Merge branch 'drm-fixes-3.12' of git://people.freedesktop.org/~agd5f/linux into drm...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 atomic_set(&perf_sample_allowed_ns, tmp);
188 }
189
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195 {
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206 }
207
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
220
221 return 0;
222 }
223
224 /*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230 #define NR_ACCUMULATED_SAMPLES 128
231 DEFINE_PER_CPU(u64, running_sample_length);
232
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272 }
273
274 static atomic64_t perf_event_id;
275
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285
286 void __weak perf_event_print_debug(void) { }
287
288 extern __weak const char *perf_pmu_name(void)
289 {
290 return "pmu";
291 }
292
293 static inline u64 perf_clock(void)
294 {
295 return local_clock();
296 }
297
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306 {
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310 }
311
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314 {
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319
320 #ifdef CONFIG_CGROUP_PERF
321
322 /*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326 struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329 };
330
331 struct perf_cgroup {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
334 };
335
336 /*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
346 }
347
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
370 }
371
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 return css_tryget(&event->cgrp->css);
375 }
376
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 css_put(&event->cgrp->css);
380 }
381
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386 }
387
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 return event->cgrp != NULL;
391 }
392
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399 }
400
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412 }
413
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419 }
420
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 struct perf_cgroup *cgrp;
424
425 /*
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
428 */
429 if (!is_cgroup_event(event))
430 return;
431
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
438 }
439
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
443 {
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
458 }
459
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463 /*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
492
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 }
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531 }
532
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
535 {
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
562 {
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586 {
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
590 int ret = 0;
591
592 if (!f.file)
593 return -EBADF;
594
595 rcu_read_lock();
596
597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
601 }
602
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
605
606 /* must be done before we fput() the file */
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
611 }
612
613 /*
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
617 */
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
621 }
622 out:
623 rcu_read_unlock();
624 fdput(f);
625 return ret;
626 }
627
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634 }
635
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647 }
648
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652 {
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 return true;
675 }
676
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 return 0;
683 }
684
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 return 0;
688 }
689
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
700 {
701 }
702
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
705 {
706 }
707
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711 {
712 return -EINVAL;
713 }
714
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
718 {
719 }
720
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 return 0;
734 }
735
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747
748 /*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754 * function must be called with interrupts disbled
755 */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
761
762 WARN_ON(!irqs_disabled());
763
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765
766 rotations = perf_rotate_context(cpuctx);
767
768 /*
769 * arm timer if needed
770 */
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
774 }
775
776 return ret;
777 }
778
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
785
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
788
789 local_irq_save(flags);
790
791 rcu_read_lock();
792
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
798
799 hrtimer_cancel(&cpuctx->hrtimer);
800 }
801
802 rcu_read_unlock();
803
804 local_irq_restore(flags);
805 }
806
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 int timer;
812
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
816
817 /*
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
820 */
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
829 }
830
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
839
840 if (hrtimer_active(hr))
841 return;
842
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
853 }
854
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
860 }
861
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863
864 /*
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
868 */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 struct list_head *head = &__get_cpu_var(rotation_list);
873
874 WARN_ON(!irqs_disabled());
875
876 if (list_empty(&cpuctx->rotation_list))
877 list_add(&cpuctx->rotation_list, head);
878 }
879
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
890 if (ctx->task)
891 put_task_struct(ctx->task);
892 kfree_rcu(ctx, rcu_head);
893 }
894 }
895
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902 }
903
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905 {
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913 }
914
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916 {
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924 }
925
926 /*
927 * If we inherit events we want to return the parent event id
928 * to userspace.
929 */
930 static u64 primary_event_id(struct perf_event *event)
931 {
932 u64 id = event->id;
933
934 if (event->parent)
935 id = event->parent->id;
936
937 return id;
938 }
939
940 /*
941 * Get the perf_event_context for a task and lock it.
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947 {
948 struct perf_event_context *ctx;
949
950 retry:
951 /*
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
956 *
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
959 */
960 preempt_disable();
961 rcu_read_lock();
962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 if (ctx) {
964 /*
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
967 * perf_event_task_sched_out, though the
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
973 */
974 raw_spin_lock_irqsave(&ctx->lock, *flags);
975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 rcu_read_unlock();
978 preempt_enable();
979 goto retry;
980 }
981
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 ctx = NULL;
985 }
986 }
987 rcu_read_unlock();
988 preempt_enable();
989 return ctx;
990 }
991
992 /*
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
996 */
997 static struct perf_event_context *
998 perf_pin_task_context(struct task_struct *task, int ctxn)
999 {
1000 struct perf_event_context *ctx;
1001 unsigned long flags;
1002
1003 ctx = perf_lock_task_context(task, ctxn, &flags);
1004 if (ctx) {
1005 ++ctx->pin_count;
1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 }
1008 return ctx;
1009 }
1010
1011 static void perf_unpin_context(struct perf_event_context *ctx)
1012 {
1013 unsigned long flags;
1014
1015 raw_spin_lock_irqsave(&ctx->lock, flags);
1016 --ctx->pin_count;
1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 }
1019
1020 /*
1021 * Update the record of the current time in a context.
1022 */
1023 static void update_context_time(struct perf_event_context *ctx)
1024 {
1025 u64 now = perf_clock();
1026
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1029 }
1030
1031 static u64 perf_event_time(struct perf_event *event)
1032 {
1033 struct perf_event_context *ctx = event->ctx;
1034
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1037
1038 return ctx ? ctx->time : 0;
1039 }
1040
1041 /*
1042 * Update the total_time_enabled and total_time_running fields for a event.
1043 * The caller of this function needs to hold the ctx->lock.
1044 */
1045 static void update_event_times(struct perf_event *event)
1046 {
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1049
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
1053 /*
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1059 *
1060 * That is why we treat cgroup events differently
1061 * here.
1062 */
1063 if (is_cgroup_event(event))
1064 run_end = perf_cgroup_event_time(event);
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
1067 else
1068 run_end = event->tstamp_stopped;
1069
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
1071
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
1075 run_end = perf_event_time(event);
1076
1077 event->total_time_running = run_end - event->tstamp_running;
1078
1079 }
1080
1081 /*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084 static void update_group_times(struct perf_event *leader)
1085 {
1086 struct perf_event *event;
1087
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1091 }
1092
1093 static struct list_head *
1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095 {
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1100 }
1101
1102 /*
1103 * Add a event from the lists for its context.
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
1106 static void
1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108 {
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
1111
1112 /*
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
1116 */
1117 if (event->group_leader == event) {
1118 struct list_head *list;
1119
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1122
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
1125 }
1126
1127 if (is_cgroup_event(event))
1128 ctx->nr_cgroups++;
1129
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1132
1133 list_add_rcu(&event->event_entry, &ctx->event_list);
1134 if (!ctx->nr_events)
1135 perf_pmu_rotate_start(ctx->pmu);
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
1138 ctx->nr_stat++;
1139 }
1140
1141 /*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144 static inline void perf_event__state_init(struct perf_event *event)
1145 {
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1148 }
1149
1150 /*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154 static void perf_event__read_size(struct perf_event *event)
1155 {
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1172 }
1173
1174 size += entry * nr;
1175 event->read_size = size;
1176 }
1177
1178 static void perf_event__header_size(struct perf_event *event)
1179 {
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1183
1184 perf_event__read_size(event);
1185
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1188
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1191
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1194
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1197
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1200
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1203
1204 event->header_size = size;
1205 }
1206
1207 static void perf_event__id_header_size(struct perf_event *event)
1208 {
1209 struct perf_sample_data *data;
1210 u64 sample_type = event->attr.sample_type;
1211 u16 size = 0;
1212
1213 if (sample_type & PERF_SAMPLE_TID)
1214 size += sizeof(data->tid_entry);
1215
1216 if (sample_type & PERF_SAMPLE_TIME)
1217 size += sizeof(data->time);
1218
1219 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1220 size += sizeof(data->id);
1221
1222 if (sample_type & PERF_SAMPLE_ID)
1223 size += sizeof(data->id);
1224
1225 if (sample_type & PERF_SAMPLE_STREAM_ID)
1226 size += sizeof(data->stream_id);
1227
1228 if (sample_type & PERF_SAMPLE_CPU)
1229 size += sizeof(data->cpu_entry);
1230
1231 event->id_header_size = size;
1232 }
1233
1234 static void perf_group_attach(struct perf_event *event)
1235 {
1236 struct perf_event *group_leader = event->group_leader, *pos;
1237
1238 /*
1239 * We can have double attach due to group movement in perf_event_open.
1240 */
1241 if (event->attach_state & PERF_ATTACH_GROUP)
1242 return;
1243
1244 event->attach_state |= PERF_ATTACH_GROUP;
1245
1246 if (group_leader == event)
1247 return;
1248
1249 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1250 !is_software_event(event))
1251 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1252
1253 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1254 group_leader->nr_siblings++;
1255
1256 perf_event__header_size(group_leader);
1257
1258 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1259 perf_event__header_size(pos);
1260 }
1261
1262 /*
1263 * Remove a event from the lists for its context.
1264 * Must be called with ctx->mutex and ctx->lock held.
1265 */
1266 static void
1267 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1268 {
1269 struct perf_cpu_context *cpuctx;
1270 /*
1271 * We can have double detach due to exit/hot-unplug + close.
1272 */
1273 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1274 return;
1275
1276 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1277
1278 if (is_cgroup_event(event)) {
1279 ctx->nr_cgroups--;
1280 cpuctx = __get_cpu_context(ctx);
1281 /*
1282 * if there are no more cgroup events
1283 * then cler cgrp to avoid stale pointer
1284 * in update_cgrp_time_from_cpuctx()
1285 */
1286 if (!ctx->nr_cgroups)
1287 cpuctx->cgrp = NULL;
1288 }
1289
1290 if (has_branch_stack(event))
1291 ctx->nr_branch_stack--;
1292
1293 ctx->nr_events--;
1294 if (event->attr.inherit_stat)
1295 ctx->nr_stat--;
1296
1297 list_del_rcu(&event->event_entry);
1298
1299 if (event->group_leader == event)
1300 list_del_init(&event->group_entry);
1301
1302 update_group_times(event);
1303
1304 /*
1305 * If event was in error state, then keep it
1306 * that way, otherwise bogus counts will be
1307 * returned on read(). The only way to get out
1308 * of error state is by explicit re-enabling
1309 * of the event
1310 */
1311 if (event->state > PERF_EVENT_STATE_OFF)
1312 event->state = PERF_EVENT_STATE_OFF;
1313 }
1314
1315 static void perf_group_detach(struct perf_event *event)
1316 {
1317 struct perf_event *sibling, *tmp;
1318 struct list_head *list = NULL;
1319
1320 /*
1321 * We can have double detach due to exit/hot-unplug + close.
1322 */
1323 if (!(event->attach_state & PERF_ATTACH_GROUP))
1324 return;
1325
1326 event->attach_state &= ~PERF_ATTACH_GROUP;
1327
1328 /*
1329 * If this is a sibling, remove it from its group.
1330 */
1331 if (event->group_leader != event) {
1332 list_del_init(&event->group_entry);
1333 event->group_leader->nr_siblings--;
1334 goto out;
1335 }
1336
1337 if (!list_empty(&event->group_entry))
1338 list = &event->group_entry;
1339
1340 /*
1341 * If this was a group event with sibling events then
1342 * upgrade the siblings to singleton events by adding them
1343 * to whatever list we are on.
1344 */
1345 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1346 if (list)
1347 list_move_tail(&sibling->group_entry, list);
1348 sibling->group_leader = sibling;
1349
1350 /* Inherit group flags from the previous leader */
1351 sibling->group_flags = event->group_flags;
1352 }
1353
1354 out:
1355 perf_event__header_size(event->group_leader);
1356
1357 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1358 perf_event__header_size(tmp);
1359 }
1360
1361 static inline int
1362 event_filter_match(struct perf_event *event)
1363 {
1364 return (event->cpu == -1 || event->cpu == smp_processor_id())
1365 && perf_cgroup_match(event);
1366 }
1367
1368 static void
1369 event_sched_out(struct perf_event *event,
1370 struct perf_cpu_context *cpuctx,
1371 struct perf_event_context *ctx)
1372 {
1373 u64 tstamp = perf_event_time(event);
1374 u64 delta;
1375 /*
1376 * An event which could not be activated because of
1377 * filter mismatch still needs to have its timings
1378 * maintained, otherwise bogus information is return
1379 * via read() for time_enabled, time_running:
1380 */
1381 if (event->state == PERF_EVENT_STATE_INACTIVE
1382 && !event_filter_match(event)) {
1383 delta = tstamp - event->tstamp_stopped;
1384 event->tstamp_running += delta;
1385 event->tstamp_stopped = tstamp;
1386 }
1387
1388 if (event->state != PERF_EVENT_STATE_ACTIVE)
1389 return;
1390
1391 event->state = PERF_EVENT_STATE_INACTIVE;
1392 if (event->pending_disable) {
1393 event->pending_disable = 0;
1394 event->state = PERF_EVENT_STATE_OFF;
1395 }
1396 event->tstamp_stopped = tstamp;
1397 event->pmu->del(event, 0);
1398 event->oncpu = -1;
1399
1400 if (!is_software_event(event))
1401 cpuctx->active_oncpu--;
1402 ctx->nr_active--;
1403 if (event->attr.freq && event->attr.sample_freq)
1404 ctx->nr_freq--;
1405 if (event->attr.exclusive || !cpuctx->active_oncpu)
1406 cpuctx->exclusive = 0;
1407 }
1408
1409 static void
1410 group_sched_out(struct perf_event *group_event,
1411 struct perf_cpu_context *cpuctx,
1412 struct perf_event_context *ctx)
1413 {
1414 struct perf_event *event;
1415 int state = group_event->state;
1416
1417 event_sched_out(group_event, cpuctx, ctx);
1418
1419 /*
1420 * Schedule out siblings (if any):
1421 */
1422 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1423 event_sched_out(event, cpuctx, ctx);
1424
1425 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1426 cpuctx->exclusive = 0;
1427 }
1428
1429 /*
1430 * Cross CPU call to remove a performance event
1431 *
1432 * We disable the event on the hardware level first. After that we
1433 * remove it from the context list.
1434 */
1435 static int __perf_remove_from_context(void *info)
1436 {
1437 struct perf_event *event = info;
1438 struct perf_event_context *ctx = event->ctx;
1439 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1440
1441 raw_spin_lock(&ctx->lock);
1442 event_sched_out(event, cpuctx, ctx);
1443 list_del_event(event, ctx);
1444 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1445 ctx->is_active = 0;
1446 cpuctx->task_ctx = NULL;
1447 }
1448 raw_spin_unlock(&ctx->lock);
1449
1450 return 0;
1451 }
1452
1453
1454 /*
1455 * Remove the event from a task's (or a CPU's) list of events.
1456 *
1457 * CPU events are removed with a smp call. For task events we only
1458 * call when the task is on a CPU.
1459 *
1460 * If event->ctx is a cloned context, callers must make sure that
1461 * every task struct that event->ctx->task could possibly point to
1462 * remains valid. This is OK when called from perf_release since
1463 * that only calls us on the top-level context, which can't be a clone.
1464 * When called from perf_event_exit_task, it's OK because the
1465 * context has been detached from its task.
1466 */
1467 static void perf_remove_from_context(struct perf_event *event)
1468 {
1469 struct perf_event_context *ctx = event->ctx;
1470 struct task_struct *task = ctx->task;
1471
1472 lockdep_assert_held(&ctx->mutex);
1473
1474 if (!task) {
1475 /*
1476 * Per cpu events are removed via an smp call and
1477 * the removal is always successful.
1478 */
1479 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1480 return;
1481 }
1482
1483 retry:
1484 if (!task_function_call(task, __perf_remove_from_context, event))
1485 return;
1486
1487 raw_spin_lock_irq(&ctx->lock);
1488 /*
1489 * If we failed to find a running task, but find the context active now
1490 * that we've acquired the ctx->lock, retry.
1491 */
1492 if (ctx->is_active) {
1493 raw_spin_unlock_irq(&ctx->lock);
1494 goto retry;
1495 }
1496
1497 /*
1498 * Since the task isn't running, its safe to remove the event, us
1499 * holding the ctx->lock ensures the task won't get scheduled in.
1500 */
1501 list_del_event(event, ctx);
1502 raw_spin_unlock_irq(&ctx->lock);
1503 }
1504
1505 /*
1506 * Cross CPU call to disable a performance event
1507 */
1508 int __perf_event_disable(void *info)
1509 {
1510 struct perf_event *event = info;
1511 struct perf_event_context *ctx = event->ctx;
1512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1513
1514 /*
1515 * If this is a per-task event, need to check whether this
1516 * event's task is the current task on this cpu.
1517 *
1518 * Can trigger due to concurrent perf_event_context_sched_out()
1519 * flipping contexts around.
1520 */
1521 if (ctx->task && cpuctx->task_ctx != ctx)
1522 return -EINVAL;
1523
1524 raw_spin_lock(&ctx->lock);
1525
1526 /*
1527 * If the event is on, turn it off.
1528 * If it is in error state, leave it in error state.
1529 */
1530 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1531 update_context_time(ctx);
1532 update_cgrp_time_from_event(event);
1533 update_group_times(event);
1534 if (event == event->group_leader)
1535 group_sched_out(event, cpuctx, ctx);
1536 else
1537 event_sched_out(event, cpuctx, ctx);
1538 event->state = PERF_EVENT_STATE_OFF;
1539 }
1540
1541 raw_spin_unlock(&ctx->lock);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Disable a event.
1548 *
1549 * If event->ctx is a cloned context, callers must make sure that
1550 * every task struct that event->ctx->task could possibly point to
1551 * remains valid. This condition is satisifed when called through
1552 * perf_event_for_each_child or perf_event_for_each because they
1553 * hold the top-level event's child_mutex, so any descendant that
1554 * goes to exit will block in sync_child_event.
1555 * When called from perf_pending_event it's OK because event->ctx
1556 * is the current context on this CPU and preemption is disabled,
1557 * hence we can't get into perf_event_task_sched_out for this context.
1558 */
1559 void perf_event_disable(struct perf_event *event)
1560 {
1561 struct perf_event_context *ctx = event->ctx;
1562 struct task_struct *task = ctx->task;
1563
1564 if (!task) {
1565 /*
1566 * Disable the event on the cpu that it's on
1567 */
1568 cpu_function_call(event->cpu, __perf_event_disable, event);
1569 return;
1570 }
1571
1572 retry:
1573 if (!task_function_call(task, __perf_event_disable, event))
1574 return;
1575
1576 raw_spin_lock_irq(&ctx->lock);
1577 /*
1578 * If the event is still active, we need to retry the cross-call.
1579 */
1580 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1581 raw_spin_unlock_irq(&ctx->lock);
1582 /*
1583 * Reload the task pointer, it might have been changed by
1584 * a concurrent perf_event_context_sched_out().
1585 */
1586 task = ctx->task;
1587 goto retry;
1588 }
1589
1590 /*
1591 * Since we have the lock this context can't be scheduled
1592 * in, so we can change the state safely.
1593 */
1594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1595 update_group_times(event);
1596 event->state = PERF_EVENT_STATE_OFF;
1597 }
1598 raw_spin_unlock_irq(&ctx->lock);
1599 }
1600 EXPORT_SYMBOL_GPL(perf_event_disable);
1601
1602 static void perf_set_shadow_time(struct perf_event *event,
1603 struct perf_event_context *ctx,
1604 u64 tstamp)
1605 {
1606 /*
1607 * use the correct time source for the time snapshot
1608 *
1609 * We could get by without this by leveraging the
1610 * fact that to get to this function, the caller
1611 * has most likely already called update_context_time()
1612 * and update_cgrp_time_xx() and thus both timestamp
1613 * are identical (or very close). Given that tstamp is,
1614 * already adjusted for cgroup, we could say that:
1615 * tstamp - ctx->timestamp
1616 * is equivalent to
1617 * tstamp - cgrp->timestamp.
1618 *
1619 * Then, in perf_output_read(), the calculation would
1620 * work with no changes because:
1621 * - event is guaranteed scheduled in
1622 * - no scheduled out in between
1623 * - thus the timestamp would be the same
1624 *
1625 * But this is a bit hairy.
1626 *
1627 * So instead, we have an explicit cgroup call to remain
1628 * within the time time source all along. We believe it
1629 * is cleaner and simpler to understand.
1630 */
1631 if (is_cgroup_event(event))
1632 perf_cgroup_set_shadow_time(event, tstamp);
1633 else
1634 event->shadow_ctx_time = tstamp - ctx->timestamp;
1635 }
1636
1637 #define MAX_INTERRUPTS (~0ULL)
1638
1639 static void perf_log_throttle(struct perf_event *event, int enable);
1640
1641 static int
1642 event_sched_in(struct perf_event *event,
1643 struct perf_cpu_context *cpuctx,
1644 struct perf_event_context *ctx)
1645 {
1646 u64 tstamp = perf_event_time(event);
1647
1648 if (event->state <= PERF_EVENT_STATE_OFF)
1649 return 0;
1650
1651 event->state = PERF_EVENT_STATE_ACTIVE;
1652 event->oncpu = smp_processor_id();
1653
1654 /*
1655 * Unthrottle events, since we scheduled we might have missed several
1656 * ticks already, also for a heavily scheduling task there is little
1657 * guarantee it'll get a tick in a timely manner.
1658 */
1659 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1660 perf_log_throttle(event, 1);
1661 event->hw.interrupts = 0;
1662 }
1663
1664 /*
1665 * The new state must be visible before we turn it on in the hardware:
1666 */
1667 smp_wmb();
1668
1669 if (event->pmu->add(event, PERF_EF_START)) {
1670 event->state = PERF_EVENT_STATE_INACTIVE;
1671 event->oncpu = -1;
1672 return -EAGAIN;
1673 }
1674
1675 event->tstamp_running += tstamp - event->tstamp_stopped;
1676
1677 perf_set_shadow_time(event, ctx, tstamp);
1678
1679 if (!is_software_event(event))
1680 cpuctx->active_oncpu++;
1681 ctx->nr_active++;
1682 if (event->attr.freq && event->attr.sample_freq)
1683 ctx->nr_freq++;
1684
1685 if (event->attr.exclusive)
1686 cpuctx->exclusive = 1;
1687
1688 return 0;
1689 }
1690
1691 static int
1692 group_sched_in(struct perf_event *group_event,
1693 struct perf_cpu_context *cpuctx,
1694 struct perf_event_context *ctx)
1695 {
1696 struct perf_event *event, *partial_group = NULL;
1697 struct pmu *pmu = group_event->pmu;
1698 u64 now = ctx->time;
1699 bool simulate = false;
1700
1701 if (group_event->state == PERF_EVENT_STATE_OFF)
1702 return 0;
1703
1704 pmu->start_txn(pmu);
1705
1706 if (event_sched_in(group_event, cpuctx, ctx)) {
1707 pmu->cancel_txn(pmu);
1708 perf_cpu_hrtimer_restart(cpuctx);
1709 return -EAGAIN;
1710 }
1711
1712 /*
1713 * Schedule in siblings as one group (if any):
1714 */
1715 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1716 if (event_sched_in(event, cpuctx, ctx)) {
1717 partial_group = event;
1718 goto group_error;
1719 }
1720 }
1721
1722 if (!pmu->commit_txn(pmu))
1723 return 0;
1724
1725 group_error:
1726 /*
1727 * Groups can be scheduled in as one unit only, so undo any
1728 * partial group before returning:
1729 * The events up to the failed event are scheduled out normally,
1730 * tstamp_stopped will be updated.
1731 *
1732 * The failed events and the remaining siblings need to have
1733 * their timings updated as if they had gone thru event_sched_in()
1734 * and event_sched_out(). This is required to get consistent timings
1735 * across the group. This also takes care of the case where the group
1736 * could never be scheduled by ensuring tstamp_stopped is set to mark
1737 * the time the event was actually stopped, such that time delta
1738 * calculation in update_event_times() is correct.
1739 */
1740 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1741 if (event == partial_group)
1742 simulate = true;
1743
1744 if (simulate) {
1745 event->tstamp_running += now - event->tstamp_stopped;
1746 event->tstamp_stopped = now;
1747 } else {
1748 event_sched_out(event, cpuctx, ctx);
1749 }
1750 }
1751 event_sched_out(group_event, cpuctx, ctx);
1752
1753 pmu->cancel_txn(pmu);
1754
1755 perf_cpu_hrtimer_restart(cpuctx);
1756
1757 return -EAGAIN;
1758 }
1759
1760 /*
1761 * Work out whether we can put this event group on the CPU now.
1762 */
1763 static int group_can_go_on(struct perf_event *event,
1764 struct perf_cpu_context *cpuctx,
1765 int can_add_hw)
1766 {
1767 /*
1768 * Groups consisting entirely of software events can always go on.
1769 */
1770 if (event->group_flags & PERF_GROUP_SOFTWARE)
1771 return 1;
1772 /*
1773 * If an exclusive group is already on, no other hardware
1774 * events can go on.
1775 */
1776 if (cpuctx->exclusive)
1777 return 0;
1778 /*
1779 * If this group is exclusive and there are already
1780 * events on the CPU, it can't go on.
1781 */
1782 if (event->attr.exclusive && cpuctx->active_oncpu)
1783 return 0;
1784 /*
1785 * Otherwise, try to add it if all previous groups were able
1786 * to go on.
