perf: provide sysfs_show for struct perf_pmu_events_attr
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45
46 #include "internal.h"
47
48 #include <asm/irq_regs.h>
49
50 static struct workqueue_struct *perf_wq;
51
52 struct remote_function_call {
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
57 };
58
59 static void remote_function(void *data)
60 {
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71 }
72
73 /**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 struct remote_function_call data = {
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100 }
101
102 /**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 struct remote_function_call data = {
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123 }
124
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 return event->owner == EVENT_OWNER_KERNEL;
130 }
131
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
136
137 /*
138 * branch priv levels that need permission checks
139 */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
144 enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149
150 /*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166
167 /*
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
173 */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178
179 /*
180 * max perf event sample rate
181 */
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
191 static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193
194 void update_perf_cpu_limits(void)
195 {
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
199 do_div(tmp, 100);
200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208 {
209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219 }
220
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226 {
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
233
234 return 0;
235 }
236
237 /*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 u64 avg_local_sample_len;
250 u64 local_samples_len;
251
252 local_samples_len = __this_cpu_read(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len, allowed_ns >> 1,
259 sysctl_perf_event_sample_rate);
260 }
261
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
269
270 if (allowed_ns == 0)
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __this_cpu_read(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __this_cpu_write(running_sample_length, local_samples_len);
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
286 if (avg_local_sample_len <= allowed_ns)
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
296 update_perf_cpu_limits();
297
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
304 }
305
306 static atomic64_t perf_event_id;
307
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317
318 void __weak perf_event_print_debug(void) { }
319
320 extern __weak const char *perf_pmu_name(void)
321 {
322 return "pmu";
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return local_clock();
328 }
329
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338 {
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342 }
343
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346 {
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351
352 #ifdef CONFIG_CGROUP_PERF
353
354 /*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358 struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361 };
362
363 struct perf_cgroup {
364 struct cgroup_subsys_state css;
365 struct perf_cgroup_info __percpu *info;
366 };
367
368 /*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 return container_of(task_css(task, perf_event_cgrp_id),
377 struct perf_cgroup, css);
378 }
379
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
402 }
403
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 css_put(&event->cgrp->css);
407 event->cgrp = NULL;
408 }
409
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 return event->cgrp != NULL;
413 }
414
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421 }
422
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434 }
435
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441 }
442
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 struct perf_cgroup *cgrp;
446
447 /*
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
450 */
451 if (!is_cgroup_event(event))
452 return;
453
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
460 }
461
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
465 {
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
479 info->timestamp = ctx->timestamp;
480 }
481
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485 /*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
514
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
536 WARN_ON_ONCE(cpuctx->cgrp);
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 }
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553 }
554
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
557 {
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608 {
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
611 struct fd f = fdget(fd);
612 int ret = 0;
613
614 if (!f.file)
615 return -EBADF;
616
617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 &perf_event_cgrp_subsys);
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
635 }
636 out:
637 fdput(f);
638 return ret;
639 }
640
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647 }
648
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660 }
661
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665 {
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 return true;
688 }
689
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 return 0;
696 }
697
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 return 0;
701 }
702
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
713 {
714 }
715
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
718 {
719 }
720
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724 {
725 return -EINVAL;
726 }
727
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
731 {
732 }
733
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 return 0;
747 }
748
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760
761 /*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767 * function must be called with interrupts disbled
768 */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790 }
791
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818 }
819
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
824 int timer;
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842 }
843
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
866 }
867
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
873 }
874
875 static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877 /*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
882 static void perf_pmu_rotate_start(struct pmu *pmu)
883 {
884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885 struct list_head *head = this_cpu_ptr(&rotation_list);
886
887 WARN_ON(!irqs_disabled());
888
889 if (list_empty(&cpuctx->rotation_list))
890 list_add(&cpuctx->rotation_list, head);
891 }
892
893 static void get_ctx(struct perf_event_context *ctx)
894 {
895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 }
897
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
903 if (ctx->task)
904 put_task_struct(ctx->task);
905 kfree_rcu(ctx, rcu_head);
906 }
907 }
908
909 /*
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
913 */
914 static __must_check struct perf_event_context *
915 unclone_ctx(struct perf_event_context *ctx)
916 {
917 struct perf_event_context *parent_ctx = ctx->parent_ctx;
918
919 lockdep_assert_held(&ctx->lock);
920
921 if (parent_ctx)
922 ctx->parent_ctx = NULL;
923 ctx->generation++;
924
925 return parent_ctx;
926 }
927
928 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929 {
930 /*
931 * only top level events have the pid namespace they were created in
932 */
933 if (event->parent)
934 event = event->parent;
935
936 return task_tgid_nr_ns(p, event->ns);
937 }
938
939 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940 {
941 /*
942 * only top level events have the pid namespace they were created in
943 */
944 if (event->parent)
945 event = event->parent;
946
947 return task_pid_nr_ns(p, event->ns);
948 }
949
950 /*
951 * If we inherit events we want to return the parent event id
952 * to userspace.
953 */
954 static u64 primary_event_id(struct perf_event *event)
955 {
956 u64 id = event->id;
957
958 if (event->parent)
959 id = event->parent->id;
960
961 return id;
962 }
963
964 /*
965 * Get the perf_event_context for a task and lock it.
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
968 */
969 static struct perf_event_context *
970 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971 {
972 struct perf_event_context *ctx;
973
974 retry:
975 /*
976 * One of the few rules of preemptible RCU is that one cannot do
977 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 * part of the read side critical section was preemptible -- see
979 * rcu_read_unlock_special().
980 *
981 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 * side critical section is non-preemptible.
983 */
984 preempt_disable();
985 rcu_read_lock();
986 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 if (ctx) {
988 /*
989 * If this context is a clone of another, it might
990 * get swapped for another underneath us by
991 * perf_event_task_sched_out, though the
992 * rcu_read_lock() protects us from any context
993 * getting freed. Lock the context and check if it
994 * got swapped before we could get the lock, and retry
995 * if so. If we locked the right context, then it
996 * can't get swapped on us any more.
997 */
998 raw_spin_lock_irqsave(&ctx->lock, *flags);
999 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 rcu_read_unlock();
1002 preempt_enable();
1003 goto retry;
1004 }
1005
1006 if (!atomic_inc_not_zero(&ctx->refcount)) {
1007 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 ctx = NULL;
1009 }
1010 }
1011 rcu_read_unlock();
1012 preempt_enable();
1013 return ctx;
1014 }
1015
1016 /*
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task. This also increments its
1019 * reference count so that the context can't get freed.
1020 */
1021 static struct perf_event_context *
1022 perf_pin_task_context(struct task_struct *task, int ctxn)
1023 {
1024 struct perf_event_context *ctx;
1025 unsigned long flags;
1026
1027 ctx = perf_lock_task_context(task, ctxn, &flags);
1028 if (ctx) {
1029 ++ctx->pin_count;
1030 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 }
1032 return ctx;
1033 }
1034
1035 static void perf_unpin_context(struct perf_event_context *ctx)
1036 {
1037 unsigned long flags;
1038
1039 raw_spin_lock_irqsave(&ctx->lock, flags);
1040 --ctx->pin_count;
1041 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 }
1043
1044 /*
1045 * Update the record of the current time in a context.
1046 */
1047 static void update_context_time(struct perf_event_context *ctx)
1048 {
1049 u64 now = perf_clock();
1050
1051 ctx->time += now - ctx->timestamp;
1052 ctx->timestamp = now;
1053 }
1054
1055 static u64 perf_event_time(struct perf_event *event)
1056 {
1057 struct perf_event_context *ctx = event->ctx;
1058
1059 if (is_cgroup_event(event))
1060 return perf_cgroup_event_time(event);
1061
1062 return ctx ? ctx->time : 0;
1063 }
1064
1065 /*
1066 * Update the total_time_enabled and total_time_running fields for a event.
1067 * The caller of this function needs to hold the ctx->lock.
1068 */
1069 static void update_event_times(struct perf_event *event)
1070 {
1071 struct perf_event_context *ctx = event->ctx;
1072 u64 run_end;
1073
1074 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 return;
1077 /*
1078 * in cgroup mode, time_enabled represents
1079 * the time the event was enabled AND active
1080 * tasks were in the monitored cgroup. This is
1081 * independent of the activity of the context as
1082 * there may be a mix of cgroup and non-cgroup events.
1083 *
1084 * That is why we treat cgroup events differently
1085 * here.
1086 */
1087 if (is_cgroup_event(event))
1088 run_end = perf_cgroup_event_time(event);
1089 else if (ctx->is_active)
1090 run_end = ctx->time;
1091 else
1092 run_end = event->tstamp_stopped;
1093
1094 event->total_time_enabled = run_end - event->tstamp_enabled;
1095
1096 if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 run_end = event->tstamp_stopped;
1098 else
1099 run_end = perf_event_time(event);
1100
1101 event->total_time_running = run_end - event->tstamp_running;
1102
1103 }
1104
1105 /*
1106 * Update total_time_enabled and total_time_running for all events in a group.
1107 */
1108 static void update_group_times(struct perf_event *leader)
1109 {
1110 struct perf_event *event;
1111
1112 update_event_times(leader);
1113 list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 update_event_times(event);
1115 }
1116
1117 static struct list_head *
1118 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119 {
1120 if (event->attr.pinned)
1121 return &ctx->pinned_groups;
1122 else
1123 return &ctx->flexible_groups;
1124 }
1125
1126 /*
1127 * Add a event from the lists for its context.
1128 * Must be called with ctx->mutex and ctx->lock held.
1129 */
1130 static void
1131 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132 {
1133 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 event->attach_state |= PERF_ATTACH_CONTEXT;
1135
1136 /*
1137 * If we're a stand alone event or group leader, we go to the context
1138 * list, group events are kept attached to the group so that
1139 * perf_group_detach can, at all times, locate all siblings.
1140 */
1141 if (event->group_leader == event) {
1142 struct list_head *list;
1143
1144 if (is_software_event(event))
1145 event->group_flags |= PERF_GROUP_SOFTWARE;
1146
1147 list = ctx_group_list(event, ctx);
1148 list_add_tail(&event->group_entry, list);
1149 }
1150
1151 if (is_cgroup_event(event))
1152 ctx->nr_cgroups++;
1153
1154 if (has_branch_stack(event))
1155 ctx->nr_branch_stack++;
1156
1157 list_add_rcu(&event->event_entry, &ctx->event_list);
1158 if (!ctx->nr_events)
1159 perf_pmu_rotate_start(ctx->pmu);
1160 ctx->nr_events++;
1161 if (event->attr.inherit_stat)
1162 ctx->nr_stat++;
1163
1164 ctx->generation++;
1165 }
1166
1167 /*
1168 * Initialize event state based on the perf_event_attr::disabled.
1169 */
1170 static inline void perf_event__state_init(struct perf_event *event)
1171 {
1172 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 PERF_EVENT_STATE_INACTIVE;
1174 }
1175
1176 /*
1177 * Called at perf_event creation and when events are attached/detached from a
1178 * group.
1179 */
1180 static void perf_event__read_size(struct perf_event *event)
1181 {
1182 int entry = sizeof(u64); /* value */
1183 int size = 0;
1184 int nr = 1;
1185
1186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 size += sizeof(u64);
1188
1189 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 size += sizeof(u64);
1191
1192 if (event->attr.read_format & PERF_FORMAT_ID)
1193 entry += sizeof(u64);
1194
1195 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 nr += event->group_leader->nr_siblings;
1197 size += sizeof(u64);
1198 }
1199
1200 size += entry * nr;
1201 event->read_size = size;
1202 }
1203
1204 static void perf_event__header_size(struct perf_event *event)
1205 {
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
1210 perf_event__read_size(event);
1211
1212 if (sample_type & PERF_SAMPLE_IP)
1213 size += sizeof(data->ip);
1214
1215 if (sample_type & PERF_SAMPLE_ADDR)
1216 size += sizeof(data->addr);
1217
1218 if (sample_type & PERF_SAMPLE_PERIOD)
1219 size += sizeof(data->period);
1220
1221 if (sample_type & PERF_SAMPLE_WEIGHT)
1222 size += sizeof(data->weight);
1223
1224 if (sample_type & PERF_SAMPLE_READ)
1225 size += event->read_size;
1226
1227 if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 size += sizeof(data->data_src.val);
1229
1230 if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 size += sizeof(data->txn);
1232
1233 event->header_size = size;
1234 }
1235
1236 static void perf_event__id_header_size(struct perf_event *event)
1237 {
1238 struct perf_sample_data *data;
1239 u64 sample_type = event->attr.sample_type;
1240 u16 size = 0;
1241
1242 if (sample_type & PERF_SAMPLE_TID)
1243 size += sizeof(data->tid_entry);
1244
1245 if (sample_type & PERF_SAMPLE_TIME)
1246 size += sizeof(data->time);
1247
1248 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 size += sizeof(data->id);
1250
1251 if (sample_type & PERF_SAMPLE_ID)
1252 size += sizeof(data->id);
1253
1254 if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 size += sizeof(data->stream_id);
1256
1257 if (sample_type & PERF_SAMPLE_CPU)
1258 size += sizeof(data->cpu_entry);
1259
1260 event->id_header_size = size;
1261 }
1262
1263 static void perf_group_attach(struct perf_event *event)
1264 {
1265 struct perf_event *group_leader = event->group_leader, *pos;
1266
1267 /*
1268 * We can have double attach due to group movement in perf_event_open.
1269 */
1270 if (event->attach_state & PERF_ATTACH_GROUP)
1271 return;
1272
1273 event->attach_state |= PERF_ATTACH_GROUP;
1274
1275 if (group_leader == event)
1276 return;
1277
1278 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279 !is_software_event(event))
1280 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281
1282 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283 group_leader->nr_siblings++;
1284
1285 perf_event__header_size(group_leader);
1286
1287 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288 perf_event__header_size(pos);
1289 }
1290
1291 /*
1292 * Remove a event from the lists for its context.
1293 * Must be called with ctx->mutex and ctx->lock held.
1294 */
1295 static void
1296 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297 {
1298 struct perf_cpu_context *cpuctx;
1299 /*
1300 * We can have double detach due to exit/hot-unplug + close.
1301 */
1302 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303 return;
1304
1305 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306
1307 if (is_cgroup_event(event)) {
1308 ctx->nr_cgroups--;
1309 cpuctx = __get_cpu_context(ctx);
1310 /*
1311 * if there are no more cgroup events
1312 * then cler cgrp to avoid stale pointer
1313 * in update_cgrp_time_from_cpuctx()
1314 */
1315 if (!ctx->nr_cgroups)
1316 cpuctx->cgrp = NULL;
1317 }
1318
1319 if (has_branch_stack(event))
1320 ctx->nr_branch_stack--;
1321
1322 ctx->nr_events--;
1323 if (event->attr.inherit_stat)
1324 ctx->nr_stat--;
1325
1326 list_del_rcu(&event->event_entry);
1327
1328 if (event->group_leader == event)
1329 list_del_init(&event->group_entry);
1330
1331 update_group_times(event);
1332
1333 /*
1334 * If event was in error state, then keep it
1335 * that way, otherwise bogus counts will be
1336 * returned on read(). The only way to get out
1337 * of error state is by explicit re-enabling
1338 * of the event
1339 */
1340 if (event->state > PERF_EVENT_STATE_OFF)
1341 event->state = PERF_EVENT_STATE_OFF;
1342
1343 ctx->generation++;
1344 }
1345
1346 static void perf_group_detach(struct perf_event *event)
1347 {
1348 struct perf_event *sibling, *tmp;
1349 struct list_head *list = NULL;
1350
1351 /*
1352 * We can have double detach due to exit/hot-unplug + close.
1353 */
1354 if (!(event->attach_state & PERF_ATTACH_GROUP))
1355 return;
1356
1357 event->attach_state &= ~PERF_ATTACH_GROUP;
1358
1359 /*
1360 * If this is a sibling, remove it from its group.
1361 */
1362 if (event->group_leader != event) {
1363 list_del_init(&event->group_entry);
1364 event->group_leader->nr_siblings--;
1365 goto out;
1366 }
1367
1368 if (!list_empty(&event->group_entry))
1369 list = &event->group_entry;
1370
1371 /*
1372 * If this was a group event with sibling events then
1373 * upgrade the siblings to singleton events by adding them
1374 * to whatever list we are on.
1375 */
1376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 if (list)
1378 list_move_tail(&sibling->group_entry, list);
1379 sibling->group_leader = sibling;
1380
1381 /* Inherit group flags from the previous leader */
1382 sibling->group_flags = event->group_flags;
1383 }
1384
1385 out:
1386 perf_event__header_size(event->group_leader);
1387
1388 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389 perf_event__header_size(tmp);
1390 }
1391
1392 /*
1393 * User event without the task.
1394 */
1395 static bool is_orphaned_event(struct perf_event *event)
1396 {
1397 return event && !is_kernel_event(event) && !event->owner;
1398 }
1399
1400 /*
1401 * Event has a parent but parent's task finished and it's
1402 * alive only because of children holding refference.
1403 */
1404 static bool is_orphaned_child(struct perf_event *event)
1405 {
1406 return is_orphaned_event(event->parent);
1407 }
1408
1409 static void orphans_remove_work(struct work_struct *work);
1410
1411 static void schedule_orphans_remove(struct perf_event_context *ctx)
1412 {
1413 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414 return;
1415
1416 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417 get_ctx(ctx);
1418 ctx->orphans_remove_sched = true;
1419 }
1420 }
1421
1422 static int __init perf_workqueue_init(void)
1423 {
1424 perf_wq = create_singlethread_workqueue("perf");
1425 WARN(!perf_wq, "failed to create perf workqueue\n");
1426 return perf_wq ? 0 : -1;
1427 }
1428
1429 core_initcall(perf_workqueue_init);
1430
1431 static inline int
1432 event_filter_match(struct perf_event *event)
1433 {
1434 return (event->cpu == -1 || event->cpu == smp_processor_id())
1435 && perf_cgroup_match(event);
1436 }
1437
1438 static void
1439 event_sched_out(struct perf_event *event,
1440 struct perf_cpu_context *cpuctx,
1441 struct perf_event_context *ctx)
1442 {
1443 u64 tstamp = perf_event_time(event);
1444 u64 delta;
1445 /*
1446 * An event which could not be activated because of
1447 * filter mismatch still needs to have its timings
1448 * maintained, otherwise bogus information is return
1449 * via read() for time_enabled, time_running:
1450 */
1451 if (event->state == PERF_EVENT_STATE_INACTIVE
1452 && !event_filter_match(event)) {
1453 delta = tstamp - event->tstamp_stopped;
1454 event->tstamp_running += delta;
1455 event->tstamp_stopped = tstamp;
1456 }
1457
1458 if (event->state != PERF_EVENT_STATE_ACTIVE)
1459 return;
1460
1461 perf_pmu_disable(event->pmu);
1462
1463 event->state = PERF_EVENT_STATE_INACTIVE;
1464 if (event->pending_disable) {
1465 event->pending_disable = 0;
1466 event->state = PERF_EVENT_STATE_OFF;
1467 }
1468 event->tstamp_stopped = tstamp;
1469 event->pmu->del(event, 0);
1470 event->oncpu = -1;
1471
1472 if (!is_software_event(event))
1473 cpuctx->active_oncpu--;
1474 ctx->nr_active--;
1475 if (event->attr.freq && event->attr.sample_freq)
1476 ctx->nr_freq--;
1477 if (event->attr.exclusive || !cpuctx->active_oncpu)
1478 cpuctx->exclusive = 0;
1479
1480 if (is_orphaned_child(event))
1481 schedule_orphans_remove(ctx);
1482
1483 perf_pmu_enable(event->pmu);
1484 }
1485
1486 static void
1487 group_sched_out(struct perf_event *group_event,
1488 struct perf_cpu_context *cpuctx,
1489 struct perf_event_context *ctx)
1490 {
1491 struct perf_event *event;
1492 int state = group_event->state;
1493
1494 event_sched_out(group_event, cpuctx, ctx);
1495
1496 /*
1497 * Schedule out siblings (if any):
1498 */
1499 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500 event_sched_out(event, cpuctx, ctx);
1501
1502 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 cpuctx->exclusive = 0;
1504 }
1505
1506 struct remove_event {
1507 struct perf_event *event;
1508 bool detach_group;
1509 };
1510
1511 /*
1512 * Cross CPU call to remove a performance event
1513 *
1514 * We disable the event on the hardware level first. After that we
1515 * remove it from the context list.
1516 */
1517 static int __perf_remove_from_context(void *info)
1518 {
1519 struct remove_event *re = info;
1520 struct perf_event *event = re->event;
1521 struct perf_event_context *ctx = event->ctx;
1522 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523
1524 raw_spin_lock(&ctx->lock);
1525 event_sched_out(event, cpuctx, ctx);
1526 if (re->detach_group)
1527 perf_group_detach(event);
1528 list_del_event(event, ctx);
1529 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530 ctx->is_active = 0;
1531 cpuctx->task_ctx = NULL;
1532 }
1533 raw_spin_unlock(&ctx->lock);
1534
1535 return 0;
1536 }
1537
1538
1539 /*
1540 * Remove the event from a task's (or a CPU's) list of events.
1541 *
1542 * CPU events are removed with a smp call. For task events we only
1543 * call when the task is on a CPU.
1544 *
1545 * If event->ctx is a cloned context, callers must make sure that
1546 * every task struct that event->ctx->task could possibly point to
1547 * remains valid. This is OK when called from perf_release since
1548 * that only calls us on the top-level context, which can't be a clone.
1549 * When called from perf_event_exit_task, it's OK because the
1550 * context has been detached from its task.
1551 */
1552 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553 {
1554 struct perf_event_context *ctx = event->ctx;
1555 struct task_struct *task = ctx->task;
1556 struct remove_event re = {
1557 .event = event,
1558 .detach_group = detach_group,
1559 };
1560
1561 lockdep_assert_held(&ctx->mutex);
1562
1563 if (!task) {
1564 /*
1565 * Per cpu events are removed via an smp call. The removal can
1566 * fail if the CPU is currently offline, but in that case we
1567 * already called __perf_remove_from_context from
1568 * perf_event_exit_cpu.
1569 */
1570 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1571 return;
1572 }
1573
1574 retry:
1575 if (!task_function_call(task, __perf_remove_from_context, &re))
1576 return;
1577
1578 raw_spin_lock_irq(&ctx->lock);
1579 /*
1580 * If we failed to find a running task, but find the context active now
1581 * that we've acquired the ctx->lock, retry.
1582 */
1583 if (ctx->is_active) {
1584 raw_spin_unlock_irq(&ctx->lock);
1585 /*
1586 * Reload the task pointer, it might have been changed by
1587 * a concurrent perf_event_context_sched_out().
1588 */
1589 task = ctx->task;
1590 goto retry;
1591 }
1592
1593 /*
1594 * Since the task isn't running, its safe to remove the event, us
1595 * holding the ctx->lock ensures the task won't get scheduled in.
1596 */
1597 if (detach_group)
1598 perf_group_detach(event);
1599 list_del_event(event, ctx);
1600 raw_spin_unlock_irq(&ctx->lock);
1601 }
1602
1603 /*
1604 * Cross CPU call to disable a performance event
1605 */
1606 int __perf_event_disable(void *info)
1607 {
1608 struct perf_event *event = info;
1609 struct perf_event_context *ctx = event->ctx;
1610 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1611
1612 /*
1613 * If this is a per-task event, need to check whether this
1614 * event's task is the current task on this cpu.
1615 *
1616 * Can trigger due to concurrent perf_event_context_sched_out()
1617 * flipping contexts around.
1618 */
1619 if (ctx->task && cpuctx->task_ctx != ctx)
1620 return -EINVAL;
1621
1622 raw_spin_lock(&ctx->lock);
1623
1624 /*
1625 * If the event is on, turn it off.
1626 * If it is in error state, leave it in error state.
1627 */
1628 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1629 update_context_time(ctx);
1630 update_cgrp_time_from_event(event);
1631 update_group_times(event);
1632 if (event == event->group_leader)
1633 group_sched_out(event, cpuctx, ctx);
1634 else
1635 event_sched_out(event, cpuctx, ctx);
1636 event->state = PERF_EVENT_STATE_OFF;
1637 }
1638
1639 raw_spin_unlock(&ctx->lock);
1640
1641 return 0;
1642 }
1643
1644 /*
1645 * Disable a event.
1646 *
1647 * If event->ctx is a cloned context, callers must make sure that
1648 * every task struct that event->ctx->task could possibly point to
1649 * remains valid. This condition is satisifed when called through
1650 * perf_event_for_each_child or perf_event_for_each because they
1651 * hold the top-level event's child_mutex, so any descendant that
1652 * goes to exit will block in sync_child_event.
1653 * When called from perf_pending_event it's OK because event->ctx
1654 * is the current context on this CPU and preemption is disabled,
1655 * hence we can't get into perf_event_task_sched_out for this context.
1656 */
1657 void perf_event_disable(struct perf_event *event)
1658 {
1659 struct perf_event_context *ctx = event->ctx;
1660 struct task_struct *task = ctx->task;
1661
1662 if (!task) {
1663 /*
1664 * Disable the event on the cpu that it's on
1665 */
1666 cpu_function_call(event->cpu, __perf_event_disable, event);
1667 return;
1668 }
1669
1670 retry:
1671 if (!task_function_call(task, __perf_event_disable, event))
1672 return;
1673
1674 raw_spin_lock_irq(&ctx->lock);
1675 /*
1676 * If the event is still active, we need to retry the cross-call.
1677 */
1678 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1679 raw_spin_unlock_irq(&ctx->lock);
1680 /*
1681 * Reload the task pointer, it might have been changed by
1682 * a concurrent perf_event_context_sched_out().
1683 */
1684 task = ctx->task;
1685 goto retry;
1686 }
1687
1688 /*
1689 * Since we have the lock this context can't be scheduled
1690 * in, so we can change the state safely.
1691 */
1692 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1693 update_group_times(event);
1694 event->state = PERF_EVENT_STATE_OFF;
1695 }
1696 raw_spin_unlock_irq(&ctx->lock);
1697 }
1698 EXPORT_SYMBOL_GPL(perf_event_disable);
1699
1700 static void perf_set_shadow_time(struct perf_event *event,
1701 struct perf_event_context *ctx,
1702 u64 tstamp)
1703 {
1704 /*
1705 * use the correct time source for the time snapshot
1706 *
1707 * We could get by without this by leveraging the
1708 * fact that to get to this function, the caller
1709 * has most likely already called update_context_time()
1710 * and update_cgrp_time_xx() and thus both timestamp
1711 * are identical (or very close). Given that tstamp is,
1712 * already adjusted for cgroup, we could say that:
1713 * tstamp - ctx->timestamp
1714 * is equivalent to
1715 * tstamp - cgrp->timestamp.
1716 *
1717 * Then, in perf_output_read(), the calculation would
1718 * work with no changes because:
1719 * - event is guaranteed scheduled in
1720 * - no scheduled out in between
1721 * - thus the timestamp would be the same
1722 *
1723 * But this is a bit hairy.
1724 *
1725 * So instead, we have an explicit cgroup call to remain
1726 * within the time time source all along. We believe it
1727 * is cleaner and simpler to understand.
