cpuset: fix cpu hotplug vs rebuild_sched_domains() race
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
68 int number_of_cpusets __read_mostly;
69
70 /* Forward declare cgroup structures */
71 struct cgroup_subsys cpuset_subsys;
72 struct cpuset;
73
74 /* See "Frequency meter" comments, below. */
75
76 struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81 };
82
83 struct cpuset {
84 struct cgroup_subsys_state css;
85
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
90 struct fmeter fmeter; /* memory_pressure filter */
91
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
100
101 /* for custom sched domain */
102 int relax_domain_level;
103
104 struct work_struct hotplug_work;
105 };
106
107 /* Retrieve the cpuset for a cgroup */
108 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109 {
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112 }
113
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
116 {
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119 }
120
121 static inline struct cpuset *parent_cs(const struct cpuset *cs)
122 {
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128 }
129
130 #ifdef CONFIG_NUMA
131 static inline bool task_has_mempolicy(struct task_struct *task)
132 {
133 return task->mempolicy;
134 }
135 #else
136 static inline bool task_has_mempolicy(struct task_struct *task)
137 {
138 return false;
139 }
140 #endif
141
142
143 /* bits in struct cpuset flags field */
144 typedef enum {
145 CS_ONLINE,
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
148 CS_MEM_HARDWALL,
149 CS_MEMORY_MIGRATE,
150 CS_SCHED_LOAD_BALANCE,
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
153 } cpuset_flagbits_t;
154
155 /* convenient tests for these bits */
156 static inline bool is_cpuset_online(const struct cpuset *cs)
157 {
158 return test_bit(CS_ONLINE, &cs->flags);
159 }
160
161 static inline int is_cpu_exclusive(const struct cpuset *cs)
162 {
163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
164 }
165
166 static inline int is_mem_exclusive(const struct cpuset *cs)
167 {
168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
169 }
170
171 static inline int is_mem_hardwall(const struct cpuset *cs)
172 {
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174 }
175
176 static inline int is_sched_load_balance(const struct cpuset *cs)
177 {
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179 }
180
181 static inline int is_memory_migrate(const struct cpuset *cs)
182 {
183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 }
185
186 static inline int is_spread_page(const struct cpuset *cs)
187 {
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189 }
190
191 static inline int is_spread_slab(const struct cpuset *cs)
192 {
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194 }
195
196 static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
199 };
200
201 /**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210 #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
214 /**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224 #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
228 /*
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
243 *
244 * Calls to the kernel memory allocator can not be made while holding
245 * callback_mutex, as that would risk double tripping on callback_mutex
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
249 * If a task is only holding callback_mutex, then it has read-only
250 * access to cpusets.
251 *
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
255 *
256 * The cpuset_common_file_read() handlers only hold callback_mutex across
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
262 */
263
264 static DEFINE_MUTEX(cpuset_mutex);
265 static DEFINE_MUTEX(callback_mutex);
266
267 /*
268 * CPU / memory hotplug is handled asynchronously.
269 */
270 static struct workqueue_struct *cpuset_propagate_hotplug_wq;
271
272 static void cpuset_hotplug_workfn(struct work_struct *work);
273 static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
274 static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
275
276 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
277
278 /*
279 * This is ugly, but preserves the userspace API for existing cpuset
280 * users. If someone tries to mount the "cpuset" filesystem, we
281 * silently switch it to mount "cgroup" instead
282 */
283 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
285 {
286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
287 struct dentry *ret = ERR_PTR(-ENODEV);
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
297 }
298
299 static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
301 .mount = cpuset_mount,
302 };
303
304 /*
305 * Return in pmask the portion of a cpusets's cpus_allowed that
306 * are online. If none are online, walk up the cpuset hierarchy
307 * until we find one that does have some online cpus. If we get
308 * all the way to the top and still haven't found any online cpus,
309 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
310 * task, return cpu_online_mask.
311 *
312 * One way or another, we guarantee to return some non-empty subset
313 * of cpu_online_mask.
314 *
315 * Call with callback_mutex held.
316 */
317
318 static void guarantee_online_cpus(const struct cpuset *cs,
319 struct cpumask *pmask)
320 {
321 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
322 cs = parent_cs(cs);
323 if (cs)
324 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
325 else
326 cpumask_copy(pmask, cpu_online_mask);
327 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
328 }
329
330 /*
331 * Return in *pmask the portion of a cpusets's mems_allowed that
332 * are online, with memory. If none are online with memory, walk
333 * up the cpuset hierarchy until we find one that does have some
334 * online mems. If we get all the way to the top and still haven't
335 * found any online mems, return node_states[N_MEMORY].
336 *
337 * One way or another, we guarantee to return some non-empty subset
338 * of node_states[N_MEMORY].
339 *
340 * Call with callback_mutex held.
341 */
342
343 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
344 {
345 while (cs && !nodes_intersects(cs->mems_allowed,
346 node_states[N_MEMORY]))
347 cs = parent_cs(cs);
348 if (cs)
349 nodes_and(*pmask, cs->mems_allowed,
350 node_states[N_MEMORY]);
351 else
352 *pmask = node_states[N_MEMORY];
353 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
354 }
355
356 /*
357 * update task's spread flag if cpuset's page/slab spread flag is set
358 *
359 * Called with callback_mutex/cpuset_mutex held
360 */
361 static void cpuset_update_task_spread_flag(struct cpuset *cs,
362 struct task_struct *tsk)
363 {
364 if (is_spread_page(cs))
365 tsk->flags |= PF_SPREAD_PAGE;
366 else
367 tsk->flags &= ~PF_SPREAD_PAGE;
368 if (is_spread_slab(cs))
369 tsk->flags |= PF_SPREAD_SLAB;
370 else
371 tsk->flags &= ~PF_SPREAD_SLAB;
372 }
373
374 /*
375 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
376 *
377 * One cpuset is a subset of another if all its allowed CPUs and
378 * Memory Nodes are a subset of the other, and its exclusive flags
379 * are only set if the other's are set. Call holding cpuset_mutex.
380 */
381
382 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
383 {
384 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
385 nodes_subset(p->mems_allowed, q->mems_allowed) &&
386 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
387 is_mem_exclusive(p) <= is_mem_exclusive(q);
388 }
389
390 /**
391 * alloc_trial_cpuset - allocate a trial cpuset
392 * @cs: the cpuset that the trial cpuset duplicates
393 */
394 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
395 {
396 struct cpuset *trial;
397
398 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
399 if (!trial)
400 return NULL;
401
402 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
403 kfree(trial);
404 return NULL;
405 }
406 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
407
408 return trial;
409 }
410
411 /**
412 * free_trial_cpuset - free the trial cpuset
413 * @trial: the trial cpuset to be freed
414 */
415 static void free_trial_cpuset(struct cpuset *trial)
416 {
417 free_cpumask_var(trial->cpus_allowed);
418 kfree(trial);
419 }
420
421 /*
422 * validate_change() - Used to validate that any proposed cpuset change
423 * follows the structural rules for cpusets.
424 *
425 * If we replaced the flag and mask values of the current cpuset
426 * (cur) with those values in the trial cpuset (trial), would
427 * our various subset and exclusive rules still be valid? Presumes
428 * cpuset_mutex held.
429 *
430 * 'cur' is the address of an actual, in-use cpuset. Operations
431 * such as list traversal that depend on the actual address of the
432 * cpuset in the list must use cur below, not trial.
433 *
434 * 'trial' is the address of bulk structure copy of cur, with
435 * perhaps one or more of the fields cpus_allowed, mems_allowed,
436 * or flags changed to new, trial values.
437 *
438 * Return 0 if valid, -errno if not.
439 */
440
441 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
442 {
443 struct cgroup *cont;
444 struct cpuset *c, *par;
445 int ret;
446
447 rcu_read_lock();
448
449 /* Each of our child cpusets must be a subset of us */
450 ret = -EBUSY;
451 cpuset_for_each_child(c, cont, cur)
452 if (!is_cpuset_subset(c, trial))
453 goto out;
454
455 /* Remaining checks don't apply to root cpuset */
456 ret = 0;
457 if (cur == &top_cpuset)
458 goto out;
459
460 par = parent_cs(cur);
461
462 /* We must be a subset of our parent cpuset */
463 ret = -EACCES;
464 if (!is_cpuset_subset(trial, par))
465 goto out;
466
467 /*
468 * If either I or some sibling (!= me) is exclusive, we can't
469 * overlap
470 */
471 ret = -EINVAL;
472 cpuset_for_each_child(c, cont, par) {
473 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
474 c != cur &&
475 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
476 goto out;
477 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
478 c != cur &&
479 nodes_intersects(trial->mems_allowed, c->mems_allowed))
480 goto out;
481 }
482
483 /*
484 * Cpusets with tasks - existing or newly being attached - can't
485 * have empty cpus_allowed or mems_allowed.
486 */
487 ret = -ENOSPC;
488 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
489 (cpumask_empty(trial->cpus_allowed) ||
490 nodes_empty(trial->mems_allowed)))
491 goto out;
492
493 ret = 0;
494 out:
495 rcu_read_unlock();
496 return ret;
497 }
498
499 #ifdef CONFIG_SMP
500 /*
501 * Helper routine for generate_sched_domains().