1787 */
1788 return can_add_hw;
1789 }
1790
1791 static void add_event_to_ctx(struct perf_event *event,
1792 struct perf_event_context *ctx)
1793 {
1794 u64 tstamp = perf_event_time(event);
1795
1796 list_add_event(event, ctx);
1797 perf_group_attach(event);
1798 event->tstamp_enabled = tstamp;
1799 event->tstamp_running = tstamp;
1800 event->tstamp_stopped = tstamp;
1801 }
1802
1803 static void task_ctx_sched_out(struct perf_event_context *ctx);
1804 static void
1805 ctx_sched_in(struct perf_event_context *ctx,
1806 struct perf_cpu_context *cpuctx,
1807 enum event_type_t event_type,
1808 struct task_struct *task);
1809
1810 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1811 struct perf_event_context *ctx,
1812 struct task_struct *task)
1813 {
1814 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1817 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1818 if (ctx)
1819 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1820 }
1821
1822 /*
1823 * Cross CPU call to install and enable a performance event
1824 *
1825 * Must be called with ctx->mutex held
1826 */
1827 static int __perf_install_in_context(void *info)
1828 {
1829 struct perf_event *event = info;
1830 struct perf_event_context *ctx = event->ctx;
1831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1832 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1833 struct task_struct *task = current;
1834
1835 perf_ctx_lock(cpuctx, task_ctx);
1836 perf_pmu_disable(cpuctx->ctx.pmu);
1837
1838 /*
1839 * If there was an active task_ctx schedule it out.
1840 */
1841 if (task_ctx)
1842 task_ctx_sched_out(task_ctx);
1843
1844 /*
1845 * If the context we're installing events in is not the
1846 * active task_ctx, flip them.
1847 */
1848 if (ctx->task && task_ctx != ctx) {
1849 if (task_ctx)
1850 raw_spin_unlock(&task_ctx->lock);
1851 raw_spin_lock(&ctx->lock);
1852 task_ctx = ctx;
1853 }
1854
1855 if (task_ctx) {
1856 cpuctx->task_ctx = task_ctx;
1857 task = task_ctx->task;
1858 }
1859
1860 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1861
1862 update_context_time(ctx);
1863 /*
1864 * update cgrp time only if current cgrp
1865 * matches event->cgrp. Must be done before
1866 * calling add_event_to_ctx()
1867 */
1868 update_cgrp_time_from_event(event);
1869
1870 add_event_to_ctx(event, ctx);
1871
1872 /*
1873 * Schedule everything back in
1874 */
1875 perf_event_sched_in(cpuctx, task_ctx, task);
1876
1877 perf_pmu_enable(cpuctx->ctx.pmu);
1878 perf_ctx_unlock(cpuctx, task_ctx);
1879
1880 return 0;
1881 }
1882
1883 /*
1884 * Attach a performance event to a context
1885 *
1886 * First we add the event to the list with the hardware enable bit
1887 * in event->hw_config cleared.
1888 *
1889 * If the event is attached to a task which is on a CPU we use a smp
1890 * call to enable it in the task context. The task might have been
1891 * scheduled away, but we check this in the smp call again.
1892 */
1893 static void
1894 perf_install_in_context(struct perf_event_context *ctx,
1895 struct perf_event *event,
1896 int cpu)
1897 {
1898 struct task_struct *task = ctx->task;
1899
1900 lockdep_assert_held(&ctx->mutex);
1901
1902 event->ctx = ctx;
1903 if (event->cpu != -1)
1904 event->cpu = cpu;
1905
1906 if (!task) {
1907 /*
1908 * Per cpu events are installed via an smp call and
1909 * the install is always successful.
1910 */
1911 cpu_function_call(cpu, __perf_install_in_context, event);
1912 return;
1913 }
1914
1915 retry:
1916 if (!task_function_call(task, __perf_install_in_context, event))
1917 return;
1918
1919 raw_spin_lock_irq(&ctx->lock);
1920 /*
1921 * If we failed to find a running task, but find the context active now
1922 * that we've acquired the ctx->lock, retry.
1923 */
1924 if (ctx->is_active) {
1925 raw_spin_unlock_irq(&ctx->lock);
1926 goto retry;
1927 }
1928
1929 /*
1930 * Since the task isn't running, its safe to add the event, us holding
1931 * the ctx->lock ensures the task won't get scheduled in.
1932 */
1933 add_event_to_ctx(event, ctx);
1934 raw_spin_unlock_irq(&ctx->lock);
1935 }
1936
1937 /*
1938 * Put a event into inactive state and update time fields.
1939 * Enabling the leader of a group effectively enables all
1940 * the group members that aren't explicitly disabled, so we
1941 * have to update their ->tstamp_enabled also.
1942 * Note: this works for group members as well as group leaders
1943 * since the non-leader members' sibling_lists will be empty.
1944 */
1945 static void __perf_event_mark_enabled(struct perf_event *event)
1946 {
1947 struct perf_event *sub;
1948 u64 tstamp = perf_event_time(event);
1949
1950 event->state = PERF_EVENT_STATE_INACTIVE;
1951 event->tstamp_enabled = tstamp - event->total_time_enabled;
1952 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1953 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1954 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1955 }
1956 }
1957
1958 /*
1959 * Cross CPU call to enable a performance event
1960 */
1961 static int __perf_event_enable(void *info)
1962 {
1963 struct perf_event *event = info;
1964 struct perf_event_context *ctx = event->ctx;
1965 struct perf_event *leader = event->group_leader;
1966 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1967 int err;
1968
1969 /*
1970 * There's a time window between 'ctx->is_active' check
1971 * in perf_event_enable function and this place having:
1972 * - IRQs on
1973 * - ctx->lock unlocked
1974 *
1975 * where the task could be killed and 'ctx' deactivated
1976 * by perf_event_exit_task.
1977 */
1978 if (!ctx->is_active)
1979 return -EINVAL;
1980
1981 raw_spin_lock(&ctx->lock);
1982 update_context_time(ctx);
1983
1984 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1985 goto unlock;
1986
1987 /*
1988 * set current task's cgroup time reference point
1989 */
1990 perf_cgroup_set_timestamp(current, ctx);
1991
1992 __perf_event_mark_enabled(event);
1993
1994 if (!event_filter_match(event)) {
1995 if (is_cgroup_event(event))
1996 perf_cgroup_defer_enabled(event);
1997 goto unlock;
1998 }
1999
2000 /*
2001 * If the event is in a group and isn't the group leader,
2002 * then don't put it on unless the group is on.
2003 */
2004 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2005 goto unlock;
2006
2007 if (!group_can_go_on(event, cpuctx, 1)) {
2008 err = -EEXIST;
2009 } else {
2010 if (event == leader)
2011 err = group_sched_in(event, cpuctx, ctx);
2012 else
2013 err = event_sched_in(event, cpuctx, ctx);
2014 }
2015
2016 if (err) {
2017 /*
2018 * If this event can't go on and it's part of a
2019 * group, then the whole group has to come off.
2020 */
2021 if (leader != event) {
2022 group_sched_out(leader, cpuctx, ctx);
2023 perf_cpu_hrtimer_restart(cpuctx);
2024 }
2025 if (leader->attr.pinned) {
2026 update_group_times(leader);
2027 leader->state = PERF_EVENT_STATE_ERROR;
2028 }
2029 }
2030
2031 unlock:
2032 raw_spin_unlock(&ctx->lock);
2033
2034 return 0;
2035 }
2036
2037 /*
2038 * Enable a event.
2039 *
2040 * If event->ctx is a cloned context, callers must make sure that
2041 * every task struct that event->ctx->task could possibly point to
2042 * remains valid. This condition is satisfied when called through
2043 * perf_event_for_each_child or perf_event_for_each as described
2044 * for perf_event_disable.
2045 */
2046 void perf_event_enable(struct perf_event *event)
2047 {
2048 struct perf_event_context *ctx = event->ctx;
2049 struct task_struct *task = ctx->task;
2050
2051 if (!task) {
2052 /*
2053 * Enable the event on the cpu that it's on
2054 */
2055 cpu_function_call(event->cpu, __perf_event_enable, event);
2056 return;
2057 }
2058
2059 raw_spin_lock_irq(&ctx->lock);
2060 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2061 goto out;
2062
2063 /*
2064 * If the event is in error state, clear that first.
2065 * That way, if we see the event in error state below, we
2066 * know that it has gone back into error state, as distinct
2067 * from the task having been scheduled away before the
2068 * cross-call arrived.
2069 */
2070 if (event->state == PERF_EVENT_STATE_ERROR)
2071 event->state = PERF_EVENT_STATE_OFF;
2072
2073 retry:
2074 if (!ctx->is_active) {
2075 __perf_event_mark_enabled(event);
2076 goto out;
2077 }
2078
2079 raw_spin_unlock_irq(&ctx->lock);
2080
2081 if (!task_function_call(task, __perf_event_enable, event))
2082 return;
2083
2084 raw_spin_lock_irq(&ctx->lock);
2085
2086 /*
2087 * If the context is active and the event is still off,
2088 * we need to retry the cross-call.
2089 */
2090 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2091 /*
2092 * task could have been flipped by a concurrent
2093 * perf_event_context_sched_out()
2094 */
2095 task = ctx->task;
2096 goto retry;
2097 }
2098
2099 out:
2100 raw_spin_unlock_irq(&ctx->lock);
2101 }
2102 EXPORT_SYMBOL_GPL(perf_event_enable);
2103
2104 int perf_event_refresh(struct perf_event *event, int refresh)
2105 {
2106 /*
2107 * not supported on inherited events
2108 */
2109 if (event->attr.inherit || !is_sampling_event(event))
2110 return -EINVAL;
2111
2112 atomic_add(refresh, &event->event_limit);
2113 perf_event_enable(event);
2114
2115 return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(perf_event_refresh);
2118
2119 static void ctx_sched_out(struct perf_event_context *ctx,
2120 struct perf_cpu_context *cpuctx,
2121 enum event_type_t event_type)
2122 {
2123 struct perf_event *event;
2124 int is_active = ctx->is_active;
2125
2126 ctx->is_active &= ~event_type;
2127 if (likely(!ctx->nr_events))
2128 return;
2129
2130 update_context_time(ctx);
2131 update_cgrp_time_from_cpuctx(cpuctx);
2132 if (!ctx->nr_active)
2133 return;
2134
2135 perf_pmu_disable(ctx->pmu);
2136 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2137 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2138 group_sched_out(event, cpuctx, ctx);
2139 }
2140
2141 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2142 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2143 group_sched_out(event, cpuctx, ctx);
2144 }
2145 perf_pmu_enable(ctx->pmu);
2146 }
2147
2148 /*
2149 * Test whether two contexts are equivalent, i.e. whether they
2150 * have both been cloned from the same version of the same context
2151 * and they both have the same number of enabled events.
2152 * If the number of enabled events is the same, then the set
2153 * of enabled events should be the same, because these are both
2154 * inherited contexts, therefore we can't access individual events
2155 * in them directly with an fd; we can only enable/disable all
2156 * events via prctl, or enable/disable all events in a family
2157 * via ioctl, which will have the same effect on both contexts.
2158 */
2159 static int context_equiv(struct perf_event_context *ctx1,
2160 struct perf_event_context *ctx2)
2161 {
2162 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2163 && ctx1->parent_gen == ctx2->parent_gen
2164 && !ctx1->pin_count && !ctx2->pin_count;
2165 }
2166
2167 static void __perf_event_sync_stat(struct perf_event *event,
2168 struct perf_event *next_event)
2169 {
2170 u64 value;
2171
2172 if (!event->attr.inherit_stat)
2173 return;
2174
2175 /*
2176 * Update the event value, we cannot use perf_event_read()
2177 * because we're in the middle of a context switch and have IRQs
2178 * disabled, which upsets smp_call_function_single(), however
2179 * we know the event must be on the current CPU, therefore we
2180 * don't need to use it.
2181 */
2182 switch (event->state) {
2183 case PERF_EVENT_STATE_ACTIVE:
2184 event->pmu->read(event);
2185 /* fall-through */
2186
2187 case PERF_EVENT_STATE_INACTIVE:
2188 update_event_times(event);
2189 break;
2190
2191 default:
2192 break;
2193 }
2194
2195 /*
2196 * In order to keep per-task stats reliable we need to flip the event
2197 * values when we flip the contexts.
2198 */
2199 value = local64_read(&next_event->count);
2200 value = local64_xchg(&event->count, value);
2201 local64_set(&next_event->count, value);
2202
2203 swap(event->total_time_enabled, next_event->total_time_enabled);
2204 swap(event->total_time_running, next_event->total_time_running);
2205
2206 /*
2207 * Since we swizzled the values, update the user visible data too.
2208 */
2209 perf_event_update_userpage(event);
2210 perf_event_update_userpage(next_event);
2211 }
2212
2213 #define list_next_entry(pos, member) \
2214 list_entry(pos->member.next, typeof(*pos), member)
2215
2216 static void perf_event_sync_stat(struct perf_event_context *ctx,
2217 struct perf_event_context *next_ctx)
2218 {
2219 struct perf_event *event, *next_event;
2220
2221 if (!ctx->nr_stat)
2222 return;
2223
2224 update_context_time(ctx);
2225
2226 event = list_first_entry(&ctx->event_list,
2227 struct perf_event, event_entry);
2228
2229 next_event = list_first_entry(&next_ctx->event_list,
2230 struct perf_event, event_entry);
2231
2232 while (&event->event_entry != &ctx->event_list &&
2233 &next_event->event_entry != &next_ctx->event_list) {
2234
2235 __perf_event_sync_stat(event, next_event);
2236
2237 event = list_next_entry(event, event_entry);
2238 next_event = list_next_entry(next_event, event_entry);
2239 }
2240 }
2241
2242 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2243 struct task_struct *next)
2244 {
2245 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2246 struct perf_event_context *next_ctx;
2247 struct perf_event_context *parent;
2248 struct perf_cpu_context *cpuctx;
2249 int do_switch = 1;
2250
2251 if (likely(!ctx))
2252 return;
2253
2254 cpuctx = __get_cpu_context(ctx);
2255 if (!cpuctx->task_ctx)
2256 return;
2257
2258 rcu_read_lock();
2259 parent = rcu_dereference(ctx->parent_ctx);
2260 next_ctx = next->perf_event_ctxp[ctxn];
2261 if (parent && next_ctx &&
2262 rcu_dereference(next_ctx->parent_ctx) == parent) {
2263 /*
2264 * Looks like the two contexts are clones, so we might be
2265 * able to optimize the context switch. We lock both
2266 * contexts and check that they are clones under the
2267 * lock (including re-checking that neither has been
2268 * uncloned in the meantime). It doesn't matter which
2269 * order we take the locks because no other cpu could
2270 * be trying to lock both of these tasks.
2271 */
2272 raw_spin_lock(&ctx->lock);
2273 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2274 if (context_equiv(ctx, next_ctx)) {
2275 /*
2276 * XXX do we need a memory barrier of sorts
2277 * wrt to rcu_dereference() of perf_event_ctxp
2278 */
2279 task->perf_event_ctxp[ctxn] = next_ctx;
2280 next->perf_event_ctxp[ctxn] = ctx;
2281 ctx->task = next;
2282 next_ctx->task = task;
2283 do_switch = 0;
2284
2285 perf_event_sync_stat(ctx, next_ctx);
2286 }
2287 raw_spin_unlock(&next_ctx->lock);
2288 raw_spin_unlock(&ctx->lock);
2289 }
2290 rcu_read_unlock();
2291
2292 if (do_switch) {
2293 raw_spin_lock(&ctx->lock);
2294 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2295 cpuctx->task_ctx = NULL;
2296 raw_spin_unlock(&ctx->lock);
2297 }
2298 }
2299
2300 #define for_each_task_context_nr(ctxn) \
2301 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2302
2303 /*
2304 * Called from scheduler to remove the events of the current task,
2305 * with interrupts disabled.
2306 *
2307 * We stop each event and update the event value in event->count.
2308 *
2309 * This does not protect us against NMI, but disable()
2310 * sets the disabled bit in the control field of event _before_
2311 * accessing the event control register. If a NMI hits, then it will
2312 * not restart the event.
2313 */
2314 void __perf_event_task_sched_out(struct task_struct *task,
2315 struct task_struct *next)
2316 {
2317 int ctxn;
2318
2319 for_each_task_context_nr(ctxn)
2320 perf_event_context_sched_out(task, ctxn, next);
2321
2322 /*
2323 * if cgroup events exist on this CPU, then we need
2324 * to check if we have to switch out PMU state.
2325 * cgroup event are system-wide mode only
2326 */
2327 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2328 perf_cgroup_sched_out(task, next);
2329 }
2330
2331 static void task_ctx_sched_out(struct perf_event_context *ctx)
2332 {
2333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2334
2335 if (!cpuctx->task_ctx)
2336 return;
2337
2338 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2339 return;
2340
2341 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2342 cpuctx->task_ctx = NULL;
2343 }
2344
2345 /*
2346 * Called with IRQs disabled
2347 */
2348 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2349 enum event_type_t event_type)
2350 {
2351 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2352 }
2353
2354 static void
2355 ctx_pinned_sched_in(struct perf_event_context *ctx,
2356 struct perf_cpu_context *cpuctx)
2357 {
2358 struct perf_event *event;
2359
2360 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2361 if (event->state <= PERF_EVENT_STATE_OFF)
2362 continue;
2363 if (!event_filter_match(event))
2364 continue;
2365
2366 /* may need to reset tstamp_enabled */
2367 if (is_cgroup_event(event))
2368 perf_cgroup_mark_enabled(event, ctx);
2369
2370 if (group_can_go_on(event, cpuctx, 1))
2371 group_sched_in(event, cpuctx, ctx);
2372
2373 /*
2374 * If this pinned group hasn't been scheduled,
2375 * put it in error state.
2376 */
2377 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2378 update_group_times(event);
2379 event->state = PERF_EVENT_STATE_ERROR;
2380 }
2381 }
2382 }
2383
2384 static void
2385 ctx_flexible_sched_in(struct perf_event_context *ctx,
2386 struct perf_cpu_context *cpuctx)
2387 {
2388 struct perf_event *event;
2389 int can_add_hw = 1;
2390
2391 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2392 /* Ignore events in OFF or ERROR state */
2393 if (event->state <= PERF_EVENT_STATE_OFF)
2394 continue;
2395 /*
2396 * Listen to the 'cpu' scheduling filter constraint
2397 * of events:
2398 */
2399 if (!event_filter_match(event))
2400 continue;
2401
2402 /* may need to reset tstamp_enabled */
2403 if (is_cgroup_event(event))
2404 perf_cgroup_mark_enabled(event, ctx);
2405
2406 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2407 if (group_sched_in(event, cpuctx, ctx))
2408 can_add_hw = 0;
2409 }
2410 }
2411 }
2412
2413 static void
2414 ctx_sched_in(struct perf_event_context *ctx,
2415 struct perf_cpu_context *cpuctx,
2416 enum event_type_t event_type,
2417 struct task_struct *task)
2418 {
2419 u64 now;
2420 int is_active = ctx->is_active;
2421
2422 ctx->is_active |= event_type;
2423 if (likely(!ctx->nr_events))
2424 return;
2425
2426 now = perf_clock();
2427 ctx->timestamp = now;
2428 perf_cgroup_set_timestamp(task, ctx);
2429 /*
2430 * First go through the list and put on any pinned groups
2431 * in order to give them the best chance of going on.
2432 */
2433 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2434 ctx_pinned_sched_in(ctx, cpuctx);
2435
2436 /* Then walk through the lower prio flexible groups */
2437 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2438 ctx_flexible_sched_in(ctx, cpuctx);
2439 }
2440
2441 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2442 enum event_type_t event_type,
2443 struct task_struct *task)
2444 {
2445 struct perf_event_context *ctx = &cpuctx->ctx;
2446
2447 ctx_sched_in(ctx, cpuctx, event_type, task);
2448 }
2449
2450 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2451 struct task_struct *task)
2452 {
2453 struct perf_cpu_context *cpuctx;
2454
2455 cpuctx = __get_cpu_context(ctx);
2456 if (cpuctx->task_ctx == ctx)
2457 return;
2458
2459 perf_ctx_lock(cpuctx, ctx);
2460 perf_pmu_disable(ctx->pmu);
2461 /*
2462 * We want to keep the following priority order:
2463 * cpu pinned (that don't need to move), task pinned,
2464 * cpu flexible, task flexible.
2465 */
2466 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2467
2468 if (ctx->nr_events)
2469 cpuctx->task_ctx = ctx;
2470
2471 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2472
2473 perf_pmu_enable(ctx->pmu);
2474 perf_ctx_unlock(cpuctx, ctx);
2475
2476 /*
2477 * Since these rotations are per-cpu, we need to ensure the
2478 * cpu-context we got scheduled on is actually rotating.
2479 */
2480 perf_pmu_rotate_start(ctx->pmu);
2481 }
2482
2483 /*
2484 * When sampling the branck stack in system-wide, it may be necessary
2485 * to flush the stack on context switch. This happens when the branch
2486 * stack does not tag its entries with the pid of the current task.
2487 * Otherwise it becomes impossible to associate a branch entry with a
2488 * task. This ambiguity is more likely to appear when the branch stack
2489 * supports priv level filtering and the user sets it to monitor only
2490 * at the user level (which could be a useful measurement in system-wide
2491 * mode). In that case, the risk is high of having a branch stack with
2492 * branch from multiple tasks. Flushing may mean dropping the existing
2493 * entries or stashing them somewhere in the PMU specific code layer.
2494 *
2495 * This function provides the context switch callback to the lower code
2496 * layer. It is invoked ONLY when there is at least one system-wide context
2497 * with at least one active event using taken branch sampling.
2498 */
2499 static void perf_branch_stack_sched_in(struct task_struct *prev,
2500 struct task_struct *task)
2501 {
2502 struct perf_cpu_context *cpuctx;
2503 struct pmu *pmu;
2504 unsigned long flags;
2505
2506 /* no need to flush branch stack if not changing task */
2507 if (prev == task)
2508 return;
2509
2510 local_irq_save(flags);
2511
2512 rcu_read_lock();
2513
2514 list_for_each_entry_rcu(pmu, &pmus, entry) {
2515 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2516
2517 /*
2518 * check if the context has at least one
2519 * event using PERF_SAMPLE_BRANCH_STACK
2520 */
2521 if (cpuctx->ctx.nr_branch_stack > 0
2522 && pmu->flush_branch_stack) {
2523
2524 pmu = cpuctx->ctx.pmu;
2525
2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527
2528 perf_pmu_disable(pmu);
2529
2530 pmu->flush_branch_stack();
2531
2532 perf_pmu_enable(pmu);
2533
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 }
2536 }
2537
2538 rcu_read_unlock();
2539
2540 local_irq_restore(flags);
2541 }
2542
2543 /*
2544 * Called from scheduler to add the events of the current task
2545 * with interrupts disabled.
2546 *
2547 * We restore the event value and then enable it.
2548 *
2549 * This does not protect us against NMI, but enable()
2550 * sets the enabled bit in the control field of event _before_
2551 * accessing the event control register. If a NMI hits, then it will
2552 * keep the event running.
2553 */
2554 void __perf_event_task_sched_in(struct task_struct *prev,
2555 struct task_struct *task)
2556 {
2557 struct perf_event_context *ctx;
2558 int ctxn;
2559
2560 for_each_task_context_nr(ctxn) {
2561 ctx = task->perf_event_ctxp[ctxn];
2562 if (likely(!ctx))
2563 continue;
2564
2565 perf_event_context_sched_in(ctx, task);
2566 }
2567 /*
2568 * if cgroup events exist on this CPU, then we need
2569 * to check if we have to switch in PMU state.
2570 * cgroup event are system-wide mode only
2571 */
2572 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2573 perf_cgroup_sched_in(prev, task);
2574
2575 /* check for system-wide branch_stack events */
2576 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2577 perf_branch_stack_sched_in(prev, task);
2578 }
2579
2580 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2581 {
2582 u64 frequency = event->attr.sample_freq;
2583 u64 sec = NSEC_PER_SEC;
2584 u64 divisor, dividend;
2585
2586 int count_fls, nsec_fls, frequency_fls, sec_fls;
2587
2588 count_fls = fls64(count);
2589 nsec_fls = fls64(nsec);
2590 frequency_fls = fls64(frequency);
2591 sec_fls = 30;
2592
2593 /*
2594 * We got @count in @nsec, with a target of sample_freq HZ
2595 * the target period becomes:
2596 *
2597 * @count * 10^9
2598 * period = -------------------
2599 * @nsec * sample_freq
2600 *
2601 */
2602
2603 /*
2604 * Reduce accuracy by one bit such that @a and @b converge
2605 * to a similar magnitude.
2606 */
2607 #define REDUCE_FLS(a, b) \
2608 do { \
2609 if (a##_fls > b##_fls) { \
2610 a >>= 1; \
2611 a##_fls--; \
2612 } else { \
2613 b >>= 1; \
2614 b##_fls--; \
2615 } \
2616 } while (0)
2617
2618 /*
2619 * Reduce accuracy until either term fits in a u64, then proceed with
2620 * the other, so that finally we can do a u64/u64 division.