1728 */
1729 if (is_cgroup_event(event))
1730 perf_cgroup_set_shadow_time(event, tstamp);
1731 else
1732 event->shadow_ctx_time = tstamp - ctx->timestamp;
1733 }
1734
1735 #define MAX_INTERRUPTS (~0ULL)
1736
1737 static void perf_log_throttle(struct perf_event *event, int enable);
1738
1739 static int
1740 event_sched_in(struct perf_event *event,
1741 struct perf_cpu_context *cpuctx,
1742 struct perf_event_context *ctx)
1743 {
1744 u64 tstamp = perf_event_time(event);
1745 int ret = 0;
1746
1747 lockdep_assert_held(&ctx->lock);
1748
1749 if (event->state <= PERF_EVENT_STATE_OFF)
1750 return 0;
1751
1752 event->state = PERF_EVENT_STATE_ACTIVE;
1753 event->oncpu = smp_processor_id();
1754
1755 /*
1756 * Unthrottle events, since we scheduled we might have missed several
1757 * ticks already, also for a heavily scheduling task there is little
1758 * guarantee it'll get a tick in a timely manner.
1759 */
1760 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1761 perf_log_throttle(event, 1);
1762 event->hw.interrupts = 0;
1763 }
1764
1765 /*
1766 * The new state must be visible before we turn it on in the hardware:
1767 */
1768 smp_wmb();
1769
1770 perf_pmu_disable(event->pmu);
1771
1772 if (event->pmu->add(event, PERF_EF_START)) {
1773 event->state = PERF_EVENT_STATE_INACTIVE;
1774 event->oncpu = -1;
1775 ret = -EAGAIN;
1776 goto out;
1777 }
1778
1779 event->tstamp_running += tstamp - event->tstamp_stopped;
1780
1781 perf_set_shadow_time(event, ctx, tstamp);
1782
1783 if (!is_software_event(event))
1784 cpuctx->active_oncpu++;
1785 ctx->nr_active++;
1786 if (event->attr.freq && event->attr.sample_freq)
1787 ctx->nr_freq++;
1788
1789 if (event->attr.exclusive)
1790 cpuctx->exclusive = 1;
1791
1792 if (is_orphaned_child(event))
1793 schedule_orphans_remove(ctx);
1794
1795 out:
1796 perf_pmu_enable(event->pmu);
1797
1798 return ret;
1799 }
1800
1801 static int
1802 group_sched_in(struct perf_event *group_event,
1803 struct perf_cpu_context *cpuctx,
1804 struct perf_event_context *ctx)
1805 {
1806 struct perf_event *event, *partial_group = NULL;
1807 struct pmu *pmu = ctx->pmu;
1808 u64 now = ctx->time;
1809 bool simulate = false;
1810
1811 if (group_event->state == PERF_EVENT_STATE_OFF)
1812 return 0;
1813
1814 pmu->start_txn(pmu);
1815
1816 if (event_sched_in(group_event, cpuctx, ctx)) {
1817 pmu->cancel_txn(pmu);
1818 perf_cpu_hrtimer_restart(cpuctx);
1819 return -EAGAIN;
1820 }
1821
1822 /*
1823 * Schedule in siblings as one group (if any):
1824 */
1825 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1826 if (event_sched_in(event, cpuctx, ctx)) {
1827 partial_group = event;
1828 goto group_error;
1829 }
1830 }
1831
1832 if (!pmu->commit_txn(pmu))
1833 return 0;
1834
1835 group_error:
1836 /*
1837 * Groups can be scheduled in as one unit only, so undo any
1838 * partial group before returning:
1839 * The events up to the failed event are scheduled out normally,
1840 * tstamp_stopped will be updated.
1841 *
1842 * The failed events and the remaining siblings need to have
1843 * their timings updated as if they had gone thru event_sched_in()
1844 * and event_sched_out(). This is required to get consistent timings
1845 * across the group. This also takes care of the case where the group
1846 * could never be scheduled by ensuring tstamp_stopped is set to mark
1847 * the time the event was actually stopped, such that time delta
1848 * calculation in update_event_times() is correct.
1849 */
1850 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1851 if (event == partial_group)
1852 simulate = true;
1853
1854 if (simulate) {
1855 event->tstamp_running += now - event->tstamp_stopped;
1856 event->tstamp_stopped = now;
1857 } else {
1858 event_sched_out(event, cpuctx, ctx);
1859 }
1860 }
1861 event_sched_out(group_event, cpuctx, ctx);
1862
1863 pmu->cancel_txn(pmu);
1864
1865 perf_cpu_hrtimer_restart(cpuctx);
1866
1867 return -EAGAIN;
1868 }
1869
1870 /*
1871 * Work out whether we can put this event group on the CPU now.
1872 */
1873 static int group_can_go_on(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 int can_add_hw)
1876 {
1877 /*
1878 * Groups consisting entirely of software events can always go on.
1879 */
1880 if (event->group_flags & PERF_GROUP_SOFTWARE)
1881 return 1;
1882 /*
1883 * If an exclusive group is already on, no other hardware
1884 * events can go on.
1885 */
1886 if (cpuctx->exclusive)
1887 return 0;
1888 /*
1889 * If this group is exclusive and there are already
1890 * events on the CPU, it can't go on.
1891 */
1892 if (event->attr.exclusive && cpuctx->active_oncpu)
1893 return 0;
1894 /*
1895 * Otherwise, try to add it if all previous groups were able
1896 * to go on.
1897 */
1898 return can_add_hw;
1899 }
1900
1901 static void add_event_to_ctx(struct perf_event *event,
1902 struct perf_event_context *ctx)
1903 {
1904 u64 tstamp = perf_event_time(event);
1905
1906 list_add_event(event, ctx);
1907 perf_group_attach(event);
1908 event->tstamp_enabled = tstamp;
1909 event->tstamp_running = tstamp;
1910 event->tstamp_stopped = tstamp;
1911 }
1912
1913 static void task_ctx_sched_out(struct perf_event_context *ctx);
1914 static void
1915 ctx_sched_in(struct perf_event_context *ctx,
1916 struct perf_cpu_context *cpuctx,
1917 enum event_type_t event_type,
1918 struct task_struct *task);
1919
1920 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1921 struct perf_event_context *ctx,
1922 struct task_struct *task)
1923 {
1924 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1925 if (ctx)
1926 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1927 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1928 if (ctx)
1929 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1930 }
1931
1932 /*
1933 * Cross CPU call to install and enable a performance event
1934 *
1935 * Must be called with ctx->mutex held
1936 */
1937 static int __perf_install_in_context(void *info)
1938 {
1939 struct perf_event *event = info;
1940 struct perf_event_context *ctx = event->ctx;
1941 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1942 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1943 struct task_struct *task = current;
1944
1945 perf_ctx_lock(cpuctx, task_ctx);
1946 perf_pmu_disable(cpuctx->ctx.pmu);
1947
1948 /*
1949 * If there was an active task_ctx schedule it out.
1950 */
1951 if (task_ctx)
1952 task_ctx_sched_out(task_ctx);
1953
1954 /*
1955 * If the context we're installing events in is not the
1956 * active task_ctx, flip them.
1957 */
1958 if (ctx->task && task_ctx != ctx) {
1959 if (task_ctx)
1960 raw_spin_unlock(&task_ctx->lock);
1961 raw_spin_lock(&ctx->lock);
1962 task_ctx = ctx;
1963 }
1964
1965 if (task_ctx) {
1966 cpuctx->task_ctx = task_ctx;
1967 task = task_ctx->task;
1968 }
1969
1970 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1971
1972 update_context_time(ctx);
1973 /*
1974 * update cgrp time only if current cgrp
1975 * matches event->cgrp. Must be done before
1976 * calling add_event_to_ctx()
1977 */
1978 update_cgrp_time_from_event(event);
1979
1980 add_event_to_ctx(event, ctx);
1981
1982 /*
1983 * Schedule everything back in
1984 */
1985 perf_event_sched_in(cpuctx, task_ctx, task);
1986
1987 perf_pmu_enable(cpuctx->ctx.pmu);
1988 perf_ctx_unlock(cpuctx, task_ctx);
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * Attach a performance event to a context
1995 *
1996 * First we add the event to the list with the hardware enable bit
1997 * in event->hw_config cleared.
1998 *
1999 * If the event is attached to a task which is on a CPU we use a smp
2000 * call to enable it in the task context. The task might have been
2001 * scheduled away, but we check this in the smp call again.
2002 */
2003 static void
2004 perf_install_in_context(struct perf_event_context *ctx,
2005 struct perf_event *event,
2006 int cpu)
2007 {
2008 struct task_struct *task = ctx->task;
2009
2010 lockdep_assert_held(&ctx->mutex);
2011
2012 event->ctx = ctx;
2013 if (event->cpu != -1)
2014 event->cpu = cpu;
2015
2016 if (!task) {
2017 /*
2018 * Per cpu events are installed via an smp call and
2019 * the install is always successful.
2020 */
2021 cpu_function_call(cpu, __perf_install_in_context, event);
2022 return;
2023 }
2024
2025 retry:
2026 if (!task_function_call(task, __perf_install_in_context, event))
2027 return;
2028
2029 raw_spin_lock_irq(&ctx->lock);
2030 /*
2031 * If we failed to find a running task, but find the context active now
2032 * that we've acquired the ctx->lock, retry.
2033 */
2034 if (ctx->is_active) {
2035 raw_spin_unlock_irq(&ctx->lock);
2036 /*
2037 * Reload the task pointer, it might have been changed by
2038 * a concurrent perf_event_context_sched_out().
2039 */
2040 task = ctx->task;
2041 goto retry;
2042 }
2043
2044 /*
2045 * Since the task isn't running, its safe to add the event, us holding
2046 * the ctx->lock ensures the task won't get scheduled in.
2047 */
2048 add_event_to_ctx(event, ctx);
2049 raw_spin_unlock_irq(&ctx->lock);
2050 }
2051
2052 /*
2053 * Put a event into inactive state and update time fields.
2054 * Enabling the leader of a group effectively enables all
2055 * the group members that aren't explicitly disabled, so we
2056 * have to update their ->tstamp_enabled also.
2057 * Note: this works for group members as well as group leaders
2058 * since the non-leader members' sibling_lists will be empty.
2059 */
2060 static void __perf_event_mark_enabled(struct perf_event *event)
2061 {
2062 struct perf_event *sub;
2063 u64 tstamp = perf_event_time(event);
2064
2065 event->state = PERF_EVENT_STATE_INACTIVE;
2066 event->tstamp_enabled = tstamp - event->total_time_enabled;
2067 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2068 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2069 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2070 }
2071 }
2072
2073 /*
2074 * Cross CPU call to enable a performance event
2075 */
2076 static int __perf_event_enable(void *info)
2077 {
2078 struct perf_event *event = info;
2079 struct perf_event_context *ctx = event->ctx;
2080 struct perf_event *leader = event->group_leader;
2081 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2082 int err;
2083
2084 /*
2085 * There's a time window between 'ctx->is_active' check
2086 * in perf_event_enable function and this place having:
2087 * - IRQs on
2088 * - ctx->lock unlocked
2089 *
2090 * where the task could be killed and 'ctx' deactivated
2091 * by perf_event_exit_task.
2092 */
2093 if (!ctx->is_active)
2094 return -EINVAL;
2095
2096 raw_spin_lock(&ctx->lock);
2097 update_context_time(ctx);
2098
2099 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100 goto unlock;
2101
2102 /*
2103 * set current task's cgroup time reference point
2104 */
2105 perf_cgroup_set_timestamp(current, ctx);
2106
2107 __perf_event_mark_enabled(event);
2108
2109 if (!event_filter_match(event)) {
2110 if (is_cgroup_event(event))
2111 perf_cgroup_defer_enabled(event);
2112 goto unlock;
2113 }
2114
2115 /*
2116 * If the event is in a group and isn't the group leader,
2117 * then don't put it on unless the group is on.
2118 */
2119 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2120 goto unlock;
2121
2122 if (!group_can_go_on(event, cpuctx, 1)) {
2123 err = -EEXIST;
2124 } else {
2125 if (event == leader)
2126 err = group_sched_in(event, cpuctx, ctx);
2127 else
2128 err = event_sched_in(event, cpuctx, ctx);
2129 }
2130
2131 if (err) {
2132 /*
2133 * If this event can't go on and it's part of a
2134 * group, then the whole group has to come off.
2135 */
2136 if (leader != event) {
2137 group_sched_out(leader, cpuctx, ctx);
2138 perf_cpu_hrtimer_restart(cpuctx);
2139 }
2140 if (leader->attr.pinned) {
2141 update_group_times(leader);
2142 leader->state = PERF_EVENT_STATE_ERROR;
2143 }
2144 }
2145
2146 unlock:
2147 raw_spin_unlock(&ctx->lock);
2148
2149 return 0;
2150 }
2151
2152 /*
2153 * Enable a event.
2154 *
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid. This condition is satisfied when called through
2158 * perf_event_for_each_child or perf_event_for_each as described
2159 * for perf_event_disable.
2160 */
2161 void perf_event_enable(struct perf_event *event)
2162 {
2163 struct perf_event_context *ctx = event->ctx;
2164 struct task_struct *task = ctx->task;
2165
2166 if (!task) {
2167 /*
2168 * Enable the event on the cpu that it's on
2169 */
2170 cpu_function_call(event->cpu, __perf_event_enable, event);
2171 return;
2172 }
2173
2174 raw_spin_lock_irq(&ctx->lock);
2175 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2176 goto out;
2177
2178 /*
2179 * If the event is in error state, clear that first.
2180 * That way, if we see the event in error state below, we
2181 * know that it has gone back into error state, as distinct
2182 * from the task having been scheduled away before the
2183 * cross-call arrived.
2184 */
2185 if (event->state == PERF_EVENT_STATE_ERROR)
2186 event->state = PERF_EVENT_STATE_OFF;
2187
2188 retry:
2189 if (!ctx->is_active) {
2190 __perf_event_mark_enabled(event);
2191 goto out;
2192 }
2193
2194 raw_spin_unlock_irq(&ctx->lock);
2195
2196 if (!task_function_call(task, __perf_event_enable, event))
2197 return;
2198
2199 raw_spin_lock_irq(&ctx->lock);
2200
2201 /*
2202 * If the context is active and the event is still off,
2203 * we need to retry the cross-call.
2204 */
2205 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2206 /*
2207 * task could have been flipped by a concurrent
2208 * perf_event_context_sched_out()
2209 */
2210 task = ctx->task;
2211 goto retry;
2212 }
2213
2214 out:
2215 raw_spin_unlock_irq(&ctx->lock);
2216 }
2217 EXPORT_SYMBOL_GPL(perf_event_enable);
2218
2219 int perf_event_refresh(struct perf_event *event, int refresh)
2220 {
2221 /*
2222 * not supported on inherited events
2223 */
2224 if (event->attr.inherit || !is_sampling_event(event))
2225 return -EINVAL;
2226
2227 atomic_add(refresh, &event->event_limit);
2228 perf_event_enable(event);
2229
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(perf_event_refresh);
2233
2234 static void ctx_sched_out(struct perf_event_context *ctx,
2235 struct perf_cpu_context *cpuctx,
2236 enum event_type_t event_type)
2237 {
2238 struct perf_event *event;
2239 int is_active = ctx->is_active;
2240
2241 ctx->is_active &= ~event_type;
2242 if (likely(!ctx->nr_events))
2243 return;
2244
2245 update_context_time(ctx);
2246 update_cgrp_time_from_cpuctx(cpuctx);
2247 if (!ctx->nr_active)
2248 return;
2249
2250 perf_pmu_disable(ctx->pmu);
2251 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2252 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2253 group_sched_out(event, cpuctx, ctx);
2254 }
2255
2256 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2257 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2258 group_sched_out(event, cpuctx, ctx);
2259 }
2260 perf_pmu_enable(ctx->pmu);
2261 }
2262
2263 /*
2264 * Test whether two contexts are equivalent, i.e. whether they have both been
2265 * cloned from the same version of the same context.
2266 *
2267 * Equivalence is measured using a generation number in the context that is
2268 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2269 * and list_del_event().
2270 */
2271 static int context_equiv(struct perf_event_context *ctx1,
2272 struct perf_event_context *ctx2)
2273 {
2274 lockdep_assert_held(&ctx1->lock);
2275 lockdep_assert_held(&ctx2->lock);
2276
2277 /* Pinning disables the swap optimization */
2278 if (ctx1->pin_count || ctx2->pin_count)
2279 return 0;
2280
2281 /* If ctx1 is the parent of ctx2 */
2282 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2283 return 1;
2284
2285 /* If ctx2 is the parent of ctx1 */
2286 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2287 return 1;
2288
2289 /*
2290 * If ctx1 and ctx2 have the same parent; we flatten the parent
2291 * hierarchy, see perf_event_init_context().
2292 */
2293 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2294 ctx1->parent_gen == ctx2->parent_gen)
2295 return 1;
2296
2297 /* Unmatched */
2298 return 0;
2299 }
2300
2301 static void __perf_event_sync_stat(struct perf_event *event,
2302 struct perf_event *next_event)
2303 {
2304 u64 value;
2305
2306 if (!event->attr.inherit_stat)
2307 return;
2308
2309 /*
2310 * Update the event value, we cannot use perf_event_read()
2311 * because we're in the middle of a context switch and have IRQs
2312 * disabled, which upsets smp_call_function_single(), however
2313 * we know the event must be on the current CPU, therefore we
2314 * don't need to use it.
2315 */
2316 switch (event->state) {
2317 case PERF_EVENT_STATE_ACTIVE:
2318 event->pmu->read(event);
2319 /* fall-through */
2320
2321 case PERF_EVENT_STATE_INACTIVE:
2322 update_event_times(event);
2323 break;
2324
2325 default:
2326 break;
2327 }
2328
2329 /*
2330 * In order to keep per-task stats reliable we need to flip the event
2331 * values when we flip the contexts.
2332 */
2333 value = local64_read(&next_event->count);
2334 value = local64_xchg(&event->count, value);
2335 local64_set(&next_event->count, value);
2336
2337 swap(event->total_time_enabled, next_event->total_time_enabled);
2338 swap(event->total_time_running, next_event->total_time_running);
2339
2340 /*
2341 * Since we swizzled the values, update the user visible data too.
2342 */
2343 perf_event_update_userpage(event);
2344 perf_event_update_userpage(next_event);
2345 }
2346
2347 static void perf_event_sync_stat(struct perf_event_context *ctx,
2348 struct perf_event_context *next_ctx)
2349 {
2350 struct perf_event *event, *next_event;
2351
2352 if (!ctx->nr_stat)
2353 return;
2354
2355 update_context_time(ctx);
2356
2357 event = list_first_entry(&ctx->event_list,
2358 struct perf_event, event_entry);
2359
2360 next_event = list_first_entry(&next_ctx->event_list,
2361 struct perf_event, event_entry);
2362
2363 while (&event->event_entry != &ctx->event_list &&
2364 &next_event->event_entry != &next_ctx->event_list) {
2365
2366 __perf_event_sync_stat(event, next_event);
2367
2368 event = list_next_entry(event, event_entry);
2369 next_event = list_next_entry(next_event, event_entry);
2370 }
2371 }
2372
2373 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2374 struct task_struct *next)
2375 {
2376 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2377 struct perf_event_context *next_ctx;
2378 struct perf_event_context *parent, *next_parent;
2379 struct perf_cpu_context *cpuctx;
2380 int do_switch = 1;
2381
2382 if (likely(!ctx))
2383 return;
2384
2385 cpuctx = __get_cpu_context(ctx);
2386 if (!cpuctx->task_ctx)
2387 return;
2388
2389 rcu_read_lock();
2390 next_ctx = next->perf_event_ctxp[ctxn];
2391 if (!next_ctx)
2392 goto unlock;
2393
2394 parent = rcu_dereference(ctx->parent_ctx);
2395 next_parent = rcu_dereference(next_ctx->parent_ctx);
2396
2397 /* If neither context have a parent context; they cannot be clones. */
2398 if (!parent && !next_parent)
2399 goto unlock;
2400
2401 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2402 /*
2403 * Looks like the two contexts are clones, so we might be
2404 * able to optimize the context switch. We lock both
2405 * contexts and check that they are clones under the
2406 * lock (including re-checking that neither has been
2407 * uncloned in the meantime). It doesn't matter which
2408 * order we take the locks because no other cpu could
2409 * be trying to lock both of these tasks.
2410 */
2411 raw_spin_lock(&ctx->lock);
2412 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2413 if (context_equiv(ctx, next_ctx)) {
2414 /*
2415 * XXX do we need a memory barrier of sorts
2416 * wrt to rcu_dereference() of perf_event_ctxp
2417 */
2418 task->perf_event_ctxp[ctxn] = next_ctx;
2419 next->perf_event_ctxp[ctxn] = ctx;
2420 ctx->task = next;
2421 next_ctx->task = task;
2422 do_switch = 0;
2423
2424 perf_event_sync_stat(ctx, next_ctx);
2425 }
2426 raw_spin_unlock(&next_ctx->lock);
2427 raw_spin_unlock(&ctx->lock);
2428 }
2429 unlock:
2430 rcu_read_unlock();
2431
2432 if (do_switch) {
2433 raw_spin_lock(&ctx->lock);
2434 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2435 cpuctx->task_ctx = NULL;
2436 raw_spin_unlock(&ctx->lock);
2437 }
2438 }
2439
2440 #define for_each_task_context_nr(ctxn) \
2441 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2442
2443 /*
2444 * Called from scheduler to remove the events of the current task,
2445 * with interrupts disabled.
2446 *
2447 * We stop each event and update the event value in event->count.
2448 *
2449 * This does not protect us against NMI, but disable()
2450 * sets the disabled bit in the control field of event _before_
2451 * accessing the event control register. If a NMI hits, then it will
2452 * not restart the event.
2453 */
2454 void __perf_event_task_sched_out(struct task_struct *task,
2455 struct task_struct *next)
2456 {
2457 int ctxn;
2458
2459 for_each_task_context_nr(ctxn)
2460 perf_event_context_sched_out(task, ctxn, next);
2461
2462 /*
2463 * if cgroup events exist on this CPU, then we need
2464 * to check if we have to switch out PMU state.
2465 * cgroup event are system-wide mode only
2466 */
2467 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2468 perf_cgroup_sched_out(task, next);
2469 }
2470
2471 static void task_ctx_sched_out(struct perf_event_context *ctx)
2472 {
2473 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2474
2475 if (!cpuctx->task_ctx)
2476 return;
2477
2478 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2479 return;
2480
2481 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2482 cpuctx->task_ctx = NULL;
2483 }
2484
2485 /*
2486 * Called with IRQs disabled
2487 */
2488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2489 enum event_type_t event_type)
2490 {
2491 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2492 }
2493
2494 static void
2495 ctx_pinned_sched_in(struct perf_event_context *ctx,
2496 struct perf_cpu_context *cpuctx)
2497 {
2498 struct perf_event *event;
2499
2500 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2501 if (event->state <= PERF_EVENT_STATE_OFF)
2502 continue;
2503 if (!event_filter_match(event))
2504 continue;
2505
2506 /* may need to reset tstamp_enabled */
2507 if (is_cgroup_event(event))
2508 perf_cgroup_mark_enabled(event, ctx);
2509
2510 if (group_can_go_on(event, cpuctx, 1))
2511 group_sched_in(event, cpuctx, ctx);
2512
2513 /*
2514 * If this pinned group hasn't been scheduled,
2515 * put it in error state.
2516 */
2517 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2518 update_group_times(event);
2519 event->state = PERF_EVENT_STATE_ERROR;
2520 }
2521 }
2522 }
2523
2524 static void
2525 ctx_flexible_sched_in(struct perf_event_context *ctx,
2526 struct perf_cpu_context *cpuctx)
2527 {
2528 struct perf_event *event;
2529 int can_add_hw = 1;
2530
2531 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2532 /* Ignore events in OFF or ERROR state */
2533 if (event->state <= PERF_EVENT_STATE_OFF)
2534 continue;
2535 /*
2536 * Listen to the 'cpu' scheduling filter constraint
2537 * of events:
2538 */
2539 if (!event_filter_match(event))
2540 continue;
2541
2542 /* may need to reset tstamp_enabled */
2543 if (is_cgroup_event(event))
2544 perf_cgroup_mark_enabled(event, ctx);
2545
2546 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2547 if (group_sched_in(event, cpuctx, ctx))
2548 can_add_hw = 0;
2549 }
2550 }
2551 }
2552
2553 static void
2554 ctx_sched_in(struct perf_event_context *ctx,
2555 struct perf_cpu_context *cpuctx,
2556 enum event_type_t event_type,
2557 struct task_struct *task)
2558 {
2559 u64 now;
2560 int is_active = ctx->is_active;
2561
2562 ctx->is_active |= event_type;
2563 if (likely(!ctx->nr_events))
2564 return;
2565
2566 now = perf_clock();
2567 ctx->timestamp = now;
2568 perf_cgroup_set_timestamp(task, ctx);
2569 /*
2570 * First go through the list and put on any pinned groups
2571 * in order to give them the best chance of going on.
2572 */
2573 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2574 ctx_pinned_sched_in(ctx, cpuctx);
2575
2576 /* Then walk through the lower prio flexible groups */
2577 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2578 ctx_flexible_sched_in(ctx, cpuctx);
2579 }
2580
2581 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2582 enum event_type_t event_type,
2583 struct task_struct *task)
2584 {
2585 struct perf_event_context *ctx = &cpuctx->ctx;
2586
2587 ctx_sched_in(ctx, cpuctx, event_type, task);
2588 }
2589
2590 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2591 struct task_struct *task)
2592 {
2593 struct perf_cpu_context *cpuctx;
2594
2595 cpuctx = __get_cpu_context(ctx);
2596 if (cpuctx->task_ctx == ctx)
2597 return;
2598
2599 perf_ctx_lock(cpuctx, ctx);
2600 perf_pmu_disable(ctx->pmu);
2601 /*
2602 * We want to keep the following priority order:
2603 * cpu pinned (that don't need to move), task pinned,
2604 * cpu flexible, task flexible.
2605 */
2606 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2607
2608 if (ctx->nr_events)
2609 cpuctx->task_ctx = ctx;
2610
2611 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2612
2613 perf_pmu_enable(ctx->pmu);
2614 perf_ctx_unlock(cpuctx, ctx);
2615
2616 /*
2617 * Since these rotations are per-cpu, we need to ensure the
2618 * cpu-context we got scheduled on is actually rotating.
2619 */
2620 perf_pmu_rotate_start(ctx->pmu);
2621 }
2622
2623 /*
2624 * When sampling the branck stack in system-wide, it may be necessary
2625 * to flush the stack on context switch. This happens when the branch
2626 * stack does not tag its entries with the pid of the current task.
2627 * Otherwise it becomes impossible to associate a branch entry with a
2628 * task. This ambiguity is more likely to appear when the branch stack
2629 * supports priv level filtering and the user sets it to monitor only
2630 * at the user level (which could be a useful measurement in system-wide
2631 * mode). In that case, the risk is high of having a branch stack with
2632 * branch from multiple tasks. Flushing may mean dropping the existing
2633 * entries or stashing them somewhere in the PMU specific code layer.
2634 *
2635 * This function provides the context switch callback to the lower code
2636 * layer. It is invoked ONLY when there is at least one system-wide context
2637 * with at least one active event using taken branch sampling.
