493 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4494 * cgroup to top_cgroup.
4495 */
4496
4497 /* TODO: Use a proper seq_file iterator */
4498 static int proc_cgroup_show(struct seq_file *m, void *v)
4499 {
4500 struct pid *pid;
4501 struct task_struct *tsk;
4502 char *buf;
4503 int retval;
4504 struct cgroupfs_root *root;
4505
4506 retval = -ENOMEM;
4507 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4508 if (!buf)
4509 goto out;
4510
4511 retval = -ESRCH;
4512 pid = m->private;
4513 tsk = get_pid_task(pid, PIDTYPE_PID);
4514 if (!tsk)
4515 goto out_free;
4516
4517 retval = 0;
4518
4519 mutex_lock(&cgroup_mutex);
4520
4521 for_each_active_root(root) {
4522 struct cgroup_subsys *ss;
4523 struct cgroup *cgrp;
4524 int count = 0;
4525
4526 seq_printf(m, "%d:", root->hierarchy_id);
4527 for_each_subsys(root, ss)
4528 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4529 if (strlen(root->name))
4530 seq_printf(m, "%sname=%s", count ? "," : "",
4531 root->name);
4532 seq_putc(m, ':');
4533 cgrp = task_cgroup_from_root(tsk, root);
4534 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4535 if (retval < 0)
4536 goto out_unlock;
4537 seq_puts(m, buf);
4538 seq_putc(m, '\n');
4539 }
4540
4541 out_unlock:
4542 mutex_unlock(&cgroup_mutex);
4543 put_task_struct(tsk);
4544 out_free:
4545 kfree(buf);
4546 out:
4547 return retval;
4548 }
4549
4550 static int cgroup_open(struct inode *inode, struct file *file)
4551 {
4552 struct pid *pid = PROC_I(inode)->pid;
4553 return single_open(file, proc_cgroup_show, pid);
4554 }
4555
4556 const struct file_operations proc_cgroup_operations = {
4557 .open = cgroup_open,
4558 .read = seq_read,
4559 .llseek = seq_lseek,
4560 .release = single_release,
4561 };
4562
4563 /* Display information about each subsystem and each hierarchy */
4564 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4565 {
4566 int i;
4567
4568 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4569 /*
4570 * ideally we don't want subsystems moving around while we do this.
4571 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4572 * subsys/hierarchy state.
4573 */
4574 mutex_lock(&cgroup_mutex);
4575 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4576 struct cgroup_subsys *ss = subsys[i];
4577 if (ss == NULL)
4578 continue;
4579 seq_printf(m, "%s\t%d\t%d\t%d\n",
4580 ss->name, ss->root->hierarchy_id,
4581 ss->root->number_of_cgroups, !ss->disabled);
4582 }
4583 mutex_unlock(&cgroup_mutex);
4584 return 0;
4585 }
4586
4587 static int cgroupstats_open(struct inode *inode, struct file *file)
4588 {
4589 return single_open(file, proc_cgroupstats_show, NULL);
4590 }
4591
4592 static const struct file_operations proc_cgroupstats_operations = {
4593 .open = cgroupstats_open,
4594 .read = seq_read,
4595 .llseek = seq_lseek,
4596 .release = single_release,
4597 };
4598
4599 /**
4600 * cgroup_fork - attach newly forked task to its parents cgroup.
4601 * @child: pointer to task_struct of forking parent process.
4602 *
4603 * Description: A task inherits its parent's cgroup at fork().
4604 *
4605 * A pointer to the shared css_set was automatically copied in
4606 * fork.c by dup_task_struct(). However, we ignore that copy, since
4607 * it was not made under the protection of RCU or cgroup_mutex, so
4608 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4609 * have already changed current->cgroups, allowing the previously
4610 * referenced cgroup group to be removed and freed.
4611 *
4612 * At the point that cgroup_fork() is called, 'current' is the parent
4613 * task, and the passed argument 'child' points to the child task.
4614 */
4615 void cgroup_fork(struct task_struct *child)
4616 {
4617 task_lock(current);
4618 child->cgroups = current->cgroups;
4619 get_css_set(child->cgroups);
4620 task_unlock(current);
4621 INIT_LIST_HEAD(&child->cg_list);
4622 }
4623
4624 /**
4625 * cgroup_fork_callbacks - run fork callbacks
4626 * @child: the new task
4627 *
4628 * Called on a new task very soon before adding it to the
4629 * tasklist. No need to take any locks since no-one can
4630 * be operating on this task.
