Linux 4.0-rc5
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
255 *
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_lock, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
288
289 /*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292 static void cpuset_hotplug_workfn(struct work_struct *work);
293 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
297 /*
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
301 */
302 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
304 {
305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
306 struct dentry *ret = ERR_PTR(-ENODEV);
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
316 }
317
318 static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
320 .mount = cpuset_mount,
321 };
322
323 /*
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
328 *
329 * One way or another, we guarantee to return some non-empty subset
330 * of cpu_online_mask.
331 *
332 * Call with callback_lock or cpuset_mutex held.
333 */
334 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 {
336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
337 cs = parent_cs(cs);
338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
339 }
340
341 /*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. The top cpuset always has some mems online.
346 *
347 * One way or another, we guarantee to return some non-empty subset
348 * of node_states[N_MEMORY].
349 *
350 * Call with callback_lock or cpuset_mutex held.
351 */
352 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
353 {
354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
355 cs = parent_cs(cs);
356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
357 }
358
359 /*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
362 * Call with callback_lock or cpuset_mutex held.
363 */
364 static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366 {
367 if (is_spread_page(cs))
368 task_set_spread_page(tsk);
369 else
370 task_clear_spread_page(tsk);
371
372 if (is_spread_slab(cs))
373 task_set_spread_slab(tsk);
374 else
375 task_clear_spread_slab(tsk);
376 }
377
378 /*
379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
380 *
381 * One cpuset is a subset of another if all its allowed CPUs and
382 * Memory Nodes are a subset of the other, and its exclusive flags
383 * are only set if the other's are set. Call holding cpuset_mutex.
384 */
385
386 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
387 {
388 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
389 nodes_subset(p->mems_allowed, q->mems_allowed) &&
390 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
391 is_mem_exclusive(p) <= is_mem_exclusive(q);
392 }
393
394 /**
395 * alloc_trial_cpuset - allocate a trial cpuset
396 * @cs: the cpuset that the trial cpuset duplicates
397 */
398 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399 {
400 struct cpuset *trial;
401
402 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
403 if (!trial)
404 return NULL;
405
406 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
407 goto free_cs;
408 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
409 goto free_cpus;
410
411 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
412 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413 return trial;
414
415 free_cpus:
416 free_cpumask_var(trial->cpus_allowed);
417 free_cs:
418 kfree(trial);
419 return NULL;
420 }
421
422 /**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426 static void free_trial_cpuset(struct cpuset *trial)
427 {
428 free_cpumask_var(trial->effective_cpus);
429 free_cpumask_var(trial->cpus_allowed);
430 kfree(trial);
431 }
432
433 /*
434 * validate_change() - Used to validate that any proposed cpuset change
435 * follows the structural rules for cpusets.
436 *
437 * If we replaced the flag and mask values of the current cpuset
438 * (cur) with those values in the trial cpuset (trial), would
439 * our various subset and exclusive rules still be valid? Presumes
440 * cpuset_mutex held.
441 *
442 * 'cur' is the address of an actual, in-use cpuset. Operations
443 * such as list traversal that depend on the actual address of the
444 * cpuset in the list must use cur below, not trial.
445 *
446 * 'trial' is the address of bulk structure copy of cur, with
447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
448 * or flags changed to new, trial values.
449 *
450 * Return 0 if valid, -errno if not.
451 */
452
453 static int validate_change(struct cpuset *cur, struct cpuset *trial)
454 {
455 struct cgroup_subsys_state *css;
456 struct cpuset *c, *par;
457 int ret;
458
459 rcu_read_lock();
460
461 /* Each of our child cpusets must be a subset of us */
462 ret = -EBUSY;
463 cpuset_for_each_child(c, css, cur)
464 if (!is_cpuset_subset(c, trial))
465 goto out;
466
467 /* Remaining checks don't apply to root cpuset */
468 ret = 0;
469 if (cur == &top_cpuset)
470 goto out;
471
472 par = parent_cs(cur);
473
474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
475 ret = -EACCES;
476 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
477 goto out;
478
479 /*
480 * If either I or some sibling (!= me) is exclusive, we can't
481 * overlap
482 */
483 ret = -EINVAL;
484 cpuset_for_each_child(c, css, par) {
485 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
486 c != cur &&
487 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
488 goto out;
489 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
490 c != cur &&
491 nodes_intersects(trial->mems_allowed, c->mems_allowed))
492 goto out;
493 }
494
495 /*
496 * Cpusets with tasks - existing or newly being attached - can't
497 * be changed to have empty cpus_allowed or mems_allowed.
498 */
499 ret = -ENOSPC;
500 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
501 if (!cpumask_empty(cur->cpus_allowed) &&
502 cpumask_empty(trial->cpus_allowed))
503 goto out;
504 if (!nodes_empty(cur->mems_allowed) &&
505 nodes_empty(trial->mems_allowed))
506 goto out;
507 }
508
509 /*
510 * We can't shrink if we won't have enough room for SCHED_DEADLINE
511 * tasks.
512 */
513 ret = -EBUSY;
514 if (is_cpu_exclusive(cur) &&
515 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
516 trial->cpus_allowed))
517 goto out;
518
519 ret = 0;
520 out:
521 rcu_read_unlock();
522 return ret;
523 }
524
525 #ifdef CONFIG_SMP
526 /*
527 * Helper routine for generate_sched_domains().
528 * Do cpusets a, b have overlapping effective cpus_allowed masks?
529 */
530 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
531 {
532 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
533 }
534
535 static void
536 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
537 {
538 if (dattr->relax_domain_level < c->relax_domain_level)
539 dattr->relax_domain_level = c->relax_domain_level;
540 return;
541 }
542
543 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
544 struct cpuset *root_cs)
545 {
546 struct cpuset *cp;
547 struct cgroup_subsys_state *pos_css;
548
549 rcu_read_lock();
550 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
551 /* skip the whole subtree if @cp doesn't have any CPU */
552 if (cpumask_empty(cp->cpus_allowed)) {
553 pos_css = css_rightmost_descendant(pos_css);
554 continue;
555 }
556
557 if (is_sched_load_balance(cp))
558 update_domain_attr(dattr, cp);
559 }
560 rcu_read_unlock();
561 }
562
563 /*
564 * generate_sched_domains()
565 *
566 * This function builds a partial partition of the systems CPUs
567 * A 'partial partition' is a set of non-overlapping subsets whose
568 * union is a subset of that set.
569 * The output of this function needs to be passed to kernel/sched/core.c
570 * partition_sched_domains() routine, which will rebuild the scheduler's
571 * load balancing domains (sched domains) as specified by that partial
572 * partition.
573 *
574 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
575 * for a background explanation of this.
576 *
577 * Does not return errors, on the theory that the callers of this
578 * routine would rather not worry about failures to rebuild sched
579 * domains when operating in the severe memory shortage situations
580 * that could cause allocation failures below.
581 *
582 * Must be called with cpuset_mutex held.
583 *
584 * The three key local variables below are:
585 * q - a linked-list queue of cpuset pointers, used to implement a
586 * top-down scan of all cpusets. This scan loads a pointer
587 * to each cpuset marked is_sched_load_balance into the
588 * array 'csa'. For our purposes, rebuilding the schedulers
589 * sched domains, we can ignore !is_sched_load_balance cpusets.
590 * csa - (for CpuSet Array) Array of pointers to all the cpusets
591 * that need to be load balanced, for convenient iterative
592 * access by the subsequent code that finds the best partition,
593 * i.e the set of domains (subsets) of CPUs such that the
594 * cpus_allowed of every cpuset marked is_sched_load_balance
595 * is a subset of one of these domains, while there are as
596 * many such domains as possible, each as small as possible.
597 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
598 * the kernel/sched/core.c routine partition_sched_domains() in a
599 * convenient format, that can be easily compared to the prior
600 * value to determine what partition elements (sched domains)
601 * were changed (added or removed.)
602 *
603 * Finding the best partition (set of domains):
604 * The triple nested loops below over i, j, k scan over the
605 * load balanced cpusets (using the array of cpuset pointers in
606 * csa[]) looking for pairs of cpusets that have overlapping
607 * cpus_allowed, but which don't have the same 'pn' partition
608 * number and gives them in the same partition number. It keeps
609 * looping on the 'restart' label until it can no longer find
610 * any such pairs.
611 *
612 * The union of the cpus_allowed masks from the set of
613 * all cpusets having the same 'pn' value then form the one
614 * element of the partition (one sched domain) to be passed to
615 * partition_sched_domains().