2638 */
2639 static void perf_branch_stack_sched_in(struct task_struct *prev,
2640 struct task_struct *task)
2641 {
2642 struct perf_cpu_context *cpuctx;
2643 struct pmu *pmu;
2644 unsigned long flags;
2645
2646 /* no need to flush branch stack if not changing task */
2647 if (prev == task)
2648 return;
2649
2650 local_irq_save(flags);
2651
2652 rcu_read_lock();
2653
2654 list_for_each_entry_rcu(pmu, &pmus, entry) {
2655 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2656
2657 /*
2658 * check if the context has at least one
2659 * event using PERF_SAMPLE_BRANCH_STACK
2660 */
2661 if (cpuctx->ctx.nr_branch_stack > 0
2662 && pmu->flush_branch_stack) {
2663
2664 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2665
2666 perf_pmu_disable(pmu);
2667
2668 pmu->flush_branch_stack();
2669
2670 perf_pmu_enable(pmu);
2671
2672 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2673 }
2674 }
2675
2676 rcu_read_unlock();
2677
2678 local_irq_restore(flags);
2679 }
2680
2681 /*
2682 * Called from scheduler to add the events of the current task
2683 * with interrupts disabled.
2684 *
2685 * We restore the event value and then enable it.
2686 *
2687 * This does not protect us against NMI, but enable()
2688 * sets the enabled bit in the control field of event _before_
2689 * accessing the event control register. If a NMI hits, then it will
2690 * keep the event running.
2691 */
2692 void __perf_event_task_sched_in(struct task_struct *prev,
2693 struct task_struct *task)
2694 {
2695 struct perf_event_context *ctx;
2696 int ctxn;
2697
2698 for_each_task_context_nr(ctxn) {
2699 ctx = task->perf_event_ctxp[ctxn];
2700 if (likely(!ctx))
2701 continue;
2702
2703 perf_event_context_sched_in(ctx, task);
2704 }
2705 /*
2706 * if cgroup events exist on this CPU, then we need
2707 * to check if we have to switch in PMU state.
2708 * cgroup event are system-wide mode only
2709 */
2710 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2711 perf_cgroup_sched_in(prev, task);
2712
2713 /* check for system-wide branch_stack events */
2714 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2715 perf_branch_stack_sched_in(prev, task);
2716 }
2717
2718 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2719 {
2720 u64 frequency = event->attr.sample_freq;
2721 u64 sec = NSEC_PER_SEC;
2722 u64 divisor, dividend;
2723
2724 int count_fls, nsec_fls, frequency_fls, sec_fls;
2725
2726 count_fls = fls64(count);
2727 nsec_fls = fls64(nsec);
2728 frequency_fls = fls64(frequency);
2729 sec_fls = 30;
2730
2731 /*
2732 * We got @count in @nsec, with a target of sample_freq HZ
2733 * the target period becomes:
2734 *
2735 * @count * 10^9
2736 * period = -------------------
2737 * @nsec * sample_freq
2738 *
2739 */
2740
2741 /*
2742 * Reduce accuracy by one bit such that @a and @b converge
2743 * to a similar magnitude.
2744 */
2745 #define REDUCE_FLS(a, b) \
2746 do { \
2747 if (a##_fls > b##_fls) { \
2748 a >>= 1; \
2749 a##_fls--; \
2750 } else { \
2751 b >>= 1; \
2752 b##_fls--; \
2753 } \
2754 } while (0)
2755
2756 /*
2757 * Reduce accuracy until either term fits in a u64, then proceed with
2758 * the other, so that finally we can do a u64/u64 division.
2759 */
2760 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2761 REDUCE_FLS(nsec, frequency);
2762 REDUCE_FLS(sec, count);
2763 }
2764
2765 if (count_fls + sec_fls > 64) {
2766 divisor = nsec * frequency;
2767
2768 while (count_fls + sec_fls > 64) {
2769 REDUCE_FLS(count, sec);
2770 divisor >>= 1;
2771 }
2772
2773 dividend = count * sec;
2774 } else {
2775 dividend = count * sec;
2776
2777 while (nsec_fls + frequency_fls > 64) {
2778 REDUCE_FLS(nsec, frequency);
2779 dividend >>= 1;
2780 }
2781
2782 divisor = nsec * frequency;
2783 }
2784
2785 if (!divisor)
2786 return dividend;
2787
2788 return div64_u64(dividend, divisor);
2789 }
2790
2791 static DEFINE_PER_CPU(int, perf_throttled_count);
2792 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2793
2794 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2795 {
2796 struct hw_perf_event *hwc = &event->hw;
2797 s64 period, sample_period;
2798 s64 delta;
2799
2800 period = perf_calculate_period(event, nsec, count);
2801
2802 delta = (s64)(period - hwc->sample_period);
2803 delta = (delta + 7) / 8; /* low pass filter */
2804
2805 sample_period = hwc->sample_period + delta;
2806
2807 if (!sample_period)
2808 sample_period = 1;
2809
2810 hwc->sample_period = sample_period;
2811
2812 if (local64_read(&hwc->period_left) > 8*sample_period) {
2813 if (disable)
2814 event->pmu->stop(event, PERF_EF_UPDATE);
2815
2816 local64_set(&hwc->period_left, 0);
2817
2818 if (disable)
2819 event->pmu->start(event, PERF_EF_RELOAD);
2820 }
2821 }
2822
2823 /*
2824 * combine freq adjustment with unthrottling to avoid two passes over the
2825 * events. At the same time, make sure, having freq events does not change
2826 * the rate of unthrottling as that would introduce bias.
2827 */
2828 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2829 int needs_unthr)
2830 {
2831 struct perf_event *event;
2832 struct hw_perf_event *hwc;
2833 u64 now, period = TICK_NSEC;
2834 s64 delta;
2835
2836 /*
2837 * only need to iterate over all events iff:
2838 * - context have events in frequency mode (needs freq adjust)
2839 * - there are events to unthrottle on this cpu
2840 */
2841 if (!(ctx->nr_freq || needs_unthr))
2842 return;
2843
2844 raw_spin_lock(&ctx->lock);
2845 perf_pmu_disable(ctx->pmu);
2846
2847 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2848 if (event->state != PERF_EVENT_STATE_ACTIVE)
2849 continue;
2850
2851 if (!event_filter_match(event))
2852 continue;
2853
2854 perf_pmu_disable(event->pmu);
2855
2856 hwc = &event->hw;
2857
2858 if (hwc->interrupts == MAX_INTERRUPTS) {
2859 hwc->interrupts = 0;
2860 perf_log_throttle(event, 1);
2861 event->pmu->start(event, 0);
2862 }
2863
2864 if (!event->attr.freq || !event->attr.sample_freq)
2865 goto next;
2866
2867 /*
2868 * stop the event and update event->count
2869 */
2870 event->pmu->stop(event, PERF_EF_UPDATE);
2871
2872 now = local64_read(&event->count);
2873 delta = now - hwc->freq_count_stamp;
2874 hwc->freq_count_stamp = now;
2875
2876 /*
2877 * restart the event
2878 * reload only if value has changed
2879 * we have stopped the event so tell that
2880 * to perf_adjust_period() to avoid stopping it
2881 * twice.
2882 */
2883 if (delta > 0)
2884 perf_adjust_period(event, period, delta, false);
2885
2886 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2887 next:
2888 perf_pmu_enable(event->pmu);
2889 }
2890
2891 perf_pmu_enable(ctx->pmu);
2892 raw_spin_unlock(&ctx->lock);
2893 }
2894
2895 /*
2896 * Round-robin a context's events:
2897 */
2898 static void rotate_ctx(struct perf_event_context *ctx)
2899 {
2900 /*
2901 * Rotate the first entry last of non-pinned groups. Rotation might be
2902 * disabled by the inheritance code.
2903 */
2904 if (!ctx->rotate_disable)
2905 list_rotate_left(&ctx->flexible_groups);
2906 }
2907
2908 /*
2909 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2910 * because they're strictly cpu affine and rotate_start is called with IRQs
2911 * disabled, while rotate_context is called from IRQ context.
2912 */
2913 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2914 {
2915 struct perf_event_context *ctx = NULL;
2916 int rotate = 0, remove = 1;
2917
2918 if (cpuctx->ctx.nr_events) {
2919 remove = 0;
2920 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2921 rotate = 1;
2922 }
2923
2924 ctx = cpuctx->task_ctx;
2925 if (ctx && ctx->nr_events) {
2926 remove = 0;
2927 if (ctx->nr_events != ctx->nr_active)
2928 rotate = 1;
2929 }
2930
2931 if (!rotate)
2932 goto done;
2933
2934 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2935 perf_pmu_disable(cpuctx->ctx.pmu);
2936
2937 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2938 if (ctx)
2939 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2940
2941 rotate_ctx(&cpuctx->ctx);
2942 if (ctx)
2943 rotate_ctx(ctx);
2944
2945 perf_event_sched_in(cpuctx, ctx, current);
2946
2947 perf_pmu_enable(cpuctx->ctx.pmu);
2948 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2949 done:
2950 if (remove)
2951 list_del_init(&cpuctx->rotation_list);
2952
2953 return rotate;
2954 }
2955
2956 #ifdef CONFIG_NO_HZ_FULL
2957 bool perf_event_can_stop_tick(void)
2958 {
2959 if (atomic_read(&nr_freq_events) ||
2960 __this_cpu_read(perf_throttled_count))
2961 return false;
2962 else
2963 return true;
2964 }
2965 #endif
2966
2967 void perf_event_task_tick(void)
2968 {
2969 struct list_head *head = this_cpu_ptr(&rotation_list);
2970 struct perf_cpu_context *cpuctx, *tmp;
2971 struct perf_event_context *ctx;
2972 int throttled;
2973
2974 WARN_ON(!irqs_disabled());
2975
2976 __this_cpu_inc(perf_throttled_seq);
2977 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2978
2979 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2980 ctx = &cpuctx->ctx;
2981 perf_adjust_freq_unthr_context(ctx, throttled);
2982
2983 ctx = cpuctx->task_ctx;
2984 if (ctx)
2985 perf_adjust_freq_unthr_context(ctx, throttled);
2986 }
2987 }
2988
2989 static int event_enable_on_exec(struct perf_event *event,
2990 struct perf_event_context *ctx)
2991 {
2992 if (!event->attr.enable_on_exec)
2993 return 0;
2994
2995 event->attr.enable_on_exec = 0;
2996 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2997 return 0;
2998
2999 __perf_event_mark_enabled(event);
3000
3001 return 1;
3002 }
3003
3004 /*
3005 * Enable all of a task's events that have been marked enable-on-exec.
3006 * This expects task == current.
3007 */
3008 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3009 {
3010 struct perf_event_context *clone_ctx = NULL;
3011 struct perf_event *event;
3012 unsigned long flags;
3013 int enabled = 0;
3014 int ret;
3015
3016 local_irq_save(flags);
3017 if (!ctx || !ctx->nr_events)
3018 goto out;
3019
3020 /*
3021 * We must ctxsw out cgroup events to avoid conflict
3022 * when invoking perf_task_event_sched_in() later on
3023 * in this function. Otherwise we end up trying to
3024 * ctxswin cgroup events which are already scheduled
3025 * in.
3026 */
3027 perf_cgroup_sched_out(current, NULL);
3028
3029 raw_spin_lock(&ctx->lock);
3030 task_ctx_sched_out(ctx);
3031
3032 list_for_each_entry(event, &ctx->event_list, event_entry) {
3033 ret = event_enable_on_exec(event, ctx);
3034 if (ret)
3035 enabled = 1;
3036 }
3037
3038 /*
3039 * Unclone this context if we enabled any event.
3040 */
3041 if (enabled)
3042 clone_ctx = unclone_ctx(ctx);
3043
3044 raw_spin_unlock(&ctx->lock);
3045
3046 /*
3047 * Also calls ctxswin for cgroup events, if any:
3048 */
3049 perf_event_context_sched_in(ctx, ctx->task);
3050 out:
3051 local_irq_restore(flags);
3052
3053 if (clone_ctx)
3054 put_ctx(clone_ctx);
3055 }
3056
3057 void perf_event_exec(void)
3058 {
3059 struct perf_event_context *ctx;
3060 int ctxn;
3061
3062 rcu_read_lock();
3063 for_each_task_context_nr(ctxn) {
3064 ctx = current->perf_event_ctxp[ctxn];
3065 if (!ctx)
3066 continue;
3067
3068 perf_event_enable_on_exec(ctx);
3069 }
3070 rcu_read_unlock();
3071 }
3072
3073 /*
3074 * Cross CPU call to read the hardware event
3075 */
3076 static void __perf_event_read(void *info)
3077 {
3078 struct perf_event *event = info;
3079 struct perf_event_context *ctx = event->ctx;
3080 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3081
3082 /*
3083 * If this is a task context, we need to check whether it is
3084 * the current task context of this cpu. If not it has been
3085 * scheduled out before the smp call arrived. In that case
3086 * event->count would have been updated to a recent sample
3087 * when the event was scheduled out.
3088 */
3089 if (ctx->task && cpuctx->task_ctx != ctx)
3090 return;
3091
3092 raw_spin_lock(&ctx->lock);
3093 if (ctx->is_active) {
3094 update_context_time(ctx);
3095 update_cgrp_time_from_event(event);
3096 }
3097 update_event_times(event);
3098 if (event->state == PERF_EVENT_STATE_ACTIVE)
3099 event->pmu->read(event);
3100 raw_spin_unlock(&ctx->lock);
3101 }
3102
3103 static inline u64 perf_event_count(struct perf_event *event)
3104 {
3105 return local64_read(&event->count) + atomic64_read(&event->child_count);
3106 }
3107
3108 static u64 perf_event_read(struct perf_event *event)
3109 {
3110 /*
3111 * If event is enabled and currently active on a CPU, update the
3112 * value in the event structure:
3113 */
3114 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3115 smp_call_function_single(event->oncpu,
3116 __perf_event_read, event, 1);
3117 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3118 struct perf_event_context *ctx = event->ctx;
3119 unsigned long flags;
3120
3121 raw_spin_lock_irqsave(&ctx->lock, flags);
3122 /*
3123 * may read while context is not active
3124 * (e.g., thread is blocked), in that case
3125 * we cannot update context time
3126 */
3127 if (ctx->is_active) {
3128 update_context_time(ctx);
3129 update_cgrp_time_from_event(event);
3130 }
3131 update_event_times(event);
3132 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3133 }
3134
3135 return perf_event_count(event);
3136 }
3137
3138 /*
3139 * Initialize the perf_event context in a task_struct:
3140 */
3141 static void __perf_event_init_context(struct perf_event_context *ctx)
3142 {
3143 raw_spin_lock_init(&ctx->lock);
3144 mutex_init(&ctx->mutex);
3145 INIT_LIST_HEAD(&ctx->pinned_groups);
3146 INIT_LIST_HEAD(&ctx->flexible_groups);
3147 INIT_LIST_HEAD(&ctx->event_list);
3148 atomic_set(&ctx->refcount, 1);
3149 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3150 }
3151
3152 static struct perf_event_context *
3153 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3154 {
3155 struct perf_event_context *ctx;
3156
3157 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3158 if (!ctx)
3159 return NULL;
3160
3161 __perf_event_init_context(ctx);
3162 if (task) {
3163 ctx->task = task;
3164 get_task_struct(task);
3165 }
3166 ctx->pmu = pmu;
3167
3168 return ctx;
3169 }
3170
3171 static struct task_struct *
3172 find_lively_task_by_vpid(pid_t vpid)
3173 {
3174 struct task_struct *task;
3175 int err;
3176
3177 rcu_read_lock();
3178 if (!vpid)
3179 task = current;
3180 else
3181 task = find_task_by_vpid(vpid);
3182 if (task)
3183 get_task_struct(task);
3184 rcu_read_unlock();
3185
3186 if (!task)
3187 return ERR_PTR(-ESRCH);
3188
3189 /* Reuse ptrace permission checks for now. */
3190 err = -EACCES;
3191 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3192 goto errout;
3193
3194 return task;
3195 errout:
3196 put_task_struct(task);
3197 return ERR_PTR(err);
3198
3199 }
3200
3201 /*
3202 * Returns a matching context with refcount and pincount.
3203 */
3204 static struct perf_event_context *
3205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3206 {
3207 struct perf_event_context *ctx, *clone_ctx = NULL;
3208 struct perf_cpu_context *cpuctx;
3209 unsigned long flags;
3210 int ctxn, err;
3211
3212 if (!task) {
3213 /* Must be root to operate on a CPU event: */
3214 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3215 return ERR_PTR(-EACCES);
3216
3217 /*
3218 * We could be clever and allow to attach a event to an
3219 * offline CPU and activate it when the CPU comes up, but
3220 * that's for later.
3221 */
3222 if (!cpu_online(cpu))
3223 return ERR_PTR(-ENODEV);
3224
3225 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3226 ctx = &cpuctx->ctx;
3227 get_ctx(ctx);
3228 ++ctx->pin_count;
3229
3230 return ctx;
3231 }
3232
3233 err = -EINVAL;
3234 ctxn = pmu->task_ctx_nr;
3235 if (ctxn < 0)
3236 goto errout;
3237
3238 retry:
3239 ctx = perf_lock_task_context(task, ctxn, &flags);
3240 if (ctx) {
3241 clone_ctx = unclone_ctx(ctx);
3242 ++ctx->pin_count;
3243 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3244
3245 if (clone_ctx)
3246 put_ctx(clone_ctx);
3247 } else {
3248 ctx = alloc_perf_context(pmu, task);
3249 err = -ENOMEM;
3250 if (!ctx)
3251 goto errout;
3252
3253 err = 0;
3254 mutex_lock(&task->perf_event_mutex);
3255 /*
3256 * If it has already passed perf_event_exit_task().
3257 * we must see PF_EXITING, it takes this mutex too.
3258 */
3259 if (task->flags & PF_EXITING)
3260 err = -ESRCH;
3261 else if (task->perf_event_ctxp[ctxn])
3262 err = -EAGAIN;
3263 else {
3264 get_ctx(ctx);
3265 ++ctx->pin_count;
3266 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3267 }
3268 mutex_unlock(&task->perf_event_mutex);
3269
3270 if (unlikely(err)) {
3271 put_ctx(ctx);
3272
3273 if (err == -EAGAIN)
3274 goto retry;
3275 goto errout;
3276 }
3277 }
3278
3279 return ctx;
3280
3281 errout:
3282 return ERR_PTR(err);
3283 }
3284
3285 static void perf_event_free_filter(struct perf_event *event);
3286
3287 static void free_event_rcu(struct rcu_head *head)
3288 {
3289 struct perf_event *event;
3290
3291 event = container_of(head, struct perf_event, rcu_head);
3292 if (event->ns)
3293 put_pid_ns(event->ns);
3294 perf_event_free_filter(event);
3295 kfree(event);
3296 }
3297
3298 static void ring_buffer_put(struct ring_buffer *rb);
3299 static void ring_buffer_attach(struct perf_event *event,
3300 struct ring_buffer *rb);
3301
3302 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3303 {
3304 if (event->parent)
3305 return;
3306
3307 if (has_branch_stack(event)) {
3308 if (!(event->attach_state & PERF_ATTACH_TASK))
3309 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3310 }
3311 if (is_cgroup_event(event))
3312 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3313 }
3314
3315 static void unaccount_event(struct perf_event *event)
3316 {
3317 if (event->parent)
3318 return;
3319
3320 if (event->attach_state & PERF_ATTACH_TASK)
3321 static_key_slow_dec_deferred(&perf_sched_events);
3322 if (event->attr.mmap || event->attr.mmap_data)
3323 atomic_dec(&nr_mmap_events);
3324 if (event->attr.comm)
3325 atomic_dec(&nr_comm_events);
3326 if (event->attr.task)
3327 atomic_dec(&nr_task_events);
3328 if (event->attr.freq)
3329 atomic_dec(&nr_freq_events);
3330 if (is_cgroup_event(event))
3331 static_key_slow_dec_deferred(&perf_sched_events);
3332 if (has_branch_stack(event))
3333 static_key_slow_dec_deferred(&perf_sched_events);
3334
3335 unaccount_event_cpu(event, event->cpu);
3336 }
3337
3338 static void __free_event(struct perf_event *event)
3339 {
3340 if (!event->parent) {
3341 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3342 put_callchain_buffers();
3343 }
3344
3345 if (event->destroy)
3346 event->destroy(event);
3347
3348 if (event->ctx)
3349 put_ctx(event->ctx);
3350
3351 if (event->pmu)
3352 module_put(event->pmu->module);
3353
3354 call_rcu(&event->rcu_head, free_event_rcu);
3355 }
3356
3357 static void _free_event(struct perf_event *event)
3358 {
3359 irq_work_sync(&event->pending);
3360
3361 unaccount_event(event);
3362
3363 if (event->rb) {
3364 /*
3365 * Can happen when we close an event with re-directed output.
3366 *
3367 * Since we have a 0 refcount, perf_mmap_close() will skip
3368 * over us; possibly making our ring_buffer_put() the last.
3369 */
3370 mutex_lock(&event->mmap_mutex);
3371 ring_buffer_attach(event, NULL);
3372 mutex_unlock(&event->mmap_mutex);
3373 }
3374
3375 if (is_cgroup_event(event))
3376 perf_detach_cgroup(event);
3377
3378 __free_event(event);
3379 }
3380
3381 /*
3382 * Used to free events which have a known refcount of 1, such as in error paths
3383 * where the event isn't exposed yet and inherited events.
3384 */
3385 static void free_event(struct perf_event *event)
3386 {
3387 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3388 "unexpected event refcount: %ld; ptr=%p\n",
3389 atomic_long_read(&event->refcount), event)) {
3390 /* leak to avoid use-after-free */
3391 return;
3392 }
3393
3394 _free_event(event);
3395 }
3396
3397 /*
3398 * Remove user event from the owner task.
3399 */
3400 static void perf_remove_from_owner(struct perf_event *event)
3401 {
3402 struct task_struct *owner;
3403
3404 rcu_read_lock();
3405 owner = ACCESS_ONCE(event->owner);
3406 /*
3407 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3408 * !owner it means the list deletion is complete and we can indeed
3409 * free this event, otherwise we need to serialize on
3410 * owner->perf_event_mutex.
3411 */
3412 smp_read_barrier_depends();
3413 if (owner) {
3414 /*
3415 * Since delayed_put_task_struct() also drops the last
3416 * task reference we can safely take a new reference
3417 * while holding the rcu_read_lock().
3418 */
3419 get_task_struct(owner);
3420 }
3421 rcu_read_unlock();
3422
3423 if (owner) {
3424 mutex_lock(&owner->perf_event_mutex);
3425 /*
3426 * We have to re-check the event->owner field, if it is cleared
3427 * we raced with perf_event_exit_task(), acquiring the mutex
3428 * ensured they're done, and we can proceed with freeing the
3429 * event.
3430 */
3431 if (event->owner)
3432 list_del_init(&event->owner_entry);
3433 mutex_unlock(&owner->perf_event_mutex);
3434 put_task_struct(owner);
3435 }
3436 }
3437
3438 /*
3439 * Called when the last reference to the file is gone.
3440 */
3441 static void put_event(struct perf_event *event)
3442 {
3443 struct perf_event_context *ctx = event->ctx;
3444
3445 if (!atomic_long_dec_and_test(&event->refcount))
3446 return;
3447
3448 if (!is_kernel_event(event))
3449 perf_remove_from_owner(event);
3450
3451 WARN_ON_ONCE(ctx->parent_ctx);
3452 /*
3453 * There are two ways this annotation is useful:
3454 *
3455 * 1) there is a lock recursion from perf_event_exit_task
3456 * see the comment there.
3457 *
3458 * 2) there is a lock-inversion with mmap_sem through
3459 * perf_event_read_group(), which takes faults while
3460 * holding ctx->mutex, however this is called after
3461 * the last filedesc died, so there is no possibility
3462 * to trigger the AB-BA case.
3463 */
3464 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3465 perf_remove_from_context(event, true);
3466 mutex_unlock(&ctx->mutex);
3467
3468 _free_event(event);
3469 }
3470
3471 int perf_event_release_kernel(struct perf_event *event)
3472 {
3473 put_event(event);
3474 return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3477
3478 static int perf_release(struct inode *inode, struct file *file)
3479 {
3480 put_event(file->private_data);
3481 return 0;
3482 }
3483
3484 /*
3485 * Remove all orphanes events from the context.
3486 */
3487 static void orphans_remove_work(struct work_struct *work)
3488 {
3489 struct perf_event_context *ctx;
3490 struct perf_event *event, *tmp;
3491
3492 ctx = container_of(work, struct perf_event_context,
3493 orphans_remove.work);
3494
3495 mutex_lock(&ctx->mutex);
3496 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3497 struct perf_event *parent_event = event->parent;
3498
3499 if (!is_orphaned_child(event))
3500 continue;
3501
3502 perf_remove_from_context(event, true);
3503
3504 mutex_lock(&parent_event->child_mutex);
3505 list_del_init(&event->child_list);
3506 mutex_unlock(&parent_event->child_mutex);
3507
3508 free_event(event);
3509 put_event(parent_event);
3510 }
3511
3512 raw_spin_lock_irq(&ctx->lock);
3513 ctx->orphans_remove_sched = false;
3514 raw_spin_unlock_irq(&ctx->lock);
3515 mutex_unlock(&ctx->mutex);
3516
3517 put_ctx(ctx);
3518 }
3519
3520 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3521 {
3522 struct perf_event *child;
3523 u64 total = 0;
3524
3525 *enabled = 0;
3526 *running = 0;
3527
3528 mutex_lock(&event->child_mutex);
3529 total += perf_event_read(event);
3530 *enabled += event->total_time_enabled +
3531 atomic64_read(&event->child_total_time_enabled);
3532 *running += event->total_time_running +
3533 atomic64_read(&event->child_total_time_running);
3534
3535 list_for_each_entry(child, &event->child_list, child_list) {
3536 total += perf_event_read(child);
3537 *enabled += child->total_time_enabled;
3538 *running += child->total_time_running;
3539 }
3540 mutex_unlock(&event->child_mutex);
3541
3542 return total;
3543 }
3544 EXPORT_SYMBOL_GPL(perf_event_read_value);
3545
3546 static int perf_event_read_group(struct perf_event *event,
3547 u64 read_format, char __user *buf)
3548 {
3549 struct perf_event *leader = event->group_leader, *sub;
3550 int n = 0, size = 0, ret = -EFAULT;
3551 struct perf_event_context *ctx = leader->ctx;
3552 u64 values[5];
3553 u64 count, enabled, running;
3554
3555 mutex_lock(&ctx->mutex);
3556 count = perf_event_read_value(leader, &enabled, &running);
3557
3558 values[n++] = 1 + leader->nr_siblings;
3559 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3560 values[n++] = enabled;
3561 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3562 values[n++] = running;
3563 values[n++] = count;
3564 if (read_format & PERF_FORMAT_ID)
3565 values[n++] = primary_event_id(leader);
3566
3567 size = n * sizeof(u64);
3568
3569 if (copy_to_user(buf, values, size))
3570 goto unlock;
3571
3572 ret = size;
3573
3574 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3575 n = 0;
3576
3577 values[n++] = perf_event_read_value(sub, &enabled, &running);
3578 if (read_format & PERF_FORMAT_ID)
3579 values[n++] = primary_event_id(sub);
3580
3581 size = n * sizeof(u64);
3582
3583 if (copy_to_user(buf + ret, values, size)) {
3584 ret = -EFAULT;
3585 goto unlock;
3586 }
3587
3588 ret += size;
3589 }
3590 unlock:
3591 mutex_unlock(&ctx->mutex);
3592
3593 return ret;
3594 }
3595
3596 static int perf_event_read_one(struct perf_event *event,
3597 u64 read_format, char __user *buf)
3598 {
3599 u64 enabled, running;
3600 u64 values[4];
3601 int n = 0;
3602
3603 values[n++] = perf_event_read_value(event, &enabled, &running);
3604 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3605 values[n++] = enabled;
3606 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3607 values[n++] = running;
3608 if (read_format & PERF_FORMAT_ID)
3609 values[n++] = primary_event_id(event);
3610
3611 if (copy_to_user(buf, values, n * sizeof(u64)))
3612 return -EFAULT;
3613
3614 return n * sizeof(u64);
3615 }
3616
3617 static bool is_event_hup(struct perf_event *event)
3618 {
3619 bool no_children;
3620
3621 if (event->state != PERF_EVENT_STATE_EXIT)
3622 return false;
3623
3624 mutex_lock(&event->child_mutex);
3625 no_children = list_empty(&event->child_list);
3626 mutex_unlock(&event->child_mutex);
3627 return no_children;
3628 }
3629
3630 /*
3631 * Read the performance event - simple non blocking version for now
3632 */
3633 static ssize_t
3634 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3635 {
3636 u64 read_format = event->attr.read_format;
3637 int ret;
3638
3639 /*
3640 * Return end-of-file for a read on a event that is in
3641 * error state (i.e. because it was pinned but it couldn't be
3642 * scheduled on to the CPU at some point).
