ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166
167 static LIST_HEAD(pmus);
168 static DEFINE_MUTEX(pmus_lock);
169 static struct srcu_struct pmus_srcu;
170
171 /*
172 * perf event paranoia level:
173 * -1 - not paranoid at all
174 * 0 - disallow raw tracepoint access for unpriv
175 * 1 - disallow cpu events for unpriv
176 * 2 - disallow kernel profiling for unpriv
177 */
178 int sysctl_perf_event_paranoid __read_mostly = 1;
179
180 /* Minimum for 512 kiB + 1 user control page */
181 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182
183 /*
184 * max perf event sample rate
185 */
186 #define DEFAULT_MAX_SAMPLE_RATE 100000
187 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
188 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
189
190 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
191
192 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
193 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
194
195 static int perf_sample_allowed_ns __read_mostly =
196 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
197
198 void update_perf_cpu_limits(void)
199 {
200 u64 tmp = perf_sample_period_ns;
201
202 tmp *= sysctl_perf_cpu_time_max_percent;
203 do_div(tmp, 100);
204 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205 }
206
207 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
208
209 int perf_proc_update_handler(struct ctl_table *table, int write,
210 void __user *buffer, size_t *lenp,
211 loff_t *ppos)
212 {
213 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
214
215 if (ret || !write)
216 return ret;
217
218 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
219 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
220 update_perf_cpu_limits();
221
222 return 0;
223 }
224
225 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
226
227 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
228 void __user *buffer, size_t *lenp,
229 loff_t *ppos)
230 {
231 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
232
233 if (ret || !write)
234 return ret;
235
236 update_perf_cpu_limits();
237
238 return 0;
239 }
240
241 /*
242 * perf samples are done in some very critical code paths (NMIs).
243 * If they take too much CPU time, the system can lock up and not
244 * get any real work done. This will drop the sample rate when
245 * we detect that events are taking too long.
246 */
247 #define NR_ACCUMULATED_SAMPLES 128
248 static DEFINE_PER_CPU(u64, running_sample_length);
249
250 static void perf_duration_warn(struct irq_work *w)
251 {
252 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
253 u64 avg_local_sample_len;
254 u64 local_samples_len;
255
256 local_samples_len = __this_cpu_read(running_sample_length);
257 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
258
259 printk_ratelimited(KERN_WARNING
260 "perf interrupt took too long (%lld > %lld), lowering "
261 "kernel.perf_event_max_sample_rate to %d\n",
262 avg_local_sample_len, allowed_ns >> 1,
263 sysctl_perf_event_sample_rate);
264 }
265
266 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
267
268 void perf_sample_event_took(u64 sample_len_ns)
269 {
270 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
271 u64 avg_local_sample_len;
272 u64 local_samples_len;
273
274 if (allowed_ns == 0)
275 return;
276
277 /* decay the counter by 1 average sample */
278 local_samples_len = __this_cpu_read(running_sample_length);
279 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
280 local_samples_len += sample_len_ns;
281 __this_cpu_write(running_sample_length, local_samples_len);
282
283 /*
284 * note: this will be biased artifically low until we have
285 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
286 * from having to maintain a count.
287 */
288 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
289
290 if (avg_local_sample_len <= allowed_ns)
291 return;
292
293 if (max_samples_per_tick <= 1)
294 return;
295
296 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
297 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
298 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
299
300 update_perf_cpu_limits();
301
302 if (!irq_work_queue(&perf_duration_work)) {
303 early_printk("perf interrupt took too long (%lld > %lld), lowering "
304 "kernel.perf_event_max_sample_rate to %d\n",
305 avg_local_sample_len, allowed_ns >> 1,
306 sysctl_perf_event_sample_rate);
307 }
308 }
309
310 static atomic64_t perf_event_id;
311
312 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
313 enum event_type_t event_type);
314
315 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
316 enum event_type_t event_type,
317 struct task_struct *task);
318
319 static void update_context_time(struct perf_event_context *ctx);
320 static u64 perf_event_time(struct perf_event *event);
321
322 void __weak perf_event_print_debug(void) { }
323
324 extern __weak const char *perf_pmu_name(void)
325 {
326 return "pmu";
327 }
328
329 static inline u64 perf_clock(void)
330 {
331 return local_clock();
332 }
333
334 static inline u64 perf_event_clock(struct perf_event *event)
335 {
336 return event->clock();
337 }
338
339 static inline struct perf_cpu_context *
340 __get_cpu_context(struct perf_event_context *ctx)
341 {
342 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
343 }
344
345 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
346 struct perf_event_context *ctx)
347 {
348 raw_spin_lock(&cpuctx->ctx.lock);
349 if (ctx)
350 raw_spin_lock(&ctx->lock);
351 }
352
353 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
354 struct perf_event_context *ctx)
355 {
356 if (ctx)
357 raw_spin_unlock(&ctx->lock);
358 raw_spin_unlock(&cpuctx->ctx.lock);
359 }
360
361 #ifdef CONFIG_CGROUP_PERF
362
363 static inline bool
364 perf_cgroup_match(struct perf_event *event)
365 {
366 struct perf_event_context *ctx = event->ctx;
367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
368
369 /* @event doesn't care about cgroup */
370 if (!event->cgrp)
371 return true;
372
373 /* wants specific cgroup scope but @cpuctx isn't associated with any */
374 if (!cpuctx->cgrp)
375 return false;
376
377 /*
378 * Cgroup scoping is recursive. An event enabled for a cgroup is
379 * also enabled for all its descendant cgroups. If @cpuctx's
380 * cgroup is a descendant of @event's (the test covers identity
381 * case), it's a match.
382 */
383 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
384 event->cgrp->css.cgroup);
385 }
386
387 static inline void perf_detach_cgroup(struct perf_event *event)
388 {
389 css_put(&event->cgrp->css);
390 event->cgrp = NULL;
391 }
392
393 static inline int is_cgroup_event(struct perf_event *event)
394 {
395 return event->cgrp != NULL;
396 }
397
398 static inline u64 perf_cgroup_event_time(struct perf_event *event)
399 {
400 struct perf_cgroup_info *t;
401
402 t = per_cpu_ptr(event->cgrp->info, event->cpu);
403 return t->time;
404 }
405
406 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
407 {
408 struct perf_cgroup_info *info;
409 u64 now;
410
411 now = perf_clock();
412
413 info = this_cpu_ptr(cgrp->info);
414
415 info->time += now - info->timestamp;
416 info->timestamp = now;
417 }
418
419 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
420 {
421 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
422 if (cgrp_out)
423 __update_cgrp_time(cgrp_out);
424 }
425
426 static inline void update_cgrp_time_from_event(struct perf_event *event)
427 {
428 struct perf_cgroup *cgrp;
429
430 /*
431 * ensure we access cgroup data only when needed and
432 * when we know the cgroup is pinned (css_get)
433 */
434 if (!is_cgroup_event(event))
435 return;
436
437 cgrp = perf_cgroup_from_task(current);
438 /*
439 * Do not update time when cgroup is not active
440 */
441 if (cgrp == event->cgrp)
442 __update_cgrp_time(event->cgrp);
443 }
444
445 static inline void
446 perf_cgroup_set_timestamp(struct task_struct *task,
447 struct perf_event_context *ctx)
448 {
449 struct perf_cgroup *cgrp;
450 struct perf_cgroup_info *info;
451
452 /*
453 * ctx->lock held by caller
454 * ensure we do not access cgroup data
455 * unless we have the cgroup pinned (css_get)
456 */
457 if (!task || !ctx->nr_cgroups)
458 return;
459
460 cgrp = perf_cgroup_from_task(task);
461 info = this_cpu_ptr(cgrp->info);
462 info->timestamp = ctx->timestamp;
463 }
464
465 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
466 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
467
468 /*
469 * reschedule events based on the cgroup constraint of task.
470 *
471 * mode SWOUT : schedule out everything
472 * mode SWIN : schedule in based on cgroup for next
473 */
474 void perf_cgroup_switch(struct task_struct *task, int mode)
475 {
476 struct perf_cpu_context *cpuctx;
477 struct pmu *pmu;
478 unsigned long flags;
479
480 /*
481 * disable interrupts to avoid geting nr_cgroup
482 * changes via __perf_event_disable(). Also
483 * avoids preemption.
484 */
485 local_irq_save(flags);
486
487 /*
488 * we reschedule only in the presence of cgroup
489 * constrained events.
490 */
491 rcu_read_lock();
492
493 list_for_each_entry_rcu(pmu, &pmus, entry) {
494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 if (cpuctx->unique_pmu != pmu)
496 continue; /* ensure we process each cpuctx once */
497
498 /*
499 * perf_cgroup_events says at least one
500 * context on this CPU has cgroup events.
501 *
502 * ctx->nr_cgroups reports the number of cgroup
503 * events for a context.
504 */
505 if (cpuctx->ctx.nr_cgroups > 0) {
506 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 perf_pmu_disable(cpuctx->ctx.pmu);
508
509 if (mode & PERF_CGROUP_SWOUT) {
510 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 /*
512 * must not be done before ctxswout due
513 * to event_filter_match() in event_sched_out()
514 */
515 cpuctx->cgrp = NULL;
516 }
517
518 if (mode & PERF_CGROUP_SWIN) {
519 WARN_ON_ONCE(cpuctx->cgrp);
520 /*
521 * set cgrp before ctxsw in to allow
522 * event_filter_match() to not have to pass
523 * task around
524 */
525 cpuctx->cgrp = perf_cgroup_from_task(task);
526 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
527 }
528 perf_pmu_enable(cpuctx->ctx.pmu);
529 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
530 }
531 }
532
533 rcu_read_unlock();
534
535 local_irq_restore(flags);
536 }
537
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 struct task_struct *next)
540 {
541 struct perf_cgroup *cgrp1;
542 struct perf_cgroup *cgrp2 = NULL;
543
544 /*
545 * we come here when we know perf_cgroup_events > 0
546 */
547 cgrp1 = perf_cgroup_from_task(task);
548
549 /*
550 * next is NULL when called from perf_event_enable_on_exec()
551 * that will systematically cause a cgroup_switch()
552 */
553 if (next)
554 cgrp2 = perf_cgroup_from_task(next);
555
556 /*
557 * only schedule out current cgroup events if we know
558 * that we are switching to a different cgroup. Otherwise,
559 * do no touch the cgroup events.
560 */
561 if (cgrp1 != cgrp2)
562 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
563 }
564
565 static inline void perf_cgroup_sched_in(struct task_struct *prev,
566 struct task_struct *task)
567 {
568 struct perf_cgroup *cgrp1;
569 struct perf_cgroup *cgrp2 = NULL;
570
571 /*
572 * we come here when we know perf_cgroup_events > 0
573 */
574 cgrp1 = perf_cgroup_from_task(task);
575
576 /* prev can never be NULL */
577 cgrp2 = perf_cgroup_from_task(prev);
578
579 /*
580 * only need to schedule in cgroup events if we are changing
581 * cgroup during ctxsw. Cgroup events were not scheduled
582 * out of ctxsw out if that was not the case.
583 */
584 if (cgrp1 != cgrp2)
585 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
586 }
587
588 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
589 struct perf_event_attr *attr,
590 struct perf_event *group_leader)
591 {
592 struct perf_cgroup *cgrp;
593 struct cgroup_subsys_state *css;
594 struct fd f = fdget(fd);
595 int ret = 0;
596
597 if (!f.file)
598 return -EBADF;
599
600 css = css_tryget_online_from_dir(f.file->f_path.dentry,
601 &perf_event_cgrp_subsys);
602 if (IS_ERR(css)) {
603 ret = PTR_ERR(css);
604 goto out;
605 }
606
607 cgrp = container_of(css, struct perf_cgroup, css);
608 event->cgrp = cgrp;
609
610 /*
611 * all events in a group must monitor
612 * the same cgroup because a task belongs
613 * to only one perf cgroup at a time
614 */
615 if (group_leader && group_leader->cgrp != cgrp) {
616 perf_detach_cgroup(event);
617 ret = -EINVAL;
618 }
619 out:
620 fdput(f);
621 return ret;
622 }
623
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 struct perf_cgroup_info *t;
628 t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 event->shadow_ctx_time = now - t->timestamp;
630 }
631
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 /*
636 * when the current task's perf cgroup does not match
637 * the event's, we need to remember to call the
638 * perf_mark_enable() function the first time a task with
639 * a matching perf cgroup is scheduled in.
640 */
641 if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 event->cgrp_defer_enabled = 1;
643 }
644
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 struct perf_event_context *ctx)
648 {
649 struct perf_event *sub;
650 u64 tstamp = perf_event_time(event);
651
652 if (!event->cgrp_defer_enabled)
653 return;
654
655 event->cgrp_defer_enabled = 0;
656
657 event->tstamp_enabled = tstamp - event->total_time_enabled;
658 list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 sub->cgrp_defer_enabled = 0;
662 }
663 }
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 return true;
671 }
672
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 return 0;
679 }
680
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 return 0;
684 }
685
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 struct task_struct *next)
696 {
697 }
698
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 struct task_struct *task)
701 {
702 }
703
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 struct perf_event_attr *attr,
706 struct perf_event *group_leader)
707 {
708 return -EINVAL;
709 }
710
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 struct perf_event_context *ctx)
714 {
715 }
716
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 return 0;
730 }
731
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743
744 /*
745 * set default to be dependent on timer tick just
746 * like original code
747 */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750 * function must be called with interrupts disbled
751 */
752 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
753 {
754 struct perf_cpu_context *cpuctx;
755 int rotations = 0;
756
757 WARN_ON(!irqs_disabled());
758
759 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
760 rotations = perf_rotate_context(cpuctx);
761
762 raw_spin_lock(&cpuctx->hrtimer_lock);
763 if (rotations)
764 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
765 else
766 cpuctx->hrtimer_active = 0;
767 raw_spin_unlock(&cpuctx->hrtimer_lock);
768
769 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
770 }
771
772 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
773 {
774 struct hrtimer *timer = &cpuctx->hrtimer;
775 struct pmu *pmu = cpuctx->ctx.pmu;
776 u64 interval;
777
778 /* no multiplexing needed for SW PMU */
779 if (pmu->task_ctx_nr == perf_sw_context)
780 return;
781
782 /*
783 * check default is sane, if not set then force to
784 * default interval (1/tick)
785 */
786 interval = pmu->hrtimer_interval_ms;
787 if (interval < 1)
788 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
789
790 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
791
792 raw_spin_lock_init(&cpuctx->hrtimer_lock);
793 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
794 timer->function = perf_mux_hrtimer_handler;
795 }
796
797 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
798 {
799 struct hrtimer *timer = &cpuctx->hrtimer;
800 struct pmu *pmu = cpuctx->ctx.pmu;
801 unsigned long flags;
802
803 /* not for SW PMU */
804 if (pmu->task_ctx_nr == perf_sw_context)
805 return 0;
806
807 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
808 if (!cpuctx->hrtimer_active) {
809 cpuctx->hrtimer_active = 1;
810 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
811 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
812 }
813 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
814
815 return 0;
816 }
817
818 void perf_pmu_disable(struct pmu *pmu)
819 {
820 int *count = this_cpu_ptr(pmu->pmu_disable_count);
821 if (!(*count)++)
822 pmu->pmu_disable(pmu);
823 }
824
825 void perf_pmu_enable(struct pmu *pmu)
826 {
827 int *count = this_cpu_ptr(pmu->pmu_disable_count);
828 if (!--(*count))
829 pmu->pmu_enable(pmu);
830 }
831
832 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
833
834 /*
835 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
836 * perf_event_task_tick() are fully serialized because they're strictly cpu
837 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
838 * disabled, while perf_event_task_tick is called from IRQ context.
839 */
840 static void perf_event_ctx_activate(struct perf_event_context *ctx)
841 {
842 struct list_head *head = this_cpu_ptr(&active_ctx_list);
843
844 WARN_ON(!irqs_disabled());
845
846 WARN_ON(!list_empty(&ctx->active_ctx_list));
847
848 list_add(&ctx->active_ctx_list, head);
849 }
850
851 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
852 {
853 WARN_ON(!irqs_disabled());
854
855 WARN_ON(list_empty(&ctx->active_ctx_list));
856
857 list_del_init(&ctx->active_ctx_list);
858 }
859
860 static void get_ctx(struct perf_event_context *ctx)
861 {
862 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
863 }
864
865 static void free_ctx(struct rcu_head *head)
866 {
867 struct perf_event_context *ctx;
868
869 ctx = container_of(head, struct perf_event_context, rcu_head);
870 kfree(ctx->task_ctx_data);
871 kfree(ctx);
872 }
873
874 static void put_ctx(struct perf_event_context *ctx)
875 {
876 if (atomic_dec_and_test(&ctx->refcount)) {
877 if (ctx->parent_ctx)
878 put_ctx(ctx->parent_ctx);
879 if (ctx->task)
880 put_task_struct(ctx->task);
881 call_rcu(&ctx->rcu_head, free_ctx);
882 }
883 }
884
885 /*
886 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
887 * perf_pmu_migrate_context() we need some magic.
888 *
889 * Those places that change perf_event::ctx will hold both
890 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
891 *
892 * Lock ordering is by mutex address. There are two other sites where
893 * perf_event_context::mutex nests and those are:
894 *
895 * - perf_event_exit_task_context() [ child , 0 ]
896 * __perf_event_exit_task()
897 * sync_child_event()
898 * put_event() [ parent, 1 ]
899 *
900 * - perf_event_init_context() [ parent, 0 ]
901 * inherit_task_group()
902 * inherit_group()
903 * inherit_event()
904 * perf_event_alloc()
905 * perf_init_event()
906 * perf_try_init_event() [ child , 1 ]
907 *
908 * While it appears there is an obvious deadlock here -- the parent and child
909 * nesting levels are inverted between the two. This is in fact safe because
910 * life-time rules separate them. That is an exiting task cannot fork, and a
911 * spawning task cannot (yet) exit.
912 *
913 * But remember that that these are parent<->child context relations, and
914 * migration does not affect children, therefore these two orderings should not
915 * interact.
916 *
917 * The change in perf_event::ctx does not affect children (as claimed above)
918 * because the sys_perf_event_open() case will install a new event and break
919 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
920 * concerned with cpuctx and that doesn't have children.
921 *
922 * The places that change perf_event::ctx will issue:
923 *
924 * perf_remove_from_context();
925 * synchronize_rcu();
926 * perf_install_in_context();
927 *
928 * to affect the change. The remove_from_context() + synchronize_rcu() should
929 * quiesce the event, after which we can install it in the new location. This
930 * means that only external vectors (perf_fops, prctl) can perturb the event
931 * while in transit. Therefore all such accessors should also acquire
932 * perf_event_context::mutex to serialize against this.
933 *
934 * However; because event->ctx can change while we're waiting to acquire
935 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
936 * function.
937 *
938 * Lock order:
939 * task_struct::perf_event_mutex
940 * perf_event_context::mutex
941 * perf_event_context::lock
942 * perf_event::child_mutex;
943 * perf_event::mmap_mutex
944 * mmap_sem
945 */
946 static struct perf_event_context *
947 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
948 {
949 struct perf_event_context *ctx;
950
951 again:
952 rcu_read_lock();
953 ctx = ACCESS_ONCE(event->ctx);
954 if (!atomic_inc_not_zero(&ctx->refcount)) {
955 rcu_read_unlock();
956 goto again;
957 }
958 rcu_read_unlock();
959
960 mutex_lock_nested(&ctx->mutex, nesting);
961 if (event->ctx != ctx) {
962 mutex_unlock(&ctx->mutex);
963 put_ctx(ctx);
964 goto again;
965 }
966
967 return ctx;
968 }
969
970 static inline struct perf_event_context *
971 perf_event_ctx_lock(struct perf_event *event)
972 {
973 return perf_event_ctx_lock_nested(event, 0);
974 }
975
976 static void perf_event_ctx_unlock(struct perf_event *event,
977 struct perf_event_context *ctx)
978 {
979 mutex_unlock(&ctx->mutex);
980 put_ctx(ctx);
981 }
982
983 /*
984 * This must be done under the ctx->lock, such as to serialize against
985 * context_equiv(), therefore we cannot call put_ctx() since that might end up
986 * calling scheduler related locks and ctx->lock nests inside those.
