smpboot: Provide infrastructure for percpu hotplug threads
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22
23 #include "smpboot.h"
24
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28
29 /*
30 * The following two API's must be used when attempting
31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
32 */
33 void cpu_maps_update_begin(void)
34 {
35 mutex_lock(&cpu_add_remove_lock);
36 }
37
38 void cpu_maps_update_done(void)
39 {
40 mutex_unlock(&cpu_add_remove_lock);
41 }
42
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46 * Should always be manipulated under cpu_add_remove_lock
47 */
48 static int cpu_hotplug_disabled;
49
50 #ifdef CONFIG_HOTPLUG_CPU
51
52 static struct {
53 struct task_struct *active_writer;
54 struct mutex lock; /* Synchronizes accesses to refcount, */
55 /*
56 * Also blocks the new readers during
57 * an ongoing cpu hotplug operation.
58 */
59 int refcount;
60 } cpu_hotplug = {
61 .active_writer = NULL,
62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 .refcount = 0,
64 };
65
66 void get_online_cpus(void)
67 {
68 might_sleep();
69 if (cpu_hotplug.active_writer == current)
70 return;
71 mutex_lock(&cpu_hotplug.lock);
72 cpu_hotplug.refcount++;
73 mutex_unlock(&cpu_hotplug.lock);
74
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77
78 void put_online_cpus(void)
79 {
80 if (cpu_hotplug.active_writer == current)
81 return;
82 mutex_lock(&cpu_hotplug.lock);
83 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
84 wake_up_process(cpu_hotplug.active_writer);
85 mutex_unlock(&cpu_hotplug.lock);
86
87 }
88 EXPORT_SYMBOL_GPL(put_online_cpus);
89
90 /*
91 * This ensures that the hotplug operation can begin only when the
92 * refcount goes to zero.
93 *
94 * Note that during a cpu-hotplug operation, the new readers, if any,
95 * will be blocked by the cpu_hotplug.lock
96 *
97 * Since cpu_hotplug_begin() is always called after invoking
98 * cpu_maps_update_begin(), we can be sure that only one writer is active.
99 *
100 * Note that theoretically, there is a possibility of a livelock:
101 * - Refcount goes to zero, last reader wakes up the sleeping
102 * writer.
103 * - Last reader unlocks the cpu_hotplug.lock.
104 * - A new reader arrives at this moment, bumps up the refcount.
105 * - The writer acquires the cpu_hotplug.lock finds the refcount
106 * non zero and goes to sleep again.
107 *
108 * However, this is very difficult to achieve in practice since
109 * get_online_cpus() not an api which is called all that often.
110 *
111 */
112 static void cpu_hotplug_begin(void)
113 {
114 cpu_hotplug.active_writer = current;
115
116 for (;;) {
117 mutex_lock(&cpu_hotplug.lock);
118 if (likely(!cpu_hotplug.refcount))
119 break;
120 __set_current_state(TASK_UNINTERRUPTIBLE);
121 mutex_unlock(&cpu_hotplug.lock);
122 schedule();
123 }
124 }
125
126 static void cpu_hotplug_done(void)
127 {
128 cpu_hotplug.active_writer = NULL;
129 mutex_unlock(&cpu_hotplug.lock);
130 }
131
132 #else /* #if CONFIG_HOTPLUG_CPU */
133 static void cpu_hotplug_begin(void) {}
134 static void cpu_hotplug_done(void) {}
135 #endif /* #else #if CONFIG_HOTPLUG_CPU */
136
137 /* Need to know about CPUs going up/down? */
138 int __ref register_cpu_notifier(struct notifier_block *nb)
139 {
140 int ret;
141 cpu_maps_update_begin();
142 ret = raw_notifier_chain_register(&cpu_chain, nb);
143 cpu_maps_update_done();
144 return ret;
145 }
146
147 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
148 int *nr_calls)
149 {
150 int ret;
151
152 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
153 nr_calls);
154
155 return notifier_to_errno(ret);
156 }
157
158 static int cpu_notify(unsigned long val, void *v)
159 {
160 return __cpu_notify(val, v, -1, NULL);
161 }
162
163 #ifdef CONFIG_HOTPLUG_CPU
164
165 static void cpu_notify_nofail(unsigned long val, void *v)
166 {
167 BUG_ON(cpu_notify(val, v));
168 }
169 EXPORT_SYMBOL(register_cpu_notifier);
170
171 void __ref unregister_cpu_notifier(struct notifier_block *nb)
172 {
173 cpu_maps_update_begin();
174 raw_notifier_chain_unregister(&cpu_chain, nb);
175 cpu_maps_update_done();
176 }
177 EXPORT_SYMBOL(unregister_cpu_notifier);
178
179 /**
180 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
181 * @cpu: a CPU id
182 *
183 * This function walks all processes, finds a valid mm struct for each one and
184 * then clears a corresponding bit in mm's cpumask. While this all sounds
185 * trivial, there are various non-obvious corner cases, which this function
186 * tries to solve in a safe manner.