616 */
617 static int generate_sched_domains(cpumask_var_t **domains,
618 struct sched_domain_attr **attributes)
619 {
620 struct cpuset *cp; /* scans q */
621 struct cpuset **csa; /* array of all cpuset ptrs */
622 int csn; /* how many cpuset ptrs in csa so far */
623 int i, j, k; /* indices for partition finding loops */
624 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
625 struct sched_domain_attr *dattr; /* attributes for custom domains */
626 int ndoms = 0; /* number of sched domains in result */
627 int nslot; /* next empty doms[] struct cpumask slot */
628 struct cgroup_subsys_state *pos_css;
629
630 doms = NULL;
631 dattr = NULL;
632 csa = NULL;
633
634 /* Special case for the 99% of systems with one, full, sched domain */
635 if (is_sched_load_balance(&top_cpuset)) {
636 ndoms = 1;
637 doms = alloc_sched_domains(ndoms);
638 if (!doms)
639 goto done;
640
641 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
642 if (dattr) {
643 *dattr = SD_ATTR_INIT;
644 update_domain_attr_tree(dattr, &top_cpuset);
645 }
646 cpumask_copy(doms[0], top_cpuset.effective_cpus);
647
648 goto done;
649 }
650
651 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
652 if (!csa)
653 goto done;
654 csn = 0;
655
656 rcu_read_lock();
657 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
658 if (cp == &top_cpuset)
659 continue;
660 /*
661 * Continue traversing beyond @cp iff @cp has some CPUs and
662 * isn't load balancing. The former is obvious. The
663 * latter: All child cpusets contain a subset of the
664 * parent's cpus, so just skip them, and then we call
665 * update_domain_attr_tree() to calc relax_domain_level of
666 * the corresponding sched domain.
667 */
668 if (!cpumask_empty(cp->cpus_allowed) &&
669 !is_sched_load_balance(cp))
670 continue;
671
672 if (is_sched_load_balance(cp))
673 csa[csn++] = cp;
674
675 /* skip @cp's subtree */
676 pos_css = css_rightmost_descendant(pos_css);
677 }
678 rcu_read_unlock();
679
680 for (i = 0; i < csn; i++)
681 csa[i]->pn = i;
682 ndoms = csn;
683
684 restart:
685 /* Find the best partition (set of sched domains) */
686 for (i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
688 int apn = a->pn;
689
690 for (j = 0; j < csn; j++) {
691 struct cpuset *b = csa[j];
692 int bpn = b->pn;
693
694 if (apn != bpn && cpusets_overlap(a, b)) {
695 for (k = 0; k < csn; k++) {
696 struct cpuset *c = csa[k];
697
698 if (c->pn == bpn)
699 c->pn = apn;
700 }
701 ndoms--; /* one less element */
702 goto restart;
703 }
704 }
705 }
706
707 /*
708 * Now we know how many domains to create.
709 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
710 */
711 doms = alloc_sched_domains(ndoms);
712 if (!doms)
713 goto done;
714
715 /*
716 * The rest of the code, including the scheduler, can deal with
717 * dattr==NULL case. No need to abort if alloc fails.
718 */
719 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
720
721 for (nslot = 0, i = 0; i < csn; i++) {
722 struct cpuset *a = csa[i];
723 struct cpumask *dp;
724 int apn = a->pn;
725
726 if (apn < 0) {
727 /* Skip completed partitions */
728 continue;
729 }
730
731 dp = doms[nslot];
732
733 if (nslot == ndoms) {
734 static int warnings = 10;
735 if (warnings) {
736 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
737 nslot, ndoms, csn, i, apn);
738 warnings--;
739 }
740 continue;
741 }
742
743 cpumask_clear(dp);
744 if (dattr)
745 *(dattr + nslot) = SD_ATTR_INIT;
746 for (j = i; j < csn; j++) {
747 struct cpuset *b = csa[j];
748
749 if (apn == b->pn) {
750 cpumask_or(dp, dp, b->effective_cpus);
751 if (dattr)
752 update_domain_attr_tree(dattr + nslot, b);
753
754 /* Done with this partition */
755 b->pn = -1;
756 }
757 }
758 nslot++;
759 }
760 BUG_ON(nslot != ndoms);
761
762 done:
763 kfree(csa);
764
765 /*
766 * Fallback to the default domain if kmalloc() failed.
767 * See comments in partition_sched_domains().
768 */
769 if (doms == NULL)
770 ndoms = 1;
771
772 *domains = doms;
773 *attributes = dattr;
774 return ndoms;
775 }
776
777 /*
778 * Rebuild scheduler domains.
779 *
780 * If the flag 'sched_load_balance' of any cpuset with non-empty
781 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
782 * which has that flag enabled, or if any cpuset with a non-empty
783 * 'cpus' is removed, then call this routine to rebuild the
784 * scheduler's dynamic sched domains.
785 *
786 * Call with cpuset_mutex held. Takes get_online_cpus().
787 */
788 static void rebuild_sched_domains_locked(void)
789 {
790 struct sched_domain_attr *attr;
791 cpumask_var_t *doms;
792 int ndoms;
793
794 lockdep_assert_held(&cpuset_mutex);
795 get_online_cpus();
796
797 /*
798 * We have raced with CPU hotplug. Don't do anything to avoid
799 * passing doms with offlined cpu to partition_sched_domains().
800 * Anyways, hotplug work item will rebuild sched domains.
801 */
802 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
803 goto out;
804
805 /* Generate domain masks and attrs */
806 ndoms = generate_sched_domains(&doms, &attr);
807
808 /* Have scheduler rebuild the domains */
809 partition_sched_domains(ndoms, doms, attr);
810 out:
811 put_online_cpus();
812 }
813 #else /* !CONFIG_SMP */
814 static void rebuild_sched_domains_locked(void)
815 {
816 }
817 #endif /* CONFIG_SMP */
818
819 void rebuild_sched_domains(void)
820 {
821 mutex_lock(&cpuset_mutex);
822 rebuild_sched_domains_locked();
823 mutex_unlock(&cpuset_mutex);
824 }
825
826 /**
827 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
828 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
829 *
830 * Iterate through each task of @cs updating its cpus_allowed to the
831 * effective cpuset's. As this function is called with cpuset_mutex held,
832 * cpuset membership stays stable.
833 */
834 static void update_tasks_cpumask(struct cpuset *cs)
835 {
836 struct css_task_iter it;
837 struct task_struct *task;
838
839 css_task_iter_start(&cs->css, &it);
840 while ((task = css_task_iter_next(&it)))
841 set_cpus_allowed_ptr(task, cs->effective_cpus);
842 css_task_iter_end(&it);
843 }
844
845 /*
846 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
847 * @cs: the cpuset to consider
848 * @new_cpus: temp variable for calculating new effective_cpus
849 *
850 * When congifured cpumask is changed, the effective cpumasks of this cpuset
851 * and all its descendants need to be updated.
852 *
853 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
854 *
855 * Called with cpuset_mutex held
856 */
857 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
858 {
859 struct cpuset *cp;
860 struct cgroup_subsys_state *pos_css;
861 bool need_rebuild_sched_domains = false;
862
863 rcu_read_lock();
864 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
865 struct cpuset *parent = parent_cs(cp);
866
867 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
868
869 /*
870 * If it becomes empty, inherit the effective mask of the
871 * parent, which is guaranteed to have some CPUs.
872 */
873 if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
874 cpumask_copy(new_cpus, parent->effective_cpus);
875
876 /* Skip the whole subtree if the cpumask remains the same. */
877 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
878 pos_css = css_rightmost_descendant(pos_css);
879 continue;
880 }
881
882 if (!css_tryget_online(&cp->css))
883 continue;
884 rcu_read_unlock();
885
886 spin_lock_irq(&callback_lock);
887 cpumask_copy(cp->effective_cpus, new_cpus);
888 spin_unlock_irq(&callback_lock);
889
890 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
891 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
892
893 update_tasks_cpumask(cp);
894
895 /*
896 * If the effective cpumask of any non-empty cpuset is changed,
897 * we need to rebuild sched domains.
898 */
899 if (!cpumask_empty(cp->cpus_allowed) &&
900 is_sched_load_balance(cp))
901 need_rebuild_sched_domains = true;
902
903 rcu_read_lock();
904 css_put(&cp->css);
905 }
906 rcu_read_unlock();
907
908 if (need_rebuild_sched_domains)
909 rebuild_sched_domains_locked();
910 }
911
912 /**
913 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
914 * @cs: the cpuset to consider
915 * @trialcs: trial cpuset
916 * @buf: buffer of cpu numbers written to this cpuset
917 */
918 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
919 const char *buf)
920 {
921 int retval;
922
923 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
924 if (cs == &top_cpuset)
925 return -EACCES;
926
927 /*
928 * An empty cpus_allowed is ok only if the cpuset has no tasks.
929 * Since cpulist_parse() fails on an empty mask, we special case
930 * that parsing. The validate_change() call ensures that cpusets
931 * with tasks have cpus.
932 */
933 if (!*buf) {
934 cpumask_clear(trialcs->cpus_allowed);
935 } else {
936 retval = cpulist_parse(buf, trialcs->cpus_allowed);
937 if (retval < 0)
938 return retval;
939
940 if (!cpumask_subset(trialcs->cpus_allowed,
941 top_cpuset.cpus_allowed))
942 return -EINVAL;
943 }
944
945 /* Nothing to do if the cpus didn't change */
946 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
947 return 0;
948
949 retval = validate_change(cs, trialcs);
950 if (retval < 0)
951 return retval;
952
953 spin_lock_irq(&callback_lock);
954 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
955 spin_unlock_irq(&callback_lock);
956
957 /* use trialcs->cpus_allowed as a temp variable */
958 update_cpumasks_hier(cs, trialcs->cpus_allowed);
959 return 0;
960 }
961
962 /*
963 * cpuset_migrate_mm
964 *
965 * Migrate memory region from one set of nodes to another.