2621 */
2622 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2623 REDUCE_FLS(nsec, frequency);
2624 REDUCE_FLS(sec, count);
2625 }
2626
2627 if (count_fls + sec_fls > 64) {
2628 divisor = nsec * frequency;
2629
2630 while (count_fls + sec_fls > 64) {
2631 REDUCE_FLS(count, sec);
2632 divisor >>= 1;
2633 }
2634
2635 dividend = count * sec;
2636 } else {
2637 dividend = count * sec;
2638
2639 while (nsec_fls + frequency_fls > 64) {
2640 REDUCE_FLS(nsec, frequency);
2641 dividend >>= 1;
2642 }
2643
2644 divisor = nsec * frequency;
2645 }
2646
2647 if (!divisor)
2648 return dividend;
2649
2650 return div64_u64(dividend, divisor);
2651 }
2652
2653 static DEFINE_PER_CPU(int, perf_throttled_count);
2654 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2655
2656 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2657 {
2658 struct hw_perf_event *hwc = &event->hw;
2659 s64 period, sample_period;
2660 s64 delta;
2661
2662 period = perf_calculate_period(event, nsec, count);
2663
2664 delta = (s64)(period - hwc->sample_period);
2665 delta = (delta + 7) / 8; /* low pass filter */
2666
2667 sample_period = hwc->sample_period + delta;
2668
2669 if (!sample_period)
2670 sample_period = 1;
2671
2672 hwc->sample_period = sample_period;
2673
2674 if (local64_read(&hwc->period_left) > 8*sample_period) {
2675 if (disable)
2676 event->pmu->stop(event, PERF_EF_UPDATE);
2677
2678 local64_set(&hwc->period_left, 0);
2679
2680 if (disable)
2681 event->pmu->start(event, PERF_EF_RELOAD);
2682 }
2683 }
2684
2685 /*
2686 * combine freq adjustment with unthrottling to avoid two passes over the
2687 * events. At the same time, make sure, having freq events does not change
2688 * the rate of unthrottling as that would introduce bias.
2689 */
2690 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2691 int needs_unthr)
2692 {
2693 struct perf_event *event;
2694 struct hw_perf_event *hwc;
2695 u64 now, period = TICK_NSEC;
2696 s64 delta;
2697
2698 /*
2699 * only need to iterate over all events iff:
2700 * - context have events in frequency mode (needs freq adjust)
2701 * - there are events to unthrottle on this cpu
2702 */
2703 if (!(ctx->nr_freq || needs_unthr))
2704 return;
2705
2706 raw_spin_lock(&ctx->lock);
2707 perf_pmu_disable(ctx->pmu);
2708
2709 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2710 if (event->state != PERF_EVENT_STATE_ACTIVE)
2711 continue;
2712
2713 if (!event_filter_match(event))
2714 continue;
2715
2716 hwc = &event->hw;
2717
2718 if (hwc->interrupts == MAX_INTERRUPTS) {
2719 hwc->interrupts = 0;
2720 perf_log_throttle(event, 1);
2721 event->pmu->start(event, 0);
2722 }
2723
2724 if (!event->attr.freq || !event->attr.sample_freq)
2725 continue;
2726
2727 /*
2728 * stop the event and update event->count
2729 */
2730 event->pmu->stop(event, PERF_EF_UPDATE);
2731
2732 now = local64_read(&event->count);
2733 delta = now - hwc->freq_count_stamp;
2734 hwc->freq_count_stamp = now;
2735
2736 /*
2737 * restart the event
2738 * reload only if value has changed
2739 * we have stopped the event so tell that
2740 * to perf_adjust_period() to avoid stopping it
2741 * twice.
2742 */
2743 if (delta > 0)
2744 perf_adjust_period(event, period, delta, false);
2745
2746 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2747 }
2748
2749 perf_pmu_enable(ctx->pmu);
2750 raw_spin_unlock(&ctx->lock);
2751 }
2752
2753 /*
2754 * Round-robin a context's events:
2755 */
2756 static void rotate_ctx(struct perf_event_context *ctx)
2757 {
2758 /*
2759 * Rotate the first entry last of non-pinned groups. Rotation might be
2760 * disabled by the inheritance code.
2761 */
2762 if (!ctx->rotate_disable)
2763 list_rotate_left(&ctx->flexible_groups);
2764 }
2765
2766 /*
2767 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2768 * because they're strictly cpu affine and rotate_start is called with IRQs
2769 * disabled, while rotate_context is called from IRQ context.
2770 */
2771 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2772 {
2773 struct perf_event_context *ctx = NULL;
2774 int rotate = 0, remove = 1;
2775
2776 if (cpuctx->ctx.nr_events) {
2777 remove = 0;
2778 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2779 rotate = 1;
2780 }
2781
2782 ctx = cpuctx->task_ctx;
2783 if (ctx && ctx->nr_events) {
2784 remove = 0;
2785 if (ctx->nr_events != ctx->nr_active)
2786 rotate = 1;
2787 }
2788
2789 if (!rotate)
2790 goto done;
2791
2792 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2793 perf_pmu_disable(cpuctx->ctx.pmu);
2794
2795 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2796 if (ctx)
2797 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2798
2799 rotate_ctx(&cpuctx->ctx);
2800 if (ctx)
2801 rotate_ctx(ctx);
2802
2803 perf_event_sched_in(cpuctx, ctx, current);
2804
2805 perf_pmu_enable(cpuctx->ctx.pmu);
2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 done:
2808 if (remove)
2809 list_del_init(&cpuctx->rotation_list);
2810
2811 return rotate;
2812 }
2813
2814 #ifdef CONFIG_NO_HZ_FULL
2815 bool perf_event_can_stop_tick(void)
2816 {
2817 if (atomic_read(&nr_freq_events) ||
2818 __this_cpu_read(perf_throttled_count))
2819 return false;
2820 else
2821 return true;
2822 }
2823 #endif
2824
2825 void perf_event_task_tick(void)
2826 {
2827 struct list_head *head = &__get_cpu_var(rotation_list);
2828 struct perf_cpu_context *cpuctx, *tmp;
2829 struct perf_event_context *ctx;
2830 int throttled;
2831
2832 WARN_ON(!irqs_disabled());
2833
2834 __this_cpu_inc(perf_throttled_seq);
2835 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2836
2837 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2838 ctx = &cpuctx->ctx;
2839 perf_adjust_freq_unthr_context(ctx, throttled);
2840
2841 ctx = cpuctx->task_ctx;
2842 if (ctx)
2843 perf_adjust_freq_unthr_context(ctx, throttled);
2844 }
2845 }
2846
2847 static int event_enable_on_exec(struct perf_event *event,
2848 struct perf_event_context *ctx)
2849 {
2850 if (!event->attr.enable_on_exec)
2851 return 0;
2852
2853 event->attr.enable_on_exec = 0;
2854 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2855 return 0;
2856
2857 __perf_event_mark_enabled(event);
2858
2859 return 1;
2860 }
2861
2862 /*
2863 * Enable all of a task's events that have been marked enable-on-exec.
2864 * This expects task == current.
2865 */
2866 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2867 {
2868 struct perf_event *event;
2869 unsigned long flags;
2870 int enabled = 0;
2871 int ret;
2872
2873 local_irq_save(flags);
2874 if (!ctx || !ctx->nr_events)
2875 goto out;
2876
2877 /*
2878 * We must ctxsw out cgroup events to avoid conflict
2879 * when invoking perf_task_event_sched_in() later on
2880 * in this function. Otherwise we end up trying to
2881 * ctxswin cgroup events which are already scheduled
2882 * in.
2883 */
2884 perf_cgroup_sched_out(current, NULL);
2885
2886 raw_spin_lock(&ctx->lock);
2887 task_ctx_sched_out(ctx);
2888
2889 list_for_each_entry(event, &ctx->event_list, event_entry) {
2890 ret = event_enable_on_exec(event, ctx);
2891 if (ret)
2892 enabled = 1;
2893 }
2894
2895 /*
2896 * Unclone this context if we enabled any event.
2897 */
2898 if (enabled)
2899 unclone_ctx(ctx);
2900
2901 raw_spin_unlock(&ctx->lock);
2902
2903 /*
2904 * Also calls ctxswin for cgroup events, if any:
2905 */
2906 perf_event_context_sched_in(ctx, ctx->task);
2907 out:
2908 local_irq_restore(flags);
2909 }
2910
2911 /*
2912 * Cross CPU call to read the hardware event
2913 */
2914 static void __perf_event_read(void *info)
2915 {
2916 struct perf_event *event = info;
2917 struct perf_event_context *ctx = event->ctx;
2918 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2919
2920 /*
2921 * If this is a task context, we need to check whether it is
2922 * the current task context of this cpu. If not it has been
2923 * scheduled out before the smp call arrived. In that case
2924 * event->count would have been updated to a recent sample
2925 * when the event was scheduled out.
2926 */
2927 if (ctx->task && cpuctx->task_ctx != ctx)
2928 return;
2929
2930 raw_spin_lock(&ctx->lock);
2931 if (ctx->is_active) {
2932 update_context_time(ctx);
2933 update_cgrp_time_from_event(event);
2934 }
2935 update_event_times(event);
2936 if (event->state == PERF_EVENT_STATE_ACTIVE)
2937 event->pmu->read(event);
2938 raw_spin_unlock(&ctx->lock);
2939 }
2940
2941 static inline u64 perf_event_count(struct perf_event *event)
2942 {
2943 return local64_read(&event->count) + atomic64_read(&event->child_count);
2944 }
2945
2946 static u64 perf_event_read(struct perf_event *event)
2947 {
2948 /*
2949 * If event is enabled and currently active on a CPU, update the
2950 * value in the event structure:
2951 */
2952 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2953 smp_call_function_single(event->oncpu,
2954 __perf_event_read, event, 1);
2955 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2956 struct perf_event_context *ctx = event->ctx;
2957 unsigned long flags;
2958
2959 raw_spin_lock_irqsave(&ctx->lock, flags);
2960 /*
2961 * may read while context is not active
2962 * (e.g., thread is blocked), in that case
2963 * we cannot update context time
2964 */
2965 if (ctx->is_active) {
2966 update_context_time(ctx);
2967 update_cgrp_time_from_event(event);
2968 }
2969 update_event_times(event);
2970 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2971 }
2972
2973 return perf_event_count(event);
2974 }
2975
2976 /*
2977 * Initialize the perf_event context in a task_struct:
2978 */
2979 static void __perf_event_init_context(struct perf_event_context *ctx)
2980 {
2981 raw_spin_lock_init(&ctx->lock);
2982 mutex_init(&ctx->mutex);
2983 INIT_LIST_HEAD(&ctx->pinned_groups);
2984 INIT_LIST_HEAD(&ctx->flexible_groups);
2985 INIT_LIST_HEAD(&ctx->event_list);
2986 atomic_set(&ctx->refcount, 1);
2987 }
2988
2989 static struct perf_event_context *
2990 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2991 {
2992 struct perf_event_context *ctx;
2993
2994 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2995 if (!ctx)
2996 return NULL;
2997
2998 __perf_event_init_context(ctx);
2999 if (task) {
3000 ctx->task = task;
3001 get_task_struct(task);
3002 }
3003 ctx->pmu = pmu;
3004
3005 return ctx;
3006 }
3007
3008 static struct task_struct *
3009 find_lively_task_by_vpid(pid_t vpid)
3010 {
3011 struct task_struct *task;
3012 int err;
3013
3014 rcu_read_lock();
3015 if (!vpid)
3016 task = current;
3017 else
3018 task = find_task_by_vpid(vpid);
3019 if (task)
3020 get_task_struct(task);
3021 rcu_read_unlock();
3022
3023 if (!task)
3024 return ERR_PTR(-ESRCH);
3025
3026 /* Reuse ptrace permission checks for now. */
3027 err = -EACCES;
3028 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3029 goto errout;
3030
3031 return task;
3032 errout:
3033 put_task_struct(task);
3034 return ERR_PTR(err);
3035
3036 }
3037
3038 /*
3039 * Returns a matching context with refcount and pincount.
3040 */
3041 static struct perf_event_context *
3042 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3043 {
3044 struct perf_event_context *ctx;
3045 struct perf_cpu_context *cpuctx;
3046 unsigned long flags;
3047 int ctxn, err;
3048
3049 if (!task) {
3050 /* Must be root to operate on a CPU event: */
3051 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3052 return ERR_PTR(-EACCES);
3053
3054 /*
3055 * We could be clever and allow to attach a event to an
3056 * offline CPU and activate it when the CPU comes up, but
3057 * that's for later.
3058 */
3059 if (!cpu_online(cpu))
3060 return ERR_PTR(-ENODEV);
3061
3062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3063 ctx = &cpuctx->ctx;
3064 get_ctx(ctx);
3065 ++ctx->pin_count;
3066
3067 return ctx;
3068 }
3069
3070 err = -EINVAL;
3071 ctxn = pmu->task_ctx_nr;
3072 if (ctxn < 0)
3073 goto errout;
3074
3075 retry:
3076 ctx = perf_lock_task_context(task, ctxn, &flags);
3077 if (ctx) {
3078 unclone_ctx(ctx);
3079 ++ctx->pin_count;
3080 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3081 } else {
3082 ctx = alloc_perf_context(pmu, task);
3083 err = -ENOMEM;
3084 if (!ctx)
3085 goto errout;
3086
3087 err = 0;
3088 mutex_lock(&task->perf_event_mutex);
3089 /*
3090 * If it has already passed perf_event_exit_task().
3091 * we must see PF_EXITING, it takes this mutex too.
3092 */
3093 if (task->flags & PF_EXITING)
3094 err = -ESRCH;
3095 else if (task->perf_event_ctxp[ctxn])
3096 err = -EAGAIN;
3097 else {
3098 get_ctx(ctx);
3099 ++ctx->pin_count;
3100 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3101 }
3102 mutex_unlock(&task->perf_event_mutex);
3103
3104 if (unlikely(err)) {
3105 put_ctx(ctx);
3106
3107 if (err == -EAGAIN)
3108 goto retry;
3109 goto errout;
3110 }
3111 }
3112
3113 return ctx;
3114
3115 errout:
3116 return ERR_PTR(err);
3117 }
3118
3119 static void perf_event_free_filter(struct perf_event *event);
3120
3121 static void free_event_rcu(struct rcu_head *head)
3122 {
3123 struct perf_event *event;
3124
3125 event = container_of(head, struct perf_event, rcu_head);
3126 if (event->ns)
3127 put_pid_ns(event->ns);
3128 perf_event_free_filter(event);
3129 kfree(event);
3130 }
3131
3132 static void ring_buffer_put(struct ring_buffer *rb);
3133 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3134
3135 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3136 {
3137 if (event->parent)
3138 return;
3139
3140 if (has_branch_stack(event)) {
3141 if (!(event->attach_state & PERF_ATTACH_TASK))
3142 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3143 }
3144 if (is_cgroup_event(event))
3145 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3146 }
3147
3148 static void unaccount_event(struct perf_event *event)
3149 {
3150 if (event->parent)
3151 return;
3152
3153 if (event->attach_state & PERF_ATTACH_TASK)
3154 static_key_slow_dec_deferred(&perf_sched_events);
3155 if (event->attr.mmap || event->attr.mmap_data)
3156 atomic_dec(&nr_mmap_events);
3157 if (event->attr.comm)
3158 atomic_dec(&nr_comm_events);
3159 if (event->attr.task)
3160 atomic_dec(&nr_task_events);
3161 if (event->attr.freq)
3162 atomic_dec(&nr_freq_events);
3163 if (is_cgroup_event(event))
3164 static_key_slow_dec_deferred(&perf_sched_events);
3165 if (has_branch_stack(event))
3166 static_key_slow_dec_deferred(&perf_sched_events);
3167
3168 unaccount_event_cpu(event, event->cpu);
3169 }
3170
3171 static void __free_event(struct perf_event *event)
3172 {
3173 if (!event->parent) {
3174 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3175 put_callchain_buffers();
3176 }
3177
3178 if (event->destroy)
3179 event->destroy(event);
3180
3181 if (event->ctx)
3182 put_ctx(event->ctx);
3183
3184 call_rcu(&event->rcu_head, free_event_rcu);
3185 }
3186 static void free_event(struct perf_event *event)
3187 {
3188 irq_work_sync(&event->pending);
3189
3190 unaccount_event(event);
3191
3192 if (event->rb) {
3193 struct ring_buffer *rb;
3194
3195 /*
3196 * Can happen when we close an event with re-directed output.
3197 *
3198 * Since we have a 0 refcount, perf_mmap_close() will skip
3199 * over us; possibly making our ring_buffer_put() the last.
3200 */
3201 mutex_lock(&event->mmap_mutex);
3202 rb = event->rb;
3203 if (rb) {
3204 rcu_assign_pointer(event->rb, NULL);
3205 ring_buffer_detach(event, rb);
3206 ring_buffer_put(rb); /* could be last */
3207 }
3208 mutex_unlock(&event->mmap_mutex);
3209 }
3210
3211 if (is_cgroup_event(event))
3212 perf_detach_cgroup(event);
3213
3214
3215 __free_event(event);
3216 }
3217
3218 int perf_event_release_kernel(struct perf_event *event)
3219 {
3220 struct perf_event_context *ctx = event->ctx;
3221
3222 WARN_ON_ONCE(ctx->parent_ctx);
3223 /*
3224 * There are two ways this annotation is useful:
3225 *
3226 * 1) there is a lock recursion from perf_event_exit_task
3227 * see the comment there.
3228 *
3229 * 2) there is a lock-inversion with mmap_sem through
3230 * perf_event_read_group(), which takes faults while
3231 * holding ctx->mutex, however this is called after
3232 * the last filedesc died, so there is no possibility
3233 * to trigger the AB-BA case.
3234 */
3235 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3236 raw_spin_lock_irq(&ctx->lock);
3237 perf_group_detach(event);
3238 raw_spin_unlock_irq(&ctx->lock);
3239 perf_remove_from_context(event);
3240 mutex_unlock(&ctx->mutex);
3241
3242 free_event(event);
3243
3244 return 0;
3245 }
3246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3247
3248 /*
3249 * Called when the last reference to the file is gone.
3250 */
3251 static void put_event(struct perf_event *event)
3252 {
3253 struct task_struct *owner;
3254
3255 if (!atomic_long_dec_and_test(&event->refcount))
3256 return;
3257
3258 rcu_read_lock();
3259 owner = ACCESS_ONCE(event->owner);
3260 /*
3261 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3262 * !owner it means the list deletion is complete and we can indeed
3263 * free this event, otherwise we need to serialize on
3264 * owner->perf_event_mutex.
3265 */
3266 smp_read_barrier_depends();
3267 if (owner) {
3268 /*
3269 * Since delayed_put_task_struct() also drops the last
3270 * task reference we can safely take a new reference
3271 * while holding the rcu_read_lock().
3272 */
3273 get_task_struct(owner);
3274 }
3275 rcu_read_unlock();
3276
3277 if (owner) {
3278 mutex_lock(&owner->perf_event_mutex);
3279 /*
3280 * We have to re-check the event->owner field, if it is cleared
3281 * we raced with perf_event_exit_task(), acquiring the mutex
3282 * ensured they're done, and we can proceed with freeing the
3283 * event.
3284 */
3285 if (event->owner)
3286 list_del_init(&event->owner_entry);
3287 mutex_unlock(&owner->perf_event_mutex);
3288 put_task_struct(owner);
3289 }
3290
3291 perf_event_release_kernel(event);
3292 }
3293
3294 static int perf_release(struct inode *inode, struct file *file)
3295 {
3296 put_event(file->private_data);
3297 return 0;
3298 }
3299
3300 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3301 {
3302 struct perf_event *child;
3303 u64 total = 0;
3304
3305 *enabled = 0;
3306 *running = 0;
3307
3308 mutex_lock(&event->child_mutex);
3309 total += perf_event_read(event);
3310 *enabled += event->total_time_enabled +
3311 atomic64_read(&event->child_total_time_enabled);
3312 *running += event->total_time_running +
3313 atomic64_read(&event->child_total_time_running);
3314
3315 list_for_each_entry(child, &event->child_list, child_list) {
3316 total += perf_event_read(child);
3317 *enabled += child->total_time_enabled;
3318 *running += child->total_time_running;
3319 }
3320 mutex_unlock(&event->child_mutex);
3321
3322 return total;
3323 }
3324 EXPORT_SYMBOL_GPL(perf_event_read_value);
3325
3326 static int perf_event_read_group(struct perf_event *event,
3327 u64 read_format, char __user *buf)
3328 {
3329 struct perf_event *leader = event->group_leader, *sub;
3330 int n = 0, size = 0, ret = -EFAULT;
3331 struct perf_event_context *ctx = leader->ctx;
3332 u64 values[5];
3333 u64 count, enabled, running;
3334
3335 mutex_lock(&ctx->mutex);
3336 count = perf_event_read_value(leader, &enabled, &running);
3337
3338 values[n++] = 1 + leader->nr_siblings;
3339 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3340 values[n++] = enabled;
3341 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3342 values[n++] = running;
3343 values[n++] = count;
3344 if (read_format & PERF_FORMAT_ID)
3345 values[n++] = primary_event_id(leader);
3346
3347 size = n * sizeof(u64);
3348
3349 if (copy_to_user(buf, values, size))
3350 goto unlock;
3351
3352 ret = size;
3353
3354 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3355 n = 0;
3356
3357 values[n++] = perf_event_read_value(sub, &enabled, &running);
3358 if (read_format & PERF_FORMAT_ID)
3359 values[n++] = primary_event_id(sub);
3360
3361 size = n * sizeof(u64);
3362
3363 if (copy_to_user(buf + ret, values, size)) {
3364 ret = -EFAULT;
3365 goto unlock;
3366 }
3367
3368 ret += size;
3369 }
3370 unlock:
3371 mutex_unlock(&ctx->mutex);
3372
3373 return ret;
3374 }
3375
3376 static int perf_event_read_one(struct perf_event *event,
3377 u64 read_format, char __user *buf)
3378 {
3379 u64 enabled, running;
3380 u64 values[4];
3381 int n = 0;
3382
3383 values[n++] = perf_event_read_value(event, &enabled, &running);
3384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3385 values[n++] = enabled;
3386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3387 values[n++] = running;
3388 if (read_format & PERF_FORMAT_ID)
3389 values[n++] = primary_event_id(event);
3390
3391 if (copy_to_user(buf, values, n * sizeof(u64)))
3392 return -EFAULT;
3393
3394 return n * sizeof(u64);
3395 }
3396
3397 /*
3398 * Read the performance event - simple non blocking version for now
3399 */
3400 static ssize_t
3401 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3402 {
3403 u64 read_format = event->attr.read_format;
3404 int ret;
3405
3406 /*
3407 * Return end-of-file for a read on a event that is in
3408 * error state (i.e. because it was pinned but it couldn't be
3409 * scheduled on to the CPU at some point).
3410 */
3411 if (event->state == PERF_EVENT_STATE_ERROR)
3412 return 0;
3413
3414 if (count < event->read_size)
3415 return -ENOSPC;
3416
3417 WARN_ON_ONCE(event->ctx->parent_ctx);
3418 if (read_format & PERF_FORMAT_GROUP)
3419 ret = perf_event_read_group(event, read_format, buf);
3420 else
3421 ret = perf_event_read_one(event, read_format, buf);
3422
3423 return ret;
3424 }
3425
3426 static ssize_t
3427 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3428 {
3429 struct perf_event *event = file->private_data;
3430
3431 return perf_read_hw(event, buf, count);
3432 }
3433
3434 static unsigned int perf_poll(struct file *file, poll_table *wait)
3435 {
3436 struct perf_event *event = file->private_data;
3437 struct ring_buffer *rb;
3438 unsigned int events = POLL_HUP;
3439
3440 /*
3441 * Pin the event->rb by taking event->mmap_mutex; otherwise
3442 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3443 */
3444 mutex_lock(&event->mmap_mutex);
3445 rb = event->rb;
3446 if (rb)
3447 events = atomic_xchg(&rb->poll, 0);
3448 mutex_unlock(&event->mmap_mutex);
3449
3450 poll_wait(file, &event->waitq, wait);
3451
3452 return events;
3453 }
3454
3455 static void perf_event_reset(struct perf_event *event)
3456 {
3457 (void)perf_event_read(event);
3458 local64_set(&event->count, 0);
3459 perf_event_update_userpage(event);
3460 }
3461
3462 /*
3463 * Holding the top-level event's child_mutex means that any
3464 * descendant process that has inherited this event will block
3465 * in sync_child_event if it goes to exit, thus satisfying the
3466 * task existence requirements of perf_event_enable/disable.