502 * Do cpusets a, b have overlapping cpus_allowed masks?
503 */
504 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
505 {
506 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
507 }
508
509 static void
510 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
511 {
512 if (dattr->relax_domain_level < c->relax_domain_level)
513 dattr->relax_domain_level = c->relax_domain_level;
514 return;
515 }
516
517 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
518 struct cpuset *root_cs)
519 {
520 struct cpuset *cp;
521 struct cgroup *pos_cgrp;
522
523 rcu_read_lock();
524 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
525 /* skip the whole subtree if @cp doesn't have any CPU */
526 if (cpumask_empty(cp->cpus_allowed)) {
527 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
528 continue;
529 }
530
531 if (is_sched_load_balance(cp))
532 update_domain_attr(dattr, cp);
533 }
534 rcu_read_unlock();
535 }
536
537 /*
538 * generate_sched_domains()
539 *
540 * This function builds a partial partition of the systems CPUs
541 * A 'partial partition' is a set of non-overlapping subsets whose
542 * union is a subset of that set.
543 * The output of this function needs to be passed to kernel/sched.c
544 * partition_sched_domains() routine, which will rebuild the scheduler's
545 * load balancing domains (sched domains) as specified by that partial
546 * partition.
547 *
548 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
549 * for a background explanation of this.
550 *
551 * Does not return errors, on the theory that the callers of this
552 * routine would rather not worry about failures to rebuild sched
553 * domains when operating in the severe memory shortage situations
554 * that could cause allocation failures below.
555 *
556 * Must be called with cpuset_mutex held.
557 *
558 * The three key local variables below are:
559 * q - a linked-list queue of cpuset pointers, used to implement a
560 * top-down scan of all cpusets. This scan loads a pointer
561 * to each cpuset marked is_sched_load_balance into the
562 * array 'csa'. For our purposes, rebuilding the schedulers
563 * sched domains, we can ignore !is_sched_load_balance cpusets.
564 * csa - (for CpuSet Array) Array of pointers to all the cpusets
565 * that need to be load balanced, for convenient iterative
566 * access by the subsequent code that finds the best partition,
567 * i.e the set of domains (subsets) of CPUs such that the
568 * cpus_allowed of every cpuset marked is_sched_load_balance
569 * is a subset of one of these domains, while there are as
570 * many such domains as possible, each as small as possible.
571 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
572 * the kernel/sched.c routine partition_sched_domains() in a
573 * convenient format, that can be easily compared to the prior
574 * value to determine what partition elements (sched domains)
575 * were changed (added or removed.)
576 *
577 * Finding the best partition (set of domains):
578 * The triple nested loops below over i, j, k scan over the
579 * load balanced cpusets (using the array of cpuset pointers in
580 * csa[]) looking for pairs of cpusets that have overlapping
581 * cpus_allowed, but which don't have the same 'pn' partition
582 * number and gives them in the same partition number. It keeps
583 * looping on the 'restart' label until it can no longer find
584 * any such pairs.
585 *
586 * The union of the cpus_allowed masks from the set of
587 * all cpusets having the same 'pn' value then form the one
588 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains().
590 */
591 static int generate_sched_domains(cpumask_var_t **domains,
592 struct sched_domain_attr **attributes)
593 {
594 struct cpuset *cp; /* scans q */
595 struct cpuset **csa; /* array of all cpuset ptrs */
596 int csn; /* how many cpuset ptrs in csa so far */
597 int i, j, k; /* indices for partition finding loops */
598 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
599 struct sched_domain_attr *dattr; /* attributes for custom domains */
600 int ndoms = 0; /* number of sched domains in result */
601 int nslot; /* next empty doms[] struct cpumask slot */
602 struct cgroup *pos_cgrp;
603
604 doms = NULL;
605 dattr = NULL;
606 csa = NULL;
607
608 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) {
610 ndoms = 1;
611 doms = alloc_sched_domains(ndoms);
612 if (!doms)
613 goto done;
614
615 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
616 if (dattr) {
617 *dattr = SD_ATTR_INIT;
618 update_domain_attr_tree(dattr, &top_cpuset);
619 }
620 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
621
622 goto done;
623 }
624
625 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
626 if (!csa)
627 goto done;
628 csn = 0;
629
630 rcu_read_lock();
631 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
632 /*
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
639 */
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
642 continue;
643
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
648 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
649 }
650 rcu_read_unlock();
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656 restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
683 doms = alloc_sched_domains(ndoms);
684 if (!doms)
685 goto done;
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
695 struct cpumask *dp;
696 int apn = a->pn;
697
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
703 dp = doms[nslot];
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 printk(KERN_WARNING
709 "rebuild_sched_domains confused:"
710 " nslot %d, ndoms %d, csn %d, i %d,"
711 " apn %d\n",
712 nslot, ndoms, csn, i, apn);
713 warnings--;
714 }
715 continue;
716 }
717
718 cpumask_clear(dp);
719 if (dattr)
720 *(dattr + nslot) = SD_ATTR_INIT;
721 for (j = i; j < csn; j++) {
722 struct cpuset *b = csa[j];
723
724 if (apn == b->pn) {
725 cpumask_or(dp, dp, b->cpus_allowed);
726 if (dattr)
727 update_domain_attr_tree(dattr + nslot, b);
728
729 /* Done with this partition */
730 b->pn = -1;
731 }
732 }
733 nslot++;
734 }
735 BUG_ON(nslot != ndoms);
736
737 done:
738 kfree(csa);
739
740 /*
741 * Fallback to the default domain if kmalloc() failed.
742 * See comments in partition_sched_domains().
743 */
744 if (doms == NULL)
745 ndoms = 1;
746
747 *domains = doms;
748 *attributes = dattr;
749 return ndoms;
750 }
751
752 /*
753 * Rebuild scheduler domains.
754 *
755 * If the flag 'sched_load_balance' of any cpuset with non-empty
756 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
757 * which has that flag enabled, or if any cpuset with a non-empty
758 * 'cpus' is removed, then call this routine to rebuild the
759 * scheduler's dynamic sched domains.
760 *
761 * Call with cpuset_mutex held. Takes get_online_cpus().
762 */
763 static void rebuild_sched_domains_locked(void)
764 {
765 struct sched_domain_attr *attr;
766 cpumask_var_t *doms;
767 int ndoms;
768
769 lockdep_assert_held(&cpuset_mutex);
770 get_online_cpus();
771
772 /*
773 * We have raced with CPU hotplug. Don't do anything to avoid
774 * passing doms with offlined cpu to partition_sched_domains().
775 * Anyways, hotplug work item will rebuild sched domains.
776 */
777 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
778 goto out;
779
780 /* Generate domain masks and attrs */
781 ndoms = generate_sched_domains(&doms, &attr);
782
783 /* Have scheduler rebuild the domains */
784 partition_sched_domains(ndoms, doms, attr);
785 out:
786 put_online_cpus();
787 }
788 #else /* !CONFIG_SMP */
789 static void rebuild_sched_domains_locked(void)
790 {
791 }
792
793 static int generate_sched_domains(cpumask_var_t **domains,
794 struct sched_domain_attr **attributes)
795 {
796 *domains = NULL;
797 return 1;
798 }
799 #endif /* CONFIG_SMP */
800
801 void rebuild_sched_domains(void)
802 {
803 mutex_lock(&cpuset_mutex);
804 rebuild_sched_domains_locked();
805 mutex_unlock(&cpuset_mutex);
806 }
807
808 /**
809 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
810 * @tsk: task to test
811 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
812 *
813 * Call with cpuset_mutex held. May take callback_mutex during call.
814 * Called for each task in a cgroup by cgroup_scan_tasks().
815 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
816 * words, if its mask is not equal to its cpuset's mask).
817 */
818 static int cpuset_test_cpumask(struct task_struct *tsk,
819 struct cgroup_scanner *scan)
820 {
821 return !cpumask_equal(&tsk->cpus_allowed,
822 (cgroup_cs(scan->cg))->cpus_allowed);
823 }
824
825 /**
826 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
827 * @tsk: task to test
828 * @scan: struct cgroup_scanner containing the cgroup of the task
829 *
830 * Called by cgroup_scan_tasks() for each task in a cgroup whose
831 * cpus_allowed mask needs to be changed.
832 *
833 * We don't need to re-check for the cgroup/cpuset membership, since we're
834 * holding cpuset_mutex at this point.
835 */
836 static void cpuset_change_cpumask(struct task_struct *tsk,
837 struct cgroup_scanner *scan)
838 {
839 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
840 }
841
842 /**
843 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
844 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
845 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
846 *
847 * Called with cpuset_mutex held
848 *
849 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
850 * calling callback functions for each.
851 *
852 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
853 * if @heap != NULL.
854 */
855 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
856 {
857 struct cgroup_scanner scan;
858
859 scan.cg = cs->css.cgroup;
860 scan.test_task = cpuset_test_cpumask;
861 scan.process_task = cpuset_change_cpumask;
862 scan.heap = heap;
863 cgroup_scan_tasks(&scan);
864 }
865
866 /**
867 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
868 * @cs: the cpuset to consider
869 * @buf: buffer of cpu numbers written to this cpuset
870 */
871 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
872 const char *buf)
873 {
874 struct ptr_heap heap;
875 int retval;
876 int is_load_balanced;
877
878 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
879 if (cs == &top_cpuset)
880 return -EACCES;
881
882 /*
883 * An empty cpus_allowed is ok only if the cpuset has no tasks.