966 *
967 * Temporarilly set tasks mems_allowed to target nodes of migration,
968 * so that the migration code can allocate pages on these nodes.
969 *
970 * While the mm_struct we are migrating is typically from some
971 * other task, the task_struct mems_allowed that we are hacking
972 * is for our current task, which must allocate new pages for that
973 * migrating memory region.
974 */
975
976 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
977 const nodemask_t *to)
978 {
979 struct task_struct *tsk = current;
980
981 tsk->mems_allowed = *to;
982
983 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
984
985 rcu_read_lock();
986 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
987 rcu_read_unlock();
988 }
989
990 /*
991 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
992 * @tsk: the task to change
993 * @newmems: new nodes that the task will be set
994 *
995 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
996 * we structure updates as setting all new allowed nodes, then clearing newly
997 * disallowed ones.
998 */
999 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1000 nodemask_t *newmems)
1001 {
1002 bool need_loop;
1003
1004 /*
1005 * Allow tasks that have access to memory reserves because they have
1006 * been OOM killed to get memory anywhere.
1007 */
1008 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1009 return;
1010 if (current->flags & PF_EXITING) /* Let dying task have memory */
1011 return;
1012
1013 task_lock(tsk);
1014 /*
1015 * Determine if a loop is necessary if another thread is doing
1016 * read_mems_allowed_begin(). If at least one node remains unchanged and
1017 * tsk does not have a mempolicy, then an empty nodemask will not be
1018 * possible when mems_allowed is larger than a word.
1019 */
1020 need_loop = task_has_mempolicy(tsk) ||
1021 !nodes_intersects(*newmems, tsk->mems_allowed);
1022
1023 if (need_loop) {
1024 local_irq_disable();
1025 write_seqcount_begin(&tsk->mems_allowed_seq);
1026 }
1027
1028 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1029 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1030
1031 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1032 tsk->mems_allowed = *newmems;
1033
1034 if (need_loop) {
1035 write_seqcount_end(&tsk->mems_allowed_seq);
1036 local_irq_enable();
1037 }
1038
1039 task_unlock(tsk);
1040 }
1041
1042 static void *cpuset_being_rebound;
1043
1044 /**
1045 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1046 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1047 *
1048 * Iterate through each task of @cs updating its mems_allowed to the
1049 * effective cpuset's. As this function is called with cpuset_mutex held,
1050 * cpuset membership stays stable.
1051 */
1052 static void update_tasks_nodemask(struct cpuset *cs)
1053 {
1054 static nodemask_t newmems; /* protected by cpuset_mutex */
1055 struct css_task_iter it;
1056 struct task_struct *task;
1057
1058 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1059
1060 guarantee_online_mems(cs, &newmems);
1061
1062 /*
1063 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064 * take while holding tasklist_lock. Forks can happen - the
1065 * mpol_dup() cpuset_being_rebound check will catch such forks,
1066 * and rebind their vma mempolicies too. Because we still hold
1067 * the global cpuset_mutex, we know that no other rebind effort
1068 * will be contending for the global variable cpuset_being_rebound.
1069 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1070 * is idempotent. Also migrate pages in each mm to new nodes.
1071 */
1072 css_task_iter_start(&cs->css, &it);
1073 while ((task = css_task_iter_next(&it))) {
1074 struct mm_struct *mm;
1075 bool migrate;
1076
1077 cpuset_change_task_nodemask(task, &newmems);
1078
1079 mm = get_task_mm(task);
1080 if (!mm)
1081 continue;
1082
1083 migrate = is_memory_migrate(cs);
1084
1085 mpol_rebind_mm(mm, &cs->mems_allowed);
1086 if (migrate)
1087 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1088 mmput(mm);
1089 }
1090 css_task_iter_end(&it);
1091
1092 /*
1093 * All the tasks' nodemasks have been updated, update
1094 * cs->old_mems_allowed.
1095 */
1096 cs->old_mems_allowed = newmems;
1097
1098 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1099 cpuset_being_rebound = NULL;
1100 }
1101
1102 /*
1103 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1104 * @cs: the cpuset to consider
1105 * @new_mems: a temp variable for calculating new effective_mems
1106 *
1107 * When configured nodemask is changed, the effective nodemasks of this cpuset
1108 * and all its descendants need to be updated.
1109 *
1110 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1111 *
1112 * Called with cpuset_mutex held
1113 */
1114 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1115 {
1116 struct cpuset *cp;
1117 struct cgroup_subsys_state *pos_css;
1118
1119 rcu_read_lock();
1120 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1121 struct cpuset *parent = parent_cs(cp);
1122
1123 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1124
1125 /*
1126 * If it becomes empty, inherit the effective mask of the
1127 * parent, which is guaranteed to have some MEMs.
1128 */
1129 if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
1130 *new_mems = parent->effective_mems;
1131
1132 /* Skip the whole subtree if the nodemask remains the same. */
1133 if (nodes_equal(*new_mems, cp->effective_mems)) {
1134 pos_css = css_rightmost_descendant(pos_css);
1135 continue;
1136 }
1137
1138 if (!css_tryget_online(&cp->css))
1139 continue;
1140 rcu_read_unlock();
1141
1142 spin_lock_irq(&callback_lock);
1143 cp->effective_mems = *new_mems;
1144 spin_unlock_irq(&callback_lock);
1145
1146 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1147 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1148
1149 update_tasks_nodemask(cp);
1150
1151 rcu_read_lock();
1152 css_put(&cp->css);
1153 }
1154 rcu_read_unlock();
1155 }
1156
1157 /*
1158 * Handle user request to change the 'mems' memory placement
1159 * of a cpuset. Needs to validate the request, update the
1160 * cpusets mems_allowed, and for each task in the cpuset,
1161 * update mems_allowed and rebind task's mempolicy and any vma
1162 * mempolicies and if the cpuset is marked 'memory_migrate',
1163 * migrate the tasks pages to the new memory.
1164 *
1165 * Call with cpuset_mutex held. May take callback_lock during call.
1166 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1167 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1168 * their mempolicies to the cpusets new mems_allowed.
1169 */
1170 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1171 const char *buf)
1172 {
1173 int retval;
1174
1175 /*
1176 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1177 * it's read-only
1178 */
1179 if (cs == &top_cpuset) {
1180 retval = -EACCES;
1181 goto done;
1182 }
1183
1184 /*
1185 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1186 * Since nodelist_parse() fails on an empty mask, we special case
1187 * that parsing. The validate_change() call ensures that cpusets
1188 * with tasks have memory.
1189 */
1190 if (!*buf) {
1191 nodes_clear(trialcs->mems_allowed);
1192 } else {
1193 retval = nodelist_parse(buf, trialcs->mems_allowed);
1194 if (retval < 0)
1195 goto done;
1196
1197 if (!nodes_subset(trialcs->mems_allowed,
1198 top_cpuset.mems_allowed)) {
1199 retval = -EINVAL;
1200 goto done;
1201 }
1202 }
1203
1204 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1205 retval = 0; /* Too easy - nothing to do */
1206 goto done;
1207 }
1208 retval = validate_change(cs, trialcs);
1209 if (retval < 0)
1210 goto done;
1211
1212 spin_lock_irq(&callback_lock);
1213 cs->mems_allowed = trialcs->mems_allowed;
1214 spin_unlock_irq(&callback_lock);
1215
1216 /* use trialcs->mems_allowed as a temp variable */
1217 update_nodemasks_hier(cs, &cs->mems_allowed);
1218 done:
1219 return retval;
1220 }
1221
1222 int current_cpuset_is_being_rebound(void)
1223 {
1224 int ret;
1225
1226 rcu_read_lock();
1227 ret = task_cs(current) == cpuset_being_rebound;
1228 rcu_read_unlock();
1229
1230 return ret;
1231 }
1232
1233 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1234 {
1235 #ifdef CONFIG_SMP
1236 if (val < -1 || val >= sched_domain_level_max)
1237 return -EINVAL;
1238 #endif
1239
1240 if (val != cs->relax_domain_level) {
1241 cs->relax_domain_level = val;
1242 if (!cpumask_empty(cs->cpus_allowed) &&
1243 is_sched_load_balance(cs))
1244 rebuild_sched_domains_locked();
1245 }
1246
1247 return 0;
1248 }
1249
1250 /**
1251 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1252 * @cs: the cpuset in which each task's spread flags needs to be changed
1253 *
1254 * Iterate through each task of @cs updating its spread flags. As this
1255 * function is called with cpuset_mutex held, cpuset membership stays
1256 * stable.
1257 */
1258 static void update_tasks_flags(struct cpuset *cs)
1259 {
1260 struct css_task_iter it;
1261 struct task_struct *task;
1262
1263 css_task_iter_start(&cs->css, &it);
1264 while ((task = css_task_iter_next(&it)))
1265 cpuset_update_task_spread_flag(cs, task);
1266 css_task_iter_end(&it);
1267 }
1268
1269 /*
1270 * update_flag - read a 0 or a 1 in a file and update associated flag
1271 * bit: the bit to update (see cpuset_flagbits_t)
1272 * cs: the cpuset to update
1273 * turning_on: whether the flag is being set or cleared
1274 *
1275 * Call with cpuset_mutex held.
