Merge tag 'pm+acpi-4.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / kernel / cgroup_pids.c
1 /*
2 * Process number limiting controller for cgroups.
3 *
4 * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
5 * after a certain limit is reached.
6 *
7 * Since it is trivial to hit the task limit without hitting any kmemcg limits
8 * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
9 * preventable in the scope of a cgroup hierarchy by allowing resource limiting
10 * of the number of tasks in a cgroup.
11 *
12 * In order to use the `pids` controller, set the maximum number of tasks in
13 * pids.max (this is not available in the root cgroup for obvious reasons). The
14 * number of processes currently in the cgroup is given by pids.current.
15 * Organisational operations are not blocked by cgroup policies, so it is
16 * possible to have pids.current > pids.max. However, it is not possible to
17 * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
18 * would cause a cgroup policy to be violated.
19 *
20 * To set a cgroup to have no limit, set pids.max to "max". This is the default
21 * for all new cgroups (N.B. that PID limits are hierarchical, so the most
22 * stringent limit in the hierarchy is followed).
23 *
24 * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
25 * a superset of parent/child/pids.current.
26 *
27 * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
28 *
29 * This file is subject to the terms and conditions of version 2 of the GNU
30 * General Public License. See the file COPYING in the main directory of the
31 * Linux distribution for more details.
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/threads.h>
36 #include <linux/atomic.h>
37 #include <linux/cgroup.h>
38 #include <linux/slab.h>
39
40 #define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
41 #define PIDS_MAX_STR "max"
42
43 struct pids_cgroup {
44 struct cgroup_subsys_state css;
45
46 /*
47 * Use 64-bit types so that we can safely represent "max" as
48 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
49 */
50 atomic64_t counter;
51 int64_t limit;
52 };
53
54 static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
55 {
56 return container_of(css, struct pids_cgroup, css);
57 }
58
59 static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
60 {
61 return css_pids(pids->css.parent);
62 }
63
64 static struct cgroup_subsys_state *
65 pids_css_alloc(struct cgroup_subsys_state *parent)
66 {
67 struct pids_cgroup *pids;
68
69 pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
70 if (!pids)
71 return ERR_PTR(-ENOMEM);
72
73 pids->limit = PIDS_MAX;
74 atomic64_set(&pids->counter, 0);
75 return &pids->css;
76 }
77
78 static void pids_css_free(struct cgroup_subsys_state *css)
79 {
80 kfree(css_pids(css));
81 }
82
83 /**
84 * pids_cancel - uncharge the local pid count
85 * @pids: the pid cgroup state
86 * @num: the number of pids to cancel
87 *
88 * This function will WARN if the pid count goes under 0, because such a case is
89 * a bug in the pids controller proper.
90 */
91 static void pids_cancel(struct pids_cgroup *pids, int num)
92 {
93 /*
94 * A negative count (or overflow for that matter) is invalid,
95 * and indicates a bug in the `pids` controller proper.
96 */
97 WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
98 }
99
100 /**
101 * pids_uncharge - hierarchically uncharge the pid count
102 * @pids: the pid cgroup state
103 * @num: the number of pids to uncharge
104 */
105 static void pids_uncharge(struct pids_cgroup *pids, int num)
106 {
107 struct pids_cgroup *p;
108
109 for (p = pids; p; p = parent_pids(p))
110 pids_cancel(p, num);
111 }
112
113 /**
114 * pids_charge - hierarchically charge the pid count
115 * @pids: the pid cgroup state
116 * @num: the number of pids to charge
117 *
118 * This function does *not* follow the pid limit set. It cannot fail and the new
119 * pid count may exceed the limit. This is only used for reverting failed
120 * attaches, where there is no other way out than violating the limit.
121 */
122 static void pids_charge(struct pids_cgroup *pids, int num)
123 {
124 struct pids_cgroup *p;
125
126 for (p = pids; p; p = parent_pids(p))
127 atomic64_add(num, &p->counter);
128 }
129
130 /**
131 * pids_try_charge - hierarchically try to charge the pid count
132 * @pids: the pid cgroup state
133 * @num: the number of pids to charge
134 *
135 * This function follows the set limit. It will fail if the charge would cause
136 * the new value to exceed the hierarchical limit. Returns 0 if the charge
137 * succeded, otherwise -EAGAIN.
138 */
139 static int pids_try_charge(struct pids_cgroup *pids, int num)
140 {
141 struct pids_cgroup *p, *q;
142
143 for (p = pids; p; p = parent_pids(p)) {
144 int64_t new = atomic64_add_return(num, &p->counter);
145
146 /*
147 * Since new is capped to the maximum number of pid_t, if
148 * p->limit is %PIDS_MAX then we know that this test will never
149 * fail.
150 */
151 if (new > p->limit)
152 goto revert;
153 }
154
155 return 0;
156
157 revert:
158 for (q = pids; q != p; q = parent_pids(q))
159 pids_cancel(q, num);
160 pids_cancel(p, num);
161
162 return -EAGAIN;
163 }
164
165 static int pids_can_attach(struct cgroup_subsys_state *css,
166 struct cgroup_taskset *tset)
167 {
168 struct pids_cgroup *pids = css_pids(css);
169 struct task_struct *task;
170
171 cgroup_taskset_for_each(task, tset) {
172 struct cgroup_subsys_state *old_css;
173 struct pids_cgroup *old_pids;
174
175 /*
176 * No need to pin @old_css between here and cancel_attach()
177 * because cgroup core protects it from being freed before
178 * the migration completes or fails.