187 *
188 * Also note that the function uses a somewhat relaxed locking scheme, so it may
189 * be called only for an already offlined CPU.
190 */
191 void clear_tasks_mm_cpumask(int cpu)
192 {
193 struct task_struct *p;
194
195 /*
196 * This function is called after the cpu is taken down and marked
197 * offline, so its not like new tasks will ever get this cpu set in
198 * their mm mask. -- Peter Zijlstra
199 * Thus, we may use rcu_read_lock() here, instead of grabbing
200 * full-fledged tasklist_lock.
201 */
202 WARN_ON(cpu_online(cpu));
203 rcu_read_lock();
204 for_each_process(p) {
205 struct task_struct *t;
206
207 /*
208 * Main thread might exit, but other threads may still have
209 * a valid mm. Find one.
210 */
211 t = find_lock_task_mm(p);
212 if (!t)
213 continue;
214 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
215 task_unlock(t);
216 }
217 rcu_read_unlock();
218 }
219
220 static inline void check_for_tasks(int cpu)
221 {
222 struct task_struct *p;
223
224 write_lock_irq(&tasklist_lock);
225 for_each_process(p) {
226 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
227 (p->utime || p->stime))
228 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
229 "(state = %ld, flags = %x)\n",
230 p->comm, task_pid_nr(p), cpu,
231 p->state, p->flags);
232 }
233 write_unlock_irq(&tasklist_lock);
234 }
235
236 struct take_cpu_down_param {
237 unsigned long mod;
238 void *hcpu;
239 };
240
241 /* Take this CPU down. */
242 static int __ref take_cpu_down(void *_param)
243 {
244 struct take_cpu_down_param *param = _param;
245 int err;
246
247 /* Ensure this CPU doesn't handle any more interrupts. */
248 err = __cpu_disable();
249 if (err < 0)
250 return err;
251
252 cpu_notify(CPU_DYING | param->mod, param->hcpu);
253 return 0;
254 }
255
256 /* Requires cpu_add_remove_lock to be held */
257 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
258 {
259 int err, nr_calls = 0;
260 void *hcpu = (void *)(long)cpu;
261 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
262 struct take_cpu_down_param tcd_param = {
263 .mod = mod,
264 .hcpu = hcpu,
265 };
266
267 if (num_online_cpus() == 1)
268 return -EBUSY;
269
270 if (!cpu_online(cpu))
271 return -EINVAL;
272
273 cpu_hotplug_begin();
274
275 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
276 if (err) {
277 nr_calls--;
278 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
279 printk("%s: attempt to take down CPU %u failed\n",
280 __func__, cpu);
281 goto out_release;
282 }
283 smpboot_park_threads(cpu);
284
285 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
286 if (err) {
287 /* CPU didn't die: tell everyone. Can't complain. */
288 smpboot_unpark_threads(cpu);
289 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
290 goto out_release;
291 }
292 BUG_ON(cpu_online(cpu));
293
294 /*
295 * The migration_call() CPU_DYING callback will have removed all
296 * runnable tasks from the cpu, there's only the idle task left now
297 * that the migration thread is done doing the stop_machine thing.
