perf: Fix perf_event_comm() vs. exec() assumption
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP |\
123 PERF_FLAG_FD_CLOEXEC)
124
125 /*
126 * branch priv levels that need permission checks
127 */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
132 enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137
138 /*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149 static atomic_t nr_freq_events __read_mostly;
150
151 static LIST_HEAD(pmus);
152 static DEFINE_MUTEX(pmus_lock);
153 static struct srcu_struct pmus_srcu;
154
155 /*
156 * perf event paranoia level:
157 * -1 - not paranoid at all
158 * 0 - disallow raw tracepoint access for unpriv
159 * 1 - disallow cpu events for unpriv
160 * 2 - disallow kernel profiling for unpriv
161 */
162 int sysctl_perf_event_paranoid __read_mostly = 1;
163
164 /* Minimum for 512 kiB + 1 user control page */
165 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166
167 /*
168 * max perf event sample rate
169 */
170 #define DEFAULT_MAX_SAMPLE_RATE 100000
171 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
173
174 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175
176 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178
179 static int perf_sample_allowed_ns __read_mostly =
180 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181
182 void update_perf_cpu_limits(void)
183 {
184 u64 tmp = perf_sample_period_ns;
185
186 tmp *= sysctl_perf_cpu_time_max_percent;
187 do_div(tmp, 100);
188 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189 }
190
191 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192
193 int perf_proc_update_handler(struct ctl_table *table, int write,
194 void __user *buffer, size_t *lenp,
195 loff_t *ppos)
196 {
197 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198
199 if (ret || !write)
200 return ret;
201
202 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
204 update_perf_cpu_limits();
205
206 return 0;
207 }
208
209 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210
211 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
212 void __user *buffer, size_t *lenp,
213 loff_t *ppos)
214 {
215 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216
217 if (ret || !write)
218 return ret;
219
220 update_perf_cpu_limits();
221
222 return 0;
223 }
224
225 /*
226 * perf samples are done in some very critical code paths (NMIs).
227 * If they take too much CPU time, the system can lock up and not
228 * get any real work done. This will drop the sample rate when
229 * we detect that events are taking too long.
230 */
231 #define NR_ACCUMULATED_SAMPLES 128
232 static DEFINE_PER_CPU(u64, running_sample_length);
233
234 static void perf_duration_warn(struct irq_work *w)
235 {
236 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237 u64 avg_local_sample_len;
238 u64 local_samples_len;
239
240 local_samples_len = __get_cpu_var(running_sample_length);
241 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
242
243 printk_ratelimited(KERN_WARNING
244 "perf interrupt took too long (%lld > %lld), lowering "
245 "kernel.perf_event_max_sample_rate to %d\n",
246 avg_local_sample_len, allowed_ns >> 1,
247 sysctl_perf_event_sample_rate);
248 }
249
250 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
251
252 void perf_sample_event_took(u64 sample_len_ns)
253 {
254 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 u64 avg_local_sample_len;
256 u64 local_samples_len;
257
258 if (allowed_ns == 0)
259 return;
260
261 /* decay the counter by 1 average sample */
262 local_samples_len = __get_cpu_var(running_sample_length);
263 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
264 local_samples_len += sample_len_ns;
265 __get_cpu_var(running_sample_length) = local_samples_len;
266
267 /*
268 * note: this will be biased artifically low until we have
269 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
270 * from having to maintain a count.
271 */
272 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
273
274 if (avg_local_sample_len <= allowed_ns)
275 return;
276
277 if (max_samples_per_tick <= 1)
278 return;
279
280 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
281 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
282 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
283
284 update_perf_cpu_limits();
285
286 if (!irq_work_queue(&perf_duration_work)) {
287 early_printk("perf interrupt took too long (%lld > %lld), lowering "
288 "kernel.perf_event_max_sample_rate to %d\n",
289 avg_local_sample_len, allowed_ns >> 1,
290 sysctl_perf_event_sample_rate);
291 }
292 }
293
294 static atomic64_t perf_event_id;
295
296 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
297 enum event_type_t event_type);
298
299 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
300 enum event_type_t event_type,
301 struct task_struct *task);
302
303 static void update_context_time(struct perf_event_context *ctx);
304 static u64 perf_event_time(struct perf_event *event);
305
306 void __weak perf_event_print_debug(void) { }
307
308 extern __weak const char *perf_pmu_name(void)
309 {
310 return "pmu";
311 }
312
313 static inline u64 perf_clock(void)
314 {
315 return local_clock();
316 }
317
318 static inline struct perf_cpu_context *
319 __get_cpu_context(struct perf_event_context *ctx)
320 {
321 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
322 }
323
324 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
325 struct perf_event_context *ctx)
326 {
327 raw_spin_lock(&cpuctx->ctx.lock);
328 if (ctx)
329 raw_spin_lock(&ctx->lock);
330 }
331
332 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
334 {
335 if (ctx)
336 raw_spin_unlock(&ctx->lock);
337 raw_spin_unlock(&cpuctx->ctx.lock);
338 }
339
340 #ifdef CONFIG_CGROUP_PERF
341
342 /*
343 * perf_cgroup_info keeps track of time_enabled for a cgroup.
344 * This is a per-cpu dynamically allocated data structure.
345 */
346 struct perf_cgroup_info {
347 u64 time;
348 u64 timestamp;
349 };
350
351 struct perf_cgroup {
352 struct cgroup_subsys_state css;
353 struct perf_cgroup_info __percpu *info;
354 };
355
356 /*
357 * Must ensure cgroup is pinned (css_get) before calling
358 * this function. In other words, we cannot call this function
359 * if there is no cgroup event for the current CPU context.
360 */
361 static inline struct perf_cgroup *
362 perf_cgroup_from_task(struct task_struct *task)
363 {
364 return container_of(task_css(task, perf_event_cgrp_id),
365 struct perf_cgroup, css);
366 }
367
368 static inline bool
369 perf_cgroup_match(struct perf_event *event)
370 {
371 struct perf_event_context *ctx = event->ctx;
372 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
373
374 /* @event doesn't care about cgroup */
375 if (!event->cgrp)
376 return true;
377
378 /* wants specific cgroup scope but @cpuctx isn't associated with any */
379 if (!cpuctx->cgrp)
380 return false;
381
382 /*
383 * Cgroup scoping is recursive. An event enabled for a cgroup is
384 * also enabled for all its descendant cgroups. If @cpuctx's
385 * cgroup is a descendant of @event's (the test covers identity
386 * case), it's a match.
387 */
388 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
389 event->cgrp->css.cgroup);
390 }
391
392 static inline void perf_put_cgroup(struct perf_event *event)
393 {
394 css_put(&event->cgrp->css);
395 }
396
397 static inline void perf_detach_cgroup(struct perf_event *event)
398 {
399 perf_put_cgroup(event);
400 event->cgrp = NULL;
401 }
402
403 static inline int is_cgroup_event(struct perf_event *event)
404 {
405 return event->cgrp != NULL;
406 }
407
408 static inline u64 perf_cgroup_event_time(struct perf_event *event)
409 {
410 struct perf_cgroup_info *t;
411
412 t = per_cpu_ptr(event->cgrp->info, event->cpu);
413 return t->time;
414 }
415
416 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
417 {
418 struct perf_cgroup_info *info;
419 u64 now;
420
421 now = perf_clock();
422
423 info = this_cpu_ptr(cgrp->info);
424
425 info->time += now - info->timestamp;
426 info->timestamp = now;
427 }
428
429 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
430 {
431 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
432 if (cgrp_out)
433 __update_cgrp_time(cgrp_out);
434 }
435
436 static inline void update_cgrp_time_from_event(struct perf_event *event)
437 {
438 struct perf_cgroup *cgrp;
439
440 /*
441 * ensure we access cgroup data only when needed and
442 * when we know the cgroup is pinned (css_get)
443 */
444 if (!is_cgroup_event(event))
445 return;
446
447 cgrp = perf_cgroup_from_task(current);
448 /*
449 * Do not update time when cgroup is not active
450 */
451 if (cgrp == event->cgrp)
452 __update_cgrp_time(event->cgrp);
453 }
454
455 static inline void
456 perf_cgroup_set_timestamp(struct task_struct *task,
457 struct perf_event_context *ctx)
458 {
459 struct perf_cgroup *cgrp;
460 struct perf_cgroup_info *info;
461
462 /*
463 * ctx->lock held by caller
464 * ensure we do not access cgroup data
465 * unless we have the cgroup pinned (css_get)
466 */
467 if (!task || !ctx->nr_cgroups)
468 return;
469
470 cgrp = perf_cgroup_from_task(task);
471 info = this_cpu_ptr(cgrp->info);
472 info->timestamp = ctx->timestamp;
473 }
474
475 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
476 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
477
478 /*
479 * reschedule events based on the cgroup constraint of task.
480 *
481 * mode SWOUT : schedule out everything
482 * mode SWIN : schedule in based on cgroup for next
483 */
484 void perf_cgroup_switch(struct task_struct *task, int mode)
485 {
486 struct perf_cpu_context *cpuctx;
487 struct pmu *pmu;
488 unsigned long flags;
489
490 /*
491 * disable interrupts to avoid geting nr_cgroup
492 * changes via __perf_event_disable(). Also
493 * avoids preemption.
494 */
495 local_irq_save(flags);
496
497 /*
498 * we reschedule only in the presence of cgroup
499 * constrained events.
500 */
501 rcu_read_lock();
502
503 list_for_each_entry_rcu(pmu, &pmus, entry) {
504 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 if (cpuctx->unique_pmu != pmu)
506 continue; /* ensure we process each cpuctx once */
507
508 /*
509 * perf_cgroup_events says at least one
510 * context on this CPU has cgroup events.
511 *
512 * ctx->nr_cgroups reports the number of cgroup
513 * events for a context.
514 */
515 if (cpuctx->ctx.nr_cgroups > 0) {
516 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
517 perf_pmu_disable(cpuctx->ctx.pmu);
518
519 if (mode & PERF_CGROUP_SWOUT) {
520 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
521 /*
522 * must not be done before ctxswout due
523 * to event_filter_match() in event_sched_out()
524 */
525 cpuctx->cgrp = NULL;
526 }
527
528 if (mode & PERF_CGROUP_SWIN) {
529 WARN_ON_ONCE(cpuctx->cgrp);
530 /*
531 * set cgrp before ctxsw in to allow
532 * event_filter_match() to not have to pass
533 * task around
534 */
535 cpuctx->cgrp = perf_cgroup_from_task(task);
536 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
537 }
538 perf_pmu_enable(cpuctx->ctx.pmu);
539 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
540 }
541 }
542
543 rcu_read_unlock();
544
545 local_irq_restore(flags);
546 }
547
548 static inline void perf_cgroup_sched_out(struct task_struct *task,
549 struct task_struct *next)
550 {
551 struct perf_cgroup *cgrp1;
552 struct perf_cgroup *cgrp2 = NULL;
553
554 /*
555 * we come here when we know perf_cgroup_events > 0
556 */
557 cgrp1 = perf_cgroup_from_task(task);
558
559 /*
560 * next is NULL when called from perf_event_enable_on_exec()
561 * that will systematically cause a cgroup_switch()
562 */
563 if (next)
564 cgrp2 = perf_cgroup_from_task(next);
565
566 /*
567 * only schedule out current cgroup events if we know
568 * that we are switching to a different cgroup. Otherwise,
569 * do no touch the cgroup events.
570 */
571 if (cgrp1 != cgrp2)
572 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
573 }
574
575 static inline void perf_cgroup_sched_in(struct task_struct *prev,
576 struct task_struct *task)
577 {
578 struct perf_cgroup *cgrp1;
579 struct perf_cgroup *cgrp2 = NULL;
580
581 /*
582 * we come here when we know perf_cgroup_events > 0
583 */
584 cgrp1 = perf_cgroup_from_task(task);
585
586 /* prev can never be NULL */
587 cgrp2 = perf_cgroup_from_task(prev);
588
589 /*
590 * only need to schedule in cgroup events if we are changing
591 * cgroup during ctxsw. Cgroup events were not scheduled
592 * out of ctxsw out if that was not the case.
593 */
594 if (cgrp1 != cgrp2)
595 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
596 }
597
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601 {
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
604 struct fd f = fdget(fd);
605 int ret = 0;
606
607 if (!f.file)
608 return -EBADF;
609
610 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
611 if (IS_ERR(css)) {
612 ret = PTR_ERR(css);
613 goto out;
614 }
615
616 cgrp = container_of(css, struct perf_cgroup, css);
617 event->cgrp = cgrp;
618
619 /*
620 * all events in a group must monitor
621 * the same cgroup because a task belongs
622 * to only one perf cgroup at a time
623 */
624 if (group_leader && group_leader->cgrp != cgrp) {
625 perf_detach_cgroup(event);
626 ret = -EINVAL;
627 }
628 out:
629 fdput(f);
630 return ret;
631 }
632
633 static inline void
634 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
635 {
636 struct perf_cgroup_info *t;
637 t = per_cpu_ptr(event->cgrp->info, event->cpu);
638 event->shadow_ctx_time = now - t->timestamp;
639 }
640
641 static inline void
642 perf_cgroup_defer_enabled(struct perf_event *event)
643 {
644 /*
645 * when the current task's perf cgroup does not match
646 * the event's, we need to remember to call the
647 * perf_mark_enable() function the first time a task with
648 * a matching perf cgroup is scheduled in.
649 */
650 if (is_cgroup_event(event) && !perf_cgroup_match(event))
651 event->cgrp_defer_enabled = 1;
652 }
653
654 static inline void
655 perf_cgroup_mark_enabled(struct perf_event *event,
656 struct perf_event_context *ctx)
657 {
658 struct perf_event *sub;
659 u64 tstamp = perf_event_time(event);
660
661 if (!event->cgrp_defer_enabled)
662 return;
663
664 event->cgrp_defer_enabled = 0;
665
666 event->tstamp_enabled = tstamp - event->total_time_enabled;
667 list_for_each_entry(sub, &event->sibling_list, group_entry) {
668 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
669 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
670 sub->cgrp_defer_enabled = 0;
671 }
672 }
673 }
674 #else /* !CONFIG_CGROUP_PERF */
675
676 static inline bool
677 perf_cgroup_match(struct perf_event *event)
678 {
679 return true;
680 }
681
682 static inline void perf_detach_cgroup(struct perf_event *event)
683 {}
684
685 static inline int is_cgroup_event(struct perf_event *event)
686 {
687 return 0;
688 }
689
690 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
691 {
692 return 0;
693 }
694
695 static inline void update_cgrp_time_from_event(struct perf_event *event)
696 {
697 }
698
699 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
700 {
701 }
702
703 static inline void perf_cgroup_sched_out(struct task_struct *task,
704 struct task_struct *next)
705 {
706 }
707
708 static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 struct task_struct *task)
710 {
711 }
712
713 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
714 struct perf_event_attr *attr,
715 struct perf_event *group_leader)
716 {
717 return -EINVAL;
718 }
719
720 static inline void
721 perf_cgroup_set_timestamp(struct task_struct *task,
722 struct perf_event_context *ctx)
723 {
724 }
725
726 void
727 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
728 {
729 }
730
731 static inline void
732 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
733 {
734 }
735
736 static inline u64 perf_cgroup_event_time(struct perf_event *event)
737 {
738 return 0;
739 }
740
741 static inline void
742 perf_cgroup_defer_enabled(struct perf_event *event)
743 {
744 }
745
746 static inline void
747 perf_cgroup_mark_enabled(struct perf_event *event,
748 struct perf_event_context *ctx)
749 {
750 }
751 #endif
752
753 /*
754 * set default to be dependent on timer tick just
755 * like original code
756 */
757 #define PERF_CPU_HRTIMER (1000 / HZ)
758 /*
759 * function must be called with interrupts disbled
760 */
761 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
762 {
763 struct perf_cpu_context *cpuctx;
764 enum hrtimer_restart ret = HRTIMER_NORESTART;
765 int rotations = 0;
766
767 WARN_ON(!irqs_disabled());
768
769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770
771 rotations = perf_rotate_context(cpuctx);
772
773 /*
774 * arm timer if needed
775 */
776 if (rotations) {
777 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
778 ret = HRTIMER_RESTART;
779 }
780
781 return ret;
782 }
783
784 /* CPU is going down */
785 void perf_cpu_hrtimer_cancel(int cpu)
786 {
787 struct perf_cpu_context *cpuctx;
788 struct pmu *pmu;
789 unsigned long flags;
790
791 if (WARN_ON(cpu != smp_processor_id()))
792 return;
793
794 local_irq_save(flags);
795
796 rcu_read_lock();
797
798 list_for_each_entry_rcu(pmu, &pmus, entry) {
799 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
800
801 if (pmu->task_ctx_nr == perf_sw_context)
802 continue;
803
804 hrtimer_cancel(&cpuctx->hrtimer);
805 }
806
807 rcu_read_unlock();
808
809 local_irq_restore(flags);
810 }
811
812 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
813 {
814 struct hrtimer *hr = &cpuctx->hrtimer;
815 struct pmu *pmu = cpuctx->ctx.pmu;
816 int timer;
817
818 /* no multiplexing needed for SW PMU */
819 if (pmu->task_ctx_nr == perf_sw_context)
820 return;
821
822 /*
823 * check default is sane, if not set then force to
824 * default interval (1/tick)
825 */
826 timer = pmu->hrtimer_interval_ms;
827 if (timer < 1)
828 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
829
830 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
831
832 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
833 hr->function = perf_cpu_hrtimer_handler;
834 }
835
836 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
837 {
838 struct hrtimer *hr = &cpuctx->hrtimer;
839 struct pmu *pmu = cpuctx->ctx.pmu;
840
841 /* not for SW PMU */
842 if (pmu->task_ctx_nr == perf_sw_context)
843 return;
844
845 if (hrtimer_active(hr))
846 return;
847
848 if (!hrtimer_callback_running(hr))
849 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
850 0, HRTIMER_MODE_REL_PINNED, 0);
851 }
852
853 void perf_pmu_disable(struct pmu *pmu)
854 {
855 int *count = this_cpu_ptr(pmu->pmu_disable_count);
856 if (!(*count)++)
857 pmu->pmu_disable(pmu);
858 }
859
860 void perf_pmu_enable(struct pmu *pmu)
861 {
862 int *count = this_cpu_ptr(pmu->pmu_disable_count);
863 if (!--(*count))
864 pmu->pmu_enable(pmu);
865 }
866
867 static DEFINE_PER_CPU(struct list_head, rotation_list);
868
869 /*
870 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
871 * because they're strictly cpu affine and rotate_start is called with IRQs
872 * disabled, while rotate_context is called from IRQ context.
873 */
874 static void perf_pmu_rotate_start(struct pmu *pmu)
875 {
876 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
877 struct list_head *head = &__get_cpu_var(rotation_list);
878
879 WARN_ON(!irqs_disabled());
880
881 if (list_empty(&cpuctx->rotation_list))
882 list_add(&cpuctx->rotation_list, head);
883 }
884
885 static void get_ctx(struct perf_event_context *ctx)
886 {
887 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
888 }
889
890 static void put_ctx(struct perf_event_context *ctx)
891 {
892 if (atomic_dec_and_test(&ctx->refcount)) {
893 if (ctx->parent_ctx)
894 put_ctx(ctx->parent_ctx);
895 if (ctx->task)
896 put_task_struct(ctx->task);
897 kfree_rcu(ctx, rcu_head);
898 }
899 }
900
901 static void unclone_ctx(struct perf_event_context *ctx)
902 {
903 if (ctx->parent_ctx) {
904 put_ctx(ctx->parent_ctx);
905 ctx->parent_ctx = NULL;
906 }
907 ctx->generation++;
908 }
909
910 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
911 {
912 /*
913 * only top level events have the pid namespace they were created in
914 */
915 if (event->parent)
916 event = event->parent;
917
918 return task_tgid_nr_ns(p, event->ns);
919 }
920
921 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
922 {
923 /*
924 * only top level events have the pid namespace they were created in
925 */
926 if (event->parent)
927 event = event->parent;
928
929 return task_pid_nr_ns(p, event->ns);
930 }
931
932 /*
933 * If we inherit events we want to return the parent event id
934 * to userspace.
935 */
936 static u64 primary_event_id(struct perf_event *event)
937 {
938 u64 id = event->id;
939
940 if (event->parent)
941 id = event->parent->id;
942
943 return id;
944 }
945
946 /*
947 * Get the perf_event_context for a task and lock it.
948 * This has to cope with with the fact that until it is locked,
949 * the context could get moved to another task.
950 */
951 static struct perf_event_context *
952 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
953 {
954 struct perf_event_context *ctx;
955
956 retry:
957 /*
958 * One of the few rules of preemptible RCU is that one cannot do
959 * rcu_read_unlock() while holding a scheduler (or nested) lock when
960 * part of the read side critical section was preemptible -- see
961 * rcu_read_unlock_special().
962 *
963 * Since ctx->lock nests under rq->lock we must ensure the entire read
964 * side critical section is non-preemptible.
965 */
966 preempt_disable();
967 rcu_read_lock();
968 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
969 if (ctx) {
970 /*
971 * If this context is a clone of another, it might
972 * get swapped for another underneath us by
973 * perf_event_task_sched_out, though the
974 * rcu_read_lock() protects us from any context
975 * getting freed. Lock the context and check if it
976 * got swapped before we could get the lock, and retry
977 * if so. If we locked the right context, then it
978 * can't get swapped on us any more.
979 */
980 raw_spin_lock_irqsave(&ctx->lock, *flags);
981 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
982 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
983 rcu_read_unlock();
984 preempt_enable();
985 goto retry;
986 }
987
988 if (!atomic_inc_not_zero(&ctx->refcount)) {
989 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 ctx = NULL;
991 }
992 }
993 rcu_read_unlock();
994 preempt_enable();
995 return ctx;
996 }
997
998 /*
999 * Get the context for a task and increment its pin_count so it
1000 * can't get swapped to another task. This also increments its
1001 * reference count so that the context can't get freed.
1002 */
1003 static struct perf_event_context *
1004 perf_pin_task_context(struct task_struct *task, int ctxn)
1005 {
1006 struct perf_event_context *ctx;
1007 unsigned long flags;
1008
1009 ctx = perf_lock_task_context(task, ctxn, &flags);
1010 if (ctx) {
1011 ++ctx->pin_count;
1012 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013 }
1014 return ctx;
1015 }
1016
1017 static void perf_unpin_context(struct perf_event_context *ctx)
1018 {
1019 unsigned long flags;
1020
1021 raw_spin_lock_irqsave(&ctx->lock, flags);
1022 --ctx->pin_count;
1023 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024 }
1025
1026 /*
1027 * Update the record of the current time in a context.
1028 */
1029 static void update_context_time(struct perf_event_context *ctx)
1030 {
1031 u64 now = perf_clock();
1032
1033 ctx->time += now - ctx->timestamp;
1034 ctx->timestamp = now;
1035 }
1036
1037 static u64 perf_event_time(struct perf_event *event)
1038 {
1039 struct perf_event_context *ctx = event->ctx;
1040
1041 if (is_cgroup_event(event))
1042 return perf_cgroup_event_time(event);
1043
1044 return ctx ? ctx->time : 0;
1045 }
1046
1047 /*
1048 * Update the total_time_enabled and total_time_running fields for a event.
1049 * The caller of this function needs to hold the ctx->lock.
1050 */
1051 static void update_event_times(struct perf_event *event)
1052 {
1053 struct perf_event_context *ctx = event->ctx;
1054 u64 run_end;
1055
1056 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1057 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1058 return;
1059 /*
1060 * in cgroup mode, time_enabled represents
1061 * the time the event was enabled AND active
1062 * tasks were in the monitored cgroup. This is
1063 * independent of the activity of the context as
1064 * there may be a mix of cgroup and non-cgroup events.
1065 *
1066 * That is why we treat cgroup events differently
1067 * here.
1068 */
1069 if (is_cgroup_event(event))
1070 run_end = perf_cgroup_event_time(event);
1071 else if (ctx->is_active)
1072 run_end = ctx->time;
1073 else
1074 run_end = event->tstamp_stopped;
1075
1076 event->total_time_enabled = run_end - event->tstamp_enabled;
1077
1078 if (event->state == PERF_EVENT_STATE_INACTIVE)
1079 run_end = event->tstamp_stopped;
1080 else
1081 run_end = perf_event_time(event);
1082
1083 event->total_time_running = run_end - event->tstamp_running;
1084
1085 }
1086
1087 /*
1088 * Update total_time_enabled and total_time_running for all events in a group.
1089 */
1090 static void update_group_times(struct perf_event *leader)
1091 {
1092 struct perf_event *event;
1093
1094 update_event_times(leader);
1095 list_for_each_entry(event, &leader->sibling_list, group_entry)
1096 update_event_times(event);
1097 }
1098
1099 static struct list_head *
1100 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1101 {
1102 if (event->attr.pinned)
1103 return &ctx->pinned_groups;
1104 else
1105 return &ctx->flexible_groups;
1106 }
1107
1108 /*
1109 * Add a event from the lists for its context.
1110 * Must be called with ctx->mutex and ctx->lock held.
1111 */
1112 static void
1113 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114 {
1115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1116 event->attach_state |= PERF_ATTACH_CONTEXT;
1117
1118 /*
1119 * If we're a stand alone event or group leader, we go to the context
1120 * list, group events are kept attached to the group so that
1121 * perf_group_detach can, at all times, locate all siblings.
1122 */
1123 if (event->group_leader == event) {
1124 struct list_head *list;
1125
1126 if (is_software_event(event))
1127 event->group_flags |= PERF_GROUP_SOFTWARE;
1128
1129 list = ctx_group_list(event, ctx);
1130 list_add_tail(&event->group_entry, list);
1131 }
1132
1133 if (is_cgroup_event(event))
1134 ctx->nr_cgroups++;
1135
1136 if (has_branch_stack(event))
1137 ctx->nr_branch_stack++;
1138
1139 list_add_rcu(&event->event_entry, &ctx->event_list);
1140 if (!ctx->nr_events)
1141 perf_pmu_rotate_start(ctx->pmu);
1142 ctx->nr_events++;
1143 if (event->attr.inherit_stat)
1144 ctx->nr_stat++;
1145
1146 ctx->generation++;
1147 }
1148
1149 /*
1150 * Initialize event state based on the perf_event_attr::disabled.
1151 */
1152 static inline void perf_event__state_init(struct perf_event *event)
1153 {
1154 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1155 PERF_EVENT_STATE_INACTIVE;
1156 }
1157
1158 /*
1159 * Called at perf_event creation and when events are attached/detached from a
1160 * group.
1161 */
1162 static void perf_event__read_size(struct perf_event *event)
1163 {
1164 int entry = sizeof(u64); /* value */
1165 int size = 0;
1166 int nr = 1;
1167
1168 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1169 size += sizeof(u64);
1170
1171 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1172 size += sizeof(u64);
1173
1174 if (event->attr.read_format & PERF_FORMAT_ID)
1175 entry += sizeof(u64);
1176
1177 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1178 nr += event->group_leader->nr_siblings;
1179 size += sizeof(u64);
1180 }
1181
1182 size += entry * nr;
1183 event->read_size = size;
1184 }
1185
1186 static void perf_event__header_size(struct perf_event *event)
1187 {
1188 struct perf_sample_data *data;
1189 u64 sample_type = event->attr.sample_type;
1190 u16 size = 0;
1191
1192 perf_event__read_size(event);
1193
1194 if (sample_type & PERF_SAMPLE_IP)
1195 size += sizeof(data->ip);
1196
1197 if (sample_type & PERF_SAMPLE_ADDR)
1198 size += sizeof(data->addr);
1199
1200 if (sample_type & PERF_SAMPLE_PERIOD)
1201 size += sizeof(data->period);
1202
1203 if (sample_type & PERF_SAMPLE_WEIGHT)
1204 size += sizeof(data->weight);
1205
1206 if (sample_type & PERF_SAMPLE_READ)
1207 size += event->read_size;
1208
1209 if (sample_type & PERF_SAMPLE_DATA_SRC)
1210 size += sizeof(data->data_src.val);
1211
1212 if (sample_type & PERF_SAMPLE_TRANSACTION)
1213 size += sizeof(data->txn);
1214
1215 event->header_size = size;
1216 }
1217
1218 static void perf_event__id_header_size(struct perf_event *event)
1219 {
1220 struct perf_sample_data *data;
1221 u64 sample_type = event->attr.sample_type;
1222 u16 size = 0;
1223
1224 if (sample_type & PERF_SAMPLE_TID)
1225 size += sizeof(data->tid_entry);
1226
1227 if (sample_type & PERF_SAMPLE_TIME)
1228 size += sizeof(data->time);
1229
1230 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1231 size += sizeof(data->id);
1232
1233 if (sample_type & PERF_SAMPLE_ID)
1234 size += sizeof(data->id);
1235
1236 if (sample_type & PERF_SAMPLE_STREAM_ID)
1237 size += sizeof(data->stream_id);
1238
1239 if (sample_type & PERF_SAMPLE_CPU)
1240 size += sizeof(data->cpu_entry);
1241
1242 event->id_header_size = size;
1243 }
1244
1245 static void perf_group_attach(struct perf_event *event)
1246 {
1247 struct perf_event *group_leader = event->group_leader, *pos;
1248
1249 /*
1250 * We can have double attach due to group movement in perf_event_open.