987 */
988 static __must_check struct perf_event_context *
989 unclone_ctx(struct perf_event_context *ctx)
990 {
991 struct perf_event_context *parent_ctx = ctx->parent_ctx;
992
993 lockdep_assert_held(&ctx->lock);
994
995 if (parent_ctx)
996 ctx->parent_ctx = NULL;
997 ctx->generation++;
998
999 return parent_ctx;
1000 }
1001
1002 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1003 {
1004 /*
1005 * only top level events have the pid namespace they were created in
1006 */
1007 if (event->parent)
1008 event = event->parent;
1009
1010 return task_tgid_nr_ns(p, event->ns);
1011 }
1012
1013 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1014 {
1015 /*
1016 * only top level events have the pid namespace they were created in
1017 */
1018 if (event->parent)
1019 event = event->parent;
1020
1021 return task_pid_nr_ns(p, event->ns);
1022 }
1023
1024 /*
1025 * If we inherit events we want to return the parent event id
1026 * to userspace.
1027 */
1028 static u64 primary_event_id(struct perf_event *event)
1029 {
1030 u64 id = event->id;
1031
1032 if (event->parent)
1033 id = event->parent->id;
1034
1035 return id;
1036 }
1037
1038 /*
1039 * Get the perf_event_context for a task and lock it.
1040 * This has to cope with with the fact that until it is locked,
1041 * the context could get moved to another task.
1042 */
1043 static struct perf_event_context *
1044 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1045 {
1046 struct perf_event_context *ctx;
1047
1048 retry:
1049 /*
1050 * One of the few rules of preemptible RCU is that one cannot do
1051 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1052 * part of the read side critical section was preemptible -- see
1053 * rcu_read_unlock_special().
1054 *
1055 * Since ctx->lock nests under rq->lock we must ensure the entire read
1056 * side critical section is non-preemptible.
1057 */
1058 preempt_disable();
1059 rcu_read_lock();
1060 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1061 if (ctx) {
1062 /*
1063 * If this context is a clone of another, it might
1064 * get swapped for another underneath us by
1065 * perf_event_task_sched_out, though the
1066 * rcu_read_lock() protects us from any context
1067 * getting freed. Lock the context and check if it
1068 * got swapped before we could get the lock, and retry
1069 * if so. If we locked the right context, then it
1070 * can't get swapped on us any more.
1071 */
1072 raw_spin_lock_irqsave(&ctx->lock, *flags);
1073 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1074 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1075 rcu_read_unlock();
1076 preempt_enable();
1077 goto retry;
1078 }
1079
1080 if (!atomic_inc_not_zero(&ctx->refcount)) {
1081 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1082 ctx = NULL;
1083 }
1084 }
1085 rcu_read_unlock();
1086 preempt_enable();
1087 return ctx;
1088 }
1089
1090 /*
1091 * Get the context for a task and increment its pin_count so it
1092 * can't get swapped to another task. This also increments its
1093 * reference count so that the context can't get freed.
1094 */
1095 static struct perf_event_context *
1096 perf_pin_task_context(struct task_struct *task, int ctxn)
1097 {
1098 struct perf_event_context *ctx;
1099 unsigned long flags;
1100
1101 ctx = perf_lock_task_context(task, ctxn, &flags);
1102 if (ctx) {
1103 ++ctx->pin_count;
1104 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1105 }
1106 return ctx;
1107 }
1108
1109 static void perf_unpin_context(struct perf_event_context *ctx)
1110 {
1111 unsigned long flags;
1112
1113 raw_spin_lock_irqsave(&ctx->lock, flags);
1114 --ctx->pin_count;
1115 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 }
1117
1118 /*
1119 * Update the record of the current time in a context.
1120 */
1121 static void update_context_time(struct perf_event_context *ctx)
1122 {
1123 u64 now = perf_clock();
1124
1125 ctx->time += now - ctx->timestamp;
1126 ctx->timestamp = now;
1127 }
1128
1129 static u64 perf_event_time(struct perf_event *event)
1130 {
1131 struct perf_event_context *ctx = event->ctx;
1132
1133 if (is_cgroup_event(event))
1134 return perf_cgroup_event_time(event);
1135
1136 return ctx ? ctx->time : 0;
1137 }
1138
1139 /*
1140 * Update the total_time_enabled and total_time_running fields for a event.
1141 * The caller of this function needs to hold the ctx->lock.
1142 */
1143 static void update_event_times(struct perf_event *event)
1144 {
1145 struct perf_event_context *ctx = event->ctx;
1146 u64 run_end;
1147
1148 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1149 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1150 return;
1151 /*
1152 * in cgroup mode, time_enabled represents
1153 * the time the event was enabled AND active
1154 * tasks were in the monitored cgroup. This is
1155 * independent of the activity of the context as
1156 * there may be a mix of cgroup and non-cgroup events.
1157 *
1158 * That is why we treat cgroup events differently
1159 * here.
1160 */
1161 if (is_cgroup_event(event))
1162 run_end = perf_cgroup_event_time(event);
1163 else if (ctx->is_active)
1164 run_end = ctx->time;
1165 else
1166 run_end = event->tstamp_stopped;
1167
1168 event->total_time_enabled = run_end - event->tstamp_enabled;
1169
1170 if (event->state == PERF_EVENT_STATE_INACTIVE)
1171 run_end = event->tstamp_stopped;
1172 else
1173 run_end = perf_event_time(event);
1174
1175 event->total_time_running = run_end - event->tstamp_running;
1176
1177 }
1178
1179 /*
1180 * Update total_time_enabled and total_time_running for all events in a group.
1181 */
1182 static void update_group_times(struct perf_event *leader)
1183 {
1184 struct perf_event *event;
1185
1186 update_event_times(leader);
1187 list_for_each_entry(event, &leader->sibling_list, group_entry)
1188 update_event_times(event);
1189 }
1190
1191 static struct list_head *
1192 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1193 {
1194 if (event->attr.pinned)
1195 return &ctx->pinned_groups;
1196 else
1197 return &ctx->flexible_groups;
1198 }
1199
1200 /*
1201 * Add a event from the lists for its context.
1202 * Must be called with ctx->mutex and ctx->lock held.
1203 */
1204 static void
1205 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1206 {
1207 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1208 event->attach_state |= PERF_ATTACH_CONTEXT;
1209
1210 /*
1211 * If we're a stand alone event or group leader, we go to the context
1212 * list, group events are kept attached to the group so that
1213 * perf_group_detach can, at all times, locate all siblings.
1214 */
1215 if (event->group_leader == event) {
1216 struct list_head *list;
1217
1218 if (is_software_event(event))
1219 event->group_flags |= PERF_GROUP_SOFTWARE;
1220
1221 list = ctx_group_list(event, ctx);
1222 list_add_tail(&event->group_entry, list);
1223 }
1224
1225 if (is_cgroup_event(event))
1226 ctx->nr_cgroups++;
1227
1228 list_add_rcu(&event->event_entry, &ctx->event_list);
1229 ctx->nr_events++;
1230 if (event->attr.inherit_stat)
1231 ctx->nr_stat++;
1232
1233 ctx->generation++;
1234 }
1235
1236 /*
1237 * Initialize event state based on the perf_event_attr::disabled.
1238 */
1239 static inline void perf_event__state_init(struct perf_event *event)
1240 {
1241 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1242 PERF_EVENT_STATE_INACTIVE;
1243 }
1244
1245 /*
1246 * Called at perf_event creation and when events are attached/detached from a
1247 * group.
1248 */
1249 static void perf_event__read_size(struct perf_event *event)
1250 {
1251 int entry = sizeof(u64); /* value */
1252 int size = 0;
1253 int nr = 1;
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1259 size += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_ID)
1262 entry += sizeof(u64);
1263
1264 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1265 nr += event->group_leader->nr_siblings;
1266 size += sizeof(u64);
1267 }
1268
1269 size += entry * nr;
1270 event->read_size = size;
1271 }
1272
1273 static void perf_event__header_size(struct perf_event *event)
1274 {
1275 struct perf_sample_data *data;
1276 u64 sample_type = event->attr.sample_type;
1277 u16 size = 0;
1278
1279 perf_event__read_size(event);
1280
1281 if (sample_type & PERF_SAMPLE_IP)
1282 size += sizeof(data->ip);
1283
1284 if (sample_type & PERF_SAMPLE_ADDR)
1285 size += sizeof(data->addr);
1286
1287 if (sample_type & PERF_SAMPLE_PERIOD)
1288 size += sizeof(data->period);
1289
1290 if (sample_type & PERF_SAMPLE_WEIGHT)
1291 size += sizeof(data->weight);
1292
1293 if (sample_type & PERF_SAMPLE_READ)
1294 size += event->read_size;
1295
1296 if (sample_type & PERF_SAMPLE_DATA_SRC)
1297 size += sizeof(data->data_src.val);
1298
1299 if (sample_type & PERF_SAMPLE_TRANSACTION)
1300 size += sizeof(data->txn);
1301
1302 event->header_size = size;
1303 }
1304
1305 static void perf_event__id_header_size(struct perf_event *event)
1306 {
1307 struct perf_sample_data *data;
1308 u64 sample_type = event->attr.sample_type;
1309 u16 size = 0;
1310
1311 if (sample_type & PERF_SAMPLE_TID)
1312 size += sizeof(data->tid_entry);
1313
1314 if (sample_type & PERF_SAMPLE_TIME)
1315 size += sizeof(data->time);
1316
1317 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1318 size += sizeof(data->id);
1319
1320 if (sample_type & PERF_SAMPLE_ID)
1321 size += sizeof(data->id);
1322
1323 if (sample_type & PERF_SAMPLE_STREAM_ID)
1324 size += sizeof(data->stream_id);
1325
1326 if (sample_type & PERF_SAMPLE_CPU)
1327 size += sizeof(data->cpu_entry);
1328
1329 event->id_header_size = size;
1330 }
1331
1332 static void perf_group_attach(struct perf_event *event)
1333 {
1334 struct perf_event *group_leader = event->group_leader, *pos;
1335
1336 /*
1337 * We can have double attach due to group movement in perf_event_open.
1338 */
1339 if (event->attach_state & PERF_ATTACH_GROUP)
1340 return;
1341
1342 event->attach_state |= PERF_ATTACH_GROUP;
1343
1344 if (group_leader == event)
1345 return;
1346
1347 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1348
1349 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1350 !is_software_event(event))
1351 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1352
1353 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1354 group_leader->nr_siblings++;
1355
1356 perf_event__header_size(group_leader);
1357
1358 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1359 perf_event__header_size(pos);
1360 }
1361
1362 /*
1363 * Remove a event from the lists for its context.
1364 * Must be called with ctx->mutex and ctx->lock held.
1365 */
1366 static void
1367 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1368 {
1369 struct perf_cpu_context *cpuctx;
1370
1371 WARN_ON_ONCE(event->ctx != ctx);
1372 lockdep_assert_held(&ctx->lock);
1373
1374 /*
1375 * We can have double detach due to exit/hot-unplug + close.
1376 */
1377 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1378 return;
1379
1380 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1381
1382 if (is_cgroup_event(event)) {
1383 ctx->nr_cgroups--;
1384 cpuctx = __get_cpu_context(ctx);
1385 /*
1386 * if there are no more cgroup events
1387 * then cler cgrp to avoid stale pointer
1388 * in update_cgrp_time_from_cpuctx()
1389 */
1390 if (!ctx->nr_cgroups)
1391 cpuctx->cgrp = NULL;
1392 }
1393
1394 ctx->nr_events--;
1395 if (event->attr.inherit_stat)
1396 ctx->nr_stat--;
1397
1398 list_del_rcu(&event->event_entry);
1399
1400 if (event->group_leader == event)
1401 list_del_init(&event->group_entry);
1402
1403 update_group_times(event);
1404
1405 /*
1406 * If event was in error state, then keep it
1407 * that way, otherwise bogus counts will be
1408 * returned on read(). The only way to get out
1409 * of error state is by explicit re-enabling
1410 * of the event
1411 */
1412 if (event->state > PERF_EVENT_STATE_OFF)
1413 event->state = PERF_EVENT_STATE_OFF;
1414
1415 ctx->generation++;
1416 }
1417
1418 static void perf_group_detach(struct perf_event *event)
1419 {
1420 struct perf_event *sibling, *tmp;
1421 struct list_head *list = NULL;
1422
1423 /*
1424 * We can have double detach due to exit/hot-unplug + close.
1425 */
1426 if (!(event->attach_state & PERF_ATTACH_GROUP))
1427 return;
1428
1429 event->attach_state &= ~PERF_ATTACH_GROUP;
1430
1431 /*
1432 * If this is a sibling, remove it from its group.
1433 */
1434 if (event->group_leader != event) {
1435 list_del_init(&event->group_entry);
1436 event->group_leader->nr_siblings--;
1437 goto out;
1438 }
1439
1440 if (!list_empty(&event->group_entry))
1441 list = &event->group_entry;
1442
1443 /*
1444 * If this was a group event with sibling events then
1445 * upgrade the siblings to singleton events by adding them
1446 * to whatever list we are on.
1447 */
1448 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1449 if (list)
1450 list_move_tail(&sibling->group_entry, list);
1451 sibling->group_leader = sibling;
1452
1453 /* Inherit group flags from the previous leader */
1454 sibling->group_flags = event->group_flags;
1455
1456 WARN_ON_ONCE(sibling->ctx != event->ctx);
1457 }
1458
1459 out:
1460 perf_event__header_size(event->group_leader);
1461
1462 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1463 perf_event__header_size(tmp);
1464 }
1465
1466 /*
1467 * User event without the task.
1468 */
1469 static bool is_orphaned_event(struct perf_event *event)
1470 {
1471 return event && !is_kernel_event(event) && !event->owner;
1472 }
1473
1474 /*
1475 * Event has a parent but parent's task finished and it's
1476 * alive only because of children holding refference.
1477 */
1478 static bool is_orphaned_child(struct perf_event *event)
1479 {
1480 return is_orphaned_event(event->parent);
1481 }
1482
1483 static void orphans_remove_work(struct work_struct *work);
1484
1485 static void schedule_orphans_remove(struct perf_event_context *ctx)
1486 {
1487 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1488 return;
1489
1490 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1491 get_ctx(ctx);
1492 ctx->orphans_remove_sched = true;
1493 }
1494 }
1495
1496 static int __init perf_workqueue_init(void)
1497 {
1498 perf_wq = create_singlethread_workqueue("perf");
1499 WARN(!perf_wq, "failed to create perf workqueue\n");
1500 return perf_wq ? 0 : -1;
1501 }
1502
1503 core_initcall(perf_workqueue_init);
1504
1505 static inline int pmu_filter_match(struct perf_event *event)
1506 {
1507 struct pmu *pmu = event->pmu;
1508 return pmu->filter_match ? pmu->filter_match(event) : 1;
1509 }
1510
1511 static inline int
1512 event_filter_match(struct perf_event *event)
1513 {
1514 return (event->cpu == -1 || event->cpu == smp_processor_id())
1515 && perf_cgroup_match(event) && pmu_filter_match(event);
1516 }
1517
1518 static void
1519 event_sched_out(struct perf_event *event,
1520 struct perf_cpu_context *cpuctx,
1521 struct perf_event_context *ctx)
1522 {
1523 u64 tstamp = perf_event_time(event);
1524 u64 delta;
1525
1526 WARN_ON_ONCE(event->ctx != ctx);
1527 lockdep_assert_held(&ctx->lock);
1528
1529 /*
1530 * An event which could not be activated because of
1531 * filter mismatch still needs to have its timings
1532 * maintained, otherwise bogus information is return
1533 * via read() for time_enabled, time_running:
1534 */
1535 if (event->state == PERF_EVENT_STATE_INACTIVE
1536 && !event_filter_match(event)) {
1537 delta = tstamp - event->tstamp_stopped;
1538 event->tstamp_running += delta;
1539 event->tstamp_stopped = tstamp;
1540 }
1541
1542 if (event->state != PERF_EVENT_STATE_ACTIVE)
1543 return;
1544
1545 perf_pmu_disable(event->pmu);
1546
1547 event->state = PERF_EVENT_STATE_INACTIVE;
1548 if (event->pending_disable) {
1549 event->pending_disable = 0;
1550 event->state = PERF_EVENT_STATE_OFF;
1551 }
1552 event->tstamp_stopped = tstamp;
1553 event->pmu->del(event, 0);
1554 event->oncpu = -1;
1555
1556 if (!is_software_event(event))
1557 cpuctx->active_oncpu--;
1558 if (!--ctx->nr_active)
1559 perf_event_ctx_deactivate(ctx);
1560 if (event->attr.freq && event->attr.sample_freq)
1561 ctx->nr_freq--;
1562 if (event->attr.exclusive || !cpuctx->active_oncpu)
1563 cpuctx->exclusive = 0;
1564
1565 if (is_orphaned_child(event))
1566 schedule_orphans_remove(ctx);
1567
1568 perf_pmu_enable(event->pmu);
1569 }
1570
1571 static void
1572 group_sched_out(struct perf_event *group_event,
1573 struct perf_cpu_context *cpuctx,
1574 struct perf_event_context *ctx)
1575 {
1576 struct perf_event *event;
1577 int state = group_event->state;
1578
1579 event_sched_out(group_event, cpuctx, ctx);
1580
1581 /*
1582 * Schedule out siblings (if any):
1583 */
1584 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1585 event_sched_out(event, cpuctx, ctx);
1586
1587 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1588 cpuctx->exclusive = 0;
1589 }
1590
1591 struct remove_event {
1592 struct perf_event *event;
1593 bool detach_group;
1594 };
1595
1596 /*
1597 * Cross CPU call to remove a performance event
1598 *
1599 * We disable the event on the hardware level first. After that we
1600 * remove it from the context list.
1601 */
1602 static int __perf_remove_from_context(void *info)
1603 {
1604 struct remove_event *re = info;
1605 struct perf_event *event = re->event;
1606 struct perf_event_context *ctx = event->ctx;
1607 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1608
1609 raw_spin_lock(&ctx->lock);
1610 event_sched_out(event, cpuctx, ctx);
1611 if (re->detach_group)
1612 perf_group_detach(event);
1613 list_del_event(event, ctx);
1614 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1615 ctx->is_active = 0;
1616 cpuctx->task_ctx = NULL;
1617 }
1618 raw_spin_unlock(&ctx->lock);
1619
1620 return 0;
1621 }
1622
1623
1624 /*
1625 * Remove the event from a task's (or a CPU's) list of events.
1626 *
1627 * CPU events are removed with a smp call. For task events we only
1628 * call when the task is on a CPU.
1629 *
1630 * If event->ctx is a cloned context, callers must make sure that
1631 * every task struct that event->ctx->task could possibly point to
1632 * remains valid. This is OK when called from perf_release since
1633 * that only calls us on the top-level context, which can't be a clone.
1634 * When called from perf_event_exit_task, it's OK because the
1635 * context has been detached from its task.
1636 */
1637 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1638 {
1639 struct perf_event_context *ctx = event->ctx;
1640 struct task_struct *task = ctx->task;
1641 struct remove_event re = {
1642 .event = event,
1643 .detach_group = detach_group,
1644 };
1645
1646 lockdep_assert_held(&ctx->mutex);
1647
1648 if (!task) {
1649 /*
1650 * Per cpu events are removed via an smp call. The removal can
1651 * fail if the CPU is currently offline, but in that case we
1652 * already called __perf_remove_from_context from
1653 * perf_event_exit_cpu.