4631 */
4632 void cgroup_fork_callbacks(struct task_struct *child)
4633 {
4634 if (need_forkexit_callback) {
4635 int i;
4636 /*
4637 * forkexit callbacks are only supported for builtin
4638 * subsystems, and the builtin section of the subsys array is
4639 * immutable, so we don't need to lock the subsys array here.
4640 */
4641 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4642 struct cgroup_subsys *ss = subsys[i];
4643 if (ss->fork)
4644 ss->fork(ss, child);
4645 }
4646 }
4647 }
4648
4649 /**
4650 * cgroup_post_fork - called on a new task after adding it to the task list
4651 * @child: the task in question
4652 *
4653 * Adds the task to the list running through its css_set if necessary.
4654 * Has to be after the task is visible on the task list in case we race
4655 * with the first call to cgroup_iter_start() - to guarantee that the
4656 * new task ends up on its list.
4657 */
4658 void cgroup_post_fork(struct task_struct *child)
4659 {
4660 if (use_task_css_set_links) {
4661 write_lock(&css_set_lock);
4662 task_lock(child);
4663 if (list_empty(&child->cg_list))
4664 list_add(&child->cg_list, &child->cgroups->tasks);
4665 task_unlock(child);
4666 write_unlock(&css_set_lock);
4667 }
4668 }
4669 /**
4670 * cgroup_exit - detach cgroup from exiting task
4671 * @tsk: pointer to task_struct of exiting process
4672 * @run_callback: run exit callbacks?
4673 *
4674 * Description: Detach cgroup from @tsk and release it.
4675 *
4676 * Note that cgroups marked notify_on_release force every task in
4677 * them to take the global cgroup_mutex mutex when exiting.
4678 * This could impact scaling on very large systems. Be reluctant to
4679 * use notify_on_release cgroups where very high task exit scaling
4680 * is required on large systems.
4681 *
4682 * the_top_cgroup_hack:
4683 *
4684 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4685 *
4686 * We call cgroup_exit() while the task is still competent to
4687 * handle notify_on_release(), then leave the task attached to the
4688 * root cgroup in each hierarchy for the remainder of its exit.
4689 *
4690 * To do this properly, we would increment the reference count on
4691 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4692 * code we would add a second cgroup function call, to drop that
4693 * reference. This would just create an unnecessary hot spot on
4694 * the top_cgroup reference count, to no avail.
4695 *
4696 * Normally, holding a reference to a cgroup without bumping its
4697 * count is unsafe. The cgroup could go away, or someone could
4698 * attach us to a different cgroup, decrementing the count on
4699 * the first cgroup that we never incremented. But in this case,
4700 * top_cgroup isn't going away, and either task has PF_EXITING set,
4701 * which wards off any cgroup_attach_task() attempts, or task is a failed
4702 * fork, never visible to cgroup_attach_task.
4703 */
4704 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4705 {
4706 struct css_set *cg;
4707 int i;
4708
4709 /*
4710 * Unlink from the css_set task list if necessary.
4711 * Optimistically check cg_list before taking
4712 * css_set_lock
4713 */
4714 if (!list_empty(&tsk->cg_list)) {
4715 write_lock(&css_set_lock);
4716 if (!list_empty(&tsk->cg_list))
4717 list_del_init(&tsk->cg_list);
4718 write_unlock(&css_set_lock);
4719 }
4720
4721 /* Reassign the task to the init_css_set. */
4722 task_lock(tsk);
4723 cg = tsk->cgroups;
4724 tsk->cgroups = &init_css_set;
4725
4726 if (run_callbacks && need_forkexit_callback) {
4727 /*
4728 * modular subsystems can't use callbacks, so no need to lock
4729 * the subsys array
4730 */
4731 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4732 struct cgroup_subsys *ss = subsys[i];
4733 if (ss->exit) {
4734 struct cgroup *old_cgrp =
4735 rcu_dereference_raw(cg->subsys[i])->cgroup;
4736 struct cgroup *cgrp = task_cgroup(tsk, i);
4737 ss->exit(ss, cgrp, old_cgrp, tsk);
4738 }
4739 }
4740 }
4741 task_unlock(tsk);
4742
4743 if (cg)
4744 put_css_set_taskexit(cg);
4745 }
4746
4747 /**
4748 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4749 * @cgrp: the cgroup in question
4750 * @task: the task in question
4751 *
4752 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4753 * hierarchy.
4754 *
4755 * If we are sending in dummytop, then presumably we are creating
4756 * the top cgroup in the subsystem.