884 * Since cpulist_parse() fails on an empty mask, we special case
885 * that parsing. The validate_change() call ensures that cpusets
886 * with tasks have cpus.
887 */
888 if (!*buf) {
889 cpumask_clear(trialcs->cpus_allowed);
890 } else {
891 retval = cpulist_parse(buf, trialcs->cpus_allowed);
892 if (retval < 0)
893 return retval;
894
895 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
896 return -EINVAL;
897 }
898 retval = validate_change(cs, trialcs);
899 if (retval < 0)
900 return retval;
901
902 /* Nothing to do if the cpus didn't change */
903 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
904 return 0;
905
906 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
907 if (retval)
908 return retval;
909
910 is_load_balanced = is_sched_load_balance(trialcs);
911
912 mutex_lock(&callback_mutex);
913 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
914 mutex_unlock(&callback_mutex);
915
916 /*
917 * Scan tasks in the cpuset, and update the cpumasks of any
918 * that need an update.
919 */
920 update_tasks_cpumask(cs, &heap);
921
922 heap_free(&heap);
923
924 if (is_load_balanced)
925 rebuild_sched_domains_locked();
926 return 0;
927 }
928
929 /*
930 * cpuset_migrate_mm
931 *
932 * Migrate memory region from one set of nodes to another.
933 *
934 * Temporarilly set tasks mems_allowed to target nodes of migration,
935 * so that the migration code can allocate pages on these nodes.
936 *
937 * Call holding cpuset_mutex, so current's cpuset won't change
938 * during this call, as manage_mutex holds off any cpuset_attach()
939 * calls. Therefore we don't need to take task_lock around the
940 * call to guarantee_online_mems(), as we know no one is changing
941 * our task's cpuset.
942 *
943 * While the mm_struct we are migrating is typically from some
944 * other task, the task_struct mems_allowed that we are hacking
945 * is for our current task, which must allocate new pages for that
946 * migrating memory region.
947 */
948
949 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
950 const nodemask_t *to)
951 {
952 struct task_struct *tsk = current;
953
954 tsk->mems_allowed = *to;
955
956 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
957
958 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
959 }
960
961 /*
962 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
963 * @tsk: the task to change
964 * @newmems: new nodes that the task will be set
965 *
966 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
967 * we structure updates as setting all new allowed nodes, then clearing newly
968 * disallowed ones.
969 */
970 static void cpuset_change_task_nodemask(struct task_struct *tsk,
971 nodemask_t *newmems)
972 {
973 bool need_loop;
974
975 /*
976 * Allow tasks that have access to memory reserves because they have
977 * been OOM killed to get memory anywhere.
978 */
979 if (unlikely(test_thread_flag(TIF_MEMDIE)))
980 return;
981 if (current->flags & PF_EXITING) /* Let dying task have memory */
982 return;
983
984 task_lock(tsk);
985 /*
986 * Determine if a loop is necessary if another thread is doing
987 * get_mems_allowed(). If at least one node remains unchanged and
988 * tsk does not have a mempolicy, then an empty nodemask will not be
989 * possible when mems_allowed is larger than a word.
990 */
991 need_loop = task_has_mempolicy(tsk) ||
992 !nodes_intersects(*newmems, tsk->mems_allowed);
993
994 if (need_loop)
995 write_seqcount_begin(&tsk->mems_allowed_seq);
996
997 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
998 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
999
1000 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1001 tsk->mems_allowed = *newmems;
1002
1003 if (need_loop)
1004 write_seqcount_end(&tsk->mems_allowed_seq);
1005
1006 task_unlock(tsk);
1007 }
1008
1009 /*
1010 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1011 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1012 * memory_migrate flag is set. Called with cpuset_mutex held.
1013 */
1014 static void cpuset_change_nodemask(struct task_struct *p,
1015 struct cgroup_scanner *scan)
1016 {
1017 struct mm_struct *mm;
1018 struct cpuset *cs;
1019 int migrate;
1020 const nodemask_t *oldmem = scan->data;
1021 static nodemask_t newmems; /* protected by cpuset_mutex */
1022
1023 cs = cgroup_cs(scan->cg);
1024 guarantee_online_mems(cs, &newmems);
1025
1026 cpuset_change_task_nodemask(p, &newmems);
1027
1028 mm = get_task_mm(p);
1029 if (!mm)
1030 return;
1031
1032 migrate = is_memory_migrate(cs);
1033
1034 mpol_rebind_mm(mm, &cs->mems_allowed);
1035 if (migrate)
1036 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1037 mmput(mm);
1038 }
1039
1040 static void *cpuset_being_rebound;
1041
1042 /**
1043 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1044 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1045 * @oldmem: old mems_allowed of cpuset cs
1046 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1047 *
1048 * Called with cpuset_mutex held
1049 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1050 * if @heap != NULL.
1051 */
1052 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1053 struct ptr_heap *heap)
1054 {
1055 struct cgroup_scanner scan;
1056
1057 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1058
1059 scan.cg = cs->css.cgroup;
1060 scan.test_task = NULL;
1061 scan.process_task = cpuset_change_nodemask;
1062 scan.heap = heap;
1063 scan.data = (nodemask_t *)oldmem;
1064
1065 /*
1066 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1067 * take while holding tasklist_lock. Forks can happen - the
1068 * mpol_dup() cpuset_being_rebound check will catch such forks,
1069 * and rebind their vma mempolicies too. Because we still hold
1070 * the global cpuset_mutex, we know that no other rebind effort
1071 * will be contending for the global variable cpuset_being_rebound.
1072 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1073 * is idempotent. Also migrate pages in each mm to new nodes.
1074 */
1075 cgroup_scan_tasks(&scan);
1076
1077 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1078 cpuset_being_rebound = NULL;
1079 }
1080
1081 /*
1082 * Handle user request to change the 'mems' memory placement
1083 * of a cpuset. Needs to validate the request, update the
1084 * cpusets mems_allowed, and for each task in the cpuset,
1085 * update mems_allowed and rebind task's mempolicy and any vma
1086 * mempolicies and if the cpuset is marked 'memory_migrate',
1087 * migrate the tasks pages to the new memory.
1088 *
1089 * Call with cpuset_mutex held. May take callback_mutex during call.
1090 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1091 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1092 * their mempolicies to the cpusets new mems_allowed.
1093 */
1094 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1095 const char *buf)
1096 {
1097 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1098 int retval;
1099 struct ptr_heap heap;
1100
1101 if (!oldmem)
1102 return -ENOMEM;
1103
1104 /*
1105 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1106 * it's read-only
1107 */
1108 if (cs == &top_cpuset) {
1109 retval = -EACCES;
1110 goto done;
1111 }
1112
1113 /*
1114 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1115 * Since nodelist_parse() fails on an empty mask, we special case
1116 * that parsing. The validate_change() call ensures that cpusets
1117 * with tasks have memory.
1118 */
1119 if (!*buf) {
1120 nodes_clear(trialcs->mems_allowed);
1121 } else {
1122 retval = nodelist_parse(buf, trialcs->mems_allowed);
1123 if (retval < 0)
1124 goto done;
1125
1126 if (!nodes_subset(trialcs->mems_allowed,
1127 node_states[N_MEMORY])) {
1128 retval = -EINVAL;
1129 goto done;
1130 }
1131 }
1132 *oldmem = cs->mems_allowed;
1133 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1134 retval = 0; /* Too easy - nothing to do */
1135 goto done;
1136 }
1137 retval = validate_change(cs, trialcs);
1138 if (retval < 0)
1139 goto done;
1140
1141 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1142 if (retval < 0)
1143 goto done;
1144
1145 mutex_lock(&callback_mutex);
1146 cs->mems_allowed = trialcs->mems_allowed;
1147 mutex_unlock(&callback_mutex);
1148
1149 update_tasks_nodemask(cs, oldmem, &heap);
1150
1151 heap_free(&heap);
1152 done:
1153 NODEMASK_FREE(oldmem);
1154 return retval;
1155 }
1156
1157 int current_cpuset_is_being_rebound(void)
1158 {
1159 return task_cs(current) == cpuset_being_rebound;
1160 }
1161
1162 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1163 {
1164 #ifdef CONFIG_SMP
1165 if (val < -1 || val >= sched_domain_level_max)
1166 return -EINVAL;
1167 #endif
1168
1169 if (val != cs->relax_domain_level) {
1170 cs->relax_domain_level = val;
1171 if (!cpumask_empty(cs->cpus_allowed) &&
1172 is_sched_load_balance(cs))
1173 rebuild_sched_domains_locked();
1174 }
1175
1176 return 0;
1177 }
1178
1179 /*
1180 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1181 * @tsk: task to be updated
1182 * @scan: struct cgroup_scanner containing the cgroup of the task
1183 *
1184 * Called by cgroup_scan_tasks() for each task in a cgroup.
1185 *
1186 * We don't need to re-check for the cgroup/cpuset membership, since we're
1187 * holding cpuset_mutex at this point.