1276 */
1277
1278 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1279 int turning_on)
1280 {
1281 struct cpuset *trialcs;
1282 int balance_flag_changed;
1283 int spread_flag_changed;
1284 int err;
1285
1286 trialcs = alloc_trial_cpuset(cs);
1287 if (!trialcs)
1288 return -ENOMEM;
1289
1290 if (turning_on)
1291 set_bit(bit, &trialcs->flags);
1292 else
1293 clear_bit(bit, &trialcs->flags);
1294
1295 err = validate_change(cs, trialcs);
1296 if (err < 0)
1297 goto out;
1298
1299 balance_flag_changed = (is_sched_load_balance(cs) !=
1300 is_sched_load_balance(trialcs));
1301
1302 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1303 || (is_spread_page(cs) != is_spread_page(trialcs)));
1304
1305 spin_lock_irq(&callback_lock);
1306 cs->flags = trialcs->flags;
1307 spin_unlock_irq(&callback_lock);
1308
1309 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1310 rebuild_sched_domains_locked();
1311
1312 if (spread_flag_changed)
1313 update_tasks_flags(cs);
1314 out:
1315 free_trial_cpuset(trialcs);
1316 return err;
1317 }
1318
1319 /*
1320 * Frequency meter - How fast is some event occurring?
1321 *
1322 * These routines manage a digitally filtered, constant time based,
1323 * event frequency meter. There are four routines:
1324 * fmeter_init() - initialize a frequency meter.
1325 * fmeter_markevent() - called each time the event happens.
1326 * fmeter_getrate() - returns the recent rate of such events.
1327 * fmeter_update() - internal routine used to update fmeter.
1328 *
1329 * A common data structure is passed to each of these routines,
1330 * which is used to keep track of the state required to manage the
1331 * frequency meter and its digital filter.
1332 *
1333 * The filter works on the number of events marked per unit time.
1334 * The filter is single-pole low-pass recursive (IIR). The time unit
1335 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1336 * simulate 3 decimal digits of precision (multiplied by 1000).
1337 *
1338 * With an FM_COEF of 933, and a time base of 1 second, the filter
1339 * has a half-life of 10 seconds, meaning that if the events quit
1340 * happening, then the rate returned from the fmeter_getrate()
1341 * will be cut in half each 10 seconds, until it converges to zero.
1342 *
1343 * It is not worth doing a real infinitely recursive filter. If more
1344 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1345 * just compute FM_MAXTICKS ticks worth, by which point the level
1346 * will be stable.
1347 *
1348 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1349 * arithmetic overflow in the fmeter_update() routine.
1350 *
1351 * Given the simple 32 bit integer arithmetic used, this meter works
1352 * best for reporting rates between one per millisecond (msec) and
1353 * one per 32 (approx) seconds. At constant rates faster than one
1354 * per msec it maxes out at values just under 1,000,000. At constant
1355 * rates between one per msec, and one per second it will stabilize
1356 * to a value N*1000, where N is the rate of events per second.
1357 * At constant rates between one per second and one per 32 seconds,
1358 * it will be choppy, moving up on the seconds that have an event,
1359 * and then decaying until the next event. At rates slower than
1360 * about one in 32 seconds, it decays all the way back to zero between
1361 * each event.
1362 */
1363
1364 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1365 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1366 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1367 #define FM_SCALE 1000 /* faux fixed point scale */
1368
1369 /* Initialize a frequency meter */
1370 static void fmeter_init(struct fmeter *fmp)
1371 {
1372 fmp->cnt = 0;
1373 fmp->val = 0;
1374 fmp->time = 0;
1375 spin_lock_init(&fmp->lock);
1376 }
1377
1378 /* Internal meter update - process cnt events and update value */
1379 static void fmeter_update(struct fmeter *fmp)
1380 {
1381 time_t now = get_seconds();
1382 time_t ticks = now - fmp->time;
1383
1384 if (ticks == 0)
1385 return;
1386
1387 ticks = min(FM_MAXTICKS, ticks);
1388 while (ticks-- > 0)
1389 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1390 fmp->time = now;
1391
1392 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1393 fmp->cnt = 0;
1394 }
1395
1396 /* Process any previous ticks, then bump cnt by one (times scale). */
1397 static void fmeter_markevent(struct fmeter *fmp)
1398 {
1399 spin_lock(&fmp->lock);
1400 fmeter_update(fmp);
1401 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1402 spin_unlock(&fmp->lock);
1403 }
1404
1405 /* Process any previous ticks, then return current value. */
1406 static int fmeter_getrate(struct fmeter *fmp)
1407 {
1408 int val;
1409
1410 spin_lock(&fmp->lock);
1411 fmeter_update(fmp);
1412 val = fmp->val;
1413 spin_unlock(&fmp->lock);
1414 return val;
1415 }
1416
1417 static struct cpuset *cpuset_attach_old_cs;
1418
1419 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1420 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1421 struct cgroup_taskset *tset)
1422 {
1423 struct cpuset *cs = css_cs(css);
1424 struct task_struct *task;
1425 int ret;
1426
1427 /* used later by cpuset_attach() */
1428 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1429
1430 mutex_lock(&cpuset_mutex);
1431
1432 /* allow moving tasks into an empty cpuset if on default hierarchy */
1433 ret = -ENOSPC;
1434 if (!cgroup_on_dfl(css->cgroup) &&
1435 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1436 goto out_unlock;
1437
1438 cgroup_taskset_for_each(task, tset) {
1439 ret = task_can_attach(task, cs->cpus_allowed);
1440 if (ret)
1441 goto out_unlock;
1442 ret = security_task_setscheduler(task);
1443 if (ret)
1444 goto out_unlock;
1445 }
1446
1447 /*
1448 * Mark attach is in progress. This makes validate_change() fail
1449 * changes which zero cpus/mems_allowed.
1450 */
1451 cs->attach_in_progress++;
1452 ret = 0;
1453 out_unlock:
1454 mutex_unlock(&cpuset_mutex);
1455 return ret;
1456 }
1457
1458 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1459 struct cgroup_taskset *tset)
1460 {
1461 mutex_lock(&cpuset_mutex);
1462 css_cs(css)->attach_in_progress--;
1463 mutex_unlock(&cpuset_mutex);
1464 }
1465
1466 /*
1467 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1468 * but we can't allocate it dynamically there. Define it global and
1469 * allocate from cpuset_init().
1470 */
1471 static cpumask_var_t cpus_attach;
1472
1473 static void cpuset_attach(struct cgroup_subsys_state *css,
1474 struct cgroup_taskset *tset)
1475 {
1476 /* static buf protected by cpuset_mutex */
1477 static nodemask_t cpuset_attach_nodemask_to;
1478 struct mm_struct *mm;
1479 struct task_struct *task;
1480 struct task_struct *leader = cgroup_taskset_first(tset);
1481 struct cpuset *cs = css_cs(css);
1482 struct cpuset *oldcs = cpuset_attach_old_cs;
1483
1484 mutex_lock(&cpuset_mutex);
1485
1486 /* prepare for attach */
1487 if (cs == &top_cpuset)
1488 cpumask_copy(cpus_attach, cpu_possible_mask);
1489 else
1490 guarantee_online_cpus(cs, cpus_attach);
1491
1492 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1493
1494 cgroup_taskset_for_each(task, tset) {
1495 /*
1496 * can_attach beforehand should guarantee that this doesn't
1497 * fail. TODO: have a better way to handle failure here
1498 */
1499 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1500
1501 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1502 cpuset_update_task_spread_flag(cs, task);
1503 }
1504
1505 /*
1506 * Change mm, possibly for multiple threads in a threadgroup. This is
1507 * expensive and may sleep.
1508 */
1509 cpuset_attach_nodemask_to = cs->effective_mems;
1510 mm = get_task_mm(leader);
1511 if (mm) {
1512 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1513
1514 /*
1515 * old_mems_allowed is the same with mems_allowed here, except
1516 * if this task is being moved automatically due to hotplug.
1517 * In that case @mems_allowed has been updated and is empty,
1518 * so @old_mems_allowed is the right nodesets that we migrate
1519 * mm from.