1251 */
1252 if (event->attach_state & PERF_ATTACH_GROUP)
1253 return;
1254
1255 event->attach_state |= PERF_ATTACH_GROUP;
1256
1257 if (group_leader == event)
1258 return;
1259
1260 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1261 !is_software_event(event))
1262 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1263
1264 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1265 group_leader->nr_siblings++;
1266
1267 perf_event__header_size(group_leader);
1268
1269 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1270 perf_event__header_size(pos);
1271 }
1272
1273 /*
1274 * Remove a event from the lists for its context.
1275 * Must be called with ctx->mutex and ctx->lock held.
1276 */
1277 static void
1278 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279 {
1280 struct perf_cpu_context *cpuctx;
1281 /*
1282 * We can have double detach due to exit/hot-unplug + close.
1283 */
1284 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285 return;
1286
1287 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1288
1289 if (is_cgroup_event(event)) {
1290 ctx->nr_cgroups--;
1291 cpuctx = __get_cpu_context(ctx);
1292 /*
1293 * if there are no more cgroup events
1294 * then cler cgrp to avoid stale pointer
1295 * in update_cgrp_time_from_cpuctx()
1296 */
1297 if (!ctx->nr_cgroups)
1298 cpuctx->cgrp = NULL;
1299 }
1300
1301 if (has_branch_stack(event))
1302 ctx->nr_branch_stack--;
1303
1304 ctx->nr_events--;
1305 if (event->attr.inherit_stat)
1306 ctx->nr_stat--;
1307
1308 list_del_rcu(&event->event_entry);
1309
1310 if (event->group_leader == event)
1311 list_del_init(&event->group_entry);
1312
1313 update_group_times(event);
1314
1315 /*
1316 * If event was in error state, then keep it
1317 * that way, otherwise bogus counts will be
1318 * returned on read(). The only way to get out
1319 * of error state is by explicit re-enabling
1320 * of the event
1321 */
1322 if (event->state > PERF_EVENT_STATE_OFF)
1323 event->state = PERF_EVENT_STATE_OFF;
1324
1325 ctx->generation++;
1326 }
1327
1328 static void perf_group_detach(struct perf_event *event)
1329 {
1330 struct perf_event *sibling, *tmp;
1331 struct list_head *list = NULL;
1332
1333 /*
1334 * We can have double detach due to exit/hot-unplug + close.
1335 */
1336 if (!(event->attach_state & PERF_ATTACH_GROUP))
1337 return;
1338
1339 event->attach_state &= ~PERF_ATTACH_GROUP;
1340
1341 /*
1342 * If this is a sibling, remove it from its group.
1343 */
1344 if (event->group_leader != event) {
1345 list_del_init(&event->group_entry);
1346 event->group_leader->nr_siblings--;
1347 goto out;
1348 }
1349
1350 if (!list_empty(&event->group_entry))
1351 list = &event->group_entry;
1352
1353 /*
1354 * If this was a group event with sibling events then
1355 * upgrade the siblings to singleton events by adding them
1356 * to whatever list we are on.
1357 */
1358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359 if (list)
1360 list_move_tail(&sibling->group_entry, list);
1361 sibling->group_leader = sibling;
1362
1363 /* Inherit group flags from the previous leader */
1364 sibling->group_flags = event->group_flags;
1365 }
1366
1367 out:
1368 perf_event__header_size(event->group_leader);
1369
1370 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1371 perf_event__header_size(tmp);
1372 }
1373
1374 static inline int
1375 event_filter_match(struct perf_event *event)
1376 {
1377 return (event->cpu == -1 || event->cpu == smp_processor_id())
1378 && perf_cgroup_match(event);
1379 }
1380
1381 static void
1382 event_sched_out(struct perf_event *event,
1383 struct perf_cpu_context *cpuctx,
1384 struct perf_event_context *ctx)
1385 {
1386 u64 tstamp = perf_event_time(event);
1387 u64 delta;
1388 /*
1389 * An event which could not be activated because of
1390 * filter mismatch still needs to have its timings
1391 * maintained, otherwise bogus information is return
1392 * via read() for time_enabled, time_running:
1393 */
1394 if (event->state == PERF_EVENT_STATE_INACTIVE
1395 && !event_filter_match(event)) {
1396 delta = tstamp - event->tstamp_stopped;
1397 event->tstamp_running += delta;
1398 event->tstamp_stopped = tstamp;
1399 }
1400
1401 if (event->state != PERF_EVENT_STATE_ACTIVE)
1402 return;
1403
1404 perf_pmu_disable(event->pmu);
1405
1406 event->state = PERF_EVENT_STATE_INACTIVE;
1407 if (event->pending_disable) {
1408 event->pending_disable = 0;
1409 event->state = PERF_EVENT_STATE_OFF;
1410 }
1411 event->tstamp_stopped = tstamp;
1412 event->pmu->del(event, 0);
1413 event->oncpu = -1;
1414
1415 if (!is_software_event(event))
1416 cpuctx->active_oncpu--;
1417 ctx->nr_active--;
1418 if (event->attr.freq && event->attr.sample_freq)
1419 ctx->nr_freq--;
1420 if (event->attr.exclusive || !cpuctx->active_oncpu)
1421 cpuctx->exclusive = 0;
1422
1423 perf_pmu_enable(event->pmu);
1424 }
1425
1426 static void
1427 group_sched_out(struct perf_event *group_event,
1428 struct perf_cpu_context *cpuctx,
1429 struct perf_event_context *ctx)
1430 {
1431 struct perf_event *event;
1432 int state = group_event->state;
1433
1434 event_sched_out(group_event, cpuctx, ctx);
1435
1436 /*
1437 * Schedule out siblings (if any):
1438 */
1439 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1440 event_sched_out(event, cpuctx, ctx);
1441
1442 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443 cpuctx->exclusive = 0;
1444 }
1445
1446 struct remove_event {
1447 struct perf_event *event;
1448 bool detach_group;
1449 };
1450
1451 /*
1452 * Cross CPU call to remove a performance event
1453 *
1454 * We disable the event on the hardware level first. After that we
1455 * remove it from the context list.
1456 */
1457 static int __perf_remove_from_context(void *info)
1458 {
1459 struct remove_event *re = info;
1460 struct perf_event *event = re->event;
1461 struct perf_event_context *ctx = event->ctx;
1462 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1463
1464 raw_spin_lock(&ctx->lock);
1465 event_sched_out(event, cpuctx, ctx);
1466 if (re->detach_group)
1467 perf_group_detach(event);
1468 list_del_event(event, ctx);
1469 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1470 ctx->is_active = 0;
1471 cpuctx->task_ctx = NULL;
1472 }
1473 raw_spin_unlock(&ctx->lock);
1474
1475 return 0;
1476 }
1477
1478
1479 /*
1480 * Remove the event from a task's (or a CPU's) list of events.
1481 *
1482 * CPU events are removed with a smp call. For task events we only
1483 * call when the task is on a CPU.
1484 *
1485 * If event->ctx is a cloned context, callers must make sure that
1486 * every task struct that event->ctx->task could possibly point to
1487 * remains valid. This is OK when called from perf_release since
1488 * that only calls us on the top-level context, which can't be a clone.
1489 * When called from perf_event_exit_task, it's OK because the
1490 * context has been detached from its task.
1491 */
1492 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1493 {
1494 struct perf_event_context *ctx = event->ctx;
1495 struct task_struct *task = ctx->task;
1496 struct remove_event re = {
1497 .event = event,
1498 .detach_group = detach_group,
1499 };
1500
1501 lockdep_assert_held(&ctx->mutex);
1502
1503 if (!task) {
1504 /*
1505 * Per cpu events are removed via an smp call and
1506 * the removal is always successful.
1507 */
1508 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1509 return;
1510 }
1511
1512 retry:
1513 if (!task_function_call(task, __perf_remove_from_context, &re))
1514 return;
1515
1516 raw_spin_lock_irq(&ctx->lock);
1517 /*
1518 * If we failed to find a running task, but find the context active now
1519 * that we've acquired the ctx->lock, retry.
1520 */
1521 if (ctx->is_active) {
1522 raw_spin_unlock_irq(&ctx->lock);
1523 goto retry;
1524 }
1525
1526 /*
1527 * Since the task isn't running, its safe to remove the event, us
1528 * holding the ctx->lock ensures the task won't get scheduled in.
1529 */
1530 if (detach_group)
1531 perf_group_detach(event);
1532 list_del_event(event, ctx);
1533 raw_spin_unlock_irq(&ctx->lock);
1534 }
1535
1536 /*
1537 * Cross CPU call to disable a performance event
1538 */
1539 int __perf_event_disable(void *info)
1540 {
1541 struct perf_event *event = info;
1542 struct perf_event_context *ctx = event->ctx;
1543 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1544
1545 /*
1546 * If this is a per-task event, need to check whether this
1547 * event's task is the current task on this cpu.
1548 *
1549 * Can trigger due to concurrent perf_event_context_sched_out()
1550 * flipping contexts around.
1551 */
1552 if (ctx->task && cpuctx->task_ctx != ctx)
1553 return -EINVAL;
1554
1555 raw_spin_lock(&ctx->lock);
1556
1557 /*
1558 * If the event is on, turn it off.
1559 * If it is in error state, leave it in error state.
1560 */
1561 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1562 update_context_time(ctx);
1563 update_cgrp_time_from_event(event);
1564 update_group_times(event);
1565 if (event == event->group_leader)
1566 group_sched_out(event, cpuctx, ctx);
1567 else
1568 event_sched_out(event, cpuctx, ctx);
1569 event->state = PERF_EVENT_STATE_OFF;
1570 }
1571
1572 raw_spin_unlock(&ctx->lock);
1573
1574 return 0;
1575 }
1576
1577 /*
1578 * Disable a event.
1579 *
1580 * If event->ctx is a cloned context, callers must make sure that
1581 * every task struct that event->ctx->task could possibly point to
1582 * remains valid. This condition is satisifed when called through
1583 * perf_event_for_each_child or perf_event_for_each because they
1584 * hold the top-level event's child_mutex, so any descendant that
1585 * goes to exit will block in sync_child_event.
1586 * When called from perf_pending_event it's OK because event->ctx
1587 * is the current context on this CPU and preemption is disabled,
1588 * hence we can't get into perf_event_task_sched_out for this context.
1589 */
1590 void perf_event_disable(struct perf_event *event)
1591 {
1592 struct perf_event_context *ctx = event->ctx;
1593 struct task_struct *task = ctx->task;
1594
1595 if (!task) {
1596 /*
1597 * Disable the event on the cpu that it's on
1598 */
1599 cpu_function_call(event->cpu, __perf_event_disable, event);
1600 return;
1601 }
1602
1603 retry:
1604 if (!task_function_call(task, __perf_event_disable, event))
1605 return;
1606
1607 raw_spin_lock_irq(&ctx->lock);
1608 /*
1609 * If the event is still active, we need to retry the cross-call.
1610 */
1611 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1612 raw_spin_unlock_irq(&ctx->lock);
1613 /*
1614 * Reload the task pointer, it might have been changed by
1615 * a concurrent perf_event_context_sched_out().
1616 */
1617 task = ctx->task;
1618 goto retry;
1619 }
1620
1621 /*
1622 * Since we have the lock this context can't be scheduled
1623 * in, so we can change the state safely.
1624 */
1625 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1626 update_group_times(event);
1627 event->state = PERF_EVENT_STATE_OFF;
1628 }
1629 raw_spin_unlock_irq(&ctx->lock);
1630 }
1631 EXPORT_SYMBOL_GPL(perf_event_disable);
1632
1633 static void perf_set_shadow_time(struct perf_event *event,
1634 struct perf_event_context *ctx,
1635 u64 tstamp)
1636 {
1637 /*
1638 * use the correct time source for the time snapshot
1639 *
1640 * We could get by without this by leveraging the
1641 * fact that to get to this function, the caller
1642 * has most likely already called update_context_time()
1643 * and update_cgrp_time_xx() and thus both timestamp
1644 * are identical (or very close). Given that tstamp is,
1645 * already adjusted for cgroup, we could say that:
1646 * tstamp - ctx->timestamp
1647 * is equivalent to
1648 * tstamp - cgrp->timestamp.
1649 *
1650 * Then, in perf_output_read(), the calculation would
1651 * work with no changes because:
1652 * - event is guaranteed scheduled in
1653 * - no scheduled out in between
1654 * - thus the timestamp would be the same
1655 *
1656 * But this is a bit hairy.
1657 *
1658 * So instead, we have an explicit cgroup call to remain
1659 * within the time time source all along. We believe it
1660 * is cleaner and simpler to understand.
1661 */
1662 if (is_cgroup_event(event))
1663 perf_cgroup_set_shadow_time(event, tstamp);
1664 else
1665 event->shadow_ctx_time = tstamp - ctx->timestamp;
1666 }
1667
1668 #define MAX_INTERRUPTS (~0ULL)
1669
1670 static void perf_log_throttle(struct perf_event *event, int enable);
1671
1672 static int
1673 event_sched_in(struct perf_event *event,
1674 struct perf_cpu_context *cpuctx,
1675 struct perf_event_context *ctx)
1676 {
1677 u64 tstamp = perf_event_time(event);
1678 int ret = 0;
1679
1680 if (event->state <= PERF_EVENT_STATE_OFF)
1681 return 0;
1682
1683 event->state = PERF_EVENT_STATE_ACTIVE;
1684 event->oncpu = smp_processor_id();
1685
1686 /*
1687 * Unthrottle events, since we scheduled we might have missed several
1688 * ticks already, also for a heavily scheduling task there is little
1689 * guarantee it'll get a tick in a timely manner.
1690 */
1691 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1692 perf_log_throttle(event, 1);
1693 event->hw.interrupts = 0;
1694 }
1695
1696 /*
1697 * The new state must be visible before we turn it on in the hardware:
1698 */
1699 smp_wmb();
1700
1701 perf_pmu_disable(event->pmu);
1702
1703 if (event->pmu->add(event, PERF_EF_START)) {
1704 event->state = PERF_EVENT_STATE_INACTIVE;
1705 event->oncpu = -1;
1706 ret = -EAGAIN;
1707 goto out;
1708 }
1709
1710 event->tstamp_running += tstamp - event->tstamp_stopped;
1711
1712 perf_set_shadow_time(event, ctx, tstamp);
1713
1714 if (!is_software_event(event))
1715 cpuctx->active_oncpu++;
1716 ctx->nr_active++;
1717 if (event->attr.freq && event->attr.sample_freq)
1718 ctx->nr_freq++;
1719
1720 if (event->attr.exclusive)
1721 cpuctx->exclusive = 1;
1722
1723 out:
1724 perf_pmu_enable(event->pmu);
1725
1726 return ret;
1727 }
1728
1729 static int
1730 group_sched_in(struct perf_event *group_event,
1731 struct perf_cpu_context *cpuctx,
1732 struct perf_event_context *ctx)
1733 {
1734 struct perf_event *event, *partial_group = NULL;
1735 struct pmu *pmu = ctx->pmu;
1736 u64 now = ctx->time;
1737 bool simulate = false;
1738
1739 if (group_event->state == PERF_EVENT_STATE_OFF)
1740 return 0;
1741
1742 pmu->start_txn(pmu);
1743
1744 if (event_sched_in(group_event, cpuctx, ctx)) {
1745 pmu->cancel_txn(pmu);
1746 perf_cpu_hrtimer_restart(cpuctx);
1747 return -EAGAIN;
1748 }
1749
1750 /*
1751 * Schedule in siblings as one group (if any):
1752 */
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1754 if (event_sched_in(event, cpuctx, ctx)) {
1755 partial_group = event;
1756 goto group_error;
1757 }
1758 }
1759
1760 if (!pmu->commit_txn(pmu))
1761 return 0;
1762
1763 group_error:
1764 /*
1765 * Groups can be scheduled in as one unit only, so undo any
1766 * partial group before returning:
1767 * The events up to the failed event are scheduled out normally,
1768 * tstamp_stopped will be updated.
1769 *
1770 * The failed events and the remaining siblings need to have
1771 * their timings updated as if they had gone thru event_sched_in()
1772 * and event_sched_out(). This is required to get consistent timings
1773 * across the group. This also takes care of the case where the group
1774 * could never be scheduled by ensuring tstamp_stopped is set to mark
1775 * the time the event was actually stopped, such that time delta
1776 * calculation in update_event_times() is correct.
1777 */
1778 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1779 if (event == partial_group)
1780 simulate = true;
1781
1782 if (simulate) {
1783 event->tstamp_running += now - event->tstamp_stopped;
1784 event->tstamp_stopped = now;
1785 } else {
1786 event_sched_out(event, cpuctx, ctx);
1787 }
1788 }
1789 event_sched_out(group_event, cpuctx, ctx);
1790
1791 pmu->cancel_txn(pmu);
1792
1793 perf_cpu_hrtimer_restart(cpuctx);
1794
1795 return -EAGAIN;
1796 }
1797
1798 /*
1799 * Work out whether we can put this event group on the CPU now.
1800 */
1801 static int group_can_go_on(struct perf_event *event,
1802 struct perf_cpu_context *cpuctx,
1803 int can_add_hw)
1804 {
1805 /*
1806 * Groups consisting entirely of software events can always go on.
1807 */
1808 if (event->group_flags & PERF_GROUP_SOFTWARE)
1809 return 1;
1810 /*
1811 * If an exclusive group is already on, no other hardware
1812 * events can go on.
1813 */
1814 if (cpuctx->exclusive)
1815 return 0;
1816 /*
1817 * If this group is exclusive and there are already
1818 * events on the CPU, it can't go on.
1819 */
1820 if (event->attr.exclusive && cpuctx->active_oncpu)
1821 return 0;
1822 /*
1823 * Otherwise, try to add it if all previous groups were able
1824 * to go on.
1825 */
1826 return can_add_hw;
1827 }
1828
1829 static void add_event_to_ctx(struct perf_event *event,
1830 struct perf_event_context *ctx)
1831 {
1832 u64 tstamp = perf_event_time(event);
1833
1834 list_add_event(event, ctx);
1835 perf_group_attach(event);
1836 event->tstamp_enabled = tstamp;
1837 event->tstamp_running = tstamp;
1838 event->tstamp_stopped = tstamp;
1839 }
1840
1841 static void task_ctx_sched_out(struct perf_event_context *ctx);
1842 static void
1843 ctx_sched_in(struct perf_event_context *ctx,
1844 struct perf_cpu_context *cpuctx,
1845 enum event_type_t event_type,
1846 struct task_struct *task);
1847
1848 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1849 struct perf_event_context *ctx,
1850 struct task_struct *task)
1851 {
1852 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1853 if (ctx)
1854 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1855 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1856 if (ctx)
1857 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1858 }
1859
1860 /*
1861 * Cross CPU call to install and enable a performance event
1862 *
1863 * Must be called with ctx->mutex held
1864 */
1865 static int __perf_install_in_context(void *info)
1866 {
1867 struct perf_event *event = info;
1868 struct perf_event_context *ctx = event->ctx;
1869 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1870 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1871 struct task_struct *task = current;
1872
1873 perf_ctx_lock(cpuctx, task_ctx);
1874 perf_pmu_disable(cpuctx->ctx.pmu);
1875
1876 /*
1877 * If there was an active task_ctx schedule it out.
1878 */
1879 if (task_ctx)
1880 task_ctx_sched_out(task_ctx);
1881
1882 /*
1883 * If the context we're installing events in is not the
1884 * active task_ctx, flip them.
1885 */
1886 if (ctx->task && task_ctx != ctx) {
1887 if (task_ctx)
1888 raw_spin_unlock(&task_ctx->lock);
1889 raw_spin_lock(&ctx->lock);
1890 task_ctx = ctx;
1891 }
1892
1893 if (task_ctx) {
1894 cpuctx->task_ctx = task_ctx;
1895 task = task_ctx->task;
1896 }
1897
1898 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1899
1900 update_context_time(ctx);
1901 /*
1902 * update cgrp time only if current cgrp
1903 * matches event->cgrp. Must be done before
1904 * calling add_event_to_ctx()
1905 */
1906 update_cgrp_time_from_event(event);
1907
1908 add_event_to_ctx(event, ctx);
1909
1910 /*
1911 * Schedule everything back in
1912 */
1913 perf_event_sched_in(cpuctx, task_ctx, task);
1914
1915 perf_pmu_enable(cpuctx->ctx.pmu);
1916 perf_ctx_unlock(cpuctx, task_ctx);
1917
1918 return 0;
1919 }
1920
1921 /*
1922 * Attach a performance event to a context
1923 *
1924 * First we add the event to the list with the hardware enable bit
1925 * in event->hw_config cleared.
1926 *
1927 * If the event is attached to a task which is on a CPU we use a smp
1928 * call to enable it in the task context. The task might have been
1929 * scheduled away, but we check this in the smp call again.
1930 */
1931 static void
1932 perf_install_in_context(struct perf_event_context *ctx,
1933 struct perf_event *event,
1934 int cpu)
1935 {
1936 struct task_struct *task = ctx->task;
1937
1938 lockdep_assert_held(&ctx->mutex);
1939
1940 event->ctx = ctx;
1941 if (event->cpu != -1)
1942 event->cpu = cpu;
1943
1944 if (!task) {
1945 /*
1946 * Per cpu events are installed via an smp call and
1947 * the install is always successful.
1948 */
1949 cpu_function_call(cpu, __perf_install_in_context, event);
1950 return;
1951 }
1952
1953 retry:
1954 if (!task_function_call(task, __perf_install_in_context, event))
1955 return;
1956
1957 raw_spin_lock_irq(&ctx->lock);
1958 /*
1959 * If we failed to find a running task, but find the context active now
1960 * that we've acquired the ctx->lock, retry.
1961 */
1962 if (ctx->is_active) {
1963 raw_spin_unlock_irq(&ctx->lock);
1964 goto retry;
1965 }
1966
1967 /*
1968 * Since the task isn't running, its safe to add the event, us holding
1969 * the ctx->lock ensures the task won't get scheduled in.
1970 */
1971 add_event_to_ctx(event, ctx);
1972 raw_spin_unlock_irq(&ctx->lock);
1973 }
1974
1975 /*
1976 * Put a event into inactive state and update time fields.
1977 * Enabling the leader of a group effectively enables all
1978 * the group members that aren't explicitly disabled, so we
1979 * have to update their ->tstamp_enabled also.
1980 * Note: this works for group members as well as group leaders
1981 * since the non-leader members' sibling_lists will be empty.
1982 */
1983 static void __perf_event_mark_enabled(struct perf_event *event)
1984 {
1985 struct perf_event *sub;
1986 u64 tstamp = perf_event_time(event);
1987
1988 event->state = PERF_EVENT_STATE_INACTIVE;
1989 event->tstamp_enabled = tstamp - event->total_time_enabled;
1990 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1991 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1992 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1993 }
1994 }
1995
1996 /*
1997 * Cross CPU call to enable a performance event
1998 */
1999 static int __perf_event_enable(void *info)
2000 {
2001 struct perf_event *event = info;
2002 struct perf_event_context *ctx = event->ctx;
2003 struct perf_event *leader = event->group_leader;
2004 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2005 int err;
2006
2007 /*
2008 * There's a time window between 'ctx->is_active' check
2009 * in perf_event_enable function and this place having:
2010 * - IRQs on
2011 * - ctx->lock unlocked
2012 *
2013 * where the task could be killed and 'ctx' deactivated
2014 * by perf_event_exit_task.
2015 */
2016 if (!ctx->is_active)
2017 return -EINVAL;
2018
2019 raw_spin_lock(&ctx->lock);
2020 update_context_time(ctx);
2021
2022 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2023 goto unlock;
2024
2025 /*
2026 * set current task's cgroup time reference point
2027 */
2028 perf_cgroup_set_timestamp(current, ctx);
2029
2030 __perf_event_mark_enabled(event);
2031
2032 if (!event_filter_match(event)) {
2033 if (is_cgroup_event(event))
2034 perf_cgroup_defer_enabled(event);
2035 goto unlock;
2036 }
2037
2038 /*
2039 * If the event is in a group and isn't the group leader,
2040 * then don't put it on unless the group is on.
2041 */
2042 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2043 goto unlock;
2044
2045 if (!group_can_go_on(event, cpuctx, 1)) {
2046 err = -EEXIST;
2047 } else {
2048 if (event == leader)
2049 err = group_sched_in(event, cpuctx, ctx);
2050 else
2051 err = event_sched_in(event, cpuctx, ctx);
2052 }
2053
2054 if (err) {
2055 /*
2056 * If this event can't go on and it's part of a
2057 * group, then the whole group has to come off.
2058 */
2059 if (leader != event) {
2060 group_sched_out(leader, cpuctx, ctx);
2061 perf_cpu_hrtimer_restart(cpuctx);
2062 }
2063 if (leader->attr.pinned) {
2064 update_group_times(leader);
2065 leader->state = PERF_EVENT_STATE_ERROR;
2066 }
2067 }
2068
2069 unlock:
2070 raw_spin_unlock(&ctx->lock);
2071
2072 return 0;
2073 }
2074
2075 /*
2076 * Enable a event.
2077 *
2078 * If event->ctx is a cloned context, callers must make sure that
2079 * every task struct that event->ctx->task could possibly point to
2080 * remains valid. This condition is satisfied when called through
2081 * perf_event_for_each_child or perf_event_for_each as described
2082 * for perf_event_disable.
2083 */
2084 void perf_event_enable(struct perf_event *event)
2085 {
2086 struct perf_event_context *ctx = event->ctx;
2087 struct task_struct *task = ctx->task;
2088
2089 if (!task) {
2090 /*
2091 * Enable the event on the cpu that it's on
2092 */
2093 cpu_function_call(event->cpu, __perf_event_enable, event);
2094 return;
2095 }
2096
2097 raw_spin_lock_irq(&ctx->lock);
2098 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2099 goto out;
2100
2101 /*
2102 * If the event is in error state, clear that first.
2103 * That way, if we see the event in error state below, we
2104 * know that it has gone back into error state, as distinct
2105 * from the task having been scheduled away before the
2106 * cross-call arrived.
2107 */
2108 if (event->state == PERF_EVENT_STATE_ERROR)
2109 event->state = PERF_EVENT_STATE_OFF;
2110
2111 retry:
2112 if (!ctx->is_active) {
2113 __perf_event_mark_enabled(event);
2114 goto out;
2115 }
2116
2117 raw_spin_unlock_irq(&ctx->lock);
2118
2119 if (!task_function_call(task, __perf_event_enable, event))
2120 return;
2121
2122 raw_spin_lock_irq(&ctx->lock);
2123
2124 /*
2125 * If the context is active and the event is still off,
2126 * we need to retry the cross-call.
2127 */
2128 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2129 /*
2130 * task could have been flipped by a concurrent
2131 * perf_event_context_sched_out()
2132 */
2133 task = ctx->task;
2134 goto retry;
2135 }
2136
2137 out:
2138 raw_spin_unlock_irq(&ctx->lock);
2139 }
2140 EXPORT_SYMBOL_GPL(perf_event_enable);
2141
2142 int perf_event_refresh(struct perf_event *event, int refresh)
2143 {
2144 /*
2145 * not supported on inherited events
2146 */
2147 if (event->attr.inherit || !is_sampling_event(event))
2148 return -EINVAL;
2149
2150 atomic_add(refresh, &event->event_limit);
2151 perf_event_enable(event);
2152
2153 return 0;
2154 }
2155 EXPORT_SYMBOL_GPL(perf_event_refresh);
2156
2157 static void ctx_sched_out(struct perf_event_context *ctx,
2158 struct perf_cpu_context *cpuctx,
2159 enum event_type_t event_type)
2160 {
2161 struct perf_event *event;
2162 int is_active = ctx->is_active;
2163
2164 ctx->is_active &= ~event_type;
2165 if (likely(!ctx->nr_events))
2166 return;
2167
2168 update_context_time(ctx);
2169 update_cgrp_time_from_cpuctx(cpuctx);
2170 if (!ctx->nr_active)
2171 return;
2172
2173 perf_pmu_disable(ctx->pmu);
2174 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2175 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2176 group_sched_out(event, cpuctx, ctx);
2177 }
2178
2179 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2180 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2181 group_sched_out(event, cpuctx, ctx);
2182 }
2183 perf_pmu_enable(ctx->pmu);
2184 }
2185
2186 /*
2187 * Test whether two contexts are equivalent, i.e. whether they have both been
2188 * cloned from the same version of the same context.