3643 */
3644 if (event->state == PERF_EVENT_STATE_ERROR)
3645 return 0;
3646
3647 if (count < event->read_size)
3648 return -ENOSPC;
3649
3650 WARN_ON_ONCE(event->ctx->parent_ctx);
3651 if (read_format & PERF_FORMAT_GROUP)
3652 ret = perf_event_read_group(event, read_format, buf);
3653 else
3654 ret = perf_event_read_one(event, read_format, buf);
3655
3656 return ret;
3657 }
3658
3659 static ssize_t
3660 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3661 {
3662 struct perf_event *event = file->private_data;
3663
3664 return perf_read_hw(event, buf, count);
3665 }
3666
3667 static unsigned int perf_poll(struct file *file, poll_table *wait)
3668 {
3669 struct perf_event *event = file->private_data;
3670 struct ring_buffer *rb;
3671 unsigned int events = POLLHUP;
3672
3673 poll_wait(file, &event->waitq, wait);
3674
3675 if (is_event_hup(event))
3676 return events;
3677
3678 /*
3679 * Pin the event->rb by taking event->mmap_mutex; otherwise
3680 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3681 */
3682 mutex_lock(&event->mmap_mutex);
3683 rb = event->rb;
3684 if (rb)
3685 events = atomic_xchg(&rb->poll, 0);
3686 mutex_unlock(&event->mmap_mutex);
3687 return events;
3688 }
3689
3690 static void perf_event_reset(struct perf_event *event)
3691 {
3692 (void)perf_event_read(event);
3693 local64_set(&event->count, 0);
3694 perf_event_update_userpage(event);
3695 }
3696
3697 /*
3698 * Holding the top-level event's child_mutex means that any
3699 * descendant process that has inherited this event will block
3700 * in sync_child_event if it goes to exit, thus satisfying the
3701 * task existence requirements of perf_event_enable/disable.
3702 */
3703 static void perf_event_for_each_child(struct perf_event *event,
3704 void (*func)(struct perf_event *))
3705 {
3706 struct perf_event *child;
3707
3708 WARN_ON_ONCE(event->ctx->parent_ctx);
3709 mutex_lock(&event->child_mutex);
3710 func(event);
3711 list_for_each_entry(child, &event->child_list, child_list)
3712 func(child);
3713 mutex_unlock(&event->child_mutex);
3714 }
3715
3716 static void perf_event_for_each(struct perf_event *event,
3717 void (*func)(struct perf_event *))
3718 {
3719 struct perf_event_context *ctx = event->ctx;
3720 struct perf_event *sibling;
3721
3722 WARN_ON_ONCE(ctx->parent_ctx);
3723 mutex_lock(&ctx->mutex);
3724 event = event->group_leader;
3725
3726 perf_event_for_each_child(event, func);
3727 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3728 perf_event_for_each_child(sibling, func);
3729 mutex_unlock(&ctx->mutex);
3730 }
3731
3732 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3733 {
3734 struct perf_event_context *ctx = event->ctx;
3735 int ret = 0, active;
3736 u64 value;
3737
3738 if (!is_sampling_event(event))
3739 return -EINVAL;
3740
3741 if (copy_from_user(&value, arg, sizeof(value)))
3742 return -EFAULT;
3743
3744 if (!value)
3745 return -EINVAL;
3746
3747 raw_spin_lock_irq(&ctx->lock);
3748 if (event->attr.freq) {
3749 if (value > sysctl_perf_event_sample_rate) {
3750 ret = -EINVAL;
3751 goto unlock;
3752 }
3753
3754 event->attr.sample_freq = value;
3755 } else {
3756 event->attr.sample_period = value;
3757 event->hw.sample_period = value;
3758 }
3759
3760 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3761 if (active) {
3762 perf_pmu_disable(ctx->pmu);
3763 event->pmu->stop(event, PERF_EF_UPDATE);
3764 }
3765
3766 local64_set(&event->hw.period_left, 0);
3767
3768 if (active) {
3769 event->pmu->start(event, PERF_EF_RELOAD);
3770 perf_pmu_enable(ctx->pmu);
3771 }
3772
3773 unlock:
3774 raw_spin_unlock_irq(&ctx->lock);
3775
3776 return ret;
3777 }
3778
3779 static const struct file_operations perf_fops;
3780
3781 static inline int perf_fget_light(int fd, struct fd *p)
3782 {
3783 struct fd f = fdget(fd);
3784 if (!f.file)
3785 return -EBADF;
3786
3787 if (f.file->f_op != &perf_fops) {
3788 fdput(f);
3789 return -EBADF;
3790 }
3791 *p = f;
3792 return 0;
3793 }
3794
3795 static int perf_event_set_output(struct perf_event *event,
3796 struct perf_event *output_event);
3797 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3798
3799 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3800 {
3801 struct perf_event *event = file->private_data;
3802 void (*func)(struct perf_event *);
3803 u32 flags = arg;
3804
3805 switch (cmd) {
3806 case PERF_EVENT_IOC_ENABLE:
3807 func = perf_event_enable;
3808 break;
3809 case PERF_EVENT_IOC_DISABLE:
3810 func = perf_event_disable;
3811 break;
3812 case PERF_EVENT_IOC_RESET:
3813 func = perf_event_reset;
3814 break;
3815
3816 case PERF_EVENT_IOC_REFRESH:
3817 return perf_event_refresh(event, arg);
3818
3819 case PERF_EVENT_IOC_PERIOD:
3820 return perf_event_period(event, (u64 __user *)arg);
3821
3822 case PERF_EVENT_IOC_ID:
3823 {
3824 u64 id = primary_event_id(event);
3825
3826 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3827 return -EFAULT;
3828 return 0;
3829 }
3830
3831 case PERF_EVENT_IOC_SET_OUTPUT:
3832 {
3833 int ret;
3834 if (arg != -1) {
3835 struct perf_event *output_event;
3836 struct fd output;
3837 ret = perf_fget_light(arg, &output);
3838 if (ret)
3839 return ret;
3840 output_event = output.file->private_data;
3841 ret = perf_event_set_output(event, output_event);
3842 fdput(output);
3843 } else {
3844 ret = perf_event_set_output(event, NULL);
3845 }
3846 return ret;
3847 }
3848
3849 case PERF_EVENT_IOC_SET_FILTER:
3850 return perf_event_set_filter(event, (void __user *)arg);
3851
3852 default:
3853 return -ENOTTY;
3854 }
3855
3856 if (flags & PERF_IOC_FLAG_GROUP)
3857 perf_event_for_each(event, func);
3858 else
3859 perf_event_for_each_child(event, func);
3860
3861 return 0;
3862 }
3863
3864 #ifdef CONFIG_COMPAT
3865 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3866 unsigned long arg)
3867 {
3868 switch (_IOC_NR(cmd)) {
3869 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3870 case _IOC_NR(PERF_EVENT_IOC_ID):
3871 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3872 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3873 cmd &= ~IOCSIZE_MASK;
3874 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3875 }
3876 break;
3877 }
3878 return perf_ioctl(file, cmd, arg);
3879 }
3880 #else
3881 # define perf_compat_ioctl NULL
3882 #endif
3883
3884 int perf_event_task_enable(void)
3885 {
3886 struct perf_event *event;
3887
3888 mutex_lock(&current->perf_event_mutex);
3889 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3890 perf_event_for_each_child(event, perf_event_enable);
3891 mutex_unlock(&current->perf_event_mutex);
3892
3893 return 0;
3894 }
3895
3896 int perf_event_task_disable(void)
3897 {
3898 struct perf_event *event;
3899
3900 mutex_lock(&current->perf_event_mutex);
3901 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3902 perf_event_for_each_child(event, perf_event_disable);
3903 mutex_unlock(&current->perf_event_mutex);
3904
3905 return 0;
3906 }
3907
3908 static int perf_event_index(struct perf_event *event)
3909 {
3910 if (event->hw.state & PERF_HES_STOPPED)
3911 return 0;
3912
3913 if (event->state != PERF_EVENT_STATE_ACTIVE)
3914 return 0;
3915
3916 return event->pmu->event_idx(event);
3917 }
3918
3919 static void calc_timer_values(struct perf_event *event,
3920 u64 *now,
3921 u64 *enabled,
3922 u64 *running)
3923 {
3924 u64 ctx_time;
3925
3926 *now = perf_clock();
3927 ctx_time = event->shadow_ctx_time + *now;
3928 *enabled = ctx_time - event->tstamp_enabled;
3929 *running = ctx_time - event->tstamp_running;
3930 }
3931
3932 static void perf_event_init_userpage(struct perf_event *event)
3933 {
3934 struct perf_event_mmap_page *userpg;
3935 struct ring_buffer *rb;
3936
3937 rcu_read_lock();
3938 rb = rcu_dereference(event->rb);
3939 if (!rb)
3940 goto unlock;
3941
3942 userpg = rb->user_page;
3943
3944 /* Allow new userspace to detect that bit 0 is deprecated */
3945 userpg->cap_bit0_is_deprecated = 1;
3946 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3947
3948 unlock:
3949 rcu_read_unlock();
3950 }
3951
3952 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3953 {
3954 }
3955
3956 /*
3957 * Callers need to ensure there can be no nesting of this function, otherwise
3958 * the seqlock logic goes bad. We can not serialize this because the arch
3959 * code calls this from NMI context.
3960 */
3961 void perf_event_update_userpage(struct perf_event *event)
3962 {
3963 struct perf_event_mmap_page *userpg;
3964 struct ring_buffer *rb;
3965 u64 enabled, running, now;
3966
3967 rcu_read_lock();
3968 rb = rcu_dereference(event->rb);
3969 if (!rb)
3970 goto unlock;
3971
3972 /*
3973 * compute total_time_enabled, total_time_running
3974 * based on snapshot values taken when the event
3975 * was last scheduled in.
3976 *
3977 * we cannot simply called update_context_time()
3978 * because of locking issue as we can be called in
3979 * NMI context
3980 */
3981 calc_timer_values(event, &now, &enabled, &running);
3982
3983 userpg = rb->user_page;
3984 /*
3985 * Disable preemption so as to not let the corresponding user-space
3986 * spin too long if we get preempted.
3987 */
3988 preempt_disable();
3989 ++userpg->lock;
3990 barrier();
3991 userpg->index = perf_event_index(event);
3992 userpg->offset = perf_event_count(event);
3993 if (userpg->index)
3994 userpg->offset -= local64_read(&event->hw.prev_count);
3995
3996 userpg->time_enabled = enabled +
3997 atomic64_read(&event->child_total_time_enabled);
3998
3999 userpg->time_running = running +
4000 atomic64_read(&event->child_total_time_running);
4001
4002 arch_perf_update_userpage(userpg, now);
4003
4004 barrier();
4005 ++userpg->lock;
4006 preempt_enable();
4007 unlock:
4008 rcu_read_unlock();
4009 }
4010
4011 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4012 {
4013 struct perf_event *event = vma->vm_file->private_data;
4014 struct ring_buffer *rb;
4015 int ret = VM_FAULT_SIGBUS;
4016
4017 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4018 if (vmf->pgoff == 0)
4019 ret = 0;
4020 return ret;
4021 }
4022
4023 rcu_read_lock();
4024 rb = rcu_dereference(event->rb);
4025 if (!rb)
4026 goto unlock;
4027
4028 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4029 goto unlock;
4030
4031 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4032 if (!vmf->page)
4033 goto unlock;
4034
4035 get_page(vmf->page);
4036 vmf->page->mapping = vma->vm_file->f_mapping;
4037 vmf->page->index = vmf->pgoff;
4038
4039 ret = 0;
4040 unlock:
4041 rcu_read_unlock();
4042
4043 return ret;
4044 }
4045
4046 static void ring_buffer_attach(struct perf_event *event,
4047 struct ring_buffer *rb)
4048 {
4049 struct ring_buffer *old_rb = NULL;
4050 unsigned long flags;
4051
4052 if (event->rb) {
4053 /*
4054 * Should be impossible, we set this when removing
4055 * event->rb_entry and wait/clear when adding event->rb_entry.
4056 */
4057 WARN_ON_ONCE(event->rcu_pending);
4058
4059 old_rb = event->rb;
4060 event->rcu_batches = get_state_synchronize_rcu();
4061 event->rcu_pending = 1;
4062
4063 spin_lock_irqsave(&old_rb->event_lock, flags);
4064 list_del_rcu(&event->rb_entry);
4065 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4066 }
4067
4068 if (event->rcu_pending && rb) {
4069 cond_synchronize_rcu(event->rcu_batches);
4070 event->rcu_pending = 0;
4071 }
4072
4073 if (rb) {
4074 spin_lock_irqsave(&rb->event_lock, flags);
4075 list_add_rcu(&event->rb_entry, &rb->event_list);
4076 spin_unlock_irqrestore(&rb->event_lock, flags);
4077 }
4078
4079 rcu_assign_pointer(event->rb, rb);
4080
4081 if (old_rb) {
4082 ring_buffer_put(old_rb);
4083 /*
4084 * Since we detached before setting the new rb, so that we
4085 * could attach the new rb, we could have missed a wakeup.
4086 * Provide it now.
4087 */
4088 wake_up_all(&event->waitq);
4089 }
4090 }
4091
4092 static void ring_buffer_wakeup(struct perf_event *event)
4093 {
4094 struct ring_buffer *rb;
4095
4096 rcu_read_lock();
4097 rb = rcu_dereference(event->rb);
4098 if (rb) {
4099 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4100 wake_up_all(&event->waitq);
4101 }
4102 rcu_read_unlock();
4103 }
4104
4105 static void rb_free_rcu(struct rcu_head *rcu_head)
4106 {
4107 struct ring_buffer *rb;
4108
4109 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4110 rb_free(rb);
4111 }
4112
4113 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4114 {
4115 struct ring_buffer *rb;
4116
4117 rcu_read_lock();
4118 rb = rcu_dereference(event->rb);
4119 if (rb) {
4120 if (!atomic_inc_not_zero(&rb->refcount))
4121 rb = NULL;
4122 }
4123 rcu_read_unlock();
4124
4125 return rb;
4126 }
4127
4128 static void ring_buffer_put(struct ring_buffer *rb)
4129 {
4130 if (!atomic_dec_and_test(&rb->refcount))
4131 return;
4132
4133 WARN_ON_ONCE(!list_empty(&rb->event_list));
4134
4135 call_rcu(&rb->rcu_head, rb_free_rcu);
4136 }
4137
4138 static void perf_mmap_open(struct vm_area_struct *vma)
4139 {
4140 struct perf_event *event = vma->vm_file->private_data;
4141
4142 atomic_inc(&event->mmap_count);
4143 atomic_inc(&event->rb->mmap_count);
4144 }
4145
4146 /*
4147 * A buffer can be mmap()ed multiple times; either directly through the same
4148 * event, or through other events by use of perf_event_set_output().
4149 *
4150 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4151 * the buffer here, where we still have a VM context. This means we need
4152 * to detach all events redirecting to us.
4153 */
4154 static void perf_mmap_close(struct vm_area_struct *vma)
4155 {
4156 struct perf_event *event = vma->vm_file->private_data;
4157
4158 struct ring_buffer *rb = ring_buffer_get(event);
4159 struct user_struct *mmap_user = rb->mmap_user;
4160 int mmap_locked = rb->mmap_locked;
4161 unsigned long size = perf_data_size(rb);
4162
4163 atomic_dec(&rb->mmap_count);
4164
4165 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4166 goto out_put;
4167
4168 ring_buffer_attach(event, NULL);
4169 mutex_unlock(&event->mmap_mutex);
4170
4171 /* If there's still other mmap()s of this buffer, we're done. */
4172 if (atomic_read(&rb->mmap_count))
4173 goto out_put;
4174
4175 /*
4176 * No other mmap()s, detach from all other events that might redirect
4177 * into the now unreachable buffer. Somewhat complicated by the
4178 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4179 */
4180 again:
4181 rcu_read_lock();
4182 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4183 if (!atomic_long_inc_not_zero(&event->refcount)) {
4184 /*
4185 * This event is en-route to free_event() which will
4186 * detach it and remove it from the list.
4187 */
4188 continue;
4189 }
4190 rcu_read_unlock();
4191
4192 mutex_lock(&event->mmap_mutex);
4193 /*
4194 * Check we didn't race with perf_event_set_output() which can
4195 * swizzle the rb from under us while we were waiting to
4196 * acquire mmap_mutex.
4197 *
4198 * If we find a different rb; ignore this event, a next
4199 * iteration will no longer find it on the list. We have to
4200 * still restart the iteration to make sure we're not now
4201 * iterating the wrong list.
4202 */
4203 if (event->rb == rb)
4204 ring_buffer_attach(event, NULL);
4205
4206 mutex_unlock(&event->mmap_mutex);
4207 put_event(event);
4208
4209 /*
4210 * Restart the iteration; either we're on the wrong list or
4211 * destroyed its integrity by doing a deletion.
4212 */
4213 goto again;
4214 }
4215 rcu_read_unlock();
4216
4217 /*
4218 * It could be there's still a few 0-ref events on the list; they'll
4219 * get cleaned up by free_event() -- they'll also still have their
4220 * ref on the rb and will free it whenever they are done with it.
4221 *
4222 * Aside from that, this buffer is 'fully' detached and unmapped,
4223 * undo the VM accounting.
4224 */
4225
4226 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4227 vma->vm_mm->pinned_vm -= mmap_locked;
4228 free_uid(mmap_user);
4229
4230 out_put:
4231 ring_buffer_put(rb); /* could be last */
4232 }
4233
4234 static const struct vm_operations_struct perf_mmap_vmops = {
4235 .open = perf_mmap_open,
4236 .close = perf_mmap_close,
4237 .fault = perf_mmap_fault,
4238 .page_mkwrite = perf_mmap_fault,
4239 };
4240
4241 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4242 {
4243 struct perf_event *event = file->private_data;
4244 unsigned long user_locked, user_lock_limit;
4245 struct user_struct *user = current_user();
4246 unsigned long locked, lock_limit;
4247 struct ring_buffer *rb;
4248 unsigned long vma_size;
4249 unsigned long nr_pages;
4250 long user_extra, extra;
4251 int ret = 0, flags = 0;
4252
4253 /*
4254 * Don't allow mmap() of inherited per-task counters. This would
4255 * create a performance issue due to all children writing to the
4256 * same rb.
4257 */
4258 if (event->cpu == -1 && event->attr.inherit)
4259 return -EINVAL;
4260
4261 if (!(vma->vm_flags & VM_SHARED))
4262 return -EINVAL;
4263
4264 vma_size = vma->vm_end - vma->vm_start;
4265 nr_pages = (vma_size / PAGE_SIZE) - 1;
4266
4267 /*
4268 * If we have rb pages ensure they're a power-of-two number, so we
4269 * can do bitmasks instead of modulo.
4270 */
4271 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4272 return -EINVAL;
4273
4274 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4275 return -EINVAL;
4276
4277 if (vma->vm_pgoff != 0)
4278 return -EINVAL;
4279
4280 WARN_ON_ONCE(event->ctx->parent_ctx);
4281 again:
4282 mutex_lock(&event->mmap_mutex);
4283 if (event->rb) {
4284 if (event->rb->nr_pages != nr_pages) {
4285 ret = -EINVAL;
4286 goto unlock;
4287 }
4288
4289 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4290 /*
4291 * Raced against perf_mmap_close() through
4292 * perf_event_set_output(). Try again, hope for better
4293 * luck.
4294 */
4295 mutex_unlock(&event->mmap_mutex);
4296 goto again;
4297 }
4298
4299 goto unlock;
4300 }
4301
4302 user_extra = nr_pages + 1;
4303 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4304
4305 /*
4306 * Increase the limit linearly with more CPUs:
4307 */
4308 user_lock_limit *= num_online_cpus();
4309
4310 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4311
4312 extra = 0;
4313 if (user_locked > user_lock_limit)
4314 extra = user_locked - user_lock_limit;
4315
4316 lock_limit = rlimit(RLIMIT_MEMLOCK);
4317 lock_limit >>= PAGE_SHIFT;
4318 locked = vma->vm_mm->pinned_vm + extra;
4319
4320 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4321 !capable(CAP_IPC_LOCK)) {
4322 ret = -EPERM;
4323 goto unlock;
4324 }
4325
4326 WARN_ON(event->rb);
4327
4328 if (vma->vm_flags & VM_WRITE)
4329 flags |= RING_BUFFER_WRITABLE;
4330
4331 rb = rb_alloc(nr_pages,
4332 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4333 event->cpu, flags);
4334
4335 if (!rb) {
4336 ret = -ENOMEM;
4337 goto unlock;
4338 }
4339
4340 atomic_set(&rb->mmap_count, 1);
4341 rb->mmap_locked = extra;
4342 rb->mmap_user = get_current_user();
4343
4344 atomic_long_add(user_extra, &user->locked_vm);
4345 vma->vm_mm->pinned_vm += extra;
4346
4347 ring_buffer_attach(event, rb);
4348
4349 perf_event_init_userpage(event);
4350 perf_event_update_userpage(event);
4351
4352 unlock:
4353 if (!ret)
4354 atomic_inc(&event->mmap_count);
4355 mutex_unlock(&event->mmap_mutex);
4356
4357 /*
4358 * Since pinned accounting is per vm we cannot allow fork() to copy our
4359 * vma.
4360 */
4361 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4362 vma->vm_ops = &perf_mmap_vmops;
4363
4364 return ret;
4365 }
4366
4367 static int perf_fasync(int fd, struct file *filp, int on)
4368 {
4369 struct inode *inode = file_inode(filp);
4370 struct perf_event *event = filp->private_data;
4371 int retval;
4372
4373 mutex_lock(&inode->i_mutex);
4374 retval = fasync_helper(fd, filp, on, &event->fasync);
4375 mutex_unlock(&inode->i_mutex);
4376
4377 if (retval < 0)
4378 return retval;
4379
4380 return 0;
4381 }
4382
4383 static const struct file_operations perf_fops = {
4384 .llseek = no_llseek,
4385 .release = perf_release,
4386 .read = perf_read,
4387 .poll = perf_poll,
4388 .unlocked_ioctl = perf_ioctl,
4389 .compat_ioctl = perf_compat_ioctl,
4390 .mmap = perf_mmap,
4391 .fasync = perf_fasync,
4392 };
4393
4394 /*
4395 * Perf event wakeup
4396 *
4397 * If there's data, ensure we set the poll() state and publish everything
4398 * to user-space before waking everybody up.
4399 */
4400
4401 void perf_event_wakeup(struct perf_event *event)
4402 {
4403 ring_buffer_wakeup(event);
4404
4405 if (event->pending_kill) {
4406 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4407 event->pending_kill = 0;
4408 }
4409 }
4410
4411 static void perf_pending_event(struct irq_work *entry)
4412 {
4413 struct perf_event *event = container_of(entry,
4414 struct perf_event, pending);
4415
4416 if (event->pending_disable) {
4417 event->pending_disable = 0;
4418 __perf_event_disable(event);
4419 }
4420
4421 if (event->pending_wakeup) {
4422 event->pending_wakeup = 0;
4423 perf_event_wakeup(event);
4424 }
4425 }
4426
4427 /*
4428 * We assume there is only KVM supporting the callbacks.
4429 * Later on, we might change it to a list if there is
4430 * another virtualization implementation supporting the callbacks.
4431 */
4432 struct perf_guest_info_callbacks *perf_guest_cbs;
4433
4434 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4435 {
4436 perf_guest_cbs = cbs;
4437 return 0;
4438 }
4439 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4440
4441 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4442 {
4443 perf_guest_cbs = NULL;
4444 return 0;
4445 }
4446 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4447
4448 static void
4449 perf_output_sample_regs(struct perf_output_handle *handle,
4450 struct pt_regs *regs, u64 mask)
4451 {
4452 int bit;
4453
4454 for_each_set_bit(bit, (const unsigned long *) &mask,
4455 sizeof(mask) * BITS_PER_BYTE) {
4456 u64 val;
4457
4458 val = perf_reg_value(regs, bit);
4459 perf_output_put(handle, val);
4460 }
4461 }
4462
4463 static void perf_sample_regs_user(struct perf_regs *regs_user,
4464 struct pt_regs *regs)
4465 {
4466 if (!user_mode(regs)) {
4467 if (current->mm)
4468 regs = task_pt_regs(current);
4469 else
4470 regs = NULL;
4471 }
4472
4473 if (regs) {
4474 regs_user->abi = perf_reg_abi(current);
4475 regs_user->regs = regs;
4476 } else {
4477 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4478 regs_user->regs = NULL;
4479 }
4480 }
4481
4482 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4483 struct pt_regs *regs)
4484 {
4485 regs_intr->regs = regs;
4486 regs_intr->abi = perf_reg_abi(current);
4487 }
4488
4489
4490 /*
4491 * Get remaining task size from user stack pointer.
4492 *
4493 * It'd be better to take stack vma map and limit this more
4494 * precisly, but there's no way to get it safely under interrupt,
4495 * so using TASK_SIZE as limit.
4496 */
4497 static u64 perf_ustack_task_size(struct pt_regs *regs)
4498 {
4499 unsigned long addr = perf_user_stack_pointer(regs);
4500
4501 if (!addr || addr >= TASK_SIZE)
4502 return 0;
4503
4504 return TASK_SIZE - addr;
4505 }
4506
4507 static u16
4508 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4509 struct pt_regs *regs)
4510 {
4511 u64 task_size;
4512
4513 /* No regs, no stack pointer, no dump. */
4514 if (!regs)
4515 return 0;
4516
4517 /*
4518 * Check if we fit in with the requested stack size into the:
4519 * - TASK_SIZE
4520 * If we don't, we limit the size to the TASK_SIZE.
4521 *
4522 * - remaining sample size
4523 * If we don't, we customize the stack size to
4524 * fit in to the remaining sample size.
4525 */
4526
4527 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4528 stack_size = min(stack_size, (u16) task_size);
4529
4530 /* Current header size plus static size and dynamic size. */
4531 header_size += 2 * sizeof(u64);
4532
4533 /* Do we fit in with the current stack dump size? */
4534 if ((u16) (header_size + stack_size) < header_size) {
4535 /*
4536 * If we overflow the maximum size for the sample,
4537 * we customize the stack dump size to fit in.