298 *
299 * Wait for the stop thread to go away.
300 */
301 while (!idle_cpu(cpu))
302 cpu_relax();
303
304 /* This actually kills the CPU. */
305 __cpu_die(cpu);
306
307 /* CPU is completely dead: tell everyone. Too late to complain. */
308 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
309
310 check_for_tasks(cpu);
311
312 out_release:
313 cpu_hotplug_done();
314 if (!err)
315 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
316 return err;
317 }
318
319 int __ref cpu_down(unsigned int cpu)
320 {
321 int err;
322
323 cpu_maps_update_begin();
324
325 if (cpu_hotplug_disabled) {
326 err = -EBUSY;
327 goto out;
328 }
329
330 err = _cpu_down(cpu, 0);
331
332 out:
333 cpu_maps_update_done();
334 return err;
335 }
336 EXPORT_SYMBOL(cpu_down);
337 #endif /*CONFIG_HOTPLUG_CPU*/
338
339 /* Requires cpu_add_remove_lock to be held */
340 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
341 {
342 int ret, nr_calls = 0;
343 void *hcpu = (void *)(long)cpu;
344 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
345 struct task_struct *idle;
346
347 if (cpu_online(cpu) || !cpu_present(cpu))
348 return -EINVAL;
349
350 cpu_hotplug_begin();
351
352 idle = idle_thread_get(cpu);
353 if (IS_ERR(idle)) {
354 ret = PTR_ERR(idle);
355 goto out;
356 }
357
358 ret = smpboot_create_threads(cpu);
359 if (ret)
360 goto out;
361
362 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
363 if (ret) {
364 nr_calls--;
365 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
366 __func__, cpu);
367 goto out_notify;
368 }
369
370 /* Arch-specific enabling code. */
371 ret = __cpu_up(cpu, idle);
372 if (ret != 0)
373 goto out_notify;
374 BUG_ON(!cpu_online(cpu));
375
376 /* Wake the per cpu threads */
377 smpboot_unpark_threads(cpu);
378
379 /* Now call notifier in preparation. */
380 cpu_notify(CPU_ONLINE | mod, hcpu);
381
382 out_notify:
383 if (ret != 0)
384 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
385 out:
386 cpu_hotplug_done();
387
388 return ret;
389 }
390
391 int __cpuinit cpu_up(unsigned int cpu)
392 {
393 int err = 0;
394
395 #ifdef CONFIG_MEMORY_HOTPLUG
396 int nid;
397 pg_data_t *pgdat;
398 #endif
399
400 if (!cpu_possible(cpu)) {
401 printk(KERN_ERR "can't online cpu %d because it is not "
402 "configured as may-hotadd at boot time\n", cpu);
403 #if defined(CONFIG_IA64)
404 printk(KERN_ERR "please check additional_cpus= boot "
405 "parameter\n");
406 #endif
407 return -EINVAL;
408 }
409
410 #ifdef CONFIG_MEMORY_HOTPLUG
411 nid = cpu_to_node(cpu);
412 if (!node_online(nid)) {
413 err = mem_online_node(nid);
414 if (err)
415 return err;
416 }
417
418 pgdat = NODE_DATA(nid);
419 if (!pgdat) {
420 printk(KERN_ERR
421 "Can't online cpu %d due to NULL pgdat\n", cpu);
422 return -ENOMEM;
423 }
424
425 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
426 mutex_lock(&zonelists_mutex);
427 build_all_zonelists(NULL, NULL);
428 mutex_unlock(&zonelists_mutex);
429 }
430 #endif
431
432 cpu_maps_update_begin();
433
434 if (cpu_hotplug_disabled) {
435 err = -EBUSY;
436 goto out;
437 }
438
439 err = _cpu_up(cpu, 0);
440
441 out:
442 cpu_maps_update_done();
443 return err;
444 }
445 EXPORT_SYMBOL_GPL(cpu_up);
446
447 #ifdef CONFIG_PM_SLEEP_SMP
448 static cpumask_var_t frozen_cpus;
449
450 void __weak arch_disable_nonboot_cpus_begin(void)
451 {
452 }
453
454 void __weak arch_disable_nonboot_cpus_end(void)