1188 */
1189 static void cpuset_change_flag(struct task_struct *tsk,
1190 struct cgroup_scanner *scan)
1191 {
1192 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1193 }
1194
1195 /*
1196 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1197 * @cs: the cpuset in which each task's spread flags needs to be changed
1198 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1199 *
1200 * Called with cpuset_mutex held
1201 *
1202 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1203 * calling callback functions for each.
1204 *
1205 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1206 * if @heap != NULL.
1207 */
1208 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1209 {
1210 struct cgroup_scanner scan;
1211
1212 scan.cg = cs->css.cgroup;
1213 scan.test_task = NULL;
1214 scan.process_task = cpuset_change_flag;
1215 scan.heap = heap;
1216 cgroup_scan_tasks(&scan);
1217 }
1218
1219 /*
1220 * update_flag - read a 0 or a 1 in a file and update associated flag
1221 * bit: the bit to update (see cpuset_flagbits_t)
1222 * cs: the cpuset to update
1223 * turning_on: whether the flag is being set or cleared
1224 *
1225 * Call with cpuset_mutex held.
1226 */
1227
1228 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1229 int turning_on)
1230 {
1231 struct cpuset *trialcs;
1232 int balance_flag_changed;
1233 int spread_flag_changed;
1234 struct ptr_heap heap;
1235 int err;
1236
1237 trialcs = alloc_trial_cpuset(cs);
1238 if (!trialcs)
1239 return -ENOMEM;
1240
1241 if (turning_on)
1242 set_bit(bit, &trialcs->flags);
1243 else
1244 clear_bit(bit, &trialcs->flags);
1245
1246 err = validate_change(cs, trialcs);
1247 if (err < 0)
1248 goto out;
1249
1250 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1251 if (err < 0)
1252 goto out;
1253
1254 balance_flag_changed = (is_sched_load_balance(cs) !=
1255 is_sched_load_balance(trialcs));
1256
1257 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1258 || (is_spread_page(cs) != is_spread_page(trialcs)));
1259
1260 mutex_lock(&callback_mutex);
1261 cs->flags = trialcs->flags;
1262 mutex_unlock(&callback_mutex);
1263
1264 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1265 rebuild_sched_domains_locked();
1266
1267 if (spread_flag_changed)
1268 update_tasks_flags(cs, &heap);
1269 heap_free(&heap);
1270 out:
1271 free_trial_cpuset(trialcs);
1272 return err;
1273 }
1274
1275 /*
1276 * Frequency meter - How fast is some event occurring?
1277 *
1278 * These routines manage a digitally filtered, constant time based,
1279 * event frequency meter. There are four routines:
1280 * fmeter_init() - initialize a frequency meter.
1281 * fmeter_markevent() - called each time the event happens.
1282 * fmeter_getrate() - returns the recent rate of such events.
1283 * fmeter_update() - internal routine used to update fmeter.
1284 *
1285 * A common data structure is passed to each of these routines,
1286 * which is used to keep track of the state required to manage the
1287 * frequency meter and its digital filter.
1288 *
1289 * The filter works on the number of events marked per unit time.
1290 * The filter is single-pole low-pass recursive (IIR). The time unit
1291 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1292 * simulate 3 decimal digits of precision (multiplied by 1000).
1293 *
1294 * With an FM_COEF of 933, and a time base of 1 second, the filter
1295 * has a half-life of 10 seconds, meaning that if the events quit
1296 * happening, then the rate returned from the fmeter_getrate()
1297 * will be cut in half each 10 seconds, until it converges to zero.
1298 *
1299 * It is not worth doing a real infinitely recursive filter. If more
1300 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1301 * just compute FM_MAXTICKS ticks worth, by which point the level
1302 * will be stable.
1303 *
1304 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1305 * arithmetic overflow in the fmeter_update() routine.
1306 *
1307 * Given the simple 32 bit integer arithmetic used, this meter works
1308 * best for reporting rates between one per millisecond (msec) and
1309 * one per 32 (approx) seconds. At constant rates faster than one
1310 * per msec it maxes out at values just under 1,000,000. At constant
1311 * rates between one per msec, and one per second it will stabilize
1312 * to a value N*1000, where N is the rate of events per second.
1313 * At constant rates between one per second and one per 32 seconds,
1314 * it will be choppy, moving up on the seconds that have an event,
1315 * and then decaying until the next event. At rates slower than
1316 * about one in 32 seconds, it decays all the way back to zero between
1317 * each event.
1318 */
1319
1320 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1321 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1322 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1323 #define FM_SCALE 1000 /* faux fixed point scale */
1324
1325 /* Initialize a frequency meter */
1326 static void fmeter_init(struct fmeter *fmp)
1327 {
1328 fmp->cnt = 0;
1329 fmp->val = 0;
1330 fmp->time = 0;
1331 spin_lock_init(&fmp->lock);
1332 }
1333
1334 /* Internal meter update - process cnt events and update value */
1335 static void fmeter_update(struct fmeter *fmp)
1336 {
1337 time_t now = get_seconds();
1338 time_t ticks = now - fmp->time;
1339
1340 if (ticks == 0)
1341 return;
1342
1343 ticks = min(FM_MAXTICKS, ticks);
1344 while (ticks-- > 0)
1345 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1346 fmp->time = now;
1347
1348 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1349 fmp->cnt = 0;
1350 }
1351
1352 /* Process any previous ticks, then bump cnt by one (times scale). */
1353 static void fmeter_markevent(struct fmeter *fmp)
1354 {
1355 spin_lock(&fmp->lock);
1356 fmeter_update(fmp);
1357 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1358 spin_unlock(&fmp->lock);
1359 }
1360
1361 /* Process any previous ticks, then return current value. */
1362 static int fmeter_getrate(struct fmeter *fmp)
1363 {
1364 int val;
1365
1366 spin_lock(&fmp->lock);
1367 fmeter_update(fmp);
1368 val = fmp->val;
1369 spin_unlock(&fmp->lock);
1370 return val;
1371 }
1372
1373 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1374 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1375 {
1376 struct cpuset *cs = cgroup_cs(cgrp);
1377 struct task_struct *task;
1378 int ret;
1379
1380 mutex_lock(&cpuset_mutex);
1381
1382 ret = -ENOSPC;
1383 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1384 goto out_unlock;
1385
1386 cgroup_taskset_for_each(task, cgrp, tset) {
1387 /*
1388 * Kthreads bound to specific cpus cannot be moved to a new
1389 * cpuset; we cannot change their cpu affinity and
1390 * isolating such threads by their set of allowed nodes is
1391 * unnecessary. Thus, cpusets are not applicable for such
1392 * threads. This prevents checking for success of
1393 * set_cpus_allowed_ptr() on all attached tasks before
1394 * cpus_allowed may be changed.
1395 */
1396 ret = -EINVAL;
1397 if (task->flags & PF_THREAD_BOUND)
1398 goto out_unlock;
1399 ret = security_task_setscheduler(task);
1400 if (ret)
1401 goto out_unlock;
1402 }
1403
1404 /*
1405 * Mark attach is in progress. This makes validate_change() fail
1406 * changes which zero cpus/mems_allowed.
1407 */
1408 cs->attach_in_progress++;
1409 ret = 0;
1410 out_unlock:
1411 mutex_unlock(&cpuset_mutex);
1412 return ret;
1413 }
1414
1415 static void cpuset_cancel_attach(struct cgroup *cgrp,
1416 struct cgroup_taskset *tset)
1417 {
1418 mutex_lock(&cpuset_mutex);
1419 cgroup_cs(cgrp)->attach_in_progress--;
1420 mutex_unlock(&cpuset_mutex);
1421 }
1422
1423 /*
1424 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1425 * but we can't allocate it dynamically there. Define it global and
1426 * allocate from cpuset_init().
1427 */
1428 static cpumask_var_t cpus_attach;
1429
1430 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1431 {
1432 /* static bufs protected by cpuset_mutex */
1433 static nodemask_t cpuset_attach_nodemask_from;
1434 static nodemask_t cpuset_attach_nodemask_to;
1435 struct mm_struct *mm;
1436 struct task_struct *task;
1437 struct task_struct *leader = cgroup_taskset_first(tset);
1438 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1439 struct cpuset *cs = cgroup_cs(cgrp);
1440 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1441
1442 mutex_lock(&cpuset_mutex);
1443
1444 /* prepare for attach */
1445 if (cs == &top_cpuset)
1446 cpumask_copy(cpus_attach, cpu_possible_mask);
1447 else
1448 guarantee_online_cpus(cs, cpus_attach);
1449
1450 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1451
1452 cgroup_taskset_for_each(task, cgrp, tset) {
1453 /*
1454 * can_attach beforehand should guarantee that this doesn't
1455 * fail. TODO: have a better way to handle failure here
1456 */
1457 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1458
1459 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1460 cpuset_update_task_spread_flag(cs, task);
1461 }
1462
1463 /*
1464 * Change mm, possibly for multiple threads in a threadgroup. This is
1465 * expensive and may sleep.