1520 */
1521 if (is_memory_migrate(cs)) {
1522 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1523 &cpuset_attach_nodemask_to);
1524 }
1525 mmput(mm);
1526 }
1527
1528 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1529
1530 cs->attach_in_progress--;
1531 if (!cs->attach_in_progress)
1532 wake_up(&cpuset_attach_wq);
1533
1534 mutex_unlock(&cpuset_mutex);
1535 }
1536
1537 /* The various types of files and directories in a cpuset file system */
1538
1539 typedef enum {
1540 FILE_MEMORY_MIGRATE,
1541 FILE_CPULIST,
1542 FILE_MEMLIST,
1543 FILE_EFFECTIVE_CPULIST,
1544 FILE_EFFECTIVE_MEMLIST,
1545 FILE_CPU_EXCLUSIVE,
1546 FILE_MEM_EXCLUSIVE,
1547 FILE_MEM_HARDWALL,
1548 FILE_SCHED_LOAD_BALANCE,
1549 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1550 FILE_MEMORY_PRESSURE_ENABLED,
1551 FILE_MEMORY_PRESSURE,
1552 FILE_SPREAD_PAGE,
1553 FILE_SPREAD_SLAB,
1554 } cpuset_filetype_t;
1555
1556 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1557 u64 val)
1558 {
1559 struct cpuset *cs = css_cs(css);
1560 cpuset_filetype_t type = cft->private;
1561 int retval = 0;
1562
1563 mutex_lock(&cpuset_mutex);
1564 if (!is_cpuset_online(cs)) {
1565 retval = -ENODEV;
1566 goto out_unlock;
1567 }
1568
1569 switch (type) {
1570 case FILE_CPU_EXCLUSIVE:
1571 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1572 break;
1573 case FILE_MEM_EXCLUSIVE:
1574 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1575 break;
1576 case FILE_MEM_HARDWALL:
1577 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1578 break;
1579 case FILE_SCHED_LOAD_BALANCE:
1580 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1581 break;
1582 case FILE_MEMORY_MIGRATE:
1583 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1584 break;
1585 case FILE_MEMORY_PRESSURE_ENABLED:
1586 cpuset_memory_pressure_enabled = !!val;
1587 break;
1588 case FILE_MEMORY_PRESSURE:
1589 retval = -EACCES;
1590 break;
1591 case FILE_SPREAD_PAGE:
1592 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1593 break;
1594 case FILE_SPREAD_SLAB:
1595 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1596 break;
1597 default:
1598 retval = -EINVAL;
1599 break;
1600 }
1601 out_unlock:
1602 mutex_unlock(&cpuset_mutex);
1603 return retval;
1604 }
1605
1606 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1607 s64 val)
1608 {
1609 struct cpuset *cs = css_cs(css);
1610 cpuset_filetype_t type = cft->private;
1611 int retval = -ENODEV;
1612
1613 mutex_lock(&cpuset_mutex);
1614 if (!is_cpuset_online(cs))
1615 goto out_unlock;
1616
1617 switch (type) {
1618 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1619 retval = update_relax_domain_level(cs, val);
1620 break;
1621 default:
1622 retval = -EINVAL;
1623 break;
1624 }
1625 out_unlock:
1626 mutex_unlock(&cpuset_mutex);
1627 return retval;
1628 }
1629
1630 /*
1631 * Common handling for a write to a "cpus" or "mems" file.
1632 */
1633 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1634 char *buf, size_t nbytes, loff_t off)
1635 {
1636 struct cpuset *cs = css_cs(of_css(of));
1637 struct cpuset *trialcs;
1638 int retval = -ENODEV;
1639
1640 buf = strstrip(buf);
1641
1642 /*
1643 * CPU or memory hotunplug may leave @cs w/o any execution
1644 * resources, in which case the hotplug code asynchronously updates
1645 * configuration and transfers all tasks to the nearest ancestor
1646 * which can execute.
1647 *
1648 * As writes to "cpus" or "mems" may restore @cs's execution
1649 * resources, wait for the previously scheduled operations before
1650 * proceeding, so that we don't end up keep removing tasks added
1651 * after execution capability is restored.
1652 *
1653 * cpuset_hotplug_work calls back into cgroup core via
1654 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1655 * operation like this one can lead to a deadlock through kernfs
1656 * active_ref protection. Let's break the protection. Losing the
1657 * protection is okay as we check whether @cs is online after
1658 * grabbing cpuset_mutex anyway. This only happens on the legacy
1659 * hierarchies.
1660 */
1661 css_get(&cs->css);
1662 kernfs_break_active_protection(of->kn);
1663 flush_work(&cpuset_hotplug_work);
1664
1665 mutex_lock(&cpuset_mutex);
1666 if (!is_cpuset_online(cs))
1667 goto out_unlock;
1668
1669 trialcs = alloc_trial_cpuset(cs);
1670 if (!trialcs) {
1671 retval = -ENOMEM;
1672 goto out_unlock;
1673 }
1674
1675 switch (of_cft(of)->private) {
1676 case FILE_CPULIST:
1677 retval = update_cpumask(cs, trialcs, buf);
1678 break;
1679 case FILE_MEMLIST:
1680 retval = update_nodemask(cs, trialcs, buf);
1681 break;
1682 default:
1683 retval = -EINVAL;
1684 break;
1685 }
1686
1687 free_trial_cpuset(trialcs);
1688 out_unlock:
1689 mutex_unlock(&cpuset_mutex);
1690 kernfs_unbreak_active_protection(of->kn);
1691 css_put(&cs->css);
1692 return retval ?: nbytes;
1693 }
1694
1695 /*
1696 * These ascii lists should be read in a single call, by using a user
1697 * buffer large enough to hold the entire map. If read in smaller
1698 * chunks, there is no guarantee of atomicity. Since the display format
1699 * used, list of ranges of sequential numbers, is variable length,
1700 * and since these maps can change value dynamically, one could read
1701 * gibberish by doing partial reads while a list was changing.
1702 */
1703 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1704 {
1705 struct cpuset *cs = css_cs(seq_css(sf));
1706 cpuset_filetype_t type = seq_cft(sf)->private;
1707 int ret = 0;
1708
1709 spin_lock_irq(&callback_lock);
1710
1711 switch (type) {
1712 case FILE_CPULIST:
1713 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1714 break;
1715 case FILE_MEMLIST:
1716 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1717 break;
1718 case FILE_EFFECTIVE_CPULIST:
1719 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1720 break;
1721 case FILE_EFFECTIVE_MEMLIST:
1722 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1723 break;
1724 default:
1725 ret = -EINVAL;
1726 }
1727
1728 spin_unlock_irq(&callback_lock);
1729 return ret;
1730 }
1731
1732 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1733 {
1734 struct cpuset *cs = css_cs(css);
1735 cpuset_filetype_t type = cft->private;
1736 switch (type) {
1737 case FILE_CPU_EXCLUSIVE:
1738 return is_cpu_exclusive(cs);
1739 case FILE_MEM_EXCLUSIVE:
1740 return is_mem_exclusive(cs);
1741 case FILE_MEM_HARDWALL:
1742 return is_mem_hardwall(cs);
1743 case FILE_SCHED_LOAD_BALANCE:
1744 return is_sched_load_balance(cs);
1745 case FILE_MEMORY_MIGRATE:
1746 return is_memory_migrate(cs);
1747 case FILE_MEMORY_PRESSURE_ENABLED:
1748 return cpuset_memory_pressure_enabled;
1749 case FILE_MEMORY_PRESSURE:
1750 return fmeter_getrate(&cs->fmeter);
1751 case FILE_SPREAD_PAGE:
1752 return is_spread_page(cs);
1753 case FILE_SPREAD_SLAB:
1754 return is_spread_slab(cs);
1755 default:
1756 BUG();
1757 }
1758
1759 /* Unreachable but makes gcc happy */
1760 return 0;
1761 }
1762
1763 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1764 {
1765 struct cpuset *cs = css_cs(css);
1766 cpuset_filetype_t type = cft->private;
1767 switch (type) {
1768 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1769 return cs->relax_domain_level;
1770 default:
1771 BUG();
1772 }
1773
1774 /* Unrechable but makes gcc happy */
1775 return 0;
1776 }
1777
1778
1779 /*
1780 * for the common functions, 'private' gives the type of file
1781 */
1782
1783 static struct cftype files[] = {
1784 {
1785 .name = "cpus",
1786 .seq_show = cpuset_common_seq_show,
1787 .write = cpuset_write_resmask,
1788 .max_write_len = (100U + 6 * NR_CPUS),
1789 .private = FILE_CPULIST,
1790 },
1791
1792 {
1793 .name = "mems",
1794 .seq_show = cpuset_common_seq_show,
1795 .write = cpuset_write_resmask,
1796 .max_write_len = (100U + 6 * MAX_NUMNODES),
1797 .private = FILE_MEMLIST,
1798 },
1799
1800 {
1801 .name = "effective_cpus",
1802 .seq_show = cpuset_common_seq_show,
1803 .private = FILE_EFFECTIVE_CPULIST,
1804 },
1805
1806 {
1807 .name = "effective_mems",
1808 .seq_show = cpuset_common_seq_show,
1809 .private = FILE_EFFECTIVE_MEMLIST,
1810 },
1811
1812 {
1813 .name = "cpu_exclusive",
1814 .read_u64 = cpuset_read_u64,
1815 .write_u64 = cpuset_write_u64,
1816 .private = FILE_CPU_EXCLUSIVE,
1817 },
1818
1819 {
1820 .name = "mem_exclusive",
1821 .read_u64 = cpuset_read_u64,
1822 .write_u64 = cpuset_write_u64,
1823 .private = FILE_MEM_EXCLUSIVE,
1824 },
1825
1826 {
1827 .name = "mem_hardwall",
1828 .read_u64 = cpuset_read_u64,
1829 .write_u64 = cpuset_write_u64,