1654 */
1655 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1656 return;
1657 }
1658
1659 retry:
1660 if (!task_function_call(task, __perf_remove_from_context, &re))
1661 return;
1662
1663 raw_spin_lock_irq(&ctx->lock);
1664 /*
1665 * If we failed to find a running task, but find the context active now
1666 * that we've acquired the ctx->lock, retry.
1667 */
1668 if (ctx->is_active) {
1669 raw_spin_unlock_irq(&ctx->lock);
1670 /*
1671 * Reload the task pointer, it might have been changed by
1672 * a concurrent perf_event_context_sched_out().
1673 */
1674 task = ctx->task;
1675 goto retry;
1676 }
1677
1678 /*
1679 * Since the task isn't running, its safe to remove the event, us
1680 * holding the ctx->lock ensures the task won't get scheduled in.
1681 */
1682 if (detach_group)
1683 perf_group_detach(event);
1684 list_del_event(event, ctx);
1685 raw_spin_unlock_irq(&ctx->lock);
1686 }
1687
1688 /*
1689 * Cross CPU call to disable a performance event
1690 */
1691 int __perf_event_disable(void *info)
1692 {
1693 struct perf_event *event = info;
1694 struct perf_event_context *ctx = event->ctx;
1695 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1696
1697 /*
1698 * If this is a per-task event, need to check whether this
1699 * event's task is the current task on this cpu.
1700 *
1701 * Can trigger due to concurrent perf_event_context_sched_out()
1702 * flipping contexts around.
1703 */
1704 if (ctx->task && cpuctx->task_ctx != ctx)
1705 return -EINVAL;
1706
1707 raw_spin_lock(&ctx->lock);
1708
1709 /*
1710 * If the event is on, turn it off.
1711 * If it is in error state, leave it in error state.
1712 */
1713 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1714 update_context_time(ctx);
1715 update_cgrp_time_from_event(event);
1716 update_group_times(event);
1717 if (event == event->group_leader)
1718 group_sched_out(event, cpuctx, ctx);
1719 else
1720 event_sched_out(event, cpuctx, ctx);
1721 event->state = PERF_EVENT_STATE_OFF;
1722 }
1723
1724 raw_spin_unlock(&ctx->lock);
1725
1726 return 0;
1727 }
1728
1729 /*
1730 * Disable a event.
1731 *
1732 * If event->ctx is a cloned context, callers must make sure that
1733 * every task struct that event->ctx->task could possibly point to
1734 * remains valid. This condition is satisifed when called through
1735 * perf_event_for_each_child or perf_event_for_each because they
1736 * hold the top-level event's child_mutex, so any descendant that
1737 * goes to exit will block in sync_child_event.
1738 * When called from perf_pending_event it's OK because event->ctx
1739 * is the current context on this CPU and preemption is disabled,
1740 * hence we can't get into perf_event_task_sched_out for this context.
1741 */
1742 static void _perf_event_disable(struct perf_event *event)
1743 {
1744 struct perf_event_context *ctx = event->ctx;
1745 struct task_struct *task = ctx->task;
1746
1747 if (!task) {
1748 /*
1749 * Disable the event on the cpu that it's on
1750 */
1751 cpu_function_call(event->cpu, __perf_event_disable, event);
1752 return;
1753 }
1754
1755 retry:
1756 if (!task_function_call(task, __perf_event_disable, event))
1757 return;
1758
1759 raw_spin_lock_irq(&ctx->lock);
1760 /*
1761 * If the event is still active, we need to retry the cross-call.
1762 */
1763 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1764 raw_spin_unlock_irq(&ctx->lock);
1765 /*
1766 * Reload the task pointer, it might have been changed by
1767 * a concurrent perf_event_context_sched_out().
1768 */
1769 task = ctx->task;
1770 goto retry;
1771 }
1772
1773 /*
1774 * Since we have the lock this context can't be scheduled
1775 * in, so we can change the state safely.
1776 */
1777 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 update_group_times(event);
1779 event->state = PERF_EVENT_STATE_OFF;
1780 }
1781 raw_spin_unlock_irq(&ctx->lock);
1782 }
1783
1784 /*
1785 * Strictly speaking kernel users cannot create groups and therefore this
1786 * interface does not need the perf_event_ctx_lock() magic.
1787 */
1788 void perf_event_disable(struct perf_event *event)
1789 {
1790 struct perf_event_context *ctx;
1791
1792 ctx = perf_event_ctx_lock(event);
1793 _perf_event_disable(event);
1794 perf_event_ctx_unlock(event, ctx);
1795 }
1796 EXPORT_SYMBOL_GPL(perf_event_disable);
1797
1798 static void perf_set_shadow_time(struct perf_event *event,
1799 struct perf_event_context *ctx,
1800 u64 tstamp)
1801 {
1802 /*
1803 * use the correct time source for the time snapshot
1804 *
1805 * We could get by without this by leveraging the
1806 * fact that to get to this function, the caller
1807 * has most likely already called update_context_time()
1808 * and update_cgrp_time_xx() and thus both timestamp
1809 * are identical (or very close). Given that tstamp is,
1810 * already adjusted for cgroup, we could say that:
1811 * tstamp - ctx->timestamp
1812 * is equivalent to
1813 * tstamp - cgrp->timestamp.
1814 *
1815 * Then, in perf_output_read(), the calculation would
1816 * work with no changes because:
1817 * - event is guaranteed scheduled in
1818 * - no scheduled out in between
1819 * - thus the timestamp would be the same
1820 *
1821 * But this is a bit hairy.
1822 *
1823 * So instead, we have an explicit cgroup call to remain
1824 * within the time time source all along. We believe it
1825 * is cleaner and simpler to understand.
1826 */
1827 if (is_cgroup_event(event))
1828 perf_cgroup_set_shadow_time(event, tstamp);
1829 else
1830 event->shadow_ctx_time = tstamp - ctx->timestamp;
1831 }
1832
1833 #define MAX_INTERRUPTS (~0ULL)
1834
1835 static void perf_log_throttle(struct perf_event *event, int enable);
1836 static void perf_log_itrace_start(struct perf_event *event);
1837
1838 static int
1839 event_sched_in(struct perf_event *event,
1840 struct perf_cpu_context *cpuctx,
1841 struct perf_event_context *ctx)
1842 {
1843 u64 tstamp = perf_event_time(event);
1844 int ret = 0;
1845
1846 lockdep_assert_held(&ctx->lock);
1847
1848 if (event->state <= PERF_EVENT_STATE_OFF)
1849 return 0;
1850
1851 event->state = PERF_EVENT_STATE_ACTIVE;
1852 event->oncpu = smp_processor_id();
1853
1854 /*
1855 * Unthrottle events, since we scheduled we might have missed several
1856 * ticks already, also for a heavily scheduling task there is little
1857 * guarantee it'll get a tick in a timely manner.
1858 */
1859 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1860 perf_log_throttle(event, 1);
1861 event->hw.interrupts = 0;
1862 }
1863
1864 /*
1865 * The new state must be visible before we turn it on in the hardware:
1866 */
1867 smp_wmb();
1868
1869 perf_pmu_disable(event->pmu);
1870
1871 event->tstamp_running += tstamp - event->tstamp_stopped;
1872
1873 perf_set_shadow_time(event, ctx, tstamp);
1874
1875 perf_log_itrace_start(event);
1876
1877 if (event->pmu->add(event, PERF_EF_START)) {
1878 event->state = PERF_EVENT_STATE_INACTIVE;
1879 event->oncpu = -1;
1880 ret = -EAGAIN;
1881 goto out;
1882 }
1883
1884 if (!is_software_event(event))
1885 cpuctx->active_oncpu++;
1886 if (!ctx->nr_active++)
1887 perf_event_ctx_activate(ctx);
1888 if (event->attr.freq && event->attr.sample_freq)
1889 ctx->nr_freq++;
1890
1891 if (event->attr.exclusive)
1892 cpuctx->exclusive = 1;
1893
1894 if (is_orphaned_child(event))
1895 schedule_orphans_remove(ctx);
1896
1897 out:
1898 perf_pmu_enable(event->pmu);
1899
1900 return ret;
1901 }
1902
1903 static int
1904 group_sched_in(struct perf_event *group_event,
1905 struct perf_cpu_context *cpuctx,
1906 struct perf_event_context *ctx)
1907 {
1908 struct perf_event *event, *partial_group = NULL;
1909 struct pmu *pmu = ctx->pmu;
1910 u64 now = ctx->time;
1911 bool simulate = false;
1912
1913 if (group_event->state == PERF_EVENT_STATE_OFF)
1914 return 0;
1915
1916 pmu->start_txn(pmu);
1917
1918 if (event_sched_in(group_event, cpuctx, ctx)) {
1919 pmu->cancel_txn(pmu);
1920 perf_mux_hrtimer_restart(cpuctx);
1921 return -EAGAIN;
1922 }
1923
1924 /*
1925 * Schedule in siblings as one group (if any):
1926 */
1927 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1928 if (event_sched_in(event, cpuctx, ctx)) {
1929 partial_group = event;
1930 goto group_error;
1931 }
1932 }
1933
1934 if (!pmu->commit_txn(pmu))
1935 return 0;
1936
1937 group_error:
1938 /*
1939 * Groups can be scheduled in as one unit only, so undo any
1940 * partial group before returning:
1941 * The events up to the failed event are scheduled out normally,
1942 * tstamp_stopped will be updated.
1943 *
1944 * The failed events and the remaining siblings need to have
1945 * their timings updated as if they had gone thru event_sched_in()
1946 * and event_sched_out(). This is required to get consistent timings
1947 * across the group. This also takes care of the case where the group
1948 * could never be scheduled by ensuring tstamp_stopped is set to mark
1949 * the time the event was actually stopped, such that time delta
1950 * calculation in update_event_times() is correct.
1951 */
1952 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1953 if (event == partial_group)
1954 simulate = true;
1955
1956 if (simulate) {
1957 event->tstamp_running += now - event->tstamp_stopped;
1958 event->tstamp_stopped = now;
1959 } else {
1960 event_sched_out(event, cpuctx, ctx);
1961 }
1962 }
1963 event_sched_out(group_event, cpuctx, ctx);
1964
1965 pmu->cancel_txn(pmu);
1966
1967 perf_mux_hrtimer_restart(cpuctx);
1968
1969 return -EAGAIN;
1970 }
1971
1972 /*
1973 * Work out whether we can put this event group on the CPU now.
1974 */
1975 static int group_can_go_on(struct perf_event *event,
1976 struct perf_cpu_context *cpuctx,
1977 int can_add_hw)
1978 {
1979 /*
1980 * Groups consisting entirely of software events can always go on.
1981 */
1982 if (event->group_flags & PERF_GROUP_SOFTWARE)
1983 return 1;
1984 /*
1985 * If an exclusive group is already on, no other hardware
1986 * events can go on.
1987 */
1988 if (cpuctx->exclusive)
1989 return 0;
1990 /*
1991 * If this group is exclusive and there are already
1992 * events on the CPU, it can't go on.
1993 */
1994 if (event->attr.exclusive && cpuctx->active_oncpu)
1995 return 0;
1996 /*
1997 * Otherwise, try to add it if all previous groups were able
1998 * to go on.
1999 */
2000 return can_add_hw;
2001 }
2002
2003 static void add_event_to_ctx(struct perf_event *event,
2004 struct perf_event_context *ctx)
2005 {
2006 u64 tstamp = perf_event_time(event);
2007
2008 list_add_event(event, ctx);
2009 perf_group_attach(event);
2010 event->tstamp_enabled = tstamp;
2011 event->tstamp_running = tstamp;
2012 event->tstamp_stopped = tstamp;
2013 }
2014
2015 static void task_ctx_sched_out(struct perf_event_context *ctx);
2016 static void
2017 ctx_sched_in(struct perf_event_context *ctx,
2018 struct perf_cpu_context *cpuctx,
2019 enum event_type_t event_type,
2020 struct task_struct *task);
2021
2022 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2023 struct perf_event_context *ctx,
2024 struct task_struct *task)
2025 {
2026 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2027 if (ctx)
2028 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2029 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2030 if (ctx)
2031 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2032 }
2033
2034 /*
2035 * Cross CPU call to install and enable a performance event
2036 *
2037 * Must be called with ctx->mutex held
2038 */
2039 static int __perf_install_in_context(void *info)
2040 {
2041 struct perf_event *event = info;
2042 struct perf_event_context *ctx = event->ctx;
2043 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2044 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2045 struct task_struct *task = current;
2046
2047 perf_ctx_lock(cpuctx, task_ctx);
2048 perf_pmu_disable(cpuctx->ctx.pmu);
2049
2050 /*
2051 * If there was an active task_ctx schedule it out.
2052 */
2053 if (task_ctx)
2054 task_ctx_sched_out(task_ctx);
2055
2056 /*
2057 * If the context we're installing events in is not the
2058 * active task_ctx, flip them.
2059 */
2060 if (ctx->task && task_ctx != ctx) {
2061 if (task_ctx)
2062 raw_spin_unlock(&task_ctx->lock);
2063 raw_spin_lock(&ctx->lock);
2064 task_ctx = ctx;
2065 }
2066
2067 if (task_ctx) {
2068 cpuctx->task_ctx = task_ctx;
2069 task = task_ctx->task;
2070 }
2071
2072 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2073
2074 update_context_time(ctx);
2075 /*
2076 * update cgrp time only if current cgrp
2077 * matches event->cgrp. Must be done before
2078 * calling add_event_to_ctx()
2079 */
2080 update_cgrp_time_from_event(event);
2081
2082 add_event_to_ctx(event, ctx);
2083
2084 /*
2085 * Schedule everything back in
2086 */
2087 perf_event_sched_in(cpuctx, task_ctx, task);
2088
2089 perf_pmu_enable(cpuctx->ctx.pmu);
2090 perf_ctx_unlock(cpuctx, task_ctx);
2091
2092 return 0;
2093 }
2094
2095 /*
2096 * Attach a performance event to a context
2097 *
2098 * First we add the event to the list with the hardware enable bit
2099 * in event->hw_config cleared.
2100 *
2101 * If the event is attached to a task which is on a CPU we use a smp
2102 * call to enable it in the task context. The task might have been
2103 * scheduled away, but we check this in the smp call again.
2104 */
2105 static void
2106 perf_install_in_context(struct perf_event_context *ctx,
2107 struct perf_event *event,
2108 int cpu)
2109 {
2110 struct task_struct *task = ctx->task;
2111
2112 lockdep_assert_held(&ctx->mutex);
2113
2114 event->ctx = ctx;
2115 if (event->cpu != -1)
2116 event->cpu = cpu;
2117
2118 if (!task) {
2119 /*
2120 * Per cpu events are installed via an smp call and
2121 * the install is always successful.
2122 */
2123 cpu_function_call(cpu, __perf_install_in_context, event);
2124 return;
2125 }
2126
2127 retry:
2128 if (!task_function_call(task, __perf_install_in_context, event))
2129 return;
2130
2131 raw_spin_lock_irq(&ctx->lock);
2132 /*
2133 * If we failed to find a running task, but find the context active now
2134 * that we've acquired the ctx->lock, retry.
2135 */
2136 if (ctx->is_active) {
2137 raw_spin_unlock_irq(&ctx->lock);
2138 /*
2139 * Reload the task pointer, it might have been changed by
2140 * a concurrent perf_event_context_sched_out().
2141 */
2142 task = ctx->task;
2143 goto retry;
2144 }
2145
2146 /*
2147 * Since the task isn't running, its safe to add the event, us holding
2148 * the ctx->lock ensures the task won't get scheduled in.
2149 */
2150 add_event_to_ctx(event, ctx);
2151 raw_spin_unlock_irq(&ctx->lock);
2152 }
2153
2154 /*
2155 * Put a event into inactive state and update time fields.
2156 * Enabling the leader of a group effectively enables all
2157 * the group members that aren't explicitly disabled, so we
2158 * have to update their ->tstamp_enabled also.
2159 * Note: this works for group members as well as group leaders
2160 * since the non-leader members' sibling_lists will be empty.
2161 */
2162 static void __perf_event_mark_enabled(struct perf_event *event)
2163 {
2164 struct perf_event *sub;
2165 u64 tstamp = perf_event_time(event);
2166
2167 event->state = PERF_EVENT_STATE_INACTIVE;
2168 event->tstamp_enabled = tstamp - event->total_time_enabled;
2169 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2170 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2171 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2172 }
2173 }
2174
2175 /*
2176 * Cross CPU call to enable a performance event
2177 */
2178 static int __perf_event_enable(void *info)
2179 {
2180 struct perf_event *event = info;
2181 struct perf_event_context *ctx = event->ctx;
2182 struct perf_event *leader = event->group_leader;
2183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2184 int err;
2185
2186 /*
2187 * There's a time window between 'ctx->is_active' check
2188 * in perf_event_enable function and this place having:
2189 * - IRQs on
2190 * - ctx->lock unlocked
2191 *
2192 * where the task could be killed and 'ctx' deactivated
2193 * by perf_event_exit_task.
2194 */
2195 if (!ctx->is_active)
2196 return -EINVAL;
2197
2198 raw_spin_lock(&ctx->lock);
2199 update_context_time(ctx);
2200
2201 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2202 goto unlock;
2203
2204 /*
2205 * set current task's cgroup time reference point
2206 */
2207 perf_cgroup_set_timestamp(current, ctx);
2208
2209 __perf_event_mark_enabled(event);
2210
2211 if (!event_filter_match(event)) {
2212 if (is_cgroup_event(event))
2213 perf_cgroup_defer_enabled(event);
2214 goto unlock;
2215 }
2216
2217 /*
2218 * If the event is in a group and isn't the group leader,
2219 * then don't put it on unless the group is on.
2220 */
2221 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2222 goto unlock;
2223
2224 if (!group_can_go_on(event, cpuctx, 1)) {
2225 err = -EEXIST;
2226 } else {
2227 if (event == leader)
2228 err = group_sched_in(event, cpuctx, ctx);
2229 else
2230 err = event_sched_in(event, cpuctx, ctx);
2231 }
2232
2233 if (err) {
2234 /*
2235 * If this event can't go on and it's part of a
2236 * group, then the whole group has to come off.
2237 */
2238 if (leader != event) {
2239 group_sched_out(leader, cpuctx, ctx);
2240 perf_mux_hrtimer_restart(cpuctx);
2241 }
2242 if (leader->attr.pinned) {
2243 update_group_times(leader);
2244 leader->state = PERF_EVENT_STATE_ERROR;
2245 }
2246 }
2247
2248 unlock:
2249 raw_spin_unlock(&ctx->lock);
2250
2251 return 0;
2252 }
2253
2254 /*
2255 * Enable a event.
2256 *
2257 * If event->ctx is a cloned context, callers must make sure that
2258 * every task struct that event->ctx->task could possibly point to
2259 * remains valid. This condition is satisfied when called through
2260 * perf_event_for_each_child or perf_event_for_each as described
2261 * for perf_event_disable.
2262 */
2263 static void _perf_event_enable(struct perf_event *event)
2264 {
2265 struct perf_event_context *ctx = event->ctx;
2266 struct task_struct *task = ctx->task;
2267
2268 if (!task) {
2269 /*
2270 * Enable the event on the cpu that it's on
2271 */
2272 cpu_function_call(event->cpu, __perf_event_enable, event);
2273 return;
2274 }
2275
2276 raw_spin_lock_irq(&ctx->lock);
2277 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2278 goto out;
2279
2280 /*
2281 * If the event is in error state, clear that first.
2282 * That way, if we see the event in error state below, we
2283 * know that it has gone back into error state, as distinct
2284 * from the task having been scheduled away before the
2285 * cross-call arrived.
2286 */
2287 if (event->state == PERF_EVENT_STATE_ERROR)
2288 event->state = PERF_EVENT_STATE_OFF;
2289
2290 retry:
2291 if (!ctx->is_active) {
2292 __perf_event_mark_enabled(event);
2293 goto out;
2294 }
2295
2296 raw_spin_unlock_irq(&ctx->lock);
2297
2298 if (!task_function_call(task, __perf_event_enable, event))
2299 return;
2300
2301 raw_spin_lock_irq(&ctx->lock);
2302
2303 /*
2304 * If the context is active and the event is still off,
2305 * we need to retry the cross-call.