1466 */
1467 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1468 cpuset_attach_nodemask_to = cs->mems_allowed;
1469 mm = get_task_mm(leader);
1470 if (mm) {
1471 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1472 if (is_memory_migrate(cs))
1473 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1474 &cpuset_attach_nodemask_to);
1475 mmput(mm);
1476 }
1477
1478 cs->attach_in_progress--;
1479
1480 /*
1481 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1482 * propagation if @cs doesn't have any CPU or memory. It will move
1483 * the newly added tasks to the nearest parent which can execute.
1484 */
1485 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1486 schedule_cpuset_propagate_hotplug(cs);
1487
1488 mutex_unlock(&cpuset_mutex);
1489 }
1490
1491 /* The various types of files and directories in a cpuset file system */
1492
1493 typedef enum {
1494 FILE_MEMORY_MIGRATE,
1495 FILE_CPULIST,
1496 FILE_MEMLIST,
1497 FILE_CPU_EXCLUSIVE,
1498 FILE_MEM_EXCLUSIVE,
1499 FILE_MEM_HARDWALL,
1500 FILE_SCHED_LOAD_BALANCE,
1501 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1502 FILE_MEMORY_PRESSURE_ENABLED,
1503 FILE_MEMORY_PRESSURE,
1504 FILE_SPREAD_PAGE,
1505 FILE_SPREAD_SLAB,
1506 } cpuset_filetype_t;
1507
1508 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1509 {
1510 struct cpuset *cs = cgroup_cs(cgrp);
1511 cpuset_filetype_t type = cft->private;
1512 int retval = -ENODEV;
1513
1514 mutex_lock(&cpuset_mutex);
1515 if (!is_cpuset_online(cs))
1516 goto out_unlock;
1517
1518 switch (type) {
1519 case FILE_CPU_EXCLUSIVE:
1520 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1521 break;
1522 case FILE_MEM_EXCLUSIVE:
1523 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1524 break;
1525 case FILE_MEM_HARDWALL:
1526 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1527 break;
1528 case FILE_SCHED_LOAD_BALANCE:
1529 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1530 break;
1531 case FILE_MEMORY_MIGRATE:
1532 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1533 break;
1534 case FILE_MEMORY_PRESSURE_ENABLED:
1535 cpuset_memory_pressure_enabled = !!val;
1536 break;
1537 case FILE_MEMORY_PRESSURE:
1538 retval = -EACCES;
1539 break;
1540 case FILE_SPREAD_PAGE:
1541 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1542 break;
1543 case FILE_SPREAD_SLAB:
1544 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1545 break;
1546 default:
1547 retval = -EINVAL;
1548 break;
1549 }
1550 out_unlock:
1551 mutex_unlock(&cpuset_mutex);
1552 return retval;
1553 }
1554
1555 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1556 {
1557 struct cpuset *cs = cgroup_cs(cgrp);
1558 cpuset_filetype_t type = cft->private;
1559 int retval = -ENODEV;
1560
1561 mutex_lock(&cpuset_mutex);
1562 if (!is_cpuset_online(cs))
1563 goto out_unlock;
1564
1565 switch (type) {
1566 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1567 retval = update_relax_domain_level(cs, val);
1568 break;
1569 default:
1570 retval = -EINVAL;
1571 break;
1572 }
1573 out_unlock:
1574 mutex_unlock(&cpuset_mutex);
1575 return retval;
1576 }
1577
1578 /*
1579 * Common handling for a write to a "cpus" or "mems" file.
1580 */
1581 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1582 const char *buf)
1583 {
1584 struct cpuset *cs = cgroup_cs(cgrp);
1585 struct cpuset *trialcs;
1586 int retval = -ENODEV;
1587
1588 /*
1589 * CPU or memory hotunplug may leave @cs w/o any execution
1590 * resources, in which case the hotplug code asynchronously updates
1591 * configuration and transfers all tasks to the nearest ancestor
1592 * which can execute.
1593 *
1594 * As writes to "cpus" or "mems" may restore @cs's execution
1595 * resources, wait for the previously scheduled operations before
1596 * proceeding, so that we don't end up keep removing tasks added
1597 * after execution capability is restored.
1598 *
1599 * Flushing cpuset_hotplug_work is enough to synchronize against
1600 * hotplug hanlding; however, cpuset_attach() may schedule
1601 * propagation work directly. Flush the workqueue too.
1602 */
1603 flush_work(&cpuset_hotplug_work);
1604 flush_workqueue(cpuset_propagate_hotplug_wq);
1605
1606 mutex_lock(&cpuset_mutex);
1607 if (!is_cpuset_online(cs))
1608 goto out_unlock;
1609
1610 trialcs = alloc_trial_cpuset(cs);
1611 if (!trialcs) {
1612 retval = -ENOMEM;
1613 goto out_unlock;
1614 }
1615
1616 switch (cft->private) {
1617 case FILE_CPULIST:
1618 retval = update_cpumask(cs, trialcs, buf);
1619 break;
1620 case FILE_MEMLIST:
1621 retval = update_nodemask(cs, trialcs, buf);
1622 break;
1623 default:
1624 retval = -EINVAL;
1625 break;
1626 }
1627
1628 free_trial_cpuset(trialcs);
1629 out_unlock:
1630 mutex_unlock(&cpuset_mutex);
1631 return retval;
1632 }
1633
1634 /*
1635 * These ascii lists should be read in a single call, by using a user
1636 * buffer large enough to hold the entire map. If read in smaller
1637 * chunks, there is no guarantee of atomicity. Since the display format
1638 * used, list of ranges of sequential numbers, is variable length,
1639 * and since these maps can change value dynamically, one could read
1640 * gibberish by doing partial reads while a list was changing.
1641 * A single large read to a buffer that crosses a page boundary is
1642 * ok, because the result being copied to user land is not recomputed
1643 * across a page fault.
1644 */
1645
1646 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1647 {
1648 size_t count;
1649
1650 mutex_lock(&callback_mutex);
1651 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1652 mutex_unlock(&callback_mutex);
1653
1654 return count;
1655 }
1656
1657 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1658 {
1659 size_t count;
1660
1661 mutex_lock(&callback_mutex);
1662 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1663 mutex_unlock(&callback_mutex);
1664
1665 return count;
1666 }
1667
1668 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1669 struct cftype *cft,
1670 struct file *file,
1671 char __user *buf,
1672 size_t nbytes, loff_t *ppos)
1673 {
1674 struct cpuset *cs = cgroup_cs(cont);
1675 cpuset_filetype_t type = cft->private;
1676 char *page;
1677 ssize_t retval = 0;
1678 char *s;
1679
1680 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1681 return -ENOMEM;
1682
1683 s = page;
1684
1685 switch (type) {
1686 case FILE_CPULIST:
1687 s += cpuset_sprintf_cpulist(s, cs);
1688 break;
1689 case FILE_MEMLIST:
1690 s += cpuset_sprintf_memlist(s, cs);
1691 break;
1692 default:
1693 retval = -EINVAL;
1694 goto out;
1695 }
1696 *s++ = '\n';
1697
1698 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1699 out:
1700 free_page((unsigned long)page);
1701 return retval;
1702 }
1703
1704 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1705 {
1706 struct cpuset *cs = cgroup_cs(cont);
1707 cpuset_filetype_t type = cft->private;
1708 switch (type) {
1709 case FILE_CPU_EXCLUSIVE:
1710 return is_cpu_exclusive(cs);
1711 case FILE_MEM_EXCLUSIVE:
1712 return is_mem_exclusive(cs);
1713 case FILE_MEM_HARDWALL:
1714 return is_mem_hardwall(cs);
1715 case FILE_SCHED_LOAD_BALANCE:
1716 return is_sched_load_balance(cs);
1717 case FILE_MEMORY_MIGRATE:
1718 return is_memory_migrate(cs);
1719 case FILE_MEMORY_PRESSURE_ENABLED:
1720 return cpuset_memory_pressure_enabled;
1721 case FILE_MEMORY_PRESSURE:
1722 return fmeter_getrate(&cs->fmeter);
1723 case FILE_SPREAD_PAGE:
1724 return is_spread_page(cs);
1725 case FILE_SPREAD_SLAB:
1726 return is_spread_slab(cs);
1727 default:
1728 BUG();
1729 }
1730
1731 /* Unreachable but makes gcc happy */
1732 return 0;
1733 }
1734
1735 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1736 {
1737 struct cpuset *cs = cgroup_cs(cont);
1738 cpuset_filetype_t type = cft->private;
1739 switch (type) {
1740 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1741 return cs->relax_domain_level;
1742 default:
1743 BUG();
1744 }
1745
1746 /* Unrechable but makes gcc happy */
1747 return 0;
1748 }
1749
1750
1751 /*
1752 * for the common functions, 'private' gives the type of file
1753 */
1754
1755 static struct cftype files[] = {
1756 {
1757 .name = "cpus",
1758 .read = cpuset_common_file_read,
1759 .write_string = cpuset_write_resmask,
1760 .max_write_len = (100U + 6 * NR_CPUS),
1761 .private = FILE_CPULIST,
1762 },
1763
1764 {
1765 .name = "mems",
1766 .read = cpuset_common_file_read,
1767 .write_string = cpuset_write_resmask,
1768 .max_write_len = (100U + 6 * MAX_NUMNODES),
1769 .private = FILE_MEMLIST,
1770 },
1771
1772 {
1773 .name = "cpu_exclusive",
1774 .read_u64 = cpuset_read_u64,
1775 .write_u64 = cpuset_write_u64,