4538 */
4539 stack_size = USHRT_MAX - header_size - sizeof(u64);
4540 stack_size = round_up(stack_size, sizeof(u64));
4541 }
4542
4543 return stack_size;
4544 }
4545
4546 static void
4547 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4548 struct pt_regs *regs)
4549 {
4550 /* Case of a kernel thread, nothing to dump */
4551 if (!regs) {
4552 u64 size = 0;
4553 perf_output_put(handle, size);
4554 } else {
4555 unsigned long sp;
4556 unsigned int rem;
4557 u64 dyn_size;
4558
4559 /*
4560 * We dump:
4561 * static size
4562 * - the size requested by user or the best one we can fit
4563 * in to the sample max size
4564 * data
4565 * - user stack dump data
4566 * dynamic size
4567 * - the actual dumped size
4568 */
4569
4570 /* Static size. */
4571 perf_output_put(handle, dump_size);
4572
4573 /* Data. */
4574 sp = perf_user_stack_pointer(regs);
4575 rem = __output_copy_user(handle, (void *) sp, dump_size);
4576 dyn_size = dump_size - rem;
4577
4578 perf_output_skip(handle, rem);
4579
4580 /* Dynamic size. */
4581 perf_output_put(handle, dyn_size);
4582 }
4583 }
4584
4585 static void __perf_event_header__init_id(struct perf_event_header *header,
4586 struct perf_sample_data *data,
4587 struct perf_event *event)
4588 {
4589 u64 sample_type = event->attr.sample_type;
4590
4591 data->type = sample_type;
4592 header->size += event->id_header_size;
4593
4594 if (sample_type & PERF_SAMPLE_TID) {
4595 /* namespace issues */
4596 data->tid_entry.pid = perf_event_pid(event, current);
4597 data->tid_entry.tid = perf_event_tid(event, current);
4598 }
4599
4600 if (sample_type & PERF_SAMPLE_TIME)
4601 data->time = perf_clock();
4602
4603 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4604 data->id = primary_event_id(event);
4605
4606 if (sample_type & PERF_SAMPLE_STREAM_ID)
4607 data->stream_id = event->id;
4608
4609 if (sample_type & PERF_SAMPLE_CPU) {
4610 data->cpu_entry.cpu = raw_smp_processor_id();
4611 data->cpu_entry.reserved = 0;
4612 }
4613 }
4614
4615 void perf_event_header__init_id(struct perf_event_header *header,
4616 struct perf_sample_data *data,
4617 struct perf_event *event)
4618 {
4619 if (event->attr.sample_id_all)
4620 __perf_event_header__init_id(header, data, event);
4621 }
4622
4623 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4624 struct perf_sample_data *data)
4625 {
4626 u64 sample_type = data->type;
4627
4628 if (sample_type & PERF_SAMPLE_TID)
4629 perf_output_put(handle, data->tid_entry);
4630
4631 if (sample_type & PERF_SAMPLE_TIME)
4632 perf_output_put(handle, data->time);
4633
4634 if (sample_type & PERF_SAMPLE_ID)
4635 perf_output_put(handle, data->id);
4636
4637 if (sample_type & PERF_SAMPLE_STREAM_ID)
4638 perf_output_put(handle, data->stream_id);
4639
4640 if (sample_type & PERF_SAMPLE_CPU)
4641 perf_output_put(handle, data->cpu_entry);
4642
4643 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4644 perf_output_put(handle, data->id);
4645 }
4646
4647 void perf_event__output_id_sample(struct perf_event *event,
4648 struct perf_output_handle *handle,
4649 struct perf_sample_data *sample)
4650 {
4651 if (event->attr.sample_id_all)
4652 __perf_event__output_id_sample(handle, sample);
4653 }
4654
4655 static void perf_output_read_one(struct perf_output_handle *handle,
4656 struct perf_event *event,
4657 u64 enabled, u64 running)
4658 {
4659 u64 read_format = event->attr.read_format;
4660 u64 values[4];
4661 int n = 0;
4662
4663 values[n++] = perf_event_count(event);
4664 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4665 values[n++] = enabled +
4666 atomic64_read(&event->child_total_time_enabled);
4667 }
4668 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4669 values[n++] = running +
4670 atomic64_read(&event->child_total_time_running);
4671 }
4672 if (read_format & PERF_FORMAT_ID)
4673 values[n++] = primary_event_id(event);
4674
4675 __output_copy(handle, values, n * sizeof(u64));
4676 }
4677
4678 /*
4679 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4680 */
4681 static void perf_output_read_group(struct perf_output_handle *handle,
4682 struct perf_event *event,
4683 u64 enabled, u64 running)
4684 {
4685 struct perf_event *leader = event->group_leader, *sub;
4686 u64 read_format = event->attr.read_format;
4687 u64 values[5];
4688 int n = 0;
4689
4690 values[n++] = 1 + leader->nr_siblings;
4691
4692 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4693 values[n++] = enabled;
4694
4695 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4696 values[n++] = running;
4697
4698 if (leader != event)
4699 leader->pmu->read(leader);
4700
4701 values[n++] = perf_event_count(leader);
4702 if (read_format & PERF_FORMAT_ID)
4703 values[n++] = primary_event_id(leader);
4704
4705 __output_copy(handle, values, n * sizeof(u64));
4706
4707 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4708 n = 0;
4709
4710 if ((sub != event) &&
4711 (sub->state == PERF_EVENT_STATE_ACTIVE))
4712 sub->pmu->read(sub);
4713
4714 values[n++] = perf_event_count(sub);
4715 if (read_format & PERF_FORMAT_ID)
4716 values[n++] = primary_event_id(sub);
4717
4718 __output_copy(handle, values, n * sizeof(u64));
4719 }
4720 }
4721
4722 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4723 PERF_FORMAT_TOTAL_TIME_RUNNING)
4724
4725 static void perf_output_read(struct perf_output_handle *handle,
4726 struct perf_event *event)
4727 {
4728 u64 enabled = 0, running = 0, now;
4729 u64 read_format = event->attr.read_format;
4730
4731 /*
4732 * compute total_time_enabled, total_time_running
4733 * based on snapshot values taken when the event
4734 * was last scheduled in.
4735 *
4736 * we cannot simply called update_context_time()
4737 * because of locking issue as we are called in
4738 * NMI context
4739 */
4740 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4741 calc_timer_values(event, &now, &enabled, &running);
4742
4743 if (event->attr.read_format & PERF_FORMAT_GROUP)
4744 perf_output_read_group(handle, event, enabled, running);
4745 else
4746 perf_output_read_one(handle, event, enabled, running);
4747 }
4748
4749 void perf_output_sample(struct perf_output_handle *handle,
4750 struct perf_event_header *header,
4751 struct perf_sample_data *data,
4752 struct perf_event *event)
4753 {
4754 u64 sample_type = data->type;
4755
4756 perf_output_put(handle, *header);
4757
4758 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4759 perf_output_put(handle, data->id);
4760
4761 if (sample_type & PERF_SAMPLE_IP)
4762 perf_output_put(handle, data->ip);
4763
4764 if (sample_type & PERF_SAMPLE_TID)
4765 perf_output_put(handle, data->tid_entry);
4766
4767 if (sample_type & PERF_SAMPLE_TIME)
4768 perf_output_put(handle, data->time);
4769
4770 if (sample_type & PERF_SAMPLE_ADDR)
4771 perf_output_put(handle, data->addr);
4772
4773 if (sample_type & PERF_SAMPLE_ID)
4774 perf_output_put(handle, data->id);
4775
4776 if (sample_type & PERF_SAMPLE_STREAM_ID)
4777 perf_output_put(handle, data->stream_id);
4778
4779 if (sample_type & PERF_SAMPLE_CPU)
4780 perf_output_put(handle, data->cpu_entry);
4781
4782 if (sample_type & PERF_SAMPLE_PERIOD)
4783 perf_output_put(handle, data->period);
4784
4785 if (sample_type & PERF_SAMPLE_READ)
4786 perf_output_read(handle, event);
4787
4788 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4789 if (data->callchain) {
4790 int size = 1;
4791
4792 if (data->callchain)
4793 size += data->callchain->nr;
4794
4795 size *= sizeof(u64);
4796
4797 __output_copy(handle, data->callchain, size);
4798 } else {
4799 u64 nr = 0;
4800 perf_output_put(handle, nr);
4801 }
4802 }
4803
4804 if (sample_type & PERF_SAMPLE_RAW) {
4805 if (data->raw) {
4806 perf_output_put(handle, data->raw->size);
4807 __output_copy(handle, data->raw->data,
4808 data->raw->size);
4809 } else {
4810 struct {
4811 u32 size;
4812 u32 data;
4813 } raw = {
4814 .size = sizeof(u32),
4815 .data = 0,
4816 };
4817 perf_output_put(handle, raw);
4818 }
4819 }
4820
4821 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4822 if (data->br_stack) {
4823 size_t size;
4824
4825 size = data->br_stack->nr
4826 * sizeof(struct perf_branch_entry);
4827
4828 perf_output_put(handle, data->br_stack->nr);
4829 perf_output_copy(handle, data->br_stack->entries, size);
4830 } else {
4831 /*
4832 * we always store at least the value of nr
4833 */
4834 u64 nr = 0;
4835 perf_output_put(handle, nr);
4836 }
4837 }
4838
4839 if (sample_type & PERF_SAMPLE_REGS_USER) {
4840 u64 abi = data->regs_user.abi;
4841
4842 /*
4843 * If there are no regs to dump, notice it through
4844 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4845 */
4846 perf_output_put(handle, abi);
4847
4848 if (abi) {
4849 u64 mask = event->attr.sample_regs_user;
4850 perf_output_sample_regs(handle,
4851 data->regs_user.regs,
4852 mask);
4853 }
4854 }
4855
4856 if (sample_type & PERF_SAMPLE_STACK_USER) {
4857 perf_output_sample_ustack(handle,
4858 data->stack_user_size,
4859 data->regs_user.regs);
4860 }
4861
4862 if (sample_type & PERF_SAMPLE_WEIGHT)
4863 perf_output_put(handle, data->weight);
4864
4865 if (sample_type & PERF_SAMPLE_DATA_SRC)
4866 perf_output_put(handle, data->data_src.val);
4867
4868 if (sample_type & PERF_SAMPLE_TRANSACTION)
4869 perf_output_put(handle, data->txn);
4870
4871 if (sample_type & PERF_SAMPLE_REGS_INTR) {
4872 u64 abi = data->regs_intr.abi;
4873 /*
4874 * If there are no regs to dump, notice it through
4875 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4876 */
4877 perf_output_put(handle, abi);
4878
4879 if (abi) {
4880 u64 mask = event->attr.sample_regs_intr;
4881
4882 perf_output_sample_regs(handle,
4883 data->regs_intr.regs,
4884 mask);
4885 }
4886 }
4887
4888 if (!event->attr.watermark) {
4889 int wakeup_events = event->attr.wakeup_events;
4890
4891 if (wakeup_events) {
4892 struct ring_buffer *rb = handle->rb;
4893 int events = local_inc_return(&rb->events);
4894
4895 if (events >= wakeup_events) {
4896 local_sub(wakeup_events, &rb->events);
4897 local_inc(&rb->wakeup);
4898 }
4899 }
4900 }
4901 }
4902
4903 void perf_prepare_sample(struct perf_event_header *header,
4904 struct perf_sample_data *data,
4905 struct perf_event *event,
4906 struct pt_regs *regs)
4907 {
4908 u64 sample_type = event->attr.sample_type;
4909
4910 header->type = PERF_RECORD_SAMPLE;
4911 header->size = sizeof(*header) + event->header_size;
4912
4913 header->misc = 0;
4914 header->misc |= perf_misc_flags(regs);
4915
4916 __perf_event_header__init_id(header, data, event);
4917
4918 if (sample_type & PERF_SAMPLE_IP)
4919 data->ip = perf_instruction_pointer(regs);
4920
4921 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4922 int size = 1;
4923
4924 data->callchain = perf_callchain(event, regs);
4925
4926 if (data->callchain)
4927 size += data->callchain->nr;
4928
4929 header->size += size * sizeof(u64);
4930 }
4931
4932 if (sample_type & PERF_SAMPLE_RAW) {
4933 int size = sizeof(u32);
4934
4935 if (data->raw)
4936 size += data->raw->size;
4937 else
4938 size += sizeof(u32);
4939
4940 WARN_ON_ONCE(size & (sizeof(u64)-1));
4941 header->size += size;
4942 }
4943
4944 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4945 int size = sizeof(u64); /* nr */
4946 if (data->br_stack) {
4947 size += data->br_stack->nr
4948 * sizeof(struct perf_branch_entry);
4949 }
4950 header->size += size;
4951 }
4952
4953 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
4954 perf_sample_regs_user(&data->regs_user, regs);
4955
4956 if (sample_type & PERF_SAMPLE_REGS_USER) {
4957 /* regs dump ABI info */
4958 int size = sizeof(u64);
4959
4960 if (data->regs_user.regs) {
4961 u64 mask = event->attr.sample_regs_user;
4962 size += hweight64(mask) * sizeof(u64);
4963 }
4964
4965 header->size += size;
4966 }
4967
4968 if (sample_type & PERF_SAMPLE_STACK_USER) {
4969 /*
4970 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4971 * processed as the last one or have additional check added
4972 * in case new sample type is added, because we could eat
4973 * up the rest of the sample size.
4974 */
4975 u16 stack_size = event->attr.sample_stack_user;
4976 u16 size = sizeof(u64);
4977
4978 stack_size = perf_sample_ustack_size(stack_size, header->size,
4979 data->regs_user.regs);
4980
4981 /*
4982 * If there is something to dump, add space for the dump
4983 * itself and for the field that tells the dynamic size,
4984 * which is how many have been actually dumped.
4985 */
4986 if (stack_size)
4987 size += sizeof(u64) + stack_size;
4988
4989 data->stack_user_size = stack_size;
4990 header->size += size;
4991 }
4992
4993 if (sample_type & PERF_SAMPLE_REGS_INTR) {
4994 /* regs dump ABI info */
4995 int size = sizeof(u64);
4996
4997 perf_sample_regs_intr(&data->regs_intr, regs);
4998
4999 if (data->regs_intr.regs) {
5000 u64 mask = event->attr.sample_regs_intr;
5001
5002 size += hweight64(mask) * sizeof(u64);
5003 }
5004
5005 header->size += size;
5006 }
5007 }
5008
5009 static void perf_event_output(struct perf_event *event,
5010 struct perf_sample_data *data,
5011 struct pt_regs *regs)
5012 {
5013 struct perf_output_handle handle;
5014 struct perf_event_header header;
5015
5016 /* protect the callchain buffers */
5017 rcu_read_lock();
5018
5019 perf_prepare_sample(&header, data, event, regs);
5020
5021 if (perf_output_begin(&handle, event, header.size))
5022 goto exit;
5023
5024 perf_output_sample(&handle, &header, data, event);
5025
5026 perf_output_end(&handle);
5027
5028 exit:
5029 rcu_read_unlock();
5030 }
5031
5032 /*
5033 * read event_id
5034 */
5035
5036 struct perf_read_event {
5037 struct perf_event_header header;
5038
5039 u32 pid;
5040 u32 tid;
5041 };
5042
5043 static void
5044 perf_event_read_event(struct perf_event *event,
5045 struct task_struct *task)
5046 {
5047 struct perf_output_handle handle;
5048 struct perf_sample_data sample;
5049 struct perf_read_event read_event = {
5050 .header = {
5051 .type = PERF_RECORD_READ,
5052 .misc = 0,
5053 .size = sizeof(read_event) + event->read_size,
5054 },
5055 .pid = perf_event_pid(event, task),
5056 .tid = perf_event_tid(event, task),
5057 };
5058 int ret;
5059
5060 perf_event_header__init_id(&read_event.header, &sample, event);
5061 ret = perf_output_begin(&handle, event, read_event.header.size);
5062 if (ret)
5063 return;
5064
5065 perf_output_put(&handle, read_event);
5066 perf_output_read(&handle, event);
5067 perf_event__output_id_sample(event, &handle, &sample);
5068
5069 perf_output_end(&handle);
5070 }
5071
5072 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5073
5074 static void
5075 perf_event_aux_ctx(struct perf_event_context *ctx,
5076 perf_event_aux_output_cb output,
5077 void *data)
5078 {
5079 struct perf_event *event;
5080
5081 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5082 if (event->state < PERF_EVENT_STATE_INACTIVE)
5083 continue;
5084 if (!event_filter_match(event))
5085 continue;
5086 output(event, data);
5087 }
5088 }
5089
5090 static void
5091 perf_event_aux(perf_event_aux_output_cb output, void *data,
5092 struct perf_event_context *task_ctx)
5093 {
5094 struct perf_cpu_context *cpuctx;
5095 struct perf_event_context *ctx;
5096 struct pmu *pmu;
5097 int ctxn;
5098
5099 rcu_read_lock();
5100 list_for_each_entry_rcu(pmu, &pmus, entry) {
5101 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5102 if (cpuctx->unique_pmu != pmu)
5103 goto next;
5104 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5105 if (task_ctx)
5106 goto next;
5107 ctxn = pmu->task_ctx_nr;
5108 if (ctxn < 0)
5109 goto next;
5110 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5111 if (ctx)
5112 perf_event_aux_ctx(ctx, output, data);
5113 next:
5114 put_cpu_ptr(pmu->pmu_cpu_context);
5115 }
5116
5117 if (task_ctx) {
5118 preempt_disable();
5119 perf_event_aux_ctx(task_ctx, output, data);
5120 preempt_enable();
5121 }
5122 rcu_read_unlock();
5123 }
5124
5125 /*
5126 * task tracking -- fork/exit
5127 *
5128 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5129 */
5130
5131 struct perf_task_event {
5132 struct task_struct *task;
5133 struct perf_event_context *task_ctx;
5134
5135 struct {
5136 struct perf_event_header header;
5137
5138 u32 pid;
5139 u32 ppid;
5140 u32 tid;
5141 u32 ptid;
5142 u64 time;
5143 } event_id;
5144 };
5145
5146 static int perf_event_task_match(struct perf_event *event)
5147 {
5148 return event->attr.comm || event->attr.mmap ||
5149 event->attr.mmap2 || event->attr.mmap_data ||
5150 event->attr.task;
5151 }
5152
5153 static void perf_event_task_output(struct perf_event *event,
5154 void *data)
5155 {
5156 struct perf_task_event *task_event = data;
5157 struct perf_output_handle handle;
5158 struct perf_sample_data sample;
5159 struct task_struct *task = task_event->task;
5160 int ret, size = task_event->event_id.header.size;
5161
5162 if (!perf_event_task_match(event))
5163 return;
5164
5165 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5166
5167 ret = perf_output_begin(&handle, event,
5168 task_event->event_id.header.size);
5169 if (ret)
5170 goto out;
5171
5172 task_event->event_id.pid = perf_event_pid(event, task);
5173 task_event->event_id.ppid = perf_event_pid(event, current);
5174
5175 task_event->event_id.tid = perf_event_tid(event, task);
5176 task_event->event_id.ptid = perf_event_tid(event, current);
5177
5178 perf_output_put(&handle, task_event->event_id);
5179
5180 perf_event__output_id_sample(event, &handle, &sample);
5181
5182 perf_output_end(&handle);
5183 out:
5184 task_event->event_id.header.size = size;
5185 }
5186
5187 static void perf_event_task(struct task_struct *task,
5188 struct perf_event_context *task_ctx,
5189 int new)
5190 {
5191 struct perf_task_event task_event;
5192
5193 if (!atomic_read(&nr_comm_events) &&
5194 !atomic_read(&nr_mmap_events) &&
5195 !atomic_read(&nr_task_events))
5196 return;
5197
5198 task_event = (struct perf_task_event){
5199 .task = task,
5200 .task_ctx = task_ctx,
5201 .event_id = {
5202 .header = {
5203 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5204 .misc = 0,
5205 .size = sizeof(task_event.event_id),
5206 },
5207 /* .pid */
5208 /* .ppid */
5209 /* .tid */
5210 /* .ptid */
5211 .time = perf_clock(),
5212 },
5213 };
5214
5215 perf_event_aux(perf_event_task_output,
5216 &task_event,
5217 task_ctx);
5218 }
5219
5220 void perf_event_fork(struct task_struct *task)
5221 {
5222 perf_event_task(task, NULL, 1);
5223 }
5224
5225 /*
5226 * comm tracking
5227 */
5228
5229 struct perf_comm_event {
5230 struct task_struct *task;
5231 char *comm;
5232 int comm_size;
5233
5234 struct {
5235 struct perf_event_header header;
5236
5237 u32 pid;
5238 u32 tid;
5239 } event_id;
5240 };
5241
5242 static int perf_event_comm_match(struct perf_event *event)
5243 {
5244 return event->attr.comm;
5245 }
5246
5247 static void perf_event_comm_output(struct perf_event *event,
5248 void *data)
5249 {
5250 struct perf_comm_event *comm_event = data;
5251 struct perf_output_handle handle;
5252 struct perf_sample_data sample;
5253 int size = comm_event->event_id.header.size;
5254 int ret;
5255
5256 if (!perf_event_comm_match(event))
5257 return;
5258
5259 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5260 ret = perf_output_begin(&handle, event,
5261 comm_event->event_id.header.size);
5262
5263 if (ret)
5264 goto out;
5265
5266 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5267 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5268
5269 perf_output_put(&handle, comm_event->event_id);
5270 __output_copy(&handle, comm_event->comm,
5271 comm_event->comm_size);
5272
5273 perf_event__output_id_sample(event, &handle, &sample);
5274
5275 perf_output_end(&handle);
5276 out:
5277 comm_event->event_id.header.size = size;
5278 }
5279
5280 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5281 {
5282 char comm[TASK_COMM_LEN];
5283 unsigned int size;
5284
5285 memset(comm, 0, sizeof(comm));
5286 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5287 size = ALIGN(strlen(comm)+1, sizeof(u64));
5288
5289 comm_event->comm = comm;
5290 comm_event->comm_size = size;
5291
5292 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5293
5294 perf_event_aux(perf_event_comm_output,
5295 comm_event,
5296 NULL);
5297 }
5298
5299 void perf_event_comm(struct task_struct *task, bool exec)
5300 {
5301 struct perf_comm_event comm_event;
5302
5303 if (!atomic_read(&nr_comm_events))
5304 return;
5305
5306 comm_event = (struct perf_comm_event){
5307 .task = task,
5308 /* .comm */
5309 /* .comm_size */
5310 .event_id = {
5311 .header = {
5312 .type = PERF_RECORD_COMM,
5313 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5314 /* .size */
5315 },
5316 /* .pid */
5317 /* .tid */
5318 },
5319 };
5320
5321 perf_event_comm_event(&comm_event);
5322 }
5323
5324 /*
5325 * mmap tracking
5326 */
5327
5328 struct perf_mmap_event {
5329 struct vm_area_struct *vma;
5330
5331 const char *file_name;
5332 int file_size;
5333 int maj, min;
5334 u64 ino;
5335 u64 ino_generation;
5336 u32 prot, flags;
5337
5338 struct {
5339 struct perf_event_header header;
5340
5341 u32 pid;
5342 u32 tid;
5343 u64 start;
5344 u64 len;
5345 u64 pgoff;
5346 } event_id;
5347 };
5348
5349 static int perf_event_mmap_match(struct perf_event *event,
5350 void *data)
5351 {
5352 struct perf_mmap_event *mmap_event = data;
5353 struct vm_area_struct *vma = mmap_event->vma;
5354 int executable = vma->vm_flags & VM_EXEC;
5355
5356 return (!executable && event->attr.mmap_data) ||
5357 (executable && (event->attr.mmap || event->attr.mmap2));
5358 }
5359
5360 static void perf_event_mmap_output(struct perf_event *event,
5361 void *data)
5362 {
5363 struct perf_mmap_event *mmap_event = data;
5364 struct perf_output_handle handle;
5365 struct perf_sample_data sample;
5366 int size = mmap_event->event_id.header.size;
5367 int ret;
5368
5369 if (!perf_event_mmap_match(event, data))
5370 return;
5371
5372 if (event->attr.mmap2) {
5373 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5374 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5375 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5376 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5377 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5378 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5379 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5380 }
5381
5382 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5383 ret = perf_output_begin(&handle, event,
5384 mmap_event->event_id.header.size);
5385 if (ret)
5386 goto out;
5387
5388 mmap_event->event_id.pid = perf_event_pid(event, current);
5389 mmap_event->event_id.tid = perf_event_tid(event, current);
5390
5391 perf_output_put(&handle, mmap_event->event_id);
5392
5393 if (event->attr.mmap2) {
5394 perf_output_put(&handle, mmap_event->maj);
5395 perf_output_put(&handle, mmap_event->min);
5396 perf_output_put(&handle, mmap_event->ino);
5397 perf_output_put(&handle, mmap_event->ino_generation);
5398 perf_output_put(&handle, mmap_event->prot);
5399 perf_output_put(&handle, mmap_event->flags);
5400 }
5401
5402 __output_copy(&handle, mmap_event->file_name,
5403 mmap_event->file_size);
5404
5405 perf_event__output_id_sample(event, &handle, &sample);
5406
5407 perf_output_end(&handle);
5408 out:
5409 mmap_event->event_id.header.size = size;
5410 }
5411
5412 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5413 {
5414 struct vm_area_struct *vma = mmap_event->vma;
5415 struct file *file = vma->vm_file;
5416 int maj = 0, min = 0;
5417 u64 ino = 0, gen = 0;
5418 u32 prot = 0, flags = 0;
5419 unsigned int size;
5420 char tmp[16];
5421 char *buf = NULL;
5422 char *name;
5423
5424 if (file) {
5425 struct inode *inode;
5426 dev_t dev;
5427
5428 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5429 if (!buf) {
5430 name = "//enomem";
5431 goto cpy_name;
5432 }
5433 /*
5434 * d_path() works from the end of the rb backwards, so we
5435 * need to add enough zero bytes after the string to handle
5436 * the 64bit alignment we do later.
5437 */
5438 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5439 if (IS_ERR(name)) {
5440 name = "//toolong";
5441 goto cpy_name;
5442 }
5443 inode = file_inode(vma->vm_file);
5444 dev = inode->i_sb->s_dev;
5445 ino = inode->i_ino;
5446 gen = inode->i_generation;
5447 maj = MAJOR(dev);
5448 min = MINOR(dev);
5449
5450 if (vma->vm_flags & VM_READ)
5451 prot |= PROT_READ;
5452 if (vma->vm_flags & VM_WRITE)
5453 prot |= PROT_WRITE;
5454 if (vma->vm_flags & VM_EXEC)
5455 prot |= PROT_EXEC;
5456
5457 if (vma->vm_flags & VM_MAYSHARE)
5458 flags = MAP_SHARED;
5459 else
5460 flags = MAP_PRIVATE;
5461
5462 if (vma->vm_flags & VM_DENYWRITE)
5463 flags |= MAP_DENYWRITE;
5464 if (vma->vm_flags & VM_MAYEXEC)
5465 flags |= MAP_EXECUTABLE;
5466 if (vma->vm_flags & VM_LOCKED)
5467 flags |= MAP_LOCKED;
5468 if (vma->vm_flags & VM_HUGETLB)
5469 flags |= MAP_HUGETLB;
5470
5471 goto got_name;
5472 } else {
5473 if (vma->vm_ops && vma->vm_ops->name) {
5474 name = (char *) vma->vm_ops->name(vma);
5475 if (name)
5476 goto cpy_name;
5477 }
5478
5479 name = (char *)arch_vma_name(vma);
5480 if (name)
5481 goto cpy_name;
5482
5483 if (vma->vm_start <= vma->vm_mm->start_brk &&
5484 vma->vm_end >= vma->vm_mm->brk) {
5485 name = "[heap]";
5486 goto cpy_name;
5487 }
5488 if (vma->vm_start <= vma->vm_mm->start_stack &&
5489 vma->vm_end >= vma->vm_mm->start_stack) {
5490 name = "[stack]";
5491 goto cpy_name;
5492 }
5493
5494 name = "//anon";
5495 goto cpy_name;
5496 }
5497
5498 cpy_name:
5499 strlcpy(tmp, name, sizeof(tmp));
5500 name = tmp;
5501 got_name:
5502 /*
5503 * Since our buffer works in 8 byte units we need to align our string
5504 * size to a multiple of 8. However, we must guarantee the tail end is
5505 * zero'd out to avoid leaking random bits to userspace.