2306 */
2307 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2308 /*
2309 * task could have been flipped by a concurrent
2310 * perf_event_context_sched_out()
2311 */
2312 task = ctx->task;
2313 goto retry;
2314 }
2315
2316 out:
2317 raw_spin_unlock_irq(&ctx->lock);
2318 }
2319
2320 /*
2321 * See perf_event_disable();
2322 */
2323 void perf_event_enable(struct perf_event *event)
2324 {
2325 struct perf_event_context *ctx;
2326
2327 ctx = perf_event_ctx_lock(event);
2328 _perf_event_enable(event);
2329 perf_event_ctx_unlock(event, ctx);
2330 }
2331 EXPORT_SYMBOL_GPL(perf_event_enable);
2332
2333 static int _perf_event_refresh(struct perf_event *event, int refresh)
2334 {
2335 /*
2336 * not supported on inherited events
2337 */
2338 if (event->attr.inherit || !is_sampling_event(event))
2339 return -EINVAL;
2340
2341 atomic_add(refresh, &event->event_limit);
2342 _perf_event_enable(event);
2343
2344 return 0;
2345 }
2346
2347 /*
2348 * See perf_event_disable()
2349 */
2350 int perf_event_refresh(struct perf_event *event, int refresh)
2351 {
2352 struct perf_event_context *ctx;
2353 int ret;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 ret = _perf_event_refresh(event, refresh);
2357 perf_event_ctx_unlock(event, ctx);
2358
2359 return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_refresh);
2362
2363 static void ctx_sched_out(struct perf_event_context *ctx,
2364 struct perf_cpu_context *cpuctx,
2365 enum event_type_t event_type)
2366 {
2367 struct perf_event *event;
2368 int is_active = ctx->is_active;
2369
2370 ctx->is_active &= ~event_type;
2371 if (likely(!ctx->nr_events))
2372 return;
2373
2374 update_context_time(ctx);
2375 update_cgrp_time_from_cpuctx(cpuctx);
2376 if (!ctx->nr_active)
2377 return;
2378
2379 perf_pmu_disable(ctx->pmu);
2380 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2381 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2382 group_sched_out(event, cpuctx, ctx);
2383 }
2384
2385 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2386 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2387 group_sched_out(event, cpuctx, ctx);
2388 }
2389 perf_pmu_enable(ctx->pmu);
2390 }
2391
2392 /*
2393 * Test whether two contexts are equivalent, i.e. whether they have both been
2394 * cloned from the same version of the same context.
2395 *
2396 * Equivalence is measured using a generation number in the context that is
2397 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2398 * and list_del_event().
2399 */
2400 static int context_equiv(struct perf_event_context *ctx1,
2401 struct perf_event_context *ctx2)
2402 {
2403 lockdep_assert_held(&ctx1->lock);
2404 lockdep_assert_held(&ctx2->lock);
2405
2406 /* Pinning disables the swap optimization */
2407 if (ctx1->pin_count || ctx2->pin_count)
2408 return 0;
2409
2410 /* If ctx1 is the parent of ctx2 */
2411 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2412 return 1;
2413
2414 /* If ctx2 is the parent of ctx1 */
2415 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2416 return 1;
2417
2418 /*
2419 * If ctx1 and ctx2 have the same parent; we flatten the parent
2420 * hierarchy, see perf_event_init_context().
2421 */
2422 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2423 ctx1->parent_gen == ctx2->parent_gen)
2424 return 1;
2425
2426 /* Unmatched */
2427 return 0;
2428 }
2429
2430 static void __perf_event_sync_stat(struct perf_event *event,
2431 struct perf_event *next_event)
2432 {
2433 u64 value;
2434
2435 if (!event->attr.inherit_stat)
2436 return;
2437
2438 /*
2439 * Update the event value, we cannot use perf_event_read()
2440 * because we're in the middle of a context switch and have IRQs
2441 * disabled, which upsets smp_call_function_single(), however
2442 * we know the event must be on the current CPU, therefore we
2443 * don't need to use it.
2444 */
2445 switch (event->state) {
2446 case PERF_EVENT_STATE_ACTIVE:
2447 event->pmu->read(event);
2448 /* fall-through */
2449
2450 case PERF_EVENT_STATE_INACTIVE:
2451 update_event_times(event);
2452 break;
2453
2454 default:
2455 break;
2456 }
2457
2458 /*
2459 * In order to keep per-task stats reliable we need to flip the event
2460 * values when we flip the contexts.
2461 */
2462 value = local64_read(&next_event->count);
2463 value = local64_xchg(&event->count, value);
2464 local64_set(&next_event->count, value);
2465
2466 swap(event->total_time_enabled, next_event->total_time_enabled);
2467 swap(event->total_time_running, next_event->total_time_running);
2468
2469 /*
2470 * Since we swizzled the values, update the user visible data too.
2471 */
2472 perf_event_update_userpage(event);
2473 perf_event_update_userpage(next_event);
2474 }
2475
2476 static void perf_event_sync_stat(struct perf_event_context *ctx,
2477 struct perf_event_context *next_ctx)
2478 {
2479 struct perf_event *event, *next_event;
2480
2481 if (!ctx->nr_stat)
2482 return;
2483
2484 update_context_time(ctx);
2485
2486 event = list_first_entry(&ctx->event_list,
2487 struct perf_event, event_entry);
2488
2489 next_event = list_first_entry(&next_ctx->event_list,
2490 struct perf_event, event_entry);
2491
2492 while (&event->event_entry != &ctx->event_list &&
2493 &next_event->event_entry != &next_ctx->event_list) {
2494
2495 __perf_event_sync_stat(event, next_event);
2496
2497 event = list_next_entry(event, event_entry);
2498 next_event = list_next_entry(next_event, event_entry);
2499 }
2500 }
2501
2502 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2503 struct task_struct *next)
2504 {
2505 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2506 struct perf_event_context *next_ctx;
2507 struct perf_event_context *parent, *next_parent;
2508 struct perf_cpu_context *cpuctx;
2509 int do_switch = 1;
2510
2511 if (likely(!ctx))
2512 return;
2513
2514 cpuctx = __get_cpu_context(ctx);
2515 if (!cpuctx->task_ctx)
2516 return;
2517
2518 rcu_read_lock();
2519 next_ctx = next->perf_event_ctxp[ctxn];
2520 if (!next_ctx)
2521 goto unlock;
2522
2523 parent = rcu_dereference(ctx->parent_ctx);
2524 next_parent = rcu_dereference(next_ctx->parent_ctx);
2525
2526 /* If neither context have a parent context; they cannot be clones. */
2527 if (!parent && !next_parent)
2528 goto unlock;
2529
2530 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2531 /*
2532 * Looks like the two contexts are clones, so we might be
2533 * able to optimize the context switch. We lock both
2534 * contexts and check that they are clones under the
2535 * lock (including re-checking that neither has been
2536 * uncloned in the meantime). It doesn't matter which
2537 * order we take the locks because no other cpu could
2538 * be trying to lock both of these tasks.
2539 */
2540 raw_spin_lock(&ctx->lock);
2541 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2542 if (context_equiv(ctx, next_ctx)) {
2543 /*
2544 * XXX do we need a memory barrier of sorts
2545 * wrt to rcu_dereference() of perf_event_ctxp
2546 */
2547 task->perf_event_ctxp[ctxn] = next_ctx;
2548 next->perf_event_ctxp[ctxn] = ctx;
2549 ctx->task = next;
2550 next_ctx->task = task;
2551
2552 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2553
2554 do_switch = 0;
2555
2556 perf_event_sync_stat(ctx, next_ctx);
2557 }
2558 raw_spin_unlock(&next_ctx->lock);
2559 raw_spin_unlock(&ctx->lock);
2560 }
2561 unlock:
2562 rcu_read_unlock();
2563
2564 if (do_switch) {
2565 raw_spin_lock(&ctx->lock);
2566 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2567 cpuctx->task_ctx = NULL;
2568 raw_spin_unlock(&ctx->lock);
2569 }
2570 }
2571
2572 void perf_sched_cb_dec(struct pmu *pmu)
2573 {
2574 this_cpu_dec(perf_sched_cb_usages);
2575 }
2576
2577 void perf_sched_cb_inc(struct pmu *pmu)
2578 {
2579 this_cpu_inc(perf_sched_cb_usages);
2580 }
2581
2582 /*
2583 * This function provides the context switch callback to the lower code
2584 * layer. It is invoked ONLY when the context switch callback is enabled.
2585 */
2586 static void perf_pmu_sched_task(struct task_struct *prev,
2587 struct task_struct *next,
2588 bool sched_in)
2589 {
2590 struct perf_cpu_context *cpuctx;
2591 struct pmu *pmu;
2592 unsigned long flags;
2593
2594 if (prev == next)
2595 return;
2596
2597 local_irq_save(flags);
2598
2599 rcu_read_lock();
2600
2601 list_for_each_entry_rcu(pmu, &pmus, entry) {
2602 if (pmu->sched_task) {
2603 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2604
2605 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2606
2607 perf_pmu_disable(pmu);
2608
2609 pmu->sched_task(cpuctx->task_ctx, sched_in);
2610
2611 perf_pmu_enable(pmu);
2612
2613 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2614 }
2615 }
2616
2617 rcu_read_unlock();
2618
2619 local_irq_restore(flags);
2620 }
2621
2622 #define for_each_task_context_nr(ctxn) \
2623 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2624
2625 /*
2626 * Called from scheduler to remove the events of the current task,
2627 * with interrupts disabled.
2628 *
2629 * We stop each event and update the event value in event->count.
2630 *
2631 * This does not protect us against NMI, but disable()
2632 * sets the disabled bit in the control field of event _before_
2633 * accessing the event control register. If a NMI hits, then it will
2634 * not restart the event.
2635 */
2636 void __perf_event_task_sched_out(struct task_struct *task,
2637 struct task_struct *next)
2638 {
2639 int ctxn;
2640
2641 if (__this_cpu_read(perf_sched_cb_usages))
2642 perf_pmu_sched_task(task, next, false);
2643
2644 for_each_task_context_nr(ctxn)
2645 perf_event_context_sched_out(task, ctxn, next);
2646
2647 /*
2648 * if cgroup events exist on this CPU, then we need
2649 * to check if we have to switch out PMU state.
2650 * cgroup event are system-wide mode only
2651 */
2652 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2653 perf_cgroup_sched_out(task, next);
2654 }
2655
2656 static void task_ctx_sched_out(struct perf_event_context *ctx)
2657 {
2658 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2659
2660 if (!cpuctx->task_ctx)
2661 return;
2662
2663 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 return;
2665
2666 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2667 cpuctx->task_ctx = NULL;
2668 }
2669
2670 /*
2671 * Called with IRQs disabled
2672 */
2673 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2674 enum event_type_t event_type)
2675 {
2676 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2677 }
2678
2679 static void
2680 ctx_pinned_sched_in(struct perf_event_context *ctx,
2681 struct perf_cpu_context *cpuctx)
2682 {
2683 struct perf_event *event;
2684
2685 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2686 if (event->state <= PERF_EVENT_STATE_OFF)
2687 continue;
2688 if (!event_filter_match(event))
2689 continue;
2690
2691 /* may need to reset tstamp_enabled */
2692 if (is_cgroup_event(event))
2693 perf_cgroup_mark_enabled(event, ctx);
2694
2695 if (group_can_go_on(event, cpuctx, 1))
2696 group_sched_in(event, cpuctx, ctx);
2697
2698 /*
2699 * If this pinned group hasn't been scheduled,
2700 * put it in error state.
2701 */
2702 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2703 update_group_times(event);
2704 event->state = PERF_EVENT_STATE_ERROR;
2705 }
2706 }
2707 }
2708
2709 static void
2710 ctx_flexible_sched_in(struct perf_event_context *ctx,
2711 struct perf_cpu_context *cpuctx)
2712 {
2713 struct perf_event *event;
2714 int can_add_hw = 1;
2715
2716 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2717 /* Ignore events in OFF or ERROR state */
2718 if (event->state <= PERF_EVENT_STATE_OFF)
2719 continue;
2720 /*
2721 * Listen to the 'cpu' scheduling filter constraint
2722 * of events:
2723 */
2724 if (!event_filter_match(event))
2725 continue;
2726
2727 /* may need to reset tstamp_enabled */
2728 if (is_cgroup_event(event))
2729 perf_cgroup_mark_enabled(event, ctx);
2730
2731 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2732 if (group_sched_in(event, cpuctx, ctx))
2733 can_add_hw = 0;
2734 }
2735 }
2736 }
2737
2738 static void
2739 ctx_sched_in(struct perf_event_context *ctx,
2740 struct perf_cpu_context *cpuctx,
2741 enum event_type_t event_type,
2742 struct task_struct *task)
2743 {
2744 u64 now;
2745 int is_active = ctx->is_active;
2746
2747 ctx->is_active |= event_type;
2748 if (likely(!ctx->nr_events))
2749 return;
2750
2751 now = perf_clock();
2752 ctx->timestamp = now;
2753 perf_cgroup_set_timestamp(task, ctx);
2754 /*
2755 * First go through the list and put on any pinned groups
2756 * in order to give them the best chance of going on.
2757 */
2758 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2759 ctx_pinned_sched_in(ctx, cpuctx);
2760
2761 /* Then walk through the lower prio flexible groups */
2762 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2763 ctx_flexible_sched_in(ctx, cpuctx);
2764 }
2765
2766 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2767 enum event_type_t event_type,
2768 struct task_struct *task)
2769 {
2770 struct perf_event_context *ctx = &cpuctx->ctx;
2771
2772 ctx_sched_in(ctx, cpuctx, event_type, task);
2773 }
2774
2775 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2776 struct task_struct *task)
2777 {
2778 struct perf_cpu_context *cpuctx;
2779
2780 cpuctx = __get_cpu_context(ctx);
2781 if (cpuctx->task_ctx == ctx)
2782 return;
2783
2784 perf_ctx_lock(cpuctx, ctx);
2785 perf_pmu_disable(ctx->pmu);
2786 /*
2787 * We want to keep the following priority order:
2788 * cpu pinned (that don't need to move), task pinned,
2789 * cpu flexible, task flexible.
2790 */
2791 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2792
2793 if (ctx->nr_events)
2794 cpuctx->task_ctx = ctx;
2795
2796 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2797
2798 perf_pmu_enable(ctx->pmu);
2799 perf_ctx_unlock(cpuctx, ctx);
2800 }
2801
2802 /*
2803 * Called from scheduler to add the events of the current task
2804 * with interrupts disabled.
2805 *
2806 * We restore the event value and then enable it.
2807 *
2808 * This does not protect us against NMI, but enable()
2809 * sets the enabled bit in the control field of event _before_
2810 * accessing the event control register. If a NMI hits, then it will
2811 * keep the event running.
2812 */
2813 void __perf_event_task_sched_in(struct task_struct *prev,
2814 struct task_struct *task)
2815 {
2816 struct perf_event_context *ctx;
2817 int ctxn;
2818
2819 for_each_task_context_nr(ctxn) {
2820 ctx = task->perf_event_ctxp[ctxn];
2821 if (likely(!ctx))
2822 continue;
2823
2824 perf_event_context_sched_in(ctx, task);
2825 }
2826 /*
2827 * if cgroup events exist on this CPU, then we need
2828 * to check if we have to switch in PMU state.
2829 * cgroup event are system-wide mode only
2830 */
2831 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2832 perf_cgroup_sched_in(prev, task);
2833
2834 if (__this_cpu_read(perf_sched_cb_usages))
2835 perf_pmu_sched_task(prev, task, true);
2836 }
2837
2838 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2839 {
2840 u64 frequency = event->attr.sample_freq;
2841 u64 sec = NSEC_PER_SEC;
2842 u64 divisor, dividend;
2843
2844 int count_fls, nsec_fls, frequency_fls, sec_fls;
2845
2846 count_fls = fls64(count);
2847 nsec_fls = fls64(nsec);
2848 frequency_fls = fls64(frequency);
2849 sec_fls = 30;
2850
2851 /*
2852 * We got @count in @nsec, with a target of sample_freq HZ
2853 * the target period becomes:
2854 *
2855 * @count * 10^9
2856 * period = -------------------
2857 * @nsec * sample_freq
2858 *
2859 */
2860
2861 /*
2862 * Reduce accuracy by one bit such that @a and @b converge
2863 * to a similar magnitude.
2864 */
2865 #define REDUCE_FLS(a, b) \
2866 do { \
2867 if (a##_fls > b##_fls) { \
2868 a >>= 1; \
2869 a##_fls--; \
2870 } else { \
2871 b >>= 1; \
2872 b##_fls--; \
2873 } \
2874 } while (0)
2875
2876 /*
2877 * Reduce accuracy until either term fits in a u64, then proceed with
2878 * the other, so that finally we can do a u64/u64 division.
2879 */
2880 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2881 REDUCE_FLS(nsec, frequency);
2882 REDUCE_FLS(sec, count);
2883 }
2884
2885 if (count_fls + sec_fls > 64) {
2886 divisor = nsec * frequency;
2887
2888 while (count_fls + sec_fls > 64) {
2889 REDUCE_FLS(count, sec);
2890 divisor >>= 1;
2891 }
2892
2893 dividend = count * sec;
2894 } else {
2895 dividend = count * sec;
2896
2897 while (nsec_fls + frequency_fls > 64) {
2898 REDUCE_FLS(nsec, frequency);
2899 dividend >>= 1;
2900 }
2901
2902 divisor = nsec * frequency;
2903 }
2904
2905 if (!divisor)
2906 return dividend;
2907
2908 return div64_u64(dividend, divisor);
2909 }
2910
2911 static DEFINE_PER_CPU(int, perf_throttled_count);
2912 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2913
2914 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2915 {
2916 struct hw_perf_event *hwc = &event->hw;
2917 s64 period, sample_period;
2918 s64 delta;
2919
2920 period = perf_calculate_period(event, nsec, count);
2921
2922 delta = (s64)(period - hwc->sample_period);
2923 delta = (delta + 7) / 8; /* low pass filter */
2924
2925 sample_period = hwc->sample_period + delta;
2926
2927 if (!sample_period)
2928 sample_period = 1;
2929
2930 hwc->sample_period = sample_period;
2931
2932 if (local64_read(&hwc->period_left) > 8*sample_period) {
2933 if (disable)
2934 event->pmu->stop(event, PERF_EF_UPDATE);
2935
2936 local64_set(&hwc->period_left, 0);
2937
2938 if (disable)
2939 event->pmu->start(event, PERF_EF_RELOAD);
2940 }
2941 }
2942
2943 /*
2944 * combine freq adjustment with unthrottling to avoid two passes over the
2945 * events. At the same time, make sure, having freq events does not change
2946 * the rate of unthrottling as that would introduce bias.
2947 */
2948 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2949 int needs_unthr)
2950 {
2951 struct perf_event *event;
2952 struct hw_perf_event *hwc;
2953 u64 now, period = TICK_NSEC;
2954 s64 delta;
2955
2956 /*
2957 * only need to iterate over all events iff:
2958 * - context have events in frequency mode (needs freq adjust)
2959 * - there are events to unthrottle on this cpu
2960 */
2961 if (!(ctx->nr_freq || needs_unthr))
2962 return;
2963
2964 raw_spin_lock(&ctx->lock);
2965 perf_pmu_disable(ctx->pmu);
2966
2967 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2968 if (event->state != PERF_EVENT_STATE_ACTIVE)
2969 continue;
2970
2971 if (!event_filter_match(event))
2972 continue;
2973
2974 perf_pmu_disable(event->pmu);
2975
2976 hwc = &event->hw;
2977
2978 if (hwc->interrupts == MAX_INTERRUPTS) {
2979 hwc->interrupts = 0;
2980 perf_log_throttle(event, 1);
2981 event->pmu->start(event, 0);
2982 }
2983
2984 if (!event->attr.freq || !event->attr.sample_freq)
2985 goto next;
2986
2987 /*
2988 * stop the event and update event->count
2989 */
2990 event->pmu->stop(event, PERF_EF_UPDATE);
2991
2992 now = local64_read(&event->count);
2993 delta = now - hwc->freq_count_stamp;
2994 hwc->freq_count_stamp = now;
2995
2996 /*
2997 * restart the event
2998 * reload only if value has changed
2999 * we have stopped the event so tell that
3000 * to perf_adjust_period() to avoid stopping it
3001 * twice.