455 {
456 }
457
458 int disable_nonboot_cpus(void)
459 {
460 int cpu, first_cpu, error = 0;
461
462 cpu_maps_update_begin();
463 first_cpu = cpumask_first(cpu_online_mask);
464 /*
465 * We take down all of the non-boot CPUs in one shot to avoid races
466 * with the userspace trying to use the CPU hotplug at the same time
467 */
468 cpumask_clear(frozen_cpus);
469 arch_disable_nonboot_cpus_begin();
470
471 printk("Disabling non-boot CPUs ...\n");
472 for_each_online_cpu(cpu) {
473 if (cpu == first_cpu)
474 continue;
475 error = _cpu_down(cpu, 1);
476 if (!error)
477 cpumask_set_cpu(cpu, frozen_cpus);
478 else {
479 printk(KERN_ERR "Error taking CPU%d down: %d\n",
480 cpu, error);
481 break;
482 }
483 }
484
485 arch_disable_nonboot_cpus_end();
486
487 if (!error) {
488 BUG_ON(num_online_cpus() > 1);
489 /* Make sure the CPUs won't be enabled by someone else */
490 cpu_hotplug_disabled = 1;
491 } else {
492 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
493 }
494 cpu_maps_update_done();
495 return error;
496 }
497
498 void __weak arch_enable_nonboot_cpus_begin(void)
499 {
500 }
501
502 void __weak arch_enable_nonboot_cpus_end(void)
503 {
504 }
505
506 void __ref enable_nonboot_cpus(void)
507 {
508 int cpu, error;
509
510 /* Allow everyone to use the CPU hotplug again */
511 cpu_maps_update_begin();
512 cpu_hotplug_disabled = 0;
513 if (cpumask_empty(frozen_cpus))
514 goto out;
515
516 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
517
518 arch_enable_nonboot_cpus_begin();
519
520 for_each_cpu(cpu, frozen_cpus) {
521 error = _cpu_up(cpu, 1);
522 if (!error) {
523 printk(KERN_INFO "CPU%d is up\n", cpu);
524 continue;
525 }
526 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
527 }
528
529 arch_enable_nonboot_cpus_end();
530
531 cpumask_clear(frozen_cpus);
532 out:
533 cpu_maps_update_done();
534 }
535
536 static int __init alloc_frozen_cpus(void)
537 {
538 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
539 return -ENOMEM;
540 return 0;
541 }
542 core_initcall(alloc_frozen_cpus);
543
544 /*
545 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
546 * hotplug when tasks are about to be frozen. Also, don't allow the freezer
547 * to continue until any currently running CPU hotplug operation gets
548 * completed.
549 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
550 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
551 * CPU hotplug path and released only after it is complete. Thus, we
552 * (and hence the freezer) will block here until any currently running CPU
553 * hotplug operation gets completed.
554 */
555 void cpu_hotplug_disable_before_freeze(void)
556 {
557 cpu_maps_update_begin();
558 cpu_hotplug_disabled = 1;
559 cpu_maps_update_done();
560 }
561
562
563 /*
564 * When tasks have been thawed, re-enable regular CPU hotplug (which had been
565 * disabled while beginning to freeze tasks).
566 */
567 void cpu_hotplug_enable_after_thaw(void)
568 {
569 cpu_maps_update_begin();
570 cpu_hotplug_disabled = 0;
571 cpu_maps_update_done();
572 }
573
574 /*
575 * When callbacks for CPU hotplug notifications are being executed, we must
576 * ensure that the state of the system with respect to the tasks being frozen
577 * or not, as reported by the notification, remains unchanged *throughout the
578 * duration* of the execution of the callbacks.