4757 *
4758 * Called only by the ns (nsproxy) cgroup.
4759 */
4760 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4761 {
4762 int ret;
4763 struct cgroup *target;
4764
4765 if (cgrp == dummytop)
4766 return 1;
4767
4768 target = task_cgroup_from_root(task, cgrp->root);
4769 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4770 cgrp = cgrp->parent;
4771 ret = (cgrp == target);
4772 return ret;
4773 }
4774
4775 static void check_for_release(struct cgroup *cgrp)
4776 {
4777 /* All of these checks rely on RCU to keep the cgroup
4778 * structure alive */
4779 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4780 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4781 /* Control Group is currently removeable. If it's not
4782 * already queued for a userspace notification, queue
4783 * it now */
4784 int need_schedule_work = 0;
4785 raw_spin_lock(&release_list_lock);
4786 if (!cgroup_is_removed(cgrp) &&
4787 list_empty(&cgrp->release_list)) {
4788 list_add(&cgrp->release_list, &release_list);
4789 need_schedule_work = 1;
4790 }
4791 raw_spin_unlock(&release_list_lock);
4792 if (need_schedule_work)
4793 schedule_work(&release_agent_work);
4794 }
4795 }
4796
4797 /* Caller must verify that the css is not for root cgroup */
4798 void __css_put(struct cgroup_subsys_state *css, int count)
4799 {
4800 struct cgroup *cgrp = css->cgroup;
4801 int val;
4802 rcu_read_lock();
4803 val = atomic_sub_return(count, &css->refcnt);
4804 if (val == 1) {
4805 if (notify_on_release(cgrp)) {
4806 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4807 check_for_release(cgrp);
4808 }
4809 cgroup_wakeup_rmdir_waiter(cgrp);
4810 }
4811 rcu_read_unlock();
4812 WARN_ON_ONCE(val < 1);
4813 }
4814 EXPORT_SYMBOL_GPL(__css_put);
4815
4816 /*
4817 * Notify userspace when a cgroup is released, by running the
4818 * configured release agent with the name of the cgroup (path
4819 * relative to the root of cgroup file system) as the argument.
4820 *
4821 * Most likely, this user command will try to rmdir this cgroup.
4822 *
4823 * This races with the possibility that some other task will be
4824 * attached to this cgroup before it is removed, or that some other
4825 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4826 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4827 * unused, and this cgroup will be reprieved from its death sentence,
4828 * to continue to serve a useful existence. Next time it's released,
4829 * we will get notified again, if it still has 'notify_on_release' set.
4830 *
4831 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4832 * means only wait until the task is successfully execve()'d. The
4833 * separate release agent task is forked by call_usermodehelper(),
4834 * then control in this thread returns here, without waiting for the
4835 * release agent task. We don't bother to wait because the caller of
4836 * this routine has no use for the exit status of the release agent
4837 * task, so no sense holding our caller up for that.
4838 */
4839 static void cgroup_release_agent(struct work_struct *work)
4840 {
4841 BUG_ON(work != &release_agent_work);
4842 mutex_lock(&cgroup_mutex);
4843 raw_spin_lock(&release_list_lock);
4844 while (!list_empty(&release_list)) {
4845 char *argv[3], *envp[3];
4846 int i;
4847 char *pathbuf = NULL, *agentbuf = NULL;
4848 struct cgroup *cgrp = list_entry(release_list.next,
4849 struct cgroup,
4850 release_list);
4851 list_del_init(&cgrp->release_list);
4852 raw_spin_unlock(&release_list_lock);
4853 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4854 if (!pathbuf)
4855 goto continue_free;
4856 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4857 goto continue_free;
4858 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4859 if (!agentbuf)
4860 goto continue_free;
4861
4862 i = 0;
4863 argv[i++] = agentbuf;
4864 argv[i++] = pathbuf;
4865 argv[i] = NULL;
4866
4867 i = 0;
4868 /* minimal command environment */
4869 envp[i++] = "HOME=/";
4870 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4871 envp[i] = NULL;
4872
4873 /* Drop the lock while we invoke the usermode helper,
4874 * since the exec could involve hitting disk and hence
4875 * be a slow process */
4876 mutex_unlock(&cgroup_mutex);
4877 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4878 mutex_lock(&cgroup_mutex);
4879 continue_free:
4880 kfree(pathbuf);
4881 kfree(agentbuf);
4882 raw_spin_lock(&release_list_lock);
4883 }
4884 raw_spin_unlock(&release_list_lock);
4885 mutex_unlock(&cgroup_mutex);
4886 }
4887
4888 static int __init cgroup_disable(char *str)
4889 {
4890 int i;
4891 char *token;
4892
4893 while ((token = strsep(&str, ",")) != NULL) {
4894 if (!*token)
4895 continue;
4896 /*
4897 * cgroup_disable, being at boot time, can't know about module
4898 * subsystems, so we don't worry about them.