1830 .private = FILE_MEM_HARDWALL,
1831 },
1832
1833 {
1834 .name = "sched_load_balance",
1835 .read_u64 = cpuset_read_u64,
1836 .write_u64 = cpuset_write_u64,
1837 .private = FILE_SCHED_LOAD_BALANCE,
1838 },
1839
1840 {
1841 .name = "sched_relax_domain_level",
1842 .read_s64 = cpuset_read_s64,
1843 .write_s64 = cpuset_write_s64,
1844 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1845 },
1846
1847 {
1848 .name = "memory_migrate",
1849 .read_u64 = cpuset_read_u64,
1850 .write_u64 = cpuset_write_u64,
1851 .private = FILE_MEMORY_MIGRATE,
1852 },
1853
1854 {
1855 .name = "memory_pressure",
1856 .read_u64 = cpuset_read_u64,
1857 .write_u64 = cpuset_write_u64,
1858 .private = FILE_MEMORY_PRESSURE,
1859 .mode = S_IRUGO,
1860 },
1861
1862 {
1863 .name = "memory_spread_page",
1864 .read_u64 = cpuset_read_u64,
1865 .write_u64 = cpuset_write_u64,
1866 .private = FILE_SPREAD_PAGE,
1867 },
1868
1869 {
1870 .name = "memory_spread_slab",
1871 .read_u64 = cpuset_read_u64,
1872 .write_u64 = cpuset_write_u64,
1873 .private = FILE_SPREAD_SLAB,
1874 },
1875
1876 {
1877 .name = "memory_pressure_enabled",
1878 .flags = CFTYPE_ONLY_ON_ROOT,
1879 .read_u64 = cpuset_read_u64,
1880 .write_u64 = cpuset_write_u64,
1881 .private = FILE_MEMORY_PRESSURE_ENABLED,
1882 },
1883
1884 { } /* terminate */
1885 };
1886
1887 /*
1888 * cpuset_css_alloc - allocate a cpuset css
1889 * cgrp: control group that the new cpuset will be part of
1890 */
1891
1892 static struct cgroup_subsys_state *
1893 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1894 {
1895 struct cpuset *cs;
1896
1897 if (!parent_css)
1898 return &top_cpuset.css;
1899
1900 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1901 if (!cs)
1902 return ERR_PTR(-ENOMEM);
1903 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1904 goto free_cs;
1905 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1906 goto free_cpus;
1907
1908 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1909 cpumask_clear(cs->cpus_allowed);
1910 nodes_clear(cs->mems_allowed);
1911 cpumask_clear(cs->effective_cpus);
1912 nodes_clear(cs->effective_mems);
1913 fmeter_init(&cs->fmeter);
1914 cs->relax_domain_level = -1;
1915
1916 return &cs->css;
1917
1918 free_cpus:
1919 free_cpumask_var(cs->cpus_allowed);
1920 free_cs:
1921 kfree(cs);
1922 return ERR_PTR(-ENOMEM);
1923 }
1924
1925 static int cpuset_css_online(struct cgroup_subsys_state *css)
1926 {
1927 struct cpuset *cs = css_cs(css);
1928 struct cpuset *parent = parent_cs(cs);
1929 struct cpuset *tmp_cs;
1930 struct cgroup_subsys_state *pos_css;
1931
1932 if (!parent)
1933 return 0;
1934
1935 mutex_lock(&cpuset_mutex);
1936
1937 set_bit(CS_ONLINE, &cs->flags);
1938 if (is_spread_page(parent))
1939 set_bit(CS_SPREAD_PAGE, &cs->flags);
1940 if (is_spread_slab(parent))
1941 set_bit(CS_SPREAD_SLAB, &cs->flags);
1942
1943 cpuset_inc();
1944
1945 spin_lock_irq(&callback_lock);
1946 if (cgroup_on_dfl(cs->css.cgroup)) {
1947 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1948 cs->effective_mems = parent->effective_mems;
1949 }
1950 spin_unlock_irq(&callback_lock);
1951
1952 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1953 goto out_unlock;
1954
1955 /*
1956 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1957 * set. This flag handling is implemented in cgroup core for
1958 * histrical reasons - the flag may be specified during mount.
1959 *
1960 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1961 * refuse to clone the configuration - thereby refusing the task to
1962 * be entered, and as a result refusing the sys_unshare() or
1963 * clone() which initiated it. If this becomes a problem for some
1964 * users who wish to allow that scenario, then this could be
1965 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1966 * (and likewise for mems) to the new cgroup.
1967 */
1968 rcu_read_lock();
1969 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1970 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1971 rcu_read_unlock();
1972 goto out_unlock;
1973 }
1974 }
1975 rcu_read_unlock();
1976
1977 spin_lock_irq(&callback_lock);
1978 cs->mems_allowed = parent->mems_allowed;
1979 cs->effective_mems = parent->mems_allowed;
1980 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1981 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
1982 spin_unlock_irq(&callback_lock);
1983 out_unlock:
1984 mutex_unlock(&cpuset_mutex);
1985 return 0;
1986 }
1987
1988 /*
1989 * If the cpuset being removed has its flag 'sched_load_balance'
1990 * enabled, then simulate turning sched_load_balance off, which
1991 * will call rebuild_sched_domains_locked().
1992 */
1993
1994 static void cpuset_css_offline(struct cgroup_subsys_state *css)
1995 {
1996 struct cpuset *cs = css_cs(css);
1997
1998 mutex_lock(&cpuset_mutex);
1999
2000 if (is_sched_load_balance(cs))
2001 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2002
2003 cpuset_dec();
2004 clear_bit(CS_ONLINE, &cs->flags);
2005
2006 mutex_unlock(&cpuset_mutex);
2007 }
2008
2009 static void cpuset_css_free(struct cgroup_subsys_state *css)
2010 {
2011 struct cpuset *cs = css_cs(css);
2012
2013 free_cpumask_var(cs->effective_cpus);
2014 free_cpumask_var(cs->cpus_allowed);
2015 kfree(cs);
2016 }
2017
2018 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2019 {
2020 mutex_lock(&cpuset_mutex);
2021 spin_lock_irq(&callback_lock);
2022
2023 if (cgroup_on_dfl(root_css->cgroup)) {
2024 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2025 top_cpuset.mems_allowed = node_possible_map;
2026 } else {
2027 cpumask_copy(top_cpuset.cpus_allowed,
2028 top_cpuset.effective_cpus);
2029 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2030 }
2031
2032 spin_unlock_irq(&callback_lock);
2033 mutex_unlock(&cpuset_mutex);
2034 }
2035
2036 struct cgroup_subsys cpuset_cgrp_subsys = {
2037 .css_alloc = cpuset_css_alloc,
2038 .css_online = cpuset_css_online,
2039 .css_offline = cpuset_css_offline,
2040 .css_free = cpuset_css_free,
2041 .can_attach = cpuset_can_attach,
2042 .cancel_attach = cpuset_cancel_attach,
2043 .attach = cpuset_attach,
2044 .bind = cpuset_bind,
2045 .legacy_cftypes = files,
2046 .early_init = 1,
2047 };
2048
2049 /**
2050 * cpuset_init - initialize cpusets at system boot
2051 *
2052 * Description: Initialize top_cpuset and the cpuset internal file system,
2053 **/
2054
2055 int __init cpuset_init(void)
2056 {
2057 int err = 0;
2058
2059 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2060 BUG();
2061 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2062 BUG();
2063
2064 cpumask_setall(top_cpuset.cpus_allowed);
2065 nodes_setall(top_cpuset.mems_allowed);
2066 cpumask_setall(top_cpuset.effective_cpus);
2067 nodes_setall(top_cpuset.effective_mems);
2068
2069 fmeter_init(&top_cpuset.fmeter);
2070 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2071 top_cpuset.relax_domain_level = -1;
2072
2073 err = register_filesystem(&cpuset_fs_type);
2074 if (err < 0)
2075 return err;
2076
2077 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2078 BUG();
2079
2080 return 0;
2081 }
2082
2083 /*
2084 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2085 * or memory nodes, we need to walk over the cpuset hierarchy,
2086 * removing that CPU or node from all cpusets. If this removes the
2087 * last CPU or node from a cpuset, then move the tasks in the empty
2088 * cpuset to its next-highest non-empty parent.
2089 */
2090 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2091 {
2092 struct cpuset *parent;
2093
2094 /*
2095 * Find its next-highest non-empty parent, (top cpuset
2096 * has online cpus, so can't be empty).
2097 */
2098 parent = parent_cs(cs);
2099 while (cpumask_empty(parent->cpus_allowed) ||
2100 nodes_empty(parent->mems_allowed))
2101 parent = parent_cs(parent);
2102
2103 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2104 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2105 pr_cont_cgroup_name(cs->css.cgroup);
2106 pr_cont("\n");
2107 }
2108 }
2109
2110 static void
2111 hotplug_update_tasks_legacy(struct cpuset *cs,
2112 struct cpumask *new_cpus, nodemask_t *new_mems,
2113 bool cpus_updated, bool mems_updated)
2114 {
2115 bool is_empty;
2116
2117 spin_lock_irq(&callback_lock);
2118 cpumask_copy(cs->cpus_allowed, new_cpus);
2119 cpumask_copy(cs->effective_cpus, new_cpus);
2120 cs->mems_allowed = *new_mems;
2121 cs->effective_mems = *new_mems;
2122 spin_unlock_irq(&callback_lock);
2123
2124 /*
2125 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2126 * as the tasks will be migratecd to an ancestor.