2189 *
2190 * Equivalence is measured using a generation number in the context that is
2191 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2192 * and list_del_event().
2193 */
2194 static int context_equiv(struct perf_event_context *ctx1,
2195 struct perf_event_context *ctx2)
2196 {
2197 /* Pinning disables the swap optimization */
2198 if (ctx1->pin_count || ctx2->pin_count)
2199 return 0;
2200
2201 /* If ctx1 is the parent of ctx2 */
2202 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2203 return 1;
2204
2205 /* If ctx2 is the parent of ctx1 */
2206 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2207 return 1;
2208
2209 /*
2210 * If ctx1 and ctx2 have the same parent; we flatten the parent
2211 * hierarchy, see perf_event_init_context().
2212 */
2213 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2214 ctx1->parent_gen == ctx2->parent_gen)
2215 return 1;
2216
2217 /* Unmatched */
2218 return 0;
2219 }
2220
2221 static void __perf_event_sync_stat(struct perf_event *event,
2222 struct perf_event *next_event)
2223 {
2224 u64 value;
2225
2226 if (!event->attr.inherit_stat)
2227 return;
2228
2229 /*
2230 * Update the event value, we cannot use perf_event_read()
2231 * because we're in the middle of a context switch and have IRQs
2232 * disabled, which upsets smp_call_function_single(), however
2233 * we know the event must be on the current CPU, therefore we
2234 * don't need to use it.
2235 */
2236 switch (event->state) {
2237 case PERF_EVENT_STATE_ACTIVE:
2238 event->pmu->read(event);
2239 /* fall-through */
2240
2241 case PERF_EVENT_STATE_INACTIVE:
2242 update_event_times(event);
2243 break;
2244
2245 default:
2246 break;
2247 }
2248
2249 /*
2250 * In order to keep per-task stats reliable we need to flip the event
2251 * values when we flip the contexts.
2252 */
2253 value = local64_read(&next_event->count);
2254 value = local64_xchg(&event->count, value);
2255 local64_set(&next_event->count, value);
2256
2257 swap(event->total_time_enabled, next_event->total_time_enabled);
2258 swap(event->total_time_running, next_event->total_time_running);
2259
2260 /*
2261 * Since we swizzled the values, update the user visible data too.
2262 */
2263 perf_event_update_userpage(event);
2264 perf_event_update_userpage(next_event);
2265 }
2266
2267 static void perf_event_sync_stat(struct perf_event_context *ctx,
2268 struct perf_event_context *next_ctx)
2269 {
2270 struct perf_event *event, *next_event;
2271
2272 if (!ctx->nr_stat)
2273 return;
2274
2275 update_context_time(ctx);
2276
2277 event = list_first_entry(&ctx->event_list,
2278 struct perf_event, event_entry);
2279
2280 next_event = list_first_entry(&next_ctx->event_list,
2281 struct perf_event, event_entry);
2282
2283 while (&event->event_entry != &ctx->event_list &&
2284 &next_event->event_entry != &next_ctx->event_list) {
2285
2286 __perf_event_sync_stat(event, next_event);
2287
2288 event = list_next_entry(event, event_entry);
2289 next_event = list_next_entry(next_event, event_entry);
2290 }
2291 }
2292
2293 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2294 struct task_struct *next)
2295 {
2296 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2297 struct perf_event_context *next_ctx;
2298 struct perf_event_context *parent, *next_parent;
2299 struct perf_cpu_context *cpuctx;
2300 int do_switch = 1;
2301
2302 if (likely(!ctx))
2303 return;
2304
2305 cpuctx = __get_cpu_context(ctx);
2306 if (!cpuctx->task_ctx)
2307 return;
2308
2309 rcu_read_lock();
2310 next_ctx = next->perf_event_ctxp[ctxn];
2311 if (!next_ctx)
2312 goto unlock;
2313
2314 parent = rcu_dereference(ctx->parent_ctx);
2315 next_parent = rcu_dereference(next_ctx->parent_ctx);
2316
2317 /* If neither context have a parent context; they cannot be clones. */
2318 if (!parent && !next_parent)
2319 goto unlock;
2320
2321 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2322 /*
2323 * Looks like the two contexts are clones, so we might be
2324 * able to optimize the context switch. We lock both
2325 * contexts and check that they are clones under the
2326 * lock (including re-checking that neither has been
2327 * uncloned in the meantime). It doesn't matter which
2328 * order we take the locks because no other cpu could
2329 * be trying to lock both of these tasks.
2330 */
2331 raw_spin_lock(&ctx->lock);
2332 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2333 if (context_equiv(ctx, next_ctx)) {
2334 /*
2335 * XXX do we need a memory barrier of sorts
2336 * wrt to rcu_dereference() of perf_event_ctxp
2337 */
2338 task->perf_event_ctxp[ctxn] = next_ctx;
2339 next->perf_event_ctxp[ctxn] = ctx;
2340 ctx->task = next;
2341 next_ctx->task = task;
2342 do_switch = 0;
2343
2344 perf_event_sync_stat(ctx, next_ctx);
2345 }
2346 raw_spin_unlock(&next_ctx->lock);
2347 raw_spin_unlock(&ctx->lock);
2348 }
2349 unlock:
2350 rcu_read_unlock();
2351
2352 if (do_switch) {
2353 raw_spin_lock(&ctx->lock);
2354 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2355 cpuctx->task_ctx = NULL;
2356 raw_spin_unlock(&ctx->lock);
2357 }
2358 }
2359
2360 #define for_each_task_context_nr(ctxn) \
2361 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2362
2363 /*
2364 * Called from scheduler to remove the events of the current task,
2365 * with interrupts disabled.
2366 *
2367 * We stop each event and update the event value in event->count.
2368 *
2369 * This does not protect us against NMI, but disable()
2370 * sets the disabled bit in the control field of event _before_
2371 * accessing the event control register. If a NMI hits, then it will
2372 * not restart the event.
2373 */
2374 void __perf_event_task_sched_out(struct task_struct *task,
2375 struct task_struct *next)
2376 {
2377 int ctxn;
2378
2379 for_each_task_context_nr(ctxn)
2380 perf_event_context_sched_out(task, ctxn, next);
2381
2382 /*
2383 * if cgroup events exist on this CPU, then we need
2384 * to check if we have to switch out PMU state.
2385 * cgroup event are system-wide mode only
2386 */
2387 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2388 perf_cgroup_sched_out(task, next);
2389 }
2390
2391 static void task_ctx_sched_out(struct perf_event_context *ctx)
2392 {
2393 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2394
2395 if (!cpuctx->task_ctx)
2396 return;
2397
2398 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2399 return;
2400
2401 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2402 cpuctx->task_ctx = NULL;
2403 }
2404
2405 /*
2406 * Called with IRQs disabled
2407 */
2408 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2409 enum event_type_t event_type)
2410 {
2411 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2412 }
2413
2414 static void
2415 ctx_pinned_sched_in(struct perf_event_context *ctx,
2416 struct perf_cpu_context *cpuctx)
2417 {
2418 struct perf_event *event;
2419
2420 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2421 if (event->state <= PERF_EVENT_STATE_OFF)
2422 continue;
2423 if (!event_filter_match(event))
2424 continue;
2425
2426 /* may need to reset tstamp_enabled */
2427 if (is_cgroup_event(event))
2428 perf_cgroup_mark_enabled(event, ctx);
2429
2430 if (group_can_go_on(event, cpuctx, 1))
2431 group_sched_in(event, cpuctx, ctx);
2432
2433 /*
2434 * If this pinned group hasn't been scheduled,
2435 * put it in error state.
2436 */
2437 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2438 update_group_times(event);
2439 event->state = PERF_EVENT_STATE_ERROR;
2440 }
2441 }
2442 }
2443
2444 static void
2445 ctx_flexible_sched_in(struct perf_event_context *ctx,
2446 struct perf_cpu_context *cpuctx)
2447 {
2448 struct perf_event *event;
2449 int can_add_hw = 1;
2450
2451 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2452 /* Ignore events in OFF or ERROR state */
2453 if (event->state <= PERF_EVENT_STATE_OFF)
2454 continue;
2455 /*
2456 * Listen to the 'cpu' scheduling filter constraint
2457 * of events:
2458 */
2459 if (!event_filter_match(event))
2460 continue;
2461
2462 /* may need to reset tstamp_enabled */
2463 if (is_cgroup_event(event))
2464 perf_cgroup_mark_enabled(event, ctx);
2465
2466 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2467 if (group_sched_in(event, cpuctx, ctx))
2468 can_add_hw = 0;
2469 }
2470 }
2471 }
2472
2473 static void
2474 ctx_sched_in(struct perf_event_context *ctx,
2475 struct perf_cpu_context *cpuctx,
2476 enum event_type_t event_type,
2477 struct task_struct *task)
2478 {
2479 u64 now;
2480 int is_active = ctx->is_active;
2481
2482 ctx->is_active |= event_type;
2483 if (likely(!ctx->nr_events))
2484 return;
2485
2486 now = perf_clock();
2487 ctx->timestamp = now;
2488 perf_cgroup_set_timestamp(task, ctx);
2489 /*
2490 * First go through the list and put on any pinned groups
2491 * in order to give them the best chance of going on.
2492 */
2493 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2494 ctx_pinned_sched_in(ctx, cpuctx);
2495
2496 /* Then walk through the lower prio flexible groups */
2497 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2498 ctx_flexible_sched_in(ctx, cpuctx);
2499 }
2500
2501 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2502 enum event_type_t event_type,
2503 struct task_struct *task)
2504 {
2505 struct perf_event_context *ctx = &cpuctx->ctx;
2506
2507 ctx_sched_in(ctx, cpuctx, event_type, task);
2508 }
2509
2510 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2511 struct task_struct *task)
2512 {
2513 struct perf_cpu_context *cpuctx;
2514
2515 cpuctx = __get_cpu_context(ctx);
2516 if (cpuctx->task_ctx == ctx)
2517 return;
2518
2519 perf_ctx_lock(cpuctx, ctx);
2520 perf_pmu_disable(ctx->pmu);
2521 /*
2522 * We want to keep the following priority order:
2523 * cpu pinned (that don't need to move), task pinned,
2524 * cpu flexible, task flexible.
2525 */
2526 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2527
2528 if (ctx->nr_events)
2529 cpuctx->task_ctx = ctx;
2530
2531 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2532
2533 perf_pmu_enable(ctx->pmu);
2534 perf_ctx_unlock(cpuctx, ctx);
2535
2536 /*
2537 * Since these rotations are per-cpu, we need to ensure the
2538 * cpu-context we got scheduled on is actually rotating.
2539 */
2540 perf_pmu_rotate_start(ctx->pmu);
2541 }
2542
2543 /*
2544 * When sampling the branck stack in system-wide, it may be necessary
2545 * to flush the stack on context switch. This happens when the branch
2546 * stack does not tag its entries with the pid of the current task.
2547 * Otherwise it becomes impossible to associate a branch entry with a
2548 * task. This ambiguity is more likely to appear when the branch stack
2549 * supports priv level filtering and the user sets it to monitor only
2550 * at the user level (which could be a useful measurement in system-wide
2551 * mode). In that case, the risk is high of having a branch stack with
2552 * branch from multiple tasks. Flushing may mean dropping the existing
2553 * entries or stashing them somewhere in the PMU specific code layer.
2554 *
2555 * This function provides the context switch callback to the lower code
2556 * layer. It is invoked ONLY when there is at least one system-wide context
2557 * with at least one active event using taken branch sampling.
2558 */
2559 static void perf_branch_stack_sched_in(struct task_struct *prev,
2560 struct task_struct *task)
2561 {
2562 struct perf_cpu_context *cpuctx;
2563 struct pmu *pmu;
2564 unsigned long flags;
2565
2566 /* no need to flush branch stack if not changing task */
2567 if (prev == task)
2568 return;
2569
2570 local_irq_save(flags);
2571
2572 rcu_read_lock();
2573
2574 list_for_each_entry_rcu(pmu, &pmus, entry) {
2575 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2576
2577 /*
2578 * check if the context has at least one
2579 * event using PERF_SAMPLE_BRANCH_STACK
2580 */
2581 if (cpuctx->ctx.nr_branch_stack > 0
2582 && pmu->flush_branch_stack) {
2583
2584 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2585
2586 perf_pmu_disable(pmu);
2587
2588 pmu->flush_branch_stack();
2589
2590 perf_pmu_enable(pmu);
2591
2592 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2593 }
2594 }
2595
2596 rcu_read_unlock();
2597
2598 local_irq_restore(flags);
2599 }
2600
2601 /*
2602 * Called from scheduler to add the events of the current task
2603 * with interrupts disabled.
2604 *
2605 * We restore the event value and then enable it.
2606 *
2607 * This does not protect us against NMI, but enable()
2608 * sets the enabled bit in the control field of event _before_
2609 * accessing the event control register. If a NMI hits, then it will
2610 * keep the event running.
2611 */
2612 void __perf_event_task_sched_in(struct task_struct *prev,
2613 struct task_struct *task)
2614 {
2615 struct perf_event_context *ctx;
2616 int ctxn;
2617
2618 for_each_task_context_nr(ctxn) {
2619 ctx = task->perf_event_ctxp[ctxn];
2620 if (likely(!ctx))
2621 continue;
2622
2623 perf_event_context_sched_in(ctx, task);
2624 }
2625 /*
2626 * if cgroup events exist on this CPU, then we need
2627 * to check if we have to switch in PMU state.
2628 * cgroup event are system-wide mode only
2629 */
2630 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2631 perf_cgroup_sched_in(prev, task);
2632
2633 /* check for system-wide branch_stack events */
2634 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2635 perf_branch_stack_sched_in(prev, task);
2636 }
2637
2638 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2639 {
2640 u64 frequency = event->attr.sample_freq;
2641 u64 sec = NSEC_PER_SEC;
2642 u64 divisor, dividend;
2643
2644 int count_fls, nsec_fls, frequency_fls, sec_fls;
2645
2646 count_fls = fls64(count);
2647 nsec_fls = fls64(nsec);
2648 frequency_fls = fls64(frequency);
2649 sec_fls = 30;
2650
2651 /*
2652 * We got @count in @nsec, with a target of sample_freq HZ
2653 * the target period becomes:
2654 *
2655 * @count * 10^9
2656 * period = -------------------
2657 * @nsec * sample_freq
2658 *
2659 */
2660
2661 /*
2662 * Reduce accuracy by one bit such that @a and @b converge
2663 * to a similar magnitude.
2664 */
2665 #define REDUCE_FLS(a, b) \
2666 do { \
2667 if (a##_fls > b##_fls) { \
2668 a >>= 1; \
2669 a##_fls--; \
2670 } else { \
2671 b >>= 1; \
2672 b##_fls--; \
2673 } \
2674 } while (0)
2675
2676 /*
2677 * Reduce accuracy until either term fits in a u64, then proceed with
2678 * the other, so that finally we can do a u64/u64 division.
2679 */
2680 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2681 REDUCE_FLS(nsec, frequency);
2682 REDUCE_FLS(sec, count);
2683 }
2684
2685 if (count_fls + sec_fls > 64) {
2686 divisor = nsec * frequency;
2687
2688 while (count_fls + sec_fls > 64) {
2689 REDUCE_FLS(count, sec);
2690 divisor >>= 1;
2691 }
2692
2693 dividend = count * sec;
2694 } else {
2695 dividend = count * sec;
2696
2697 while (nsec_fls + frequency_fls > 64) {
2698 REDUCE_FLS(nsec, frequency);
2699 dividend >>= 1;
2700 }
2701
2702 divisor = nsec * frequency;
2703 }
2704
2705 if (!divisor)
2706 return dividend;
2707
2708 return div64_u64(dividend, divisor);
2709 }
2710
2711 static DEFINE_PER_CPU(int, perf_throttled_count);
2712 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2713
2714 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2715 {
2716 struct hw_perf_event *hwc = &event->hw;
2717 s64 period, sample_period;
2718 s64 delta;
2719
2720 period = perf_calculate_period(event, nsec, count);
2721
2722 delta = (s64)(period - hwc->sample_period);
2723 delta = (delta + 7) / 8; /* low pass filter */
2724
2725 sample_period = hwc->sample_period + delta;
2726
2727 if (!sample_period)
2728 sample_period = 1;
2729
2730 hwc->sample_period = sample_period;
2731
2732 if (local64_read(&hwc->period_left) > 8*sample_period) {
2733 if (disable)
2734 event->pmu->stop(event, PERF_EF_UPDATE);
2735
2736 local64_set(&hwc->period_left, 0);
2737
2738 if (disable)
2739 event->pmu->start(event, PERF_EF_RELOAD);
2740 }
2741 }
2742
2743 /*
2744 * combine freq adjustment with unthrottling to avoid two passes over the
2745 * events. At the same time, make sure, having freq events does not change
2746 * the rate of unthrottling as that would introduce bias.
2747 */
2748 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2749 int needs_unthr)
2750 {
2751 struct perf_event *event;
2752 struct hw_perf_event *hwc;
2753 u64 now, period = TICK_NSEC;
2754 s64 delta;
2755
2756 /*
2757 * only need to iterate over all events iff:
2758 * - context have events in frequency mode (needs freq adjust)
2759 * - there are events to unthrottle on this cpu
2760 */
2761 if (!(ctx->nr_freq || needs_unthr))
2762 return;
2763
2764 raw_spin_lock(&ctx->lock);
2765 perf_pmu_disable(ctx->pmu);
2766
2767 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2768 if (event->state != PERF_EVENT_STATE_ACTIVE)
2769 continue;
2770
2771 if (!event_filter_match(event))
2772 continue;
2773
2774 perf_pmu_disable(event->pmu);
2775
2776 hwc = &event->hw;
2777
2778 if (hwc->interrupts == MAX_INTERRUPTS) {
2779 hwc->interrupts = 0;
2780 perf_log_throttle(event, 1);
2781 event->pmu->start(event, 0);
2782 }
2783
2784 if (!event->attr.freq || !event->attr.sample_freq)
2785 goto next;
2786
2787 /*
2788 * stop the event and update event->count
2789 */
2790 event->pmu->stop(event, PERF_EF_UPDATE);
2791
2792 now = local64_read(&event->count);
2793 delta = now - hwc->freq_count_stamp;
2794 hwc->freq_count_stamp = now;
2795
2796 /*
2797 * restart the event
2798 * reload only if value has changed
2799 * we have stopped the event so tell that
2800 * to perf_adjust_period() to avoid stopping it
2801 * twice.
2802 */
2803 if (delta > 0)
2804 perf_adjust_period(event, period, delta, false);
2805
2806 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2807 next:
2808 perf_pmu_enable(event->pmu);
2809 }
2810
2811 perf_pmu_enable(ctx->pmu);
2812 raw_spin_unlock(&ctx->lock);
2813 }
2814
2815 /*
2816 * Round-robin a context's events:
2817 */
2818 static void rotate_ctx(struct perf_event_context *ctx)
2819 {
2820 /*
2821 * Rotate the first entry last of non-pinned groups. Rotation might be
2822 * disabled by the inheritance code.
2823 */
2824 if (!ctx->rotate_disable)
2825 list_rotate_left(&ctx->flexible_groups);
2826 }
2827
2828 /*
2829 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2830 * because they're strictly cpu affine and rotate_start is called with IRQs
2831 * disabled, while rotate_context is called from IRQ context.
2832 */
2833 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2834 {
2835 struct perf_event_context *ctx = NULL;
2836 int rotate = 0, remove = 1;
2837
2838 if (cpuctx->ctx.nr_events) {
2839 remove = 0;
2840 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2841 rotate = 1;
2842 }
2843
2844 ctx = cpuctx->task_ctx;
2845 if (ctx && ctx->nr_events) {
2846 remove = 0;
2847 if (ctx->nr_events != ctx->nr_active)
2848 rotate = 1;
2849 }
2850
2851 if (!rotate)
2852 goto done;
2853
2854 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2855 perf_pmu_disable(cpuctx->ctx.pmu);
2856
2857 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2858 if (ctx)
2859 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2860
2861 rotate_ctx(&cpuctx->ctx);
2862 if (ctx)
2863 rotate_ctx(ctx);
2864
2865 perf_event_sched_in(cpuctx, ctx, current);
2866
2867 perf_pmu_enable(cpuctx->ctx.pmu);
2868 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2869 done:
2870 if (remove)
2871 list_del_init(&cpuctx->rotation_list);
2872
2873 return rotate;
2874 }
2875
2876 #ifdef CONFIG_NO_HZ_FULL
2877 bool perf_event_can_stop_tick(void)
2878 {
2879 if (atomic_read(&nr_freq_events) ||
2880 __this_cpu_read(perf_throttled_count))
2881 return false;
2882 else
2883 return true;
2884 }
2885 #endif
2886
2887 void perf_event_task_tick(void)
2888 {
2889 struct list_head *head = &__get_cpu_var(rotation_list);
2890 struct perf_cpu_context *cpuctx, *tmp;
2891 struct perf_event_context *ctx;
2892 int throttled;
2893
2894 WARN_ON(!irqs_disabled());
2895
2896 __this_cpu_inc(perf_throttled_seq);
2897 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2898
2899 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2900 ctx = &cpuctx->ctx;
2901 perf_adjust_freq_unthr_context(ctx, throttled);
2902
2903 ctx = cpuctx->task_ctx;
2904 if (ctx)
2905 perf_adjust_freq_unthr_context(ctx, throttled);
2906 }
2907 }
2908
2909 static int event_enable_on_exec(struct perf_event *event,
2910 struct perf_event_context *ctx)
2911 {
2912 if (!event->attr.enable_on_exec)
2913 return 0;
2914
2915 event->attr.enable_on_exec = 0;
2916 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2917 return 0;
2918
2919 __perf_event_mark_enabled(event);
2920
2921 return 1;
2922 }
2923
2924 /*
2925 * Enable all of a task's events that have been marked enable-on-exec.
2926 * This expects task == current.
2927 */
2928 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2929 {
2930 struct perf_event *event;
2931 unsigned long flags;
2932 int enabled = 0;
2933 int ret;
2934
2935 local_irq_save(flags);
2936 if (!ctx || !ctx->nr_events)
2937 goto out;
2938
2939 /*
2940 * We must ctxsw out cgroup events to avoid conflict
2941 * when invoking perf_task_event_sched_in() later on
2942 * in this function. Otherwise we end up trying to
2943 * ctxswin cgroup events which are already scheduled
2944 * in.
2945 */
2946 perf_cgroup_sched_out(current, NULL);
2947
2948 raw_spin_lock(&ctx->lock);
2949 task_ctx_sched_out(ctx);
2950
2951 list_for_each_entry(event, &ctx->event_list, event_entry) {
2952 ret = event_enable_on_exec(event, ctx);
2953 if (ret)
2954 enabled = 1;
2955 }
2956
2957 /*
2958 * Unclone this context if we enabled any event.
2959 */
2960 if (enabled)
2961 unclone_ctx(ctx);
2962
2963 raw_spin_unlock(&ctx->lock);
2964
2965 /*
2966 * Also calls ctxswin for cgroup events, if any:
2967 */
2968 perf_event_context_sched_in(ctx, ctx->task);
2969 out:
2970 local_irq_restore(flags);
2971 }
2972
2973 void perf_event_exec(void)
2974 {
2975 struct perf_event_context *ctx;
2976 int ctxn;
2977
2978 rcu_read_lock();
2979 for_each_task_context_nr(ctxn) {
2980 ctx = current->perf_event_ctxp[ctxn];
2981 if (!ctx)
2982 continue;
2983
2984 perf_event_enable_on_exec(ctx);
2985 }
2986 rcu_read_unlock();
2987 }
2988
2989 /*
2990 * Cross CPU call to read the hardware event
2991 */
2992 static void __perf_event_read(void *info)
2993 {
2994 struct perf_event *event = info;
2995 struct perf_event_context *ctx = event->ctx;
2996 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2997
2998 /*
2999 * If this is a task context, we need to check whether it is
3000 * the current task context of this cpu. If not it has been
3001 * scheduled out before the smp call arrived. In that case
3002 * event->count would have been updated to a recent sample
3003 * when the event was scheduled out.
3004 */
3005 if (ctx->task && cpuctx->task_ctx != ctx)
3006 return;
3007
3008 raw_spin_lock(&ctx->lock);
3009 if (ctx->is_active) {
3010 update_context_time(ctx);
3011 update_cgrp_time_from_event(event);
3012 }
3013 update_event_times(event);
3014 if (event->state == PERF_EVENT_STATE_ACTIVE)
3015 event->pmu->read(event);
3016 raw_spin_unlock(&ctx->lock);
3017 }
3018
3019 static inline u64 perf_event_count(struct perf_event *event)
3020 {
3021 return local64_read(&event->count) + atomic64_read(&event->child_count);
3022 }
3023
3024 static u64 perf_event_read(struct perf_event *event)
3025 {
3026 /*
3027 * If event is enabled and currently active on a CPU, update the
3028 * value in the event structure:
3029 */
3030 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3031 smp_call_function_single(event->oncpu,
3032 __perf_event_read, event, 1);
3033 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034 struct perf_event_context *ctx = event->ctx;
3035 unsigned long flags;
3036
3037 raw_spin_lock_irqsave(&ctx->lock, flags);
3038 /*
3039 * may read while context is not active
3040 * (e.g., thread is blocked), in that case
3041 * we cannot update context time
3042 */
3043 if (ctx->is_active) {
3044 update_context_time(ctx);
3045 update_cgrp_time_from_event(event);
3046 }
3047 update_event_times(event);
3048 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3049 }
3050
3051 return perf_event_count(event);
3052 }
3053
3054 /*
3055 * Initialize the perf_event context in a task_struct:
3056 */
3057 static void __perf_event_init_context(struct perf_event_context *ctx)
3058 {
3059 raw_spin_lock_init(&ctx->lock);
3060 mutex_init(&ctx->mutex);
3061 INIT_LIST_HEAD(&ctx->pinned_groups);
3062 INIT_LIST_HEAD(&ctx->flexible_groups);
3063 INIT_LIST_HEAD(&ctx->event_list);
3064 atomic_set(&ctx->refcount, 1);
3065 }
3066
3067 static struct perf_event_context *
3068 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3069 {
3070 struct perf_event_context *ctx;
3071
3072 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3073 if (!ctx)
3074 return NULL;
3075
3076 __perf_event_init_context(ctx);
3077 if (task) {
3078 ctx->task = task;
3079 get_task_struct(task);
3080 }
3081 ctx->pmu = pmu;
3082
3083 return ctx;
3084 }
3085
3086 static struct task_struct *
3087 find_lively_task_by_vpid(pid_t vpid)
3088 {
3089 struct task_struct *task;
3090 int err;
3091
3092 rcu_read_lock();
3093 if (!vpid)
3094 task = current;
3095 else
3096 task = find_task_by_vpid(vpid);
3097 if (task)
3098 get_task_struct(task);
3099 rcu_read_unlock();
3100
3101 if (!task)
3102 return ERR_PTR(-ESRCH);
3103
3104 /* Reuse ptrace permission checks for now. */
3105 err = -EACCES;
3106 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3107 goto errout;
3108
3109 return task;
3110 errout:
3111 put_task_struct(task);
3112 return ERR_PTR(err);
3113
3114 }
3115
3116 /*
3117 * Returns a matching context with refcount and pincount.
3118 */
3119 static struct perf_event_context *
3120 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3121 {
3122 struct perf_event_context *ctx;
3123 struct perf_cpu_context *cpuctx;
3124 unsigned long flags;
3125 int ctxn, err;
3126
3127 if (!task) {
3128 /* Must be root to operate on a CPU event: */
3129 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3130 return ERR_PTR(-EACCES);
3131
3132 /*
3133 * We could be clever and allow to attach a event to an
3134 * offline CPU and activate it when the CPU comes up, but
3135 * that's for later.