4899 */
4900 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4901 struct cgroup_subsys *ss = subsys[i];
4902
4903 if (!strcmp(token, ss->name)) {
4904 ss->disabled = 1;
4905 printk(KERN_INFO "Disabling %s control group"
4906 " subsystem\n", ss->name);
4907 break;
4908 }
4909 }
4910 }
4911 return 1;
4912 }
4913 __setup("cgroup_disable=", cgroup_disable);
4914
4915 /*
4916 * Functons for CSS ID.
4917 */
4918
4919 /*
4920 *To get ID other than 0, this should be called when !cgroup_is_removed().
4921 */
4922 unsigned short css_id(struct cgroup_subsys_state *css)
4923 {
4924 struct css_id *cssid;
4925
4926 /*
4927 * This css_id() can return correct value when somone has refcnt
4928 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4929 * it's unchanged until freed.
4930 */
4931 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4932
4933 if (cssid)
4934 return cssid->id;
4935 return 0;
4936 }
4937 EXPORT_SYMBOL_GPL(css_id);
4938
4939 unsigned short css_depth(struct cgroup_subsys_state *css)
4940 {
4941 struct css_id *cssid;
4942
4943 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4944
4945 if (cssid)
4946 return cssid->depth;
4947 return 0;
4948 }
4949 EXPORT_SYMBOL_GPL(css_depth);
4950
4951 /**
4952 * css_is_ancestor - test "root" css is an ancestor of "child"
4953 * @child: the css to be tested.
4954 * @root: the css supporsed to be an ancestor of the child.
4955 *
4956 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4957 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4958 * But, considering usual usage, the csses should be valid objects after test.
4959 * Assuming that the caller will do some action to the child if this returns
4960 * returns true, the caller must take "child";s reference count.
4961 * If "child" is valid object and this returns true, "root" is valid, too.
4962 */
4963
4964 bool css_is_ancestor(struct cgroup_subsys_state *child,
4965 const struct cgroup_subsys_state *root)
4966 {
4967 struct css_id *child_id;
4968 struct css_id *root_id;
4969 bool ret = true;
4970
4971 rcu_read_lock();
4972 child_id = rcu_dereference(child->id);
4973 root_id = rcu_dereference(root->id);
4974 if (!child_id
4975 || !root_id
4976 || (child_id->depth < root_id->depth)
4977 || (child_id->stack[root_id->depth] != root_id->id))
4978 ret = false;
4979 rcu_read_unlock();
4980 return ret;
4981 }
4982
4983 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4984 {
4985 struct css_id *id = css->id;
4986 /* When this is called before css_id initialization, id can be NULL */
4987 if (!id)
4988 return;
4989
4990 BUG_ON(!ss->use_id);
4991
4992 rcu_assign_pointer(id->css, NULL);
4993 rcu_assign_pointer(css->id, NULL);
4994 write_lock(&ss->id_lock);
4995 idr_remove(&ss->idr, id->id);
4996 write_unlock(&ss->id_lock);
4997 kfree_rcu(id, rcu_head);
4998 }
4999 EXPORT_SYMBOL_GPL(free_css_id);
5000
5001 /*
5002 * This is called by init or create(). Then, calls to this function are
5003 * always serialized (By cgroup_mutex() at create()).