3002 */
3003 if (delta > 0)
3004 perf_adjust_period(event, period, delta, false);
3005
3006 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3007 next:
3008 perf_pmu_enable(event->pmu);
3009 }
3010
3011 perf_pmu_enable(ctx->pmu);
3012 raw_spin_unlock(&ctx->lock);
3013 }
3014
3015 /*
3016 * Round-robin a context's events:
3017 */
3018 static void rotate_ctx(struct perf_event_context *ctx)
3019 {
3020 /*
3021 * Rotate the first entry last of non-pinned groups. Rotation might be
3022 * disabled by the inheritance code.
3023 */
3024 if (!ctx->rotate_disable)
3025 list_rotate_left(&ctx->flexible_groups);
3026 }
3027
3028 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3029 {
3030 struct perf_event_context *ctx = NULL;
3031 int rotate = 0;
3032
3033 if (cpuctx->ctx.nr_events) {
3034 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3035 rotate = 1;
3036 }
3037
3038 ctx = cpuctx->task_ctx;
3039 if (ctx && ctx->nr_events) {
3040 if (ctx->nr_events != ctx->nr_active)
3041 rotate = 1;
3042 }
3043
3044 if (!rotate)
3045 goto done;
3046
3047 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3048 perf_pmu_disable(cpuctx->ctx.pmu);
3049
3050 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3051 if (ctx)
3052 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3053
3054 rotate_ctx(&cpuctx->ctx);
3055 if (ctx)
3056 rotate_ctx(ctx);
3057
3058 perf_event_sched_in(cpuctx, ctx, current);
3059
3060 perf_pmu_enable(cpuctx->ctx.pmu);
3061 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3062 done:
3063
3064 return rotate;
3065 }
3066
3067 #ifdef CONFIG_NO_HZ_FULL
3068 bool perf_event_can_stop_tick(void)
3069 {
3070 if (atomic_read(&nr_freq_events) ||
3071 __this_cpu_read(perf_throttled_count))
3072 return false;
3073 else
3074 return true;
3075 }
3076 #endif
3077
3078 void perf_event_task_tick(void)
3079 {
3080 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3081 struct perf_event_context *ctx, *tmp;
3082 int throttled;
3083
3084 WARN_ON(!irqs_disabled());
3085
3086 __this_cpu_inc(perf_throttled_seq);
3087 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3088
3089 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3090 perf_adjust_freq_unthr_context(ctx, throttled);
3091 }
3092
3093 static int event_enable_on_exec(struct perf_event *event,
3094 struct perf_event_context *ctx)
3095 {
3096 if (!event->attr.enable_on_exec)
3097 return 0;
3098
3099 event->attr.enable_on_exec = 0;
3100 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3101 return 0;
3102
3103 __perf_event_mark_enabled(event);
3104
3105 return 1;
3106 }
3107
3108 /*
3109 * Enable all of a task's events that have been marked enable-on-exec.
3110 * This expects task == current.
3111 */
3112 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3113 {
3114 struct perf_event_context *clone_ctx = NULL;
3115 struct perf_event *event;
3116 unsigned long flags;
3117 int enabled = 0;
3118 int ret;
3119
3120 local_irq_save(flags);
3121 if (!ctx || !ctx->nr_events)
3122 goto out;
3123
3124 /*
3125 * We must ctxsw out cgroup events to avoid conflict
3126 * when invoking perf_task_event_sched_in() later on
3127 * in this function. Otherwise we end up trying to
3128 * ctxswin cgroup events which are already scheduled
3129 * in.
3130 */
3131 perf_cgroup_sched_out(current, NULL);
3132
3133 raw_spin_lock(&ctx->lock);
3134 task_ctx_sched_out(ctx);
3135
3136 list_for_each_entry(event, &ctx->event_list, event_entry) {
3137 ret = event_enable_on_exec(event, ctx);
3138 if (ret)
3139 enabled = 1;
3140 }
3141
3142 /*
3143 * Unclone this context if we enabled any event.
3144 */
3145 if (enabled)
3146 clone_ctx = unclone_ctx(ctx);
3147
3148 raw_spin_unlock(&ctx->lock);
3149
3150 /*
3151 * Also calls ctxswin for cgroup events, if any:
3152 */
3153 perf_event_context_sched_in(ctx, ctx->task);
3154 out:
3155 local_irq_restore(flags);
3156
3157 if (clone_ctx)
3158 put_ctx(clone_ctx);
3159 }
3160
3161 void perf_event_exec(void)
3162 {
3163 struct perf_event_context *ctx;
3164 int ctxn;
3165
3166 rcu_read_lock();
3167 for_each_task_context_nr(ctxn) {
3168 ctx = current->perf_event_ctxp[ctxn];
3169 if (!ctx)
3170 continue;
3171
3172 perf_event_enable_on_exec(ctx);
3173 }
3174 rcu_read_unlock();
3175 }
3176
3177 /*
3178 * Cross CPU call to read the hardware event
3179 */
3180 static void __perf_event_read(void *info)
3181 {
3182 struct perf_event *event = info;
3183 struct perf_event_context *ctx = event->ctx;
3184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3185
3186 /*
3187 * If this is a task context, we need to check whether it is
3188 * the current task context of this cpu. If not it has been
3189 * scheduled out before the smp call arrived. In that case
3190 * event->count would have been updated to a recent sample
3191 * when the event was scheduled out.
3192 */
3193 if (ctx->task && cpuctx->task_ctx != ctx)
3194 return;
3195
3196 raw_spin_lock(&ctx->lock);
3197 if (ctx->is_active) {
3198 update_context_time(ctx);
3199 update_cgrp_time_from_event(event);
3200 }
3201 update_event_times(event);
3202 if (event->state == PERF_EVENT_STATE_ACTIVE)
3203 event->pmu->read(event);
3204 raw_spin_unlock(&ctx->lock);
3205 }
3206
3207 static inline u64 perf_event_count(struct perf_event *event)
3208 {
3209 if (event->pmu->count)
3210 return event->pmu->count(event);
3211
3212 return __perf_event_count(event);
3213 }
3214
3215 static u64 perf_event_read(struct perf_event *event)
3216 {
3217 /*
3218 * If event is enabled and currently active on a CPU, update the
3219 * value in the event structure:
3220 */
3221 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3222 smp_call_function_single(event->oncpu,
3223 __perf_event_read, event, 1);
3224 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3225 struct perf_event_context *ctx = event->ctx;
3226 unsigned long flags;
3227
3228 raw_spin_lock_irqsave(&ctx->lock, flags);
3229 /*
3230 * may read while context is not active
3231 * (e.g., thread is blocked), in that case
3232 * we cannot update context time
3233 */
3234 if (ctx->is_active) {
3235 update_context_time(ctx);
3236 update_cgrp_time_from_event(event);
3237 }
3238 update_event_times(event);
3239 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3240 }
3241
3242 return perf_event_count(event);
3243 }
3244
3245 /*
3246 * Initialize the perf_event context in a task_struct:
3247 */
3248 static void __perf_event_init_context(struct perf_event_context *ctx)
3249 {
3250 raw_spin_lock_init(&ctx->lock);
3251 mutex_init(&ctx->mutex);
3252 INIT_LIST_HEAD(&ctx->active_ctx_list);
3253 INIT_LIST_HEAD(&ctx->pinned_groups);
3254 INIT_LIST_HEAD(&ctx->flexible_groups);
3255 INIT_LIST_HEAD(&ctx->event_list);
3256 atomic_set(&ctx->refcount, 1);
3257 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3258 }
3259
3260 static struct perf_event_context *
3261 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3262 {
3263 struct perf_event_context *ctx;
3264
3265 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3266 if (!ctx)
3267 return NULL;
3268
3269 __perf_event_init_context(ctx);
3270 if (task) {
3271 ctx->task = task;
3272 get_task_struct(task);
3273 }
3274 ctx->pmu = pmu;
3275
3276 return ctx;
3277 }
3278
3279 static struct task_struct *
3280 find_lively_task_by_vpid(pid_t vpid)
3281 {
3282 struct task_struct *task;
3283 int err;
3284
3285 rcu_read_lock();
3286 if (!vpid)
3287 task = current;
3288 else
3289 task = find_task_by_vpid(vpid);
3290 if (task)
3291 get_task_struct(task);
3292 rcu_read_unlock();
3293
3294 if (!task)
3295 return ERR_PTR(-ESRCH);
3296
3297 /* Reuse ptrace permission checks for now. */
3298 err = -EACCES;
3299 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3300 goto errout;
3301
3302 return task;
3303 errout:
3304 put_task_struct(task);
3305 return ERR_PTR(err);
3306
3307 }
3308
3309 /*
3310 * Returns a matching context with refcount and pincount.
3311 */
3312 static struct perf_event_context *
3313 find_get_context(struct pmu *pmu, struct task_struct *task,
3314 struct perf_event *event)
3315 {
3316 struct perf_event_context *ctx, *clone_ctx = NULL;
3317 struct perf_cpu_context *cpuctx;
3318 void *task_ctx_data = NULL;
3319 unsigned long flags;
3320 int ctxn, err;
3321 int cpu = event->cpu;
3322
3323 if (!task) {
3324 /* Must be root to operate on a CPU event: */
3325 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3326 return ERR_PTR(-EACCES);
3327
3328 /*
3329 * We could be clever and allow to attach a event to an
3330 * offline CPU and activate it when the CPU comes up, but
3331 * that's for later.
3332 */
3333 if (!cpu_online(cpu))
3334 return ERR_PTR(-ENODEV);
3335
3336 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3337 ctx = &cpuctx->ctx;
3338 get_ctx(ctx);
3339 ++ctx->pin_count;
3340
3341 return ctx;
3342 }
3343
3344 err = -EINVAL;
3345 ctxn = pmu->task_ctx_nr;
3346 if (ctxn < 0)
3347 goto errout;
3348
3349 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3350 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3351 if (!task_ctx_data) {
3352 err = -ENOMEM;
3353 goto errout;
3354 }
3355 }
3356
3357 retry:
3358 ctx = perf_lock_task_context(task, ctxn, &flags);
3359 if (ctx) {
3360 clone_ctx = unclone_ctx(ctx);
3361 ++ctx->pin_count;
3362
3363 if (task_ctx_data && !ctx->task_ctx_data) {
3364 ctx->task_ctx_data = task_ctx_data;
3365 task_ctx_data = NULL;
3366 }
3367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3368
3369 if (clone_ctx)
3370 put_ctx(clone_ctx);
3371 } else {
3372 ctx = alloc_perf_context(pmu, task);
3373 err = -ENOMEM;
3374 if (!ctx)
3375 goto errout;
3376
3377 if (task_ctx_data) {
3378 ctx->task_ctx_data = task_ctx_data;
3379 task_ctx_data = NULL;
3380 }
3381
3382 err = 0;
3383 mutex_lock(&task->perf_event_mutex);
3384 /*
3385 * If it has already passed perf_event_exit_task().
3386 * we must see PF_EXITING, it takes this mutex too.
3387 */
3388 if (task->flags & PF_EXITING)
3389 err = -ESRCH;
3390 else if (task->perf_event_ctxp[ctxn])
3391 err = -EAGAIN;
3392 else {
3393 get_ctx(ctx);
3394 ++ctx->pin_count;
3395 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3396 }
3397 mutex_unlock(&task->perf_event_mutex);
3398
3399 if (unlikely(err)) {
3400 put_ctx(ctx);
3401
3402 if (err == -EAGAIN)
3403 goto retry;
3404 goto errout;
3405 }
3406 }
3407
3408 kfree(task_ctx_data);
3409 return ctx;
3410
3411 errout:
3412 kfree(task_ctx_data);
3413 return ERR_PTR(err);
3414 }
3415
3416 static void perf_event_free_filter(struct perf_event *event);
3417 static void perf_event_free_bpf_prog(struct perf_event *event);
3418
3419 static void free_event_rcu(struct rcu_head *head)
3420 {
3421 struct perf_event *event;
3422
3423 event = container_of(head, struct perf_event, rcu_head);
3424 if (event->ns)
3425 put_pid_ns(event->ns);
3426 perf_event_free_filter(event);
3427 kfree(event);
3428 }
3429
3430 static void ring_buffer_attach(struct perf_event *event,
3431 struct ring_buffer *rb);
3432
3433 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3434 {
3435 if (event->parent)
3436 return;
3437
3438 if (is_cgroup_event(event))
3439 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3440 }
3441
3442 static void unaccount_event(struct perf_event *event)
3443 {
3444 if (event->parent)
3445 return;
3446
3447 if (event->attach_state & PERF_ATTACH_TASK)
3448 static_key_slow_dec_deferred(&perf_sched_events);
3449 if (event->attr.mmap || event->attr.mmap_data)
3450 atomic_dec(&nr_mmap_events);
3451 if (event->attr.comm)
3452 atomic_dec(&nr_comm_events);
3453 if (event->attr.task)
3454 atomic_dec(&nr_task_events);
3455 if (event->attr.freq)
3456 atomic_dec(&nr_freq_events);
3457 if (is_cgroup_event(event))
3458 static_key_slow_dec_deferred(&perf_sched_events);
3459 if (has_branch_stack(event))
3460 static_key_slow_dec_deferred(&perf_sched_events);
3461
3462 unaccount_event_cpu(event, event->cpu);
3463 }
3464
3465 /*
3466 * The following implement mutual exclusion of events on "exclusive" pmus
3467 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3468 * at a time, so we disallow creating events that might conflict, namely:
3469 *
3470 * 1) cpu-wide events in the presence of per-task events,
3471 * 2) per-task events in the presence of cpu-wide events,
3472 * 3) two matching events on the same context.
3473 *
3474 * The former two cases are handled in the allocation path (perf_event_alloc(),
3475 * __free_event()), the latter -- before the first perf_install_in_context().
3476 */
3477 static int exclusive_event_init(struct perf_event *event)
3478 {
3479 struct pmu *pmu = event->pmu;
3480
3481 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3482 return 0;
3483
3484 /*
3485 * Prevent co-existence of per-task and cpu-wide events on the
3486 * same exclusive pmu.
3487 *
3488 * Negative pmu::exclusive_cnt means there are cpu-wide
3489 * events on this "exclusive" pmu, positive means there are
3490 * per-task events.
3491 *
3492 * Since this is called in perf_event_alloc() path, event::ctx
3493 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3494 * to mean "per-task event", because unlike other attach states it
3495 * never gets cleared.
3496 */
3497 if (event->attach_state & PERF_ATTACH_TASK) {
3498 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3499 return -EBUSY;
3500 } else {
3501 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3502 return -EBUSY;
3503 }
3504
3505 return 0;
3506 }
3507
3508 static void exclusive_event_destroy(struct perf_event *event)
3509 {
3510 struct pmu *pmu = event->pmu;
3511
3512 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3513 return;
3514
3515 /* see comment in exclusive_event_init() */
3516 if (event->attach_state & PERF_ATTACH_TASK)
3517 atomic_dec(&pmu->exclusive_cnt);
3518 else
3519 atomic_inc(&pmu->exclusive_cnt);
3520 }
3521
3522 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3523 {
3524 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3525 (e1->cpu == e2->cpu ||
3526 e1->cpu == -1 ||
3527 e2->cpu == -1))
3528 return true;
3529 return false;
3530 }
3531
3532 /* Called under the same ctx::mutex as perf_install_in_context() */
3533 static bool exclusive_event_installable(struct perf_event *event,
3534 struct perf_event_context *ctx)
3535 {
3536 struct perf_event *iter_event;
3537 struct pmu *pmu = event->pmu;
3538
3539 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3540 return true;
3541
3542 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3543 if (exclusive_event_match(iter_event, event))
3544 return false;
3545 }
3546
3547 return true;
3548 }
3549
3550 static void __free_event(struct perf_event *event)
3551 {
3552 if (!event->parent) {
3553 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3554 put_callchain_buffers();
3555 }
3556
3557 perf_event_free_bpf_prog(event);
3558
3559 if (event->destroy)
3560 event->destroy(event);
3561
3562 if (event->ctx)
3563 put_ctx(event->ctx);
3564
3565 if (event->pmu) {
3566 exclusive_event_destroy(event);
3567 module_put(event->pmu->module);
3568 }
3569
3570 call_rcu(&event->rcu_head, free_event_rcu);
3571 }
3572
3573 static void _free_event(struct perf_event *event)
3574 {
3575 irq_work_sync(&event->pending);
3576
3577 unaccount_event(event);
3578
3579 if (event->rb) {
3580 /*
3581 * Can happen when we close an event with re-directed output.
3582 *
3583 * Since we have a 0 refcount, perf_mmap_close() will skip
3584 * over us; possibly making our ring_buffer_put() the last.
3585 */
3586 mutex_lock(&event->mmap_mutex);
3587 ring_buffer_attach(event, NULL);
3588 mutex_unlock(&event->mmap_mutex);
3589 }
3590
3591 if (is_cgroup_event(event))
3592 perf_detach_cgroup(event);
3593
3594 __free_event(event);
3595 }
3596
3597 /*
3598 * Used to free events which have a known refcount of 1, such as in error paths
3599 * where the event isn't exposed yet and inherited events.
3600 */
3601 static void free_event(struct perf_event *event)
3602 {
3603 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3604 "unexpected event refcount: %ld; ptr=%p\n",
3605 atomic_long_read(&event->refcount), event)) {
3606 /* leak to avoid use-after-free */
3607 return;
3608 }
3609
3610 _free_event(event);
3611 }
3612
3613 /*
3614 * Remove user event from the owner task.
3615 */
3616 static void perf_remove_from_owner(struct perf_event *event)
3617 {
3618 struct task_struct *owner;
3619
3620 rcu_read_lock();
3621 owner = ACCESS_ONCE(event->owner);
3622 /*
3623 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3624 * !owner it means the list deletion is complete and we can indeed
3625 * free this event, otherwise we need to serialize on
3626 * owner->perf_event_mutex.
3627 */
3628 smp_read_barrier_depends();
3629 if (owner) {
3630 /*
3631 * Since delayed_put_task_struct() also drops the last
3632 * task reference we can safely take a new reference
3633 * while holding the rcu_read_lock().
3634 */
3635 get_task_struct(owner);
3636 }
3637 rcu_read_unlock();
3638
3639 if (owner) {
3640 /*
3641 * If we're here through perf_event_exit_task() we're already
3642 * holding ctx->mutex which would be an inversion wrt. the
3643 * normal lock order.
3644 *
3645 * However we can safely take this lock because its the child
3646 * ctx->mutex.
3647 */
3648 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3649
3650 /*
3651 * We have to re-check the event->owner field, if it is cleared
3652 * we raced with perf_event_exit_task(), acquiring the mutex
3653 * ensured they're done, and we can proceed with freeing the
3654 * event.
3655 */
3656 if (event->owner)
3657 list_del_init(&event->owner_entry);
3658 mutex_unlock(&owner->perf_event_mutex);
3659 put_task_struct(owner);
3660 }
3661 }
3662
3663 static void put_event(struct perf_event *event)
3664 {
3665 struct perf_event_context *ctx;
3666
3667 if (!atomic_long_dec_and_test(&event->refcount))
3668 return;
3669
3670 if (!is_kernel_event(event))
3671 perf_remove_from_owner(event);
3672
3673 /*
3674 * There are two ways this annotation is useful:
3675 *
3676 * 1) there is a lock recursion from perf_event_exit_task
3677 * see the comment there.