3136 */
3137 if (!cpu_online(cpu))
3138 return ERR_PTR(-ENODEV);
3139
3140 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3141 ctx = &cpuctx->ctx;
3142 get_ctx(ctx);
3143 ++ctx->pin_count;
3144
3145 return ctx;
3146 }
3147
3148 err = -EINVAL;
3149 ctxn = pmu->task_ctx_nr;
3150 if (ctxn < 0)
3151 goto errout;
3152
3153 retry:
3154 ctx = perf_lock_task_context(task, ctxn, &flags);
3155 if (ctx) {
3156 unclone_ctx(ctx);
3157 ++ctx->pin_count;
3158 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3159 } else {
3160 ctx = alloc_perf_context(pmu, task);
3161 err = -ENOMEM;
3162 if (!ctx)
3163 goto errout;
3164
3165 err = 0;
3166 mutex_lock(&task->perf_event_mutex);
3167 /*
3168 * If it has already passed perf_event_exit_task().
3169 * we must see PF_EXITING, it takes this mutex too.
3170 */
3171 if (task->flags & PF_EXITING)
3172 err = -ESRCH;
3173 else if (task->perf_event_ctxp[ctxn])
3174 err = -EAGAIN;
3175 else {
3176 get_ctx(ctx);
3177 ++ctx->pin_count;
3178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3179 }
3180 mutex_unlock(&task->perf_event_mutex);
3181
3182 if (unlikely(err)) {
3183 put_ctx(ctx);
3184
3185 if (err == -EAGAIN)
3186 goto retry;
3187 goto errout;
3188 }
3189 }
3190
3191 return ctx;
3192
3193 errout:
3194 return ERR_PTR(err);
3195 }
3196
3197 static void perf_event_free_filter(struct perf_event *event);
3198
3199 static void free_event_rcu(struct rcu_head *head)
3200 {
3201 struct perf_event *event;
3202
3203 event = container_of(head, struct perf_event, rcu_head);
3204 if (event->ns)
3205 put_pid_ns(event->ns);
3206 perf_event_free_filter(event);
3207 kfree(event);
3208 }
3209
3210 static void ring_buffer_put(struct ring_buffer *rb);
3211 static void ring_buffer_attach(struct perf_event *event,
3212 struct ring_buffer *rb);
3213
3214 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3215 {
3216 if (event->parent)
3217 return;
3218
3219 if (has_branch_stack(event)) {
3220 if (!(event->attach_state & PERF_ATTACH_TASK))
3221 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3222 }
3223 if (is_cgroup_event(event))
3224 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3225 }
3226
3227 static void unaccount_event(struct perf_event *event)
3228 {
3229 if (event->parent)
3230 return;
3231
3232 if (event->attach_state & PERF_ATTACH_TASK)
3233 static_key_slow_dec_deferred(&perf_sched_events);
3234 if (event->attr.mmap || event->attr.mmap_data)
3235 atomic_dec(&nr_mmap_events);
3236 if (event->attr.comm)
3237 atomic_dec(&nr_comm_events);
3238 if (event->attr.task)
3239 atomic_dec(&nr_task_events);
3240 if (event->attr.freq)
3241 atomic_dec(&nr_freq_events);
3242 if (is_cgroup_event(event))
3243 static_key_slow_dec_deferred(&perf_sched_events);
3244 if (has_branch_stack(event))
3245 static_key_slow_dec_deferred(&perf_sched_events);
3246
3247 unaccount_event_cpu(event, event->cpu);
3248 }
3249
3250 static void __free_event(struct perf_event *event)
3251 {
3252 if (!event->parent) {
3253 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3254 put_callchain_buffers();
3255 }
3256
3257 if (event->destroy)
3258 event->destroy(event);
3259
3260 if (event->ctx)
3261 put_ctx(event->ctx);
3262
3263 call_rcu(&event->rcu_head, free_event_rcu);
3264 }
3265 static void free_event(struct perf_event *event)
3266 {
3267 irq_work_sync(&event->pending);
3268
3269 unaccount_event(event);
3270
3271 if (event->rb) {
3272 /*
3273 * Can happen when we close an event with re-directed output.
3274 *
3275 * Since we have a 0 refcount, perf_mmap_close() will skip
3276 * over us; possibly making our ring_buffer_put() the last.
3277 */
3278 mutex_lock(&event->mmap_mutex);
3279 ring_buffer_attach(event, NULL);
3280 mutex_unlock(&event->mmap_mutex);
3281 }
3282
3283 if (is_cgroup_event(event))
3284 perf_detach_cgroup(event);
3285
3286
3287 __free_event(event);
3288 }
3289
3290 int perf_event_release_kernel(struct perf_event *event)
3291 {
3292 struct perf_event_context *ctx = event->ctx;
3293
3294 WARN_ON_ONCE(ctx->parent_ctx);
3295 /*
3296 * There are two ways this annotation is useful:
3297 *
3298 * 1) there is a lock recursion from perf_event_exit_task
3299 * see the comment there.
3300 *
3301 * 2) there is a lock-inversion with mmap_sem through
3302 * perf_event_read_group(), which takes faults while
3303 * holding ctx->mutex, however this is called after
3304 * the last filedesc died, so there is no possibility
3305 * to trigger the AB-BA case.
3306 */
3307 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3308 perf_remove_from_context(event, true);
3309 mutex_unlock(&ctx->mutex);
3310
3311 free_event(event);
3312
3313 return 0;
3314 }
3315 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3316
3317 /*
3318 * Called when the last reference to the file is gone.
3319 */
3320 static void put_event(struct perf_event *event)
3321 {
3322 struct task_struct *owner;
3323
3324 if (!atomic_long_dec_and_test(&event->refcount))
3325 return;
3326
3327 rcu_read_lock();
3328 owner = ACCESS_ONCE(event->owner);
3329 /*
3330 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3331 * !owner it means the list deletion is complete and we can indeed
3332 * free this event, otherwise we need to serialize on
3333 * owner->perf_event_mutex.
3334 */
3335 smp_read_barrier_depends();
3336 if (owner) {
3337 /*
3338 * Since delayed_put_task_struct() also drops the last
3339 * task reference we can safely take a new reference
3340 * while holding the rcu_read_lock().
3341 */
3342 get_task_struct(owner);
3343 }
3344 rcu_read_unlock();
3345
3346 if (owner) {
3347 mutex_lock(&owner->perf_event_mutex);
3348 /*
3349 * We have to re-check the event->owner field, if it is cleared
3350 * we raced with perf_event_exit_task(), acquiring the mutex
3351 * ensured they're done, and we can proceed with freeing the
3352 * event.
3353 */
3354 if (event->owner)
3355 list_del_init(&event->owner_entry);
3356 mutex_unlock(&owner->perf_event_mutex);
3357 put_task_struct(owner);
3358 }
3359
3360 perf_event_release_kernel(event);
3361 }
3362
3363 static int perf_release(struct inode *inode, struct file *file)
3364 {
3365 put_event(file->private_data);
3366 return 0;
3367 }
3368
3369 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3370 {
3371 struct perf_event *child;
3372 u64 total = 0;
3373
3374 *enabled = 0;
3375 *running = 0;
3376
3377 mutex_lock(&event->child_mutex);
3378 total += perf_event_read(event);
3379 *enabled += event->total_time_enabled +
3380 atomic64_read(&event->child_total_time_enabled);
3381 *running += event->total_time_running +
3382 atomic64_read(&event->child_total_time_running);
3383
3384 list_for_each_entry(child, &event->child_list, child_list) {
3385 total += perf_event_read(child);
3386 *enabled += child->total_time_enabled;
3387 *running += child->total_time_running;
3388 }
3389 mutex_unlock(&event->child_mutex);
3390
3391 return total;
3392 }
3393 EXPORT_SYMBOL_GPL(perf_event_read_value);
3394
3395 static int perf_event_read_group(struct perf_event *event,
3396 u64 read_format, char __user *buf)
3397 {
3398 struct perf_event *leader = event->group_leader, *sub;
3399 int n = 0, size = 0, ret = -EFAULT;
3400 struct perf_event_context *ctx = leader->ctx;
3401 u64 values[5];
3402 u64 count, enabled, running;
3403
3404 mutex_lock(&ctx->mutex);
3405 count = perf_event_read_value(leader, &enabled, &running);
3406
3407 values[n++] = 1 + leader->nr_siblings;
3408 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3409 values[n++] = enabled;
3410 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3411 values[n++] = running;
3412 values[n++] = count;
3413 if (read_format & PERF_FORMAT_ID)
3414 values[n++] = primary_event_id(leader);
3415
3416 size = n * sizeof(u64);
3417
3418 if (copy_to_user(buf, values, size))
3419 goto unlock;
3420
3421 ret = size;
3422
3423 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3424 n = 0;
3425
3426 values[n++] = perf_event_read_value(sub, &enabled, &running);
3427 if (read_format & PERF_FORMAT_ID)
3428 values[n++] = primary_event_id(sub);
3429
3430 size = n * sizeof(u64);
3431
3432 if (copy_to_user(buf + ret, values, size)) {
3433 ret = -EFAULT;
3434 goto unlock;
3435 }
3436
3437 ret += size;
3438 }
3439 unlock:
3440 mutex_unlock(&ctx->mutex);
3441
3442 return ret;
3443 }
3444
3445 static int perf_event_read_one(struct perf_event *event,
3446 u64 read_format, char __user *buf)
3447 {
3448 u64 enabled, running;
3449 u64 values[4];
3450 int n = 0;
3451
3452 values[n++] = perf_event_read_value(event, &enabled, &running);
3453 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3454 values[n++] = enabled;
3455 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3456 values[n++] = running;
3457 if (read_format & PERF_FORMAT_ID)
3458 values[n++] = primary_event_id(event);
3459
3460 if (copy_to_user(buf, values, n * sizeof(u64)))
3461 return -EFAULT;
3462
3463 return n * sizeof(u64);
3464 }
3465
3466 /*
3467 * Read the performance event - simple non blocking version for now
3468 */
3469 static ssize_t
3470 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3471 {
3472 u64 read_format = event->attr.read_format;
3473 int ret;
3474
3475 /*
3476 * Return end-of-file for a read on a event that is in
3477 * error state (i.e. because it was pinned but it couldn't be
3478 * scheduled on to the CPU at some point).
3479 */
3480 if (event->state == PERF_EVENT_STATE_ERROR)
3481 return 0;
3482
3483 if (count < event->read_size)
3484 return -ENOSPC;
3485
3486 WARN_ON_ONCE(event->ctx->parent_ctx);
3487 if (read_format & PERF_FORMAT_GROUP)
3488 ret = perf_event_read_group(event, read_format, buf);
3489 else
3490 ret = perf_event_read_one(event, read_format, buf);
3491
3492 return ret;
3493 }
3494
3495 static ssize_t
3496 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3497 {
3498 struct perf_event *event = file->private_data;
3499
3500 return perf_read_hw(event, buf, count);
3501 }
3502
3503 static unsigned int perf_poll(struct file *file, poll_table *wait)
3504 {
3505 struct perf_event *event = file->private_data;
3506 struct ring_buffer *rb;
3507 unsigned int events = POLL_HUP;
3508
3509 /*
3510 * Pin the event->rb by taking event->mmap_mutex; otherwise
3511 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3512 */
3513 mutex_lock(&event->mmap_mutex);
3514 rb = event->rb;
3515 if (rb)
3516 events = atomic_xchg(&rb->poll, 0);
3517 mutex_unlock(&event->mmap_mutex);
3518
3519 poll_wait(file, &event->waitq, wait);
3520
3521 return events;
3522 }
3523
3524 static void perf_event_reset(struct perf_event *event)
3525 {
3526 (void)perf_event_read(event);
3527 local64_set(&event->count, 0);
3528 perf_event_update_userpage(event);
3529 }
3530
3531 /*
3532 * Holding the top-level event's child_mutex means that any
3533 * descendant process that has inherited this event will block
3534 * in sync_child_event if it goes to exit, thus satisfying the
3535 * task existence requirements of perf_event_enable/disable.
3536 */
3537 static void perf_event_for_each_child(struct perf_event *event,
3538 void (*func)(struct perf_event *))
3539 {
3540 struct perf_event *child;
3541
3542 WARN_ON_ONCE(event->ctx->parent_ctx);
3543 mutex_lock(&event->child_mutex);
3544 func(event);
3545 list_for_each_entry(child, &event->child_list, child_list)
3546 func(child);
3547 mutex_unlock(&event->child_mutex);
3548 }
3549
3550 static void perf_event_for_each(struct perf_event *event,
3551 void (*func)(struct perf_event *))
3552 {
3553 struct perf_event_context *ctx = event->ctx;
3554 struct perf_event *sibling;
3555
3556 WARN_ON_ONCE(ctx->parent_ctx);
3557 mutex_lock(&ctx->mutex);
3558 event = event->group_leader;
3559
3560 perf_event_for_each_child(event, func);
3561 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3562 perf_event_for_each_child(sibling, func);
3563 mutex_unlock(&ctx->mutex);
3564 }
3565
3566 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3567 {
3568 struct perf_event_context *ctx = event->ctx;
3569 int ret = 0, active;
3570 u64 value;
3571
3572 if (!is_sampling_event(event))
3573 return -EINVAL;
3574
3575 if (copy_from_user(&value, arg, sizeof(value)))
3576 return -EFAULT;
3577
3578 if (!value)
3579 return -EINVAL;
3580
3581 raw_spin_lock_irq(&ctx->lock);
3582 if (event->attr.freq) {
3583 if (value > sysctl_perf_event_sample_rate) {
3584 ret = -EINVAL;
3585 goto unlock;
3586 }
3587
3588 event->attr.sample_freq = value;
3589 } else {
3590 event->attr.sample_period = value;
3591 event->hw.sample_period = value;
3592 }
3593
3594 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3595 if (active) {
3596 perf_pmu_disable(ctx->pmu);
3597 event->pmu->stop(event, PERF_EF_UPDATE);
3598 }
3599
3600 local64_set(&event->hw.period_left, 0);
3601
3602 if (active) {
3603 event->pmu->start(event, PERF_EF_RELOAD);
3604 perf_pmu_enable(ctx->pmu);
3605 }
3606
3607 unlock:
3608 raw_spin_unlock_irq(&ctx->lock);
3609
3610 return ret;
3611 }
3612
3613 static const struct file_operations perf_fops;
3614
3615 static inline int perf_fget_light(int fd, struct fd *p)
3616 {
3617 struct fd f = fdget(fd);
3618 if (!f.file)
3619 return -EBADF;
3620
3621 if (f.file->f_op != &perf_fops) {
3622 fdput(f);
3623 return -EBADF;
3624 }
3625 *p = f;
3626 return 0;
3627 }
3628
3629 static int perf_event_set_output(struct perf_event *event,
3630 struct perf_event *output_event);
3631 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3632
3633 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3634 {
3635 struct perf_event *event = file->private_data;
3636 void (*func)(struct perf_event *);
3637 u32 flags = arg;
3638
3639 switch (cmd) {
3640 case PERF_EVENT_IOC_ENABLE:
3641 func = perf_event_enable;
3642 break;
3643 case PERF_EVENT_IOC_DISABLE:
3644 func = perf_event_disable;
3645 break;
3646 case PERF_EVENT_IOC_RESET:
3647 func = perf_event_reset;
3648 break;
3649
3650 case PERF_EVENT_IOC_REFRESH:
3651 return perf_event_refresh(event, arg);
3652
3653 case PERF_EVENT_IOC_PERIOD:
3654 return perf_event_period(event, (u64 __user *)arg);
3655
3656 case PERF_EVENT_IOC_ID:
3657 {
3658 u64 id = primary_event_id(event);
3659
3660 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3661 return -EFAULT;
3662 return 0;
3663 }
3664
3665 case PERF_EVENT_IOC_SET_OUTPUT:
3666 {
3667 int ret;
3668 if (arg != -1) {
3669 struct perf_event *output_event;
3670 struct fd output;
3671 ret = perf_fget_light(arg, &output);
3672 if (ret)
3673 return ret;
3674 output_event = output.file->private_data;
3675 ret = perf_event_set_output(event, output_event);
3676 fdput(output);
3677 } else {
3678 ret = perf_event_set_output(event, NULL);
3679 }
3680 return ret;
3681 }
3682
3683 case PERF_EVENT_IOC_SET_FILTER:
3684 return perf_event_set_filter(event, (void __user *)arg);
3685
3686 default:
3687 return -ENOTTY;
3688 }
3689
3690 if (flags & PERF_IOC_FLAG_GROUP)
3691 perf_event_for_each(event, func);
3692 else
3693 perf_event_for_each_child(event, func);
3694
3695 return 0;
3696 }
3697
3698 int perf_event_task_enable(void)
3699 {
3700 struct perf_event *event;
3701
3702 mutex_lock(&current->perf_event_mutex);
3703 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3704 perf_event_for_each_child(event, perf_event_enable);
3705 mutex_unlock(&current->perf_event_mutex);
3706
3707 return 0;
3708 }
3709
3710 int perf_event_task_disable(void)
3711 {
3712 struct perf_event *event;
3713
3714 mutex_lock(&current->perf_event_mutex);
3715 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3716 perf_event_for_each_child(event, perf_event_disable);
3717 mutex_unlock(&current->perf_event_mutex);
3718
3719 return 0;
3720 }
3721
3722 static int perf_event_index(struct perf_event *event)
3723 {
3724 if (event->hw.state & PERF_HES_STOPPED)
3725 return 0;
3726
3727 if (event->state != PERF_EVENT_STATE_ACTIVE)
3728 return 0;
3729
3730 return event->pmu->event_idx(event);
3731 }
3732
3733 static void calc_timer_values(struct perf_event *event,
3734 u64 *now,
3735 u64 *enabled,
3736 u64 *running)
3737 {
3738 u64 ctx_time;
3739
3740 *now = perf_clock();
3741 ctx_time = event->shadow_ctx_time + *now;
3742 *enabled = ctx_time - event->tstamp_enabled;
3743 *running = ctx_time - event->tstamp_running;
3744 }
3745
3746 static void perf_event_init_userpage(struct perf_event *event)
3747 {
3748 struct perf_event_mmap_page *userpg;
3749 struct ring_buffer *rb;
3750
3751 rcu_read_lock();
3752 rb = rcu_dereference(event->rb);
3753 if (!rb)
3754 goto unlock;
3755
3756 userpg = rb->user_page;
3757
3758 /* Allow new userspace to detect that bit 0 is deprecated */
3759 userpg->cap_bit0_is_deprecated = 1;
3760 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3761
3762 unlock:
3763 rcu_read_unlock();
3764 }
3765
3766 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3767 {
3768 }
3769
3770 /*
3771 * Callers need to ensure there can be no nesting of this function, otherwise
3772 * the seqlock logic goes bad. We can not serialize this because the arch
3773 * code calls this from NMI context.
3774 */
3775 void perf_event_update_userpage(struct perf_event *event)
3776 {
3777 struct perf_event_mmap_page *userpg;
3778 struct ring_buffer *rb;
3779 u64 enabled, running, now;
3780
3781 rcu_read_lock();
3782 rb = rcu_dereference(event->rb);
3783 if (!rb)
3784 goto unlock;
3785
3786 /*
3787 * compute total_time_enabled, total_time_running
3788 * based on snapshot values taken when the event
3789 * was last scheduled in.
3790 *
3791 * we cannot simply called update_context_time()
3792 * because of locking issue as we can be called in
3793 * NMI context
3794 */
3795 calc_timer_values(event, &now, &enabled, &running);
3796
3797 userpg = rb->user_page;
3798 /*
3799 * Disable preemption so as to not let the corresponding user-space
3800 * spin too long if we get preempted.
3801 */
3802 preempt_disable();
3803 ++userpg->lock;
3804 barrier();
3805 userpg->index = perf_event_index(event);
3806 userpg->offset = perf_event_count(event);
3807 if (userpg->index)
3808 userpg->offset -= local64_read(&event->hw.prev_count);
3809
3810 userpg->time_enabled = enabled +
3811 atomic64_read(&event->child_total_time_enabled);
3812
3813 userpg->time_running = running +
3814 atomic64_read(&event->child_total_time_running);
3815
3816 arch_perf_update_userpage(userpg, now);
3817
3818 barrier();
3819 ++userpg->lock;
3820 preempt_enable();
3821 unlock:
3822 rcu_read_unlock();
3823 }
3824
3825 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3826 {
3827 struct perf_event *event = vma->vm_file->private_data;
3828 struct ring_buffer *rb;
3829 int ret = VM_FAULT_SIGBUS;
3830
3831 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3832 if (vmf->pgoff == 0)
3833 ret = 0;
3834 return ret;
3835 }
3836
3837 rcu_read_lock();
3838 rb = rcu_dereference(event->rb);
3839 if (!rb)
3840 goto unlock;
3841
3842 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3843 goto unlock;
3844
3845 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3846 if (!vmf->page)
3847 goto unlock;
3848
3849 get_page(vmf->page);
3850 vmf->page->mapping = vma->vm_file->f_mapping;
3851 vmf->page->index = vmf->pgoff;
3852
3853 ret = 0;
3854 unlock:
3855 rcu_read_unlock();
3856
3857 return ret;
3858 }
3859
3860 static void ring_buffer_attach(struct perf_event *event,
3861 struct ring_buffer *rb)
3862 {
3863 struct ring_buffer *old_rb = NULL;
3864 unsigned long flags;
3865
3866 if (event->rb) {
3867 /*
3868 * Should be impossible, we set this when removing
3869 * event->rb_entry and wait/clear when adding event->rb_entry.
3870 */
3871 WARN_ON_ONCE(event->rcu_pending);
3872
3873 old_rb = event->rb;
3874 event->rcu_batches = get_state_synchronize_rcu();
3875 event->rcu_pending = 1;
3876
3877 spin_lock_irqsave(&old_rb->event_lock, flags);
3878 list_del_rcu(&event->rb_entry);
3879 spin_unlock_irqrestore(&old_rb->event_lock, flags);
3880 }
3881
3882 if (event->rcu_pending && rb) {
3883 cond_synchronize_rcu(event->rcu_batches);
3884 event->rcu_pending = 0;
3885 }
3886
3887 if (rb) {
3888 spin_lock_irqsave(&rb->event_lock, flags);
3889 list_add_rcu(&event->rb_entry, &rb->event_list);
3890 spin_unlock_irqrestore(&rb->event_lock, flags);
3891 }
3892
3893 rcu_assign_pointer(event->rb, rb);
3894
3895 if (old_rb) {
3896 ring_buffer_put(old_rb);
3897 /*
3898 * Since we detached before setting the new rb, so that we
3899 * could attach the new rb, we could have missed a wakeup.
3900 * Provide it now.
3901 */
3902 wake_up_all(&event->waitq);
3903 }
3904 }
3905
3906 static void ring_buffer_wakeup(struct perf_event *event)
3907 {
3908 struct ring_buffer *rb;
3909
3910 rcu_read_lock();
3911 rb = rcu_dereference(event->rb);
3912 if (rb) {
3913 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3914 wake_up_all(&event->waitq);
3915 }
3916 rcu_read_unlock();
3917 }
3918
3919 static void rb_free_rcu(struct rcu_head *rcu_head)
3920 {
3921 struct ring_buffer *rb;
3922
3923 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3924 rb_free(rb);
3925 }
3926
3927 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3928 {
3929 struct ring_buffer *rb;
3930
3931 rcu_read_lock();
3932 rb = rcu_dereference(event->rb);
3933 if (rb) {
3934 if (!atomic_inc_not_zero(&rb->refcount))
3935 rb = NULL;
3936 }
3937 rcu_read_unlock();
3938
3939 return rb;
3940 }
3941
3942 static void ring_buffer_put(struct ring_buffer *rb)
3943 {
3944 if (!atomic_dec_and_test(&rb->refcount))
3945 return;
3946
3947 WARN_ON_ONCE(!list_empty(&rb->event_list));
3948
3949 call_rcu(&rb->rcu_head, rb_free_rcu);
3950 }
3951
3952 static void perf_mmap_open(struct vm_area_struct *vma)
3953 {
3954 struct perf_event *event = vma->vm_file->private_data;
3955
3956 atomic_inc(&event->mmap_count);
3957 atomic_inc(&event->rb->mmap_count);
3958 }
3959
3960 /*
3961 * A buffer can be mmap()ed multiple times; either directly through the same
3962 * event, or through other events by use of perf_event_set_output().
3963 *
3964 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3965 * the buffer here, where we still have a VM context. This means we need
3966 * to detach all events redirecting to us.
3967 */
3968 static void perf_mmap_close(struct vm_area_struct *vma)
3969 {
3970 struct perf_event *event = vma->vm_file->private_data;
3971
3972 struct ring_buffer *rb = ring_buffer_get(event);
3973 struct user_struct *mmap_user = rb->mmap_user;
3974 int mmap_locked = rb->mmap_locked;
3975 unsigned long size = perf_data_size(rb);
3976
3977 atomic_dec(&rb->mmap_count);
3978
3979 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3980 goto out_put;
3981
3982 ring_buffer_attach(event, NULL);
3983 mutex_unlock(&event->mmap_mutex);
3984
3985 /* If there's still other mmap()s of this buffer, we're done. */
3986 if (atomic_read(&rb->mmap_count))
3987 goto out_put;
3988
3989 /*
3990 * No other mmap()s, detach from all other events that might redirect
3991 * into the now unreachable buffer. Somewhat complicated by the
3992 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3993 */
3994 again:
3995 rcu_read_lock();
3996 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3997 if (!atomic_long_inc_not_zero(&event->refcount)) {
3998 /*
3999 * This event is en-route to free_event() which will
4000 * detach it and remove it from the list.
4001 */
4002 continue;
4003 }
4004 rcu_read_unlock();
4005
4006 mutex_lock(&event->mmap_mutex);
4007 /*
4008 * Check we didn't race with perf_event_set_output() which can
4009 * swizzle the rb from under us while we were waiting to
4010 * acquire mmap_mutex.
4011 *
4012 * If we find a different rb; ignore this event, a next
4013 * iteration will no longer find it on the list. We have to
4014 * still restart the iteration to make sure we're not now
4015 * iterating the wrong list.
4016 */
4017 if (event->rb == rb)
4018 ring_buffer_attach(event, NULL);
4019
4020 mutex_unlock(&event->mmap_mutex);
4021 put_event(event);
4022
4023 /*
4024 * Restart the iteration; either we're on the wrong list or
4025 * destroyed its integrity by doing a deletion.
4026 */
4027 goto again;
4028 }
4029 rcu_read_unlock();
4030
4031 /*
4032 * It could be there's still a few 0-ref events on the list; they'll
4033 * get cleaned up by free_event() -- they'll also still have their
4034 * ref on the rb and will free it whenever they are done with it.
4035 *
4036 * Aside from that, this buffer is 'fully' detached and unmapped,
4037 * undo the VM accounting.
4038 */
4039
4040 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4041 vma->vm_mm->pinned_vm -= mmap_locked;
4042 free_uid(mmap_user);
4043
4044 out_put:
4045 ring_buffer_put(rb); /* could be last */
4046 }
4047
4048 static const struct vm_operations_struct perf_mmap_vmops = {
4049 .open = perf_mmap_open,
4050 .close = perf_mmap_close,
4051 .fault = perf_mmap_fault,
4052 .page_mkwrite = perf_mmap_fault,
4053 };
4054
4055 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4056 {
4057 struct perf_event *event = file->private_data;
4058 unsigned long user_locked, user_lock_limit;
4059 struct user_struct *user = current_user();
4060 unsigned long locked, lock_limit;
4061 struct ring_buffer *rb;
4062 unsigned long vma_size;
4063 unsigned long nr_pages;
4064 long user_extra, extra;
4065 int ret = 0, flags = 0;
4066
4067 /*
4068 * Don't allow mmap() of inherited per-task counters. This would
4069 * create a performance issue due to all children writing to the
4070 * same rb.
4071 */
4072 if (event->cpu == -1 && event->attr.inherit)
4073 return -EINVAL;
4074
4075 if (!(vma->vm_flags & VM_SHARED))
4076 return -EINVAL;
4077
4078 vma_size = vma->vm_end - vma->vm_start;
4079 nr_pages = (vma_size / PAGE_SIZE) - 1;
4080
4081 /*
4082 * If we have rb pages ensure they're a power-of-two number, so we
4083 * can do bitmasks instead of modulo.