3467 */
3468 static void perf_event_for_each_child(struct perf_event *event,
3469 void (*func)(struct perf_event *))
3470 {
3471 struct perf_event *child;
3472
3473 WARN_ON_ONCE(event->ctx->parent_ctx);
3474 mutex_lock(&event->child_mutex);
3475 func(event);
3476 list_for_each_entry(child, &event->child_list, child_list)
3477 func(child);
3478 mutex_unlock(&event->child_mutex);
3479 }
3480
3481 static void perf_event_for_each(struct perf_event *event,
3482 void (*func)(struct perf_event *))
3483 {
3484 struct perf_event_context *ctx = event->ctx;
3485 struct perf_event *sibling;
3486
3487 WARN_ON_ONCE(ctx->parent_ctx);
3488 mutex_lock(&ctx->mutex);
3489 event = event->group_leader;
3490
3491 perf_event_for_each_child(event, func);
3492 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3493 perf_event_for_each_child(sibling, func);
3494 mutex_unlock(&ctx->mutex);
3495 }
3496
3497 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3498 {
3499 struct perf_event_context *ctx = event->ctx;
3500 int ret = 0;
3501 u64 value;
3502
3503 if (!is_sampling_event(event))
3504 return -EINVAL;
3505
3506 if (copy_from_user(&value, arg, sizeof(value)))
3507 return -EFAULT;
3508
3509 if (!value)
3510 return -EINVAL;
3511
3512 raw_spin_lock_irq(&ctx->lock);
3513 if (event->attr.freq) {
3514 if (value > sysctl_perf_event_sample_rate) {
3515 ret = -EINVAL;
3516 goto unlock;
3517 }
3518
3519 event->attr.sample_freq = value;
3520 } else {
3521 event->attr.sample_period = value;
3522 event->hw.sample_period = value;
3523 }
3524 unlock:
3525 raw_spin_unlock_irq(&ctx->lock);
3526
3527 return ret;
3528 }
3529
3530 static const struct file_operations perf_fops;
3531
3532 static inline int perf_fget_light(int fd, struct fd *p)
3533 {
3534 struct fd f = fdget(fd);
3535 if (!f.file)
3536 return -EBADF;
3537
3538 if (f.file->f_op != &perf_fops) {
3539 fdput(f);
3540 return -EBADF;
3541 }
3542 *p = f;
3543 return 0;
3544 }
3545
3546 static int perf_event_set_output(struct perf_event *event,
3547 struct perf_event *output_event);
3548 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3549
3550 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3551 {
3552 struct perf_event *event = file->private_data;
3553 void (*func)(struct perf_event *);
3554 u32 flags = arg;
3555
3556 switch (cmd) {
3557 case PERF_EVENT_IOC_ENABLE:
3558 func = perf_event_enable;
3559 break;
3560 case PERF_EVENT_IOC_DISABLE:
3561 func = perf_event_disable;
3562 break;
3563 case PERF_EVENT_IOC_RESET:
3564 func = perf_event_reset;
3565 break;
3566
3567 case PERF_EVENT_IOC_REFRESH:
3568 return perf_event_refresh(event, arg);
3569
3570 case PERF_EVENT_IOC_PERIOD:
3571 return perf_event_period(event, (u64 __user *)arg);
3572
3573 case PERF_EVENT_IOC_ID:
3574 {
3575 u64 id = primary_event_id(event);
3576
3577 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3578 return -EFAULT;
3579 return 0;
3580 }
3581
3582 case PERF_EVENT_IOC_SET_OUTPUT:
3583 {
3584 int ret;
3585 if (arg != -1) {
3586 struct perf_event *output_event;
3587 struct fd output;
3588 ret = perf_fget_light(arg, &output);
3589 if (ret)
3590 return ret;
3591 output_event = output.file->private_data;
3592 ret = perf_event_set_output(event, output_event);
3593 fdput(output);
3594 } else {
3595 ret = perf_event_set_output(event, NULL);
3596 }
3597 return ret;
3598 }
3599
3600 case PERF_EVENT_IOC_SET_FILTER:
3601 return perf_event_set_filter(event, (void __user *)arg);
3602
3603 default:
3604 return -ENOTTY;
3605 }
3606
3607 if (flags & PERF_IOC_FLAG_GROUP)
3608 perf_event_for_each(event, func);
3609 else
3610 perf_event_for_each_child(event, func);
3611
3612 return 0;
3613 }
3614
3615 int perf_event_task_enable(void)
3616 {
3617 struct perf_event *event;
3618
3619 mutex_lock(&current->perf_event_mutex);
3620 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3621 perf_event_for_each_child(event, perf_event_enable);
3622 mutex_unlock(&current->perf_event_mutex);
3623
3624 return 0;
3625 }
3626
3627 int perf_event_task_disable(void)
3628 {
3629 struct perf_event *event;
3630
3631 mutex_lock(&current->perf_event_mutex);
3632 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3633 perf_event_for_each_child(event, perf_event_disable);
3634 mutex_unlock(&current->perf_event_mutex);
3635
3636 return 0;
3637 }
3638
3639 static int perf_event_index(struct perf_event *event)
3640 {
3641 if (event->hw.state & PERF_HES_STOPPED)
3642 return 0;
3643
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 return 0;
3646
3647 return event->pmu->event_idx(event);
3648 }
3649
3650 static void calc_timer_values(struct perf_event *event,
3651 u64 *now,
3652 u64 *enabled,
3653 u64 *running)
3654 {
3655 u64 ctx_time;
3656
3657 *now = perf_clock();
3658 ctx_time = event->shadow_ctx_time + *now;
3659 *enabled = ctx_time - event->tstamp_enabled;
3660 *running = ctx_time - event->tstamp_running;
3661 }
3662
3663 static void perf_event_init_userpage(struct perf_event *event)
3664 {
3665 struct perf_event_mmap_page *userpg;
3666 struct ring_buffer *rb;
3667
3668 rcu_read_lock();
3669 rb = rcu_dereference(event->rb);
3670 if (!rb)
3671 goto unlock;
3672
3673 userpg = rb->user_page;
3674
3675 /* Allow new userspace to detect that bit 0 is deprecated */
3676 userpg->cap_bit0_is_deprecated = 1;
3677 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3678
3679 unlock:
3680 rcu_read_unlock();
3681 }
3682
3683 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3684 {
3685 }
3686
3687 /*
3688 * Callers need to ensure there can be no nesting of this function, otherwise
3689 * the seqlock logic goes bad. We can not serialize this because the arch
3690 * code calls this from NMI context.
3691 */
3692 void perf_event_update_userpage(struct perf_event *event)
3693 {
3694 struct perf_event_mmap_page *userpg;
3695 struct ring_buffer *rb;
3696 u64 enabled, running, now;
3697
3698 rcu_read_lock();
3699 rb = rcu_dereference(event->rb);
3700 if (!rb)
3701 goto unlock;
3702
3703 /*
3704 * compute total_time_enabled, total_time_running
3705 * based on snapshot values taken when the event
3706 * was last scheduled in.
3707 *
3708 * we cannot simply called update_context_time()
3709 * because of locking issue as we can be called in
3710 * NMI context
3711 */
3712 calc_timer_values(event, &now, &enabled, &running);
3713
3714 userpg = rb->user_page;
3715 /*
3716 * Disable preemption so as to not let the corresponding user-space
3717 * spin too long if we get preempted.
3718 */
3719 preempt_disable();
3720 ++userpg->lock;
3721 barrier();
3722 userpg->index = perf_event_index(event);
3723 userpg->offset = perf_event_count(event);
3724 if (userpg->index)
3725 userpg->offset -= local64_read(&event->hw.prev_count);
3726
3727 userpg->time_enabled = enabled +
3728 atomic64_read(&event->child_total_time_enabled);
3729
3730 userpg->time_running = running +
3731 atomic64_read(&event->child_total_time_running);
3732
3733 arch_perf_update_userpage(userpg, now);
3734
3735 barrier();
3736 ++userpg->lock;
3737 preempt_enable();
3738 unlock:
3739 rcu_read_unlock();
3740 }
3741
3742 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3743 {
3744 struct perf_event *event = vma->vm_file->private_data;
3745 struct ring_buffer *rb;
3746 int ret = VM_FAULT_SIGBUS;
3747
3748 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3749 if (vmf->pgoff == 0)
3750 ret = 0;
3751 return ret;
3752 }
3753
3754 rcu_read_lock();
3755 rb = rcu_dereference(event->rb);
3756 if (!rb)
3757 goto unlock;
3758
3759 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3760 goto unlock;
3761
3762 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3763 if (!vmf->page)
3764 goto unlock;
3765
3766 get_page(vmf->page);
3767 vmf->page->mapping = vma->vm_file->f_mapping;
3768 vmf->page->index = vmf->pgoff;
3769
3770 ret = 0;
3771 unlock:
3772 rcu_read_unlock();
3773
3774 return ret;
3775 }
3776
3777 static void ring_buffer_attach(struct perf_event *event,
3778 struct ring_buffer *rb)
3779 {
3780 unsigned long flags;
3781
3782 if (!list_empty(&event->rb_entry))
3783 return;
3784
3785 spin_lock_irqsave(&rb->event_lock, flags);
3786 if (list_empty(&event->rb_entry))
3787 list_add(&event->rb_entry, &rb->event_list);
3788 spin_unlock_irqrestore(&rb->event_lock, flags);
3789 }
3790
3791 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3792 {
3793 unsigned long flags;
3794
3795 if (list_empty(&event->rb_entry))
3796 return;
3797
3798 spin_lock_irqsave(&rb->event_lock, flags);
3799 list_del_init(&event->rb_entry);
3800 wake_up_all(&event->waitq);
3801 spin_unlock_irqrestore(&rb->event_lock, flags);
3802 }
3803
3804 static void ring_buffer_wakeup(struct perf_event *event)
3805 {
3806 struct ring_buffer *rb;
3807
3808 rcu_read_lock();
3809 rb = rcu_dereference(event->rb);
3810 if (rb) {
3811 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3812 wake_up_all(&event->waitq);
3813 }
3814 rcu_read_unlock();
3815 }
3816
3817 static void rb_free_rcu(struct rcu_head *rcu_head)
3818 {
3819 struct ring_buffer *rb;
3820
3821 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3822 rb_free(rb);
3823 }
3824
3825 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3826 {
3827 struct ring_buffer *rb;
3828
3829 rcu_read_lock();
3830 rb = rcu_dereference(event->rb);
3831 if (rb) {
3832 if (!atomic_inc_not_zero(&rb->refcount))
3833 rb = NULL;
3834 }
3835 rcu_read_unlock();
3836
3837 return rb;
3838 }
3839
3840 static void ring_buffer_put(struct ring_buffer *rb)
3841 {
3842 if (!atomic_dec_and_test(&rb->refcount))
3843 return;
3844
3845 WARN_ON_ONCE(!list_empty(&rb->event_list));
3846
3847 call_rcu(&rb->rcu_head, rb_free_rcu);
3848 }
3849
3850 static void perf_mmap_open(struct vm_area_struct *vma)
3851 {
3852 struct perf_event *event = vma->vm_file->private_data;
3853
3854 atomic_inc(&event->mmap_count);
3855 atomic_inc(&event->rb->mmap_count);
3856 }
3857
3858 /*
3859 * A buffer can be mmap()ed multiple times; either directly through the same
3860 * event, or through other events by use of perf_event_set_output().
3861 *
3862 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3863 * the buffer here, where we still have a VM context. This means we need
3864 * to detach all events redirecting to us.
3865 */
3866 static void perf_mmap_close(struct vm_area_struct *vma)
3867 {
3868 struct perf_event *event = vma->vm_file->private_data;
3869
3870 struct ring_buffer *rb = event->rb;
3871 struct user_struct *mmap_user = rb->mmap_user;
3872 int mmap_locked = rb->mmap_locked;
3873 unsigned long size = perf_data_size(rb);
3874
3875 atomic_dec(&rb->mmap_count);
3876
3877 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3878 return;
3879
3880 /* Detach current event from the buffer. */
3881 rcu_assign_pointer(event->rb, NULL);
3882 ring_buffer_detach(event, rb);
3883 mutex_unlock(&event->mmap_mutex);
3884
3885 /* If there's still other mmap()s of this buffer, we're done. */
3886 if (atomic_read(&rb->mmap_count)) {
3887 ring_buffer_put(rb); /* can't be last */
3888 return;
3889 }
3890
3891 /*
3892 * No other mmap()s, detach from all other events that might redirect
3893 * into the now unreachable buffer. Somewhat complicated by the
3894 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3895 */
3896 again:
3897 rcu_read_lock();
3898 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3899 if (!atomic_long_inc_not_zero(&event->refcount)) {
3900 /*
3901 * This event is en-route to free_event() which will
3902 * detach it and remove it from the list.
3903 */
3904 continue;
3905 }
3906 rcu_read_unlock();
3907
3908 mutex_lock(&event->mmap_mutex);
3909 /*
3910 * Check we didn't race with perf_event_set_output() which can
3911 * swizzle the rb from under us while we were waiting to
3912 * acquire mmap_mutex.
3913 *
3914 * If we find a different rb; ignore this event, a next
3915 * iteration will no longer find it on the list. We have to
3916 * still restart the iteration to make sure we're not now
3917 * iterating the wrong list.
3918 */
3919 if (event->rb == rb) {
3920 rcu_assign_pointer(event->rb, NULL);
3921 ring_buffer_detach(event, rb);
3922 ring_buffer_put(rb); /* can't be last, we still have one */
3923 }
3924 mutex_unlock(&event->mmap_mutex);
3925 put_event(event);
3926
3927 /*
3928 * Restart the iteration; either we're on the wrong list or
3929 * destroyed its integrity by doing a deletion.
3930 */
3931 goto again;
3932 }
3933 rcu_read_unlock();
3934
3935 /*
3936 * It could be there's still a few 0-ref events on the list; they'll
3937 * get cleaned up by free_event() -- they'll also still have their
3938 * ref on the rb and will free it whenever they are done with it.
3939 *
3940 * Aside from that, this buffer is 'fully' detached and unmapped,
3941 * undo the VM accounting.
3942 */
3943
3944 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3945 vma->vm_mm->pinned_vm -= mmap_locked;
3946 free_uid(mmap_user);
3947
3948 ring_buffer_put(rb); /* could be last */
3949 }
3950
3951 static const struct vm_operations_struct perf_mmap_vmops = {
3952 .open = perf_mmap_open,
3953 .close = perf_mmap_close,
3954 .fault = perf_mmap_fault,
3955 .page_mkwrite = perf_mmap_fault,
3956 };
3957
3958 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3959 {
3960 struct perf_event *event = file->private_data;
3961 unsigned long user_locked, user_lock_limit;
3962 struct user_struct *user = current_user();
3963 unsigned long locked, lock_limit;
3964 struct ring_buffer *rb;
3965 unsigned long vma_size;
3966 unsigned long nr_pages;
3967 long user_extra, extra;
3968 int ret = 0, flags = 0;
3969
3970 /*
3971 * Don't allow mmap() of inherited per-task counters. This would
3972 * create a performance issue due to all children writing to the
3973 * same rb.
3974 */
3975 if (event->cpu == -1 && event->attr.inherit)
3976 return -EINVAL;
3977
3978 if (!(vma->vm_flags & VM_SHARED))
3979 return -EINVAL;
3980
3981 vma_size = vma->vm_end - vma->vm_start;
3982 nr_pages = (vma_size / PAGE_SIZE) - 1;
3983
3984 /*
3985 * If we have rb pages ensure they're a power-of-two number, so we
3986 * can do bitmasks instead of modulo.
3987 */
3988 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3989 return -EINVAL;
3990
3991 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3992 return -EINVAL;
3993
3994 if (vma->vm_pgoff != 0)
3995 return -EINVAL;
3996
3997 WARN_ON_ONCE(event->ctx->parent_ctx);
3998 again:
3999 mutex_lock(&event->mmap_mutex);
4000 if (event->rb) {
4001 if (event->rb->nr_pages != nr_pages) {
4002 ret = -EINVAL;
4003 goto unlock;
4004 }
4005
4006 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4007 /*
4008 * Raced against perf_mmap_close() through
4009 * perf_event_set_output(). Try again, hope for better
4010 * luck.
4011 */
4012 mutex_unlock(&event->mmap_mutex);
4013 goto again;
4014 }
4015
4016 goto unlock;
4017 }
4018
4019 user_extra = nr_pages + 1;
4020 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4021
4022 /*
4023 * Increase the limit linearly with more CPUs:
4024 */
4025 user_lock_limit *= num_online_cpus();
4026
4027 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4028
4029 extra = 0;
4030 if (user_locked > user_lock_limit)
4031 extra = user_locked - user_lock_limit;
4032
4033 lock_limit = rlimit(RLIMIT_MEMLOCK);
4034 lock_limit >>= PAGE_SHIFT;
4035 locked = vma->vm_mm->pinned_vm + extra;
4036
4037 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4038 !capable(CAP_IPC_LOCK)) {
4039 ret = -EPERM;
4040 goto unlock;
4041 }
4042
4043 WARN_ON(event->rb);
4044
4045 if (vma->vm_flags & VM_WRITE)
4046 flags |= RING_BUFFER_WRITABLE;
4047
4048 rb = rb_alloc(nr_pages,
4049 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4050 event->cpu, flags);
4051
4052 if (!rb) {
4053 ret = -ENOMEM;
4054 goto unlock;
4055 }
4056
4057 atomic_set(&rb->mmap_count, 1);
4058 rb->mmap_locked = extra;
4059 rb->mmap_user = get_current_user();
4060
4061 atomic_long_add(user_extra, &user->locked_vm);
4062 vma->vm_mm->pinned_vm += extra;
4063
4064 ring_buffer_attach(event, rb);
4065 rcu_assign_pointer(event->rb, rb);
4066
4067 perf_event_init_userpage(event);
4068 perf_event_update_userpage(event);
4069
4070 unlock:
4071 if (!ret)
4072 atomic_inc(&event->mmap_count);
4073 mutex_unlock(&event->mmap_mutex);
4074
4075 /*
4076 * Since pinned accounting is per vm we cannot allow fork() to copy our
4077 * vma.
4078 */
4079 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4080 vma->vm_ops = &perf_mmap_vmops;
4081
4082 return ret;
4083 }
4084
4085 static int perf_fasync(int fd, struct file *filp, int on)
4086 {
4087 struct inode *inode = file_inode(filp);
4088 struct perf_event *event = filp->private_data;
4089 int retval;
4090
4091 mutex_lock(&inode->i_mutex);
4092 retval = fasync_helper(fd, filp, on, &event->fasync);
4093 mutex_unlock(&inode->i_mutex);
4094
4095 if (retval < 0)
4096 return retval;
4097
4098 return 0;
4099 }
4100
4101 static const struct file_operations perf_fops = {
4102 .llseek = no_llseek,
4103 .release = perf_release,
4104 .read = perf_read,
4105 .poll = perf_poll,
4106 .unlocked_ioctl = perf_ioctl,
4107 .compat_ioctl = perf_ioctl,
4108 .mmap = perf_mmap,
4109 .fasync = perf_fasync,
4110 };
4111
4112 /*
4113 * Perf event wakeup
4114 *
4115 * If there's data, ensure we set the poll() state and publish everything
4116 * to user-space before waking everybody up.
4117 */
4118
4119 void perf_event_wakeup(struct perf_event *event)
4120 {
4121 ring_buffer_wakeup(event);
4122
4123 if (event->pending_kill) {
4124 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4125 event->pending_kill = 0;
4126 }
4127 }
4128
4129 static void perf_pending_event(struct irq_work *entry)
4130 {
4131 struct perf_event *event = container_of(entry,
4132 struct perf_event, pending);
4133
4134 if (event->pending_disable) {
4135 event->pending_disable = 0;
4136 __perf_event_disable(event);
4137 }
4138
4139 if (event->pending_wakeup) {
4140 event->pending_wakeup = 0;
4141 perf_event_wakeup(event);
4142 }
4143 }
4144
4145 /*
4146 * We assume there is only KVM supporting the callbacks.
4147 * Later on, we might change it to a list if there is
4148 * another virtualization implementation supporting the callbacks.
4149 */
4150 struct perf_guest_info_callbacks *perf_guest_cbs;
4151
4152 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4153 {
4154 perf_guest_cbs = cbs;
4155 return 0;
4156 }
4157 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4158
4159 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4160 {
4161 perf_guest_cbs = NULL;
4162 return 0;
4163 }
4164 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4165
4166 static void
4167 perf_output_sample_regs(struct perf_output_handle *handle,
4168 struct pt_regs *regs, u64 mask)
4169 {
4170 int bit;
4171
4172 for_each_set_bit(bit, (const unsigned long *) &mask,
4173 sizeof(mask) * BITS_PER_BYTE) {
4174 u64 val;
4175
4176 val = perf_reg_value(regs, bit);
4177 perf_output_put(handle, val);
4178 }
4179 }
4180
4181 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4182 struct pt_regs *regs)
4183 {
4184 if (!user_mode(regs)) {
4185 if (current->mm)
4186 regs = task_pt_regs(current);
4187 else
4188 regs = NULL;
4189 }
4190
4191 if (regs) {
4192 regs_user->regs = regs;
4193 regs_user->abi = perf_reg_abi(current);
4194 }
4195 }
4196
4197 /*
4198 * Get remaining task size from user stack pointer.
4199 *
4200 * It'd be better to take stack vma map and limit this more
4201 * precisly, but there's no way to get it safely under interrupt,
4202 * so using TASK_SIZE as limit.
4203 */
4204 static u64 perf_ustack_task_size(struct pt_regs *regs)
4205 {
4206 unsigned long addr = perf_user_stack_pointer(regs);
4207
4208 if (!addr || addr >= TASK_SIZE)
4209 return 0;
4210
4211 return TASK_SIZE - addr;
4212 }
4213
4214 static u16
4215 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4216 struct pt_regs *regs)
4217 {
4218 u64 task_size;
4219
4220 /* No regs, no stack pointer, no dump. */
4221 if (!regs)
4222 return 0;
4223
4224 /*
4225 * Check if we fit in with the requested stack size into the:
4226 * - TASK_SIZE
4227 * If we don't, we limit the size to the TASK_SIZE.
4228 *
4229 * - remaining sample size
4230 * If we don't, we customize the stack size to
4231 * fit in to the remaining sample size.
4232 */
4233
4234 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4235 stack_size = min(stack_size, (u16) task_size);
4236
4237 /* Current header size plus static size and dynamic size. */
4238 header_size += 2 * sizeof(u64);
4239
4240 /* Do we fit in with the current stack dump size? */
4241 if ((u16) (header_size + stack_size) < header_size) {
4242 /*
4243 * If we overflow the maximum size for the sample,
4244 * we customize the stack dump size to fit in.
4245 */
4246 stack_size = USHRT_MAX - header_size - sizeof(u64);
4247 stack_size = round_up(stack_size, sizeof(u64));
4248 }
4249
4250 return stack_size;
4251 }
4252
4253 static void
4254 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4255 struct pt_regs *regs)
4256 {
4257 /* Case of a kernel thread, nothing to dump */
4258 if (!regs) {
4259 u64 size = 0;
4260 perf_output_put(handle, size);
4261 } else {
4262 unsigned long sp;
4263 unsigned int rem;
4264 u64 dyn_size;
4265
4266 /*
4267 * We dump:
4268 * static size
4269 * - the size requested by user or the best one we can fit
4270 * in to the sample max size
4271 * data
4272 * - user stack dump data
4273 * dynamic size
4274 * - the actual dumped size
4275 */
4276
4277 /* Static size. */
4278 perf_output_put(handle, dump_size);
4279
4280 /* Data. */
4281 sp = perf_user_stack_pointer(regs);
4282 rem = __output_copy_user(handle, (void *) sp, dump_size);
4283 dyn_size = dump_size - rem;
4284
4285 perf_output_skip(handle, rem);
4286
4287 /* Dynamic size. */
4288 perf_output_put(handle, dyn_size);
4289 }
4290 }
4291
4292 static void __perf_event_header__init_id(struct perf_event_header *header,
4293 struct perf_sample_data *data,
4294 struct perf_event *event)
4295 {
4296 u64 sample_type = event->attr.sample_type;
4297
4298 data->type = sample_type;
4299 header->size += event->id_header_size;
4300
4301 if (sample_type & PERF_SAMPLE_TID) {
4302 /* namespace issues */
4303 data->tid_entry.pid = perf_event_pid(event, current);
4304 data->tid_entry.tid = perf_event_tid(event, current);
4305 }
4306
4307 if (sample_type & PERF_SAMPLE_TIME)
4308 data->time = perf_clock();
4309
4310 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4311 data->id = primary_event_id(event);
4312
4313 if (sample_type & PERF_SAMPLE_STREAM_ID)
4314 data->stream_id = event->id;
4315
4316 if (sample_type & PERF_SAMPLE_CPU) {
4317 data->cpu_entry.cpu = raw_smp_processor_id();
4318 data->cpu_entry.reserved = 0;
4319 }
4320 }
4321
4322 void perf_event_header__init_id(struct perf_event_header *header,
4323 struct perf_sample_data *data,
4324 struct perf_event *event)
4325 {
4326 if (event->attr.sample_id_all)
4327 __perf_event_header__init_id(header, data, event);
4328 }
4329
4330 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4331 struct perf_sample_data *data)
4332 {
4333 u64 sample_type = data->type;
4334
4335 if (sample_type & PERF_SAMPLE_TID)
4336 perf_output_put(handle, data->tid_entry);
4337
4338 if (sample_type & PERF_SAMPLE_TIME)
4339 perf_output_put(handle, data->time);
4340
4341 if (sample_type & PERF_SAMPLE_ID)
4342 perf_output_put(handle, data->id);
4343
4344 if (sample_type & PERF_SAMPLE_STREAM_ID)
4345 perf_output_put(handle, data->stream_id);
4346
4347 if (sample_type & PERF_SAMPLE_CPU)
4348 perf_output_put(handle, data->cpu_entry);
4349
4350 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4351 perf_output_put(handle, data->id);
4352 }
4353
4354 void perf_event__output_id_sample(struct perf_event *event,
4355 struct perf_output_handle *handle,
4356 struct perf_sample_data *sample)
4357 {
4358 if (event->attr.sample_id_all)
4359 __perf_event__output_id_sample(handle, sample);
4360 }
4361
4362 static void perf_output_read_one(struct perf_output_handle *handle,
4363 struct perf_event *event,
4364 u64 enabled, u64 running)
4365 {
4366 u64 read_format = event->attr.read_format;
4367 u64 values[4];
4368 int n = 0;
4369
4370 values[n++] = perf_event_count(event);
4371 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4372 values[n++] = enabled +
4373 atomic64_read(&event->child_total_time_enabled);
4374 }
4375 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4376 values[n++] = running +
4377 atomic64_read(&event->child_total_time_running);
4378 }
4379 if (read_format & PERF_FORMAT_ID)
4380 values[n++] = primary_event_id(event);
4381
4382 __output_copy(handle, values, n * sizeof(u64));
4383 }
4384
4385 /*
4386 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4387 */
4388 static void perf_output_read_group(struct perf_output_handle *handle,
4389 struct perf_event *event,
4390 u64 enabled, u64 running)
4391 {
4392 struct perf_event *leader = event->group_leader, *sub;
4393 u64 read_format = event->attr.read_format;
4394 u64 values[5];
4395 int n = 0;
4396
4397 values[n++] = 1 + leader->nr_siblings;
4398
4399 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4400 values[n++] = enabled;
4401
4402 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4403 values[n++] = running;
4404
4405 if (leader != event)
4406 leader->pmu->read(leader);
4407
4408 values[n++] = perf_event_count(leader);
4409 if (read_format & PERF_FORMAT_ID)
4410 values[n++] = primary_event_id(leader);
4411
4412 __output_copy(handle, values, n * sizeof(u64));
4413
4414 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4415 n = 0;
4416
4417 if ((sub != event) &&
4418 (sub->state == PERF_EVENT_STATE_ACTIVE))
4419 sub->pmu->read(sub);
4420
4421 values[n++] = perf_event_count(sub);
4422 if (read_format & PERF_FORMAT_ID)
4423 values[n++] = primary_event_id(sub);
4424
4425 __output_copy(handle, values, n * sizeof(u64));
4426 }
4427 }
4428
4429 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4430 PERF_FORMAT_TOTAL_TIME_RUNNING)
4431
4432 static void perf_output_read(struct perf_output_handle *handle,
4433 struct perf_event *event)
4434 {
4435 u64 enabled = 0, running = 0, now;
4436 u64 read_format = event->attr.read_format;
4437
4438 /*
4439 * compute total_time_enabled, total_time_running
4440 * based on snapshot values taken when the event
4441 * was last scheduled in.