5506 */
5507 size = strlen(name)+1;
5508 while (!IS_ALIGNED(size, sizeof(u64)))
5509 name[size++] = '\0';
5510
5511 mmap_event->file_name = name;
5512 mmap_event->file_size = size;
5513 mmap_event->maj = maj;
5514 mmap_event->min = min;
5515 mmap_event->ino = ino;
5516 mmap_event->ino_generation = gen;
5517 mmap_event->prot = prot;
5518 mmap_event->flags = flags;
5519
5520 if (!(vma->vm_flags & VM_EXEC))
5521 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5522
5523 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5524
5525 perf_event_aux(perf_event_mmap_output,
5526 mmap_event,
5527 NULL);
5528
5529 kfree(buf);
5530 }
5531
5532 void perf_event_mmap(struct vm_area_struct *vma)
5533 {
5534 struct perf_mmap_event mmap_event;
5535
5536 if (!atomic_read(&nr_mmap_events))
5537 return;
5538
5539 mmap_event = (struct perf_mmap_event){
5540 .vma = vma,
5541 /* .file_name */
5542 /* .file_size */
5543 .event_id = {
5544 .header = {
5545 .type = PERF_RECORD_MMAP,
5546 .misc = PERF_RECORD_MISC_USER,
5547 /* .size */
5548 },
5549 /* .pid */
5550 /* .tid */
5551 .start = vma->vm_start,
5552 .len = vma->vm_end - vma->vm_start,
5553 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5554 },
5555 /* .maj (attr_mmap2 only) */
5556 /* .min (attr_mmap2 only) */
5557 /* .ino (attr_mmap2 only) */
5558 /* .ino_generation (attr_mmap2 only) */
5559 /* .prot (attr_mmap2 only) */
5560 /* .flags (attr_mmap2 only) */
5561 };
5562
5563 perf_event_mmap_event(&mmap_event);
5564 }
5565
5566 /*
5567 * IRQ throttle logging
5568 */
5569
5570 static void perf_log_throttle(struct perf_event *event, int enable)
5571 {
5572 struct perf_output_handle handle;
5573 struct perf_sample_data sample;
5574 int ret;
5575
5576 struct {
5577 struct perf_event_header header;
5578 u64 time;
5579 u64 id;
5580 u64 stream_id;
5581 } throttle_event = {
5582 .header = {
5583 .type = PERF_RECORD_THROTTLE,
5584 .misc = 0,
5585 .size = sizeof(throttle_event),
5586 },
5587 .time = perf_clock(),
5588 .id = primary_event_id(event),
5589 .stream_id = event->id,
5590 };
5591
5592 if (enable)
5593 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5594
5595 perf_event_header__init_id(&throttle_event.header, &sample, event);
5596
5597 ret = perf_output_begin(&handle, event,
5598 throttle_event.header.size);
5599 if (ret)
5600 return;
5601
5602 perf_output_put(&handle, throttle_event);
5603 perf_event__output_id_sample(event, &handle, &sample);
5604 perf_output_end(&handle);
5605 }
5606
5607 /*
5608 * Generic event overflow handling, sampling.
5609 */
5610
5611 static int __perf_event_overflow(struct perf_event *event,
5612 int throttle, struct perf_sample_data *data,
5613 struct pt_regs *regs)
5614 {
5615 int events = atomic_read(&event->event_limit);
5616 struct hw_perf_event *hwc = &event->hw;
5617 u64 seq;
5618 int ret = 0;
5619
5620 /*
5621 * Non-sampling counters might still use the PMI to fold short
5622 * hardware counters, ignore those.
5623 */
5624 if (unlikely(!is_sampling_event(event)))
5625 return 0;
5626
5627 seq = __this_cpu_read(perf_throttled_seq);
5628 if (seq != hwc->interrupts_seq) {
5629 hwc->interrupts_seq = seq;
5630 hwc->interrupts = 1;
5631 } else {
5632 hwc->interrupts++;
5633 if (unlikely(throttle
5634 && hwc->interrupts >= max_samples_per_tick)) {
5635 __this_cpu_inc(perf_throttled_count);
5636 hwc->interrupts = MAX_INTERRUPTS;
5637 perf_log_throttle(event, 0);
5638 tick_nohz_full_kick();
5639 ret = 1;
5640 }
5641 }
5642
5643 if (event->attr.freq) {
5644 u64 now = perf_clock();
5645 s64 delta = now - hwc->freq_time_stamp;
5646
5647 hwc->freq_time_stamp = now;
5648
5649 if (delta > 0 && delta < 2*TICK_NSEC)
5650 perf_adjust_period(event, delta, hwc->last_period, true);
5651 }
5652
5653 /*
5654 * XXX event_limit might not quite work as expected on inherited
5655 * events
5656 */
5657
5658 event->pending_kill = POLL_IN;
5659 if (events && atomic_dec_and_test(&event->event_limit)) {
5660 ret = 1;
5661 event->pending_kill = POLL_HUP;
5662 event->pending_disable = 1;
5663 irq_work_queue(&event->pending);
5664 }
5665
5666 if (event->overflow_handler)
5667 event->overflow_handler(event, data, regs);
5668 else
5669 perf_event_output(event, data, regs);
5670
5671 if (event->fasync && event->pending_kill) {
5672 event->pending_wakeup = 1;
5673 irq_work_queue(&event->pending);
5674 }
5675
5676 return ret;
5677 }
5678
5679 int perf_event_overflow(struct perf_event *event,
5680 struct perf_sample_data *data,
5681 struct pt_regs *regs)
5682 {
5683 return __perf_event_overflow(event, 1, data, regs);
5684 }
5685
5686 /*
5687 * Generic software event infrastructure
5688 */
5689
5690 struct swevent_htable {
5691 struct swevent_hlist *swevent_hlist;
5692 struct mutex hlist_mutex;
5693 int hlist_refcount;
5694
5695 /* Recursion avoidance in each contexts */
5696 int recursion[PERF_NR_CONTEXTS];
5697
5698 /* Keeps track of cpu being initialized/exited */
5699 bool online;
5700 };
5701
5702 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5703
5704 /*
5705 * We directly increment event->count and keep a second value in
5706 * event->hw.period_left to count intervals. This period event
5707 * is kept in the range [-sample_period, 0] so that we can use the
5708 * sign as trigger.
5709 */
5710
5711 u64 perf_swevent_set_period(struct perf_event *event)
5712 {
5713 struct hw_perf_event *hwc = &event->hw;
5714 u64 period = hwc->last_period;
5715 u64 nr, offset;
5716 s64 old, val;
5717
5718 hwc->last_period = hwc->sample_period;
5719
5720 again:
5721 old = val = local64_read(&hwc->period_left);
5722 if (val < 0)
5723 return 0;
5724
5725 nr = div64_u64(period + val, period);
5726 offset = nr * period;
5727 val -= offset;
5728 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5729 goto again;
5730
5731 return nr;
5732 }
5733
5734 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5735 struct perf_sample_data *data,
5736 struct pt_regs *regs)
5737 {
5738 struct hw_perf_event *hwc = &event->hw;
5739 int throttle = 0;
5740
5741 if (!overflow)
5742 overflow = perf_swevent_set_period(event);
5743
5744 if (hwc->interrupts == MAX_INTERRUPTS)
5745 return;
5746
5747 for (; overflow; overflow--) {
5748 if (__perf_event_overflow(event, throttle,
5749 data, regs)) {
5750 /*
5751 * We inhibit the overflow from happening when
5752 * hwc->interrupts == MAX_INTERRUPTS.
5753 */
5754 break;
5755 }
5756 throttle = 1;
5757 }
5758 }
5759
5760 static void perf_swevent_event(struct perf_event *event, u64 nr,
5761 struct perf_sample_data *data,
5762 struct pt_regs *regs)
5763 {
5764 struct hw_perf_event *hwc = &event->hw;
5765
5766 local64_add(nr, &event->count);
5767
5768 if (!regs)
5769 return;
5770
5771 if (!is_sampling_event(event))
5772 return;
5773
5774 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5775 data->period = nr;
5776 return perf_swevent_overflow(event, 1, data, regs);
5777 } else
5778 data->period = event->hw.last_period;
5779
5780 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5781 return perf_swevent_overflow(event, 1, data, regs);
5782
5783 if (local64_add_negative(nr, &hwc->period_left))
5784 return;
5785
5786 perf_swevent_overflow(event, 0, data, regs);
5787 }
5788
5789 static int perf_exclude_event(struct perf_event *event,
5790 struct pt_regs *regs)
5791 {
5792 if (event->hw.state & PERF_HES_STOPPED)
5793 return 1;
5794
5795 if (regs) {
5796 if (event->attr.exclude_user && user_mode(regs))
5797 return 1;
5798
5799 if (event->attr.exclude_kernel && !user_mode(regs))
5800 return 1;
5801 }
5802
5803 return 0;
5804 }
5805
5806 static int perf_swevent_match(struct perf_event *event,
5807 enum perf_type_id type,
5808 u32 event_id,
5809 struct perf_sample_data *data,
5810 struct pt_regs *regs)
5811 {
5812 if (event->attr.type != type)
5813 return 0;
5814
5815 if (event->attr.config != event_id)
5816 return 0;
5817
5818 if (perf_exclude_event(event, regs))
5819 return 0;
5820
5821 return 1;
5822 }
5823
5824 static inline u64 swevent_hash(u64 type, u32 event_id)
5825 {
5826 u64 val = event_id | (type << 32);
5827
5828 return hash_64(val, SWEVENT_HLIST_BITS);
5829 }
5830
5831 static inline struct hlist_head *
5832 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5833 {
5834 u64 hash = swevent_hash(type, event_id);
5835
5836 return &hlist->heads[hash];
5837 }
5838
5839 /* For the read side: events when they trigger */
5840 static inline struct hlist_head *
5841 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5842 {
5843 struct swevent_hlist *hlist;
5844
5845 hlist = rcu_dereference(swhash->swevent_hlist);
5846 if (!hlist)
5847 return NULL;
5848
5849 return __find_swevent_head(hlist, type, event_id);
5850 }
5851
5852 /* For the event head insertion and removal in the hlist */
5853 static inline struct hlist_head *
5854 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5855 {
5856 struct swevent_hlist *hlist;
5857 u32 event_id = event->attr.config;
5858 u64 type = event->attr.type;
5859
5860 /*
5861 * Event scheduling is always serialized against hlist allocation
5862 * and release. Which makes the protected version suitable here.
5863 * The context lock guarantees that.
5864 */
5865 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5866 lockdep_is_held(&event->ctx->lock));
5867 if (!hlist)
5868 return NULL;
5869
5870 return __find_swevent_head(hlist, type, event_id);
5871 }
5872
5873 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5874 u64 nr,
5875 struct perf_sample_data *data,
5876 struct pt_regs *regs)
5877 {
5878 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5879 struct perf_event *event;
5880 struct hlist_head *head;
5881
5882 rcu_read_lock();
5883 head = find_swevent_head_rcu(swhash, type, event_id);
5884 if (!head)
5885 goto end;
5886
5887 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5888 if (perf_swevent_match(event, type, event_id, data, regs))
5889 perf_swevent_event(event, nr, data, regs);
5890 }
5891 end:
5892 rcu_read_unlock();
5893 }
5894
5895 int perf_swevent_get_recursion_context(void)
5896 {
5897 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5898
5899 return get_recursion_context(swhash->recursion);
5900 }
5901 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5902
5903 inline void perf_swevent_put_recursion_context(int rctx)
5904 {
5905 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5906
5907 put_recursion_context(swhash->recursion, rctx);
5908 }
5909
5910 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5911 {
5912 struct perf_sample_data data;
5913 int rctx;
5914
5915 preempt_disable_notrace();
5916 rctx = perf_swevent_get_recursion_context();
5917 if (rctx < 0)
5918 return;
5919
5920 perf_sample_data_init(&data, addr, 0);
5921
5922 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5923
5924 perf_swevent_put_recursion_context(rctx);
5925 preempt_enable_notrace();
5926 }
5927
5928 static void perf_swevent_read(struct perf_event *event)
5929 {
5930 }
5931
5932 static int perf_swevent_add(struct perf_event *event, int flags)
5933 {
5934 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5935 struct hw_perf_event *hwc = &event->hw;
5936 struct hlist_head *head;
5937
5938 if (is_sampling_event(event)) {
5939 hwc->last_period = hwc->sample_period;
5940 perf_swevent_set_period(event);
5941 }
5942
5943 hwc->state = !(flags & PERF_EF_START);
5944
5945 head = find_swevent_head(swhash, event);
5946 if (!head) {
5947 /*
5948 * We can race with cpu hotplug code. Do not
5949 * WARN if the cpu just got unplugged.
5950 */
5951 WARN_ON_ONCE(swhash->online);
5952 return -EINVAL;
5953 }
5954
5955 hlist_add_head_rcu(&event->hlist_entry, head);
5956
5957 return 0;
5958 }
5959
5960 static void perf_swevent_del(struct perf_event *event, int flags)
5961 {
5962 hlist_del_rcu(&event->hlist_entry);
5963 }
5964
5965 static void perf_swevent_start(struct perf_event *event, int flags)
5966 {
5967 event->hw.state = 0;
5968 }
5969
5970 static void perf_swevent_stop(struct perf_event *event, int flags)
5971 {
5972 event->hw.state = PERF_HES_STOPPED;
5973 }
5974
5975 /* Deref the hlist from the update side */
5976 static inline struct swevent_hlist *
5977 swevent_hlist_deref(struct swevent_htable *swhash)
5978 {
5979 return rcu_dereference_protected(swhash->swevent_hlist,
5980 lockdep_is_held(&swhash->hlist_mutex));
5981 }
5982
5983 static void swevent_hlist_release(struct swevent_htable *swhash)
5984 {
5985 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5986
5987 if (!hlist)
5988 return;
5989
5990 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5991 kfree_rcu(hlist, rcu_head);
5992 }
5993
5994 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5995 {
5996 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5997
5998 mutex_lock(&swhash->hlist_mutex);
5999
6000 if (!--swhash->hlist_refcount)
6001 swevent_hlist_release(swhash);
6002
6003 mutex_unlock(&swhash->hlist_mutex);
6004 }
6005
6006 static void swevent_hlist_put(struct perf_event *event)
6007 {
6008 int cpu;
6009
6010 for_each_possible_cpu(cpu)
6011 swevent_hlist_put_cpu(event, cpu);
6012 }
6013
6014 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6015 {
6016 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6017 int err = 0;
6018
6019 mutex_lock(&swhash->hlist_mutex);
6020
6021 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6022 struct swevent_hlist *hlist;
6023
6024 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6025 if (!hlist) {
6026 err = -ENOMEM;
6027 goto exit;
6028 }
6029 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6030 }
6031 swhash->hlist_refcount++;
6032 exit:
6033 mutex_unlock(&swhash->hlist_mutex);
6034
6035 return err;
6036 }
6037
6038 static int swevent_hlist_get(struct perf_event *event)
6039 {
6040 int err;
6041 int cpu, failed_cpu;
6042
6043 get_online_cpus();
6044 for_each_possible_cpu(cpu) {
6045 err = swevent_hlist_get_cpu(event, cpu);
6046 if (err) {
6047 failed_cpu = cpu;
6048 goto fail;
6049 }
6050 }
6051 put_online_cpus();
6052
6053 return 0;
6054 fail:
6055 for_each_possible_cpu(cpu) {
6056 if (cpu == failed_cpu)
6057 break;
6058 swevent_hlist_put_cpu(event, cpu);
6059 }
6060
6061 put_online_cpus();
6062 return err;
6063 }
6064
6065 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6066
6067 static void sw_perf_event_destroy(struct perf_event *event)
6068 {
6069 u64 event_id = event->attr.config;
6070
6071 WARN_ON(event->parent);
6072
6073 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6074 swevent_hlist_put(event);
6075 }
6076
6077 static int perf_swevent_init(struct perf_event *event)
6078 {
6079 u64 event_id = event->attr.config;
6080
6081 if (event->attr.type != PERF_TYPE_SOFTWARE)
6082 return -ENOENT;
6083
6084 /*
6085 * no branch sampling for software events
6086 */
6087 if (has_branch_stack(event))
6088 return -EOPNOTSUPP;
6089
6090 switch (event_id) {
6091 case PERF_COUNT_SW_CPU_CLOCK:
6092 case PERF_COUNT_SW_TASK_CLOCK:
6093 return -ENOENT;
6094
6095 default:
6096 break;
6097 }
6098
6099 if (event_id >= PERF_COUNT_SW_MAX)
6100 return -ENOENT;
6101
6102 if (!event->parent) {
6103 int err;
6104
6105 err = swevent_hlist_get(event);
6106 if (err)
6107 return err;
6108
6109 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6110 event->destroy = sw_perf_event_destroy;
6111 }
6112
6113 return 0;
6114 }
6115
6116 static struct pmu perf_swevent = {
6117 .task_ctx_nr = perf_sw_context,
6118
6119 .event_init = perf_swevent_init,
6120 .add = perf_swevent_add,
6121 .del = perf_swevent_del,
6122 .start = perf_swevent_start,
6123 .stop = perf_swevent_stop,
6124 .read = perf_swevent_read,
6125 };
6126
6127 #ifdef CONFIG_EVENT_TRACING
6128
6129 static int perf_tp_filter_match(struct perf_event *event,
6130 struct perf_sample_data *data)
6131 {
6132 void *record = data->raw->data;
6133
6134 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6135 return 1;
6136 return 0;
6137 }
6138
6139 static int perf_tp_event_match(struct perf_event *event,
6140 struct perf_sample_data *data,
6141 struct pt_regs *regs)
6142 {
6143 if (event->hw.state & PERF_HES_STOPPED)
6144 return 0;
6145 /*
6146 * All tracepoints are from kernel-space.
6147 */
6148 if (event->attr.exclude_kernel)
6149 return 0;
6150
6151 if (!perf_tp_filter_match(event, data))
6152 return 0;
6153
6154 return 1;
6155 }
6156
6157 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6158 struct pt_regs *regs, struct hlist_head *head, int rctx,
6159 struct task_struct *task)
6160 {
6161 struct perf_sample_data data;
6162 struct perf_event *event;
6163
6164 struct perf_raw_record raw = {
6165 .size = entry_size,
6166 .data = record,
6167 };
6168
6169 perf_sample_data_init(&data, addr, 0);
6170 data.raw = &raw;
6171
6172 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6173 if (perf_tp_event_match(event, &data, regs))
6174 perf_swevent_event(event, count, &data, regs);
6175 }
6176
6177 /*
6178 * If we got specified a target task, also iterate its context and
6179 * deliver this event there too.
6180 */
6181 if (task && task != current) {
6182 struct perf_event_context *ctx;
6183 struct trace_entry *entry = record;
6184
6185 rcu_read_lock();
6186 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6187 if (!ctx)
6188 goto unlock;
6189
6190 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6191 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6192 continue;
6193 if (event->attr.config != entry->type)
6194 continue;
6195 if (perf_tp_event_match(event, &data, regs))
6196 perf_swevent_event(event, count, &data, regs);
6197 }
6198 unlock:
6199 rcu_read_unlock();
6200 }
6201
6202 perf_swevent_put_recursion_context(rctx);
6203 }
6204 EXPORT_SYMBOL_GPL(perf_tp_event);
6205
6206 static void tp_perf_event_destroy(struct perf_event *event)
6207 {
6208 perf_trace_destroy(event);
6209 }
6210
6211 static int perf_tp_event_init(struct perf_event *event)
6212 {
6213 int err;
6214
6215 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6216 return -ENOENT;
6217
6218 /*
6219 * no branch sampling for tracepoint events
6220 */
6221 if (has_branch_stack(event))
6222 return -EOPNOTSUPP;
6223
6224 err = perf_trace_init(event);
6225 if (err)
6226 return err;
6227
6228 event->destroy = tp_perf_event_destroy;
6229
6230 return 0;
6231 }
6232
6233 static struct pmu perf_tracepoint = {
6234 .task_ctx_nr = perf_sw_context,
6235
6236 .event_init = perf_tp_event_init,
6237 .add = perf_trace_add,
6238 .del = perf_trace_del,
6239 .start = perf_swevent_start,
6240 .stop = perf_swevent_stop,
6241 .read = perf_swevent_read,
6242 };
6243
6244 static inline void perf_tp_register(void)
6245 {
6246 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6247 }
6248
6249 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6250 {
6251 char *filter_str;
6252 int ret;
6253
6254 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6255 return -EINVAL;
6256
6257 filter_str = strndup_user(arg, PAGE_SIZE);
6258 if (IS_ERR(filter_str))
6259 return PTR_ERR(filter_str);
6260
6261 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6262
6263 kfree(filter_str);
6264 return ret;
6265 }
6266
6267 static void perf_event_free_filter(struct perf_event *event)
6268 {
6269 ftrace_profile_free_filter(event);
6270 }
6271
6272 #else
6273
6274 static inline void perf_tp_register(void)
6275 {
6276 }
6277
6278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6279 {
6280 return -ENOENT;
6281 }
6282
6283 static void perf_event_free_filter(struct perf_event *event)
6284 {
6285 }
6286
6287 #endif /* CONFIG_EVENT_TRACING */
6288
6289 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6290 void perf_bp_event(struct perf_event *bp, void *data)
6291 {
6292 struct perf_sample_data sample;
6293 struct pt_regs *regs = data;
6294
6295 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6296
6297 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6298 perf_swevent_event(bp, 1, &sample, regs);
6299 }
6300 #endif
6301
6302 /*
6303 * hrtimer based swevent callback
6304 */
6305
6306 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6307 {
6308 enum hrtimer_restart ret = HRTIMER_RESTART;
6309 struct perf_sample_data data;
6310 struct pt_regs *regs;
6311 struct perf_event *event;
6312 u64 period;
6313
6314 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6315
6316 if (event->state != PERF_EVENT_STATE_ACTIVE)
6317 return HRTIMER_NORESTART;
6318
6319 event->pmu->read(event);
6320
6321 perf_sample_data_init(&data, 0, event->hw.last_period);
6322 regs = get_irq_regs();
6323
6324 if (regs && !perf_exclude_event(event, regs)) {
6325 if (!(event->attr.exclude_idle && is_idle_task(current)))
6326 if (__perf_event_overflow(event, 1, &data, regs))
6327 ret = HRTIMER_NORESTART;
6328 }
6329
6330 period = max_t(u64, 10000, event->hw.sample_period);
6331 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6332
6333 return ret;
6334 }
6335
6336 static void perf_swevent_start_hrtimer(struct perf_event *event)
6337 {
6338 struct hw_perf_event *hwc = &event->hw;
6339 s64 period;
6340
6341 if (!is_sampling_event(event))
6342 return;
6343
6344 period = local64_read(&hwc->period_left);
6345 if (period) {
6346 if (period < 0)
6347 period = 10000;
6348
6349 local64_set(&hwc->period_left, 0);
6350 } else {
6351 period = max_t(u64, 10000, hwc->sample_period);
6352 }
6353 __hrtimer_start_range_ns(&hwc->hrtimer,
6354 ns_to_ktime(period), 0,
6355 HRTIMER_MODE_REL_PINNED, 0);
6356 }
6357
6358 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6359 {
6360 struct hw_perf_event *hwc = &event->hw;
6361
6362 if (is_sampling_event(event)) {
6363 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6364 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6365
6366 hrtimer_cancel(&hwc->hrtimer);
6367 }
6368 }
6369
6370 static void perf_swevent_init_hrtimer(struct perf_event *event)
6371 {
6372 struct hw_perf_event *hwc = &event->hw;
6373
6374 if (!is_sampling_event(event))
6375 return;
6376
6377 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6378 hwc->hrtimer.function = perf_swevent_hrtimer;
6379
6380 /*
6381 * Since hrtimers have a fixed rate, we can do a static freq->period
6382 * mapping and avoid the whole period adjust feedback stuff.
6383 */
6384 if (event->attr.freq) {
6385 long freq = event->attr.sample_freq;
6386
6387 event->attr.sample_period = NSEC_PER_SEC / freq;
6388 hwc->sample_period = event->attr.sample_period;
6389 local64_set(&hwc->period_left, hwc->sample_period);
6390 hwc->last_period = hwc->sample_period;
6391 event->attr.freq = 0;
6392 }
6393 }
6394
6395 /*
6396 * Software event: cpu wall time clock
6397 */
6398
6399 static void cpu_clock_event_update(struct perf_event *event)
6400 {
6401 s64 prev;
6402 u64 now;
6403
6404 now = local_clock();
6405 prev = local64_xchg(&event->hw.prev_count, now);
6406 local64_add(now - prev, &event->count);
6407 }
6408
6409 static void cpu_clock_event_start(struct perf_event *event, int flags)
6410 {
6411 local64_set(&event->hw.prev_count, local_clock());
6412 perf_swevent_start_hrtimer(event);
6413 }
6414
6415 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6416 {
6417 perf_swevent_cancel_hrtimer(event);
6418 cpu_clock_event_update(event);
6419 }
6420
6421 static int cpu_clock_event_add(struct perf_event *event, int flags)
6422 {
6423 if (flags & PERF_EF_START)
6424 cpu_clock_event_start(event, flags);
6425
6426 return 0;
6427 }
6428
6429 static void cpu_clock_event_del(struct perf_event *event, int flags)
6430 {
6431 cpu_clock_event_stop(event, flags);
6432 }
6433
6434 static void cpu_clock_event_read(struct perf_event *event)
6435 {
6436 cpu_clock_event_update(event);
6437 }
6438
6439 static int cpu_clock_event_init(struct perf_event *event)
6440 {
6441 if (event->attr.type != PERF_TYPE_SOFTWARE)
6442 return -ENOENT;
6443
6444 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6445 return -ENOENT;
6446
6447 /*
6448 * no branch sampling for software events
6449 */
6450 if (has_branch_stack(event))
6451 return -EOPNOTSUPP;
6452
6453 perf_swevent_init_hrtimer(event);
6454
6455 return 0;
6456 }
6457
6458 static struct pmu perf_cpu_clock = {
6459 .task_ctx_nr = perf_sw_context,
6460
6461 .event_init = cpu_clock_event_init,
6462 .add = cpu_clock_event_add,
6463 .del = cpu_clock_event_del,
6464 .start = cpu_clock_event_start,
6465 .stop = cpu_clock_event_stop,
6466 .read = cpu_clock_event_read,
6467 };
6468
6469 /*
6470 * Software event: task time clock
6471 */
6472
6473 static void task_clock_event_update(struct perf_event *event, u64 now)
6474 {
6475 u64 prev;
6476 s64 delta;
6477
6478 prev = local64_xchg(&event->hw.prev_count, now);
6479 delta = now - prev;
6480 local64_add(delta, &event->count);
6481 }
6482
6483 static void task_clock_event_start(struct perf_event *event, int flags)
6484 {
6485 local64_set(&event->hw.prev_count, event->ctx->time);
6486 perf_swevent_start_hrtimer(event);
6487 }
6488
6489 static void task_clock_event_stop(struct perf_event *event, int flags)
6490 {
6491 perf_swevent_cancel_hrtimer(event);
6492 task_clock_event_update(event, event->ctx->time);
6493 }
6494
6495 static int task_clock_event_add(struct perf_event *event, int flags)
6496 {
6497 if (flags & PERF_EF_START)
6498 task_clock_event_start(event, flags);
6499
6500 return 0;
6501 }
6502
6503 static void task_clock_event_del(struct perf_event *event, int flags)
6504 {
6505 task_clock_event_stop(event, PERF_EF_UPDATE);
6506 }
6507
6508 static void task_clock_event_read(struct perf_event *event)
6509 {
6510 u64 now = perf_clock();
6511 u64 delta = now - event->ctx->timestamp;
6512 u64 time = event->ctx->time + delta;
6513
6514 task_clock_event_update(event, time);
6515 }
6516
6517 static int task_clock_event_init(struct perf_event *event)
6518 {
6519 if (event->attr.type != PERF_TYPE_SOFTWARE)
6520 return -ENOENT;
6521
6522 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6523 return -ENOENT;
6524
6525 /*
6526 * no branch sampling for software events
6527 */
6528 if (has_branch_stack(event))
6529 return -EOPNOTSUPP;
6530
6531 perf_swevent_init_hrtimer(event);
6532
6533 return 0;
6534 }
6535
6536 static struct pmu perf_task_clock = {
6537 .task_ctx_nr = perf_sw_context,
6538
6539 .event_init = task_clock_event_init,
6540 .add = task_clock_event_add,
6541 .del = task_clock_event_del,
6542 .start = task_clock_event_start,
6543 .stop = task_clock_event_stop,
6544 .read = task_clock_event_read,
6545 };
6546
6547 static void perf_pmu_nop_void(struct pmu *pmu)
6548 {
6549 }
6550
6551 static int perf_pmu_nop_int(struct pmu *pmu)
6552 {
6553 return 0;
6554 }
6555
6556 static void perf_pmu_start_txn(struct pmu *pmu)
6557 {
6558 perf_pmu_disable(pmu);
6559 }
6560
6561 static int perf_pmu_commit_txn(struct pmu *pmu)
6562 {
6563 perf_pmu_enable(pmu);
6564 return 0;
6565 }
6566
6567 static void perf_pmu_cancel_txn(struct pmu *pmu)
6568 {
6569 perf_pmu_enable(pmu);
6570 }
6571
6572 static int perf_event_idx_default(struct perf_event *event)
6573 {
6574 return 0;
6575 }
6576
6577 /*
6578 * Ensures all contexts with the same task_ctx_nr have the same
6579 * pmu_cpu_context too.