4084 */
4085 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4086 return -EINVAL;
4087
4088 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4089 return -EINVAL;
4090
4091 if (vma->vm_pgoff != 0)
4092 return -EINVAL;
4093
4094 WARN_ON_ONCE(event->ctx->parent_ctx);
4095 again:
4096 mutex_lock(&event->mmap_mutex);
4097 if (event->rb) {
4098 if (event->rb->nr_pages != nr_pages) {
4099 ret = -EINVAL;
4100 goto unlock;
4101 }
4102
4103 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4104 /*
4105 * Raced against perf_mmap_close() through
4106 * perf_event_set_output(). Try again, hope for better
4107 * luck.
4108 */
4109 mutex_unlock(&event->mmap_mutex);
4110 goto again;
4111 }
4112
4113 goto unlock;
4114 }
4115
4116 user_extra = nr_pages + 1;
4117 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4118
4119 /*
4120 * Increase the limit linearly with more CPUs:
4121 */
4122 user_lock_limit *= num_online_cpus();
4123
4124 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4125
4126 extra = 0;
4127 if (user_locked > user_lock_limit)
4128 extra = user_locked - user_lock_limit;
4129
4130 lock_limit = rlimit(RLIMIT_MEMLOCK);
4131 lock_limit >>= PAGE_SHIFT;
4132 locked = vma->vm_mm->pinned_vm + extra;
4133
4134 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4135 !capable(CAP_IPC_LOCK)) {
4136 ret = -EPERM;
4137 goto unlock;
4138 }
4139
4140 WARN_ON(event->rb);
4141
4142 if (vma->vm_flags & VM_WRITE)
4143 flags |= RING_BUFFER_WRITABLE;
4144
4145 rb = rb_alloc(nr_pages,
4146 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4147 event->cpu, flags);
4148
4149 if (!rb) {
4150 ret = -ENOMEM;
4151 goto unlock;
4152 }
4153
4154 atomic_set(&rb->mmap_count, 1);
4155 rb->mmap_locked = extra;
4156 rb->mmap_user = get_current_user();
4157
4158 atomic_long_add(user_extra, &user->locked_vm);
4159 vma->vm_mm->pinned_vm += extra;
4160
4161 ring_buffer_attach(event, rb);
4162
4163 perf_event_init_userpage(event);
4164 perf_event_update_userpage(event);
4165
4166 unlock:
4167 if (!ret)
4168 atomic_inc(&event->mmap_count);
4169 mutex_unlock(&event->mmap_mutex);
4170
4171 /*
4172 * Since pinned accounting is per vm we cannot allow fork() to copy our
4173 * vma.
4174 */
4175 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4176 vma->vm_ops = &perf_mmap_vmops;
4177
4178 return ret;
4179 }
4180
4181 static int perf_fasync(int fd, struct file *filp, int on)
4182 {
4183 struct inode *inode = file_inode(filp);
4184 struct perf_event *event = filp->private_data;
4185 int retval;
4186
4187 mutex_lock(&inode->i_mutex);
4188 retval = fasync_helper(fd, filp, on, &event->fasync);
4189 mutex_unlock(&inode->i_mutex);
4190
4191 if (retval < 0)
4192 return retval;
4193
4194 return 0;
4195 }
4196
4197 static const struct file_operations perf_fops = {
4198 .llseek = no_llseek,
4199 .release = perf_release,
4200 .read = perf_read,
4201 .poll = perf_poll,
4202 .unlocked_ioctl = perf_ioctl,
4203 .compat_ioctl = perf_ioctl,
4204 .mmap = perf_mmap,
4205 .fasync = perf_fasync,
4206 };
4207
4208 /*
4209 * Perf event wakeup
4210 *
4211 * If there's data, ensure we set the poll() state and publish everything
4212 * to user-space before waking everybody up.
4213 */
4214
4215 void perf_event_wakeup(struct perf_event *event)
4216 {
4217 ring_buffer_wakeup(event);
4218
4219 if (event->pending_kill) {
4220 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4221 event->pending_kill = 0;
4222 }
4223 }
4224
4225 static void perf_pending_event(struct irq_work *entry)
4226 {
4227 struct perf_event *event = container_of(entry,
4228 struct perf_event, pending);
4229
4230 if (event->pending_disable) {
4231 event->pending_disable = 0;
4232 __perf_event_disable(event);
4233 }
4234
4235 if (event->pending_wakeup) {
4236 event->pending_wakeup = 0;
4237 perf_event_wakeup(event);
4238 }
4239 }
4240
4241 /*
4242 * We assume there is only KVM supporting the callbacks.
4243 * Later on, we might change it to a list if there is
4244 * another virtualization implementation supporting the callbacks.
4245 */
4246 struct perf_guest_info_callbacks *perf_guest_cbs;
4247
4248 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4249 {
4250 perf_guest_cbs = cbs;
4251 return 0;
4252 }
4253 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4254
4255 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4256 {
4257 perf_guest_cbs = NULL;
4258 return 0;
4259 }
4260 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4261
4262 static void
4263 perf_output_sample_regs(struct perf_output_handle *handle,
4264 struct pt_regs *regs, u64 mask)
4265 {
4266 int bit;
4267
4268 for_each_set_bit(bit, (const unsigned long *) &mask,
4269 sizeof(mask) * BITS_PER_BYTE) {
4270 u64 val;
4271
4272 val = perf_reg_value(regs, bit);
4273 perf_output_put(handle, val);
4274 }
4275 }
4276
4277 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4278 struct pt_regs *regs)
4279 {
4280 if (!user_mode(regs)) {
4281 if (current->mm)
4282 regs = task_pt_regs(current);
4283 else
4284 regs = NULL;
4285 }
4286
4287 if (regs) {
4288 regs_user->regs = regs;
4289 regs_user->abi = perf_reg_abi(current);
4290 }
4291 }
4292
4293 /*
4294 * Get remaining task size from user stack pointer.
4295 *
4296 * It'd be better to take stack vma map and limit this more
4297 * precisly, but there's no way to get it safely under interrupt,
4298 * so using TASK_SIZE as limit.
4299 */
4300 static u64 perf_ustack_task_size(struct pt_regs *regs)
4301 {
4302 unsigned long addr = perf_user_stack_pointer(regs);
4303
4304 if (!addr || addr >= TASK_SIZE)
4305 return 0;
4306
4307 return TASK_SIZE - addr;
4308 }
4309
4310 static u16
4311 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4312 struct pt_regs *regs)
4313 {
4314 u64 task_size;
4315
4316 /* No regs, no stack pointer, no dump. */
4317 if (!regs)
4318 return 0;
4319
4320 /*
4321 * Check if we fit in with the requested stack size into the:
4322 * - TASK_SIZE
4323 * If we don't, we limit the size to the TASK_SIZE.
4324 *
4325 * - remaining sample size
4326 * If we don't, we customize the stack size to
4327 * fit in to the remaining sample size.
4328 */
4329
4330 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4331 stack_size = min(stack_size, (u16) task_size);
4332
4333 /* Current header size plus static size and dynamic size. */
4334 header_size += 2 * sizeof(u64);
4335
4336 /* Do we fit in with the current stack dump size? */
4337 if ((u16) (header_size + stack_size) < header_size) {
4338 /*
4339 * If we overflow the maximum size for the sample,
4340 * we customize the stack dump size to fit in.
4341 */
4342 stack_size = USHRT_MAX - header_size - sizeof(u64);
4343 stack_size = round_up(stack_size, sizeof(u64));
4344 }
4345
4346 return stack_size;
4347 }
4348
4349 static void
4350 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4351 struct pt_regs *regs)
4352 {
4353 /* Case of a kernel thread, nothing to dump */
4354 if (!regs) {
4355 u64 size = 0;
4356 perf_output_put(handle, size);
4357 } else {
4358 unsigned long sp;
4359 unsigned int rem;
4360 u64 dyn_size;
4361
4362 /*
4363 * We dump:
4364 * static size
4365 * - the size requested by user or the best one we can fit
4366 * in to the sample max size
4367 * data
4368 * - user stack dump data
4369 * dynamic size
4370 * - the actual dumped size
4371 */
4372
4373 /* Static size. */
4374 perf_output_put(handle, dump_size);
4375
4376 /* Data. */
4377 sp = perf_user_stack_pointer(regs);
4378 rem = __output_copy_user(handle, (void *) sp, dump_size);
4379 dyn_size = dump_size - rem;
4380
4381 perf_output_skip(handle, rem);
4382
4383 /* Dynamic size. */
4384 perf_output_put(handle, dyn_size);
4385 }
4386 }
4387
4388 static void __perf_event_header__init_id(struct perf_event_header *header,
4389 struct perf_sample_data *data,
4390 struct perf_event *event)
4391 {
4392 u64 sample_type = event->attr.sample_type;
4393
4394 data->type = sample_type;
4395 header->size += event->id_header_size;
4396
4397 if (sample_type & PERF_SAMPLE_TID) {
4398 /* namespace issues */
4399 data->tid_entry.pid = perf_event_pid(event, current);
4400 data->tid_entry.tid = perf_event_tid(event, current);
4401 }
4402
4403 if (sample_type & PERF_SAMPLE_TIME)
4404 data->time = perf_clock();
4405
4406 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4407 data->id = primary_event_id(event);
4408
4409 if (sample_type & PERF_SAMPLE_STREAM_ID)
4410 data->stream_id = event->id;
4411
4412 if (sample_type & PERF_SAMPLE_CPU) {
4413 data->cpu_entry.cpu = raw_smp_processor_id();
4414 data->cpu_entry.reserved = 0;
4415 }
4416 }
4417
4418 void perf_event_header__init_id(struct perf_event_header *header,
4419 struct perf_sample_data *data,
4420 struct perf_event *event)
4421 {
4422 if (event->attr.sample_id_all)
4423 __perf_event_header__init_id(header, data, event);
4424 }
4425
4426 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4427 struct perf_sample_data *data)
4428 {
4429 u64 sample_type = data->type;
4430
4431 if (sample_type & PERF_SAMPLE_TID)
4432 perf_output_put(handle, data->tid_entry);
4433
4434 if (sample_type & PERF_SAMPLE_TIME)
4435 perf_output_put(handle, data->time);
4436
4437 if (sample_type & PERF_SAMPLE_ID)
4438 perf_output_put(handle, data->id);
4439
4440 if (sample_type & PERF_SAMPLE_STREAM_ID)
4441 perf_output_put(handle, data->stream_id);
4442
4443 if (sample_type & PERF_SAMPLE_CPU)
4444 perf_output_put(handle, data->cpu_entry);
4445
4446 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4447 perf_output_put(handle, data->id);
4448 }
4449
4450 void perf_event__output_id_sample(struct perf_event *event,
4451 struct perf_output_handle *handle,
4452 struct perf_sample_data *sample)
4453 {
4454 if (event->attr.sample_id_all)
4455 __perf_event__output_id_sample(handle, sample);
4456 }
4457
4458 static void perf_output_read_one(struct perf_output_handle *handle,
4459 struct perf_event *event,
4460 u64 enabled, u64 running)
4461 {
4462 u64 read_format = event->attr.read_format;
4463 u64 values[4];
4464 int n = 0;
4465
4466 values[n++] = perf_event_count(event);
4467 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4468 values[n++] = enabled +
4469 atomic64_read(&event->child_total_time_enabled);
4470 }
4471 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4472 values[n++] = running +
4473 atomic64_read(&event->child_total_time_running);
4474 }
4475 if (read_format & PERF_FORMAT_ID)
4476 values[n++] = primary_event_id(event);
4477
4478 __output_copy(handle, values, n * sizeof(u64));
4479 }
4480
4481 /*
4482 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4483 */
4484 static void perf_output_read_group(struct perf_output_handle *handle,
4485 struct perf_event *event,
4486 u64 enabled, u64 running)
4487 {
4488 struct perf_event *leader = event->group_leader, *sub;
4489 u64 read_format = event->attr.read_format;
4490 u64 values[5];
4491 int n = 0;
4492
4493 values[n++] = 1 + leader->nr_siblings;
4494
4495 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4496 values[n++] = enabled;
4497
4498 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4499 values[n++] = running;
4500
4501 if (leader != event)
4502 leader->pmu->read(leader);
4503
4504 values[n++] = perf_event_count(leader);
4505 if (read_format & PERF_FORMAT_ID)
4506 values[n++] = primary_event_id(leader);
4507
4508 __output_copy(handle, values, n * sizeof(u64));
4509
4510 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4511 n = 0;
4512
4513 if ((sub != event) &&
4514 (sub->state == PERF_EVENT_STATE_ACTIVE))
4515 sub->pmu->read(sub);
4516
4517 values[n++] = perf_event_count(sub);
4518 if (read_format & PERF_FORMAT_ID)
4519 values[n++] = primary_event_id(sub);
4520
4521 __output_copy(handle, values, n * sizeof(u64));
4522 }
4523 }
4524
4525 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4526 PERF_FORMAT_TOTAL_TIME_RUNNING)
4527
4528 static void perf_output_read(struct perf_output_handle *handle,
4529 struct perf_event *event)
4530 {
4531 u64 enabled = 0, running = 0, now;
4532 u64 read_format = event->attr.read_format;
4533
4534 /*
4535 * compute total_time_enabled, total_time_running
4536 * based on snapshot values taken when the event
4537 * was last scheduled in.
4538 *
4539 * we cannot simply called update_context_time()
4540 * because of locking issue as we are called in
4541 * NMI context
4542 */
4543 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4544 calc_timer_values(event, &now, &enabled, &running);
4545
4546 if (event->attr.read_format & PERF_FORMAT_GROUP)
4547 perf_output_read_group(handle, event, enabled, running);
4548 else
4549 perf_output_read_one(handle, event, enabled, running);
4550 }
4551
4552 void perf_output_sample(struct perf_output_handle *handle,
4553 struct perf_event_header *header,
4554 struct perf_sample_data *data,
4555 struct perf_event *event)
4556 {
4557 u64 sample_type = data->type;
4558
4559 perf_output_put(handle, *header);
4560
4561 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4562 perf_output_put(handle, data->id);
4563
4564 if (sample_type & PERF_SAMPLE_IP)
4565 perf_output_put(handle, data->ip);
4566
4567 if (sample_type & PERF_SAMPLE_TID)
4568 perf_output_put(handle, data->tid_entry);
4569
4570 if (sample_type & PERF_SAMPLE_TIME)
4571 perf_output_put(handle, data->time);
4572
4573 if (sample_type & PERF_SAMPLE_ADDR)
4574 perf_output_put(handle, data->addr);
4575
4576 if (sample_type & PERF_SAMPLE_ID)
4577 perf_output_put(handle, data->id);
4578
4579 if (sample_type & PERF_SAMPLE_STREAM_ID)
4580 perf_output_put(handle, data->stream_id);
4581
4582 if (sample_type & PERF_SAMPLE_CPU)
4583 perf_output_put(handle, data->cpu_entry);
4584
4585 if (sample_type & PERF_SAMPLE_PERIOD)
4586 perf_output_put(handle, data->period);
4587
4588 if (sample_type & PERF_SAMPLE_READ)
4589 perf_output_read(handle, event);
4590
4591 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4592 if (data->callchain) {
4593 int size = 1;
4594
4595 if (data->callchain)
4596 size += data->callchain->nr;
4597
4598 size *= sizeof(u64);
4599
4600 __output_copy(handle, data->callchain, size);
4601 } else {
4602 u64 nr = 0;
4603 perf_output_put(handle, nr);
4604 }
4605 }
4606
4607 if (sample_type & PERF_SAMPLE_RAW) {
4608 if (data->raw) {
4609 perf_output_put(handle, data->raw->size);
4610 __output_copy(handle, data->raw->data,
4611 data->raw->size);
4612 } else {
4613 struct {
4614 u32 size;
4615 u32 data;
4616 } raw = {
4617 .size = sizeof(u32),
4618 .data = 0,
4619 };
4620 perf_output_put(handle, raw);
4621 }
4622 }
4623
4624 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4625 if (data->br_stack) {
4626 size_t size;
4627
4628 size = data->br_stack->nr
4629 * sizeof(struct perf_branch_entry);
4630
4631 perf_output_put(handle, data->br_stack->nr);
4632 perf_output_copy(handle, data->br_stack->entries, size);
4633 } else {
4634 /*
4635 * we always store at least the value of nr
4636 */
4637 u64 nr = 0;
4638 perf_output_put(handle, nr);
4639 }
4640 }
4641
4642 if (sample_type & PERF_SAMPLE_REGS_USER) {
4643 u64 abi = data->regs_user.abi;
4644
4645 /*
4646 * If there are no regs to dump, notice it through
4647 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4648 */
4649 perf_output_put(handle, abi);
4650
4651 if (abi) {
4652 u64 mask = event->attr.sample_regs_user;
4653 perf_output_sample_regs(handle,
4654 data->regs_user.regs,
4655 mask);
4656 }
4657 }
4658
4659 if (sample_type & PERF_SAMPLE_STACK_USER) {
4660 perf_output_sample_ustack(handle,
4661 data->stack_user_size,
4662 data->regs_user.regs);
4663 }
4664
4665 if (sample_type & PERF_SAMPLE_WEIGHT)
4666 perf_output_put(handle, data->weight);
4667
4668 if (sample_type & PERF_SAMPLE_DATA_SRC)
4669 perf_output_put(handle, data->data_src.val);
4670
4671 if (sample_type & PERF_SAMPLE_TRANSACTION)
4672 perf_output_put(handle, data->txn);
4673
4674 if (!event->attr.watermark) {
4675 int wakeup_events = event->attr.wakeup_events;
4676
4677 if (wakeup_events) {
4678 struct ring_buffer *rb = handle->rb;
4679 int events = local_inc_return(&rb->events);
4680
4681 if (events >= wakeup_events) {
4682 local_sub(wakeup_events, &rb->events);
4683 local_inc(&rb->wakeup);
4684 }
4685 }
4686 }
4687 }
4688
4689 void perf_prepare_sample(struct perf_event_header *header,
4690 struct perf_sample_data *data,
4691 struct perf_event *event,
4692 struct pt_regs *regs)
4693 {
4694 u64 sample_type = event->attr.sample_type;
4695
4696 header->type = PERF_RECORD_SAMPLE;
4697 header->size = sizeof(*header) + event->header_size;
4698
4699 header->misc = 0;
4700 header->misc |= perf_misc_flags(regs);
4701
4702 __perf_event_header__init_id(header, data, event);
4703
4704 if (sample_type & PERF_SAMPLE_IP)
4705 data->ip = perf_instruction_pointer(regs);
4706
4707 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4708 int size = 1;
4709
4710 data->callchain = perf_callchain(event, regs);
4711
4712 if (data->callchain)
4713 size += data->callchain->nr;
4714
4715 header->size += size * sizeof(u64);
4716 }
4717
4718 if (sample_type & PERF_SAMPLE_RAW) {
4719 int size = sizeof(u32);
4720
4721 if (data->raw)
4722 size += data->raw->size;
4723 else
4724 size += sizeof(u32);
4725
4726 WARN_ON_ONCE(size & (sizeof(u64)-1));
4727 header->size += size;
4728 }
4729
4730 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4731 int size = sizeof(u64); /* nr */
4732 if (data->br_stack) {
4733 size += data->br_stack->nr
4734 * sizeof(struct perf_branch_entry);
4735 }
4736 header->size += size;
4737 }
4738
4739 if (sample_type & PERF_SAMPLE_REGS_USER) {
4740 /* regs dump ABI info */
4741 int size = sizeof(u64);
4742
4743 perf_sample_regs_user(&data->regs_user, regs);
4744
4745 if (data->regs_user.regs) {
4746 u64 mask = event->attr.sample_regs_user;
4747 size += hweight64(mask) * sizeof(u64);
4748 }
4749
4750 header->size += size;
4751 }
4752
4753 if (sample_type & PERF_SAMPLE_STACK_USER) {
4754 /*
4755 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4756 * processed as the last one or have additional check added
4757 * in case new sample type is added, because we could eat
4758 * up the rest of the sample size.
4759 */
4760 struct perf_regs_user *uregs = &data->regs_user;
4761 u16 stack_size = event->attr.sample_stack_user;
4762 u16 size = sizeof(u64);
4763
4764 if (!uregs->abi)
4765 perf_sample_regs_user(uregs, regs);
4766
4767 stack_size = perf_sample_ustack_size(stack_size, header->size,
4768 uregs->regs);
4769
4770 /*
4771 * If there is something to dump, add space for the dump
4772 * itself and for the field that tells the dynamic size,
4773 * which is how many have been actually dumped.
4774 */
4775 if (stack_size)
4776 size += sizeof(u64) + stack_size;
4777
4778 data->stack_user_size = stack_size;
4779 header->size += size;
4780 }
4781 }
4782
4783 static void perf_event_output(struct perf_event *event,
4784 struct perf_sample_data *data,
4785 struct pt_regs *regs)
4786 {
4787 struct perf_output_handle handle;
4788 struct perf_event_header header;
4789
4790 /* protect the callchain buffers */
4791 rcu_read_lock();
4792
4793 perf_prepare_sample(&header, data, event, regs);
4794
4795 if (perf_output_begin(&handle, event, header.size))
4796 goto exit;
4797
4798 perf_output_sample(&handle, &header, data, event);
4799
4800 perf_output_end(&handle);
4801
4802 exit:
4803 rcu_read_unlock();
4804 }
4805
4806 /*
4807 * read event_id
4808 */
4809
4810 struct perf_read_event {
4811 struct perf_event_header header;
4812
4813 u32 pid;
4814 u32 tid;
4815 };
4816
4817 static void
4818 perf_event_read_event(struct perf_event *event,
4819 struct task_struct *task)
4820 {
4821 struct perf_output_handle handle;
4822 struct perf_sample_data sample;
4823 struct perf_read_event read_event = {
4824 .header = {
4825 .type = PERF_RECORD_READ,
4826 .misc = 0,
4827 .size = sizeof(read_event) + event->read_size,
4828 },
4829 .pid = perf_event_pid(event, task),
4830 .tid = perf_event_tid(event, task),
4831 };
4832 int ret;
4833
4834 perf_event_header__init_id(&read_event.header, &sample, event);
4835 ret = perf_output_begin(&handle, event, read_event.header.size);
4836 if (ret)
4837 return;
4838
4839 perf_output_put(&handle, read_event);
4840 perf_output_read(&handle, event);
4841 perf_event__output_id_sample(event, &handle, &sample);
4842
4843 perf_output_end(&handle);
4844 }
4845
4846 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4847
4848 static void
4849 perf_event_aux_ctx(struct perf_event_context *ctx,
4850 perf_event_aux_output_cb output,
4851 void *data)
4852 {
4853 struct perf_event *event;
4854
4855 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4856 if (event->state < PERF_EVENT_STATE_INACTIVE)
4857 continue;
4858 if (!event_filter_match(event))
4859 continue;
4860 output(event, data);
4861 }
4862 }
4863
4864 static void
4865 perf_event_aux(perf_event_aux_output_cb output, void *data,
4866 struct perf_event_context *task_ctx)
4867 {
4868 struct perf_cpu_context *cpuctx;
4869 struct perf_event_context *ctx;
4870 struct pmu *pmu;
4871 int ctxn;
4872
4873 rcu_read_lock();
4874 list_for_each_entry_rcu(pmu, &pmus, entry) {
4875 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4876 if (cpuctx->unique_pmu != pmu)
4877 goto next;
4878 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4879 if (task_ctx)
4880 goto next;
4881 ctxn = pmu->task_ctx_nr;
4882 if (ctxn < 0)
4883 goto next;
4884 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4885 if (ctx)
4886 perf_event_aux_ctx(ctx, output, data);
4887 next:
4888 put_cpu_ptr(pmu->pmu_cpu_context);
4889 }
4890
4891 if (task_ctx) {
4892 preempt_disable();
4893 perf_event_aux_ctx(task_ctx, output, data);
4894 preempt_enable();
4895 }
4896 rcu_read_unlock();
4897 }
4898
4899 /*
4900 * task tracking -- fork/exit
4901 *
4902 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4903 */
4904
4905 struct perf_task_event {
4906 struct task_struct *task;
4907 struct perf_event_context *task_ctx;
4908
4909 struct {
4910 struct perf_event_header header;
4911
4912 u32 pid;
4913 u32 ppid;
4914 u32 tid;
4915 u32 ptid;
4916 u64 time;
4917 } event_id;
4918 };
4919
4920 static int perf_event_task_match(struct perf_event *event)
4921 {
4922 return event->attr.comm || event->attr.mmap ||
4923 event->attr.mmap2 || event->attr.mmap_data ||
4924 event->attr.task;
4925 }
4926
4927 static void perf_event_task_output(struct perf_event *event,
4928 void *data)
4929 {
4930 struct perf_task_event *task_event = data;
4931 struct perf_output_handle handle;
4932 struct perf_sample_data sample;
4933 struct task_struct *task = task_event->task;
4934 int ret, size = task_event->event_id.header.size;
4935
4936 if (!perf_event_task_match(event))
4937 return;
4938
4939 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4940
4941 ret = perf_output_begin(&handle, event,
4942 task_event->event_id.header.size);
4943 if (ret)
4944 goto out;
4945
4946 task_event->event_id.pid = perf_event_pid(event, task);
4947 task_event->event_id.ppid = perf_event_pid(event, current);
4948
4949 task_event->event_id.tid = perf_event_tid(event, task);
4950 task_event->event_id.ptid = perf_event_tid(event, current);
4951
4952 perf_output_put(&handle, task_event->event_id);
4953
4954 perf_event__output_id_sample(event, &handle, &sample);
4955
4956 perf_output_end(&handle);
4957 out:
4958 task_event->event_id.header.size = size;
4959 }
4960
4961 static void perf_event_task(struct task_struct *task,
4962 struct perf_event_context *task_ctx,
4963 int new)
4964 {
4965 struct perf_task_event task_event;
4966
4967 if (!atomic_read(&nr_comm_events) &&
4968 !atomic_read(&nr_mmap_events) &&
4969 !atomic_read(&nr_task_events))
4970 return;
4971
4972 task_event = (struct perf_task_event){
4973 .task = task,
4974 .task_ctx = task_ctx,
4975 .event_id = {
4976 .header = {
4977 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4978 .misc = 0,
4979 .size = sizeof(task_event.event_id),
4980 },
4981 /* .pid */
4982 /* .ppid */
4983 /* .tid */
4984 /* .ptid */
4985 .time = perf_clock(),
4986 },
4987 };
4988
4989 perf_event_aux(perf_event_task_output,
4990 &task_event,
4991 task_ctx);
4992 }
4993
4994 void perf_event_fork(struct task_struct *task)
4995 {
4996 perf_event_task(task, NULL, 1);
4997 }
4998
4999 /*
5000 * comm tracking
5001 */
5002
5003 struct perf_comm_event {
5004 struct task_struct *task;
5005 char *comm;
5006 int comm_size;
5007
5008 struct {
5009 struct perf_event_header header;
5010
5011 u32 pid;
5012 u32 tid;
5013 } event_id;
5014 };
5015
5016 static int perf_event_comm_match(struct perf_event *event)
5017 {
5018 return event->attr.comm;
5019 }
5020
5021 static void perf_event_comm_output(struct perf_event *event,
5022 void *data)
5023 {
5024 struct perf_comm_event *comm_event = data;
5025 struct perf_output_handle handle;
5026 struct perf_sample_data sample;
5027 int size = comm_event->event_id.header.size;
5028 int ret;
5029
5030 if (!perf_event_comm_match(event))
5031 return;
5032
5033 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5034 ret = perf_output_begin(&handle, event,
5035 comm_event->event_id.header.size);
5036
5037 if (ret)
5038 goto out;
5039
5040 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5041 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5042
5043 perf_output_put(&handle, comm_event->event_id);
5044 __output_copy(&handle, comm_event->comm,
5045 comm_event->comm_size);
5046
5047 perf_event__output_id_sample(event, &handle, &sample);
5048
5049 perf_output_end(&handle);
5050 out:
5051 comm_event->event_id.header.size = size;
5052 }
5053
5054 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5055 {
5056 char comm[TASK_COMM_LEN];
5057 unsigned int size;
5058
5059 memset(comm, 0, sizeof(comm));
5060 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5061 size = ALIGN(strlen(comm)+1, sizeof(u64));
5062
5063 comm_event->comm = comm;
5064 comm_event->comm_size = size;
5065
5066 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5067
5068 perf_event_aux(perf_event_comm_output,
5069 comm_event,
5070 NULL);
5071 }
5072
5073 void perf_event_comm(struct task_struct *task)
5074 {
5075 struct perf_comm_event comm_event;
5076
5077 if (!atomic_read(&nr_comm_events))
5078 return;
5079
5080 comm_event = (struct perf_comm_event){
5081 .task = task,
5082 /* .comm */
5083 /* .comm_size */
5084 .event_id = {
5085 .header = {
5086 .type = PERF_RECORD_COMM,
5087 .misc = 0,
5088 /* .size */
5089 },
5090 /* .pid */
5091 /* .tid */
5092 },
5093 };
5094
5095 perf_event_comm_event(&comm_event);
5096 }
5097
5098 /*
5099 * mmap tracking
5100 */
5101
5102 struct perf_mmap_event {
5103 struct vm_area_struct *vma;
5104
5105 const char *file_name;
5106 int file_size;
5107 int maj, min;
5108 u64 ino;
5109 u64 ino_generation;
5110
5111 struct {
5112 struct perf_event_header header;
5113
5114 u32 pid;
5115 u32 tid;
5116 u64 start;
5117 u64 len;
5118 u64 pgoff;
5119 } event_id;
5120 };
5121
5122 static int perf_event_mmap_match(struct perf_event *event,
5123 void *data)
5124 {
5125 struct perf_mmap_event *mmap_event = data;
5126 struct vm_area_struct *vma = mmap_event->vma;
5127 int executable = vma->vm_flags & VM_EXEC;
5128
5129 return (!executable && event->attr.mmap_data) ||
5130 (executable && (event->attr.mmap || event->attr.mmap2));
5131 }
5132
5133 static void perf_event_mmap_output(struct perf_event *event,
5134 void *data)
5135 {
5136 struct perf_mmap_event *mmap_event = data;
5137 struct perf_output_handle handle;
5138 struct perf_sample_data sample;
5139 int size = mmap_event->event_id.header.size;
5140 int ret;
5141
5142 if (!perf_event_mmap_match(event, data))
5143 return;
5144
5145 if (event->attr.mmap2) {
5146 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5147 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5148 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5149 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5150 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5151 }
5152
5153 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5154 ret = perf_output_begin(&handle, event,
5155 mmap_event->event_id.header.size);
5156 if (ret)
5157 goto out;
5158
5159 mmap_event->event_id.pid = perf_event_pid(event, current);
5160 mmap_event->event_id.tid = perf_event_tid(event, current);
5161
5162 perf_output_put(&handle, mmap_event->event_id);
5163
5164 if (event->attr.mmap2) {
5165 perf_output_put(&handle, mmap_event->maj);
5166 perf_output_put(&handle, mmap_event->min);
5167 perf_output_put(&handle, mmap_event->ino);
5168 perf_output_put(&handle, mmap_event->ino_generation);
5169 }
5170
5171 __output_copy(&handle, mmap_event->file_name,
5172 mmap_event->file_size);
5173
5174 perf_event__output_id_sample(event, &handle, &sample);
5175
5176 perf_output_end(&handle);
5177 out:
5178 mmap_event->event_id.header.size = size;
5179 }
5180
5181 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5182 {
5183 struct vm_area_struct *vma = mmap_event->vma;
5184 struct file *file = vma->vm_file;
5185 int maj = 0, min = 0;
5186 u64 ino = 0, gen = 0;
5187 unsigned int size;
5188 char tmp[16];
5189 char *buf = NULL;
5190 char *name;
5191
5192 if (file) {
5193 struct inode *inode;
5194 dev_t dev;
5195
5196 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5197 if (!buf) {
5198 name = "//enomem";
5199 goto cpy_name;
5200 }
5201 /*
5202 * d_path() works from the end of the rb backwards, so we
5203 * need to add enough zero bytes after the string to handle
5204 * the 64bit alignment we do later.