4442 *
4443 * we cannot simply called update_context_time()
4444 * because of locking issue as we are called in
4445 * NMI context
4446 */
4447 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4448 calc_timer_values(event, &now, &enabled, &running);
4449
4450 if (event->attr.read_format & PERF_FORMAT_GROUP)
4451 perf_output_read_group(handle, event, enabled, running);
4452 else
4453 perf_output_read_one(handle, event, enabled, running);
4454 }
4455
4456 void perf_output_sample(struct perf_output_handle *handle,
4457 struct perf_event_header *header,
4458 struct perf_sample_data *data,
4459 struct perf_event *event)
4460 {
4461 u64 sample_type = data->type;
4462
4463 perf_output_put(handle, *header);
4464
4465 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4466 perf_output_put(handle, data->id);
4467
4468 if (sample_type & PERF_SAMPLE_IP)
4469 perf_output_put(handle, data->ip);
4470
4471 if (sample_type & PERF_SAMPLE_TID)
4472 perf_output_put(handle, data->tid_entry);
4473
4474 if (sample_type & PERF_SAMPLE_TIME)
4475 perf_output_put(handle, data->time);
4476
4477 if (sample_type & PERF_SAMPLE_ADDR)
4478 perf_output_put(handle, data->addr);
4479
4480 if (sample_type & PERF_SAMPLE_ID)
4481 perf_output_put(handle, data->id);
4482
4483 if (sample_type & PERF_SAMPLE_STREAM_ID)
4484 perf_output_put(handle, data->stream_id);
4485
4486 if (sample_type & PERF_SAMPLE_CPU)
4487 perf_output_put(handle, data->cpu_entry);
4488
4489 if (sample_type & PERF_SAMPLE_PERIOD)
4490 perf_output_put(handle, data->period);
4491
4492 if (sample_type & PERF_SAMPLE_READ)
4493 perf_output_read(handle, event);
4494
4495 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4496 if (data->callchain) {
4497 int size = 1;
4498
4499 if (data->callchain)
4500 size += data->callchain->nr;
4501
4502 size *= sizeof(u64);
4503
4504 __output_copy(handle, data->callchain, size);
4505 } else {
4506 u64 nr = 0;
4507 perf_output_put(handle, nr);
4508 }
4509 }
4510
4511 if (sample_type & PERF_SAMPLE_RAW) {
4512 if (data->raw) {
4513 perf_output_put(handle, data->raw->size);
4514 __output_copy(handle, data->raw->data,
4515 data->raw->size);
4516 } else {
4517 struct {
4518 u32 size;
4519 u32 data;
4520 } raw = {
4521 .size = sizeof(u32),
4522 .data = 0,
4523 };
4524 perf_output_put(handle, raw);
4525 }
4526 }
4527
4528 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4529 if (data->br_stack) {
4530 size_t size;
4531
4532 size = data->br_stack->nr
4533 * sizeof(struct perf_branch_entry);
4534
4535 perf_output_put(handle, data->br_stack->nr);
4536 perf_output_copy(handle, data->br_stack->entries, size);
4537 } else {
4538 /*
4539 * we always store at least the value of nr
4540 */
4541 u64 nr = 0;
4542 perf_output_put(handle, nr);
4543 }
4544 }
4545
4546 if (sample_type & PERF_SAMPLE_REGS_USER) {
4547 u64 abi = data->regs_user.abi;
4548
4549 /*
4550 * If there are no regs to dump, notice it through
4551 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4552 */
4553 perf_output_put(handle, abi);
4554
4555 if (abi) {
4556 u64 mask = event->attr.sample_regs_user;
4557 perf_output_sample_regs(handle,
4558 data->regs_user.regs,
4559 mask);
4560 }
4561 }
4562
4563 if (sample_type & PERF_SAMPLE_STACK_USER) {
4564 perf_output_sample_ustack(handle,
4565 data->stack_user_size,
4566 data->regs_user.regs);
4567 }
4568
4569 if (sample_type & PERF_SAMPLE_WEIGHT)
4570 perf_output_put(handle, data->weight);
4571
4572 if (sample_type & PERF_SAMPLE_DATA_SRC)
4573 perf_output_put(handle, data->data_src.val);
4574
4575 if (!event->attr.watermark) {
4576 int wakeup_events = event->attr.wakeup_events;
4577
4578 if (wakeup_events) {
4579 struct ring_buffer *rb = handle->rb;
4580 int events = local_inc_return(&rb->events);
4581
4582 if (events >= wakeup_events) {
4583 local_sub(wakeup_events, &rb->events);
4584 local_inc(&rb->wakeup);
4585 }
4586 }
4587 }
4588 }
4589
4590 void perf_prepare_sample(struct perf_event_header *header,
4591 struct perf_sample_data *data,
4592 struct perf_event *event,
4593 struct pt_regs *regs)
4594 {
4595 u64 sample_type = event->attr.sample_type;
4596
4597 header->type = PERF_RECORD_SAMPLE;
4598 header->size = sizeof(*header) + event->header_size;
4599
4600 header->misc = 0;
4601 header->misc |= perf_misc_flags(regs);
4602
4603 __perf_event_header__init_id(header, data, event);
4604
4605 if (sample_type & PERF_SAMPLE_IP)
4606 data->ip = perf_instruction_pointer(regs);
4607
4608 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4609 int size = 1;
4610
4611 data->callchain = perf_callchain(event, regs);
4612
4613 if (data->callchain)
4614 size += data->callchain->nr;
4615
4616 header->size += size * sizeof(u64);
4617 }
4618
4619 if (sample_type & PERF_SAMPLE_RAW) {
4620 int size = sizeof(u32);
4621
4622 if (data->raw)
4623 size += data->raw->size;
4624 else
4625 size += sizeof(u32);
4626
4627 WARN_ON_ONCE(size & (sizeof(u64)-1));
4628 header->size += size;
4629 }
4630
4631 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4632 int size = sizeof(u64); /* nr */
4633 if (data->br_stack) {
4634 size += data->br_stack->nr
4635 * sizeof(struct perf_branch_entry);
4636 }
4637 header->size += size;
4638 }
4639
4640 if (sample_type & PERF_SAMPLE_REGS_USER) {
4641 /* regs dump ABI info */
4642 int size = sizeof(u64);
4643
4644 perf_sample_regs_user(&data->regs_user, regs);
4645
4646 if (data->regs_user.regs) {
4647 u64 mask = event->attr.sample_regs_user;
4648 size += hweight64(mask) * sizeof(u64);
4649 }
4650
4651 header->size += size;
4652 }
4653
4654 if (sample_type & PERF_SAMPLE_STACK_USER) {
4655 /*
4656 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4657 * processed as the last one or have additional check added
4658 * in case new sample type is added, because we could eat
4659 * up the rest of the sample size.
4660 */
4661 struct perf_regs_user *uregs = &data->regs_user;
4662 u16 stack_size = event->attr.sample_stack_user;
4663 u16 size = sizeof(u64);
4664
4665 if (!uregs->abi)
4666 perf_sample_regs_user(uregs, regs);
4667
4668 stack_size = perf_sample_ustack_size(stack_size, header->size,
4669 uregs->regs);
4670
4671 /*
4672 * If there is something to dump, add space for the dump
4673 * itself and for the field that tells the dynamic size,
4674 * which is how many have been actually dumped.
4675 */
4676 if (stack_size)
4677 size += sizeof(u64) + stack_size;
4678
4679 data->stack_user_size = stack_size;
4680 header->size += size;
4681 }
4682 }
4683
4684 static void perf_event_output(struct perf_event *event,
4685 struct perf_sample_data *data,
4686 struct pt_regs *regs)
4687 {
4688 struct perf_output_handle handle;
4689 struct perf_event_header header;
4690
4691 /* protect the callchain buffers */
4692 rcu_read_lock();
4693
4694 perf_prepare_sample(&header, data, event, regs);
4695
4696 if (perf_output_begin(&handle, event, header.size))
4697 goto exit;
4698
4699 perf_output_sample(&handle, &header, data, event);
4700
4701 perf_output_end(&handle);
4702
4703 exit:
4704 rcu_read_unlock();
4705 }
4706
4707 /*
4708 * read event_id
4709 */
4710
4711 struct perf_read_event {
4712 struct perf_event_header header;
4713
4714 u32 pid;
4715 u32 tid;
4716 };
4717
4718 static void
4719 perf_event_read_event(struct perf_event *event,
4720 struct task_struct *task)
4721 {
4722 struct perf_output_handle handle;
4723 struct perf_sample_data sample;
4724 struct perf_read_event read_event = {
4725 .header = {
4726 .type = PERF_RECORD_READ,
4727 .misc = 0,
4728 .size = sizeof(read_event) + event->read_size,
4729 },
4730 .pid = perf_event_pid(event, task),
4731 .tid = perf_event_tid(event, task),
4732 };
4733 int ret;
4734
4735 perf_event_header__init_id(&read_event.header, &sample, event);
4736 ret = perf_output_begin(&handle, event, read_event.header.size);
4737 if (ret)
4738 return;
4739
4740 perf_output_put(&handle, read_event);
4741 perf_output_read(&handle, event);
4742 perf_event__output_id_sample(event, &handle, &sample);
4743
4744 perf_output_end(&handle);
4745 }
4746
4747 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4748
4749 static void
4750 perf_event_aux_ctx(struct perf_event_context *ctx,
4751 perf_event_aux_output_cb output,
4752 void *data)
4753 {
4754 struct perf_event *event;
4755
4756 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4757 if (event->state < PERF_EVENT_STATE_INACTIVE)
4758 continue;
4759 if (!event_filter_match(event))
4760 continue;
4761 output(event, data);
4762 }
4763 }
4764
4765 static void
4766 perf_event_aux(perf_event_aux_output_cb output, void *data,
4767 struct perf_event_context *task_ctx)
4768 {
4769 struct perf_cpu_context *cpuctx;
4770 struct perf_event_context *ctx;
4771 struct pmu *pmu;
4772 int ctxn;
4773
4774 rcu_read_lock();
4775 list_for_each_entry_rcu(pmu, &pmus, entry) {
4776 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4777 if (cpuctx->unique_pmu != pmu)
4778 goto next;
4779 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4780 if (task_ctx)
4781 goto next;
4782 ctxn = pmu->task_ctx_nr;
4783 if (ctxn < 0)
4784 goto next;
4785 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4786 if (ctx)
4787 perf_event_aux_ctx(ctx, output, data);
4788 next:
4789 put_cpu_ptr(pmu->pmu_cpu_context);
4790 }
4791
4792 if (task_ctx) {
4793 preempt_disable();
4794 perf_event_aux_ctx(task_ctx, output, data);
4795 preempt_enable();
4796 }
4797 rcu_read_unlock();
4798 }
4799
4800 /*
4801 * task tracking -- fork/exit
4802 *
4803 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4804 */
4805
4806 struct perf_task_event {
4807 struct task_struct *task;
4808 struct perf_event_context *task_ctx;
4809
4810 struct {
4811 struct perf_event_header header;
4812
4813 u32 pid;
4814 u32 ppid;
4815 u32 tid;
4816 u32 ptid;
4817 u64 time;
4818 } event_id;
4819 };
4820
4821 static int perf_event_task_match(struct perf_event *event)
4822 {
4823 return event->attr.comm || event->attr.mmap ||
4824 event->attr.mmap2 || event->attr.mmap_data ||
4825 event->attr.task;
4826 }
4827
4828 static void perf_event_task_output(struct perf_event *event,
4829 void *data)
4830 {
4831 struct perf_task_event *task_event = data;
4832 struct perf_output_handle handle;
4833 struct perf_sample_data sample;
4834 struct task_struct *task = task_event->task;
4835 int ret, size = task_event->event_id.header.size;
4836
4837 if (!perf_event_task_match(event))
4838 return;
4839
4840 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4841
4842 ret = perf_output_begin(&handle, event,
4843 task_event->event_id.header.size);
4844 if (ret)
4845 goto out;
4846
4847 task_event->event_id.pid = perf_event_pid(event, task);
4848 task_event->event_id.ppid = perf_event_pid(event, current);
4849
4850 task_event->event_id.tid = perf_event_tid(event, task);
4851 task_event->event_id.ptid = perf_event_tid(event, current);
4852
4853 perf_output_put(&handle, task_event->event_id);
4854
4855 perf_event__output_id_sample(event, &handle, &sample);
4856
4857 perf_output_end(&handle);
4858 out:
4859 task_event->event_id.header.size = size;
4860 }
4861
4862 static void perf_event_task(struct task_struct *task,
4863 struct perf_event_context *task_ctx,
4864 int new)
4865 {
4866 struct perf_task_event task_event;
4867
4868 if (!atomic_read(&nr_comm_events) &&
4869 !atomic_read(&nr_mmap_events) &&
4870 !atomic_read(&nr_task_events))
4871 return;
4872
4873 task_event = (struct perf_task_event){
4874 .task = task,
4875 .task_ctx = task_ctx,
4876 .event_id = {
4877 .header = {
4878 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4879 .misc = 0,
4880 .size = sizeof(task_event.event_id),
4881 },
4882 /* .pid */
4883 /* .ppid */
4884 /* .tid */
4885 /* .ptid */
4886 .time = perf_clock(),
4887 },
4888 };
4889
4890 perf_event_aux(perf_event_task_output,
4891 &task_event,
4892 task_ctx);
4893 }
4894
4895 void perf_event_fork(struct task_struct *task)
4896 {
4897 perf_event_task(task, NULL, 1);
4898 }
4899
4900 /*
4901 * comm tracking
4902 */
4903
4904 struct perf_comm_event {
4905 struct task_struct *task;
4906 char *comm;
4907 int comm_size;
4908
4909 struct {
4910 struct perf_event_header header;
4911
4912 u32 pid;
4913 u32 tid;
4914 } event_id;
4915 };
4916
4917 static int perf_event_comm_match(struct perf_event *event)
4918 {
4919 return event->attr.comm;
4920 }
4921
4922 static void perf_event_comm_output(struct perf_event *event,
4923 void *data)
4924 {
4925 struct perf_comm_event *comm_event = data;
4926 struct perf_output_handle handle;
4927 struct perf_sample_data sample;
4928 int size = comm_event->event_id.header.size;
4929 int ret;
4930
4931 if (!perf_event_comm_match(event))
4932 return;
4933
4934 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4935 ret = perf_output_begin(&handle, event,
4936 comm_event->event_id.header.size);
4937
4938 if (ret)
4939 goto out;
4940
4941 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4942 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4943
4944 perf_output_put(&handle, comm_event->event_id);
4945 __output_copy(&handle, comm_event->comm,
4946 comm_event->comm_size);
4947
4948 perf_event__output_id_sample(event, &handle, &sample);
4949
4950 perf_output_end(&handle);
4951 out:
4952 comm_event->event_id.header.size = size;
4953 }
4954
4955 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4956 {
4957 char comm[TASK_COMM_LEN];
4958 unsigned int size;
4959
4960 memset(comm, 0, sizeof(comm));
4961 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4962 size = ALIGN(strlen(comm)+1, sizeof(u64));
4963
4964 comm_event->comm = comm;
4965 comm_event->comm_size = size;
4966
4967 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4968
4969 perf_event_aux(perf_event_comm_output,
4970 comm_event,
4971 NULL);
4972 }
4973
4974 void perf_event_comm(struct task_struct *task)
4975 {
4976 struct perf_comm_event comm_event;
4977 struct perf_event_context *ctx;
4978 int ctxn;
4979
4980 rcu_read_lock();
4981 for_each_task_context_nr(ctxn) {
4982 ctx = task->perf_event_ctxp[ctxn];
4983 if (!ctx)
4984 continue;
4985
4986 perf_event_enable_on_exec(ctx);
4987 }
4988 rcu_read_unlock();
4989
4990 if (!atomic_read(&nr_comm_events))
4991 return;
4992
4993 comm_event = (struct perf_comm_event){
4994 .task = task,
4995 /* .comm */
4996 /* .comm_size */
4997 .event_id = {
4998 .header = {
4999 .type = PERF_RECORD_COMM,
5000 .misc = 0,
5001 /* .size */
5002 },
5003 /* .pid */
5004 /* .tid */
5005 },
5006 };
5007
5008 perf_event_comm_event(&comm_event);
5009 }
5010
5011 /*
5012 * mmap tracking
5013 */
5014
5015 struct perf_mmap_event {
5016 struct vm_area_struct *vma;
5017
5018 const char *file_name;
5019 int file_size;
5020 int maj, min;
5021 u64 ino;
5022 u64 ino_generation;
5023
5024 struct {
5025 struct perf_event_header header;
5026
5027 u32 pid;
5028 u32 tid;
5029 u64 start;
5030 u64 len;
5031 u64 pgoff;
5032 } event_id;
5033 };
5034
5035 static int perf_event_mmap_match(struct perf_event *event,
5036 void *data)
5037 {
5038 struct perf_mmap_event *mmap_event = data;
5039 struct vm_area_struct *vma = mmap_event->vma;
5040 int executable = vma->vm_flags & VM_EXEC;
5041
5042 return (!executable && event->attr.mmap_data) ||
5043 (executable && (event->attr.mmap || event->attr.mmap2));
5044 }
5045
5046 static void perf_event_mmap_output(struct perf_event *event,
5047 void *data)
5048 {
5049 struct perf_mmap_event *mmap_event = data;
5050 struct perf_output_handle handle;
5051 struct perf_sample_data sample;
5052 int size = mmap_event->event_id.header.size;
5053 int ret;
5054
5055 if (!perf_event_mmap_match(event, data))
5056 return;
5057
5058 if (event->attr.mmap2) {
5059 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5060 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5061 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5062 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5063 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5064 }
5065
5066 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5067 ret = perf_output_begin(&handle, event,
5068 mmap_event->event_id.header.size);
5069 if (ret)
5070 goto out;
5071
5072 mmap_event->event_id.pid = perf_event_pid(event, current);
5073 mmap_event->event_id.tid = perf_event_tid(event, current);
5074
5075 perf_output_put(&handle, mmap_event->event_id);
5076
5077 if (event->attr.mmap2) {
5078 perf_output_put(&handle, mmap_event->maj);
5079 perf_output_put(&handle, mmap_event->min);
5080 perf_output_put(&handle, mmap_event->ino);
5081 perf_output_put(&handle, mmap_event->ino_generation);
5082 }
5083
5084 __output_copy(&handle, mmap_event->file_name,
5085 mmap_event->file_size);
5086
5087 perf_event__output_id_sample(event, &handle, &sample);
5088
5089 perf_output_end(&handle);
5090 out:
5091 mmap_event->event_id.header.size = size;
5092 }
5093
5094 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5095 {
5096 struct vm_area_struct *vma = mmap_event->vma;
5097 struct file *file = vma->vm_file;
5098 int maj = 0, min = 0;
5099 u64 ino = 0, gen = 0;
5100 unsigned int size;
5101 char tmp[16];
5102 char *buf = NULL;
5103 const char *name;
5104
5105 memset(tmp, 0, sizeof(tmp));
5106
5107 if (file) {
5108 struct inode *inode;
5109 dev_t dev;
5110 /*
5111 * d_path works from the end of the rb backwards, so we
5112 * need to add enough zero bytes after the string to handle
5113 * the 64bit alignment we do later.
5114 */
5115 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5116 if (!buf) {
5117 name = strncpy(tmp, "//enomem", sizeof(tmp));
5118 goto got_name;
5119 }
5120 name = d_path(&file->f_path, buf, PATH_MAX);
5121 if (IS_ERR(name)) {
5122 name = strncpy(tmp, "//toolong", sizeof(tmp));
5123 goto got_name;
5124 }
5125 inode = file_inode(vma->vm_file);
5126 dev = inode->i_sb->s_dev;
5127 ino = inode->i_ino;
5128 gen = inode->i_generation;
5129 maj = MAJOR(dev);
5130 min = MINOR(dev);
5131
5132 } else {
5133 if (arch_vma_name(mmap_event->vma)) {
5134 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5135 sizeof(tmp) - 1);
5136 tmp[sizeof(tmp) - 1] = '\0';
5137 goto got_name;
5138 }
5139
5140 if (!vma->vm_mm) {
5141 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5142 goto got_name;
5143 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5144 vma->vm_end >= vma->vm_mm->brk) {
5145 name = strncpy(tmp, "[heap]", sizeof(tmp));
5146 goto got_name;
5147 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5148 vma->vm_end >= vma->vm_mm->start_stack) {
5149 name = strncpy(tmp, "[stack]", sizeof(tmp));
5150 goto got_name;
5151 }
5152
5153 name = strncpy(tmp, "//anon", sizeof(tmp));
5154 goto got_name;
5155 }
5156
5157 got_name:
5158 size = ALIGN(strlen(name)+1, sizeof(u64));
5159
5160 mmap_event->file_name = name;
5161 mmap_event->file_size = size;
5162 mmap_event->maj = maj;
5163 mmap_event->min = min;
5164 mmap_event->ino = ino;
5165 mmap_event->ino_generation = gen;
5166
5167 if (!(vma->vm_flags & VM_EXEC))
5168 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5169
5170 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5171
5172 perf_event_aux(perf_event_mmap_output,
5173 mmap_event,
5174 NULL);
5175
5176 kfree(buf);
5177 }
5178
5179 void perf_event_mmap(struct vm_area_struct *vma)
5180 {
5181 struct perf_mmap_event mmap_event;
5182
5183 if (!atomic_read(&nr_mmap_events))
5184 return;
5185
5186 mmap_event = (struct perf_mmap_event){
5187 .vma = vma,
5188 /* .file_name */
5189 /* .file_size */
5190 .event_id = {
5191 .header = {
5192 .type = PERF_RECORD_MMAP,
5193 .misc = PERF_RECORD_MISC_USER,
5194 /* .size */
5195 },
5196 /* .pid */
5197 /* .tid */
5198 .start = vma->vm_start,
5199 .len = vma->vm_end - vma->vm_start,
5200 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5201 },
5202 /* .maj (attr_mmap2 only) */
5203 /* .min (attr_mmap2 only) */
5204 /* .ino (attr_mmap2 only) */
5205 /* .ino_generation (attr_mmap2 only) */
5206 };
5207
5208 perf_event_mmap_event(&mmap_event);
5209 }
5210
5211 /*
5212 * IRQ throttle logging
5213 */
5214
5215 static void perf_log_throttle(struct perf_event *event, int enable)
5216 {
5217 struct perf_output_handle handle;
5218 struct perf_sample_data sample;
5219 int ret;
5220
5221 struct {
5222 struct perf_event_header header;
5223 u64 time;
5224 u64 id;
5225 u64 stream_id;
5226 } throttle_event = {
5227 .header = {
5228 .type = PERF_RECORD_THROTTLE,
5229 .misc = 0,
5230 .size = sizeof(throttle_event),
5231 },
5232 .time = perf_clock(),
5233 .id = primary_event_id(event),
5234 .stream_id = event->id,
5235 };
5236
5237 if (enable)
5238 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5239
5240 perf_event_header__init_id(&throttle_event.header, &sample, event);
5241
5242 ret = perf_output_begin(&handle, event,
5243 throttle_event.header.size);
5244 if (ret)
5245 return;
5246
5247 perf_output_put(&handle, throttle_event);
5248 perf_event__output_id_sample(event, &handle, &sample);
5249 perf_output_end(&handle);
5250 }
5251
5252 /*
5253 * Generic event overflow handling, sampling.
5254 */
5255
5256 static int __perf_event_overflow(struct perf_event *event,
5257 int throttle, struct perf_sample_data *data,
5258 struct pt_regs *regs)
5259 {
5260 int events = atomic_read(&event->event_limit);
5261 struct hw_perf_event *hwc = &event->hw;
5262 u64 seq;
5263 int ret = 0;
5264
5265 /*
5266 * Non-sampling counters might still use the PMI to fold short
5267 * hardware counters, ignore those.