1776 .private = FILE_CPU_EXCLUSIVE,
1777 },
1778
1779 {
1780 .name = "mem_exclusive",
1781 .read_u64 = cpuset_read_u64,
1782 .write_u64 = cpuset_write_u64,
1783 .private = FILE_MEM_EXCLUSIVE,
1784 },
1785
1786 {
1787 .name = "mem_hardwall",
1788 .read_u64 = cpuset_read_u64,
1789 .write_u64 = cpuset_write_u64,
1790 .private = FILE_MEM_HARDWALL,
1791 },
1792
1793 {
1794 .name = "sched_load_balance",
1795 .read_u64 = cpuset_read_u64,
1796 .write_u64 = cpuset_write_u64,
1797 .private = FILE_SCHED_LOAD_BALANCE,
1798 },
1799
1800 {
1801 .name = "sched_relax_domain_level",
1802 .read_s64 = cpuset_read_s64,
1803 .write_s64 = cpuset_write_s64,
1804 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1805 },
1806
1807 {
1808 .name = "memory_migrate",
1809 .read_u64 = cpuset_read_u64,
1810 .write_u64 = cpuset_write_u64,
1811 .private = FILE_MEMORY_MIGRATE,
1812 },
1813
1814 {
1815 .name = "memory_pressure",
1816 .read_u64 = cpuset_read_u64,
1817 .write_u64 = cpuset_write_u64,
1818 .private = FILE_MEMORY_PRESSURE,
1819 .mode = S_IRUGO,
1820 },
1821
1822 {
1823 .name = "memory_spread_page",
1824 .read_u64 = cpuset_read_u64,
1825 .write_u64 = cpuset_write_u64,
1826 .private = FILE_SPREAD_PAGE,
1827 },
1828
1829 {
1830 .name = "memory_spread_slab",
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_SPREAD_SLAB,
1834 },
1835
1836 {
1837 .name = "memory_pressure_enabled",
1838 .flags = CFTYPE_ONLY_ON_ROOT,
1839 .read_u64 = cpuset_read_u64,
1840 .write_u64 = cpuset_write_u64,
1841 .private = FILE_MEMORY_PRESSURE_ENABLED,
1842 },
1843
1844 { } /* terminate */
1845 };
1846
1847 /*
1848 * cpuset_css_alloc - allocate a cpuset css
1849 * cont: control group that the new cpuset will be part of
1850 */
1851
1852 static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1853 {
1854 struct cpuset *cs;
1855
1856 if (!cont->parent)
1857 return &top_cpuset.css;
1858
1859 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1860 if (!cs)
1861 return ERR_PTR(-ENOMEM);
1862 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1863 kfree(cs);
1864 return ERR_PTR(-ENOMEM);
1865 }
1866
1867 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1868 cpumask_clear(cs->cpus_allowed);
1869 nodes_clear(cs->mems_allowed);
1870 fmeter_init(&cs->fmeter);
1871 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1872 cs->relax_domain_level = -1;
1873
1874 return &cs->css;
1875 }
1876
1877 static int cpuset_css_online(struct cgroup *cgrp)
1878 {
1879 struct cpuset *cs = cgroup_cs(cgrp);
1880 struct cpuset *parent = parent_cs(cs);
1881 struct cpuset *tmp_cs;
1882 struct cgroup *pos_cg;
1883
1884 if (!parent)
1885 return 0;
1886
1887 mutex_lock(&cpuset_mutex);
1888
1889 set_bit(CS_ONLINE, &cs->flags);
1890 if (is_spread_page(parent))
1891 set_bit(CS_SPREAD_PAGE, &cs->flags);
1892 if (is_spread_slab(parent))
1893 set_bit(CS_SPREAD_SLAB, &cs->flags);
1894
1895 number_of_cpusets++;
1896
1897 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1898 goto out_unlock;
1899
1900 /*
1901 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1902 * set. This flag handling is implemented in cgroup core for
1903 * histrical reasons - the flag may be specified during mount.
1904 *
1905 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1906 * refuse to clone the configuration - thereby refusing the task to
1907 * be entered, and as a result refusing the sys_unshare() or
1908 * clone() which initiated it. If this becomes a problem for some
1909 * users who wish to allow that scenario, then this could be
1910 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1911 * (and likewise for mems) to the new cgroup.
1912 */
1913 rcu_read_lock();
1914 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1915 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1916 rcu_read_unlock();
1917 goto out_unlock;
1918 }
1919 }
1920 rcu_read_unlock();
1921
1922 mutex_lock(&callback_mutex);
1923 cs->mems_allowed = parent->mems_allowed;
1924 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1925 mutex_unlock(&callback_mutex);
1926 out_unlock:
1927 mutex_unlock(&cpuset_mutex);
1928 return 0;
1929 }
1930
1931 static void cpuset_css_offline(struct cgroup *cgrp)
1932 {
1933 struct cpuset *cs = cgroup_cs(cgrp);
1934
1935 mutex_lock(&cpuset_mutex);
1936
1937 if (is_sched_load_balance(cs))
1938 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1939
1940 number_of_cpusets--;
1941 clear_bit(CS_ONLINE, &cs->flags);
1942
1943 mutex_unlock(&cpuset_mutex);
1944 }
1945
1946 /*
1947 * If the cpuset being removed has its flag 'sched_load_balance'
1948 * enabled, then simulate turning sched_load_balance off, which
1949 * will call rebuild_sched_domains_locked().
1950 */
1951
1952 static void cpuset_css_free(struct cgroup *cont)
1953 {
1954 struct cpuset *cs = cgroup_cs(cont);
1955
1956 free_cpumask_var(cs->cpus_allowed);
1957 kfree(cs);
1958 }
1959
1960 struct cgroup_subsys cpuset_subsys = {
1961 .name = "cpuset",
1962 .css_alloc = cpuset_css_alloc,
1963 .css_online = cpuset_css_online,
1964 .css_offline = cpuset_css_offline,
1965 .css_free = cpuset_css_free,
1966 .can_attach = cpuset_can_attach,
1967 .cancel_attach = cpuset_cancel_attach,
1968 .attach = cpuset_attach,
1969 .subsys_id = cpuset_subsys_id,
1970 .base_cftypes = files,
1971 .early_init = 1,
1972 };
1973
1974 /**
1975 * cpuset_init - initialize cpusets at system boot
1976 *
1977 * Description: Initialize top_cpuset and the cpuset internal file system,
1978 **/
1979
1980 int __init cpuset_init(void)
1981 {
1982 int err = 0;
1983
1984 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1985 BUG();
1986
1987 cpumask_setall(top_cpuset.cpus_allowed);
1988 nodes_setall(top_cpuset.mems_allowed);
1989
1990 fmeter_init(&top_cpuset.fmeter);
1991 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1992 top_cpuset.relax_domain_level = -1;
1993
1994 err = register_filesystem(&cpuset_fs_type);
1995 if (err < 0)
1996 return err;
1997
1998 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1999 BUG();
2000
2001 number_of_cpusets = 1;
2002 return 0;
2003 }
2004
2005 /*
2006 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2007 * or memory nodes, we need to walk over the cpuset hierarchy,
2008 * removing that CPU or node from all cpusets. If this removes the
2009 * last CPU or node from a cpuset, then move the tasks in the empty
2010 * cpuset to its next-highest non-empty parent.
2011 */
2012 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2013 {
2014 struct cpuset *parent;
2015
2016 /*
2017 * Find its next-highest non-empty parent, (top cpuset
2018 * has online cpus, so can't be empty).
2019 */
2020 parent = parent_cs(cs);
2021 while (cpumask_empty(parent->cpus_allowed) ||
2022 nodes_empty(parent->mems_allowed))
2023 parent = parent_cs(parent);
2024
2025 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2026 rcu_read_lock();
2027 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2028 cgroup_name(cs->css.cgroup));
2029 rcu_read_unlock();
2030 }
2031 }
2032
2033 /**
2034 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2035 * @cs: cpuset in interest
2036 *
2037 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2038 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2039 * all its tasks are moved to the nearest ancestor with both resources.
2040 */
2041 static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2042 {
2043 static cpumask_t off_cpus;
2044 static nodemask_t off_mems, tmp_mems;
2045 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2046 bool is_empty;
2047
2048 mutex_lock(&cpuset_mutex);
2049
2050 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2051 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2052
2053 /* remove offline cpus from @cs */
2054 if (!cpumask_empty(&off_cpus)) {
2055 mutex_lock(&callback_mutex);
2056 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2057 mutex_unlock(&callback_mutex);
2058 update_tasks_cpumask(cs, NULL);
2059 }
2060
2061 /* remove offline mems from @cs */
2062 if (!nodes_empty(off_mems)) {
2063 tmp_mems = cs->mems_allowed;
2064 mutex_lock(&callback_mutex);
2065 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2066 mutex_unlock(&callback_mutex);
2067 update_tasks_nodemask(cs, &tmp_mems, NULL);
2068 }
2069
2070 is_empty = cpumask_empty(cs->cpus_allowed) ||
2071 nodes_empty(cs->mems_allowed);
2072
2073 mutex_unlock(&cpuset_mutex);
2074
2075 /*
2076 * If @cs became empty, move tasks to the nearest ancestor with
2077 * execution resources. This is full cgroup operation which will
2078 * also call back into cpuset. Should be done outside any lock.