3678 *
3679 * 2) there is a lock-inversion with mmap_sem through
3680 * perf_event_read_group(), which takes faults while
3681 * holding ctx->mutex, however this is called after
3682 * the last filedesc died, so there is no possibility
3683 * to trigger the AB-BA case.
3684 */
3685 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3686 WARN_ON_ONCE(ctx->parent_ctx);
3687 perf_remove_from_context(event, true);
3688 perf_event_ctx_unlock(event, ctx);
3689
3690 _free_event(event);
3691 }
3692
3693 int perf_event_release_kernel(struct perf_event *event)
3694 {
3695 put_event(event);
3696 return 0;
3697 }
3698 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3699
3700 /*
3701 * Called when the last reference to the file is gone.
3702 */
3703 static int perf_release(struct inode *inode, struct file *file)
3704 {
3705 put_event(file->private_data);
3706 return 0;
3707 }
3708
3709 /*
3710 * Remove all orphanes events from the context.
3711 */
3712 static void orphans_remove_work(struct work_struct *work)
3713 {
3714 struct perf_event_context *ctx;
3715 struct perf_event *event, *tmp;
3716
3717 ctx = container_of(work, struct perf_event_context,
3718 orphans_remove.work);
3719
3720 mutex_lock(&ctx->mutex);
3721 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3722 struct perf_event *parent_event = event->parent;
3723
3724 if (!is_orphaned_child(event))
3725 continue;
3726
3727 perf_remove_from_context(event, true);
3728
3729 mutex_lock(&parent_event->child_mutex);
3730 list_del_init(&event->child_list);
3731 mutex_unlock(&parent_event->child_mutex);
3732
3733 free_event(event);
3734 put_event(parent_event);
3735 }
3736
3737 raw_spin_lock_irq(&ctx->lock);
3738 ctx->orphans_remove_sched = false;
3739 raw_spin_unlock_irq(&ctx->lock);
3740 mutex_unlock(&ctx->mutex);
3741
3742 put_ctx(ctx);
3743 }
3744
3745 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3746 {
3747 struct perf_event *child;
3748 u64 total = 0;
3749
3750 *enabled = 0;
3751 *running = 0;
3752
3753 mutex_lock(&event->child_mutex);
3754 total += perf_event_read(event);
3755 *enabled += event->total_time_enabled +
3756 atomic64_read(&event->child_total_time_enabled);
3757 *running += event->total_time_running +
3758 atomic64_read(&event->child_total_time_running);
3759
3760 list_for_each_entry(child, &event->child_list, child_list) {
3761 total += perf_event_read(child);
3762 *enabled += child->total_time_enabled;
3763 *running += child->total_time_running;
3764 }
3765 mutex_unlock(&event->child_mutex);
3766
3767 return total;
3768 }
3769 EXPORT_SYMBOL_GPL(perf_event_read_value);
3770
3771 static int perf_event_read_group(struct perf_event *event,
3772 u64 read_format, char __user *buf)
3773 {
3774 struct perf_event *leader = event->group_leader, *sub;
3775 struct perf_event_context *ctx = leader->ctx;
3776 int n = 0, size = 0, ret;
3777 u64 count, enabled, running;
3778 u64 values[5];
3779
3780 lockdep_assert_held(&ctx->mutex);
3781
3782 count = perf_event_read_value(leader, &enabled, &running);
3783
3784 values[n++] = 1 + leader->nr_siblings;
3785 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3786 values[n++] = enabled;
3787 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3788 values[n++] = running;
3789 values[n++] = count;
3790 if (read_format & PERF_FORMAT_ID)
3791 values[n++] = primary_event_id(leader);
3792
3793 size = n * sizeof(u64);
3794
3795 if (copy_to_user(buf, values, size))
3796 return -EFAULT;
3797
3798 ret = size;
3799
3800 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3801 n = 0;
3802
3803 values[n++] = perf_event_read_value(sub, &enabled, &running);
3804 if (read_format & PERF_FORMAT_ID)
3805 values[n++] = primary_event_id(sub);
3806
3807 size = n * sizeof(u64);
3808
3809 if (copy_to_user(buf + ret, values, size)) {
3810 return -EFAULT;
3811 }
3812
3813 ret += size;
3814 }
3815
3816 return ret;
3817 }
3818
3819 static int perf_event_read_one(struct perf_event *event,
3820 u64 read_format, char __user *buf)
3821 {
3822 u64 enabled, running;
3823 u64 values[4];
3824 int n = 0;
3825
3826 values[n++] = perf_event_read_value(event, &enabled, &running);
3827 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3828 values[n++] = enabled;
3829 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3830 values[n++] = running;
3831 if (read_format & PERF_FORMAT_ID)
3832 values[n++] = primary_event_id(event);
3833
3834 if (copy_to_user(buf, values, n * sizeof(u64)))
3835 return -EFAULT;
3836
3837 return n * sizeof(u64);
3838 }
3839
3840 static bool is_event_hup(struct perf_event *event)
3841 {
3842 bool no_children;
3843
3844 if (event->state != PERF_EVENT_STATE_EXIT)
3845 return false;
3846
3847 mutex_lock(&event->child_mutex);
3848 no_children = list_empty(&event->child_list);
3849 mutex_unlock(&event->child_mutex);
3850 return no_children;
3851 }
3852
3853 /*
3854 * Read the performance event - simple non blocking version for now
3855 */
3856 static ssize_t
3857 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3858 {
3859 u64 read_format = event->attr.read_format;
3860 int ret;
3861
3862 /*
3863 * Return end-of-file for a read on a event that is in
3864 * error state (i.e. because it was pinned but it couldn't be
3865 * scheduled on to the CPU at some point).
3866 */
3867 if (event->state == PERF_EVENT_STATE_ERROR)
3868 return 0;
3869
3870 if (count < event->read_size)
3871 return -ENOSPC;
3872
3873 WARN_ON_ONCE(event->ctx->parent_ctx);
3874 if (read_format & PERF_FORMAT_GROUP)
3875 ret = perf_event_read_group(event, read_format, buf);
3876 else
3877 ret = perf_event_read_one(event, read_format, buf);
3878
3879 return ret;
3880 }
3881
3882 static ssize_t
3883 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3884 {
3885 struct perf_event *event = file->private_data;
3886 struct perf_event_context *ctx;
3887 int ret;
3888
3889 ctx = perf_event_ctx_lock(event);
3890 ret = perf_read_hw(event, buf, count);
3891 perf_event_ctx_unlock(event, ctx);
3892
3893 return ret;
3894 }
3895
3896 static unsigned int perf_poll(struct file *file, poll_table *wait)
3897 {
3898 struct perf_event *event = file->private_data;
3899 struct ring_buffer *rb;
3900 unsigned int events = POLLHUP;
3901
3902 poll_wait(file, &event->waitq, wait);
3903
3904 if (is_event_hup(event))
3905 return events;
3906
3907 /*
3908 * Pin the event->rb by taking event->mmap_mutex; otherwise
3909 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3910 */
3911 mutex_lock(&event->mmap_mutex);
3912 rb = event->rb;
3913 if (rb)
3914 events = atomic_xchg(&rb->poll, 0);
3915 mutex_unlock(&event->mmap_mutex);
3916 return events;
3917 }
3918
3919 static void _perf_event_reset(struct perf_event *event)
3920 {
3921 (void)perf_event_read(event);
3922 local64_set(&event->count, 0);
3923 perf_event_update_userpage(event);
3924 }
3925
3926 /*
3927 * Holding the top-level event's child_mutex means that any
3928 * descendant process that has inherited this event will block
3929 * in sync_child_event if it goes to exit, thus satisfying the
3930 * task existence requirements of perf_event_enable/disable.
3931 */
3932 static void perf_event_for_each_child(struct perf_event *event,
3933 void (*func)(struct perf_event *))
3934 {
3935 struct perf_event *child;
3936
3937 WARN_ON_ONCE(event->ctx->parent_ctx);
3938
3939 mutex_lock(&event->child_mutex);
3940 func(event);
3941 list_for_each_entry(child, &event->child_list, child_list)
3942 func(child);
3943 mutex_unlock(&event->child_mutex);
3944 }
3945
3946 static void perf_event_for_each(struct perf_event *event,
3947 void (*func)(struct perf_event *))
3948 {
3949 struct perf_event_context *ctx = event->ctx;
3950 struct perf_event *sibling;
3951
3952 lockdep_assert_held(&ctx->mutex);
3953
3954 event = event->group_leader;
3955
3956 perf_event_for_each_child(event, func);
3957 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3958 perf_event_for_each_child(sibling, func);
3959 }
3960
3961 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3962 {
3963 struct perf_event_context *ctx = event->ctx;
3964 int ret = 0, active;
3965 u64 value;
3966
3967 if (!is_sampling_event(event))
3968 return -EINVAL;
3969
3970 if (copy_from_user(&value, arg, sizeof(value)))
3971 return -EFAULT;
3972
3973 if (!value)
3974 return -EINVAL;
3975
3976 raw_spin_lock_irq(&ctx->lock);
3977 if (event->attr.freq) {
3978 if (value > sysctl_perf_event_sample_rate) {
3979 ret = -EINVAL;
3980 goto unlock;
3981 }
3982
3983 event->attr.sample_freq = value;
3984 } else {
3985 event->attr.sample_period = value;
3986 event->hw.sample_period = value;
3987 }
3988
3989 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3990 if (active) {
3991 perf_pmu_disable(ctx->pmu);
3992 event->pmu->stop(event, PERF_EF_UPDATE);
3993 }
3994
3995 local64_set(&event->hw.period_left, 0);
3996
3997 if (active) {
3998 event->pmu->start(event, PERF_EF_RELOAD);
3999 perf_pmu_enable(ctx->pmu);
4000 }
4001
4002 unlock:
4003 raw_spin_unlock_irq(&ctx->lock);
4004
4005 return ret;
4006 }
4007
4008 static const struct file_operations perf_fops;
4009
4010 static inline int perf_fget_light(int fd, struct fd *p)
4011 {
4012 struct fd f = fdget(fd);
4013 if (!f.file)
4014 return -EBADF;
4015
4016 if (f.file->f_op != &perf_fops) {
4017 fdput(f);
4018 return -EBADF;
4019 }
4020 *p = f;
4021 return 0;
4022 }
4023
4024 static int perf_event_set_output(struct perf_event *event,
4025 struct perf_event *output_event);
4026 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4027 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4028
4029 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4030 {
4031 void (*func)(struct perf_event *);
4032 u32 flags = arg;
4033
4034 switch (cmd) {
4035 case PERF_EVENT_IOC_ENABLE:
4036 func = _perf_event_enable;
4037 break;
4038 case PERF_EVENT_IOC_DISABLE:
4039 func = _perf_event_disable;
4040 break;
4041 case PERF_EVENT_IOC_RESET:
4042 func = _perf_event_reset;
4043 break;
4044
4045 case PERF_EVENT_IOC_REFRESH:
4046 return _perf_event_refresh(event, arg);
4047
4048 case PERF_EVENT_IOC_PERIOD:
4049 return perf_event_period(event, (u64 __user *)arg);
4050
4051 case PERF_EVENT_IOC_ID:
4052 {
4053 u64 id = primary_event_id(event);
4054
4055 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4056 return -EFAULT;
4057 return 0;
4058 }
4059
4060 case PERF_EVENT_IOC_SET_OUTPUT:
4061 {
4062 int ret;
4063 if (arg != -1) {
4064 struct perf_event *output_event;
4065 struct fd output;
4066 ret = perf_fget_light(arg, &output);
4067 if (ret)
4068 return ret;
4069 output_event = output.file->private_data;
4070 ret = perf_event_set_output(event, output_event);
4071 fdput(output);
4072 } else {
4073 ret = perf_event_set_output(event, NULL);
4074 }
4075 return ret;
4076 }
4077
4078 case PERF_EVENT_IOC_SET_FILTER:
4079 return perf_event_set_filter(event, (void __user *)arg);
4080
4081 case PERF_EVENT_IOC_SET_BPF:
4082 return perf_event_set_bpf_prog(event, arg);
4083
4084 default:
4085 return -ENOTTY;
4086 }
4087
4088 if (flags & PERF_IOC_FLAG_GROUP)
4089 perf_event_for_each(event, func);
4090 else
4091 perf_event_for_each_child(event, func);
4092
4093 return 0;
4094 }
4095
4096 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4097 {
4098 struct perf_event *event = file->private_data;
4099 struct perf_event_context *ctx;
4100 long ret;
4101
4102 ctx = perf_event_ctx_lock(event);
4103 ret = _perf_ioctl(event, cmd, arg);
4104 perf_event_ctx_unlock(event, ctx);
4105
4106 return ret;
4107 }
4108
4109 #ifdef CONFIG_COMPAT
4110 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4111 unsigned long arg)
4112 {
4113 switch (_IOC_NR(cmd)) {
4114 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4115 case _IOC_NR(PERF_EVENT_IOC_ID):
4116 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4117 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4118 cmd &= ~IOCSIZE_MASK;
4119 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4120 }
4121 break;
4122 }
4123 return perf_ioctl(file, cmd, arg);
4124 }
4125 #else
4126 # define perf_compat_ioctl NULL
4127 #endif
4128
4129 int perf_event_task_enable(void)
4130 {
4131 struct perf_event_context *ctx;
4132 struct perf_event *event;
4133
4134 mutex_lock(&current->perf_event_mutex);
4135 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4136 ctx = perf_event_ctx_lock(event);
4137 perf_event_for_each_child(event, _perf_event_enable);
4138 perf_event_ctx_unlock(event, ctx);
4139 }
4140 mutex_unlock(&current->perf_event_mutex);
4141
4142 return 0;
4143 }
4144
4145 int perf_event_task_disable(void)
4146 {
4147 struct perf_event_context *ctx;
4148 struct perf_event *event;
4149
4150 mutex_lock(&current->perf_event_mutex);
4151 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4152 ctx = perf_event_ctx_lock(event);
4153 perf_event_for_each_child(event, _perf_event_disable);
4154 perf_event_ctx_unlock(event, ctx);
4155 }
4156 mutex_unlock(&current->perf_event_mutex);
4157
4158 return 0;
4159 }
4160
4161 static int perf_event_index(struct perf_event *event)
4162 {
4163 if (event->hw.state & PERF_HES_STOPPED)
4164 return 0;
4165
4166 if (event->state != PERF_EVENT_STATE_ACTIVE)
4167 return 0;
4168
4169 return event->pmu->event_idx(event);
4170 }
4171
4172 static void calc_timer_values(struct perf_event *event,
4173 u64 *now,
4174 u64 *enabled,
4175 u64 *running)
4176 {
4177 u64 ctx_time;
4178
4179 *now = perf_clock();
4180 ctx_time = event->shadow_ctx_time + *now;
4181 *enabled = ctx_time - event->tstamp_enabled;
4182 *running = ctx_time - event->tstamp_running;
4183 }
4184
4185 static void perf_event_init_userpage(struct perf_event *event)
4186 {
4187 struct perf_event_mmap_page *userpg;
4188 struct ring_buffer *rb;
4189
4190 rcu_read_lock();
4191 rb = rcu_dereference(event->rb);
4192 if (!rb)
4193 goto unlock;
4194
4195 userpg = rb->user_page;
4196
4197 /* Allow new userspace to detect that bit 0 is deprecated */
4198 userpg->cap_bit0_is_deprecated = 1;
4199 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4200 userpg->data_offset = PAGE_SIZE;
4201 userpg->data_size = perf_data_size(rb);
4202
4203 unlock:
4204 rcu_read_unlock();
4205 }
4206
4207 void __weak arch_perf_update_userpage(
4208 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4209 {
4210 }
4211
4212 /*
4213 * Callers need to ensure there can be no nesting of this function, otherwise
4214 * the seqlock logic goes bad. We can not serialize this because the arch
4215 * code calls this from NMI context.
4216 */
4217 void perf_event_update_userpage(struct perf_event *event)
4218 {
4219 struct perf_event_mmap_page *userpg;
4220 struct ring_buffer *rb;
4221 u64 enabled, running, now;
4222
4223 rcu_read_lock();
4224 rb = rcu_dereference(event->rb);
4225 if (!rb)
4226 goto unlock;
4227
4228 /*
4229 * compute total_time_enabled, total_time_running
4230 * based on snapshot values taken when the event
4231 * was last scheduled in.
4232 *
4233 * we cannot simply called update_context_time()
4234 * because of locking issue as we can be called in
4235 * NMI context
4236 */
4237 calc_timer_values(event, &now, &enabled, &running);
4238
4239 userpg = rb->user_page;
4240 /*
4241 * Disable preemption so as to not let the corresponding user-space
4242 * spin too long if we get preempted.
4243 */
4244 preempt_disable();
4245 ++userpg->lock;
4246 barrier();
4247 userpg->index = perf_event_index(event);
4248 userpg->offset = perf_event_count(event);
4249 if (userpg->index)
4250 userpg->offset -= local64_read(&event->hw.prev_count);
4251
4252 userpg->time_enabled = enabled +
4253 atomic64_read(&event->child_total_time_enabled);
4254
4255 userpg->time_running = running +
4256 atomic64_read(&event->child_total_time_running);
4257
4258 arch_perf_update_userpage(event, userpg, now);
4259
4260 barrier();
4261 ++userpg->lock;
4262 preempt_enable();
4263 unlock:
4264 rcu_read_unlock();
4265 }
4266
4267 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4268 {
4269 struct perf_event *event = vma->vm_file->private_data;
4270 struct ring_buffer *rb;
4271 int ret = VM_FAULT_SIGBUS;
4272
4273 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4274 if (vmf->pgoff == 0)
4275 ret = 0;
4276 return ret;
4277 }
4278
4279 rcu_read_lock();
4280 rb = rcu_dereference(event->rb);
4281 if (!rb)
4282 goto unlock;
4283
4284 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4285 goto unlock;
4286
4287 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4288 if (!vmf->page)
4289 goto unlock;
4290
4291 get_page(vmf->page);
4292 vmf->page->mapping = vma->vm_file->f_mapping;
4293 vmf->page->index = vmf->pgoff;
4294
4295 ret = 0;
4296 unlock:
4297 rcu_read_unlock();
4298
4299 return ret;
4300 }
4301
4302 static void ring_buffer_attach(struct perf_event *event,
4303 struct ring_buffer *rb)
4304 {
4305 struct ring_buffer *old_rb = NULL;
4306 unsigned long flags;
4307
4308 if (event->rb) {
4309 /*
4310 * Should be impossible, we set this when removing
4311 * event->rb_entry and wait/clear when adding event->rb_entry.
4312 */
4313 WARN_ON_ONCE(event->rcu_pending);
4314
4315 old_rb = event->rb;
4316 spin_lock_irqsave(&old_rb->event_lock, flags);
4317 list_del_rcu(&event->rb_entry);
4318 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4319
4320 event->rcu_batches = get_state_synchronize_rcu();
4321 event->rcu_pending = 1;
4322 }
4323
4324 if (rb) {
4325 if (event->rcu_pending) {
4326 cond_synchronize_rcu(event->rcu_batches);
4327 event->rcu_pending = 0;
4328 }
4329
4330 spin_lock_irqsave(&rb->event_lock, flags);
4331 list_add_rcu(&event->rb_entry, &rb->event_list);
4332 spin_unlock_irqrestore(&rb->event_lock, flags);
4333 }
4334
4335 rcu_assign_pointer(event->rb, rb);
4336
4337 if (old_rb) {
4338 ring_buffer_put(old_rb);
4339 /*
4340 * Since we detached before setting the new rb, so that we
4341 * could attach the new rb, we could have missed a wakeup.
4342 * Provide it now.