5268 */
5269 if (unlikely(!is_sampling_event(event)))
5270 return 0;
5271
5272 seq = __this_cpu_read(perf_throttled_seq);
5273 if (seq != hwc->interrupts_seq) {
5274 hwc->interrupts_seq = seq;
5275 hwc->interrupts = 1;
5276 } else {
5277 hwc->interrupts++;
5278 if (unlikely(throttle
5279 && hwc->interrupts >= max_samples_per_tick)) {
5280 __this_cpu_inc(perf_throttled_count);
5281 hwc->interrupts = MAX_INTERRUPTS;
5282 perf_log_throttle(event, 0);
5283 tick_nohz_full_kick();
5284 ret = 1;
5285 }
5286 }
5287
5288 if (event->attr.freq) {
5289 u64 now = perf_clock();
5290 s64 delta = now - hwc->freq_time_stamp;
5291
5292 hwc->freq_time_stamp = now;
5293
5294 if (delta > 0 && delta < 2*TICK_NSEC)
5295 perf_adjust_period(event, delta, hwc->last_period, true);
5296 }
5297
5298 /*
5299 * XXX event_limit might not quite work as expected on inherited
5300 * events
5301 */
5302
5303 event->pending_kill = POLL_IN;
5304 if (events && atomic_dec_and_test(&event->event_limit)) {
5305 ret = 1;
5306 event->pending_kill = POLL_HUP;
5307 event->pending_disable = 1;
5308 irq_work_queue(&event->pending);
5309 }
5310
5311 if (event->overflow_handler)
5312 event->overflow_handler(event, data, regs);
5313 else
5314 perf_event_output(event, data, regs);
5315
5316 if (event->fasync && event->pending_kill) {
5317 event->pending_wakeup = 1;
5318 irq_work_queue(&event->pending);
5319 }
5320
5321 return ret;
5322 }
5323
5324 int perf_event_overflow(struct perf_event *event,
5325 struct perf_sample_data *data,
5326 struct pt_regs *regs)
5327 {
5328 return __perf_event_overflow(event, 1, data, regs);
5329 }
5330
5331 /*
5332 * Generic software event infrastructure
5333 */
5334
5335 struct swevent_htable {
5336 struct swevent_hlist *swevent_hlist;
5337 struct mutex hlist_mutex;
5338 int hlist_refcount;
5339
5340 /* Recursion avoidance in each contexts */
5341 int recursion[PERF_NR_CONTEXTS];
5342 };
5343
5344 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5345
5346 /*
5347 * We directly increment event->count and keep a second value in
5348 * event->hw.period_left to count intervals. This period event
5349 * is kept in the range [-sample_period, 0] so that we can use the
5350 * sign as trigger.
5351 */
5352
5353 u64 perf_swevent_set_period(struct perf_event *event)
5354 {
5355 struct hw_perf_event *hwc = &event->hw;
5356 u64 period = hwc->last_period;
5357 u64 nr, offset;
5358 s64 old, val;
5359
5360 hwc->last_period = hwc->sample_period;
5361
5362 again:
5363 old = val = local64_read(&hwc->period_left);
5364 if (val < 0)
5365 return 0;
5366
5367 nr = div64_u64(period + val, period);
5368 offset = nr * period;
5369 val -= offset;
5370 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5371 goto again;
5372
5373 return nr;
5374 }
5375
5376 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5377 struct perf_sample_data *data,
5378 struct pt_regs *regs)
5379 {
5380 struct hw_perf_event *hwc = &event->hw;
5381 int throttle = 0;
5382
5383 if (!overflow)
5384 overflow = perf_swevent_set_period(event);
5385
5386 if (hwc->interrupts == MAX_INTERRUPTS)
5387 return;
5388
5389 for (; overflow; overflow--) {
5390 if (__perf_event_overflow(event, throttle,
5391 data, regs)) {
5392 /*
5393 * We inhibit the overflow from happening when
5394 * hwc->interrupts == MAX_INTERRUPTS.
5395 */
5396 break;
5397 }
5398 throttle = 1;
5399 }
5400 }
5401
5402 static void perf_swevent_event(struct perf_event *event, u64 nr,
5403 struct perf_sample_data *data,
5404 struct pt_regs *regs)
5405 {
5406 struct hw_perf_event *hwc = &event->hw;
5407
5408 local64_add(nr, &event->count);
5409
5410 if (!regs)
5411 return;
5412
5413 if (!is_sampling_event(event))
5414 return;
5415
5416 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5417 data->period = nr;
5418 return perf_swevent_overflow(event, 1, data, regs);
5419 } else
5420 data->period = event->hw.last_period;
5421
5422 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5423 return perf_swevent_overflow(event, 1, data, regs);
5424
5425 if (local64_add_negative(nr, &hwc->period_left))
5426 return;
5427
5428 perf_swevent_overflow(event, 0, data, regs);
5429 }
5430
5431 static int perf_exclude_event(struct perf_event *event,
5432 struct pt_regs *regs)
5433 {
5434 if (event->hw.state & PERF_HES_STOPPED)
5435 return 1;
5436
5437 if (regs) {
5438 if (event->attr.exclude_user && user_mode(regs))
5439 return 1;
5440
5441 if (event->attr.exclude_kernel && !user_mode(regs))
5442 return 1;
5443 }
5444
5445 return 0;
5446 }
5447
5448 static int perf_swevent_match(struct perf_event *event,
5449 enum perf_type_id type,
5450 u32 event_id,
5451 struct perf_sample_data *data,
5452 struct pt_regs *regs)
5453 {
5454 if (event->attr.type != type)
5455 return 0;
5456
5457 if (event->attr.config != event_id)
5458 return 0;
5459
5460 if (perf_exclude_event(event, regs))
5461 return 0;
5462
5463 return 1;
5464 }
5465
5466 static inline u64 swevent_hash(u64 type, u32 event_id)
5467 {
5468 u64 val = event_id | (type << 32);
5469
5470 return hash_64(val, SWEVENT_HLIST_BITS);
5471 }
5472
5473 static inline struct hlist_head *
5474 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5475 {
5476 u64 hash = swevent_hash(type, event_id);
5477
5478 return &hlist->heads[hash];
5479 }
5480
5481 /* For the read side: events when they trigger */
5482 static inline struct hlist_head *
5483 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5484 {
5485 struct swevent_hlist *hlist;
5486
5487 hlist = rcu_dereference(swhash->swevent_hlist);
5488 if (!hlist)
5489 return NULL;
5490
5491 return __find_swevent_head(hlist, type, event_id);
5492 }
5493
5494 /* For the event head insertion and removal in the hlist */
5495 static inline struct hlist_head *
5496 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5497 {
5498 struct swevent_hlist *hlist;
5499 u32 event_id = event->attr.config;
5500 u64 type = event->attr.type;
5501
5502 /*
5503 * Event scheduling is always serialized against hlist allocation
5504 * and release. Which makes the protected version suitable here.
5505 * The context lock guarantees that.
5506 */
5507 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5508 lockdep_is_held(&event->ctx->lock));
5509 if (!hlist)
5510 return NULL;
5511
5512 return __find_swevent_head(hlist, type, event_id);
5513 }
5514
5515 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5516 u64 nr,
5517 struct perf_sample_data *data,
5518 struct pt_regs *regs)
5519 {
5520 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5521 struct perf_event *event;
5522 struct hlist_head *head;
5523
5524 rcu_read_lock();
5525 head = find_swevent_head_rcu(swhash, type, event_id);
5526 if (!head)
5527 goto end;
5528
5529 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5530 if (perf_swevent_match(event, type, event_id, data, regs))
5531 perf_swevent_event(event, nr, data, regs);
5532 }
5533 end:
5534 rcu_read_unlock();
5535 }
5536
5537 int perf_swevent_get_recursion_context(void)
5538 {
5539 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5540
5541 return get_recursion_context(swhash->recursion);
5542 }
5543 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5544
5545 inline void perf_swevent_put_recursion_context(int rctx)
5546 {
5547 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5548
5549 put_recursion_context(swhash->recursion, rctx);
5550 }
5551
5552 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5553 {
5554 struct perf_sample_data data;
5555 int rctx;
5556
5557 preempt_disable_notrace();
5558 rctx = perf_swevent_get_recursion_context();
5559 if (rctx < 0)
5560 return;
5561
5562 perf_sample_data_init(&data, addr, 0);
5563
5564 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5565
5566 perf_swevent_put_recursion_context(rctx);
5567 preempt_enable_notrace();
5568 }
5569
5570 static void perf_swevent_read(struct perf_event *event)
5571 {
5572 }
5573
5574 static int perf_swevent_add(struct perf_event *event, int flags)
5575 {
5576 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5577 struct hw_perf_event *hwc = &event->hw;
5578 struct hlist_head *head;
5579
5580 if (is_sampling_event(event)) {
5581 hwc->last_period = hwc->sample_period;
5582 perf_swevent_set_period(event);
5583 }
5584
5585 hwc->state = !(flags & PERF_EF_START);
5586
5587 head = find_swevent_head(swhash, event);
5588 if (WARN_ON_ONCE(!head))
5589 return -EINVAL;
5590
5591 hlist_add_head_rcu(&event->hlist_entry, head);
5592
5593 return 0;
5594 }
5595
5596 static void perf_swevent_del(struct perf_event *event, int flags)
5597 {
5598 hlist_del_rcu(&event->hlist_entry);
5599 }
5600
5601 static void perf_swevent_start(struct perf_event *event, int flags)
5602 {
5603 event->hw.state = 0;
5604 }
5605
5606 static void perf_swevent_stop(struct perf_event *event, int flags)
5607 {
5608 event->hw.state = PERF_HES_STOPPED;
5609 }
5610
5611 /* Deref the hlist from the update side */
5612 static inline struct swevent_hlist *
5613 swevent_hlist_deref(struct swevent_htable *swhash)
5614 {
5615 return rcu_dereference_protected(swhash->swevent_hlist,
5616 lockdep_is_held(&swhash->hlist_mutex));
5617 }
5618
5619 static void swevent_hlist_release(struct swevent_htable *swhash)
5620 {
5621 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5622
5623 if (!hlist)
5624 return;
5625
5626 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5627 kfree_rcu(hlist, rcu_head);
5628 }
5629
5630 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5631 {
5632 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5633
5634 mutex_lock(&swhash->hlist_mutex);
5635
5636 if (!--swhash->hlist_refcount)
5637 swevent_hlist_release(swhash);
5638
5639 mutex_unlock(&swhash->hlist_mutex);
5640 }
5641
5642 static void swevent_hlist_put(struct perf_event *event)
5643 {
5644 int cpu;
5645
5646 if (event->cpu != -1) {
5647 swevent_hlist_put_cpu(event, event->cpu);
5648 return;
5649 }
5650
5651 for_each_possible_cpu(cpu)
5652 swevent_hlist_put_cpu(event, cpu);
5653 }
5654
5655 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5656 {
5657 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5658 int err = 0;
5659
5660 mutex_lock(&swhash->hlist_mutex);
5661
5662 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5663 struct swevent_hlist *hlist;
5664
5665 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5666 if (!hlist) {
5667 err = -ENOMEM;
5668 goto exit;
5669 }
5670 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5671 }
5672 swhash->hlist_refcount++;
5673 exit:
5674 mutex_unlock(&swhash->hlist_mutex);
5675
5676 return err;
5677 }
5678
5679 static int swevent_hlist_get(struct perf_event *event)
5680 {
5681 int err;
5682 int cpu, failed_cpu;
5683
5684 if (event->cpu != -1)
5685 return swevent_hlist_get_cpu(event, event->cpu);
5686
5687 get_online_cpus();
5688 for_each_possible_cpu(cpu) {
5689 err = swevent_hlist_get_cpu(event, cpu);
5690 if (err) {
5691 failed_cpu = cpu;
5692 goto fail;
5693 }
5694 }
5695 put_online_cpus();
5696
5697 return 0;
5698 fail:
5699 for_each_possible_cpu(cpu) {
5700 if (cpu == failed_cpu)
5701 break;
5702 swevent_hlist_put_cpu(event, cpu);
5703 }
5704
5705 put_online_cpus();
5706 return err;
5707 }
5708
5709 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5710
5711 static void sw_perf_event_destroy(struct perf_event *event)
5712 {
5713 u64 event_id = event->attr.config;
5714
5715 WARN_ON(event->parent);
5716
5717 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5718 swevent_hlist_put(event);
5719 }
5720
5721 static int perf_swevent_init(struct perf_event *event)
5722 {
5723 u64 event_id = event->attr.config;
5724
5725 if (event->attr.type != PERF_TYPE_SOFTWARE)
5726 return -ENOENT;
5727
5728 /*
5729 * no branch sampling for software events
5730 */
5731 if (has_branch_stack(event))
5732 return -EOPNOTSUPP;
5733
5734 switch (event_id) {
5735 case PERF_COUNT_SW_CPU_CLOCK:
5736 case PERF_COUNT_SW_TASK_CLOCK:
5737 return -ENOENT;
5738
5739 default:
5740 break;
5741 }
5742
5743 if (event_id >= PERF_COUNT_SW_MAX)
5744 return -ENOENT;
5745
5746 if (!event->parent) {
5747 int err;
5748
5749 err = swevent_hlist_get(event);
5750 if (err)
5751 return err;
5752
5753 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5754 event->destroy = sw_perf_event_destroy;
5755 }
5756
5757 return 0;
5758 }
5759
5760 static int perf_swevent_event_idx(struct perf_event *event)
5761 {
5762 return 0;
5763 }
5764
5765 static struct pmu perf_swevent = {
5766 .task_ctx_nr = perf_sw_context,
5767
5768 .event_init = perf_swevent_init,
5769 .add = perf_swevent_add,
5770 .del = perf_swevent_del,
5771 .start = perf_swevent_start,
5772 .stop = perf_swevent_stop,
5773 .read = perf_swevent_read,
5774
5775 .event_idx = perf_swevent_event_idx,
5776 };
5777
5778 #ifdef CONFIG_EVENT_TRACING
5779
5780 static int perf_tp_filter_match(struct perf_event *event,
5781 struct perf_sample_data *data)
5782 {
5783 void *record = data->raw->data;
5784
5785 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5786 return 1;
5787 return 0;
5788 }
5789
5790 static int perf_tp_event_match(struct perf_event *event,
5791 struct perf_sample_data *data,
5792 struct pt_regs *regs)
5793 {
5794 if (event->hw.state & PERF_HES_STOPPED)
5795 return 0;
5796 /*
5797 * All tracepoints are from kernel-space.
5798 */
5799 if (event->attr.exclude_kernel)
5800 return 0;
5801
5802 if (!perf_tp_filter_match(event, data))
5803 return 0;
5804
5805 return 1;
5806 }
5807
5808 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5809 struct pt_regs *regs, struct hlist_head *head, int rctx,
5810 struct task_struct *task)
5811 {
5812 struct perf_sample_data data;
5813 struct perf_event *event;
5814
5815 struct perf_raw_record raw = {
5816 .size = entry_size,
5817 .data = record,
5818 };
5819
5820 perf_sample_data_init(&data, addr, 0);
5821 data.raw = &raw;
5822
5823 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5824 if (perf_tp_event_match(event, &data, regs))
5825 perf_swevent_event(event, count, &data, regs);
5826 }
5827
5828 /*
5829 * If we got specified a target task, also iterate its context and
5830 * deliver this event there too.
5831 */
5832 if (task && task != current) {
5833 struct perf_event_context *ctx;
5834 struct trace_entry *entry = record;
5835
5836 rcu_read_lock();
5837 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5838 if (!ctx)
5839 goto unlock;
5840
5841 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5842 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5843 continue;
5844 if (event->attr.config != entry->type)
5845 continue;
5846 if (perf_tp_event_match(event, &data, regs))
5847 perf_swevent_event(event, count, &data, regs);
5848 }
5849 unlock:
5850 rcu_read_unlock();
5851 }
5852
5853 perf_swevent_put_recursion_context(rctx);
5854 }
5855 EXPORT_SYMBOL_GPL(perf_tp_event);
5856
5857 static void tp_perf_event_destroy(struct perf_event *event)
5858 {
5859 perf_trace_destroy(event);
5860 }
5861
5862 static int perf_tp_event_init(struct perf_event *event)
5863 {
5864 int err;
5865
5866 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5867 return -ENOENT;
5868
5869 /*
5870 * no branch sampling for tracepoint events
5871 */
5872 if (has_branch_stack(event))
5873 return -EOPNOTSUPP;
5874
5875 err = perf_trace_init(event);
5876 if (err)
5877 return err;
5878
5879 event->destroy = tp_perf_event_destroy;
5880
5881 return 0;
5882 }
5883
5884 static struct pmu perf_tracepoint = {
5885 .task_ctx_nr = perf_sw_context,
5886
5887 .event_init = perf_tp_event_init,
5888 .add = perf_trace_add,
5889 .del = perf_trace_del,
5890 .start = perf_swevent_start,
5891 .stop = perf_swevent_stop,
5892 .read = perf_swevent_read,
5893
5894 .event_idx = perf_swevent_event_idx,
5895 };
5896
5897 static inline void perf_tp_register(void)
5898 {
5899 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5900 }
5901
5902 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5903 {
5904 char *filter_str;
5905 int ret;
5906
5907 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5908 return -EINVAL;
5909
5910 filter_str = strndup_user(arg, PAGE_SIZE);
5911 if (IS_ERR(filter_str))
5912 return PTR_ERR(filter_str);
5913
5914 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5915
5916 kfree(filter_str);
5917 return ret;
5918 }
5919
5920 static void perf_event_free_filter(struct perf_event *event)
5921 {
5922 ftrace_profile_free_filter(event);
5923 }
5924
5925 #else
5926
5927 static inline void perf_tp_register(void)
5928 {
5929 }
5930
5931 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5932 {
5933 return -ENOENT;
5934 }
5935
5936 static void perf_event_free_filter(struct perf_event *event)
5937 {
5938 }
5939
5940 #endif /* CONFIG_EVENT_TRACING */
5941
5942 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5943 void perf_bp_event(struct perf_event *bp, void *data)
5944 {
5945 struct perf_sample_data sample;
5946 struct pt_regs *regs = data;
5947
5948 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5949
5950 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5951 perf_swevent_event(bp, 1, &sample, regs);
5952 }
5953 #endif
5954
5955 /*
5956 * hrtimer based swevent callback
5957 */
5958
5959 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5960 {
5961 enum hrtimer_restart ret = HRTIMER_RESTART;
5962 struct perf_sample_data data;
5963 struct pt_regs *regs;
5964 struct perf_event *event;
5965 u64 period;
5966
5967 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5968
5969 if (event->state != PERF_EVENT_STATE_ACTIVE)
5970 return HRTIMER_NORESTART;
5971
5972 event->pmu->read(event);
5973
5974 perf_sample_data_init(&data, 0, event->hw.last_period);
5975 regs = get_irq_regs();
5976
5977 if (regs && !perf_exclude_event(event, regs)) {
5978 if (!(event->attr.exclude_idle && is_idle_task(current)))
5979 if (__perf_event_overflow(event, 1, &data, regs))
5980 ret = HRTIMER_NORESTART;
5981 }
5982
5983 period = max_t(u64, 10000, event->hw.sample_period);
5984 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5985
5986 return ret;
5987 }
5988
5989 static void perf_swevent_start_hrtimer(struct perf_event *event)
5990 {
5991 struct hw_perf_event *hwc = &event->hw;
5992 s64 period;
5993
5994 if (!is_sampling_event(event))
5995 return;
5996
5997 period = local64_read(&hwc->period_left);
5998 if (period) {
5999 if (period < 0)
6000 period = 10000;
6001
6002 local64_set(&hwc->period_left, 0);
6003 } else {
6004 period = max_t(u64, 10000, hwc->sample_period);
6005 }
6006 __hrtimer_start_range_ns(&hwc->hrtimer,
6007 ns_to_ktime(period), 0,
6008 HRTIMER_MODE_REL_PINNED, 0);
6009 }
6010
6011 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6012 {
6013 struct hw_perf_event *hwc = &event->hw;
6014
6015 if (is_sampling_event(event)) {
6016 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6017 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6018
6019 hrtimer_cancel(&hwc->hrtimer);
6020 }
6021 }
6022
6023 static void perf_swevent_init_hrtimer(struct perf_event *event)
6024 {
6025 struct hw_perf_event *hwc = &event->hw;
6026
6027 if (!is_sampling_event(event))
6028 return;
6029
6030 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6031 hwc->hrtimer.function = perf_swevent_hrtimer;
6032
6033 /*
6034 * Since hrtimers have a fixed rate, we can do a static freq->period
6035 * mapping and avoid the whole period adjust feedback stuff.
6036 */
6037 if (event->attr.freq) {
6038 long freq = event->attr.sample_freq;
6039
6040 event->attr.sample_period = NSEC_PER_SEC / freq;
6041 hwc->sample_period = event->attr.sample_period;
6042 local64_set(&hwc->period_left, hwc->sample_period);
6043 hwc->last_period = hwc->sample_period;
6044 event->attr.freq = 0;
6045 }
6046 }
6047
6048 /*
6049 * Software event: cpu wall time clock
6050 */
6051
6052 static void cpu_clock_event_update(struct perf_event *event)
6053 {
6054 s64 prev;
6055 u64 now;
6056
6057 now = local_clock();
6058 prev = local64_xchg(&event->hw.prev_count, now);
6059 local64_add(now - prev, &event->count);
6060 }
6061
6062 static void cpu_clock_event_start(struct perf_event *event, int flags)
6063 {
6064 local64_set(&event->hw.prev_count, local_clock());
6065 perf_swevent_start_hrtimer(event);
6066 }
6067
6068 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6069 {
6070 perf_swevent_cancel_hrtimer(event);
6071 cpu_clock_event_update(event);
6072 }
6073
6074 static int cpu_clock_event_add(struct perf_event *event, int flags)
6075 {
6076 if (flags & PERF_EF_START)
6077 cpu_clock_event_start(event, flags);
6078
6079 return 0;
6080 }
6081
6082 static void cpu_clock_event_del(struct perf_event *event, int flags)
6083 {
6084 cpu_clock_event_stop(event, flags);
6085 }
6086
6087 static void cpu_clock_event_read(struct perf_event *event)
6088 {
6089 cpu_clock_event_update(event);
6090 }
6091
6092 static int cpu_clock_event_init(struct perf_event *event)
6093 {
6094 if (event->attr.type != PERF_TYPE_SOFTWARE)
6095 return -ENOENT;
6096
6097 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6098 return -ENOENT;
6099
6100 /*
6101 * no branch sampling for software events
6102 */
6103 if (has_branch_stack(event))
6104 return -EOPNOTSUPP;
6105
6106 perf_swevent_init_hrtimer(event);
6107
6108 return 0;
6109 }
6110
6111 static struct pmu perf_cpu_clock = {
6112 .task_ctx_nr = perf_sw_context,
6113
6114 .event_init = cpu_clock_event_init,
6115 .add = cpu_clock_event_add,
6116 .del = cpu_clock_event_del,
6117 .start = cpu_clock_event_start,
6118 .stop = cpu_clock_event_stop,
6119 .read = cpu_clock_event_read,
6120
6121 .event_idx = perf_swevent_event_idx,
6122 };
6123
6124 /*
6125 * Software event: task time clock
6126 */
6127
6128 static void task_clock_event_update(struct perf_event *event, u64 now)
6129 {
6130 u64 prev;
6131 s64 delta;
6132
6133 prev = local64_xchg(&event->hw.prev_count, now);
6134 delta = now - prev;
6135 local64_add(delta, &event->count);
6136 }
6137
6138 static void task_clock_event_start(struct perf_event *event, int flags)
6139 {
6140 local64_set(&event->hw.prev_count, event->ctx->time);
6141 perf_swevent_start_hrtimer(event);
6142 }
6143
6144 static void task_clock_event_stop(struct perf_event *event, int flags)
6145 {
6146 perf_swevent_cancel_hrtimer(event);
6147 task_clock_event_update(event, event->ctx->time);
6148 }
6149
6150 static int task_clock_event_add(struct perf_event *event, int flags)
6151 {
6152 if (flags & PERF_EF_START)
6153 task_clock_event_start(event, flags);
6154
6155 return 0;
6156 }
6157
6158 static void task_clock_event_del(struct perf_event *event, int flags)
6159 {
6160 task_clock_event_stop(event, PERF_EF_UPDATE);
6161 }
6162
6163 static void task_clock_event_read(struct perf_event *event)
6164 {
6165 u64 now = perf_clock();
6166 u64 delta = now - event->ctx->timestamp;
6167 u64 time = event->ctx->time + delta;
6168
6169 task_clock_event_update(event, time);
6170 }
6171
6172 static int task_clock_event_init(struct perf_event *event)
6173 {
6174 if (event->attr.type != PERF_TYPE_SOFTWARE)
6175 return -ENOENT;
6176
6177 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6178 return -ENOENT;
6179
6180 /*
6181 * no branch sampling for software events
6182 */
6183 if (has_branch_stack(event))
6184 return -EOPNOTSUPP;
6185
6186 perf_swevent_init_hrtimer(event);
6187
6188 return 0;
6189 }
6190
6191 static struct pmu perf_task_clock = {
6192 .task_ctx_nr = perf_sw_context,
6193
6194 .event_init = task_clock_event_init,
6195 .add = task_clock_event_add,
6196 .del = task_clock_event_del,
6197 .start = task_clock_event_start,
6198 .stop = task_clock_event_stop,
6199 .read = task_clock_event_read,
6200
6201 .event_idx = perf_swevent_event_idx,
6202 };
6203
6204 static void perf_pmu_nop_void(struct pmu *pmu)
6205 {
6206 }
6207
6208 static int perf_pmu_nop_int(struct pmu *pmu)
6209 {
6210 return 0;
6211 }
6212
6213 static void perf_pmu_start_txn(struct pmu *pmu)
6214 {
6215 perf_pmu_disable(pmu);
6216 }
6217
6218 static int perf_pmu_commit_txn(struct pmu *pmu)
6219 {
6220 perf_pmu_enable(pmu);
6221 return 0;
6222 }
6223
6224 static void perf_pmu_cancel_txn(struct pmu *pmu)
6225 {
6226 perf_pmu_enable(pmu);
6227 }
6228
6229 static int perf_event_idx_default(struct perf_event *event)
6230 {
6231 return event->hw.idx + 1;
6232 }
6233
6234 /*
6235 * Ensures all contexts with the same task_ctx_nr have the same
6236 * pmu_cpu_context too.