6580 */
6581 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6582 {
6583 struct pmu *pmu;
6584
6585 if (ctxn < 0)
6586 return NULL;
6587
6588 list_for_each_entry(pmu, &pmus, entry) {
6589 if (pmu->task_ctx_nr == ctxn)
6590 return pmu->pmu_cpu_context;
6591 }
6592
6593 return NULL;
6594 }
6595
6596 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6597 {
6598 int cpu;
6599
6600 for_each_possible_cpu(cpu) {
6601 struct perf_cpu_context *cpuctx;
6602
6603 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6604
6605 if (cpuctx->unique_pmu == old_pmu)
6606 cpuctx->unique_pmu = pmu;
6607 }
6608 }
6609
6610 static void free_pmu_context(struct pmu *pmu)
6611 {
6612 struct pmu *i;
6613
6614 mutex_lock(&pmus_lock);
6615 /*
6616 * Like a real lame refcount.
6617 */
6618 list_for_each_entry(i, &pmus, entry) {
6619 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6620 update_pmu_context(i, pmu);
6621 goto out;
6622 }
6623 }
6624
6625 free_percpu(pmu->pmu_cpu_context);
6626 out:
6627 mutex_unlock(&pmus_lock);
6628 }
6629 static struct idr pmu_idr;
6630
6631 static ssize_t
6632 type_show(struct device *dev, struct device_attribute *attr, char *page)
6633 {
6634 struct pmu *pmu = dev_get_drvdata(dev);
6635
6636 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6637 }
6638 static DEVICE_ATTR_RO(type);
6639
6640 static ssize_t
6641 perf_event_mux_interval_ms_show(struct device *dev,
6642 struct device_attribute *attr,
6643 char *page)
6644 {
6645 struct pmu *pmu = dev_get_drvdata(dev);
6646
6647 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6648 }
6649
6650 static ssize_t
6651 perf_event_mux_interval_ms_store(struct device *dev,
6652 struct device_attribute *attr,
6653 const char *buf, size_t count)
6654 {
6655 struct pmu *pmu = dev_get_drvdata(dev);
6656 int timer, cpu, ret;
6657
6658 ret = kstrtoint(buf, 0, &timer);
6659 if (ret)
6660 return ret;
6661
6662 if (timer < 1)
6663 return -EINVAL;
6664
6665 /* same value, noting to do */
6666 if (timer == pmu->hrtimer_interval_ms)
6667 return count;
6668
6669 pmu->hrtimer_interval_ms = timer;
6670
6671 /* update all cpuctx for this PMU */
6672 for_each_possible_cpu(cpu) {
6673 struct perf_cpu_context *cpuctx;
6674 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6675 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6676
6677 if (hrtimer_active(&cpuctx->hrtimer))
6678 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6679 }
6680
6681 return count;
6682 }
6683 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6684
6685 static struct attribute *pmu_dev_attrs[] = {
6686 &dev_attr_type.attr,
6687 &dev_attr_perf_event_mux_interval_ms.attr,
6688 NULL,
6689 };
6690 ATTRIBUTE_GROUPS(pmu_dev);
6691
6692 static int pmu_bus_running;
6693 static struct bus_type pmu_bus = {
6694 .name = "event_source",
6695 .dev_groups = pmu_dev_groups,
6696 };
6697
6698 static void pmu_dev_release(struct device *dev)
6699 {
6700 kfree(dev);
6701 }
6702
6703 static int pmu_dev_alloc(struct pmu *pmu)
6704 {
6705 int ret = -ENOMEM;
6706
6707 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6708 if (!pmu->dev)
6709 goto out;
6710
6711 pmu->dev->groups = pmu->attr_groups;
6712 device_initialize(pmu->dev);
6713 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6714 if (ret)
6715 goto free_dev;
6716
6717 dev_set_drvdata(pmu->dev, pmu);
6718 pmu->dev->bus = &pmu_bus;
6719 pmu->dev->release = pmu_dev_release;
6720 ret = device_add(pmu->dev);
6721 if (ret)
6722 goto free_dev;
6723
6724 out:
6725 return ret;
6726
6727 free_dev:
6728 put_device(pmu->dev);
6729 goto out;
6730 }
6731
6732 static struct lock_class_key cpuctx_mutex;
6733 static struct lock_class_key cpuctx_lock;
6734
6735 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6736 {
6737 int cpu, ret;
6738
6739 mutex_lock(&pmus_lock);
6740 ret = -ENOMEM;
6741 pmu->pmu_disable_count = alloc_percpu(int);
6742 if (!pmu->pmu_disable_count)
6743 goto unlock;
6744
6745 pmu->type = -1;
6746 if (!name)
6747 goto skip_type;
6748 pmu->name = name;
6749
6750 if (type < 0) {
6751 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6752 if (type < 0) {
6753 ret = type;
6754 goto free_pdc;
6755 }
6756 }
6757 pmu->type = type;
6758
6759 if (pmu_bus_running) {
6760 ret = pmu_dev_alloc(pmu);
6761 if (ret)
6762 goto free_idr;
6763 }
6764
6765 skip_type:
6766 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6767 if (pmu->pmu_cpu_context)
6768 goto got_cpu_context;
6769
6770 ret = -ENOMEM;
6771 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6772 if (!pmu->pmu_cpu_context)
6773 goto free_dev;
6774
6775 for_each_possible_cpu(cpu) {
6776 struct perf_cpu_context *cpuctx;
6777
6778 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6779 __perf_event_init_context(&cpuctx->ctx);
6780 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6781 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6782 cpuctx->ctx.type = cpu_context;
6783 cpuctx->ctx.pmu = pmu;
6784
6785 __perf_cpu_hrtimer_init(cpuctx, cpu);
6786
6787 INIT_LIST_HEAD(&cpuctx->rotation_list);
6788 cpuctx->unique_pmu = pmu;
6789 }
6790
6791 got_cpu_context:
6792 if (!pmu->start_txn) {
6793 if (pmu->pmu_enable) {
6794 /*
6795 * If we have pmu_enable/pmu_disable calls, install
6796 * transaction stubs that use that to try and batch
6797 * hardware accesses.
6798 */
6799 pmu->start_txn = perf_pmu_start_txn;
6800 pmu->commit_txn = perf_pmu_commit_txn;
6801 pmu->cancel_txn = perf_pmu_cancel_txn;
6802 } else {
6803 pmu->start_txn = perf_pmu_nop_void;
6804 pmu->commit_txn = perf_pmu_nop_int;
6805 pmu->cancel_txn = perf_pmu_nop_void;
6806 }
6807 }
6808
6809 if (!pmu->pmu_enable) {
6810 pmu->pmu_enable = perf_pmu_nop_void;
6811 pmu->pmu_disable = perf_pmu_nop_void;
6812 }
6813
6814 if (!pmu->event_idx)
6815 pmu->event_idx = perf_event_idx_default;
6816
6817 list_add_rcu(&pmu->entry, &pmus);
6818 ret = 0;
6819 unlock:
6820 mutex_unlock(&pmus_lock);
6821
6822 return ret;
6823
6824 free_dev:
6825 device_del(pmu->dev);
6826 put_device(pmu->dev);
6827
6828 free_idr:
6829 if (pmu->type >= PERF_TYPE_MAX)
6830 idr_remove(&pmu_idr, pmu->type);
6831
6832 free_pdc:
6833 free_percpu(pmu->pmu_disable_count);
6834 goto unlock;
6835 }
6836 EXPORT_SYMBOL_GPL(perf_pmu_register);
6837
6838 void perf_pmu_unregister(struct pmu *pmu)
6839 {
6840 mutex_lock(&pmus_lock);
6841 list_del_rcu(&pmu->entry);
6842 mutex_unlock(&pmus_lock);
6843
6844 /*
6845 * We dereference the pmu list under both SRCU and regular RCU, so
6846 * synchronize against both of those.
6847 */
6848 synchronize_srcu(&pmus_srcu);
6849 synchronize_rcu();
6850
6851 free_percpu(pmu->pmu_disable_count);
6852 if (pmu->type >= PERF_TYPE_MAX)
6853 idr_remove(&pmu_idr, pmu->type);
6854 device_del(pmu->dev);
6855 put_device(pmu->dev);
6856 free_pmu_context(pmu);
6857 }
6858 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6859
6860 struct pmu *perf_init_event(struct perf_event *event)
6861 {
6862 struct pmu *pmu = NULL;
6863 int idx;
6864 int ret;
6865
6866 idx = srcu_read_lock(&pmus_srcu);
6867
6868 rcu_read_lock();
6869 pmu = idr_find(&pmu_idr, event->attr.type);
6870 rcu_read_unlock();
6871 if (pmu) {
6872 if (!try_module_get(pmu->module)) {
6873 pmu = ERR_PTR(-ENODEV);
6874 goto unlock;
6875 }
6876 event->pmu = pmu;
6877 ret = pmu->event_init(event);
6878 if (ret)
6879 pmu = ERR_PTR(ret);
6880 goto unlock;
6881 }
6882
6883 list_for_each_entry_rcu(pmu, &pmus, entry) {
6884 if (!try_module_get(pmu->module)) {
6885 pmu = ERR_PTR(-ENODEV);
6886 goto unlock;
6887 }
6888 event->pmu = pmu;
6889 ret = pmu->event_init(event);
6890 if (!ret)
6891 goto unlock;
6892
6893 if (ret != -ENOENT) {
6894 pmu = ERR_PTR(ret);
6895 goto unlock;
6896 }
6897 }
6898 pmu = ERR_PTR(-ENOENT);
6899 unlock:
6900 srcu_read_unlock(&pmus_srcu, idx);
6901
6902 return pmu;
6903 }
6904
6905 static void account_event_cpu(struct perf_event *event, int cpu)
6906 {
6907 if (event->parent)
6908 return;
6909
6910 if (has_branch_stack(event)) {
6911 if (!(event->attach_state & PERF_ATTACH_TASK))
6912 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6913 }
6914 if (is_cgroup_event(event))
6915 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6916 }
6917
6918 static void account_event(struct perf_event *event)
6919 {
6920 if (event->parent)
6921 return;
6922
6923 if (event->attach_state & PERF_ATTACH_TASK)
6924 static_key_slow_inc(&perf_sched_events.key);
6925 if (event->attr.mmap || event->attr.mmap_data)
6926 atomic_inc(&nr_mmap_events);
6927 if (event->attr.comm)
6928 atomic_inc(&nr_comm_events);
6929 if (event->attr.task)
6930 atomic_inc(&nr_task_events);
6931 if (event->attr.freq) {
6932 if (atomic_inc_return(&nr_freq_events) == 1)
6933 tick_nohz_full_kick_all();
6934 }
6935 if (has_branch_stack(event))
6936 static_key_slow_inc(&perf_sched_events.key);
6937 if (is_cgroup_event(event))
6938 static_key_slow_inc(&perf_sched_events.key);
6939
6940 account_event_cpu(event, event->cpu);
6941 }
6942
6943 /*
6944 * Allocate and initialize a event structure
6945 */
6946 static struct perf_event *
6947 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6948 struct task_struct *task,
6949 struct perf_event *group_leader,
6950 struct perf_event *parent_event,
6951 perf_overflow_handler_t overflow_handler,
6952 void *context)
6953 {
6954 struct pmu *pmu;
6955 struct perf_event *event;
6956 struct hw_perf_event *hwc;
6957 long err = -EINVAL;
6958
6959 if ((unsigned)cpu >= nr_cpu_ids) {
6960 if (!task || cpu != -1)
6961 return ERR_PTR(-EINVAL);
6962 }
6963
6964 event = kzalloc(sizeof(*event), GFP_KERNEL);
6965 if (!event)
6966 return ERR_PTR(-ENOMEM);
6967
6968 /*
6969 * Single events are their own group leaders, with an
6970 * empty sibling list:
6971 */
6972 if (!group_leader)
6973 group_leader = event;
6974
6975 mutex_init(&event->child_mutex);
6976 INIT_LIST_HEAD(&event->child_list);
6977
6978 INIT_LIST_HEAD(&event->group_entry);
6979 INIT_LIST_HEAD(&event->event_entry);
6980 INIT_LIST_HEAD(&event->sibling_list);
6981 INIT_LIST_HEAD(&event->rb_entry);
6982 INIT_LIST_HEAD(&event->active_entry);
6983 INIT_HLIST_NODE(&event->hlist_entry);
6984
6985
6986 init_waitqueue_head(&event->waitq);
6987 init_irq_work(&event->pending, perf_pending_event);
6988
6989 mutex_init(&event->mmap_mutex);
6990
6991 atomic_long_set(&event->refcount, 1);
6992 event->cpu = cpu;
6993 event->attr = *attr;
6994 event->group_leader = group_leader;
6995 event->pmu = NULL;
6996 event->oncpu = -1;
6997
6998 event->parent = parent_event;
6999
7000 event->ns = get_pid_ns(task_active_pid_ns(current));
7001 event->id = atomic64_inc_return(&perf_event_id);
7002
7003 event->state = PERF_EVENT_STATE_INACTIVE;
7004
7005 if (task) {
7006 event->attach_state = PERF_ATTACH_TASK;
7007
7008 if (attr->type == PERF_TYPE_TRACEPOINT)
7009 event->hw.tp_target = task;
7010 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7011 /*
7012 * hw_breakpoint is a bit difficult here..
7013 */
7014 else if (attr->type == PERF_TYPE_BREAKPOINT)
7015 event->hw.bp_target = task;
7016 #endif
7017 }
7018
7019 if (!overflow_handler && parent_event) {
7020 overflow_handler = parent_event->overflow_handler;
7021 context = parent_event->overflow_handler_context;
7022 }
7023
7024 event->overflow_handler = overflow_handler;
7025 event->overflow_handler_context = context;
7026
7027 perf_event__state_init(event);
7028
7029 pmu = NULL;
7030
7031 hwc = &event->hw;
7032 hwc->sample_period = attr->sample_period;
7033 if (attr->freq && attr->sample_freq)
7034 hwc->sample_period = 1;
7035 hwc->last_period = hwc->sample_period;
7036
7037 local64_set(&hwc->period_left, hwc->sample_period);
7038
7039 /*
7040 * we currently do not support PERF_FORMAT_GROUP on inherited events
7041 */
7042 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7043 goto err_ns;
7044
7045 pmu = perf_init_event(event);
7046 if (!pmu)
7047 goto err_ns;
7048 else if (IS_ERR(pmu)) {
7049 err = PTR_ERR(pmu);
7050 goto err_ns;
7051 }
7052
7053 if (!event->parent) {
7054 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7055 err = get_callchain_buffers();
7056 if (err)
7057 goto err_pmu;
7058 }
7059 }
7060
7061 return event;
7062
7063 err_pmu:
7064 if (event->destroy)
7065 event->destroy(event);
7066 module_put(pmu->module);
7067 err_ns:
7068 if (event->ns)
7069 put_pid_ns(event->ns);
7070 kfree(event);
7071
7072 return ERR_PTR(err);
7073 }
7074
7075 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7076 struct perf_event_attr *attr)
7077 {
7078 u32 size;
7079 int ret;
7080
7081 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7082 return -EFAULT;
7083
7084 /*
7085 * zero the full structure, so that a short copy will be nice.
7086 */
7087 memset(attr, 0, sizeof(*attr));
7088
7089 ret = get_user(size, &uattr->size);
7090 if (ret)
7091 return ret;
7092
7093 if (size > PAGE_SIZE) /* silly large */
7094 goto err_size;
7095
7096 if (!size) /* abi compat */
7097 size = PERF_ATTR_SIZE_VER0;
7098
7099 if (size < PERF_ATTR_SIZE_VER0)
7100 goto err_size;
7101
7102 /*
7103 * If we're handed a bigger struct than we know of,
7104 * ensure all the unknown bits are 0 - i.e. new
7105 * user-space does not rely on any kernel feature
7106 * extensions we dont know about yet.
7107 */
7108 if (size > sizeof(*attr)) {
7109 unsigned char __user *addr;
7110 unsigned char __user *end;
7111 unsigned char val;
7112
7113 addr = (void __user *)uattr + sizeof(*attr);
7114 end = (void __user *)uattr + size;
7115
7116 for (; addr < end; addr++) {
7117 ret = get_user(val, addr);
7118 if (ret)
7119 return ret;
7120 if (val)
7121 goto err_size;
7122 }
7123 size = sizeof(*attr);
7124 }
7125
7126 ret = copy_from_user(attr, uattr, size);
7127 if (ret)
7128 return -EFAULT;
7129
7130 if (attr->__reserved_1)
7131 return -EINVAL;
7132
7133 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7134 return -EINVAL;
7135
7136 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7137 return -EINVAL;
7138
7139 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7140 u64 mask = attr->branch_sample_type;
7141
7142 /* only using defined bits */
7143 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7144 return -EINVAL;
7145
7146 /* at least one branch bit must be set */
7147 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7148 return -EINVAL;
7149
7150 /* propagate priv level, when not set for branch */
7151 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7152
7153 /* exclude_kernel checked on syscall entry */
7154 if (!attr->exclude_kernel)
7155 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7156
7157 if (!attr->exclude_user)
7158 mask |= PERF_SAMPLE_BRANCH_USER;
7159
7160 if (!attr->exclude_hv)
7161 mask |= PERF_SAMPLE_BRANCH_HV;
7162 /*
7163 * adjust user setting (for HW filter setup)
7164 */
7165 attr->branch_sample_type = mask;
7166 }
7167 /* privileged levels capture (kernel, hv): check permissions */
7168 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7169 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7170 return -EACCES;
7171 }
7172
7173 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7174 ret = perf_reg_validate(attr->sample_regs_user);
7175 if (ret)
7176 return ret;
7177 }
7178
7179 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7180 if (!arch_perf_have_user_stack_dump())
7181 return -ENOSYS;
7182
7183 /*
7184 * We have __u32 type for the size, but so far
7185 * we can only use __u16 as maximum due to the
7186 * __u16 sample size limit.
7187 */
7188 if (attr->sample_stack_user >= USHRT_MAX)
7189 ret = -EINVAL;
7190 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7191 ret = -EINVAL;
7192 }
7193
7194 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7195 ret = perf_reg_validate(attr->sample_regs_intr);
7196 out:
7197 return ret;
7198
7199 err_size:
7200 put_user(sizeof(*attr), &uattr->size);
7201 ret = -E2BIG;
7202 goto out;
7203 }
7204
7205 static int
7206 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7207 {
7208 struct ring_buffer *rb = NULL;
7209 int ret = -EINVAL;
7210
7211 if (!output_event)
7212 goto set;
7213
7214 /* don't allow circular references */
7215 if (event == output_event)
7216 goto out;
7217
7218 /*
7219 * Don't allow cross-cpu buffers
7220 */
7221 if (output_event->cpu != event->cpu)
7222 goto out;
7223
7224 /*
7225 * If its not a per-cpu rb, it must be the same task.
7226 */
7227 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7228 goto out;
7229
7230 set:
7231 mutex_lock(&event->mmap_mutex);
7232 /* Can't redirect output if we've got an active mmap() */
7233 if (atomic_read(&event->mmap_count))
7234 goto unlock;
7235
7236 if (output_event) {
7237 /* get the rb we want to redirect to */
7238 rb = ring_buffer_get(output_event);
7239 if (!rb)
7240 goto unlock;
7241 }
7242
7243 ring_buffer_attach(event, rb);
7244
7245 ret = 0;
7246 unlock:
7247 mutex_unlock(&event->mmap_mutex);
7248
7249 out:
7250 return ret;
7251 }
7252
7253 /**
7254 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7255 *
7256 * @attr_uptr: event_id type attributes for monitoring/sampling
7257 * @pid: target pid
7258 * @cpu: target cpu
7259 * @group_fd: group leader event fd
7260 */
7261 SYSCALL_DEFINE5(perf_event_open,
7262 struct perf_event_attr __user *, attr_uptr,
7263 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7264 {
7265 struct perf_event *group_leader = NULL, *output_event = NULL;
7266 struct perf_event *event, *sibling;
7267 struct perf_event_attr attr;
7268 struct perf_event_context *ctx;
7269 struct file *event_file = NULL;
7270 struct fd group = {NULL, 0};
7271 struct task_struct *task = NULL;
7272 struct pmu *pmu;
7273 int event_fd;
7274 int move_group = 0;
7275 int err;
7276 int f_flags = O_RDWR;
7277
7278 /* for future expandability... */
7279 if (flags & ~PERF_FLAG_ALL)
7280 return -EINVAL;
7281
7282 err = perf_copy_attr(attr_uptr, &attr);
7283 if (err)
7284 return err;
7285
7286 if (!attr.exclude_kernel) {
7287 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7288 return -EACCES;
7289 }
7290
7291 if (attr.freq) {
7292 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7293 return -EINVAL;
7294 } else {
7295 if (attr.sample_period & (1ULL << 63))
7296 return -EINVAL;
7297 }
7298
7299 /*
7300 * In cgroup mode, the pid argument is used to pass the fd
7301 * opened to the cgroup directory in cgroupfs. The cpu argument
7302 * designates the cpu on which to monitor threads from that
7303 * cgroup.
7304 */
7305 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7306 return -EINVAL;
7307
7308 if (flags & PERF_FLAG_FD_CLOEXEC)
7309 f_flags |= O_CLOEXEC;
7310
7311 event_fd = get_unused_fd_flags(f_flags);
7312 if (event_fd < 0)
7313 return event_fd;
7314
7315 if (group_fd != -1) {
7316 err = perf_fget_light(group_fd, &group);
7317 if (err)
7318 goto err_fd;
7319 group_leader = group.file->private_data;
7320 if (flags & PERF_FLAG_FD_OUTPUT)
7321 output_event = group_leader;
7322 if (flags & PERF_FLAG_FD_NO_GROUP)
7323 group_leader = NULL;
7324 }
7325
7326 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7327 task = find_lively_task_by_vpid(pid);
7328 if (IS_ERR(task)) {
7329 err = PTR_ERR(task);
7330 goto err_group_fd;
7331 }
7332 }
7333
7334 if (task && group_leader &&
7335 group_leader->attr.inherit != attr.inherit) {
7336 err = -EINVAL;
7337 goto err_task;
7338 }
7339
7340 get_online_cpus();
7341
7342 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7343 NULL, NULL);
7344 if (IS_ERR(event)) {
7345 err = PTR_ERR(event);
7346 goto err_cpus;
7347 }
7348
7349 if (flags & PERF_FLAG_PID_CGROUP) {
7350 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7351 if (err) {
7352 __free_event(event);
7353 goto err_cpus;
7354 }
7355 }
7356
7357 if (is_sampling_event(event)) {
7358 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7359 err = -ENOTSUPP;
7360 goto err_alloc;
7361 }
7362 }
7363
7364 account_event(event);
7365
7366 /*
7367 * Special case software events and allow them to be part of
7368 * any hardware group.
7369 */
7370 pmu = event->pmu;
7371
7372 if (group_leader &&
7373 (is_software_event(event) != is_software_event(group_leader))) {
7374 if (is_software_event(event)) {
7375 /*
7376 * If event and group_leader are not both a software
7377 * event, and event is, then group leader is not.
7378 *
7379 * Allow the addition of software events to !software
7380 * groups, this is safe because software events never
7381 * fail to schedule.
7382 */
7383 pmu = group_leader->pmu;
7384 } else if (is_software_event(group_leader) &&
7385 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7386 /*
7387 * In case the group is a pure software group, and we
7388 * try to add a hardware event, move the whole group to
7389 * the hardware context.
7390 */
7391 move_group = 1;
7392 }
7393 }
7394
7395 /*
7396 * Get the target context (task or percpu):
7397 */
7398 ctx = find_get_context(pmu, task, event->cpu);
7399 if (IS_ERR(ctx)) {
7400 err = PTR_ERR(ctx);
7401 goto err_alloc;
7402 }
7403
7404 if (task) {
7405 put_task_struct(task);
7406 task = NULL;
7407 }
7408
7409 /*
7410 * Look up the group leader (we will attach this event to it):
7411 */
7412 if (group_leader) {
7413 err = -EINVAL;
7414
7415 /*
7416 * Do not allow a recursive hierarchy (this new sibling
7417 * becoming part of another group-sibling):
7418 */
7419 if (group_leader->group_leader != group_leader)
7420 goto err_context;
7421 /*
7422 * Do not allow to attach to a group in a different
7423 * task or CPU context:
7424 */
7425 if (move_group) {
7426 if (group_leader->ctx->type != ctx->type)
7427 goto err_context;
7428 } else {
7429 if (group_leader->ctx != ctx)
7430 goto err_context;
7431 }
7432
7433 /*
7434 * Only a group leader can be exclusive or pinned
7435 */
7436 if (attr.exclusive || attr.pinned)
7437 goto err_context;
7438 }
7439
7440 if (output_event) {
7441 err = perf_event_set_output(event, output_event);
7442 if (err)
7443 goto err_context;
7444 }
7445
7446 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7447 f_flags);
7448 if (IS_ERR(event_file)) {
7449 err = PTR_ERR(event_file);
7450 goto err_context;
7451 }
7452
7453 if (move_group) {
7454 struct perf_event_context *gctx = group_leader->ctx;
7455
7456 mutex_lock(&gctx->mutex);
7457 perf_remove_from_context(group_leader, false);
7458
7459 /*
7460 * Removing from the context ends up with disabled
7461 * event. What we want here is event in the initial
7462 * startup state, ready to be add into new context.