4343 */
4344 wake_up_all(&event->waitq);
4345 }
4346 }
4347
4348 static void ring_buffer_wakeup(struct perf_event *event)
4349 {
4350 struct ring_buffer *rb;
4351
4352 rcu_read_lock();
4353 rb = rcu_dereference(event->rb);
4354 if (rb) {
4355 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4356 wake_up_all(&event->waitq);
4357 }
4358 rcu_read_unlock();
4359 }
4360
4361 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4362 {
4363 struct ring_buffer *rb;
4364
4365 rcu_read_lock();
4366 rb = rcu_dereference(event->rb);
4367 if (rb) {
4368 if (!atomic_inc_not_zero(&rb->refcount))
4369 rb = NULL;
4370 }
4371 rcu_read_unlock();
4372
4373 return rb;
4374 }
4375
4376 void ring_buffer_put(struct ring_buffer *rb)
4377 {
4378 if (!atomic_dec_and_test(&rb->refcount))
4379 return;
4380
4381 WARN_ON_ONCE(!list_empty(&rb->event_list));
4382
4383 call_rcu(&rb->rcu_head, rb_free_rcu);
4384 }
4385
4386 static void perf_mmap_open(struct vm_area_struct *vma)
4387 {
4388 struct perf_event *event = vma->vm_file->private_data;
4389
4390 atomic_inc(&event->mmap_count);
4391 atomic_inc(&event->rb->mmap_count);
4392
4393 if (vma->vm_pgoff)
4394 atomic_inc(&event->rb->aux_mmap_count);
4395
4396 if (event->pmu->event_mapped)
4397 event->pmu->event_mapped(event);
4398 }
4399
4400 /*
4401 * A buffer can be mmap()ed multiple times; either directly through the same
4402 * event, or through other events by use of perf_event_set_output().
4403 *
4404 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4405 * the buffer here, where we still have a VM context. This means we need
4406 * to detach all events redirecting to us.
4407 */
4408 static void perf_mmap_close(struct vm_area_struct *vma)
4409 {
4410 struct perf_event *event = vma->vm_file->private_data;
4411
4412 struct ring_buffer *rb = ring_buffer_get(event);
4413 struct user_struct *mmap_user = rb->mmap_user;
4414 int mmap_locked = rb->mmap_locked;
4415 unsigned long size = perf_data_size(rb);
4416
4417 if (event->pmu->event_unmapped)
4418 event->pmu->event_unmapped(event);
4419
4420 /*
4421 * rb->aux_mmap_count will always drop before rb->mmap_count and
4422 * event->mmap_count, so it is ok to use event->mmap_mutex to
4423 * serialize with perf_mmap here.
4424 */
4425 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4426 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4427 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4428 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4429
4430 rb_free_aux(rb);
4431 mutex_unlock(&event->mmap_mutex);
4432 }
4433
4434 atomic_dec(&rb->mmap_count);
4435
4436 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4437 goto out_put;
4438
4439 ring_buffer_attach(event, NULL);
4440 mutex_unlock(&event->mmap_mutex);
4441
4442 /* If there's still other mmap()s of this buffer, we're done. */
4443 if (atomic_read(&rb->mmap_count))
4444 goto out_put;
4445
4446 /*
4447 * No other mmap()s, detach from all other events that might redirect
4448 * into the now unreachable buffer. Somewhat complicated by the
4449 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4450 */
4451 again:
4452 rcu_read_lock();
4453 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4454 if (!atomic_long_inc_not_zero(&event->refcount)) {
4455 /*
4456 * This event is en-route to free_event() which will
4457 * detach it and remove it from the list.
4458 */
4459 continue;
4460 }
4461 rcu_read_unlock();
4462
4463 mutex_lock(&event->mmap_mutex);
4464 /*
4465 * Check we didn't race with perf_event_set_output() which can
4466 * swizzle the rb from under us while we were waiting to
4467 * acquire mmap_mutex.
4468 *
4469 * If we find a different rb; ignore this event, a next
4470 * iteration will no longer find it on the list. We have to
4471 * still restart the iteration to make sure we're not now
4472 * iterating the wrong list.
4473 */
4474 if (event->rb == rb)
4475 ring_buffer_attach(event, NULL);
4476
4477 mutex_unlock(&event->mmap_mutex);
4478 put_event(event);
4479
4480 /*
4481 * Restart the iteration; either we're on the wrong list or
4482 * destroyed its integrity by doing a deletion.
4483 */
4484 goto again;
4485 }
4486 rcu_read_unlock();
4487
4488 /*
4489 * It could be there's still a few 0-ref events on the list; they'll
4490 * get cleaned up by free_event() -- they'll also still have their
4491 * ref on the rb and will free it whenever they are done with it.
4492 *
4493 * Aside from that, this buffer is 'fully' detached and unmapped,
4494 * undo the VM accounting.
4495 */
4496
4497 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4498 vma->vm_mm->pinned_vm -= mmap_locked;
4499 free_uid(mmap_user);
4500
4501 out_put:
4502 ring_buffer_put(rb); /* could be last */
4503 }
4504
4505 static const struct vm_operations_struct perf_mmap_vmops = {
4506 .open = perf_mmap_open,
4507 .close = perf_mmap_close, /* non mergable */
4508 .fault = perf_mmap_fault,
4509 .page_mkwrite = perf_mmap_fault,
4510 };
4511
4512 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4513 {
4514 struct perf_event *event = file->private_data;
4515 unsigned long user_locked, user_lock_limit;
4516 struct user_struct *user = current_user();
4517 unsigned long locked, lock_limit;
4518 struct ring_buffer *rb = NULL;
4519 unsigned long vma_size;
4520 unsigned long nr_pages;
4521 long user_extra = 0, extra = 0;
4522 int ret = 0, flags = 0;
4523
4524 /*
4525 * Don't allow mmap() of inherited per-task counters. This would
4526 * create a performance issue due to all children writing to the
4527 * same rb.
4528 */
4529 if (event->cpu == -1 && event->attr.inherit)
4530 return -EINVAL;
4531
4532 if (!(vma->vm_flags & VM_SHARED))
4533 return -EINVAL;
4534
4535 vma_size = vma->vm_end - vma->vm_start;
4536
4537 if (vma->vm_pgoff == 0) {
4538 nr_pages = (vma_size / PAGE_SIZE) - 1;
4539 } else {
4540 /*
4541 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4542 * mapped, all subsequent mappings should have the same size
4543 * and offset. Must be above the normal perf buffer.
4544 */
4545 u64 aux_offset, aux_size;
4546
4547 if (!event->rb)
4548 return -EINVAL;
4549
4550 nr_pages = vma_size / PAGE_SIZE;
4551
4552 mutex_lock(&event->mmap_mutex);
4553 ret = -EINVAL;
4554
4555 rb = event->rb;
4556 if (!rb)
4557 goto aux_unlock;
4558
4559 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4560 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4561
4562 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4563 goto aux_unlock;
4564
4565 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4566 goto aux_unlock;
4567
4568 /* already mapped with a different offset */
4569 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4570 goto aux_unlock;
4571
4572 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4573 goto aux_unlock;
4574
4575 /* already mapped with a different size */
4576 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4577 goto aux_unlock;
4578
4579 if (!is_power_of_2(nr_pages))
4580 goto aux_unlock;
4581
4582 if (!atomic_inc_not_zero(&rb->mmap_count))
4583 goto aux_unlock;
4584
4585 if (rb_has_aux(rb)) {
4586 atomic_inc(&rb->aux_mmap_count);
4587 ret = 0;
4588 goto unlock;
4589 }
4590
4591 atomic_set(&rb->aux_mmap_count, 1);
4592 user_extra = nr_pages;
4593
4594 goto accounting;
4595 }
4596
4597 /*
4598 * If we have rb pages ensure they're a power-of-two number, so we
4599 * can do bitmasks instead of modulo.
4600 */
4601 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4602 return -EINVAL;
4603
4604 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4605 return -EINVAL;
4606
4607 WARN_ON_ONCE(event->ctx->parent_ctx);
4608 again:
4609 mutex_lock(&event->mmap_mutex);
4610 if (event->rb) {
4611 if (event->rb->nr_pages != nr_pages) {
4612 ret = -EINVAL;
4613 goto unlock;
4614 }
4615
4616 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4617 /*
4618 * Raced against perf_mmap_close() through
4619 * perf_event_set_output(). Try again, hope for better
4620 * luck.
4621 */
4622 mutex_unlock(&event->mmap_mutex);
4623 goto again;
4624 }
4625
4626 goto unlock;
4627 }
4628
4629 user_extra = nr_pages + 1;
4630
4631 accounting:
4632 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4633
4634 /*
4635 * Increase the limit linearly with more CPUs:
4636 */
4637 user_lock_limit *= num_online_cpus();
4638
4639 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4640
4641 if (user_locked > user_lock_limit)
4642 extra = user_locked - user_lock_limit;
4643
4644 lock_limit = rlimit(RLIMIT_MEMLOCK);
4645 lock_limit >>= PAGE_SHIFT;
4646 locked = vma->vm_mm->pinned_vm + extra;
4647
4648 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4649 !capable(CAP_IPC_LOCK)) {
4650 ret = -EPERM;
4651 goto unlock;
4652 }
4653
4654 WARN_ON(!rb && event->rb);
4655
4656 if (vma->vm_flags & VM_WRITE)
4657 flags |= RING_BUFFER_WRITABLE;
4658
4659 if (!rb) {
4660 rb = rb_alloc(nr_pages,
4661 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4662 event->cpu, flags);
4663
4664 if (!rb) {
4665 ret = -ENOMEM;
4666 goto unlock;
4667 }
4668
4669 atomic_set(&rb->mmap_count, 1);
4670 rb->mmap_user = get_current_user();
4671 rb->mmap_locked = extra;
4672
4673 ring_buffer_attach(event, rb);
4674
4675 perf_event_init_userpage(event);
4676 perf_event_update_userpage(event);
4677 } else {
4678 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4679 event->attr.aux_watermark, flags);
4680 if (!ret)
4681 rb->aux_mmap_locked = extra;
4682 }
4683
4684 unlock:
4685 if (!ret) {
4686 atomic_long_add(user_extra, &user->locked_vm);
4687 vma->vm_mm->pinned_vm += extra;
4688
4689 atomic_inc(&event->mmap_count);
4690 } else if (rb) {
4691 atomic_dec(&rb->mmap_count);
4692 }
4693 aux_unlock:
4694 mutex_unlock(&event->mmap_mutex);
4695
4696 /*
4697 * Since pinned accounting is per vm we cannot allow fork() to copy our
4698 * vma.
4699 */
4700 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4701 vma->vm_ops = &perf_mmap_vmops;
4702
4703 if (event->pmu->event_mapped)
4704 event->pmu->event_mapped(event);
4705
4706 return ret;
4707 }
4708
4709 static int perf_fasync(int fd, struct file *filp, int on)
4710 {
4711 struct inode *inode = file_inode(filp);
4712 struct perf_event *event = filp->private_data;
4713 int retval;
4714
4715 mutex_lock(&inode->i_mutex);
4716 retval = fasync_helper(fd, filp, on, &event->fasync);
4717 mutex_unlock(&inode->i_mutex);
4718
4719 if (retval < 0)
4720 return retval;
4721
4722 return 0;
4723 }
4724
4725 static const struct file_operations perf_fops = {
4726 .llseek = no_llseek,
4727 .release = perf_release,
4728 .read = perf_read,
4729 .poll = perf_poll,
4730 .unlocked_ioctl = perf_ioctl,
4731 .compat_ioctl = perf_compat_ioctl,
4732 .mmap = perf_mmap,
4733 .fasync = perf_fasync,
4734 };
4735
4736 /*
4737 * Perf event wakeup
4738 *
4739 * If there's data, ensure we set the poll() state and publish everything
4740 * to user-space before waking everybody up.
4741 */
4742
4743 void perf_event_wakeup(struct perf_event *event)
4744 {
4745 ring_buffer_wakeup(event);
4746
4747 if (event->pending_kill) {
4748 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4749 event->pending_kill = 0;
4750 }
4751 }
4752
4753 static void perf_pending_event(struct irq_work *entry)
4754 {
4755 struct perf_event *event = container_of(entry,
4756 struct perf_event, pending);
4757 int rctx;
4758
4759 rctx = perf_swevent_get_recursion_context();
4760 /*
4761 * If we 'fail' here, that's OK, it means recursion is already disabled
4762 * and we won't recurse 'further'.
4763 */
4764
4765 if (event->pending_disable) {
4766 event->pending_disable = 0;
4767 __perf_event_disable(event);
4768 }
4769
4770 if (event->pending_wakeup) {
4771 event->pending_wakeup = 0;
4772 perf_event_wakeup(event);
4773 }
4774
4775 if (rctx >= 0)
4776 perf_swevent_put_recursion_context(rctx);
4777 }
4778
4779 /*
4780 * We assume there is only KVM supporting the callbacks.
4781 * Later on, we might change it to a list if there is
4782 * another virtualization implementation supporting the callbacks.
4783 */
4784 struct perf_guest_info_callbacks *perf_guest_cbs;
4785
4786 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4787 {
4788 perf_guest_cbs = cbs;
4789 return 0;
4790 }
4791 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4792
4793 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4794 {
4795 perf_guest_cbs = NULL;
4796 return 0;
4797 }
4798 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4799
4800 static void
4801 perf_output_sample_regs(struct perf_output_handle *handle,
4802 struct pt_regs *regs, u64 mask)
4803 {
4804 int bit;
4805
4806 for_each_set_bit(bit, (const unsigned long *) &mask,
4807 sizeof(mask) * BITS_PER_BYTE) {
4808 u64 val;
4809
4810 val = perf_reg_value(regs, bit);
4811 perf_output_put(handle, val);
4812 }
4813 }
4814
4815 static void perf_sample_regs_user(struct perf_regs *regs_user,
4816 struct pt_regs *regs,
4817 struct pt_regs *regs_user_copy)
4818 {
4819 if (user_mode(regs)) {
4820 regs_user->abi = perf_reg_abi(current);
4821 regs_user->regs = regs;
4822 } else if (current->mm) {
4823 perf_get_regs_user(regs_user, regs, regs_user_copy);
4824 } else {
4825 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4826 regs_user->regs = NULL;
4827 }
4828 }
4829
4830 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4831 struct pt_regs *regs)
4832 {
4833 regs_intr->regs = regs;
4834 regs_intr->abi = perf_reg_abi(current);
4835 }
4836
4837
4838 /*
4839 * Get remaining task size from user stack pointer.
4840 *
4841 * It'd be better to take stack vma map and limit this more
4842 * precisly, but there's no way to get it safely under interrupt,
4843 * so using TASK_SIZE as limit.
4844 */
4845 static u64 perf_ustack_task_size(struct pt_regs *regs)
4846 {
4847 unsigned long addr = perf_user_stack_pointer(regs);
4848
4849 if (!addr || addr >= TASK_SIZE)
4850 return 0;
4851
4852 return TASK_SIZE - addr;
4853 }
4854
4855 static u16
4856 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4857 struct pt_regs *regs)
4858 {
4859 u64 task_size;
4860
4861 /* No regs, no stack pointer, no dump. */
4862 if (!regs)
4863 return 0;
4864
4865 /*
4866 * Check if we fit in with the requested stack size into the:
4867 * - TASK_SIZE
4868 * If we don't, we limit the size to the TASK_SIZE.
4869 *
4870 * - remaining sample size
4871 * If we don't, we customize the stack size to
4872 * fit in to the remaining sample size.
4873 */
4874
4875 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4876 stack_size = min(stack_size, (u16) task_size);
4877
4878 /* Current header size plus static size and dynamic size. */
4879 header_size += 2 * sizeof(u64);
4880
4881 /* Do we fit in with the current stack dump size? */
4882 if ((u16) (header_size + stack_size) < header_size) {
4883 /*
4884 * If we overflow the maximum size for the sample,
4885 * we customize the stack dump size to fit in.
4886 */
4887 stack_size = USHRT_MAX - header_size - sizeof(u64);
4888 stack_size = round_up(stack_size, sizeof(u64));
4889 }
4890
4891 return stack_size;
4892 }
4893
4894 static void
4895 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4896 struct pt_regs *regs)
4897 {
4898 /* Case of a kernel thread, nothing to dump */
4899 if (!regs) {
4900 u64 size = 0;
4901 perf_output_put(handle, size);
4902 } else {
4903 unsigned long sp;
4904 unsigned int rem;
4905 u64 dyn_size;
4906
4907 /*
4908 * We dump:
4909 * static size
4910 * - the size requested by user or the best one we can fit
4911 * in to the sample max size
4912 * data
4913 * - user stack dump data
4914 * dynamic size
4915 * - the actual dumped size
4916 */
4917
4918 /* Static size. */
4919 perf_output_put(handle, dump_size);
4920
4921 /* Data. */
4922 sp = perf_user_stack_pointer(regs);
4923 rem = __output_copy_user(handle, (void *) sp, dump_size);
4924 dyn_size = dump_size - rem;
4925
4926 perf_output_skip(handle, rem);
4927
4928 /* Dynamic size. */
4929 perf_output_put(handle, dyn_size);
4930 }
4931 }
4932
4933 static void __perf_event_header__init_id(struct perf_event_header *header,
4934 struct perf_sample_data *data,
4935 struct perf_event *event)
4936 {
4937 u64 sample_type = event->attr.sample_type;
4938
4939 data->type = sample_type;
4940 header->size += event->id_header_size;
4941
4942 if (sample_type & PERF_SAMPLE_TID) {
4943 /* namespace issues */
4944 data->tid_entry.pid = perf_event_pid(event, current);
4945 data->tid_entry.tid = perf_event_tid(event, current);
4946 }
4947
4948 if (sample_type & PERF_SAMPLE_TIME)
4949 data->time = perf_event_clock(event);
4950
4951 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4952 data->id = primary_event_id(event);
4953
4954 if (sample_type & PERF_SAMPLE_STREAM_ID)
4955 data->stream_id = event->id;
4956
4957 if (sample_type & PERF_SAMPLE_CPU) {
4958 data->cpu_entry.cpu = raw_smp_processor_id();
4959 data->cpu_entry.reserved = 0;
4960 }
4961 }
4962
4963 void perf_event_header__init_id(struct perf_event_header *header,
4964 struct perf_sample_data *data,
4965 struct perf_event *event)
4966 {
4967 if (event->attr.sample_id_all)
4968 __perf_event_header__init_id(header, data, event);
4969 }
4970
4971 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4972 struct perf_sample_data *data)
4973 {
4974 u64 sample_type = data->type;
4975
4976 if (sample_type & PERF_SAMPLE_TID)
4977 perf_output_put(handle, data->tid_entry);
4978
4979 if (sample_type & PERF_SAMPLE_TIME)
4980 perf_output_put(handle, data->time);
4981
4982 if (sample_type & PERF_SAMPLE_ID)
4983 perf_output_put(handle, data->id);
4984
4985 if (sample_type & PERF_SAMPLE_STREAM_ID)
4986 perf_output_put(handle, data->stream_id);
4987
4988 if (sample_type & PERF_SAMPLE_CPU)
4989 perf_output_put(handle, data->cpu_entry);
4990
4991 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4992 perf_output_put(handle, data->id);
4993 }
4994
4995 void perf_event__output_id_sample(struct perf_event *event,
4996 struct perf_output_handle *handle,
4997 struct perf_sample_data *sample)
4998 {
4999 if (event->attr.sample_id_all)
5000 __perf_event__output_id_sample(handle, sample);
5001 }
5002
5003 static void perf_output_read_one(struct perf_output_handle *handle,
5004 struct perf_event *event,
5005 u64 enabled, u64 running)
5006 {
5007 u64 read_format = event->attr.read_format;
5008 u64 values[4];
5009 int n = 0;
5010
5011 values[n++] = perf_event_count(event);
5012 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5013 values[n++] = enabled +
5014 atomic64_read(&event->child_total_time_enabled);
5015 }
5016 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5017 values[n++] = running +
5018 atomic64_read(&event->child_total_time_running);
5019 }
5020 if (read_format & PERF_FORMAT_ID)
5021 values[n++] = primary_event_id(event);
5022
5023 __output_copy(handle, values, n * sizeof(u64));
5024 }
5025
5026 /*
5027 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5028 */
5029 static void perf_output_read_group(struct perf_output_handle *handle,
5030 struct perf_event *event,
5031 u64 enabled, u64 running)
5032 {
5033 struct perf_event *leader = event->group_leader, *sub;
5034 u64 read_format = event->attr.read_format;
5035 u64 values[5];
5036 int n = 0;
5037
5038 values[n++] = 1 + leader->nr_siblings;
5039
5040 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5041 values[n++] = enabled;
5042
5043 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5044 values[n++] = running;
5045
5046 if (leader != event)
5047 leader->pmu->read(leader);
5048
5049 values[n++] = perf_event_count(leader);
5050 if (read_format & PERF_FORMAT_ID)
5051 values[n++] = primary_event_id(leader);
5052
5053 __output_copy(handle, values, n * sizeof(u64));
5054
5055 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5056 n = 0;
5057
5058 if ((sub != event) &&
5059 (sub->state == PERF_EVENT_STATE_ACTIVE))
5060 sub->pmu->read(sub);
5061
5062 values[n++] = perf_event_count(sub);
5063 if (read_format & PERF_FORMAT_ID)
5064 values[n++] = primary_event_id(sub);
5065
5066 __output_copy(handle, values, n * sizeof(u64));
5067 }
5068 }
5069
5070 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5071 PERF_FORMAT_TOTAL_TIME_RUNNING)
5072
5073 static void perf_output_read(struct perf_output_handle *handle,
5074 struct perf_event *event)
5075 {
5076 u64 enabled = 0, running = 0, now;
5077 u64 read_format = event->attr.read_format;
5078
5079 /*
5080 * compute total_time_enabled, total_time_running
5081 * based on snapshot values taken when the event
5082 * was last scheduled in.