5205 */
5206 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5207 if (IS_ERR(name)) {
5208 name = "//toolong";
5209 goto cpy_name;
5210 }
5211 inode = file_inode(vma->vm_file);
5212 dev = inode->i_sb->s_dev;
5213 ino = inode->i_ino;
5214 gen = inode->i_generation;
5215 maj = MAJOR(dev);
5216 min = MINOR(dev);
5217 goto got_name;
5218 } else {
5219 name = (char *)arch_vma_name(vma);
5220 if (name)
5221 goto cpy_name;
5222
5223 if (vma->vm_start <= vma->vm_mm->start_brk &&
5224 vma->vm_end >= vma->vm_mm->brk) {
5225 name = "[heap]";
5226 goto cpy_name;
5227 }
5228 if (vma->vm_start <= vma->vm_mm->start_stack &&
5229 vma->vm_end >= vma->vm_mm->start_stack) {
5230 name = "[stack]";
5231 goto cpy_name;
5232 }
5233
5234 name = "//anon";
5235 goto cpy_name;
5236 }
5237
5238 cpy_name:
5239 strlcpy(tmp, name, sizeof(tmp));
5240 name = tmp;
5241 got_name:
5242 /*
5243 * Since our buffer works in 8 byte units we need to align our string
5244 * size to a multiple of 8. However, we must guarantee the tail end is
5245 * zero'd out to avoid leaking random bits to userspace.
5246 */
5247 size = strlen(name)+1;
5248 while (!IS_ALIGNED(size, sizeof(u64)))
5249 name[size++] = '\0';
5250
5251 mmap_event->file_name = name;
5252 mmap_event->file_size = size;
5253 mmap_event->maj = maj;
5254 mmap_event->min = min;
5255 mmap_event->ino = ino;
5256 mmap_event->ino_generation = gen;
5257
5258 if (!(vma->vm_flags & VM_EXEC))
5259 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5260
5261 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5262
5263 perf_event_aux(perf_event_mmap_output,
5264 mmap_event,
5265 NULL);
5266
5267 kfree(buf);
5268 }
5269
5270 void perf_event_mmap(struct vm_area_struct *vma)
5271 {
5272 struct perf_mmap_event mmap_event;
5273
5274 if (!atomic_read(&nr_mmap_events))
5275 return;
5276
5277 mmap_event = (struct perf_mmap_event){
5278 .vma = vma,
5279 /* .file_name */
5280 /* .file_size */
5281 .event_id = {
5282 .header = {
5283 .type = PERF_RECORD_MMAP,
5284 .misc = PERF_RECORD_MISC_USER,
5285 /* .size */
5286 },
5287 /* .pid */
5288 /* .tid */
5289 .start = vma->vm_start,
5290 .len = vma->vm_end - vma->vm_start,
5291 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5292 },
5293 /* .maj (attr_mmap2 only) */
5294 /* .min (attr_mmap2 only) */
5295 /* .ino (attr_mmap2 only) */
5296 /* .ino_generation (attr_mmap2 only) */
5297 };
5298
5299 perf_event_mmap_event(&mmap_event);
5300 }
5301
5302 /*
5303 * IRQ throttle logging
5304 */
5305
5306 static void perf_log_throttle(struct perf_event *event, int enable)
5307 {
5308 struct perf_output_handle handle;
5309 struct perf_sample_data sample;
5310 int ret;
5311
5312 struct {
5313 struct perf_event_header header;
5314 u64 time;
5315 u64 id;
5316 u64 stream_id;
5317 } throttle_event = {
5318 .header = {
5319 .type = PERF_RECORD_THROTTLE,
5320 .misc = 0,
5321 .size = sizeof(throttle_event),
5322 },
5323 .time = perf_clock(),
5324 .id = primary_event_id(event),
5325 .stream_id = event->id,
5326 };
5327
5328 if (enable)
5329 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5330
5331 perf_event_header__init_id(&throttle_event.header, &sample, event);
5332
5333 ret = perf_output_begin(&handle, event,
5334 throttle_event.header.size);
5335 if (ret)
5336 return;
5337
5338 perf_output_put(&handle, throttle_event);
5339 perf_event__output_id_sample(event, &handle, &sample);
5340 perf_output_end(&handle);
5341 }
5342
5343 /*
5344 * Generic event overflow handling, sampling.
5345 */
5346
5347 static int __perf_event_overflow(struct perf_event *event,
5348 int throttle, struct perf_sample_data *data,
5349 struct pt_regs *regs)
5350 {
5351 int events = atomic_read(&event->event_limit);
5352 struct hw_perf_event *hwc = &event->hw;
5353 u64 seq;
5354 int ret = 0;
5355
5356 /*
5357 * Non-sampling counters might still use the PMI to fold short
5358 * hardware counters, ignore those.
5359 */
5360 if (unlikely(!is_sampling_event(event)))
5361 return 0;
5362
5363 seq = __this_cpu_read(perf_throttled_seq);
5364 if (seq != hwc->interrupts_seq) {
5365 hwc->interrupts_seq = seq;
5366 hwc->interrupts = 1;
5367 } else {
5368 hwc->interrupts++;
5369 if (unlikely(throttle
5370 && hwc->interrupts >= max_samples_per_tick)) {
5371 __this_cpu_inc(perf_throttled_count);
5372 hwc->interrupts = MAX_INTERRUPTS;
5373 perf_log_throttle(event, 0);
5374 tick_nohz_full_kick();
5375 ret = 1;
5376 }
5377 }
5378
5379 if (event->attr.freq) {
5380 u64 now = perf_clock();
5381 s64 delta = now - hwc->freq_time_stamp;
5382
5383 hwc->freq_time_stamp = now;
5384
5385 if (delta > 0 && delta < 2*TICK_NSEC)
5386 perf_adjust_period(event, delta, hwc->last_period, true);
5387 }
5388
5389 /*
5390 * XXX event_limit might not quite work as expected on inherited
5391 * events
5392 */
5393
5394 event->pending_kill = POLL_IN;
5395 if (events && atomic_dec_and_test(&event->event_limit)) {
5396 ret = 1;
5397 event->pending_kill = POLL_HUP;
5398 event->pending_disable = 1;
5399 irq_work_queue(&event->pending);
5400 }
5401
5402 if (event->overflow_handler)
5403 event->overflow_handler(event, data, regs);
5404 else
5405 perf_event_output(event, data, regs);
5406
5407 if (event->fasync && event->pending_kill) {
5408 event->pending_wakeup = 1;
5409 irq_work_queue(&event->pending);
5410 }
5411
5412 return ret;
5413 }
5414
5415 int perf_event_overflow(struct perf_event *event,
5416 struct perf_sample_data *data,
5417 struct pt_regs *regs)
5418 {
5419 return __perf_event_overflow(event, 1, data, regs);
5420 }
5421
5422 /*
5423 * Generic software event infrastructure
5424 */
5425
5426 struct swevent_htable {
5427 struct swevent_hlist *swevent_hlist;
5428 struct mutex hlist_mutex;
5429 int hlist_refcount;
5430
5431 /* Recursion avoidance in each contexts */
5432 int recursion[PERF_NR_CONTEXTS];
5433
5434 /* Keeps track of cpu being initialized/exited */
5435 bool online;
5436 };
5437
5438 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5439
5440 /*
5441 * We directly increment event->count and keep a second value in
5442 * event->hw.period_left to count intervals. This period event
5443 * is kept in the range [-sample_period, 0] so that we can use the
5444 * sign as trigger.
5445 */
5446
5447 u64 perf_swevent_set_period(struct perf_event *event)
5448 {
5449 struct hw_perf_event *hwc = &event->hw;
5450 u64 period = hwc->last_period;
5451 u64 nr, offset;
5452 s64 old, val;
5453
5454 hwc->last_period = hwc->sample_period;
5455
5456 again:
5457 old = val = local64_read(&hwc->period_left);
5458 if (val < 0)
5459 return 0;
5460
5461 nr = div64_u64(period + val, period);
5462 offset = nr * period;
5463 val -= offset;
5464 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5465 goto again;
5466
5467 return nr;
5468 }
5469
5470 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5471 struct perf_sample_data *data,
5472 struct pt_regs *regs)
5473 {
5474 struct hw_perf_event *hwc = &event->hw;
5475 int throttle = 0;
5476
5477 if (!overflow)
5478 overflow = perf_swevent_set_period(event);
5479
5480 if (hwc->interrupts == MAX_INTERRUPTS)
5481 return;
5482
5483 for (; overflow; overflow--) {
5484 if (__perf_event_overflow(event, throttle,
5485 data, regs)) {
5486 /*
5487 * We inhibit the overflow from happening when
5488 * hwc->interrupts == MAX_INTERRUPTS.
5489 */
5490 break;
5491 }
5492 throttle = 1;
5493 }
5494 }
5495
5496 static void perf_swevent_event(struct perf_event *event, u64 nr,
5497 struct perf_sample_data *data,
5498 struct pt_regs *regs)
5499 {
5500 struct hw_perf_event *hwc = &event->hw;
5501
5502 local64_add(nr, &event->count);
5503
5504 if (!regs)
5505 return;
5506
5507 if (!is_sampling_event(event))
5508 return;
5509
5510 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5511 data->period = nr;
5512 return perf_swevent_overflow(event, 1, data, regs);
5513 } else
5514 data->period = event->hw.last_period;
5515
5516 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5517 return perf_swevent_overflow(event, 1, data, regs);
5518
5519 if (local64_add_negative(nr, &hwc->period_left))
5520 return;
5521
5522 perf_swevent_overflow(event, 0, data, regs);
5523 }
5524
5525 static int perf_exclude_event(struct perf_event *event,
5526 struct pt_regs *regs)
5527 {
5528 if (event->hw.state & PERF_HES_STOPPED)
5529 return 1;
5530
5531 if (regs) {
5532 if (event->attr.exclude_user && user_mode(regs))
5533 return 1;
5534
5535 if (event->attr.exclude_kernel && !user_mode(regs))
5536 return 1;
5537 }
5538
5539 return 0;
5540 }
5541
5542 static int perf_swevent_match(struct perf_event *event,
5543 enum perf_type_id type,
5544 u32 event_id,
5545 struct perf_sample_data *data,
5546 struct pt_regs *regs)
5547 {
5548 if (event->attr.type != type)
5549 return 0;
5550
5551 if (event->attr.config != event_id)
5552 return 0;
5553
5554 if (perf_exclude_event(event, regs))
5555 return 0;
5556
5557 return 1;
5558 }
5559
5560 static inline u64 swevent_hash(u64 type, u32 event_id)
5561 {
5562 u64 val = event_id | (type << 32);
5563
5564 return hash_64(val, SWEVENT_HLIST_BITS);
5565 }
5566
5567 static inline struct hlist_head *
5568 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5569 {
5570 u64 hash = swevent_hash(type, event_id);
5571
5572 return &hlist->heads[hash];
5573 }
5574
5575 /* For the read side: events when they trigger */
5576 static inline struct hlist_head *
5577 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5578 {
5579 struct swevent_hlist *hlist;
5580
5581 hlist = rcu_dereference(swhash->swevent_hlist);
5582 if (!hlist)
5583 return NULL;
5584
5585 return __find_swevent_head(hlist, type, event_id);
5586 }
5587
5588 /* For the event head insertion and removal in the hlist */
5589 static inline struct hlist_head *
5590 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5591 {
5592 struct swevent_hlist *hlist;
5593 u32 event_id = event->attr.config;
5594 u64 type = event->attr.type;
5595
5596 /*
5597 * Event scheduling is always serialized against hlist allocation
5598 * and release. Which makes the protected version suitable here.
5599 * The context lock guarantees that.
5600 */
5601 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5602 lockdep_is_held(&event->ctx->lock));
5603 if (!hlist)
5604 return NULL;
5605
5606 return __find_swevent_head(hlist, type, event_id);
5607 }
5608
5609 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5610 u64 nr,
5611 struct perf_sample_data *data,
5612 struct pt_regs *regs)
5613 {
5614 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5615 struct perf_event *event;
5616 struct hlist_head *head;
5617
5618 rcu_read_lock();
5619 head = find_swevent_head_rcu(swhash, type, event_id);
5620 if (!head)
5621 goto end;
5622
5623 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5624 if (perf_swevent_match(event, type, event_id, data, regs))
5625 perf_swevent_event(event, nr, data, regs);
5626 }
5627 end:
5628 rcu_read_unlock();
5629 }
5630
5631 int perf_swevent_get_recursion_context(void)
5632 {
5633 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5634
5635 return get_recursion_context(swhash->recursion);
5636 }
5637 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5638
5639 inline void perf_swevent_put_recursion_context(int rctx)
5640 {
5641 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5642
5643 put_recursion_context(swhash->recursion, rctx);
5644 }
5645
5646 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5647 {
5648 struct perf_sample_data data;
5649 int rctx;
5650
5651 preempt_disable_notrace();
5652 rctx = perf_swevent_get_recursion_context();
5653 if (rctx < 0)
5654 return;
5655
5656 perf_sample_data_init(&data, addr, 0);
5657
5658 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5659
5660 perf_swevent_put_recursion_context(rctx);
5661 preempt_enable_notrace();
5662 }
5663
5664 static void perf_swevent_read(struct perf_event *event)
5665 {
5666 }
5667
5668 static int perf_swevent_add(struct perf_event *event, int flags)
5669 {
5670 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5671 struct hw_perf_event *hwc = &event->hw;
5672 struct hlist_head *head;
5673
5674 if (is_sampling_event(event)) {
5675 hwc->last_period = hwc->sample_period;
5676 perf_swevent_set_period(event);
5677 }
5678
5679 hwc->state = !(flags & PERF_EF_START);
5680
5681 head = find_swevent_head(swhash, event);
5682 if (!head) {
5683 /*
5684 * We can race with cpu hotplug code. Do not
5685 * WARN if the cpu just got unplugged.
5686 */
5687 WARN_ON_ONCE(swhash->online);
5688 return -EINVAL;
5689 }
5690
5691 hlist_add_head_rcu(&event->hlist_entry, head);
5692
5693 return 0;
5694 }
5695
5696 static void perf_swevent_del(struct perf_event *event, int flags)
5697 {
5698 hlist_del_rcu(&event->hlist_entry);
5699 }
5700
5701 static void perf_swevent_start(struct perf_event *event, int flags)
5702 {
5703 event->hw.state = 0;
5704 }
5705
5706 static void perf_swevent_stop(struct perf_event *event, int flags)
5707 {
5708 event->hw.state = PERF_HES_STOPPED;
5709 }
5710
5711 /* Deref the hlist from the update side */
5712 static inline struct swevent_hlist *
5713 swevent_hlist_deref(struct swevent_htable *swhash)
5714 {
5715 return rcu_dereference_protected(swhash->swevent_hlist,
5716 lockdep_is_held(&swhash->hlist_mutex));
5717 }
5718
5719 static void swevent_hlist_release(struct swevent_htable *swhash)
5720 {
5721 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5722
5723 if (!hlist)
5724 return;
5725
5726 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5727 kfree_rcu(hlist, rcu_head);
5728 }
5729
5730 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5731 {
5732 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5733
5734 mutex_lock(&swhash->hlist_mutex);
5735
5736 if (!--swhash->hlist_refcount)
5737 swevent_hlist_release(swhash);
5738
5739 mutex_unlock(&swhash->hlist_mutex);
5740 }
5741
5742 static void swevent_hlist_put(struct perf_event *event)
5743 {
5744 int cpu;
5745
5746 for_each_possible_cpu(cpu)
5747 swevent_hlist_put_cpu(event, cpu);
5748 }
5749
5750 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5751 {
5752 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5753 int err = 0;
5754
5755 mutex_lock(&swhash->hlist_mutex);
5756
5757 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5758 struct swevent_hlist *hlist;
5759
5760 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5761 if (!hlist) {
5762 err = -ENOMEM;
5763 goto exit;
5764 }
5765 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5766 }
5767 swhash->hlist_refcount++;
5768 exit:
5769 mutex_unlock(&swhash->hlist_mutex);
5770
5771 return err;
5772 }
5773
5774 static int swevent_hlist_get(struct perf_event *event)
5775 {
5776 int err;
5777 int cpu, failed_cpu;
5778
5779 get_online_cpus();
5780 for_each_possible_cpu(cpu) {
5781 err = swevent_hlist_get_cpu(event, cpu);
5782 if (err) {
5783 failed_cpu = cpu;
5784 goto fail;
5785 }
5786 }
5787 put_online_cpus();
5788
5789 return 0;
5790 fail:
5791 for_each_possible_cpu(cpu) {
5792 if (cpu == failed_cpu)
5793 break;
5794 swevent_hlist_put_cpu(event, cpu);
5795 }
5796
5797 put_online_cpus();
5798 return err;
5799 }
5800
5801 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5802
5803 static void sw_perf_event_destroy(struct perf_event *event)
5804 {
5805 u64 event_id = event->attr.config;
5806
5807 WARN_ON(event->parent);
5808
5809 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5810 swevent_hlist_put(event);
5811 }
5812
5813 static int perf_swevent_init(struct perf_event *event)
5814 {
5815 u64 event_id = event->attr.config;
5816
5817 if (event->attr.type != PERF_TYPE_SOFTWARE)
5818 return -ENOENT;
5819
5820 /*
5821 * no branch sampling for software events
5822 */
5823 if (has_branch_stack(event))
5824 return -EOPNOTSUPP;
5825
5826 switch (event_id) {
5827 case PERF_COUNT_SW_CPU_CLOCK:
5828 case PERF_COUNT_SW_TASK_CLOCK:
5829 return -ENOENT;
5830
5831 default:
5832 break;
5833 }
5834
5835 if (event_id >= PERF_COUNT_SW_MAX)
5836 return -ENOENT;
5837
5838 if (!event->parent) {
5839 int err;
5840
5841 err = swevent_hlist_get(event);
5842 if (err)
5843 return err;
5844
5845 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5846 event->destroy = sw_perf_event_destroy;
5847 }
5848
5849 return 0;
5850 }
5851
5852 static int perf_swevent_event_idx(struct perf_event *event)
5853 {
5854 return 0;
5855 }
5856
5857 static struct pmu perf_swevent = {
5858 .task_ctx_nr = perf_sw_context,
5859
5860 .event_init = perf_swevent_init,
5861 .add = perf_swevent_add,
5862 .del = perf_swevent_del,
5863 .start = perf_swevent_start,
5864 .stop = perf_swevent_stop,
5865 .read = perf_swevent_read,
5866
5867 .event_idx = perf_swevent_event_idx,
5868 };
5869
5870 #ifdef CONFIG_EVENT_TRACING
5871
5872 static int perf_tp_filter_match(struct perf_event *event,
5873 struct perf_sample_data *data)
5874 {
5875 void *record = data->raw->data;
5876
5877 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5878 return 1;
5879 return 0;
5880 }
5881
5882 static int perf_tp_event_match(struct perf_event *event,
5883 struct perf_sample_data *data,
5884 struct pt_regs *regs)
5885 {
5886 if (event->hw.state & PERF_HES_STOPPED)
5887 return 0;
5888 /*
5889 * All tracepoints are from kernel-space.
5890 */
5891 if (event->attr.exclude_kernel)
5892 return 0;
5893
5894 if (!perf_tp_filter_match(event, data))
5895 return 0;
5896
5897 return 1;
5898 }
5899
5900 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5901 struct pt_regs *regs, struct hlist_head *head, int rctx,
5902 struct task_struct *task)
5903 {
5904 struct perf_sample_data data;
5905 struct perf_event *event;
5906
5907 struct perf_raw_record raw = {
5908 .size = entry_size,
5909 .data = record,
5910 };
5911
5912 perf_sample_data_init(&data, addr, 0);
5913 data.raw = &raw;
5914
5915 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5916 if (perf_tp_event_match(event, &data, regs))
5917 perf_swevent_event(event, count, &data, regs);
5918 }
5919
5920 /*
5921 * If we got specified a target task, also iterate its context and
5922 * deliver this event there too.
5923 */
5924 if (task && task != current) {
5925 struct perf_event_context *ctx;
5926 struct trace_entry *entry = record;
5927
5928 rcu_read_lock();
5929 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5930 if (!ctx)
5931 goto unlock;
5932
5933 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5934 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5935 continue;
5936 if (event->attr.config != entry->type)
5937 continue;
5938 if (perf_tp_event_match(event, &data, regs))
5939 perf_swevent_event(event, count, &data, regs);
5940 }
5941 unlock:
5942 rcu_read_unlock();
5943 }
5944
5945 perf_swevent_put_recursion_context(rctx);
5946 }
5947 EXPORT_SYMBOL_GPL(perf_tp_event);
5948
5949 static void tp_perf_event_destroy(struct perf_event *event)
5950 {
5951 perf_trace_destroy(event);
5952 }
5953
5954 static int perf_tp_event_init(struct perf_event *event)
5955 {
5956 int err;
5957
5958 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5959 return -ENOENT;
5960
5961 /*
5962 * no branch sampling for tracepoint events
5963 */
5964 if (has_branch_stack(event))
5965 return -EOPNOTSUPP;
5966
5967 err = perf_trace_init(event);
5968 if (err)
5969 return err;
5970
5971 event->destroy = tp_perf_event_destroy;
5972
5973 return 0;
5974 }
5975
5976 static struct pmu perf_tracepoint = {
5977 .task_ctx_nr = perf_sw_context,
5978
5979 .event_init = perf_tp_event_init,
5980 .add = perf_trace_add,
5981 .del = perf_trace_del,
5982 .start = perf_swevent_start,
5983 .stop = perf_swevent_stop,
5984 .read = perf_swevent_read,
5985
5986 .event_idx = perf_swevent_event_idx,
5987 };
5988
5989 static inline void perf_tp_register(void)
5990 {
5991 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5992 }
5993
5994 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5995 {
5996 char *filter_str;
5997 int ret;
5998
5999 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6000 return -EINVAL;
6001
6002 filter_str = strndup_user(arg, PAGE_SIZE);
6003 if (IS_ERR(filter_str))
6004 return PTR_ERR(filter_str);
6005
6006 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6007
6008 kfree(filter_str);
6009 return ret;
6010 }
6011
6012 static void perf_event_free_filter(struct perf_event *event)
6013 {
6014 ftrace_profile_free_filter(event);
6015 }
6016
6017 #else
6018
6019 static inline void perf_tp_register(void)
6020 {
6021 }
6022
6023 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6024 {
6025 return -ENOENT;
6026 }
6027
6028 static void perf_event_free_filter(struct perf_event *event)
6029 {
6030 }
6031
6032 #endif /* CONFIG_EVENT_TRACING */
6033
6034 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6035 void perf_bp_event(struct perf_event *bp, void *data)
6036 {
6037 struct perf_sample_data sample;
6038 struct pt_regs *regs = data;
6039
6040 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6041
6042 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6043 perf_swevent_event(bp, 1, &sample, regs);
6044 }
6045 #endif
6046
6047 /*
6048 * hrtimer based swevent callback
6049 */
6050
6051 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6052 {
6053 enum hrtimer_restart ret = HRTIMER_RESTART;
6054 struct perf_sample_data data;
6055 struct pt_regs *regs;
6056 struct perf_event *event;
6057 u64 period;
6058
6059 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6060
6061 if (event->state != PERF_EVENT_STATE_ACTIVE)
6062 return HRTIMER_NORESTART;
6063
6064 event->pmu->read(event);
6065
6066 perf_sample_data_init(&data, 0, event->hw.last_period);
6067 regs = get_irq_regs();
6068
6069 if (regs && !perf_exclude_event(event, regs)) {
6070 if (!(event->attr.exclude_idle && is_idle_task(current)))
6071 if (__perf_event_overflow(event, 1, &data, regs))
6072 ret = HRTIMER_NORESTART;
6073 }
6074
6075 period = max_t(u64, 10000, event->hw.sample_period);
6076 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6077
6078 return ret;
6079 }
6080
6081 static void perf_swevent_start_hrtimer(struct perf_event *event)
6082 {
6083 struct hw_perf_event *hwc = &event->hw;
6084 s64 period;
6085
6086 if (!is_sampling_event(event))
6087 return;
6088
6089 period = local64_read(&hwc->period_left);
6090 if (period) {
6091 if (period < 0)
6092 period = 10000;
6093
6094 local64_set(&hwc->period_left, 0);
6095 } else {
6096 period = max_t(u64, 10000, hwc->sample_period);
6097 }
6098 __hrtimer_start_range_ns(&hwc->hrtimer,
6099 ns_to_ktime(period), 0,
6100 HRTIMER_MODE_REL_PINNED, 0);
6101 }
6102
6103 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6104 {
6105 struct hw_perf_event *hwc = &event->hw;
6106
6107 if (is_sampling_event(event)) {
6108 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6109 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6110
6111 hrtimer_cancel(&hwc->hrtimer);
6112 }
6113 }
6114
6115 static void perf_swevent_init_hrtimer(struct perf_event *event)
6116 {
6117 struct hw_perf_event *hwc = &event->hw;
6118
6119 if (!is_sampling_event(event))
6120 return;
6121
6122 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6123 hwc->hrtimer.function = perf_swevent_hrtimer;
6124
6125 /*
6126 * Since hrtimers have a fixed rate, we can do a static freq->period
6127 * mapping and avoid the whole period adjust feedback stuff.