7463 */
7464 perf_event__state_init(group_leader);
7465 list_for_each_entry(sibling, &group_leader->sibling_list,
7466 group_entry) {
7467 perf_remove_from_context(sibling, false);
7468 perf_event__state_init(sibling);
7469 put_ctx(gctx);
7470 }
7471 mutex_unlock(&gctx->mutex);
7472 put_ctx(gctx);
7473 }
7474
7475 WARN_ON_ONCE(ctx->parent_ctx);
7476 mutex_lock(&ctx->mutex);
7477
7478 if (move_group) {
7479 synchronize_rcu();
7480 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7481 get_ctx(ctx);
7482 list_for_each_entry(sibling, &group_leader->sibling_list,
7483 group_entry) {
7484 perf_install_in_context(ctx, sibling, sibling->cpu);
7485 get_ctx(ctx);
7486 }
7487 }
7488
7489 perf_install_in_context(ctx, event, event->cpu);
7490 perf_unpin_context(ctx);
7491 mutex_unlock(&ctx->mutex);
7492
7493 put_online_cpus();
7494
7495 event->owner = current;
7496
7497 mutex_lock(&current->perf_event_mutex);
7498 list_add_tail(&event->owner_entry, &current->perf_event_list);
7499 mutex_unlock(&current->perf_event_mutex);
7500
7501 /*
7502 * Precalculate sample_data sizes
7503 */
7504 perf_event__header_size(event);
7505 perf_event__id_header_size(event);
7506
7507 /*
7508 * Drop the reference on the group_event after placing the
7509 * new event on the sibling_list. This ensures destruction
7510 * of the group leader will find the pointer to itself in
7511 * perf_group_detach().
7512 */
7513 fdput(group);
7514 fd_install(event_fd, event_file);
7515 return event_fd;
7516
7517 err_context:
7518 perf_unpin_context(ctx);
7519 put_ctx(ctx);
7520 err_alloc:
7521 free_event(event);
7522 err_cpus:
7523 put_online_cpus();
7524 err_task:
7525 if (task)
7526 put_task_struct(task);
7527 err_group_fd:
7528 fdput(group);
7529 err_fd:
7530 put_unused_fd(event_fd);
7531 return err;
7532 }
7533
7534 /**
7535 * perf_event_create_kernel_counter
7536 *
7537 * @attr: attributes of the counter to create
7538 * @cpu: cpu in which the counter is bound
7539 * @task: task to profile (NULL for percpu)
7540 */
7541 struct perf_event *
7542 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7543 struct task_struct *task,
7544 perf_overflow_handler_t overflow_handler,
7545 void *context)
7546 {
7547 struct perf_event_context *ctx;
7548 struct perf_event *event;
7549 int err;
7550
7551 /*
7552 * Get the target context (task or percpu):
7553 */
7554
7555 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7556 overflow_handler, context);
7557 if (IS_ERR(event)) {
7558 err = PTR_ERR(event);
7559 goto err;
7560 }
7561
7562 /* Mark owner so we could distinguish it from user events. */
7563 event->owner = EVENT_OWNER_KERNEL;
7564
7565 account_event(event);
7566
7567 ctx = find_get_context(event->pmu, task, cpu);
7568 if (IS_ERR(ctx)) {
7569 err = PTR_ERR(ctx);
7570 goto err_free;
7571 }
7572
7573 WARN_ON_ONCE(ctx->parent_ctx);
7574 mutex_lock(&ctx->mutex);
7575 perf_install_in_context(ctx, event, cpu);
7576 perf_unpin_context(ctx);
7577 mutex_unlock(&ctx->mutex);
7578
7579 return event;
7580
7581 err_free:
7582 free_event(event);
7583 err:
7584 return ERR_PTR(err);
7585 }
7586 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7587
7588 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7589 {
7590 struct perf_event_context *src_ctx;
7591 struct perf_event_context *dst_ctx;
7592 struct perf_event *event, *tmp;
7593 LIST_HEAD(events);
7594
7595 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7596 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7597
7598 mutex_lock(&src_ctx->mutex);
7599 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7600 event_entry) {
7601 perf_remove_from_context(event, false);
7602 unaccount_event_cpu(event, src_cpu);
7603 put_ctx(src_ctx);
7604 list_add(&event->migrate_entry, &events);
7605 }
7606 mutex_unlock(&src_ctx->mutex);
7607
7608 synchronize_rcu();
7609
7610 mutex_lock(&dst_ctx->mutex);
7611 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7612 list_del(&event->migrate_entry);
7613 if (event->state >= PERF_EVENT_STATE_OFF)
7614 event->state = PERF_EVENT_STATE_INACTIVE;
7615 account_event_cpu(event, dst_cpu);
7616 perf_install_in_context(dst_ctx, event, dst_cpu);
7617 get_ctx(dst_ctx);
7618 }
7619 mutex_unlock(&dst_ctx->mutex);
7620 }
7621 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7622
7623 static void sync_child_event(struct perf_event *child_event,
7624 struct task_struct *child)
7625 {
7626 struct perf_event *parent_event = child_event->parent;
7627 u64 child_val;
7628
7629 if (child_event->attr.inherit_stat)
7630 perf_event_read_event(child_event, child);
7631
7632 child_val = perf_event_count(child_event);
7633
7634 /*
7635 * Add back the child's count to the parent's count:
7636 */
7637 atomic64_add(child_val, &parent_event->child_count);
7638 atomic64_add(child_event->total_time_enabled,
7639 &parent_event->child_total_time_enabled);
7640 atomic64_add(child_event->total_time_running,
7641 &parent_event->child_total_time_running);
7642
7643 /*
7644 * Remove this event from the parent's list
7645 */
7646 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7647 mutex_lock(&parent_event->child_mutex);
7648 list_del_init(&child_event->child_list);
7649 mutex_unlock(&parent_event->child_mutex);
7650
7651 /*
7652 * Make sure user/parent get notified, that we just
7653 * lost one event.
7654 */
7655 perf_event_wakeup(parent_event);
7656
7657 /*
7658 * Release the parent event, if this was the last
7659 * reference to it.
7660 */
7661 put_event(parent_event);
7662 }
7663
7664 static void
7665 __perf_event_exit_task(struct perf_event *child_event,
7666 struct perf_event_context *child_ctx,
7667 struct task_struct *child)
7668 {
7669 /*
7670 * Do not destroy the 'original' grouping; because of the context
7671 * switch optimization the original events could've ended up in a
7672 * random child task.
7673 *
7674 * If we were to destroy the original group, all group related
7675 * operations would cease to function properly after this random
7676 * child dies.
7677 *
7678 * Do destroy all inherited groups, we don't care about those
7679 * and being thorough is better.
7680 */
7681 perf_remove_from_context(child_event, !!child_event->parent);
7682
7683 /*
7684 * It can happen that the parent exits first, and has events
7685 * that are still around due to the child reference. These
7686 * events need to be zapped.
7687 */
7688 if (child_event->parent) {
7689 sync_child_event(child_event, child);
7690 free_event(child_event);
7691 } else {
7692 child_event->state = PERF_EVENT_STATE_EXIT;
7693 perf_event_wakeup(child_event);
7694 }
7695 }
7696
7697 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7698 {
7699 struct perf_event *child_event, *next;
7700 struct perf_event_context *child_ctx, *clone_ctx = NULL;
7701 unsigned long flags;
7702
7703 if (likely(!child->perf_event_ctxp[ctxn])) {
7704 perf_event_task(child, NULL, 0);
7705 return;
7706 }
7707
7708 local_irq_save(flags);
7709 /*
7710 * We can't reschedule here because interrupts are disabled,
7711 * and either child is current or it is a task that can't be
7712 * scheduled, so we are now safe from rescheduling changing
7713 * our context.
7714 */
7715 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7716
7717 /*
7718 * Take the context lock here so that if find_get_context is
7719 * reading child->perf_event_ctxp, we wait until it has
7720 * incremented the context's refcount before we do put_ctx below.
7721 */
7722 raw_spin_lock(&child_ctx->lock);
7723 task_ctx_sched_out(child_ctx);
7724 child->perf_event_ctxp[ctxn] = NULL;
7725
7726 /*
7727 * If this context is a clone; unclone it so it can't get
7728 * swapped to another process while we're removing all
7729 * the events from it.
7730 */
7731 clone_ctx = unclone_ctx(child_ctx);
7732 update_context_time(child_ctx);
7733 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7734
7735 if (clone_ctx)
7736 put_ctx(clone_ctx);
7737
7738 /*
7739 * Report the task dead after unscheduling the events so that we
7740 * won't get any samples after PERF_RECORD_EXIT. We can however still
7741 * get a few PERF_RECORD_READ events.
7742 */
7743 perf_event_task(child, child_ctx, 0);
7744
7745 /*
7746 * We can recurse on the same lock type through:
7747 *
7748 * __perf_event_exit_task()
7749 * sync_child_event()
7750 * put_event()
7751 * mutex_lock(&ctx->mutex)
7752 *
7753 * But since its the parent context it won't be the same instance.
7754 */
7755 mutex_lock(&child_ctx->mutex);
7756
7757 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7758 __perf_event_exit_task(child_event, child_ctx, child);
7759
7760 mutex_unlock(&child_ctx->mutex);
7761
7762 put_ctx(child_ctx);
7763 }
7764
7765 /*
7766 * When a child task exits, feed back event values to parent events.
7767 */
7768 void perf_event_exit_task(struct task_struct *child)
7769 {
7770 struct perf_event *event, *tmp;
7771 int ctxn;
7772
7773 mutex_lock(&child->perf_event_mutex);
7774 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7775 owner_entry) {
7776 list_del_init(&event->owner_entry);
7777
7778 /*
7779 * Ensure the list deletion is visible before we clear
7780 * the owner, closes a race against perf_release() where
7781 * we need to serialize on the owner->perf_event_mutex.
7782 */
7783 smp_wmb();
7784 event->owner = NULL;
7785 }
7786 mutex_unlock(&child->perf_event_mutex);
7787
7788 for_each_task_context_nr(ctxn)
7789 perf_event_exit_task_context(child, ctxn);
7790 }
7791
7792 static void perf_free_event(struct perf_event *event,
7793 struct perf_event_context *ctx)
7794 {
7795 struct perf_event *parent = event->parent;
7796
7797 if (WARN_ON_ONCE(!parent))
7798 return;
7799
7800 mutex_lock(&parent->child_mutex);
7801 list_del_init(&event->child_list);
7802 mutex_unlock(&parent->child_mutex);
7803
7804 put_event(parent);
7805
7806 perf_group_detach(event);
7807 list_del_event(event, ctx);
7808 free_event(event);
7809 }
7810
7811 /*
7812 * free an unexposed, unused context as created by inheritance by
7813 * perf_event_init_task below, used by fork() in case of fail.
7814 */
7815 void perf_event_free_task(struct task_struct *task)
7816 {
7817 struct perf_event_context *ctx;
7818 struct perf_event *event, *tmp;
7819 int ctxn;
7820
7821 for_each_task_context_nr(ctxn) {
7822 ctx = task->perf_event_ctxp[ctxn];
7823 if (!ctx)
7824 continue;
7825
7826 mutex_lock(&ctx->mutex);
7827 again:
7828 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7829 group_entry)
7830 perf_free_event(event, ctx);
7831
7832 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7833 group_entry)
7834 perf_free_event(event, ctx);
7835
7836 if (!list_empty(&ctx->pinned_groups) ||
7837 !list_empty(&ctx->flexible_groups))
7838 goto again;
7839
7840 mutex_unlock(&ctx->mutex);
7841
7842 put_ctx(ctx);
7843 }
7844 }
7845
7846 void perf_event_delayed_put(struct task_struct *task)
7847 {
7848 int ctxn;
7849
7850 for_each_task_context_nr(ctxn)
7851 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7852 }
7853
7854 /*
7855 * inherit a event from parent task to child task:
7856 */
7857 static struct perf_event *
7858 inherit_event(struct perf_event *parent_event,
7859 struct task_struct *parent,
7860 struct perf_event_context *parent_ctx,
7861 struct task_struct *child,
7862 struct perf_event *group_leader,
7863 struct perf_event_context *child_ctx)
7864 {
7865 enum perf_event_active_state parent_state = parent_event->state;
7866 struct perf_event *child_event;
7867 unsigned long flags;
7868
7869 /*
7870 * Instead of creating recursive hierarchies of events,
7871 * we link inherited events back to the original parent,
7872 * which has a filp for sure, which we use as the reference
7873 * count:
7874 */
7875 if (parent_event->parent)
7876 parent_event = parent_event->parent;
7877
7878 child_event = perf_event_alloc(&parent_event->attr,
7879 parent_event->cpu,
7880 child,
7881 group_leader, parent_event,
7882 NULL, NULL);
7883 if (IS_ERR(child_event))
7884 return child_event;
7885
7886 if (is_orphaned_event(parent_event) ||
7887 !atomic_long_inc_not_zero(&parent_event->refcount)) {
7888 free_event(child_event);
7889 return NULL;
7890 }
7891
7892 get_ctx(child_ctx);
7893
7894 /*
7895 * Make the child state follow the state of the parent event,
7896 * not its attr.disabled bit. We hold the parent's mutex,
7897 * so we won't race with perf_event_{en, dis}able_family.
7898 */
7899 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7900 child_event->state = PERF_EVENT_STATE_INACTIVE;
7901 else
7902 child_event->state = PERF_EVENT_STATE_OFF;
7903
7904 if (parent_event->attr.freq) {
7905 u64 sample_period = parent_event->hw.sample_period;
7906 struct hw_perf_event *hwc = &child_event->hw;
7907
7908 hwc->sample_period = sample_period;
7909 hwc->last_period = sample_period;
7910
7911 local64_set(&hwc->period_left, sample_period);
7912 }
7913
7914 child_event->ctx = child_ctx;
7915 child_event->overflow_handler = parent_event->overflow_handler;
7916 child_event->overflow_handler_context
7917 = parent_event->overflow_handler_context;
7918
7919 /*
7920 * Precalculate sample_data sizes
7921 */
7922 perf_event__header_size(child_event);
7923 perf_event__id_header_size(child_event);
7924
7925 /*
7926 * Link it up in the child's context:
7927 */
7928 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7929 add_event_to_ctx(child_event, child_ctx);
7930 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7931
7932 /*
7933 * Link this into the parent event's child list
7934 */
7935 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7936 mutex_lock(&parent_event->child_mutex);
7937 list_add_tail(&child_event->child_list, &parent_event->child_list);
7938 mutex_unlock(&parent_event->child_mutex);
7939
7940 return child_event;
7941 }
7942
7943 static int inherit_group(struct perf_event *parent_event,
7944 struct task_struct *parent,
7945 struct perf_event_context *parent_ctx,
7946 struct task_struct *child,
7947 struct perf_event_context *child_ctx)
7948 {
7949 struct perf_event *leader;
7950 struct perf_event *sub;
7951 struct perf_event *child_ctr;
7952
7953 leader = inherit_event(parent_event, parent, parent_ctx,
7954 child, NULL, child_ctx);
7955 if (IS_ERR(leader))
7956 return PTR_ERR(leader);
7957 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7958 child_ctr = inherit_event(sub, parent, parent_ctx,
7959 child, leader, child_ctx);
7960 if (IS_ERR(child_ctr))
7961 return PTR_ERR(child_ctr);
7962 }
7963 return 0;
7964 }
7965
7966 static int
7967 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7968 struct perf_event_context *parent_ctx,
7969 struct task_struct *child, int ctxn,
7970 int *inherited_all)
7971 {
7972 int ret;
7973 struct perf_event_context *child_ctx;
7974
7975 if (!event->attr.inherit) {
7976 *inherited_all = 0;
7977 return 0;
7978 }
7979
7980 child_ctx = child->perf_event_ctxp[ctxn];
7981 if (!child_ctx) {
7982 /*
7983 * This is executed from the parent task context, so
7984 * inherit events that have been marked for cloning.
7985 * First allocate and initialize a context for the
7986 * child.
7987 */
7988
7989 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7990 if (!child_ctx)
7991 return -ENOMEM;
7992
7993 child->perf_event_ctxp[ctxn] = child_ctx;
7994 }
7995
7996 ret = inherit_group(event, parent, parent_ctx,
7997 child, child_ctx);
7998
7999 if (ret)
8000 *inherited_all = 0;
8001
8002 return ret;
8003 }
8004
8005 /*
8006 * Initialize the perf_event context in task_struct
8007 */
8008 static int perf_event_init_context(struct task_struct *child, int ctxn)
8009 {
8010 struct perf_event_context *child_ctx, *parent_ctx;
8011 struct perf_event_context *cloned_ctx;
8012 struct perf_event *event;
8013 struct task_struct *parent = current;
8014 int inherited_all = 1;
8015 unsigned long flags;
8016 int ret = 0;
8017
8018 if (likely(!parent->perf_event_ctxp[ctxn]))
8019 return 0;
8020
8021 /*
8022 * If the parent's context is a clone, pin it so it won't get
8023 * swapped under us.
8024 */
8025 parent_ctx = perf_pin_task_context(parent, ctxn);
8026 if (!parent_ctx)
8027 return 0;
8028
8029 /*
8030 * No need to check if parent_ctx != NULL here; since we saw
8031 * it non-NULL earlier, the only reason for it to become NULL
8032 * is if we exit, and since we're currently in the middle of
8033 * a fork we can't be exiting at the same time.
8034 */
8035
8036 /*
8037 * Lock the parent list. No need to lock the child - not PID
8038 * hashed yet and not running, so nobody can access it.
8039 */
8040 mutex_lock(&parent_ctx->mutex);
8041
8042 /*
8043 * We dont have to disable NMIs - we are only looking at
8044 * the list, not manipulating it:
8045 */
8046 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8047 ret = inherit_task_group(event, parent, parent_ctx,
8048 child, ctxn, &inherited_all);
8049 if (ret)
8050 break;
8051 }
8052
8053 /*
8054 * We can't hold ctx->lock when iterating the ->flexible_group list due
8055 * to allocations, but we need to prevent rotation because
8056 * rotate_ctx() will change the list from interrupt context.
8057 */
8058 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8059 parent_ctx->rotate_disable = 1;
8060 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8061
8062 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8063 ret = inherit_task_group(event, parent, parent_ctx,
8064 child, ctxn, &inherited_all);
8065 if (ret)
8066 break;
8067 }
8068
8069 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8070 parent_ctx->rotate_disable = 0;
8071
8072 child_ctx = child->perf_event_ctxp[ctxn];
8073
8074 if (child_ctx && inherited_all) {
8075 /*
8076 * Mark the child context as a clone of the parent
8077 * context, or of whatever the parent is a clone of.
8078 *
8079 * Note that if the parent is a clone, the holding of
8080 * parent_ctx->lock avoids it from being uncloned.
8081 */
8082 cloned_ctx = parent_ctx->parent_ctx;
8083 if (cloned_ctx) {
8084 child_ctx->parent_ctx = cloned_ctx;
8085 child_ctx->parent_gen = parent_ctx->parent_gen;
8086 } else {
8087 child_ctx->parent_ctx = parent_ctx;
8088 child_ctx->parent_gen = parent_ctx->generation;
8089 }
8090 get_ctx(child_ctx->parent_ctx);
8091 }
8092
8093 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8094 mutex_unlock(&parent_ctx->mutex);
8095
8096 perf_unpin_context(parent_ctx);
8097 put_ctx(parent_ctx);
8098
8099 return ret;
8100 }
8101
8102 /*
8103 * Initialize the perf_event context in task_struct
8104 */
8105 int perf_event_init_task(struct task_struct *child)
8106 {
8107 int ctxn, ret;
8108
8109 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8110 mutex_init(&child->perf_event_mutex);
8111 INIT_LIST_HEAD(&child->perf_event_list);
8112
8113 for_each_task_context_nr(ctxn) {
8114 ret = perf_event_init_context(child, ctxn);
8115 if (ret) {
8116 perf_event_free_task(child);
8117 return ret;
8118 }
8119 }
8120
8121 return 0;
8122 }
8123
8124 static void __init perf_event_init_all_cpus(void)
8125 {
8126 struct swevent_htable *swhash;
8127 int cpu;
8128
8129 for_each_possible_cpu(cpu) {
8130 swhash = &per_cpu(swevent_htable, cpu);
8131 mutex_init(&swhash->hlist_mutex);
8132 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8133 }
8134 }
8135
8136 static void perf_event_init_cpu(int cpu)
8137 {
8138 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8139
8140 mutex_lock(&swhash->hlist_mutex);
8141 swhash->online = true;
8142 if (swhash->hlist_refcount > 0) {
8143 struct swevent_hlist *hlist;
8144
8145 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8146 WARN_ON(!hlist);
8147 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8148 }
8149 mutex_unlock(&swhash->hlist_mutex);
8150 }
8151
8152 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8153 static void perf_pmu_rotate_stop(struct pmu *pmu)
8154 {
8155 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8156
8157 WARN_ON(!irqs_disabled());
8158
8159 list_del_init(&cpuctx->rotation_list);
8160 }
8161
8162 static void __perf_event_exit_context(void *__info)
8163 {
8164 struct remove_event re = { .detach_group = true };
8165 struct perf_event_context *ctx = __info;
8166
8167 perf_pmu_rotate_stop(ctx->pmu);
8168
8169 rcu_read_lock();
8170 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8171 __perf_remove_from_context(&re);
8172 rcu_read_unlock();
8173 }
8174
8175 static void perf_event_exit_cpu_context(int cpu)
8176 {
8177 struct perf_event_context *ctx;
8178 struct pmu *pmu;
8179 int idx;
8180
8181 idx = srcu_read_lock(&pmus_srcu);
8182 list_for_each_entry_rcu(pmu, &pmus, entry) {
8183 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8184
8185 mutex_lock(&ctx->mutex);
8186 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8187 mutex_unlock(&ctx->mutex);
8188 }
8189 srcu_read_unlock(&pmus_srcu, idx);
8190 }
8191
8192 static void perf_event_exit_cpu(int cpu)
8193 {
8194 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8195
8196 perf_event_exit_cpu_context(cpu);
8197
8198 mutex_lock(&swhash->hlist_mutex);
8199 swhash->online = false;
8200 swevent_hlist_release(swhash);
8201 mutex_unlock(&swhash->hlist_mutex);
8202 }
8203 #else
8204 static inline void perf_event_exit_cpu(int cpu) { }
8205 #endif
8206
8207 static int
8208 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8209 {
8210 int cpu;
8211
8212 for_each_online_cpu(cpu)
8213 perf_event_exit_cpu(cpu);
8214
8215 return NOTIFY_OK;
8216 }
8217
8218 /*
8219 * Run the perf reboot notifier at the very last possible moment so that
8220 * the generic watchdog code runs as long as possible.
8221 */
8222 static struct notifier_block perf_reboot_notifier = {
8223 .notifier_call = perf_reboot,
8224 .priority = INT_MIN,
8225 };
8226
8227 static int
8228 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8229 {
8230 unsigned int cpu = (long)hcpu;
8231
8232 switch (action & ~CPU_TASKS_FROZEN) {
8233
8234 case CPU_UP_PREPARE:
8235 case CPU_DOWN_FAILED:
8236 perf_event_init_cpu(cpu);
8237 break;
8238
8239 case CPU_UP_CANCELED:
8240 case CPU_DOWN_PREPARE:
8241 perf_event_exit_cpu(cpu);
8242 break;
8243 default:
8244 break;
8245 }
8246
8247 return NOTIFY_OK;
8248 }
8249
8250 void __init perf_event_init(void)
8251 {
8252 int ret;
8253
8254 idr_init(&pmu_idr);
8255
8256 perf_event_init_all_cpus();
8257 init_srcu_struct(&pmus_srcu);
8258 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8259 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8260 perf_pmu_register(&perf_task_clock, NULL, -1);
8261 perf_tp_register();
8262 perf_cpu_notifier(perf_cpu_notify);
8263 register_reboot_notifier(&perf_reboot_notifier);
8264
8265 ret = init_hw_breakpoint();
8266 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8267
8268 /* do not patch jump label more than once per second */
8269 jump_label_rate_limit(&perf_sched_events, HZ);
8270
8271 /*
8272 * Build time assertion that we keep the data_head at the intended
8273 * location. IOW, validation we got the __reserved[] size right.
8274 */
8275 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8276 != 1024);
8277 }
8278
8279 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8280 char *page)
8281 {
8282 struct perf_pmu_events_attr *pmu_attr =
8283 container_of(attr, struct perf_pmu_events_attr, attr);
8284
8285 if (pmu_attr->event_str)
8286 return sprintf(page, "%s\n", pmu_attr->event_str);
8287
8288 return 0;
8289 }
8290
8291 static int __init perf_event_sysfs_init(void)
8292 {
8293 struct pmu *pmu;
8294 int ret;
8295
8296 mutex_lock(&pmus_lock);
8297
8298 ret = bus_register(&pmu_bus);
8299 if (ret)
8300 goto unlock;
8301
8302 list_for_each_entry(pmu, &pmus, entry) {
8303 if (!pmu->name || pmu->type < 0)
8304 continue;
8305
8306 ret = pmu_dev_alloc(pmu);
8307 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8308 }
8309 pmu_bus_running = 1;
8310 ret = 0;
8311
8312 unlock:
8313 mutex_unlock(&pmus_lock);
8314
8315 return ret;
8316 }
8317 device_initcall(perf_event_sysfs_init);
8318
8319 #ifdef CONFIG_CGROUP_PERF
8320 static struct cgroup_subsys_state *
8321 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8322 {
8323 struct perf_cgroup *jc;
8324
8325 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8326 if (!jc)
8327 return ERR_PTR(-ENOMEM);
8328
8329 jc->info = alloc_percpu(struct perf_cgroup_info);
8330 if (!jc->info) {
8331 kfree(jc);
8332 return ERR_PTR(-ENOMEM);
8333 }
8334
8335 return &jc->css;
8336 }
8337
8338 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8339 {
8340 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8341
8342 free_percpu(jc->info);
8343 kfree(jc);
8344 }
8345
8346 static int __perf_cgroup_move(void *info)
8347 {
8348 struct task_struct *task = info;
8349 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8350 return 0;
8351 }
8352
8353 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8354 struct cgroup_taskset *tset)
8355 {
8356 struct task_struct *task;
8357
8358 cgroup_taskset_for_each(task, tset)
8359 task_function_call(task, __perf_cgroup_move, task);
8360 }
8361
8362 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8363 struct cgroup_subsys_state *old_css,
8364 struct task_struct *task)
8365 {
8366 /*
8367 * cgroup_exit() is called in the copy_process() failure path.
8368 * Ignore this case since the task hasn't ran yet, this avoids
8369 * trying to poke a half freed task state from generic code.
8370 */
8371 if (!(task->flags & PF_EXITING))
8372 return;
8373
8374 task_function_call(task, __perf_cgroup_move, task);
8375 }
8376
8377 struct cgroup_subsys perf_event_cgrp_subsys = {
8378 .css_alloc = perf_cgroup_css_alloc,
8379 .css_free = perf_cgroup_css_free,
8380 .exit = perf_cgroup_exit,
8381 .attach = perf_cgroup_attach,
8382 };
8383 #endif /* CONFIG_CGROUP_PERF */
This page took 0.329635 seconds and 5 git commands to generate.