179 */
180 old_css = task_css(task, pids_cgrp_id);
181 old_pids = css_pids(old_css);
182
183 pids_charge(pids, 1);
184 pids_uncharge(old_pids, 1);
185 }
186
187 return 0;
188 }
189
190 static void pids_cancel_attach(struct cgroup_subsys_state *css,
191 struct cgroup_taskset *tset)
192 {
193 struct pids_cgroup *pids = css_pids(css);
194 struct task_struct *task;
195
196 cgroup_taskset_for_each(task, tset) {
197 struct cgroup_subsys_state *old_css;
198 struct pids_cgroup *old_pids;
199
200 old_css = task_css(task, pids_cgrp_id);
201 old_pids = css_pids(old_css);
202
203 pids_charge(old_pids, 1);
204 pids_uncharge(pids, 1);
205 }
206 }
207
208 static int pids_can_fork(struct task_struct *task, void **priv_p)
209 {
210 struct cgroup_subsys_state *css;
211 struct pids_cgroup *pids;
212 int err;
213
214 /*
215 * Use the "current" task_css for the pids subsystem as the tentative
216 * css. It is possible we will charge the wrong hierarchy, in which
217 * case we will forcefully revert/reapply the charge on the right
218 * hierarchy after it is committed to the task proper.
219 */
220 css = task_get_css(current, pids_cgrp_id);
221 pids = css_pids(css);
222
223 err = pids_try_charge(pids, 1);
224 if (err)
225 goto err_css_put;
226
227 *priv_p = css;
228 return 0;
229
230 err_css_put:
231 css_put(css);
232 return err;
233 }
234
235 static void pids_cancel_fork(struct task_struct *task, void *priv)
236 {
237 struct cgroup_subsys_state *css = priv;
238 struct pids_cgroup *pids = css_pids(css);
239
240 pids_uncharge(pids, 1);
241 css_put(css);
242 }
243
244 static void pids_fork(struct task_struct *task, void *priv)
245 {
246 struct cgroup_subsys_state *css;
247 struct cgroup_subsys_state *old_css = priv;
248 struct pids_cgroup *pids;
249 struct pids_cgroup *old_pids = css_pids(old_css);
250
251 css = task_get_css(task, pids_cgrp_id);
252 pids = css_pids(css);
253
254 /*
255 * If the association has changed, we have to revert and reapply the
256 * charge/uncharge on the wrong hierarchy to the current one. Since
257 * the association can only change due to an organisation event, its
258 * okay for us to ignore the limit in this case.
259 */
260 if (pids != old_pids) {
261 pids_uncharge(old_pids, 1);
262 pids_charge(pids, 1);
263 }
264
265 css_put(css);
266 css_put(old_css);
267 }
268
269 static void pids_free(struct task_struct *task)
270 {
271 struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
272
273 pids_uncharge(pids, 1);
274 }
275
276 static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
277 size_t nbytes, loff_t off)
278 {
279 struct cgroup_subsys_state *css = of_css(of);
280 struct pids_cgroup *pids = css_pids(css);
281 int64_t limit;
282 int err;
283
284 buf = strstrip(buf);
285 if (!strcmp(buf, PIDS_MAX_STR)) {
286 limit = PIDS_MAX;
287 goto set_limit;
288 }
289
290 err = kstrtoll(buf, 0, &limit);
291 if (err)
292 return err;
293
294 if (limit < 0 || limit >= PIDS_MAX)
295 return -EINVAL;
296
297 set_limit:
298 /*
299 * Limit updates don't need to be mutex'd, since it isn't
300 * critical that any racing fork()s follow the new limit.
301 */
302 pids->limit = limit;
303 return nbytes;
304 }
305
306 static int pids_max_show(struct seq_file *sf, void *v)
307 {
308 struct cgroup_subsys_state *css = seq_css(sf);
309 struct pids_cgroup *pids = css_pids(css);
310 int64_t limit = pids->limit;
311
312 if (limit >= PIDS_MAX)
313 seq_printf(sf, "%s\n", PIDS_MAX_STR);
314 else
315 seq_printf(sf, "%lld\n", limit);
316
317 return 0;
318 }
319
320 static s64 pids_current_read(struct cgroup_subsys_state *css,
321 struct cftype *cft)
322 {
323 struct pids_cgroup *pids = css_pids(css);
324
325 return atomic64_read(&pids->counter);
326 }
327
328 static struct cftype pids_files[] = {
329 {
330 .name = "max",
331 .write = pids_max_write,
332 .seq_show = pids_max_show,
333 .flags = CFTYPE_NOT_ON_ROOT,
334 },
335 {
336 .name = "current",
337 .read_s64 = pids_current_read,
338 },
339 { } /* terminate */
340 };
341
342 struct cgroup_subsys pids_cgrp_subsys = {
343 .css_alloc = pids_css_alloc,
344 .css_free = pids_css_free,
345 .can_attach = pids_can_attach,
346 .cancel_attach = pids_cancel_attach,
347 .can_fork = pids_can_fork,
348 .cancel_fork = pids_cancel_fork,
349 .fork = pids_fork,
350 .free = pids_free,
351 .legacy_cftypes = pids_files,
352 .dfl_cftypes = pids_files,
353 };
This page took 0.038703 seconds and 6 git commands to generate.