6237 */
6238 static void *find_pmu_context(int ctxn)
6239 {
6240 struct pmu *pmu;
6241
6242 if (ctxn < 0)
6243 return NULL;
6244
6245 list_for_each_entry(pmu, &pmus, entry) {
6246 if (pmu->task_ctx_nr == ctxn)
6247 return pmu->pmu_cpu_context;
6248 }
6249
6250 return NULL;
6251 }
6252
6253 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6254 {
6255 int cpu;
6256
6257 for_each_possible_cpu(cpu) {
6258 struct perf_cpu_context *cpuctx;
6259
6260 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6261
6262 if (cpuctx->unique_pmu == old_pmu)
6263 cpuctx->unique_pmu = pmu;
6264 }
6265 }
6266
6267 static void free_pmu_context(struct pmu *pmu)
6268 {
6269 struct pmu *i;
6270
6271 mutex_lock(&pmus_lock);
6272 /*
6273 * Like a real lame refcount.
6274 */
6275 list_for_each_entry(i, &pmus, entry) {
6276 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6277 update_pmu_context(i, pmu);
6278 goto out;
6279 }
6280 }
6281
6282 free_percpu(pmu->pmu_cpu_context);
6283 out:
6284 mutex_unlock(&pmus_lock);
6285 }
6286 static struct idr pmu_idr;
6287
6288 static ssize_t
6289 type_show(struct device *dev, struct device_attribute *attr, char *page)
6290 {
6291 struct pmu *pmu = dev_get_drvdata(dev);
6292
6293 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6294 }
6295
6296 static ssize_t
6297 perf_event_mux_interval_ms_show(struct device *dev,
6298 struct device_attribute *attr,
6299 char *page)
6300 {
6301 struct pmu *pmu = dev_get_drvdata(dev);
6302
6303 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6304 }
6305
6306 static ssize_t
6307 perf_event_mux_interval_ms_store(struct device *dev,
6308 struct device_attribute *attr,
6309 const char *buf, size_t count)
6310 {
6311 struct pmu *pmu = dev_get_drvdata(dev);
6312 int timer, cpu, ret;
6313
6314 ret = kstrtoint(buf, 0, &timer);
6315 if (ret)
6316 return ret;
6317
6318 if (timer < 1)
6319 return -EINVAL;
6320
6321 /* same value, noting to do */
6322 if (timer == pmu->hrtimer_interval_ms)
6323 return count;
6324
6325 pmu->hrtimer_interval_ms = timer;
6326
6327 /* update all cpuctx for this PMU */
6328 for_each_possible_cpu(cpu) {
6329 struct perf_cpu_context *cpuctx;
6330 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6331 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6332
6333 if (hrtimer_active(&cpuctx->hrtimer))
6334 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6335 }
6336
6337 return count;
6338 }
6339
6340 static struct device_attribute pmu_dev_attrs[] = {
6341 __ATTR_RO(type),
6342 __ATTR_RW(perf_event_mux_interval_ms),
6343 __ATTR_NULL,
6344 };
6345
6346 static int pmu_bus_running;
6347 static struct bus_type pmu_bus = {
6348 .name = "event_source",
6349 .dev_attrs = pmu_dev_attrs,
6350 };
6351
6352 static void pmu_dev_release(struct device *dev)
6353 {
6354 kfree(dev);
6355 }
6356
6357 static int pmu_dev_alloc(struct pmu *pmu)
6358 {
6359 int ret = -ENOMEM;
6360
6361 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6362 if (!pmu->dev)
6363 goto out;
6364
6365 pmu->dev->groups = pmu->attr_groups;
6366 device_initialize(pmu->dev);
6367 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6368 if (ret)
6369 goto free_dev;
6370
6371 dev_set_drvdata(pmu->dev, pmu);
6372 pmu->dev->bus = &pmu_bus;
6373 pmu->dev->release = pmu_dev_release;
6374 ret = device_add(pmu->dev);
6375 if (ret)
6376 goto free_dev;
6377
6378 out:
6379 return ret;
6380
6381 free_dev:
6382 put_device(pmu->dev);
6383 goto out;
6384 }
6385
6386 static struct lock_class_key cpuctx_mutex;
6387 static struct lock_class_key cpuctx_lock;
6388
6389 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6390 {
6391 int cpu, ret;
6392
6393 mutex_lock(&pmus_lock);
6394 ret = -ENOMEM;
6395 pmu->pmu_disable_count = alloc_percpu(int);
6396 if (!pmu->pmu_disable_count)
6397 goto unlock;
6398
6399 pmu->type = -1;
6400 if (!name)
6401 goto skip_type;
6402 pmu->name = name;
6403
6404 if (type < 0) {
6405 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6406 if (type < 0) {
6407 ret = type;
6408 goto free_pdc;
6409 }
6410 }
6411 pmu->type = type;
6412
6413 if (pmu_bus_running) {
6414 ret = pmu_dev_alloc(pmu);
6415 if (ret)
6416 goto free_idr;
6417 }
6418
6419 skip_type:
6420 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6421 if (pmu->pmu_cpu_context)
6422 goto got_cpu_context;
6423
6424 ret = -ENOMEM;
6425 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6426 if (!pmu->pmu_cpu_context)
6427 goto free_dev;
6428
6429 for_each_possible_cpu(cpu) {
6430 struct perf_cpu_context *cpuctx;
6431
6432 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6433 __perf_event_init_context(&cpuctx->ctx);
6434 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6435 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6436 cpuctx->ctx.type = cpu_context;
6437 cpuctx->ctx.pmu = pmu;
6438
6439 __perf_cpu_hrtimer_init(cpuctx, cpu);
6440
6441 INIT_LIST_HEAD(&cpuctx->rotation_list);
6442 cpuctx->unique_pmu = pmu;
6443 }
6444
6445 got_cpu_context:
6446 if (!pmu->start_txn) {
6447 if (pmu->pmu_enable) {
6448 /*
6449 * If we have pmu_enable/pmu_disable calls, install
6450 * transaction stubs that use that to try and batch
6451 * hardware accesses.
6452 */
6453 pmu->start_txn = perf_pmu_start_txn;
6454 pmu->commit_txn = perf_pmu_commit_txn;
6455 pmu->cancel_txn = perf_pmu_cancel_txn;
6456 } else {
6457 pmu->start_txn = perf_pmu_nop_void;
6458 pmu->commit_txn = perf_pmu_nop_int;
6459 pmu->cancel_txn = perf_pmu_nop_void;
6460 }
6461 }
6462
6463 if (!pmu->pmu_enable) {
6464 pmu->pmu_enable = perf_pmu_nop_void;
6465 pmu->pmu_disable = perf_pmu_nop_void;
6466 }
6467
6468 if (!pmu->event_idx)
6469 pmu->event_idx = perf_event_idx_default;
6470
6471 list_add_rcu(&pmu->entry, &pmus);
6472 ret = 0;
6473 unlock:
6474 mutex_unlock(&pmus_lock);
6475
6476 return ret;
6477
6478 free_dev:
6479 device_del(pmu->dev);
6480 put_device(pmu->dev);
6481
6482 free_idr:
6483 if (pmu->type >= PERF_TYPE_MAX)
6484 idr_remove(&pmu_idr, pmu->type);
6485
6486 free_pdc:
6487 free_percpu(pmu->pmu_disable_count);
6488 goto unlock;
6489 }
6490
6491 void perf_pmu_unregister(struct pmu *pmu)
6492 {
6493 mutex_lock(&pmus_lock);
6494 list_del_rcu(&pmu->entry);
6495 mutex_unlock(&pmus_lock);
6496
6497 /*
6498 * We dereference the pmu list under both SRCU and regular RCU, so
6499 * synchronize against both of those.
6500 */
6501 synchronize_srcu(&pmus_srcu);
6502 synchronize_rcu();
6503
6504 free_percpu(pmu->pmu_disable_count);
6505 if (pmu->type >= PERF_TYPE_MAX)
6506 idr_remove(&pmu_idr, pmu->type);
6507 device_del(pmu->dev);
6508 put_device(pmu->dev);
6509 free_pmu_context(pmu);
6510 }
6511
6512 struct pmu *perf_init_event(struct perf_event *event)
6513 {
6514 struct pmu *pmu = NULL;
6515 int idx;
6516 int ret;
6517
6518 idx = srcu_read_lock(&pmus_srcu);
6519
6520 rcu_read_lock();
6521 pmu = idr_find(&pmu_idr, event->attr.type);
6522 rcu_read_unlock();
6523 if (pmu) {
6524 event->pmu = pmu;
6525 ret = pmu->event_init(event);
6526 if (ret)
6527 pmu = ERR_PTR(ret);
6528 goto unlock;
6529 }
6530
6531 list_for_each_entry_rcu(pmu, &pmus, entry) {
6532 event->pmu = pmu;
6533 ret = pmu->event_init(event);
6534 if (!ret)
6535 goto unlock;
6536
6537 if (ret != -ENOENT) {
6538 pmu = ERR_PTR(ret);
6539 goto unlock;
6540 }
6541 }
6542 pmu = ERR_PTR(-ENOENT);
6543 unlock:
6544 srcu_read_unlock(&pmus_srcu, idx);
6545
6546 return pmu;
6547 }
6548
6549 static void account_event_cpu(struct perf_event *event, int cpu)
6550 {
6551 if (event->parent)
6552 return;
6553
6554 if (has_branch_stack(event)) {
6555 if (!(event->attach_state & PERF_ATTACH_TASK))
6556 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6557 }
6558 if (is_cgroup_event(event))
6559 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6560 }
6561
6562 static void account_event(struct perf_event *event)
6563 {
6564 if (event->parent)
6565 return;
6566
6567 if (event->attach_state & PERF_ATTACH_TASK)
6568 static_key_slow_inc(&perf_sched_events.key);
6569 if (event->attr.mmap || event->attr.mmap_data)
6570 atomic_inc(&nr_mmap_events);
6571 if (event->attr.comm)
6572 atomic_inc(&nr_comm_events);
6573 if (event->attr.task)
6574 atomic_inc(&nr_task_events);
6575 if (event->attr.freq) {
6576 if (atomic_inc_return(&nr_freq_events) == 1)
6577 tick_nohz_full_kick_all();
6578 }
6579 if (has_branch_stack(event))
6580 static_key_slow_inc(&perf_sched_events.key);
6581 if (is_cgroup_event(event))
6582 static_key_slow_inc(&perf_sched_events.key);
6583
6584 account_event_cpu(event, event->cpu);
6585 }
6586
6587 /*
6588 * Allocate and initialize a event structure
6589 */
6590 static struct perf_event *
6591 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6592 struct task_struct *task,
6593 struct perf_event *group_leader,
6594 struct perf_event *parent_event,
6595 perf_overflow_handler_t overflow_handler,
6596 void *context)
6597 {
6598 struct pmu *pmu;
6599 struct perf_event *event;
6600 struct hw_perf_event *hwc;
6601 long err = -EINVAL;
6602
6603 if ((unsigned)cpu >= nr_cpu_ids) {
6604 if (!task || cpu != -1)
6605 return ERR_PTR(-EINVAL);
6606 }
6607
6608 event = kzalloc(sizeof(*event), GFP_KERNEL);
6609 if (!event)
6610 return ERR_PTR(-ENOMEM);
6611
6612 /*
6613 * Single events are their own group leaders, with an
6614 * empty sibling list:
6615 */
6616 if (!group_leader)
6617 group_leader = event;
6618
6619 mutex_init(&event->child_mutex);
6620 INIT_LIST_HEAD(&event->child_list);
6621
6622 INIT_LIST_HEAD(&event->group_entry);
6623 INIT_LIST_HEAD(&event->event_entry);
6624 INIT_LIST_HEAD(&event->sibling_list);
6625 INIT_LIST_HEAD(&event->rb_entry);
6626
6627 init_waitqueue_head(&event->waitq);
6628 init_irq_work(&event->pending, perf_pending_event);
6629
6630 mutex_init(&event->mmap_mutex);
6631
6632 atomic_long_set(&event->refcount, 1);
6633 event->cpu = cpu;
6634 event->attr = *attr;
6635 event->group_leader = group_leader;
6636 event->pmu = NULL;
6637 event->oncpu = -1;
6638
6639 event->parent = parent_event;
6640
6641 event->ns = get_pid_ns(task_active_pid_ns(current));
6642 event->id = atomic64_inc_return(&perf_event_id);
6643
6644 event->state = PERF_EVENT_STATE_INACTIVE;
6645
6646 if (task) {
6647 event->attach_state = PERF_ATTACH_TASK;
6648
6649 if (attr->type == PERF_TYPE_TRACEPOINT)
6650 event->hw.tp_target = task;
6651 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6652 /*
6653 * hw_breakpoint is a bit difficult here..
6654 */
6655 else if (attr->type == PERF_TYPE_BREAKPOINT)
6656 event->hw.bp_target = task;
6657 #endif
6658 }
6659
6660 if (!overflow_handler && parent_event) {
6661 overflow_handler = parent_event->overflow_handler;
6662 context = parent_event->overflow_handler_context;
6663 }
6664
6665 event->overflow_handler = overflow_handler;
6666 event->overflow_handler_context = context;
6667
6668 perf_event__state_init(event);
6669
6670 pmu = NULL;
6671
6672 hwc = &event->hw;
6673 hwc->sample_period = attr->sample_period;
6674 if (attr->freq && attr->sample_freq)
6675 hwc->sample_period = 1;
6676 hwc->last_period = hwc->sample_period;
6677
6678 local64_set(&hwc->period_left, hwc->sample_period);
6679
6680 /*
6681 * we currently do not support PERF_FORMAT_GROUP on inherited events
6682 */
6683 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6684 goto err_ns;
6685
6686 pmu = perf_init_event(event);
6687 if (!pmu)
6688 goto err_ns;
6689 else if (IS_ERR(pmu)) {
6690 err = PTR_ERR(pmu);
6691 goto err_ns;
6692 }
6693
6694 if (!event->parent) {
6695 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6696 err = get_callchain_buffers();
6697 if (err)
6698 goto err_pmu;
6699 }
6700 }
6701
6702 return event;
6703
6704 err_pmu:
6705 if (event->destroy)
6706 event->destroy(event);
6707 err_ns:
6708 if (event->ns)
6709 put_pid_ns(event->ns);
6710 kfree(event);
6711
6712 return ERR_PTR(err);
6713 }
6714
6715 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6716 struct perf_event_attr *attr)
6717 {
6718 u32 size;
6719 int ret;
6720
6721 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6722 return -EFAULT;
6723
6724 /*
6725 * zero the full structure, so that a short copy will be nice.
6726 */
6727 memset(attr, 0, sizeof(*attr));
6728
6729 ret = get_user(size, &uattr->size);
6730 if (ret)
6731 return ret;
6732
6733 if (size > PAGE_SIZE) /* silly large */
6734 goto err_size;
6735
6736 if (!size) /* abi compat */
6737 size = PERF_ATTR_SIZE_VER0;
6738
6739 if (size < PERF_ATTR_SIZE_VER0)
6740 goto err_size;
6741
6742 /*
6743 * If we're handed a bigger struct than we know of,
6744 * ensure all the unknown bits are 0 - i.e. new
6745 * user-space does not rely on any kernel feature
6746 * extensions we dont know about yet.
6747 */
6748 if (size > sizeof(*attr)) {
6749 unsigned char __user *addr;
6750 unsigned char __user *end;
6751 unsigned char val;
6752
6753 addr = (void __user *)uattr + sizeof(*attr);
6754 end = (void __user *)uattr + size;
6755
6756 for (; addr < end; addr++) {
6757 ret = get_user(val, addr);
6758 if (ret)
6759 return ret;
6760 if (val)
6761 goto err_size;
6762 }
6763 size = sizeof(*attr);
6764 }
6765
6766 ret = copy_from_user(attr, uattr, size);
6767 if (ret)
6768 return -EFAULT;
6769
6770 /* disabled for now */
6771 if (attr->mmap2)
6772 return -EINVAL;
6773
6774 if (attr->__reserved_1)
6775 return -EINVAL;
6776
6777 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6778 return -EINVAL;
6779
6780 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6781 return -EINVAL;
6782
6783 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6784 u64 mask = attr->branch_sample_type;
6785
6786 /* only using defined bits */
6787 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6788 return -EINVAL;
6789
6790 /* at least one branch bit must be set */
6791 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6792 return -EINVAL;
6793
6794 /* propagate priv level, when not set for branch */
6795 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6796
6797 /* exclude_kernel checked on syscall entry */
6798 if (!attr->exclude_kernel)
6799 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6800
6801 if (!attr->exclude_user)
6802 mask |= PERF_SAMPLE_BRANCH_USER;
6803
6804 if (!attr->exclude_hv)
6805 mask |= PERF_SAMPLE_BRANCH_HV;
6806 /*
6807 * adjust user setting (for HW filter setup)
6808 */
6809 attr->branch_sample_type = mask;
6810 }
6811 /* privileged levels capture (kernel, hv): check permissions */
6812 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6813 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6814 return -EACCES;
6815 }
6816
6817 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6818 ret = perf_reg_validate(attr->sample_regs_user);
6819 if (ret)
6820 return ret;
6821 }
6822
6823 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6824 if (!arch_perf_have_user_stack_dump())
6825 return -ENOSYS;
6826
6827 /*
6828 * We have __u32 type for the size, but so far
6829 * we can only use __u16 as maximum due to the
6830 * __u16 sample size limit.
6831 */
6832 if (attr->sample_stack_user >= USHRT_MAX)
6833 ret = -EINVAL;
6834 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6835 ret = -EINVAL;
6836 }
6837
6838 out:
6839 return ret;
6840
6841 err_size:
6842 put_user(sizeof(*attr), &uattr->size);
6843 ret = -E2BIG;
6844 goto out;
6845 }
6846
6847 static int
6848 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6849 {
6850 struct ring_buffer *rb = NULL, *old_rb = NULL;
6851 int ret = -EINVAL;
6852
6853 if (!output_event)
6854 goto set;
6855
6856 /* don't allow circular references */
6857 if (event == output_event)
6858 goto out;
6859
6860 /*
6861 * Don't allow cross-cpu buffers
6862 */
6863 if (output_event->cpu != event->cpu)
6864 goto out;
6865
6866 /*
6867 * If its not a per-cpu rb, it must be the same task.
6868 */
6869 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6870 goto out;
6871
6872 set:
6873 mutex_lock(&event->mmap_mutex);
6874 /* Can't redirect output if we've got an active mmap() */
6875 if (atomic_read(&event->mmap_count))
6876 goto unlock;
6877
6878 old_rb = event->rb;
6879
6880 if (output_event) {
6881 /* get the rb we want to redirect to */
6882 rb = ring_buffer_get(output_event);
6883 if (!rb)
6884 goto unlock;
6885 }
6886
6887 if (old_rb)
6888 ring_buffer_detach(event, old_rb);
6889
6890 if (rb)
6891 ring_buffer_attach(event, rb);
6892
6893 rcu_assign_pointer(event->rb, rb);
6894
6895 if (old_rb) {
6896 ring_buffer_put(old_rb);
6897 /*
6898 * Since we detached before setting the new rb, so that we
6899 * could attach the new rb, we could have missed a wakeup.
6900 * Provide it now.
6901 */
6902 wake_up_all(&event->waitq);
6903 }
6904
6905 ret = 0;
6906 unlock:
6907 mutex_unlock(&event->mmap_mutex);
6908
6909 out:
6910 return ret;
6911 }
6912
6913 /**
6914 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6915 *
6916 * @attr_uptr: event_id type attributes for monitoring/sampling
6917 * @pid: target pid
6918 * @cpu: target cpu
6919 * @group_fd: group leader event fd
6920 */
6921 SYSCALL_DEFINE5(perf_event_open,
6922 struct perf_event_attr __user *, attr_uptr,
6923 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6924 {
6925 struct perf_event *group_leader = NULL, *output_event = NULL;
6926 struct perf_event *event, *sibling;
6927 struct perf_event_attr attr;
6928 struct perf_event_context *ctx;
6929 struct file *event_file = NULL;
6930 struct fd group = {NULL, 0};
6931 struct task_struct *task = NULL;
6932 struct pmu *pmu;
6933 int event_fd;
6934 int move_group = 0;
6935 int err;
6936
6937 /* for future expandability... */
6938 if (flags & ~PERF_FLAG_ALL)
6939 return -EINVAL;
6940
6941 err = perf_copy_attr(attr_uptr, &attr);
6942 if (err)
6943 return err;
6944
6945 if (!attr.exclude_kernel) {
6946 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6947 return -EACCES;
6948 }
6949
6950 if (attr.freq) {
6951 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6952 return -EINVAL;
6953 }
6954
6955 /*
6956 * In cgroup mode, the pid argument is used to pass the fd
6957 * opened to the cgroup directory in cgroupfs. The cpu argument
6958 * designates the cpu on which to monitor threads from that
6959 * cgroup.
6960 */
6961 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6962 return -EINVAL;
6963
6964 event_fd = get_unused_fd();
6965 if (event_fd < 0)
6966 return event_fd;
6967
6968 if (group_fd != -1) {
6969 err = perf_fget_light(group_fd, &group);
6970 if (err)
6971 goto err_fd;
6972 group_leader = group.file->private_data;
6973 if (flags & PERF_FLAG_FD_OUTPUT)
6974 output_event = group_leader;
6975 if (flags & PERF_FLAG_FD_NO_GROUP)
6976 group_leader = NULL;
6977 }
6978
6979 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6980 task = find_lively_task_by_vpid(pid);
6981 if (IS_ERR(task)) {
6982 err = PTR_ERR(task);
6983 goto err_group_fd;
6984 }
6985 }
6986
6987 get_online_cpus();
6988
6989 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6990 NULL, NULL);
6991 if (IS_ERR(event)) {
6992 err = PTR_ERR(event);
6993 goto err_task;
6994 }
6995
6996 if (flags & PERF_FLAG_PID_CGROUP) {
6997 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6998 if (err) {
6999 __free_event(event);
7000 goto err_task;
7001 }
7002 }
7003
7004 account_event(event);
7005
7006 /*
7007 * Special case software events and allow them to be part of
7008 * any hardware group.
7009 */
7010 pmu = event->pmu;
7011
7012 if (group_leader &&
7013 (is_software_event(event) != is_software_event(group_leader))) {
7014 if (is_software_event(event)) {
7015 /*
7016 * If event and group_leader are not both a software
7017 * event, and event is, then group leader is not.
7018 *
7019 * Allow the addition of software events to !software
7020 * groups, this is safe because software events never
7021 * fail to schedule.
7022 */
7023 pmu = group_leader->pmu;
7024 } else if (is_software_event(group_leader) &&
7025 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7026 /*
7027 * In case the group is a pure software group, and we
7028 * try to add a hardware event, move the whole group to
7029 * the hardware context.
7030 */
7031 move_group = 1;
7032 }
7033 }
7034
7035 /*
7036 * Get the target context (task or percpu):
7037 */
7038 ctx = find_get_context(pmu, task, event->cpu);
7039 if (IS_ERR(ctx)) {
7040 err = PTR_ERR(ctx);
7041 goto err_alloc;
7042 }
7043
7044 if (task) {
7045 put_task_struct(task);
7046 task = NULL;
7047 }
7048
7049 /*
7050 * Look up the group leader (we will attach this event to it):
7051 */
7052 if (group_leader) {
7053 err = -EINVAL;
7054
7055 /*
7056 * Do not allow a recursive hierarchy (this new sibling
7057 * becoming part of another group-sibling):
7058 */
7059 if (group_leader->group_leader != group_leader)
7060 goto err_context;
7061 /*
7062 * Do not allow to attach to a group in a different
7063 * task or CPU context:
7064 */
7065 if (move_group) {
7066 if (group_leader->ctx->type != ctx->type)
7067 goto err_context;
7068 } else {
7069 if (group_leader->ctx != ctx)
7070 goto err_context;
7071 }
7072
7073 /*
7074 * Only a group leader can be exclusive or pinned
7075 */
7076 if (attr.exclusive || attr.pinned)
7077 goto err_context;
7078 }
7079
7080 if (output_event) {
7081 err = perf_event_set_output(event, output_event);
7082 if (err)
7083 goto err_context;
7084 }
7085
7086 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7087 if (IS_ERR(event_file)) {
7088 err = PTR_ERR(event_file);
7089 goto err_context;
7090 }
7091
7092 if (move_group) {
7093 struct perf_event_context *gctx = group_leader->ctx;
7094
7095 mutex_lock(&gctx->mutex);
7096 perf_remove_from_context(group_leader);
7097
7098 /*
7099 * Removing from the context ends up with disabled
7100 * event. What we want here is event in the initial
7101 * startup state, ready to be add into new context.