2127 */
2128 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2129 update_tasks_cpumask(cs);
2130 if (mems_updated && !nodes_empty(cs->mems_allowed))
2131 update_tasks_nodemask(cs);
2132
2133 is_empty = cpumask_empty(cs->cpus_allowed) ||
2134 nodes_empty(cs->mems_allowed);
2135
2136 mutex_unlock(&cpuset_mutex);
2137
2138 /*
2139 * Move tasks to the nearest ancestor with execution resources,
2140 * This is full cgroup operation which will also call back into
2141 * cpuset. Should be done outside any lock.
2142 */
2143 if (is_empty)
2144 remove_tasks_in_empty_cpuset(cs);
2145
2146 mutex_lock(&cpuset_mutex);
2147 }
2148
2149 static void
2150 hotplug_update_tasks(struct cpuset *cs,
2151 struct cpumask *new_cpus, nodemask_t *new_mems,
2152 bool cpus_updated, bool mems_updated)
2153 {
2154 if (cpumask_empty(new_cpus))
2155 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2156 if (nodes_empty(*new_mems))
2157 *new_mems = parent_cs(cs)->effective_mems;
2158
2159 spin_lock_irq(&callback_lock);
2160 cpumask_copy(cs->effective_cpus, new_cpus);
2161 cs->effective_mems = *new_mems;
2162 spin_unlock_irq(&callback_lock);
2163
2164 if (cpus_updated)
2165 update_tasks_cpumask(cs);
2166 if (mems_updated)
2167 update_tasks_nodemask(cs);
2168 }
2169
2170 /**
2171 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2172 * @cs: cpuset in interest
2173 *
2174 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2175 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2176 * all its tasks are moved to the nearest ancestor with both resources.
2177 */
2178 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2179 {
2180 static cpumask_t new_cpus;
2181 static nodemask_t new_mems;
2182 bool cpus_updated;
2183 bool mems_updated;
2184 retry:
2185 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2186
2187 mutex_lock(&cpuset_mutex);
2188
2189 /*
2190 * We have raced with task attaching. We wait until attaching
2191 * is finished, so we won't attach a task to an empty cpuset.
2192 */
2193 if (cs->attach_in_progress) {
2194 mutex_unlock(&cpuset_mutex);
2195 goto retry;
2196 }
2197
2198 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2199 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2200
2201 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2202 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2203
2204 if (cgroup_on_dfl(cs->css.cgroup))
2205 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2206 cpus_updated, mems_updated);
2207 else
2208 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2209 cpus_updated, mems_updated);
2210
2211 mutex_unlock(&cpuset_mutex);
2212 }
2213
2214 /**
2215 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2216 *
2217 * This function is called after either CPU or memory configuration has
2218 * changed and updates cpuset accordingly. The top_cpuset is always
2219 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2220 * order to make cpusets transparent (of no affect) on systems that are
2221 * actively using CPU hotplug but making no active use of cpusets.
2222 *
2223 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2224 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2225 * all descendants.
2226 *
2227 * Note that CPU offlining during suspend is ignored. We don't modify
2228 * cpusets across suspend/resume cycles at all.
2229 */
2230 static void cpuset_hotplug_workfn(struct work_struct *work)
2231 {
2232 static cpumask_t new_cpus;
2233 static nodemask_t new_mems;
2234 bool cpus_updated, mems_updated;
2235 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2236
2237 mutex_lock(&cpuset_mutex);
2238
2239 /* fetch the available cpus/mems and find out which changed how */
2240 cpumask_copy(&new_cpus, cpu_active_mask);
2241 new_mems = node_states[N_MEMORY];
2242
2243 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2244 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2245
2246 /* synchronize cpus_allowed to cpu_active_mask */
2247 if (cpus_updated) {
2248 spin_lock_irq(&callback_lock);
2249 if (!on_dfl)
2250 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2251 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2252 spin_unlock_irq(&callback_lock);
2253 /* we don't mess with cpumasks of tasks in top_cpuset */
2254 }
2255
2256 /* synchronize mems_allowed to N_MEMORY */
2257 if (mems_updated) {
2258 spin_lock_irq(&callback_lock);
2259 if (!on_dfl)
2260 top_cpuset.mems_allowed = new_mems;
2261 top_cpuset.effective_mems = new_mems;
2262 spin_unlock_irq(&callback_lock);
2263 update_tasks_nodemask(&top_cpuset);
2264 }
2265
2266 mutex_unlock(&cpuset_mutex);
2267
2268 /* if cpus or mems changed, we need to propagate to descendants */
2269 if (cpus_updated || mems_updated) {
2270 struct cpuset *cs;
2271 struct cgroup_subsys_state *pos_css;
2272
2273 rcu_read_lock();
2274 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2275 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2276 continue;
2277 rcu_read_unlock();
2278
2279 cpuset_hotplug_update_tasks(cs);
2280
2281 rcu_read_lock();
2282 css_put(&cs->css);
2283 }
2284 rcu_read_unlock();
2285 }
2286
2287 /* rebuild sched domains if cpus_allowed has changed */
2288 if (cpus_updated)
2289 rebuild_sched_domains();
2290 }
2291
2292 void cpuset_update_active_cpus(bool cpu_online)
2293 {
2294 /*
2295 * We're inside cpu hotplug critical region which usually nests
2296 * inside cgroup synchronization. Bounce actual hotplug processing
2297 * to a work item to avoid reverse locking order.
2298 *
2299 * We still need to do partition_sched_domains() synchronously;
2300 * otherwise, the scheduler will get confused and put tasks to the
2301 * dead CPU. Fall back to the default single domain.
2302 * cpuset_hotplug_workfn() will rebuild it as necessary.
2303 */
2304 partition_sched_domains(1, NULL, NULL);
2305 schedule_work(&cpuset_hotplug_work);
2306 }
2307
2308 /*
2309 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2310 * Call this routine anytime after node_states[N_MEMORY] changes.
2311 * See cpuset_update_active_cpus() for CPU hotplug handling.
2312 */
2313 static int cpuset_track_online_nodes(struct notifier_block *self,
2314 unsigned long action, void *arg)
2315 {
2316 schedule_work(&cpuset_hotplug_work);
2317 return NOTIFY_OK;
2318 }
2319
2320 static struct notifier_block cpuset_track_online_nodes_nb = {
2321 .notifier_call = cpuset_track_online_nodes,
2322 .priority = 10, /* ??! */
2323 };
2324
2325 /**
2326 * cpuset_init_smp - initialize cpus_allowed
2327 *
2328 * Description: Finish top cpuset after cpu, node maps are initialized
2329 */
2330 void __init cpuset_init_smp(void)
2331 {
2332 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2333 top_cpuset.mems_allowed = node_states[N_MEMORY];
2334 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2335
2336 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2337 top_cpuset.effective_mems = node_states[N_MEMORY];
2338
2339 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2340 }
2341
2342 /**
2343 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2344 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2345 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2346 *
2347 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2348 * attached to the specified @tsk. Guaranteed to return some non-empty
2349 * subset of cpu_online_mask, even if this means going outside the
2350 * tasks cpuset.
2351 **/
2352
2353 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2354 {
2355 unsigned long flags;
2356
2357 spin_lock_irqsave(&callback_lock, flags);
2358 rcu_read_lock();
2359 guarantee_online_cpus(task_cs(tsk), pmask);
2360 rcu_read_unlock();
2361 spin_unlock_irqrestore(&callback_lock, flags);
2362 }
2363
2364 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2365 {
2366 rcu_read_lock();
2367 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2368 rcu_read_unlock();
2369
2370 /*
2371 * We own tsk->cpus_allowed, nobody can change it under us.
2372 *
2373 * But we used cs && cs->cpus_allowed lockless and thus can
2374 * race with cgroup_attach_task() or update_cpumask() and get
2375 * the wrong tsk->cpus_allowed. However, both cases imply the
2376 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2377 * which takes task_rq_lock().
2378 *
2379 * If we are called after it dropped the lock we must see all
2380 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2381 * set any mask even if it is not right from task_cs() pov,
2382 * the pending set_cpus_allowed_ptr() will fix things.
2383 *
2384 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2385 * if required.
2386 */
2387 }
2388
2389 void __init cpuset_init_current_mems_allowed(void)
2390 {
2391 nodes_setall(current->mems_allowed);
2392 }
2393
2394 /**
2395 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2396 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2397 *
2398 * Description: Returns the nodemask_t mems_allowed of the cpuset
2399 * attached to the specified @tsk. Guaranteed to return some non-empty
2400 * subset of node_states[N_MEMORY], even if this means going outside the
2401 * tasks cpuset.