6128 */
6129 if (event->attr.freq) {
6130 long freq = event->attr.sample_freq;
6131
6132 event->attr.sample_period = NSEC_PER_SEC / freq;
6133 hwc->sample_period = event->attr.sample_period;
6134 local64_set(&hwc->period_left, hwc->sample_period);
6135 hwc->last_period = hwc->sample_period;
6136 event->attr.freq = 0;
6137 }
6138 }
6139
6140 /*
6141 * Software event: cpu wall time clock
6142 */
6143
6144 static void cpu_clock_event_update(struct perf_event *event)
6145 {
6146 s64 prev;
6147 u64 now;
6148
6149 now = local_clock();
6150 prev = local64_xchg(&event->hw.prev_count, now);
6151 local64_add(now - prev, &event->count);
6152 }
6153
6154 static void cpu_clock_event_start(struct perf_event *event, int flags)
6155 {
6156 local64_set(&event->hw.prev_count, local_clock());
6157 perf_swevent_start_hrtimer(event);
6158 }
6159
6160 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6161 {
6162 perf_swevent_cancel_hrtimer(event);
6163 cpu_clock_event_update(event);
6164 }
6165
6166 static int cpu_clock_event_add(struct perf_event *event, int flags)
6167 {
6168 if (flags & PERF_EF_START)
6169 cpu_clock_event_start(event, flags);
6170
6171 return 0;
6172 }
6173
6174 static void cpu_clock_event_del(struct perf_event *event, int flags)
6175 {
6176 cpu_clock_event_stop(event, flags);
6177 }
6178
6179 static void cpu_clock_event_read(struct perf_event *event)
6180 {
6181 cpu_clock_event_update(event);
6182 }
6183
6184 static int cpu_clock_event_init(struct perf_event *event)
6185 {
6186 if (event->attr.type != PERF_TYPE_SOFTWARE)
6187 return -ENOENT;
6188
6189 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6190 return -ENOENT;
6191
6192 /*
6193 * no branch sampling for software events
6194 */
6195 if (has_branch_stack(event))
6196 return -EOPNOTSUPP;
6197
6198 perf_swevent_init_hrtimer(event);
6199
6200 return 0;
6201 }
6202
6203 static struct pmu perf_cpu_clock = {
6204 .task_ctx_nr = perf_sw_context,
6205
6206 .event_init = cpu_clock_event_init,
6207 .add = cpu_clock_event_add,
6208 .del = cpu_clock_event_del,
6209 .start = cpu_clock_event_start,
6210 .stop = cpu_clock_event_stop,
6211 .read = cpu_clock_event_read,
6212
6213 .event_idx = perf_swevent_event_idx,
6214 };
6215
6216 /*
6217 * Software event: task time clock
6218 */
6219
6220 static void task_clock_event_update(struct perf_event *event, u64 now)
6221 {
6222 u64 prev;
6223 s64 delta;
6224
6225 prev = local64_xchg(&event->hw.prev_count, now);
6226 delta = now - prev;
6227 local64_add(delta, &event->count);
6228 }
6229
6230 static void task_clock_event_start(struct perf_event *event, int flags)
6231 {
6232 local64_set(&event->hw.prev_count, event->ctx->time);
6233 perf_swevent_start_hrtimer(event);
6234 }
6235
6236 static void task_clock_event_stop(struct perf_event *event, int flags)
6237 {
6238 perf_swevent_cancel_hrtimer(event);
6239 task_clock_event_update(event, event->ctx->time);
6240 }
6241
6242 static int task_clock_event_add(struct perf_event *event, int flags)
6243 {
6244 if (flags & PERF_EF_START)
6245 task_clock_event_start(event, flags);
6246
6247 return 0;
6248 }
6249
6250 static void task_clock_event_del(struct perf_event *event, int flags)
6251 {
6252 task_clock_event_stop(event, PERF_EF_UPDATE);
6253 }
6254
6255 static void task_clock_event_read(struct perf_event *event)
6256 {
6257 u64 now = perf_clock();
6258 u64 delta = now - event->ctx->timestamp;
6259 u64 time = event->ctx->time + delta;
6260
6261 task_clock_event_update(event, time);
6262 }
6263
6264 static int task_clock_event_init(struct perf_event *event)
6265 {
6266 if (event->attr.type != PERF_TYPE_SOFTWARE)
6267 return -ENOENT;
6268
6269 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6270 return -ENOENT;
6271
6272 /*
6273 * no branch sampling for software events
6274 */
6275 if (has_branch_stack(event))
6276 return -EOPNOTSUPP;
6277
6278 perf_swevent_init_hrtimer(event);
6279
6280 return 0;
6281 }
6282
6283 static struct pmu perf_task_clock = {
6284 .task_ctx_nr = perf_sw_context,
6285
6286 .event_init = task_clock_event_init,
6287 .add = task_clock_event_add,
6288 .del = task_clock_event_del,
6289 .start = task_clock_event_start,
6290 .stop = task_clock_event_stop,
6291 .read = task_clock_event_read,
6292
6293 .event_idx = perf_swevent_event_idx,
6294 };
6295
6296 static void perf_pmu_nop_void(struct pmu *pmu)
6297 {
6298 }
6299
6300 static int perf_pmu_nop_int(struct pmu *pmu)
6301 {
6302 return 0;
6303 }
6304
6305 static void perf_pmu_start_txn(struct pmu *pmu)
6306 {
6307 perf_pmu_disable(pmu);
6308 }
6309
6310 static int perf_pmu_commit_txn(struct pmu *pmu)
6311 {
6312 perf_pmu_enable(pmu);
6313 return 0;
6314 }
6315
6316 static void perf_pmu_cancel_txn(struct pmu *pmu)
6317 {
6318 perf_pmu_enable(pmu);
6319 }
6320
6321 static int perf_event_idx_default(struct perf_event *event)
6322 {
6323 return event->hw.idx + 1;
6324 }
6325
6326 /*
6327 * Ensures all contexts with the same task_ctx_nr have the same
6328 * pmu_cpu_context too.
6329 */
6330 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6331 {
6332 struct pmu *pmu;
6333
6334 if (ctxn < 0)
6335 return NULL;
6336
6337 list_for_each_entry(pmu, &pmus, entry) {
6338 if (pmu->task_ctx_nr == ctxn)
6339 return pmu->pmu_cpu_context;
6340 }
6341
6342 return NULL;
6343 }
6344
6345 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6346 {
6347 int cpu;
6348
6349 for_each_possible_cpu(cpu) {
6350 struct perf_cpu_context *cpuctx;
6351
6352 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6353
6354 if (cpuctx->unique_pmu == old_pmu)
6355 cpuctx->unique_pmu = pmu;
6356 }
6357 }
6358
6359 static void free_pmu_context(struct pmu *pmu)
6360 {
6361 struct pmu *i;
6362
6363 mutex_lock(&pmus_lock);
6364 /*
6365 * Like a real lame refcount.
6366 */
6367 list_for_each_entry(i, &pmus, entry) {
6368 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6369 update_pmu_context(i, pmu);
6370 goto out;
6371 }
6372 }
6373
6374 free_percpu(pmu->pmu_cpu_context);
6375 out:
6376 mutex_unlock(&pmus_lock);
6377 }
6378 static struct idr pmu_idr;
6379
6380 static ssize_t
6381 type_show(struct device *dev, struct device_attribute *attr, char *page)
6382 {
6383 struct pmu *pmu = dev_get_drvdata(dev);
6384
6385 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6386 }
6387 static DEVICE_ATTR_RO(type);
6388
6389 static ssize_t
6390 perf_event_mux_interval_ms_show(struct device *dev,
6391 struct device_attribute *attr,
6392 char *page)
6393 {
6394 struct pmu *pmu = dev_get_drvdata(dev);
6395
6396 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6397 }
6398
6399 static ssize_t
6400 perf_event_mux_interval_ms_store(struct device *dev,
6401 struct device_attribute *attr,
6402 const char *buf, size_t count)
6403 {
6404 struct pmu *pmu = dev_get_drvdata(dev);
6405 int timer, cpu, ret;
6406
6407 ret = kstrtoint(buf, 0, &timer);
6408 if (ret)
6409 return ret;
6410
6411 if (timer < 1)
6412 return -EINVAL;
6413
6414 /* same value, noting to do */
6415 if (timer == pmu->hrtimer_interval_ms)
6416 return count;
6417
6418 pmu->hrtimer_interval_ms = timer;
6419
6420 /* update all cpuctx for this PMU */
6421 for_each_possible_cpu(cpu) {
6422 struct perf_cpu_context *cpuctx;
6423 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6424 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6425
6426 if (hrtimer_active(&cpuctx->hrtimer))
6427 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6428 }
6429
6430 return count;
6431 }
6432 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6433
6434 static struct attribute *pmu_dev_attrs[] = {
6435 &dev_attr_type.attr,
6436 &dev_attr_perf_event_mux_interval_ms.attr,
6437 NULL,
6438 };
6439 ATTRIBUTE_GROUPS(pmu_dev);
6440
6441 static int pmu_bus_running;
6442 static struct bus_type pmu_bus = {
6443 .name = "event_source",
6444 .dev_groups = pmu_dev_groups,
6445 };
6446
6447 static void pmu_dev_release(struct device *dev)
6448 {
6449 kfree(dev);
6450 }
6451
6452 static int pmu_dev_alloc(struct pmu *pmu)
6453 {
6454 int ret = -ENOMEM;
6455
6456 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6457 if (!pmu->dev)
6458 goto out;
6459
6460 pmu->dev->groups = pmu->attr_groups;
6461 device_initialize(pmu->dev);
6462 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6463 if (ret)
6464 goto free_dev;
6465
6466 dev_set_drvdata(pmu->dev, pmu);
6467 pmu->dev->bus = &pmu_bus;
6468 pmu->dev->release = pmu_dev_release;
6469 ret = device_add(pmu->dev);
6470 if (ret)
6471 goto free_dev;
6472
6473 out:
6474 return ret;
6475
6476 free_dev:
6477 put_device(pmu->dev);
6478 goto out;
6479 }
6480
6481 static struct lock_class_key cpuctx_mutex;
6482 static struct lock_class_key cpuctx_lock;
6483
6484 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6485 {
6486 int cpu, ret;
6487
6488 mutex_lock(&pmus_lock);
6489 ret = -ENOMEM;
6490 pmu->pmu_disable_count = alloc_percpu(int);
6491 if (!pmu->pmu_disable_count)
6492 goto unlock;
6493
6494 pmu->type = -1;
6495 if (!name)
6496 goto skip_type;
6497 pmu->name = name;
6498
6499 if (type < 0) {
6500 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6501 if (type < 0) {
6502 ret = type;
6503 goto free_pdc;
6504 }
6505 }
6506 pmu->type = type;
6507
6508 if (pmu_bus_running) {
6509 ret = pmu_dev_alloc(pmu);
6510 if (ret)
6511 goto free_idr;
6512 }
6513
6514 skip_type:
6515 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6516 if (pmu->pmu_cpu_context)
6517 goto got_cpu_context;
6518
6519 ret = -ENOMEM;
6520 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6521 if (!pmu->pmu_cpu_context)
6522 goto free_dev;
6523
6524 for_each_possible_cpu(cpu) {
6525 struct perf_cpu_context *cpuctx;
6526
6527 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6528 __perf_event_init_context(&cpuctx->ctx);
6529 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6530 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6531 cpuctx->ctx.type = cpu_context;
6532 cpuctx->ctx.pmu = pmu;
6533
6534 __perf_cpu_hrtimer_init(cpuctx, cpu);
6535
6536 INIT_LIST_HEAD(&cpuctx->rotation_list);
6537 cpuctx->unique_pmu = pmu;
6538 }
6539
6540 got_cpu_context:
6541 if (!pmu->start_txn) {
6542 if (pmu->pmu_enable) {
6543 /*
6544 * If we have pmu_enable/pmu_disable calls, install
6545 * transaction stubs that use that to try and batch
6546 * hardware accesses.
6547 */
6548 pmu->start_txn = perf_pmu_start_txn;
6549 pmu->commit_txn = perf_pmu_commit_txn;
6550 pmu->cancel_txn = perf_pmu_cancel_txn;
6551 } else {
6552 pmu->start_txn = perf_pmu_nop_void;
6553 pmu->commit_txn = perf_pmu_nop_int;
6554 pmu->cancel_txn = perf_pmu_nop_void;
6555 }
6556 }
6557
6558 if (!pmu->pmu_enable) {
6559 pmu->pmu_enable = perf_pmu_nop_void;
6560 pmu->pmu_disable = perf_pmu_nop_void;
6561 }
6562
6563 if (!pmu->event_idx)
6564 pmu->event_idx = perf_event_idx_default;
6565
6566 list_add_rcu(&pmu->entry, &pmus);
6567 ret = 0;
6568 unlock:
6569 mutex_unlock(&pmus_lock);
6570
6571 return ret;
6572
6573 free_dev:
6574 device_del(pmu->dev);
6575 put_device(pmu->dev);
6576
6577 free_idr:
6578 if (pmu->type >= PERF_TYPE_MAX)
6579 idr_remove(&pmu_idr, pmu->type);
6580
6581 free_pdc:
6582 free_percpu(pmu->pmu_disable_count);
6583 goto unlock;
6584 }
6585
6586 void perf_pmu_unregister(struct pmu *pmu)
6587 {
6588 mutex_lock(&pmus_lock);
6589 list_del_rcu(&pmu->entry);
6590 mutex_unlock(&pmus_lock);
6591
6592 /*
6593 * We dereference the pmu list under both SRCU and regular RCU, so
6594 * synchronize against both of those.
6595 */
6596 synchronize_srcu(&pmus_srcu);
6597 synchronize_rcu();
6598
6599 free_percpu(pmu->pmu_disable_count);
6600 if (pmu->type >= PERF_TYPE_MAX)
6601 idr_remove(&pmu_idr, pmu->type);
6602 device_del(pmu->dev);
6603 put_device(pmu->dev);
6604 free_pmu_context(pmu);
6605 }
6606
6607 struct pmu *perf_init_event(struct perf_event *event)
6608 {
6609 struct pmu *pmu = NULL;
6610 int idx;
6611 int ret;
6612
6613 idx = srcu_read_lock(&pmus_srcu);
6614
6615 rcu_read_lock();
6616 pmu = idr_find(&pmu_idr, event->attr.type);
6617 rcu_read_unlock();
6618 if (pmu) {
6619 event->pmu = pmu;
6620 ret = pmu->event_init(event);
6621 if (ret)
6622 pmu = ERR_PTR(ret);
6623 goto unlock;
6624 }
6625
6626 list_for_each_entry_rcu(pmu, &pmus, entry) {
6627 event->pmu = pmu;
6628 ret = pmu->event_init(event);
6629 if (!ret)
6630 goto unlock;
6631
6632 if (ret != -ENOENT) {
6633 pmu = ERR_PTR(ret);
6634 goto unlock;
6635 }
6636 }
6637 pmu = ERR_PTR(-ENOENT);
6638 unlock:
6639 srcu_read_unlock(&pmus_srcu, idx);
6640
6641 return pmu;
6642 }
6643
6644 static void account_event_cpu(struct perf_event *event, int cpu)
6645 {
6646 if (event->parent)
6647 return;
6648
6649 if (has_branch_stack(event)) {
6650 if (!(event->attach_state & PERF_ATTACH_TASK))
6651 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6652 }
6653 if (is_cgroup_event(event))
6654 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6655 }
6656
6657 static void account_event(struct perf_event *event)
6658 {
6659 if (event->parent)
6660 return;
6661
6662 if (event->attach_state & PERF_ATTACH_TASK)
6663 static_key_slow_inc(&perf_sched_events.key);
6664 if (event->attr.mmap || event->attr.mmap_data)
6665 atomic_inc(&nr_mmap_events);
6666 if (event->attr.comm)
6667 atomic_inc(&nr_comm_events);
6668 if (event->attr.task)
6669 atomic_inc(&nr_task_events);
6670 if (event->attr.freq) {
6671 if (atomic_inc_return(&nr_freq_events) == 1)
6672 tick_nohz_full_kick_all();
6673 }
6674 if (has_branch_stack(event))
6675 static_key_slow_inc(&perf_sched_events.key);
6676 if (is_cgroup_event(event))
6677 static_key_slow_inc(&perf_sched_events.key);
6678
6679 account_event_cpu(event, event->cpu);
6680 }
6681
6682 /*
6683 * Allocate and initialize a event structure
6684 */
6685 static struct perf_event *
6686 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6687 struct task_struct *task,
6688 struct perf_event *group_leader,
6689 struct perf_event *parent_event,
6690 perf_overflow_handler_t overflow_handler,
6691 void *context)
6692 {
6693 struct pmu *pmu;
6694 struct perf_event *event;
6695 struct hw_perf_event *hwc;
6696 long err = -EINVAL;
6697
6698 if ((unsigned)cpu >= nr_cpu_ids) {
6699 if (!task || cpu != -1)
6700 return ERR_PTR(-EINVAL);
6701 }
6702
6703 event = kzalloc(sizeof(*event), GFP_KERNEL);
6704 if (!event)
6705 return ERR_PTR(-ENOMEM);
6706
6707 /*
6708 * Single events are their own group leaders, with an
6709 * empty sibling list:
6710 */
6711 if (!group_leader)
6712 group_leader = event;
6713
6714 mutex_init(&event->child_mutex);
6715 INIT_LIST_HEAD(&event->child_list);
6716
6717 INIT_LIST_HEAD(&event->group_entry);
6718 INIT_LIST_HEAD(&event->event_entry);
6719 INIT_LIST_HEAD(&event->sibling_list);
6720 INIT_LIST_HEAD(&event->rb_entry);
6721 INIT_LIST_HEAD(&event->active_entry);
6722 INIT_HLIST_NODE(&event->hlist_entry);
6723
6724
6725 init_waitqueue_head(&event->waitq);
6726 init_irq_work(&event->pending, perf_pending_event);
6727
6728 mutex_init(&event->mmap_mutex);
6729
6730 atomic_long_set(&event->refcount, 1);
6731 event->cpu = cpu;
6732 event->attr = *attr;
6733 event->group_leader = group_leader;
6734 event->pmu = NULL;
6735 event->oncpu = -1;
6736
6737 event->parent = parent_event;
6738
6739 event->ns = get_pid_ns(task_active_pid_ns(current));
6740 event->id = atomic64_inc_return(&perf_event_id);
6741
6742 event->state = PERF_EVENT_STATE_INACTIVE;
6743
6744 if (task) {
6745 event->attach_state = PERF_ATTACH_TASK;
6746
6747 if (attr->type == PERF_TYPE_TRACEPOINT)
6748 event->hw.tp_target = task;
6749 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6750 /*
6751 * hw_breakpoint is a bit difficult here..
6752 */
6753 else if (attr->type == PERF_TYPE_BREAKPOINT)
6754 event->hw.bp_target = task;
6755 #endif
6756 }
6757
6758 if (!overflow_handler && parent_event) {
6759 overflow_handler = parent_event->overflow_handler;
6760 context = parent_event->overflow_handler_context;
6761 }
6762
6763 event->overflow_handler = overflow_handler;
6764 event->overflow_handler_context = context;
6765
6766 perf_event__state_init(event);
6767
6768 pmu = NULL;
6769
6770 hwc = &event->hw;
6771 hwc->sample_period = attr->sample_period;
6772 if (attr->freq && attr->sample_freq)
6773 hwc->sample_period = 1;
6774 hwc->last_period = hwc->sample_period;
6775
6776 local64_set(&hwc->period_left, hwc->sample_period);
6777
6778 /*
6779 * we currently do not support PERF_FORMAT_GROUP on inherited events
6780 */
6781 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6782 goto err_ns;
6783
6784 pmu = perf_init_event(event);
6785 if (!pmu)
6786 goto err_ns;
6787 else if (IS_ERR(pmu)) {
6788 err = PTR_ERR(pmu);
6789 goto err_ns;
6790 }
6791
6792 if (!event->parent) {
6793 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6794 err = get_callchain_buffers();
6795 if (err)
6796 goto err_pmu;
6797 }
6798 }
6799
6800 return event;
6801
6802 err_pmu:
6803 if (event->destroy)
6804 event->destroy(event);
6805 err_ns:
6806 if (event->ns)
6807 put_pid_ns(event->ns);
6808 kfree(event);
6809
6810 return ERR_PTR(err);
6811 }
6812
6813 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6814 struct perf_event_attr *attr)
6815 {
6816 u32 size;
6817 int ret;
6818
6819 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6820 return -EFAULT;
6821
6822 /*
6823 * zero the full structure, so that a short copy will be nice.
6824 */
6825 memset(attr, 0, sizeof(*attr));
6826
6827 ret = get_user(size, &uattr->size);
6828 if (ret)
6829 return ret;
6830
6831 if (size > PAGE_SIZE) /* silly large */
6832 goto err_size;
6833
6834 if (!size) /* abi compat */
6835 size = PERF_ATTR_SIZE_VER0;
6836
6837 if (size < PERF_ATTR_SIZE_VER0)
6838 goto err_size;
6839
6840 /*
6841 * If we're handed a bigger struct than we know of,
6842 * ensure all the unknown bits are 0 - i.e. new
6843 * user-space does not rely on any kernel feature
6844 * extensions we dont know about yet.
6845 */
6846 if (size > sizeof(*attr)) {
6847 unsigned char __user *addr;
6848 unsigned char __user *end;
6849 unsigned char val;
6850
6851 addr = (void __user *)uattr + sizeof(*attr);
6852 end = (void __user *)uattr + size;
6853
6854 for (; addr < end; addr++) {
6855 ret = get_user(val, addr);
6856 if (ret)
6857 return ret;
6858 if (val)
6859 goto err_size;
6860 }
6861 size = sizeof(*attr);
6862 }
6863
6864 ret = copy_from_user(attr, uattr, size);
6865 if (ret)
6866 return -EFAULT;
6867
6868 /* disabled for now */
6869 if (attr->mmap2)
6870 return -EINVAL;
6871
6872 if (attr->__reserved_1)
6873 return -EINVAL;
6874
6875 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6876 return -EINVAL;
6877
6878 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6879 return -EINVAL;
6880
6881 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6882 u64 mask = attr->branch_sample_type;
6883
6884 /* only using defined bits */
6885 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6886 return -EINVAL;
6887
6888 /* at least one branch bit must be set */
6889 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6890 return -EINVAL;
6891
6892 /* propagate priv level, when not set for branch */
6893 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6894
6895 /* exclude_kernel checked on syscall entry */
6896 if (!attr->exclude_kernel)
6897 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6898
6899 if (!attr->exclude_user)
6900 mask |= PERF_SAMPLE_BRANCH_USER;
6901
6902 if (!attr->exclude_hv)
6903 mask |= PERF_SAMPLE_BRANCH_HV;
6904 /*
6905 * adjust user setting (for HW filter setup)
6906 */
6907 attr->branch_sample_type = mask;
6908 }
6909 /* privileged levels capture (kernel, hv): check permissions */
6910 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6911 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6912 return -EACCES;
6913 }
6914
6915 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6916 ret = perf_reg_validate(attr->sample_regs_user);
6917 if (ret)
6918 return ret;
6919 }
6920
6921 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6922 if (!arch_perf_have_user_stack_dump())
6923 return -ENOSYS;
6924
6925 /*
6926 * We have __u32 type for the size, but so far
6927 * we can only use __u16 as maximum due to the
6928 * __u16 sample size limit.
6929 */
6930 if (attr->sample_stack_user >= USHRT_MAX)
6931 ret = -EINVAL;
6932 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6933 ret = -EINVAL;
6934 }
6935
6936 out:
6937 return ret;
6938
6939 err_size:
6940 put_user(sizeof(*attr), &uattr->size);
6941 ret = -E2BIG;
6942 goto out;
6943 }
6944
6945 static int
6946 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6947 {
6948 struct ring_buffer *rb = NULL;
6949 int ret = -EINVAL;
6950
6951 if (!output_event)
6952 goto set;
6953
6954 /* don't allow circular references */
6955 if (event == output_event)
6956 goto out;
6957
6958 /*
6959 * Don't allow cross-cpu buffers
6960 */
6961 if (output_event->cpu != event->cpu)
6962 goto out;
6963
6964 /*
6965 * If its not a per-cpu rb, it must be the same task.
6966 */
6967 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6968 goto out;
6969
6970 set:
6971 mutex_lock(&event->mmap_mutex);
6972 /* Can't redirect output if we've got an active mmap() */
6973 if (atomic_read(&event->mmap_count))
6974 goto unlock;
6975
6976 if (output_event) {
6977 /* get the rb we want to redirect to */
6978 rb = ring_buffer_get(output_event);
6979 if (!rb)
6980 goto unlock;
6981 }
6982
6983 ring_buffer_attach(event, rb);
6984
6985 ret = 0;
6986 unlock:
6987 mutex_unlock(&event->mmap_mutex);
6988
6989 out:
6990 return ret;
6991 }
6992
6993 /**
6994 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6995 *
6996 * @attr_uptr: event_id type attributes for monitoring/sampling
6997 * @pid: target pid
6998 * @cpu: target cpu
6999 * @group_fd: group leader event fd
7000 */
7001 SYSCALL_DEFINE5(perf_event_open,
7002 struct perf_event_attr __user *, attr_uptr,
7003 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7004 {
7005 struct perf_event *group_leader = NULL, *output_event = NULL;
7006 struct perf_event *event, *sibling;
7007 struct perf_event_attr attr;
7008 struct perf_event_context *ctx;
7009 struct file *event_file = NULL;
7010 struct fd group = {NULL, 0};
7011 struct task_struct *task = NULL;
7012 struct pmu *pmu;
7013 int event_fd;
7014 int move_group = 0;
7015 int err;
7016 int f_flags = O_RDWR;
7017
7018 /* for future expandability... */
7019 if (flags & ~PERF_FLAG_ALL)
7020 return -EINVAL;
7021
7022 err = perf_copy_attr(attr_uptr, &attr);
7023 if (err)
7024 return err;
7025
7026 if (!attr.exclude_kernel) {
7027 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7028 return -EACCES;
7029 }
7030
7031 if (attr.freq) {
7032 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7033 return -EINVAL;
7034 } else {
7035 if (attr.sample_period & (1ULL << 63))
7036 return -EINVAL;
7037 }
7038
7039 /*
7040 * In cgroup mode, the pid argument is used to pass the fd
7041 * opened to the cgroup directory in cgroupfs. The cpu argument
7042 * designates the cpu on which to monitor threads from that
7043 * cgroup.
7044 */
7045 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7046 return -EINVAL;
7047
7048 if (flags & PERF_FLAG_FD_CLOEXEC)
7049 f_flags |= O_CLOEXEC;
7050
7051 event_fd = get_unused_fd_flags(f_flags);
7052 if (event_fd < 0)
7053 return event_fd;
7054
7055 if (group_fd != -1) {
7056 err = perf_fget_light(group_fd, &group);
7057 if (err)
7058 goto err_fd;
7059 group_leader = group.file->private_data;
7060 if (flags & PERF_FLAG_FD_OUTPUT)
7061 output_event = group_leader;
7062 if (flags & PERF_FLAG_FD_NO_GROUP)
7063 group_leader = NULL;
7064 }
7065
7066 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7067 task = find_lively_task_by_vpid(pid);
7068 if (IS_ERR(task)) {
7069 err = PTR_ERR(task);
7070 goto err_group_fd;
7071 }
7072 }
7073
7074 get_online_cpus();
7075
7076 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7077 NULL, NULL);
7078 if (IS_ERR(event)) {
7079 err = PTR_ERR(event);
7080 goto err_task;
7081 }
7082
7083 if (flags & PERF_FLAG_PID_CGROUP) {
7084 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7085 if (err) {
7086 __free_event(event);
7087 goto err_task;
7088 }
7089 }
7090
7091 account_event(event);
7092
7093 /*
7094 * Special case software events and allow them to be part of
7095 * any hardware group.
7096 */
7097 pmu = event->pmu;
7098
7099 if (group_leader &&
7100 (is_software_event(event) != is_software_event(group_leader))) {
7101 if (is_software_event(event)) {
7102 /*
7103 * If event and group_leader are not both a software
7104 * event, and event is, then group leader is not.
7105 *
7106 * Allow the addition of software events to !software
7107 * groups, this is safe because software events never
7108 * fail to schedule.