2079 */
2080 if (is_empty)
2081 remove_tasks_in_empty_cpuset(cs);
2082
2083 /* the following may free @cs, should be the last operation */
2084 css_put(&cs->css);
2085 }
2086
2087 /**
2088 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2089 * @cs: cpuset of interest
2090 *
2091 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2092 * memory masks according to top_cpuset.
2093 */
2094 static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2095 {
2096 /*
2097 * Pin @cs. The refcnt will be released when the work item
2098 * finishes executing.
2099 */
2100 if (!css_tryget(&cs->css))
2101 return;
2102
2103 /*
2104 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2105 * cpuset_propagate_hotplug_wq is ordered and propagation will
2106 * happen in the order this function is called.
2107 */
2108 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2109 css_put(&cs->css);
2110 }
2111
2112 /**
2113 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2114 *
2115 * This function is called after either CPU or memory configuration has
2116 * changed and updates cpuset accordingly. The top_cpuset is always
2117 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2118 * order to make cpusets transparent (of no affect) on systems that are
2119 * actively using CPU hotplug but making no active use of cpusets.
2120 *
2121 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2122 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2123 * descendants.
2124 *
2125 * Note that CPU offlining during suspend is ignored. We don't modify
2126 * cpusets across suspend/resume cycles at all.
2127 */
2128 static void cpuset_hotplug_workfn(struct work_struct *work)
2129 {
2130 static cpumask_t new_cpus, tmp_cpus;
2131 static nodemask_t new_mems, tmp_mems;
2132 bool cpus_updated, mems_updated;
2133 bool cpus_offlined, mems_offlined;
2134
2135 mutex_lock(&cpuset_mutex);
2136
2137 /* fetch the available cpus/mems and find out which changed how */
2138 cpumask_copy(&new_cpus, cpu_active_mask);
2139 new_mems = node_states[N_MEMORY];
2140
2141 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2142 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2143 &new_cpus);
2144
2145 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2146 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2147 mems_offlined = !nodes_empty(tmp_mems);
2148
2149 /* synchronize cpus_allowed to cpu_active_mask */
2150 if (cpus_updated) {
2151 mutex_lock(&callback_mutex);
2152 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2153 mutex_unlock(&callback_mutex);
2154 /* we don't mess with cpumasks of tasks in top_cpuset */
2155 }
2156
2157 /* synchronize mems_allowed to N_MEMORY */
2158 if (mems_updated) {
2159 tmp_mems = top_cpuset.mems_allowed;
2160 mutex_lock(&callback_mutex);
2161 top_cpuset.mems_allowed = new_mems;
2162 mutex_unlock(&callback_mutex);
2163 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2164 }
2165
2166 /* if cpus or mems went down, we need to propagate to descendants */
2167 if (cpus_offlined || mems_offlined) {
2168 struct cpuset *cs;
2169 struct cgroup *pos_cgrp;
2170
2171 rcu_read_lock();
2172 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2173 schedule_cpuset_propagate_hotplug(cs);
2174 rcu_read_unlock();
2175 }
2176
2177 mutex_unlock(&cpuset_mutex);
2178
2179 /* wait for propagations to finish */
2180 flush_workqueue(cpuset_propagate_hotplug_wq);
2181
2182 /* rebuild sched domains if cpus_allowed has changed */
2183 if (cpus_updated)
2184 rebuild_sched_domains();
2185 }
2186
2187 void cpuset_update_active_cpus(bool cpu_online)
2188 {
2189 /*
2190 * We're inside cpu hotplug critical region which usually nests
2191 * inside cgroup synchronization. Bounce actual hotplug processing
2192 * to a work item to avoid reverse locking order.
2193 *
2194 * We still need to do partition_sched_domains() synchronously;
2195 * otherwise, the scheduler will get confused and put tasks to the
2196 * dead CPU. Fall back to the default single domain.
2197 * cpuset_hotplug_workfn() will rebuild it as necessary.
2198 */
2199 partition_sched_domains(1, NULL, NULL);
2200 schedule_work(&cpuset_hotplug_work);
2201 }
2202
2203 #ifdef CONFIG_MEMORY_HOTPLUG
2204 /*
2205 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2206 * Call this routine anytime after node_states[N_MEMORY] changes.
2207 * See cpuset_update_active_cpus() for CPU hotplug handling.
2208 */
2209 static int cpuset_track_online_nodes(struct notifier_block *self,
2210 unsigned long action, void *arg)
2211 {
2212 schedule_work(&cpuset_hotplug_work);
2213 return NOTIFY_OK;
2214 }
2215 #endif
2216
2217 /**
2218 * cpuset_init_smp - initialize cpus_allowed
2219 *
2220 * Description: Finish top cpuset after cpu, node maps are initialized
2221 **/
2222
2223 void __init cpuset_init_smp(void)
2224 {
2225 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2226 top_cpuset.mems_allowed = node_states[N_MEMORY];
2227
2228 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2229
2230 cpuset_propagate_hotplug_wq =
2231 alloc_ordered_workqueue("cpuset_hotplug", 0);
2232 BUG_ON(!cpuset_propagate_hotplug_wq);
2233 }
2234
2235 /**
2236 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2237 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2238 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2239 *
2240 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2241 * attached to the specified @tsk. Guaranteed to return some non-empty
2242 * subset of cpu_online_mask, even if this means going outside the
2243 * tasks cpuset.
2244 **/
2245
2246 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2247 {
2248 mutex_lock(&callback_mutex);
2249 task_lock(tsk);
2250 guarantee_online_cpus(task_cs(tsk), pmask);
2251 task_unlock(tsk);
2252 mutex_unlock(&callback_mutex);
2253 }
2254
2255 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2256 {
2257 const struct cpuset *cs;
2258
2259 rcu_read_lock();
2260 cs = task_cs(tsk);
2261 if (cs)
2262 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2263 rcu_read_unlock();
2264
2265 /*
2266 * We own tsk->cpus_allowed, nobody can change it under us.
2267 *
2268 * But we used cs && cs->cpus_allowed lockless and thus can
2269 * race with cgroup_attach_task() or update_cpumask() and get
2270 * the wrong tsk->cpus_allowed. However, both cases imply the
2271 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2272 * which takes task_rq_lock().
2273 *
2274 * If we are called after it dropped the lock we must see all
2275 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2276 * set any mask even if it is not right from task_cs() pov,
2277 * the pending set_cpus_allowed_ptr() will fix things.
2278 *
2279 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2280 * if required.
2281 */
2282 }
2283
2284 void cpuset_init_current_mems_allowed(void)
2285 {
2286 nodes_setall(current->mems_allowed);
2287 }
2288
2289 /**
2290 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2291 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2292 *
2293 * Description: Returns the nodemask_t mems_allowed of the cpuset
2294 * attached to the specified @tsk. Guaranteed to return some non-empty
2295 * subset of node_states[N_MEMORY], even if this means going outside the
2296 * tasks cpuset.
2297 **/
2298
2299 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2300 {
2301 nodemask_t mask;
2302
2303 mutex_lock(&callback_mutex);
2304 task_lock(tsk);
2305 guarantee_online_mems(task_cs(tsk), &mask);
2306 task_unlock(tsk);
2307 mutex_unlock(&callback_mutex);
2308
2309 return mask;
2310 }
2311
2312 /**
2313 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2314 * @nodemask: the nodemask to be checked
2315 *
2316 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2317 */
2318 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2319 {
2320 return nodes_intersects(*nodemask, current->mems_allowed);
2321 }
2322
2323 /*
2324 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2325 * mem_hardwall ancestor to the specified cpuset. Call holding
2326 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2327 * (an unusual configuration), then returns the root cpuset.
2328 */
2329 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2330 {
2331 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2332 cs = parent_cs(cs);
2333 return cs;
2334 }
2335
2336 /**
2337 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2338 * @node: is this an allowed node?
2339 * @gfp_mask: memory allocation flags
2340 *
2341 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2342 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2343 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2344 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2345 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2346 * flag, yes.
2347 * Otherwise, no.
2348 *
2349 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2350 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2351 * might sleep, and might allow a node from an enclosing cpuset.
2352 *
2353 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2354 * cpusets, and never sleeps.
2355 *
2356 * The __GFP_THISNODE placement logic is really handled elsewhere,
2357 * by forcibly using a zonelist starting at a specified node, and by
2358 * (in get_page_from_freelist()) refusing to consider the zones for
2359 * any node on the zonelist except the first. By the time any such
2360 * calls get to this routine, we should just shut up and say 'yes'.
2361 *
2362 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2363 * and do not allow allocations outside the current tasks cpuset
2364 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2365 * GFP_KERNEL allocations are not so marked, so can escape to the
2366 * nearest enclosing hardwalled ancestor cpuset.
2367 *
2368 * Scanning up parent cpusets requires callback_mutex. The
2369 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2370 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2371 * current tasks mems_allowed came up empty on the first pass over
2372 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2373 * cpuset are short of memory, might require taking the callback_mutex
2374 * mutex.