7102 */
7103 perf_event__state_init(group_leader);
7104 list_for_each_entry(sibling, &group_leader->sibling_list,
7105 group_entry) {
7106 perf_remove_from_context(sibling);
7107 perf_event__state_init(sibling);
7108 put_ctx(gctx);
7109 }
7110 mutex_unlock(&gctx->mutex);
7111 put_ctx(gctx);
7112 }
7113
7114 WARN_ON_ONCE(ctx->parent_ctx);
7115 mutex_lock(&ctx->mutex);
7116
7117 if (move_group) {
7118 synchronize_rcu();
7119 perf_install_in_context(ctx, group_leader, event->cpu);
7120 get_ctx(ctx);
7121 list_for_each_entry(sibling, &group_leader->sibling_list,
7122 group_entry) {
7123 perf_install_in_context(ctx, sibling, event->cpu);
7124 get_ctx(ctx);
7125 }
7126 }
7127
7128 perf_install_in_context(ctx, event, event->cpu);
7129 ++ctx->generation;
7130 perf_unpin_context(ctx);
7131 mutex_unlock(&ctx->mutex);
7132
7133 put_online_cpus();
7134
7135 event->owner = current;
7136
7137 mutex_lock(&current->perf_event_mutex);
7138 list_add_tail(&event->owner_entry, &current->perf_event_list);
7139 mutex_unlock(&current->perf_event_mutex);
7140
7141 /*
7142 * Precalculate sample_data sizes
7143 */
7144 perf_event__header_size(event);
7145 perf_event__id_header_size(event);
7146
7147 /*
7148 * Drop the reference on the group_event after placing the
7149 * new event on the sibling_list. This ensures destruction
7150 * of the group leader will find the pointer to itself in
7151 * perf_group_detach().
7152 */
7153 fdput(group);
7154 fd_install(event_fd, event_file);
7155 return event_fd;
7156
7157 err_context:
7158 perf_unpin_context(ctx);
7159 put_ctx(ctx);
7160 err_alloc:
7161 free_event(event);
7162 err_task:
7163 put_online_cpus();
7164 if (task)
7165 put_task_struct(task);
7166 err_group_fd:
7167 fdput(group);
7168 err_fd:
7169 put_unused_fd(event_fd);
7170 return err;
7171 }
7172
7173 /**
7174 * perf_event_create_kernel_counter
7175 *
7176 * @attr: attributes of the counter to create
7177 * @cpu: cpu in which the counter is bound
7178 * @task: task to profile (NULL for percpu)
7179 */
7180 struct perf_event *
7181 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7182 struct task_struct *task,
7183 perf_overflow_handler_t overflow_handler,
7184 void *context)
7185 {
7186 struct perf_event_context *ctx;
7187 struct perf_event *event;
7188 int err;
7189
7190 /*
7191 * Get the target context (task or percpu):
7192 */
7193
7194 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7195 overflow_handler, context);
7196 if (IS_ERR(event)) {
7197 err = PTR_ERR(event);
7198 goto err;
7199 }
7200
7201 account_event(event);
7202
7203 ctx = find_get_context(event->pmu, task, cpu);
7204 if (IS_ERR(ctx)) {
7205 err = PTR_ERR(ctx);
7206 goto err_free;
7207 }
7208
7209 WARN_ON_ONCE(ctx->parent_ctx);
7210 mutex_lock(&ctx->mutex);
7211 perf_install_in_context(ctx, event, cpu);
7212 ++ctx->generation;
7213 perf_unpin_context(ctx);
7214 mutex_unlock(&ctx->mutex);
7215
7216 return event;
7217
7218 err_free:
7219 free_event(event);
7220 err:
7221 return ERR_PTR(err);
7222 }
7223 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7224
7225 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7226 {
7227 struct perf_event_context *src_ctx;
7228 struct perf_event_context *dst_ctx;
7229 struct perf_event *event, *tmp;
7230 LIST_HEAD(events);
7231
7232 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7233 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7234
7235 mutex_lock(&src_ctx->mutex);
7236 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7237 event_entry) {
7238 perf_remove_from_context(event);
7239 unaccount_event_cpu(event, src_cpu);
7240 put_ctx(src_ctx);
7241 list_add(&event->migrate_entry, &events);
7242 }
7243 mutex_unlock(&src_ctx->mutex);
7244
7245 synchronize_rcu();
7246
7247 mutex_lock(&dst_ctx->mutex);
7248 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7249 list_del(&event->migrate_entry);
7250 if (event->state >= PERF_EVENT_STATE_OFF)
7251 event->state = PERF_EVENT_STATE_INACTIVE;
7252 account_event_cpu(event, dst_cpu);
7253 perf_install_in_context(dst_ctx, event, dst_cpu);
7254 get_ctx(dst_ctx);
7255 }
7256 mutex_unlock(&dst_ctx->mutex);
7257 }
7258 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7259
7260 static void sync_child_event(struct perf_event *child_event,
7261 struct task_struct *child)
7262 {
7263 struct perf_event *parent_event = child_event->parent;
7264 u64 child_val;
7265
7266 if (child_event->attr.inherit_stat)
7267 perf_event_read_event(child_event, child);
7268
7269 child_val = perf_event_count(child_event);
7270
7271 /*
7272 * Add back the child's count to the parent's count:
7273 */
7274 atomic64_add(child_val, &parent_event->child_count);
7275 atomic64_add(child_event->total_time_enabled,
7276 &parent_event->child_total_time_enabled);
7277 atomic64_add(child_event->total_time_running,
7278 &parent_event->child_total_time_running);
7279
7280 /*
7281 * Remove this event from the parent's list
7282 */
7283 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7284 mutex_lock(&parent_event->child_mutex);
7285 list_del_init(&child_event->child_list);
7286 mutex_unlock(&parent_event->child_mutex);
7287
7288 /*
7289 * Release the parent event, if this was the last
7290 * reference to it.
7291 */
7292 put_event(parent_event);
7293 }
7294
7295 static void
7296 __perf_event_exit_task(struct perf_event *child_event,
7297 struct perf_event_context *child_ctx,
7298 struct task_struct *child)
7299 {
7300 if (child_event->parent) {
7301 raw_spin_lock_irq(&child_ctx->lock);
7302 perf_group_detach(child_event);
7303 raw_spin_unlock_irq(&child_ctx->lock);
7304 }
7305
7306 perf_remove_from_context(child_event);
7307
7308 /*
7309 * It can happen that the parent exits first, and has events
7310 * that are still around due to the child reference. These
7311 * events need to be zapped.
7312 */
7313 if (child_event->parent) {
7314 sync_child_event(child_event, child);
7315 free_event(child_event);
7316 }
7317 }
7318
7319 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7320 {
7321 struct perf_event *child_event, *tmp;
7322 struct perf_event_context *child_ctx;
7323 unsigned long flags;
7324
7325 if (likely(!child->perf_event_ctxp[ctxn])) {
7326 perf_event_task(child, NULL, 0);
7327 return;
7328 }
7329
7330 local_irq_save(flags);
7331 /*
7332 * We can't reschedule here because interrupts are disabled,
7333 * and either child is current or it is a task that can't be
7334 * scheduled, so we are now safe from rescheduling changing
7335 * our context.
7336 */
7337 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7338
7339 /*
7340 * Take the context lock here so that if find_get_context is
7341 * reading child->perf_event_ctxp, we wait until it has
7342 * incremented the context's refcount before we do put_ctx below.
7343 */
7344 raw_spin_lock(&child_ctx->lock);
7345 task_ctx_sched_out(child_ctx);
7346 child->perf_event_ctxp[ctxn] = NULL;
7347 /*
7348 * If this context is a clone; unclone it so it can't get
7349 * swapped to another process while we're removing all
7350 * the events from it.
7351 */
7352 unclone_ctx(child_ctx);
7353 update_context_time(child_ctx);
7354 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7355
7356 /*
7357 * Report the task dead after unscheduling the events so that we
7358 * won't get any samples after PERF_RECORD_EXIT. We can however still
7359 * get a few PERF_RECORD_READ events.
7360 */
7361 perf_event_task(child, child_ctx, 0);
7362
7363 /*
7364 * We can recurse on the same lock type through:
7365 *
7366 * __perf_event_exit_task()
7367 * sync_child_event()
7368 * put_event()
7369 * mutex_lock(&ctx->mutex)
7370 *
7371 * But since its the parent context it won't be the same instance.
7372 */
7373 mutex_lock(&child_ctx->mutex);
7374
7375 again:
7376 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7377 group_entry)
7378 __perf_event_exit_task(child_event, child_ctx, child);
7379
7380 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7381 group_entry)
7382 __perf_event_exit_task(child_event, child_ctx, child);
7383
7384 /*
7385 * If the last event was a group event, it will have appended all
7386 * its siblings to the list, but we obtained 'tmp' before that which
7387 * will still point to the list head terminating the iteration.
7388 */
7389 if (!list_empty(&child_ctx->pinned_groups) ||
7390 !list_empty(&child_ctx->flexible_groups))
7391 goto again;
7392
7393 mutex_unlock(&child_ctx->mutex);
7394
7395 put_ctx(child_ctx);
7396 }
7397
7398 /*
7399 * When a child task exits, feed back event values to parent events.
7400 */
7401 void perf_event_exit_task(struct task_struct *child)
7402 {
7403 struct perf_event *event, *tmp;
7404 int ctxn;
7405
7406 mutex_lock(&child->perf_event_mutex);
7407 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7408 owner_entry) {
7409 list_del_init(&event->owner_entry);
7410
7411 /*
7412 * Ensure the list deletion is visible before we clear
7413 * the owner, closes a race against perf_release() where
7414 * we need to serialize on the owner->perf_event_mutex.
7415 */
7416 smp_wmb();
7417 event->owner = NULL;
7418 }
7419 mutex_unlock(&child->perf_event_mutex);
7420
7421 for_each_task_context_nr(ctxn)
7422 perf_event_exit_task_context(child, ctxn);
7423 }
7424
7425 static void perf_free_event(struct perf_event *event,
7426 struct perf_event_context *ctx)
7427 {
7428 struct perf_event *parent = event->parent;
7429
7430 if (WARN_ON_ONCE(!parent))
7431 return;
7432
7433 mutex_lock(&parent->child_mutex);
7434 list_del_init(&event->child_list);
7435 mutex_unlock(&parent->child_mutex);
7436
7437 put_event(parent);
7438
7439 perf_group_detach(event);
7440 list_del_event(event, ctx);
7441 free_event(event);
7442 }
7443
7444 /*
7445 * free an unexposed, unused context as created by inheritance by
7446 * perf_event_init_task below, used by fork() in case of fail.
7447 */
7448 void perf_event_free_task(struct task_struct *task)
7449 {
7450 struct perf_event_context *ctx;
7451 struct perf_event *event, *tmp;
7452 int ctxn;
7453
7454 for_each_task_context_nr(ctxn) {
7455 ctx = task->perf_event_ctxp[ctxn];
7456 if (!ctx)
7457 continue;
7458
7459 mutex_lock(&ctx->mutex);
7460 again:
7461 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7462 group_entry)
7463 perf_free_event(event, ctx);
7464
7465 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7466 group_entry)
7467 perf_free_event(event, ctx);
7468
7469 if (!list_empty(&ctx->pinned_groups) ||
7470 !list_empty(&ctx->flexible_groups))
7471 goto again;
7472
7473 mutex_unlock(&ctx->mutex);
7474
7475 put_ctx(ctx);
7476 }
7477 }
7478
7479 void perf_event_delayed_put(struct task_struct *task)
7480 {
7481 int ctxn;
7482
7483 for_each_task_context_nr(ctxn)
7484 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7485 }
7486
7487 /*
7488 * inherit a event from parent task to child task:
7489 */
7490 static struct perf_event *
7491 inherit_event(struct perf_event *parent_event,
7492 struct task_struct *parent,
7493 struct perf_event_context *parent_ctx,
7494 struct task_struct *child,
7495 struct perf_event *group_leader,
7496 struct perf_event_context *child_ctx)
7497 {
7498 struct perf_event *child_event;
7499 unsigned long flags;
7500
7501 /*
7502 * Instead of creating recursive hierarchies of events,
7503 * we link inherited events back to the original parent,
7504 * which has a filp for sure, which we use as the reference
7505 * count:
7506 */
7507 if (parent_event->parent)
7508 parent_event = parent_event->parent;
7509
7510 child_event = perf_event_alloc(&parent_event->attr,
7511 parent_event->cpu,
7512 child,
7513 group_leader, parent_event,
7514 NULL, NULL);
7515 if (IS_ERR(child_event))
7516 return child_event;
7517
7518 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7519 free_event(child_event);
7520 return NULL;
7521 }
7522
7523 get_ctx(child_ctx);
7524
7525 /*
7526 * Make the child state follow the state of the parent event,
7527 * not its attr.disabled bit. We hold the parent's mutex,
7528 * so we won't race with perf_event_{en, dis}able_family.
7529 */
7530 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7531 child_event->state = PERF_EVENT_STATE_INACTIVE;
7532 else
7533 child_event->state = PERF_EVENT_STATE_OFF;
7534
7535 if (parent_event->attr.freq) {
7536 u64 sample_period = parent_event->hw.sample_period;
7537 struct hw_perf_event *hwc = &child_event->hw;
7538
7539 hwc->sample_period = sample_period;
7540 hwc->last_period = sample_period;
7541
7542 local64_set(&hwc->period_left, sample_period);
7543 }
7544
7545 child_event->ctx = child_ctx;
7546 child_event->overflow_handler = parent_event->overflow_handler;
7547 child_event->overflow_handler_context
7548 = parent_event->overflow_handler_context;
7549
7550 /*
7551 * Precalculate sample_data sizes
7552 */
7553 perf_event__header_size(child_event);
7554 perf_event__id_header_size(child_event);
7555
7556 /*
7557 * Link it up in the child's context:
7558 */
7559 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7560 add_event_to_ctx(child_event, child_ctx);
7561 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7562
7563 /*
7564 * Link this into the parent event's child list
7565 */
7566 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7567 mutex_lock(&parent_event->child_mutex);
7568 list_add_tail(&child_event->child_list, &parent_event->child_list);
7569 mutex_unlock(&parent_event->child_mutex);
7570
7571 return child_event;
7572 }
7573
7574 static int inherit_group(struct perf_event *parent_event,
7575 struct task_struct *parent,
7576 struct perf_event_context *parent_ctx,
7577 struct task_struct *child,
7578 struct perf_event_context *child_ctx)
7579 {
7580 struct perf_event *leader;
7581 struct perf_event *sub;
7582 struct perf_event *child_ctr;
7583
7584 leader = inherit_event(parent_event, parent, parent_ctx,
7585 child, NULL, child_ctx);
7586 if (IS_ERR(leader))
7587 return PTR_ERR(leader);
7588 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7589 child_ctr = inherit_event(sub, parent, parent_ctx,
7590 child, leader, child_ctx);
7591 if (IS_ERR(child_ctr))
7592 return PTR_ERR(child_ctr);
7593 }
7594 return 0;
7595 }
7596
7597 static int
7598 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7599 struct perf_event_context *parent_ctx,
7600 struct task_struct *child, int ctxn,
7601 int *inherited_all)
7602 {
7603 int ret;
7604 struct perf_event_context *child_ctx;
7605
7606 if (!event->attr.inherit) {
7607 *inherited_all = 0;
7608 return 0;
7609 }
7610
7611 child_ctx = child->perf_event_ctxp[ctxn];
7612 if (!child_ctx) {
7613 /*
7614 * This is executed from the parent task context, so
7615 * inherit events that have been marked for cloning.
7616 * First allocate and initialize a context for the
7617 * child.
7618 */
7619
7620 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7621 if (!child_ctx)
7622 return -ENOMEM;
7623
7624 child->perf_event_ctxp[ctxn] = child_ctx;
7625 }
7626
7627 ret = inherit_group(event, parent, parent_ctx,
7628 child, child_ctx);
7629
7630 if (ret)
7631 *inherited_all = 0;
7632
7633 return ret;
7634 }
7635
7636 /*
7637 * Initialize the perf_event context in task_struct
7638 */
7639 int perf_event_init_context(struct task_struct *child, int ctxn)
7640 {
7641 struct perf_event_context *child_ctx, *parent_ctx;
7642 struct perf_event_context *cloned_ctx;
7643 struct perf_event *event;
7644 struct task_struct *parent = current;
7645 int inherited_all = 1;
7646 unsigned long flags;
7647 int ret = 0;
7648
7649 if (likely(!parent->perf_event_ctxp[ctxn]))
7650 return 0;
7651
7652 /*
7653 * If the parent's context is a clone, pin it so it won't get
7654 * swapped under us.
7655 */
7656 parent_ctx = perf_pin_task_context(parent, ctxn);
7657
7658 /*
7659 * No need to check if parent_ctx != NULL here; since we saw
7660 * it non-NULL earlier, the only reason for it to become NULL
7661 * is if we exit, and since we're currently in the middle of
7662 * a fork we can't be exiting at the same time.
7663 */
7664
7665 /*
7666 * Lock the parent list. No need to lock the child - not PID
7667 * hashed yet and not running, so nobody can access it.
7668 */
7669 mutex_lock(&parent_ctx->mutex);
7670
7671 /*
7672 * We dont have to disable NMIs - we are only looking at
7673 * the list, not manipulating it:
7674 */
7675 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7676 ret = inherit_task_group(event, parent, parent_ctx,
7677 child, ctxn, &inherited_all);
7678 if (ret)
7679 break;
7680 }
7681
7682 /*
7683 * We can't hold ctx->lock when iterating the ->flexible_group list due
7684 * to allocations, but we need to prevent rotation because
7685 * rotate_ctx() will change the list from interrupt context.
7686 */
7687 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7688 parent_ctx->rotate_disable = 1;
7689 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7690
7691 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7692 ret = inherit_task_group(event, parent, parent_ctx,
7693 child, ctxn, &inherited_all);
7694 if (ret)
7695 break;
7696 }
7697
7698 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7699 parent_ctx->rotate_disable = 0;
7700
7701 child_ctx = child->perf_event_ctxp[ctxn];
7702
7703 if (child_ctx && inherited_all) {
7704 /*
7705 * Mark the child context as a clone of the parent
7706 * context, or of whatever the parent is a clone of.
7707 *
7708 * Note that if the parent is a clone, the holding of
7709 * parent_ctx->lock avoids it from being uncloned.
7710 */
7711 cloned_ctx = parent_ctx->parent_ctx;
7712 if (cloned_ctx) {
7713 child_ctx->parent_ctx = cloned_ctx;
7714 child_ctx->parent_gen = parent_ctx->parent_gen;
7715 } else {
7716 child_ctx->parent_ctx = parent_ctx;
7717 child_ctx->parent_gen = parent_ctx->generation;
7718 }
7719 get_ctx(child_ctx->parent_ctx);
7720 }
7721
7722 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7723 mutex_unlock(&parent_ctx->mutex);
7724
7725 perf_unpin_context(parent_ctx);
7726 put_ctx(parent_ctx);
7727
7728 return ret;
7729 }
7730
7731 /*
7732 * Initialize the perf_event context in task_struct
7733 */
7734 int perf_event_init_task(struct task_struct *child)
7735 {
7736 int ctxn, ret;
7737
7738 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7739 mutex_init(&child->perf_event_mutex);
7740 INIT_LIST_HEAD(&child->perf_event_list);
7741
7742 for_each_task_context_nr(ctxn) {
7743 ret = perf_event_init_context(child, ctxn);
7744 if (ret)
7745 return ret;
7746 }
7747
7748 return 0;
7749 }
7750
7751 static void __init perf_event_init_all_cpus(void)
7752 {
7753 struct swevent_htable *swhash;
7754 int cpu;
7755
7756 for_each_possible_cpu(cpu) {
7757 swhash = &per_cpu(swevent_htable, cpu);
7758 mutex_init(&swhash->hlist_mutex);
7759 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7760 }
7761 }
7762
7763 static void perf_event_init_cpu(int cpu)
7764 {
7765 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7766
7767 mutex_lock(&swhash->hlist_mutex);
7768 if (swhash->hlist_refcount > 0) {
7769 struct swevent_hlist *hlist;
7770
7771 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7772 WARN_ON(!hlist);
7773 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7774 }
7775 mutex_unlock(&swhash->hlist_mutex);
7776 }
7777
7778 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7779 static void perf_pmu_rotate_stop(struct pmu *pmu)
7780 {
7781 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7782
7783 WARN_ON(!irqs_disabled());
7784
7785 list_del_init(&cpuctx->rotation_list);
7786 }
7787
7788 static void __perf_event_exit_context(void *__info)
7789 {
7790 struct perf_event_context *ctx = __info;
7791 struct perf_event *event, *tmp;
7792
7793 perf_pmu_rotate_stop(ctx->pmu);
7794
7795 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7796 __perf_remove_from_context(event);
7797 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7798 __perf_remove_from_context(event);
7799 }
7800
7801 static void perf_event_exit_cpu_context(int cpu)
7802 {
7803 struct perf_event_context *ctx;
7804 struct pmu *pmu;
7805 int idx;
7806
7807 idx = srcu_read_lock(&pmus_srcu);
7808 list_for_each_entry_rcu(pmu, &pmus, entry) {
7809 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7810
7811 mutex_lock(&ctx->mutex);
7812 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7813 mutex_unlock(&ctx->mutex);
7814 }
7815 srcu_read_unlock(&pmus_srcu, idx);
7816 }
7817
7818 static void perf_event_exit_cpu(int cpu)
7819 {
7820 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7821
7822 mutex_lock(&swhash->hlist_mutex);
7823 swevent_hlist_release(swhash);
7824 mutex_unlock(&swhash->hlist_mutex);
7825
7826 perf_event_exit_cpu_context(cpu);
7827 }
7828 #else
7829 static inline void perf_event_exit_cpu(int cpu) { }
7830 #endif
7831
7832 static int
7833 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7834 {
7835 int cpu;
7836
7837 for_each_online_cpu(cpu)
7838 perf_event_exit_cpu(cpu);
7839
7840 return NOTIFY_OK;
7841 }
7842
7843 /*
7844 * Run the perf reboot notifier at the very last possible moment so that
7845 * the generic watchdog code runs as long as possible.
7846 */
7847 static struct notifier_block perf_reboot_notifier = {
7848 .notifier_call = perf_reboot,
7849 .priority = INT_MIN,
7850 };
7851
7852 static int
7853 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7854 {
7855 unsigned int cpu = (long)hcpu;
7856
7857 switch (action & ~CPU_TASKS_FROZEN) {
7858
7859 case CPU_UP_PREPARE:
7860 case CPU_DOWN_FAILED:
7861 perf_event_init_cpu(cpu);
7862 break;
7863
7864 case CPU_UP_CANCELED:
7865 case CPU_DOWN_PREPARE:
7866 perf_event_exit_cpu(cpu);
7867 break;
7868 default:
7869 break;
7870 }
7871
7872 return NOTIFY_OK;
7873 }
7874
7875 void __init perf_event_init(void)
7876 {
7877 int ret;
7878
7879 idr_init(&pmu_idr);
7880
7881 perf_event_init_all_cpus();
7882 init_srcu_struct(&pmus_srcu);
7883 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7884 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7885 perf_pmu_register(&perf_task_clock, NULL, -1);
7886 perf_tp_register();
7887 perf_cpu_notifier(perf_cpu_notify);
7888 register_reboot_notifier(&perf_reboot_notifier);
7889
7890 ret = init_hw_breakpoint();
7891 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7892
7893 /* do not patch jump label more than once per second */
7894 jump_label_rate_limit(&perf_sched_events, HZ);
7895
7896 /*
7897 * Build time assertion that we keep the data_head at the intended
7898 * location. IOW, validation we got the __reserved[] size right.
7899 */
7900 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7901 != 1024);
7902 }
7903
7904 static int __init perf_event_sysfs_init(void)
7905 {
7906 struct pmu *pmu;
7907 int ret;
7908
7909 mutex_lock(&pmus_lock);
7910
7911 ret = bus_register(&pmu_bus);
7912 if (ret)
7913 goto unlock;
7914
7915 list_for_each_entry(pmu, &pmus, entry) {
7916 if (!pmu->name || pmu->type < 0)
7917 continue;
7918
7919 ret = pmu_dev_alloc(pmu);
7920 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7921 }
7922 pmu_bus_running = 1;
7923 ret = 0;
7924
7925 unlock:
7926 mutex_unlock(&pmus_lock);
7927
7928 return ret;
7929 }
7930 device_initcall(perf_event_sysfs_init);
7931
7932 #ifdef CONFIG_CGROUP_PERF
7933 static struct cgroup_subsys_state *
7934 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7935 {
7936 struct perf_cgroup *jc;
7937
7938 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7939 if (!jc)
7940 return ERR_PTR(-ENOMEM);
7941
7942 jc->info = alloc_percpu(struct perf_cgroup_info);
7943 if (!jc->info) {
7944 kfree(jc);
7945 return ERR_PTR(-ENOMEM);
7946 }
7947
7948 return &jc->css;
7949 }
7950
7951 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7952 {
7953 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7954
7955 free_percpu(jc->info);
7956 kfree(jc);
7957 }
7958
7959 static int __perf_cgroup_move(void *info)
7960 {
7961 struct task_struct *task = info;
7962 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7963 return 0;
7964 }
7965
7966 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7967 struct cgroup_taskset *tset)
7968 {
7969 struct task_struct *task;
7970
7971 cgroup_taskset_for_each(task, css, tset)
7972 task_function_call(task, __perf_cgroup_move, task);
7973 }
7974
7975 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7976 struct cgroup_subsys_state *old_css,
7977 struct task_struct *task)
7978 {
7979 /*
7980 * cgroup_exit() is called in the copy_process() failure path.
7981 * Ignore this case since the task hasn't ran yet, this avoids
7982 * trying to poke a half freed task state from generic code.
7983 */
7984 if (!(task->flags & PF_EXITING))
7985 return;
7986
7987 task_function_call(task, __perf_cgroup_move, task);
7988 }
7989
7990 struct cgroup_subsys perf_subsys = {
7991 .name = "perf_event",
7992 .subsys_id = perf_subsys_id,
7993 .css_alloc = perf_cgroup_css_alloc,
7994 .css_free = perf_cgroup_css_free,
7995 .exit = perf_cgroup_exit,
7996 .attach = perf_cgroup_attach,
7997 };
7998 #endif /* CONFIG_CGROUP_PERF */
This page took 0.212639 seconds and 5 git commands to generate.