5004 */
5005
5006 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5007 {
5008 struct css_id *newid;
5009 int myid, error, size;
5010
5011 BUG_ON(!ss->use_id);
5012
5013 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5014 newid = kzalloc(size, GFP_KERNEL);
5015 if (!newid)
5016 return ERR_PTR(-ENOMEM);
5017 /* get id */
5018 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5019 error = -ENOMEM;
5020 goto err_out;
5021 }
5022 write_lock(&ss->id_lock);
5023 /* Don't use 0. allocates an ID of 1-65535 */
5024 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5025 write_unlock(&ss->id_lock);
5026
5027 /* Returns error when there are no free spaces for new ID.*/
5028 if (error) {
5029 error = -ENOSPC;
5030 goto err_out;
5031 }
5032 if (myid > CSS_ID_MAX)
5033 goto remove_idr;
5034
5035 newid->id = myid;
5036 newid->depth = depth;
5037 return newid;
5038 remove_idr:
5039 error = -ENOSPC;
5040 write_lock(&ss->id_lock);
5041 idr_remove(&ss->idr, myid);
5042 write_unlock(&ss->id_lock);
5043 err_out:
5044 kfree(newid);
5045 return ERR_PTR(error);
5046
5047 }
5048
5049 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5050 struct cgroup_subsys_state *rootcss)
5051 {
5052 struct css_id *newid;
5053
5054 rwlock_init(&ss->id_lock);
5055 idr_init(&ss->idr);
5056
5057 newid = get_new_cssid(ss, 0);
5058 if (IS_ERR(newid))
5059 return PTR_ERR(newid);
5060
5061 newid->stack[0] = newid->id;
5062 newid->css = rootcss;
5063 rootcss->id = newid;
5064 return 0;
5065 }
5066
5067 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5068 struct cgroup *child)
5069 {
5070 int subsys_id, i, depth = 0;
5071 struct cgroup_subsys_state *parent_css, *child_css;
5072 struct css_id *child_id, *parent_id;
5073
5074 subsys_id = ss->subsys_id;
5075 parent_css = parent->subsys[subsys_id];
5076 child_css = child->subsys[subsys_id];
5077 parent_id = parent_css->id;
5078 depth = parent_id->depth + 1;
5079
5080 child_id = get_new_cssid(ss, depth);
5081 if (IS_ERR(child_id))
5082 return PTR_ERR(child_id);
5083
5084 for (i = 0; i < depth; i++)
5085 child_id->stack[i] = parent_id->stack[i];
5086 child_id->stack[depth] = child_id->id;
5087 /*
5088 * child_id->css pointer will be set after this cgroup is available
5089 * see cgroup_populate_dir()
5090 */
5091 rcu_assign_pointer(child_css->id, child_id);
5092
5093 return 0;
5094 }
5095
5096 /**
5097 * css_lookup - lookup css by id
5098 * @ss: cgroup subsys to be looked into.
5099 * @id: the id
5100 *
5101 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5102 * NULL if not. Should be called under rcu_read_lock()
5103 */
5104 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5105 {
5106 struct css_id *cssid = NULL;
5107
5108 BUG_ON(!ss->use_id);
5109 cssid = idr_find(&ss->idr, id);
5110
5111 if (unlikely(!cssid))
5112 return NULL;
5113
5114 return rcu_dereference(cssid->css);
5115 }
5116 EXPORT_SYMBOL_GPL(css_lookup);
5117
5118 /**
5119 * css_get_next - lookup next cgroup under specified hierarchy.
5120 * @ss: pointer to subsystem
5121 * @id: current position of iteration.
5122 * @root: pointer to css. search tree under this.
5123 * @foundid: position of found object.
5124 *
5125 * Search next css under the specified hierarchy of rootid. Calling under
5126 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5127 */
5128 struct cgroup_subsys_state *
5129 css_get_next(struct cgroup_subsys *ss, int id,
5130 struct cgroup_subsys_state *root, int *foundid)
5131 {
5132 struct cgroup_subsys_state *ret = NULL;
5133 struct css_id *tmp;
5134 int tmpid;
5135 int rootid = css_id(root);
5136 int depth = css_depth(root);
5137
5138 if (!rootid)
5139 return NULL;
5140
5141 BUG_ON(!ss->use_id);
5142 /* fill start point for scan */
5143 tmpid = id;
5144 while (1) {
5145 /*
5146 * scan next entry from bitmap(tree), tmpid is updated after
5147 * idr_get_next().