2375 *
2376 * The first call here from mm/page_alloc:get_page_from_freelist()
2377 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2378 * so no allocation on a node outside the cpuset is allowed (unless
2379 * in interrupt, of course).
2380 *
2381 * The second pass through get_page_from_freelist() doesn't even call
2382 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2383 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2384 * in alloc_flags. That logic and the checks below have the combined
2385 * affect that:
2386 * in_interrupt - any node ok (current task context irrelevant)
2387 * GFP_ATOMIC - any node ok
2388 * TIF_MEMDIE - any node ok
2389 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2390 * GFP_USER - only nodes in current tasks mems allowed ok.
2391 *
2392 * Rule:
2393 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2394 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2395 * the code that might scan up ancestor cpusets and sleep.
2396 */
2397 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2398 {
2399 const struct cpuset *cs; /* current cpuset ancestors */
2400 int allowed; /* is allocation in zone z allowed? */
2401
2402 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2403 return 1;
2404 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2405 if (node_isset(node, current->mems_allowed))
2406 return 1;
2407 /*
2408 * Allow tasks that have access to memory reserves because they have
2409 * been OOM killed to get memory anywhere.
2410 */
2411 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2412 return 1;
2413 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2414 return 0;
2415
2416 if (current->flags & PF_EXITING) /* Let dying task have memory */
2417 return 1;
2418
2419 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2420 mutex_lock(&callback_mutex);
2421
2422 task_lock(current);
2423 cs = nearest_hardwall_ancestor(task_cs(current));
2424 task_unlock(current);
2425
2426 allowed = node_isset(node, cs->mems_allowed);
2427 mutex_unlock(&callback_mutex);
2428 return allowed;
2429 }
2430
2431 /*
2432 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2433 * @node: is this an allowed node?
2434 * @gfp_mask: memory allocation flags
2435 *
2436 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2437 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2438 * yes. If the task has been OOM killed and has access to memory reserves as
2439 * specified by the TIF_MEMDIE flag, yes.
2440 * Otherwise, no.
2441 *
2442 * The __GFP_THISNODE placement logic is really handled elsewhere,
2443 * by forcibly using a zonelist starting at a specified node, and by
2444 * (in get_page_from_freelist()) refusing to consider the zones for
2445 * any node on the zonelist except the first. By the time any such
2446 * calls get to this routine, we should just shut up and say 'yes'.
2447 *
2448 * Unlike the cpuset_node_allowed_softwall() variant, above,
2449 * this variant requires that the node be in the current task's
2450 * mems_allowed or that we're in interrupt. It does not scan up the
2451 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2452 * It never sleeps.
2453 */
2454 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2455 {
2456 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2457 return 1;
2458 if (node_isset(node, current->mems_allowed))
2459 return 1;
2460 /*
2461 * Allow tasks that have access to memory reserves because they have
2462 * been OOM killed to get memory anywhere.
2463 */
2464 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2465 return 1;
2466 return 0;
2467 }
2468
2469 /**
2470 * cpuset_mem_spread_node() - On which node to begin search for a file page
2471 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2472 *
2473 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2474 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2475 * and if the memory allocation used cpuset_mem_spread_node()
2476 * to determine on which node to start looking, as it will for
2477 * certain page cache or slab cache pages such as used for file
2478 * system buffers and inode caches, then instead of starting on the
2479 * local node to look for a free page, rather spread the starting
2480 * node around the tasks mems_allowed nodes.
2481 *
2482 * We don't have to worry about the returned node being offline
2483 * because "it can't happen", and even if it did, it would be ok.
2484 *
2485 * The routines calling guarantee_online_mems() are careful to
2486 * only set nodes in task->mems_allowed that are online. So it
2487 * should not be possible for the following code to return an
2488 * offline node. But if it did, that would be ok, as this routine
2489 * is not returning the node where the allocation must be, only
2490 * the node where the search should start. The zonelist passed to
2491 * __alloc_pages() will include all nodes. If the slab allocator
2492 * is passed an offline node, it will fall back to the local node.
2493 * See kmem_cache_alloc_node().
2494 */
2495
2496 static int cpuset_spread_node(int *rotor)
2497 {
2498 int node;
2499
2500 node = next_node(*rotor, current->mems_allowed);
2501 if (node == MAX_NUMNODES)
2502 node = first_node(current->mems_allowed);
2503 *rotor = node;
2504 return node;
2505 }
2506
2507 int cpuset_mem_spread_node(void)
2508 {
2509 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2510 current->cpuset_mem_spread_rotor =
2511 node_random(&current->mems_allowed);
2512
2513 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2514 }
2515
2516 int cpuset_slab_spread_node(void)
2517 {
2518 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2519 current->cpuset_slab_spread_rotor =
2520 node_random(&current->mems_allowed);
2521
2522 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2523 }
2524
2525 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2526
2527 /**
2528 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2529 * @tsk1: pointer to task_struct of some task.
2530 * @tsk2: pointer to task_struct of some other task.
2531 *
2532 * Description: Return true if @tsk1's mems_allowed intersects the
2533 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2534 * one of the task's memory usage might impact the memory available
2535 * to the other.
2536 **/
2537
2538 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2539 const struct task_struct *tsk2)
2540 {
2541 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2542 }
2543
2544 #define CPUSET_NODELIST_LEN (256)
2545
2546 /**
2547 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2548 * @task: pointer to task_struct of some task.
2549 *
2550 * Description: Prints @task's name, cpuset name, and cached copy of its
2551 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2552 * dereferencing task_cs(task).
2553 */
2554 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2555 {
2556 /* Statically allocated to prevent using excess stack. */
2557 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2558 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2559
2560 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2561
2562 rcu_read_lock();
2563 spin_lock(&cpuset_buffer_lock);
2564
2565 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2566 tsk->mems_allowed);
2567 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2568 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2569
2570 spin_unlock(&cpuset_buffer_lock);
2571 rcu_read_unlock();
2572 }
2573
2574 /*
2575 * Collection of memory_pressure is suppressed unless
2576 * this flag is enabled by writing "1" to the special
2577 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2578 */
2579
2580 int cpuset_memory_pressure_enabled __read_mostly;
2581
2582 /**
2583 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2584 *
2585 * Keep a running average of the rate of synchronous (direct)
2586 * page reclaim efforts initiated by tasks in each cpuset.
2587 *
2588 * This represents the rate at which some task in the cpuset
2589 * ran low on memory on all nodes it was allowed to use, and
2590 * had to enter the kernels page reclaim code in an effort to
2591 * create more free memory by tossing clean pages or swapping
2592 * or writing dirty pages.
2593 *
2594 * Display to user space in the per-cpuset read-only file
2595 * "memory_pressure". Value displayed is an integer
2596 * representing the recent rate of entry into the synchronous
2597 * (direct) page reclaim by any task attached to the cpuset.
2598 **/
2599
2600 void __cpuset_memory_pressure_bump(void)
2601 {
2602 task_lock(current);
2603 fmeter_markevent(&task_cs(current)->fmeter);
2604 task_unlock(current);
2605 }
2606
2607 #ifdef CONFIG_PROC_PID_CPUSET
2608 /*
2609 * proc_cpuset_show()
2610 * - Print tasks cpuset path into seq_file.
2611 * - Used for /proc/<pid>/cpuset.
2612 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2613 * doesn't really matter if tsk->cpuset changes after we read it,
2614 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2615 * anyway.
2616 */
2617 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2618 {
2619 struct pid *pid;
2620 struct task_struct *tsk;
2621 char *buf;
2622 struct cgroup_subsys_state *css;
2623 int retval;
2624
2625 retval = -ENOMEM;
2626 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2627 if (!buf)
2628 goto out;
2629
2630 retval = -ESRCH;
2631 pid = m->private;
2632 tsk = get_pid_task(pid, PIDTYPE_PID);
2633 if (!tsk)
2634 goto out_free;
2635
2636 rcu_read_lock();
2637 css = task_subsys_state(tsk, cpuset_subsys_id);
2638 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2639 rcu_read_unlock();
2640 if (retval < 0)
2641 goto out_put_task;
2642 seq_puts(m, buf);
2643 seq_putc(m, '\n');
2644 out_put_task:
2645 put_task_struct(tsk);
2646 out_free:
2647 kfree(buf);
2648 out:
2649 return retval;
2650 }
2651
2652 static int cpuset_open(struct inode *inode, struct file *file)
2653 {
2654 struct pid *pid = PROC_I(inode)->pid;
2655 return single_open(file, proc_cpuset_show, pid);
2656 }
2657
2658 const struct file_operations proc_cpuset_operations = {
2659 .open = cpuset_open,
2660 .read = seq_read,
2661 .llseek = seq_lseek,
2662 .release = single_release,
2663 };
2664 #endif /* CONFIG_PROC_PID_CPUSET */
2665
2666 /* Display task mems_allowed in /proc/<pid>/status file. */
2667 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2668 {
2669 seq_printf(m, "Mems_allowed:\t");
2670 seq_nodemask(m, &task->mems_allowed);
2671 seq_printf(m, "\n");
2672 seq_printf(m, "Mems_allowed_list:\t");
2673 seq_nodemask_list(m, &task->mems_allowed);
2674 seq_printf(m, "\n");
2675 }
This page took 0.09247 seconds and 6 git commands to generate.