579 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
580 *
581 * This synchronization is implemented by mutually excluding regular CPU
582 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
583 * Hibernate notifications.
584 */
585 static int
586 cpu_hotplug_pm_callback(struct notifier_block *nb,
587 unsigned long action, void *ptr)
588 {
589 switch (action) {
590
591 case PM_SUSPEND_PREPARE:
592 case PM_HIBERNATION_PREPARE:
593 cpu_hotplug_disable_before_freeze();
594 break;
595
596 case PM_POST_SUSPEND:
597 case PM_POST_HIBERNATION:
598 cpu_hotplug_enable_after_thaw();
599 break;
600
601 default:
602 return NOTIFY_DONE;
603 }
604
605 return NOTIFY_OK;
606 }
607
608
609 static int __init cpu_hotplug_pm_sync_init(void)
610 {
611 pm_notifier(cpu_hotplug_pm_callback, 0);
612 return 0;
613 }
614 core_initcall(cpu_hotplug_pm_sync_init);
615
616 #endif /* CONFIG_PM_SLEEP_SMP */
617
618 /**
619 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
620 * @cpu: cpu that just started
621 *
622 * This function calls the cpu_chain notifiers with CPU_STARTING.
623 * It must be called by the arch code on the new cpu, before the new cpu
624 * enables interrupts and before the "boot" cpu returns from __cpu_up().
625 */
626 void __cpuinit notify_cpu_starting(unsigned int cpu)
627 {
628 unsigned long val = CPU_STARTING;
629
630 #ifdef CONFIG_PM_SLEEP_SMP
631 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
632 val = CPU_STARTING_FROZEN;
633 #endif /* CONFIG_PM_SLEEP_SMP */
634 cpu_notify(val, (void *)(long)cpu);
635 }
636
637 #endif /* CONFIG_SMP */
638
639 /*
640 * cpu_bit_bitmap[] is a special, "compressed" data structure that
641 * represents all NR_CPUS bits binary values of 1<<nr.
642 *
643 * It is used by cpumask_of() to get a constant address to a CPU
644 * mask value that has a single bit set only.
645 */
646
647 /* cpu_bit_bitmap[0] is empty - so we can back into it */
648 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
649 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
650 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
651 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
652
653 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
654
655 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
656 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
657 #if BITS_PER_LONG > 32
658 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
659 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
660 #endif
661 };
662 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
663
664 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
665 EXPORT_SYMBOL(cpu_all_bits);
666
667 #ifdef CONFIG_INIT_ALL_POSSIBLE
668 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
669 = CPU_BITS_ALL;
670 #else
671 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
672 #endif
673 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
674 EXPORT_SYMBOL(cpu_possible_mask);
675
676 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
677 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
678 EXPORT_SYMBOL(cpu_online_mask);
679
680 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
681 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
682 EXPORT_SYMBOL(cpu_present_mask);
683
684 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
685 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
686 EXPORT_SYMBOL(cpu_active_mask);
687
688 void set_cpu_possible(unsigned int cpu, bool possible)
689 {
690 if (possible)
691 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
692 else
693 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
694 }
695
696 void set_cpu_present(unsigned int cpu, bool present)
697 {
698 if (present)
699 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
700 else
701 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
702 }
703
704 void set_cpu_online(unsigned int cpu, bool online)
705 {
706 if (online)
707 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
708 else
709 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
710 }
711
712 void set_cpu_active(unsigned int cpu, bool active)
713 {
714 if (active)
715 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
716 else
717 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
718 }
719
720 void init_cpu_present(const struct cpumask *src)
721 {
722 cpumask_copy(to_cpumask(cpu_present_bits), src);
723 }
724
725 void init_cpu_possible(const struct cpumask *src)
726 {
727 cpumask_copy(to_cpumask(cpu_possible_bits), src);
728 }
729
730 void init_cpu_online(const struct cpumask *src)
731 {
732 cpumask_copy(to_cpumask(cpu_online_bits), src);
733 }
This page took 0.064557 seconds and 6 git commands to generate.