5148 */
5149 read_lock(&ss->id_lock);
5150 tmp = idr_get_next(&ss->idr, &tmpid);
5151 read_unlock(&ss->id_lock);
5152
5153 if (!tmp)
5154 break;
5155 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5156 ret = rcu_dereference(tmp->css);
5157 if (ret) {
5158 *foundid = tmpid;
5159 break;
5160 }
5161 }
5162 /* continue to scan from next id */
5163 tmpid = tmpid + 1;
5164 }
5165 return ret;
5166 }
5167
5168 /*
5169 * get corresponding css from file open on cgroupfs directory
5170 */
5171 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5172 {
5173 struct cgroup *cgrp;
5174 struct inode *inode;
5175 struct cgroup_subsys_state *css;
5176
5177 inode = f->f_dentry->d_inode;
5178 /* check in cgroup filesystem dir */
5179 if (inode->i_op != &cgroup_dir_inode_operations)
5180 return ERR_PTR(-EBADF);
5181
5182 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5183 return ERR_PTR(-EINVAL);
5184
5185 /* get cgroup */
5186 cgrp = __d_cgrp(f->f_dentry);
5187 css = cgrp->subsys[id];
5188 return css ? css : ERR_PTR(-ENOENT);
5189 }
5190
5191 #ifdef CONFIG_CGROUP_DEBUG
5192 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5193 struct cgroup *cont)
5194 {
5195 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5196
5197 if (!css)
5198 return ERR_PTR(-ENOMEM);
5199
5200 return css;
5201 }
5202
5203 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5204 {
5205 kfree(cont->subsys[debug_subsys_id]);
5206 }
5207
5208 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5209 {
5210 return atomic_read(&cont->count);
5211 }
5212
5213 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5214 {
5215 return cgroup_task_count(cont);
5216 }
5217
5218 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5219 {
5220 return (u64)(unsigned long)current->cgroups;
5221 }
5222
5223 static u64 current_css_set_refcount_read(struct cgroup *cont,
5224 struct cftype *cft)
5225 {
5226 u64 count;
5227
5228 rcu_read_lock();
5229 count = atomic_read(&current->cgroups->refcount);
5230 rcu_read_unlock();
5231 return count;
5232 }
5233
5234 static int current_css_set_cg_links_read(struct cgroup *cont,
5235 struct cftype *cft,
5236 struct seq_file *seq)
5237 {
5238 struct cg_cgroup_link *link;
5239 struct css_set *cg;
5240
5241 read_lock(&css_set_lock);
5242 rcu_read_lock();
5243 cg = rcu_dereference(current->cgroups);
5244 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5245 struct cgroup *c = link->cgrp;
5246 const char *name;
5247
5248 if (c->dentry)
5249 name = c->dentry->d_name.name;
5250 else
5251 name = "?";
5252 seq_printf(seq, "Root %d group %s\n",
5253 c->root->hierarchy_id, name);
5254 }
5255 rcu_read_unlock();
5256 read_unlock(&css_set_lock);
5257 return 0;
5258 }
5259
5260 #define MAX_TASKS_SHOWN_PER_CSS 25
5261 static int cgroup_css_links_read(struct cgroup *cont,
5262 struct cftype *cft,
5263 struct seq_file *seq)
5264 {
5265 struct cg_cgroup_link *link;
5266
5267 read_lock(&css_set_lock);
5268 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5269 struct css_set *cg = link->cg;
5270 struct task_struct *task;
5271 int count = 0;
5272 seq_printf(seq, "css_set %p\n", cg);
5273 list_for_each_entry(task, &cg->tasks, cg_list) {
5274 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5275 seq_puts(seq, " ...\n");
5276 break;
5277 } else {
5278 seq_printf(seq, " task %d\n",
5279 task_pid_vnr(task));
5280 }
5281 }
5282 }
5283 read_unlock(&css_set_lock);
5284 return 0;
5285 }
5286
5287 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5288 {
5289 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5290 }
5291
5292 static struct cftype debug_files[] = {
5293 {
5294 .name = "cgroup_refcount",
5295 .read_u64 = cgroup_refcount_read,
5296 },
5297 {
5298 .name = "taskcount",
5299 .read_u64 = debug_taskcount_read,
5300 },
5301
5302 {
5303 .name = "current_css_set",
5304 .read_u64 = current_css_set_read,
5305 },
5306
5307 {
5308 .name = "current_css_set_refcount",
5309 .read_u64 = current_css_set_refcount_read,
5310 },
5311
5312 {
5313 .name = "current_css_set_cg_links",
5314 .read_seq_string = current_css_set_cg_links_read,
5315 },
5316
5317 {
5318 .name = "cgroup_css_links",
5319 .read_seq_string = cgroup_css_links_read,
5320 },
5321
5322 {
5323 .name = "releasable",
5324 .read_u64 = releasable_read,
5325 },
5326 };
5327
5328 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5329 {
5330 return cgroup_add_files(cont, ss, debug_files,
5331 ARRAY_SIZE(debug_files));
5332 }
5333
5334 struct cgroup_subsys debug_subsys = {
5335 .name = "debug",
5336 .create = debug_create,
5337 .destroy = debug_destroy,
5338 .populate = debug_populate,
5339 .subsys_id = debug_subsys_id,
5340 };
5341 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.134539 seconds and 6 git commands to generate.