2402 **/
2403
2404 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2405 {
2406 nodemask_t mask;
2407 unsigned long flags;
2408
2409 spin_lock_irqsave(&callback_lock, flags);
2410 rcu_read_lock();
2411 guarantee_online_mems(task_cs(tsk), &mask);
2412 rcu_read_unlock();
2413 spin_unlock_irqrestore(&callback_lock, flags);
2414
2415 return mask;
2416 }
2417
2418 /**
2419 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2420 * @nodemask: the nodemask to be checked
2421 *
2422 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2423 */
2424 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2425 {
2426 return nodes_intersects(*nodemask, current->mems_allowed);
2427 }
2428
2429 /*
2430 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2431 * mem_hardwall ancestor to the specified cpuset. Call holding
2432 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2433 * (an unusual configuration), then returns the root cpuset.
2434 */
2435 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2436 {
2437 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2438 cs = parent_cs(cs);
2439 return cs;
2440 }
2441
2442 /**
2443 * cpuset_node_allowed - Can we allocate on a memory node?
2444 * @node: is this an allowed node?
2445 * @gfp_mask: memory allocation flags
2446 *
2447 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2448 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2449 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2450 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2451 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2452 * flag, yes.
2453 * Otherwise, no.
2454 *
2455 * The __GFP_THISNODE placement logic is really handled elsewhere,
2456 * by forcibly using a zonelist starting at a specified node, and by
2457 * (in get_page_from_freelist()) refusing to consider the zones for
2458 * any node on the zonelist except the first. By the time any such
2459 * calls get to this routine, we should just shut up and say 'yes'.
2460 *
2461 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2462 * and do not allow allocations outside the current tasks cpuset
2463 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2464 * GFP_KERNEL allocations are not so marked, so can escape to the
2465 * nearest enclosing hardwalled ancestor cpuset.
2466 *
2467 * Scanning up parent cpusets requires callback_lock. The
2468 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2469 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2470 * current tasks mems_allowed came up empty on the first pass over
2471 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2472 * cpuset are short of memory, might require taking the callback_lock.
2473 *
2474 * The first call here from mm/page_alloc:get_page_from_freelist()
2475 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2476 * so no allocation on a node outside the cpuset is allowed (unless
2477 * in interrupt, of course).
2478 *
2479 * The second pass through get_page_from_freelist() doesn't even call
2480 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2481 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2482 * in alloc_flags. That logic and the checks below have the combined
2483 * affect that:
2484 * in_interrupt - any node ok (current task context irrelevant)
2485 * GFP_ATOMIC - any node ok
2486 * TIF_MEMDIE - any node ok
2487 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2488 * GFP_USER - only nodes in current tasks mems allowed ok.
2489 */
2490 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2491 {
2492 struct cpuset *cs; /* current cpuset ancestors */
2493 int allowed; /* is allocation in zone z allowed? */
2494 unsigned long flags;
2495
2496 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2497 return 1;
2498 if (node_isset(node, current->mems_allowed))
2499 return 1;
2500 /*
2501 * Allow tasks that have access to memory reserves because they have
2502 * been OOM killed to get memory anywhere.
2503 */
2504 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2505 return 1;
2506 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2507 return 0;
2508
2509 if (current->flags & PF_EXITING) /* Let dying task have memory */
2510 return 1;
2511
2512 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2513 spin_lock_irqsave(&callback_lock, flags);
2514
2515 rcu_read_lock();
2516 cs = nearest_hardwall_ancestor(task_cs(current));
2517 allowed = node_isset(node, cs->mems_allowed);
2518 rcu_read_unlock();
2519
2520 spin_unlock_irqrestore(&callback_lock, flags);
2521 return allowed;
2522 }
2523
2524 /**
2525 * cpuset_mem_spread_node() - On which node to begin search for a file page
2526 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2527 *
2528 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2529 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2530 * and if the memory allocation used cpuset_mem_spread_node()
2531 * to determine on which node to start looking, as it will for
2532 * certain page cache or slab cache pages such as used for file
2533 * system buffers and inode caches, then instead of starting on the
2534 * local node to look for a free page, rather spread the starting
2535 * node around the tasks mems_allowed nodes.
2536 *
2537 * We don't have to worry about the returned node being offline
2538 * because "it can't happen", and even if it did, it would be ok.
2539 *
2540 * The routines calling guarantee_online_mems() are careful to
2541 * only set nodes in task->mems_allowed that are online. So it
2542 * should not be possible for the following code to return an
2543 * offline node. But if it did, that would be ok, as this routine
2544 * is not returning the node where the allocation must be, only
2545 * the node where the search should start. The zonelist passed to
2546 * __alloc_pages() will include all nodes. If the slab allocator
2547 * is passed an offline node, it will fall back to the local node.
2548 * See kmem_cache_alloc_node().
2549 */
2550
2551 static int cpuset_spread_node(int *rotor)
2552 {
2553 int node;
2554
2555 node = next_node(*rotor, current->mems_allowed);
2556 if (node == MAX_NUMNODES)
2557 node = first_node(current->mems_allowed);
2558 *rotor = node;
2559 return node;
2560 }
2561
2562 int cpuset_mem_spread_node(void)
2563 {
2564 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2565 current->cpuset_mem_spread_rotor =
2566 node_random(&current->mems_allowed);
2567
2568 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2569 }
2570
2571 int cpuset_slab_spread_node(void)
2572 {
2573 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2574 current->cpuset_slab_spread_rotor =
2575 node_random(&current->mems_allowed);
2576
2577 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2578 }
2579
2580 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2581
2582 /**
2583 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2584 * @tsk1: pointer to task_struct of some task.
2585 * @tsk2: pointer to task_struct of some other task.
2586 *
2587 * Description: Return true if @tsk1's mems_allowed intersects the
2588 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2589 * one of the task's memory usage might impact the memory available
2590 * to the other.
2591 **/
2592
2593 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2594 const struct task_struct *tsk2)
2595 {
2596 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2597 }
2598
2599 /**
2600 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2601 * @tsk: pointer to task_struct of some task.
2602 *
2603 * Description: Prints @task's name, cpuset name, and cached copy of its
2604 * mems_allowed to the kernel log.
2605 */
2606 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2607 {
2608 struct cgroup *cgrp;
2609
2610 rcu_read_lock();
2611
2612 cgrp = task_cs(tsk)->css.cgroup;
2613 pr_info("%s cpuset=", tsk->comm);
2614 pr_cont_cgroup_name(cgrp);
2615 pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2616
2617 rcu_read_unlock();
2618 }
2619
2620 /*
2621 * Collection of memory_pressure is suppressed unless
2622 * this flag is enabled by writing "1" to the special
2623 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2624 */
2625
2626 int cpuset_memory_pressure_enabled __read_mostly;
2627
2628 /**
2629 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2630 *
2631 * Keep a running average of the rate of synchronous (direct)
2632 * page reclaim efforts initiated by tasks in each cpuset.
2633 *
2634 * This represents the rate at which some task in the cpuset
2635 * ran low on memory on all nodes it was allowed to use, and
2636 * had to enter the kernels page reclaim code in an effort to
2637 * create more free memory by tossing clean pages or swapping
2638 * or writing dirty pages.
2639 *
2640 * Display to user space in the per-cpuset read-only file
2641 * "memory_pressure". Value displayed is an integer
2642 * representing the recent rate of entry into the synchronous
2643 * (direct) page reclaim by any task attached to the cpuset.
2644 **/
2645
2646 void __cpuset_memory_pressure_bump(void)
2647 {
2648 rcu_read_lock();
2649 fmeter_markevent(&task_cs(current)->fmeter);
2650 rcu_read_unlock();
2651 }
2652
2653 #ifdef CONFIG_PROC_PID_CPUSET
2654 /*
2655 * proc_cpuset_show()
2656 * - Print tasks cpuset path into seq_file.
2657 * - Used for /proc/<pid>/cpuset.
2658 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2659 * doesn't really matter if tsk->cpuset changes after we read it,
2660 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2661 * anyway.
2662 */
2663 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2664 struct pid *pid, struct task_struct *tsk)
2665 {
2666 char *buf, *p;
2667 struct cgroup_subsys_state *css;
2668 int retval;
2669
2670 retval = -ENOMEM;
2671 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2672 if (!buf)
2673 goto out;
2674
2675 retval = -ENAMETOOLONG;
2676 rcu_read_lock();
2677 css = task_css(tsk, cpuset_cgrp_id);
2678 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2679 rcu_read_unlock();
2680 if (!p)
2681 goto out_free;
2682 seq_puts(m, p);
2683 seq_putc(m, '\n');
2684 retval = 0;
2685 out_free:
2686 kfree(buf);
2687 out:
2688 return retval;
2689 }
2690 #endif /* CONFIG_PROC_PID_CPUSET */
2691
2692 /* Display task mems_allowed in /proc/<pid>/status file. */
2693 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2694 {
2695 seq_printf(m, "Mems_allowed:\t%*pb\n",
2696 nodemask_pr_args(&task->mems_allowed));
2697 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2698 nodemask_pr_args(&task->mems_allowed));
2699 }
This page took 0.084582 seconds and 5 git commands to generate.