7109 */
7110 pmu = group_leader->pmu;
7111 } else if (is_software_event(group_leader) &&
7112 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7113 /*
7114 * In case the group is a pure software group, and we
7115 * try to add a hardware event, move the whole group to
7116 * the hardware context.
7117 */
7118 move_group = 1;
7119 }
7120 }
7121
7122 /*
7123 * Get the target context (task or percpu):
7124 */
7125 ctx = find_get_context(pmu, task, event->cpu);
7126 if (IS_ERR(ctx)) {
7127 err = PTR_ERR(ctx);
7128 goto err_alloc;
7129 }
7130
7131 if (task) {
7132 put_task_struct(task);
7133 task = NULL;
7134 }
7135
7136 /*
7137 * Look up the group leader (we will attach this event to it):
7138 */
7139 if (group_leader) {
7140 err = -EINVAL;
7141
7142 /*
7143 * Do not allow a recursive hierarchy (this new sibling
7144 * becoming part of another group-sibling):
7145 */
7146 if (group_leader->group_leader != group_leader)
7147 goto err_context;
7148 /*
7149 * Do not allow to attach to a group in a different
7150 * task or CPU context:
7151 */
7152 if (move_group) {
7153 if (group_leader->ctx->type != ctx->type)
7154 goto err_context;
7155 } else {
7156 if (group_leader->ctx != ctx)
7157 goto err_context;
7158 }
7159
7160 /*
7161 * Only a group leader can be exclusive or pinned
7162 */
7163 if (attr.exclusive || attr.pinned)
7164 goto err_context;
7165 }
7166
7167 if (output_event) {
7168 err = perf_event_set_output(event, output_event);
7169 if (err)
7170 goto err_context;
7171 }
7172
7173 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7174 f_flags);
7175 if (IS_ERR(event_file)) {
7176 err = PTR_ERR(event_file);
7177 goto err_context;
7178 }
7179
7180 if (move_group) {
7181 struct perf_event_context *gctx = group_leader->ctx;
7182
7183 mutex_lock(&gctx->mutex);
7184 perf_remove_from_context(group_leader, false);
7185
7186 /*
7187 * Removing from the context ends up with disabled
7188 * event. What we want here is event in the initial
7189 * startup state, ready to be add into new context.
7190 */
7191 perf_event__state_init(group_leader);
7192 list_for_each_entry(sibling, &group_leader->sibling_list,
7193 group_entry) {
7194 perf_remove_from_context(sibling, false);
7195 perf_event__state_init(sibling);
7196 put_ctx(gctx);
7197 }
7198 mutex_unlock(&gctx->mutex);
7199 put_ctx(gctx);
7200 }
7201
7202 WARN_ON_ONCE(ctx->parent_ctx);
7203 mutex_lock(&ctx->mutex);
7204
7205 if (move_group) {
7206 synchronize_rcu();
7207 perf_install_in_context(ctx, group_leader, event->cpu);
7208 get_ctx(ctx);
7209 list_for_each_entry(sibling, &group_leader->sibling_list,
7210 group_entry) {
7211 perf_install_in_context(ctx, sibling, event->cpu);
7212 get_ctx(ctx);
7213 }
7214 }
7215
7216 perf_install_in_context(ctx, event, event->cpu);
7217 perf_unpin_context(ctx);
7218 mutex_unlock(&ctx->mutex);
7219
7220 put_online_cpus();
7221
7222 event->owner = current;
7223
7224 mutex_lock(&current->perf_event_mutex);
7225 list_add_tail(&event->owner_entry, &current->perf_event_list);
7226 mutex_unlock(&current->perf_event_mutex);
7227
7228 /*
7229 * Precalculate sample_data sizes
7230 */
7231 perf_event__header_size(event);
7232 perf_event__id_header_size(event);
7233
7234 /*
7235 * Drop the reference on the group_event after placing the
7236 * new event on the sibling_list. This ensures destruction
7237 * of the group leader will find the pointer to itself in
7238 * perf_group_detach().
7239 */
7240 fdput(group);
7241 fd_install(event_fd, event_file);
7242 return event_fd;
7243
7244 err_context:
7245 perf_unpin_context(ctx);
7246 put_ctx(ctx);
7247 err_alloc:
7248 free_event(event);
7249 err_task:
7250 put_online_cpus();
7251 if (task)
7252 put_task_struct(task);
7253 err_group_fd:
7254 fdput(group);
7255 err_fd:
7256 put_unused_fd(event_fd);
7257 return err;
7258 }
7259
7260 /**
7261 * perf_event_create_kernel_counter
7262 *
7263 * @attr: attributes of the counter to create
7264 * @cpu: cpu in which the counter is bound
7265 * @task: task to profile (NULL for percpu)
7266 */
7267 struct perf_event *
7268 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7269 struct task_struct *task,
7270 perf_overflow_handler_t overflow_handler,
7271 void *context)
7272 {
7273 struct perf_event_context *ctx;
7274 struct perf_event *event;
7275 int err;
7276
7277 /*
7278 * Get the target context (task or percpu):
7279 */
7280
7281 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7282 overflow_handler, context);
7283 if (IS_ERR(event)) {
7284 err = PTR_ERR(event);
7285 goto err;
7286 }
7287
7288 account_event(event);
7289
7290 ctx = find_get_context(event->pmu, task, cpu);
7291 if (IS_ERR(ctx)) {
7292 err = PTR_ERR(ctx);
7293 goto err_free;
7294 }
7295
7296 WARN_ON_ONCE(ctx->parent_ctx);
7297 mutex_lock(&ctx->mutex);
7298 perf_install_in_context(ctx, event, cpu);
7299 perf_unpin_context(ctx);
7300 mutex_unlock(&ctx->mutex);
7301
7302 return event;
7303
7304 err_free:
7305 free_event(event);
7306 err:
7307 return ERR_PTR(err);
7308 }
7309 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7310
7311 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7312 {
7313 struct perf_event_context *src_ctx;
7314 struct perf_event_context *dst_ctx;
7315 struct perf_event *event, *tmp;
7316 LIST_HEAD(events);
7317
7318 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7319 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7320
7321 mutex_lock(&src_ctx->mutex);
7322 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7323 event_entry) {
7324 perf_remove_from_context(event, false);
7325 unaccount_event_cpu(event, src_cpu);
7326 put_ctx(src_ctx);
7327 list_add(&event->migrate_entry, &events);
7328 }
7329 mutex_unlock(&src_ctx->mutex);
7330
7331 synchronize_rcu();
7332
7333 mutex_lock(&dst_ctx->mutex);
7334 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7335 list_del(&event->migrate_entry);
7336 if (event->state >= PERF_EVENT_STATE_OFF)
7337 event->state = PERF_EVENT_STATE_INACTIVE;
7338 account_event_cpu(event, dst_cpu);
7339 perf_install_in_context(dst_ctx, event, dst_cpu);
7340 get_ctx(dst_ctx);
7341 }
7342 mutex_unlock(&dst_ctx->mutex);
7343 }
7344 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7345
7346 static void sync_child_event(struct perf_event *child_event,
7347 struct task_struct *child)
7348 {
7349 struct perf_event *parent_event = child_event->parent;
7350 u64 child_val;
7351
7352 if (child_event->attr.inherit_stat)
7353 perf_event_read_event(child_event, child);
7354
7355 child_val = perf_event_count(child_event);
7356
7357 /*
7358 * Add back the child's count to the parent's count:
7359 */
7360 atomic64_add(child_val, &parent_event->child_count);
7361 atomic64_add(child_event->total_time_enabled,
7362 &parent_event->child_total_time_enabled);
7363 atomic64_add(child_event->total_time_running,
7364 &parent_event->child_total_time_running);
7365
7366 /*
7367 * Remove this event from the parent's list
7368 */
7369 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7370 mutex_lock(&parent_event->child_mutex);
7371 list_del_init(&child_event->child_list);
7372 mutex_unlock(&parent_event->child_mutex);
7373
7374 /*
7375 * Release the parent event, if this was the last
7376 * reference to it.
7377 */
7378 put_event(parent_event);
7379 }
7380
7381 static void
7382 __perf_event_exit_task(struct perf_event *child_event,
7383 struct perf_event_context *child_ctx,
7384 struct task_struct *child)
7385 {
7386 perf_remove_from_context(child_event, !!child_event->parent);
7387
7388 /*
7389 * It can happen that the parent exits first, and has events
7390 * that are still around due to the child reference. These
7391 * events need to be zapped.
7392 */
7393 if (child_event->parent) {
7394 sync_child_event(child_event, child);
7395 free_event(child_event);
7396 }
7397 }
7398
7399 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7400 {
7401 struct perf_event *child_event, *tmp;
7402 struct perf_event_context *child_ctx;
7403 unsigned long flags;
7404
7405 if (likely(!child->perf_event_ctxp[ctxn])) {
7406 perf_event_task(child, NULL, 0);
7407 return;
7408 }
7409
7410 local_irq_save(flags);
7411 /*
7412 * We can't reschedule here because interrupts are disabled,
7413 * and either child is current or it is a task that can't be
7414 * scheduled, so we are now safe from rescheduling changing
7415 * our context.
7416 */
7417 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7418
7419 /*
7420 * Take the context lock here so that if find_get_context is
7421 * reading child->perf_event_ctxp, we wait until it has
7422 * incremented the context's refcount before we do put_ctx below.
7423 */
7424 raw_spin_lock(&child_ctx->lock);
7425 task_ctx_sched_out(child_ctx);
7426 child->perf_event_ctxp[ctxn] = NULL;
7427 /*
7428 * If this context is a clone; unclone it so it can't get
7429 * swapped to another process while we're removing all
7430 * the events from it.
7431 */
7432 unclone_ctx(child_ctx);
7433 update_context_time(child_ctx);
7434 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7435
7436 /*
7437 * Report the task dead after unscheduling the events so that we
7438 * won't get any samples after PERF_RECORD_EXIT. We can however still
7439 * get a few PERF_RECORD_READ events.
7440 */
7441 perf_event_task(child, child_ctx, 0);
7442
7443 /*
7444 * We can recurse on the same lock type through:
7445 *
7446 * __perf_event_exit_task()
7447 * sync_child_event()
7448 * put_event()
7449 * mutex_lock(&ctx->mutex)
7450 *
7451 * But since its the parent context it won't be the same instance.
7452 */
7453 mutex_lock(&child_ctx->mutex);
7454
7455 again:
7456 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7457 group_entry)
7458 __perf_event_exit_task(child_event, child_ctx, child);
7459
7460 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7461 group_entry)
7462 __perf_event_exit_task(child_event, child_ctx, child);
7463
7464 /*
7465 * If the last event was a group event, it will have appended all
7466 * its siblings to the list, but we obtained 'tmp' before that which
7467 * will still point to the list head terminating the iteration.
7468 */
7469 if (!list_empty(&child_ctx->pinned_groups) ||
7470 !list_empty(&child_ctx->flexible_groups))
7471 goto again;
7472
7473 mutex_unlock(&child_ctx->mutex);
7474
7475 put_ctx(child_ctx);
7476 }
7477
7478 /*
7479 * When a child task exits, feed back event values to parent events.
7480 */
7481 void perf_event_exit_task(struct task_struct *child)
7482 {
7483 struct perf_event *event, *tmp;
7484 int ctxn;
7485
7486 mutex_lock(&child->perf_event_mutex);
7487 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7488 owner_entry) {
7489 list_del_init(&event->owner_entry);
7490
7491 /*
7492 * Ensure the list deletion is visible before we clear
7493 * the owner, closes a race against perf_release() where
7494 * we need to serialize on the owner->perf_event_mutex.
7495 */
7496 smp_wmb();
7497 event->owner = NULL;
7498 }
7499 mutex_unlock(&child->perf_event_mutex);
7500
7501 for_each_task_context_nr(ctxn)
7502 perf_event_exit_task_context(child, ctxn);
7503 }
7504
7505 static void perf_free_event(struct perf_event *event,
7506 struct perf_event_context *ctx)
7507 {
7508 struct perf_event *parent = event->parent;
7509
7510 if (WARN_ON_ONCE(!parent))
7511 return;
7512
7513 mutex_lock(&parent->child_mutex);
7514 list_del_init(&event->child_list);
7515 mutex_unlock(&parent->child_mutex);
7516
7517 put_event(parent);
7518
7519 perf_group_detach(event);
7520 list_del_event(event, ctx);
7521 free_event(event);
7522 }
7523
7524 /*
7525 * free an unexposed, unused context as created by inheritance by
7526 * perf_event_init_task below, used by fork() in case of fail.
7527 */
7528 void perf_event_free_task(struct task_struct *task)
7529 {
7530 struct perf_event_context *ctx;
7531 struct perf_event *event, *tmp;
7532 int ctxn;
7533
7534 for_each_task_context_nr(ctxn) {
7535 ctx = task->perf_event_ctxp[ctxn];
7536 if (!ctx)
7537 continue;
7538
7539 mutex_lock(&ctx->mutex);
7540 again:
7541 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7542 group_entry)
7543 perf_free_event(event, ctx);
7544
7545 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7546 group_entry)
7547 perf_free_event(event, ctx);
7548
7549 if (!list_empty(&ctx->pinned_groups) ||
7550 !list_empty(&ctx->flexible_groups))
7551 goto again;
7552
7553 mutex_unlock(&ctx->mutex);
7554
7555 put_ctx(ctx);
7556 }
7557 }
7558
7559 void perf_event_delayed_put(struct task_struct *task)
7560 {
7561 int ctxn;
7562
7563 for_each_task_context_nr(ctxn)
7564 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7565 }
7566
7567 /*
7568 * inherit a event from parent task to child task:
7569 */
7570 static struct perf_event *
7571 inherit_event(struct perf_event *parent_event,
7572 struct task_struct *parent,
7573 struct perf_event_context *parent_ctx,
7574 struct task_struct *child,
7575 struct perf_event *group_leader,
7576 struct perf_event_context *child_ctx)
7577 {
7578 struct perf_event *child_event;
7579 unsigned long flags;
7580
7581 /*
7582 * Instead of creating recursive hierarchies of events,
7583 * we link inherited events back to the original parent,
7584 * which has a filp for sure, which we use as the reference
7585 * count:
7586 */
7587 if (parent_event->parent)
7588 parent_event = parent_event->parent;
7589
7590 child_event = perf_event_alloc(&parent_event->attr,
7591 parent_event->cpu,
7592 child,
7593 group_leader, parent_event,
7594 NULL, NULL);
7595 if (IS_ERR(child_event))
7596 return child_event;
7597
7598 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7599 free_event(child_event);
7600 return NULL;
7601 }
7602
7603 get_ctx(child_ctx);
7604
7605 /*
7606 * Make the child state follow the state of the parent event,
7607 * not its attr.disabled bit. We hold the parent's mutex,
7608 * so we won't race with perf_event_{en, dis}able_family.
7609 */
7610 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7611 child_event->state = PERF_EVENT_STATE_INACTIVE;
7612 else
7613 child_event->state = PERF_EVENT_STATE_OFF;
7614
7615 if (parent_event->attr.freq) {
7616 u64 sample_period = parent_event->hw.sample_period;
7617 struct hw_perf_event *hwc = &child_event->hw;
7618
7619 hwc->sample_period = sample_period;
7620 hwc->last_period = sample_period;
7621
7622 local64_set(&hwc->period_left, sample_period);
7623 }
7624
7625 child_event->ctx = child_ctx;
7626 child_event->overflow_handler = parent_event->overflow_handler;
7627 child_event->overflow_handler_context
7628 = parent_event->overflow_handler_context;
7629
7630 /*
7631 * Precalculate sample_data sizes
7632 */
7633 perf_event__header_size(child_event);
7634 perf_event__id_header_size(child_event);
7635
7636 /*
7637 * Link it up in the child's context:
7638 */
7639 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7640 add_event_to_ctx(child_event, child_ctx);
7641 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7642
7643 /*
7644 * Link this into the parent event's child list
7645 */
7646 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7647 mutex_lock(&parent_event->child_mutex);
7648 list_add_tail(&child_event->child_list, &parent_event->child_list);
7649 mutex_unlock(&parent_event->child_mutex);
7650
7651 return child_event;
7652 }
7653
7654 static int inherit_group(struct perf_event *parent_event,
7655 struct task_struct *parent,
7656 struct perf_event_context *parent_ctx,
7657 struct task_struct *child,
7658 struct perf_event_context *child_ctx)
7659 {
7660 struct perf_event *leader;
7661 struct perf_event *sub;
7662 struct perf_event *child_ctr;
7663
7664 leader = inherit_event(parent_event, parent, parent_ctx,
7665 child, NULL, child_ctx);
7666 if (IS_ERR(leader))
7667 return PTR_ERR(leader);
7668 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7669 child_ctr = inherit_event(sub, parent, parent_ctx,
7670 child, leader, child_ctx);
7671 if (IS_ERR(child_ctr))
7672 return PTR_ERR(child_ctr);
7673 }
7674 return 0;
7675 }
7676
7677 static int
7678 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7679 struct perf_event_context *parent_ctx,
7680 struct task_struct *child, int ctxn,
7681 int *inherited_all)
7682 {
7683 int ret;
7684 struct perf_event_context *child_ctx;
7685
7686 if (!event->attr.inherit) {
7687 *inherited_all = 0;
7688 return 0;
7689 }
7690
7691 child_ctx = child->perf_event_ctxp[ctxn];
7692 if (!child_ctx) {
7693 /*
7694 * This is executed from the parent task context, so
7695 * inherit events that have been marked for cloning.
7696 * First allocate and initialize a context for the
7697 * child.
7698 */
7699
7700 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7701 if (!child_ctx)
7702 return -ENOMEM;
7703
7704 child->perf_event_ctxp[ctxn] = child_ctx;
7705 }
7706
7707 ret = inherit_group(event, parent, parent_ctx,
7708 child, child_ctx);
7709
7710 if (ret)
7711 *inherited_all = 0;
7712
7713 return ret;
7714 }
7715
7716 /*
7717 * Initialize the perf_event context in task_struct
7718 */
7719 int perf_event_init_context(struct task_struct *child, int ctxn)
7720 {
7721 struct perf_event_context *child_ctx, *parent_ctx;
7722 struct perf_event_context *cloned_ctx;
7723 struct perf_event *event;
7724 struct task_struct *parent = current;
7725 int inherited_all = 1;
7726 unsigned long flags;
7727 int ret = 0;
7728
7729 if (likely(!parent->perf_event_ctxp[ctxn]))
7730 return 0;
7731
7732 /*
7733 * If the parent's context is a clone, pin it so it won't get
7734 * swapped under us.
7735 */
7736 parent_ctx = perf_pin_task_context(parent, ctxn);
7737 if (!parent_ctx)
7738 return 0;
7739
7740 /*
7741 * No need to check if parent_ctx != NULL here; since we saw
7742 * it non-NULL earlier, the only reason for it to become NULL
7743 * is if we exit, and since we're currently in the middle of
7744 * a fork we can't be exiting at the same time.
7745 */
7746
7747 /*
7748 * Lock the parent list. No need to lock the child - not PID
7749 * hashed yet and not running, so nobody can access it.
7750 */
7751 mutex_lock(&parent_ctx->mutex);
7752
7753 /*
7754 * We dont have to disable NMIs - we are only looking at
7755 * the list, not manipulating it:
7756 */
7757 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7758 ret = inherit_task_group(event, parent, parent_ctx,
7759 child, ctxn, &inherited_all);
7760 if (ret)
7761 break;
7762 }
7763
7764 /*
7765 * We can't hold ctx->lock when iterating the ->flexible_group list due
7766 * to allocations, but we need to prevent rotation because
7767 * rotate_ctx() will change the list from interrupt context.
7768 */
7769 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7770 parent_ctx->rotate_disable = 1;
7771 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7772
7773 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7774 ret = inherit_task_group(event, parent, parent_ctx,
7775 child, ctxn, &inherited_all);
7776 if (ret)
7777 break;
7778 }
7779
7780 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7781 parent_ctx->rotate_disable = 0;
7782
7783 child_ctx = child->perf_event_ctxp[ctxn];
7784
7785 if (child_ctx && inherited_all) {
7786 /*
7787 * Mark the child context as a clone of the parent
7788 * context, or of whatever the parent is a clone of.
7789 *
7790 * Note that if the parent is a clone, the holding of
7791 * parent_ctx->lock avoids it from being uncloned.
7792 */
7793 cloned_ctx = parent_ctx->parent_ctx;
7794 if (cloned_ctx) {
7795 child_ctx->parent_ctx = cloned_ctx;
7796 child_ctx->parent_gen = parent_ctx->parent_gen;
7797 } else {
7798 child_ctx->parent_ctx = parent_ctx;
7799 child_ctx->parent_gen = parent_ctx->generation;
7800 }
7801 get_ctx(child_ctx->parent_ctx);
7802 }
7803
7804 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7805 mutex_unlock(&parent_ctx->mutex);
7806
7807 perf_unpin_context(parent_ctx);
7808 put_ctx(parent_ctx);
7809
7810 return ret;
7811 }
7812
7813 /*
7814 * Initialize the perf_event context in task_struct
7815 */
7816 int perf_event_init_task(struct task_struct *child)
7817 {
7818 int ctxn, ret;
7819
7820 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7821 mutex_init(&child->perf_event_mutex);
7822 INIT_LIST_HEAD(&child->perf_event_list);
7823
7824 for_each_task_context_nr(ctxn) {
7825 ret = perf_event_init_context(child, ctxn);
7826 if (ret)
7827 return ret;
7828 }
7829
7830 return 0;
7831 }
7832
7833 static void __init perf_event_init_all_cpus(void)
7834 {
7835 struct swevent_htable *swhash;
7836 int cpu;
7837
7838 for_each_possible_cpu(cpu) {
7839 swhash = &per_cpu(swevent_htable, cpu);
7840 mutex_init(&swhash->hlist_mutex);
7841 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7842 }
7843 }
7844
7845 static void perf_event_init_cpu(int cpu)
7846 {
7847 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7848
7849 mutex_lock(&swhash->hlist_mutex);
7850 swhash->online = true;
7851 if (swhash->hlist_refcount > 0) {
7852 struct swevent_hlist *hlist;
7853
7854 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7855 WARN_ON(!hlist);
7856 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7857 }
7858 mutex_unlock(&swhash->hlist_mutex);
7859 }
7860
7861 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7862 static void perf_pmu_rotate_stop(struct pmu *pmu)
7863 {
7864 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7865
7866 WARN_ON(!irqs_disabled());
7867
7868 list_del_init(&cpuctx->rotation_list);
7869 }
7870
7871 static void __perf_event_exit_context(void *__info)
7872 {
7873 struct remove_event re = { .detach_group = false };
7874 struct perf_event_context *ctx = __info;
7875
7876 perf_pmu_rotate_stop(ctx->pmu);
7877
7878 rcu_read_lock();
7879 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7880 __perf_remove_from_context(&re);
7881 rcu_read_unlock();
7882 }
7883
7884 static void perf_event_exit_cpu_context(int cpu)
7885 {
7886 struct perf_event_context *ctx;
7887 struct pmu *pmu;
7888 int idx;
7889
7890 idx = srcu_read_lock(&pmus_srcu);
7891 list_for_each_entry_rcu(pmu, &pmus, entry) {
7892 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7893
7894 mutex_lock(&ctx->mutex);
7895 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7896 mutex_unlock(&ctx->mutex);
7897 }
7898 srcu_read_unlock(&pmus_srcu, idx);
7899 }
7900
7901 static void perf_event_exit_cpu(int cpu)
7902 {
7903 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7904
7905 perf_event_exit_cpu_context(cpu);
7906
7907 mutex_lock(&swhash->hlist_mutex);
7908 swhash->online = false;
7909 swevent_hlist_release(swhash);
7910 mutex_unlock(&swhash->hlist_mutex);
7911 }
7912 #else
7913 static inline void perf_event_exit_cpu(int cpu) { }
7914 #endif
7915
7916 static int
7917 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7918 {
7919 int cpu;
7920
7921 for_each_online_cpu(cpu)
7922 perf_event_exit_cpu(cpu);
7923
7924 return NOTIFY_OK;
7925 }
7926
7927 /*
7928 * Run the perf reboot notifier at the very last possible moment so that
7929 * the generic watchdog code runs as long as possible.
7930 */
7931 static struct notifier_block perf_reboot_notifier = {
7932 .notifier_call = perf_reboot,
7933 .priority = INT_MIN,
7934 };
7935
7936 static int
7937 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7938 {
7939 unsigned int cpu = (long)hcpu;
7940
7941 switch (action & ~CPU_TASKS_FROZEN) {
7942
7943 case CPU_UP_PREPARE:
7944 case CPU_DOWN_FAILED:
7945 perf_event_init_cpu(cpu);
7946 break;
7947
7948 case CPU_UP_CANCELED:
7949 case CPU_DOWN_PREPARE:
7950 perf_event_exit_cpu(cpu);
7951 break;
7952 default:
7953 break;
7954 }
7955
7956 return NOTIFY_OK;
7957 }
7958
7959 void __init perf_event_init(void)
7960 {
7961 int ret;
7962
7963 idr_init(&pmu_idr);
7964
7965 perf_event_init_all_cpus();
7966 init_srcu_struct(&pmus_srcu);
7967 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7968 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7969 perf_pmu_register(&perf_task_clock, NULL, -1);
7970 perf_tp_register();
7971 perf_cpu_notifier(perf_cpu_notify);
7972 register_reboot_notifier(&perf_reboot_notifier);
7973
7974 ret = init_hw_breakpoint();
7975 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7976
7977 /* do not patch jump label more than once per second */
7978 jump_label_rate_limit(&perf_sched_events, HZ);
7979
7980 /*
7981 * Build time assertion that we keep the data_head at the intended
7982 * location. IOW, validation we got the __reserved[] size right.
7983 */
7984 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7985 != 1024);
7986 }
7987
7988 static int __init perf_event_sysfs_init(void)
7989 {
7990 struct pmu *pmu;
7991 int ret;
7992
7993 mutex_lock(&pmus_lock);
7994
7995 ret = bus_register(&pmu_bus);
7996 if (ret)
7997 goto unlock;
7998
7999 list_for_each_entry(pmu, &pmus, entry) {
8000 if (!pmu->name || pmu->type < 0)
8001 continue;
8002
8003 ret = pmu_dev_alloc(pmu);
8004 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8005 }
8006 pmu_bus_running = 1;
8007 ret = 0;
8008
8009 unlock:
8010 mutex_unlock(&pmus_lock);
8011
8012 return ret;
8013 }
8014 device_initcall(perf_event_sysfs_init);
8015
8016 #ifdef CONFIG_CGROUP_PERF
8017 static struct cgroup_subsys_state *
8018 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8019 {
8020 struct perf_cgroup *jc;
8021
8022 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8023 if (!jc)
8024 return ERR_PTR(-ENOMEM);
8025
8026 jc->info = alloc_percpu(struct perf_cgroup_info);
8027 if (!jc->info) {
8028 kfree(jc);
8029 return ERR_PTR(-ENOMEM);
8030 }
8031
8032 return &jc->css;
8033 }
8034
8035 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8036 {
8037 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8038
8039 free_percpu(jc->info);
8040 kfree(jc);
8041 }
8042
8043 static int __perf_cgroup_move(void *info)
8044 {
8045 struct task_struct *task = info;
8046 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8047 return 0;
8048 }
8049
8050 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8051 struct cgroup_taskset *tset)
8052 {
8053 struct task_struct *task;
8054
8055 cgroup_taskset_for_each(task, tset)
8056 task_function_call(task, __perf_cgroup_move, task);
8057 }
8058
8059 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8060 struct cgroup_subsys_state *old_css,
8061 struct task_struct *task)
8062 {
8063 /*
8064 * cgroup_exit() is called in the copy_process() failure path.
8065 * Ignore this case since the task hasn't ran yet, this avoids
8066 * trying to poke a half freed task state from generic code.
8067 */
8068 if (!(task->flags & PF_EXITING))
8069 return;
8070
8071 task_function_call(task, __perf_cgroup_move, task);
8072 }
8073
8074 struct cgroup_subsys perf_event_cgrp_subsys = {
8075 .css_alloc = perf_cgroup_css_alloc,
8076 .css_free = perf_cgroup_css_free,
8077 .exit = perf_cgroup_exit,
8078 .attach = perf_cgroup_attach,
8079 };
8080 #endif /* CONFIG_CGROUP_PERF */
This page took 0.210965 seconds and 5 git commands to generate.