5083 *
5084 * we cannot simply called update_context_time()
5085 * because of locking issue as we are called in
5086 * NMI context
5087 */
5088 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5089 calc_timer_values(event, &now, &enabled, &running);
5090
5091 if (event->attr.read_format & PERF_FORMAT_GROUP)
5092 perf_output_read_group(handle, event, enabled, running);
5093 else
5094 perf_output_read_one(handle, event, enabled, running);
5095 }
5096
5097 void perf_output_sample(struct perf_output_handle *handle,
5098 struct perf_event_header *header,
5099 struct perf_sample_data *data,
5100 struct perf_event *event)
5101 {
5102 u64 sample_type = data->type;
5103
5104 perf_output_put(handle, *header);
5105
5106 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5107 perf_output_put(handle, data->id);
5108
5109 if (sample_type & PERF_SAMPLE_IP)
5110 perf_output_put(handle, data->ip);
5111
5112 if (sample_type & PERF_SAMPLE_TID)
5113 perf_output_put(handle, data->tid_entry);
5114
5115 if (sample_type & PERF_SAMPLE_TIME)
5116 perf_output_put(handle, data->time);
5117
5118 if (sample_type & PERF_SAMPLE_ADDR)
5119 perf_output_put(handle, data->addr);
5120
5121 if (sample_type & PERF_SAMPLE_ID)
5122 perf_output_put(handle, data->id);
5123
5124 if (sample_type & PERF_SAMPLE_STREAM_ID)
5125 perf_output_put(handle, data->stream_id);
5126
5127 if (sample_type & PERF_SAMPLE_CPU)
5128 perf_output_put(handle, data->cpu_entry);
5129
5130 if (sample_type & PERF_SAMPLE_PERIOD)
5131 perf_output_put(handle, data->period);
5132
5133 if (sample_type & PERF_SAMPLE_READ)
5134 perf_output_read(handle, event);
5135
5136 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5137 if (data->callchain) {
5138 int size = 1;
5139
5140 if (data->callchain)
5141 size += data->callchain->nr;
5142
5143 size *= sizeof(u64);
5144
5145 __output_copy(handle, data->callchain, size);
5146 } else {
5147 u64 nr = 0;
5148 perf_output_put(handle, nr);
5149 }
5150 }
5151
5152 if (sample_type & PERF_SAMPLE_RAW) {
5153 if (data->raw) {
5154 perf_output_put(handle, data->raw->size);
5155 __output_copy(handle, data->raw->data,
5156 data->raw->size);
5157 } else {
5158 struct {
5159 u32 size;
5160 u32 data;
5161 } raw = {
5162 .size = sizeof(u32),
5163 .data = 0,
5164 };
5165 perf_output_put(handle, raw);
5166 }
5167 }
5168
5169 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5170 if (data->br_stack) {
5171 size_t size;
5172
5173 size = data->br_stack->nr
5174 * sizeof(struct perf_branch_entry);
5175
5176 perf_output_put(handle, data->br_stack->nr);
5177 perf_output_copy(handle, data->br_stack->entries, size);
5178 } else {
5179 /*
5180 * we always store at least the value of nr
5181 */
5182 u64 nr = 0;
5183 perf_output_put(handle, nr);
5184 }
5185 }
5186
5187 if (sample_type & PERF_SAMPLE_REGS_USER) {
5188 u64 abi = data->regs_user.abi;
5189
5190 /*
5191 * If there are no regs to dump, notice it through
5192 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5193 */
5194 perf_output_put(handle, abi);
5195
5196 if (abi) {
5197 u64 mask = event->attr.sample_regs_user;
5198 perf_output_sample_regs(handle,
5199 data->regs_user.regs,
5200 mask);
5201 }
5202 }
5203
5204 if (sample_type & PERF_SAMPLE_STACK_USER) {
5205 perf_output_sample_ustack(handle,
5206 data->stack_user_size,
5207 data->regs_user.regs);
5208 }
5209
5210 if (sample_type & PERF_SAMPLE_WEIGHT)
5211 perf_output_put(handle, data->weight);
5212
5213 if (sample_type & PERF_SAMPLE_DATA_SRC)
5214 perf_output_put(handle, data->data_src.val);
5215
5216 if (sample_type & PERF_SAMPLE_TRANSACTION)
5217 perf_output_put(handle, data->txn);
5218
5219 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5220 u64 abi = data->regs_intr.abi;
5221 /*
5222 * If there are no regs to dump, notice it through
5223 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5224 */
5225 perf_output_put(handle, abi);
5226
5227 if (abi) {
5228 u64 mask = event->attr.sample_regs_intr;
5229
5230 perf_output_sample_regs(handle,
5231 data->regs_intr.regs,
5232 mask);
5233 }
5234 }
5235
5236 if (!event->attr.watermark) {
5237 int wakeup_events = event->attr.wakeup_events;
5238
5239 if (wakeup_events) {
5240 struct ring_buffer *rb = handle->rb;
5241 int events = local_inc_return(&rb->events);
5242
5243 if (events >= wakeup_events) {
5244 local_sub(wakeup_events, &rb->events);
5245 local_inc(&rb->wakeup);
5246 }
5247 }
5248 }
5249 }
5250
5251 void perf_prepare_sample(struct perf_event_header *header,
5252 struct perf_sample_data *data,
5253 struct perf_event *event,
5254 struct pt_regs *regs)
5255 {
5256 u64 sample_type = event->attr.sample_type;
5257
5258 header->type = PERF_RECORD_SAMPLE;
5259 header->size = sizeof(*header) + event->header_size;
5260
5261 header->misc = 0;
5262 header->misc |= perf_misc_flags(regs);
5263
5264 __perf_event_header__init_id(header, data, event);
5265
5266 if (sample_type & PERF_SAMPLE_IP)
5267 data->ip = perf_instruction_pointer(regs);
5268
5269 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5270 int size = 1;
5271
5272 data->callchain = perf_callchain(event, regs);
5273
5274 if (data->callchain)
5275 size += data->callchain->nr;
5276
5277 header->size += size * sizeof(u64);
5278 }
5279
5280 if (sample_type & PERF_SAMPLE_RAW) {
5281 int size = sizeof(u32);
5282
5283 if (data->raw)
5284 size += data->raw->size;
5285 else
5286 size += sizeof(u32);
5287
5288 WARN_ON_ONCE(size & (sizeof(u64)-1));
5289 header->size += size;
5290 }
5291
5292 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5293 int size = sizeof(u64); /* nr */
5294 if (data->br_stack) {
5295 size += data->br_stack->nr
5296 * sizeof(struct perf_branch_entry);
5297 }
5298 header->size += size;
5299 }
5300
5301 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5302 perf_sample_regs_user(&data->regs_user, regs,
5303 &data->regs_user_copy);
5304
5305 if (sample_type & PERF_SAMPLE_REGS_USER) {
5306 /* regs dump ABI info */
5307 int size = sizeof(u64);
5308
5309 if (data->regs_user.regs) {
5310 u64 mask = event->attr.sample_regs_user;
5311 size += hweight64(mask) * sizeof(u64);
5312 }
5313
5314 header->size += size;
5315 }
5316
5317 if (sample_type & PERF_SAMPLE_STACK_USER) {
5318 /*
5319 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5320 * processed as the last one or have additional check added
5321 * in case new sample type is added, because we could eat
5322 * up the rest of the sample size.
5323 */
5324 u16 stack_size = event->attr.sample_stack_user;
5325 u16 size = sizeof(u64);
5326
5327 stack_size = perf_sample_ustack_size(stack_size, header->size,
5328 data->regs_user.regs);
5329
5330 /*
5331 * If there is something to dump, add space for the dump
5332 * itself and for the field that tells the dynamic size,
5333 * which is how many have been actually dumped.
5334 */
5335 if (stack_size)
5336 size += sizeof(u64) + stack_size;
5337
5338 data->stack_user_size = stack_size;
5339 header->size += size;
5340 }
5341
5342 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5343 /* regs dump ABI info */
5344 int size = sizeof(u64);
5345
5346 perf_sample_regs_intr(&data->regs_intr, regs);
5347
5348 if (data->regs_intr.regs) {
5349 u64 mask = event->attr.sample_regs_intr;
5350
5351 size += hweight64(mask) * sizeof(u64);
5352 }
5353
5354 header->size += size;
5355 }
5356 }
5357
5358 void perf_event_output(struct perf_event *event,
5359 struct perf_sample_data *data,
5360 struct pt_regs *regs)
5361 {
5362 struct perf_output_handle handle;
5363 struct perf_event_header header;
5364
5365 /* protect the callchain buffers */
5366 rcu_read_lock();
5367
5368 perf_prepare_sample(&header, data, event, regs);
5369
5370 if (perf_output_begin(&handle, event, header.size))
5371 goto exit;
5372
5373 perf_output_sample(&handle, &header, data, event);
5374
5375 perf_output_end(&handle);
5376
5377 exit:
5378 rcu_read_unlock();
5379 }
5380
5381 /*
5382 * read event_id
5383 */
5384
5385 struct perf_read_event {
5386 struct perf_event_header header;
5387
5388 u32 pid;
5389 u32 tid;
5390 };
5391
5392 static void
5393 perf_event_read_event(struct perf_event *event,
5394 struct task_struct *task)
5395 {
5396 struct perf_output_handle handle;
5397 struct perf_sample_data sample;
5398 struct perf_read_event read_event = {
5399 .header = {
5400 .type = PERF_RECORD_READ,
5401 .misc = 0,
5402 .size = sizeof(read_event) + event->read_size,
5403 },
5404 .pid = perf_event_pid(event, task),
5405 .tid = perf_event_tid(event, task),
5406 };
5407 int ret;
5408
5409 perf_event_header__init_id(&read_event.header, &sample, event);
5410 ret = perf_output_begin(&handle, event, read_event.header.size);
5411 if (ret)
5412 return;
5413
5414 perf_output_put(&handle, read_event);
5415 perf_output_read(&handle, event);
5416 perf_event__output_id_sample(event, &handle, &sample);
5417
5418 perf_output_end(&handle);
5419 }
5420
5421 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5422
5423 static void
5424 perf_event_aux_ctx(struct perf_event_context *ctx,
5425 perf_event_aux_output_cb output,
5426 void *data)
5427 {
5428 struct perf_event *event;
5429
5430 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5431 if (event->state < PERF_EVENT_STATE_INACTIVE)
5432 continue;
5433 if (!event_filter_match(event))
5434 continue;
5435 output(event, data);
5436 }
5437 }
5438
5439 static void
5440 perf_event_aux(perf_event_aux_output_cb output, void *data,
5441 struct perf_event_context *task_ctx)
5442 {
5443 struct perf_cpu_context *cpuctx;
5444 struct perf_event_context *ctx;
5445 struct pmu *pmu;
5446 int ctxn;
5447
5448 rcu_read_lock();
5449 list_for_each_entry_rcu(pmu, &pmus, entry) {
5450 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5451 if (cpuctx->unique_pmu != pmu)
5452 goto next;
5453 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5454 if (task_ctx)
5455 goto next;
5456 ctxn = pmu->task_ctx_nr;
5457 if (ctxn < 0)
5458 goto next;
5459 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5460 if (ctx)
5461 perf_event_aux_ctx(ctx, output, data);
5462 next:
5463 put_cpu_ptr(pmu->pmu_cpu_context);
5464 }
5465
5466 if (task_ctx) {
5467 preempt_disable();
5468 perf_event_aux_ctx(task_ctx, output, data);
5469 preempt_enable();
5470 }
5471 rcu_read_unlock();
5472 }
5473
5474 /*
5475 * task tracking -- fork/exit
5476 *
5477 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5478 */
5479
5480 struct perf_task_event {
5481 struct task_struct *task;
5482 struct perf_event_context *task_ctx;
5483
5484 struct {
5485 struct perf_event_header header;
5486
5487 u32 pid;
5488 u32 ppid;
5489 u32 tid;
5490 u32 ptid;
5491 u64 time;
5492 } event_id;
5493 };
5494
5495 static int perf_event_task_match(struct perf_event *event)
5496 {
5497 return event->attr.comm || event->attr.mmap ||
5498 event->attr.mmap2 || event->attr.mmap_data ||
5499 event->attr.task;
5500 }
5501
5502 static void perf_event_task_output(struct perf_event *event,
5503 void *data)
5504 {
5505 struct perf_task_event *task_event = data;
5506 struct perf_output_handle handle;
5507 struct perf_sample_data sample;
5508 struct task_struct *task = task_event->task;
5509 int ret, size = task_event->event_id.header.size;
5510
5511 if (!perf_event_task_match(event))
5512 return;
5513
5514 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5515
5516 ret = perf_output_begin(&handle, event,
5517 task_event->event_id.header.size);
5518 if (ret)
5519 goto out;
5520
5521 task_event->event_id.pid = perf_event_pid(event, task);
5522 task_event->event_id.ppid = perf_event_pid(event, current);
5523
5524 task_event->event_id.tid = perf_event_tid(event, task);
5525 task_event->event_id.ptid = perf_event_tid(event, current);
5526
5527 task_event->event_id.time = perf_event_clock(event);
5528
5529 perf_output_put(&handle, task_event->event_id);
5530
5531 perf_event__output_id_sample(event, &handle, &sample);
5532
5533 perf_output_end(&handle);
5534 out:
5535 task_event->event_id.header.size = size;
5536 }
5537
5538 static void perf_event_task(struct task_struct *task,
5539 struct perf_event_context *task_ctx,
5540 int new)
5541 {
5542 struct perf_task_event task_event;
5543
5544 if (!atomic_read(&nr_comm_events) &&
5545 !atomic_read(&nr_mmap_events) &&
5546 !atomic_read(&nr_task_events))
5547 return;
5548
5549 task_event = (struct perf_task_event){
5550 .task = task,
5551 .task_ctx = task_ctx,
5552 .event_id = {
5553 .header = {
5554 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5555 .misc = 0,
5556 .size = sizeof(task_event.event_id),
5557 },
5558 /* .pid */
5559 /* .ppid */
5560 /* .tid */
5561 /* .ptid */
5562 /* .time */
5563 },
5564 };
5565
5566 perf_event_aux(perf_event_task_output,
5567 &task_event,
5568 task_ctx);
5569 }
5570
5571 void perf_event_fork(struct task_struct *task)
5572 {
5573 perf_event_task(task, NULL, 1);
5574 }
5575
5576 /*
5577 * comm tracking
5578 */
5579
5580 struct perf_comm_event {
5581 struct task_struct *task;
5582 char *comm;
5583 int comm_size;
5584
5585 struct {
5586 struct perf_event_header header;
5587
5588 u32 pid;
5589 u32 tid;
5590 } event_id;
5591 };
5592
5593 static int perf_event_comm_match(struct perf_event *event)
5594 {
5595 return event->attr.comm;
5596 }
5597
5598 static void perf_event_comm_output(struct perf_event *event,
5599 void *data)
5600 {
5601 struct perf_comm_event *comm_event = data;
5602 struct perf_output_handle handle;
5603 struct perf_sample_data sample;
5604 int size = comm_event->event_id.header.size;
5605 int ret;
5606
5607 if (!perf_event_comm_match(event))
5608 return;
5609
5610 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5611 ret = perf_output_begin(&handle, event,
5612 comm_event->event_id.header.size);
5613
5614 if (ret)
5615 goto out;
5616
5617 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5618 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5619
5620 perf_output_put(&handle, comm_event->event_id);
5621 __output_copy(&handle, comm_event->comm,
5622 comm_event->comm_size);
5623
5624 perf_event__output_id_sample(event, &handle, &sample);
5625
5626 perf_output_end(&handle);
5627 out:
5628 comm_event->event_id.header.size = size;
5629 }
5630
5631 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5632 {
5633 char comm[TASK_COMM_LEN];
5634 unsigned int size;
5635
5636 memset(comm, 0, sizeof(comm));
5637 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5638 size = ALIGN(strlen(comm)+1, sizeof(u64));
5639
5640 comm_event->comm = comm;
5641 comm_event->comm_size = size;
5642
5643 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5644
5645 perf_event_aux(perf_event_comm_output,
5646 comm_event,
5647 NULL);
5648 }
5649
5650 void perf_event_comm(struct task_struct *task, bool exec)
5651 {
5652 struct perf_comm_event comm_event;
5653
5654 if (!atomic_read(&nr_comm_events))
5655 return;
5656
5657 comm_event = (struct perf_comm_event){
5658 .task = task,
5659 /* .comm */
5660 /* .comm_size */
5661 .event_id = {
5662 .header = {
5663 .type = PERF_RECORD_COMM,
5664 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5665 /* .size */
5666 },
5667 /* .pid */
5668 /* .tid */
5669 },
5670 };
5671
5672 perf_event_comm_event(&comm_event);
5673 }
5674
5675 /*
5676 * mmap tracking
5677 */
5678
5679 struct perf_mmap_event {
5680 struct vm_area_struct *vma;
5681
5682 const char *file_name;
5683 int file_size;
5684 int maj, min;
5685 u64 ino;
5686 u64 ino_generation;
5687 u32 prot, flags;
5688
5689 struct {
5690 struct perf_event_header header;
5691
5692 u32 pid;
5693 u32 tid;
5694 u64 start;
5695 u64 len;
5696 u64 pgoff;
5697 } event_id;
5698 };
5699
5700 static int perf_event_mmap_match(struct perf_event *event,
5701 void *data)
5702 {
5703 struct perf_mmap_event *mmap_event = data;
5704 struct vm_area_struct *vma = mmap_event->vma;
5705 int executable = vma->vm_flags & VM_EXEC;
5706
5707 return (!executable && event->attr.mmap_data) ||
5708 (executable && (event->attr.mmap || event->attr.mmap2));
5709 }
5710
5711 static void perf_event_mmap_output(struct perf_event *event,
5712 void *data)
5713 {
5714 struct perf_mmap_event *mmap_event = data;
5715 struct perf_output_handle handle;
5716 struct perf_sample_data sample;
5717 int size = mmap_event->event_id.header.size;
5718 int ret;
5719
5720 if (!perf_event_mmap_match(event, data))
5721 return;
5722
5723 if (event->attr.mmap2) {
5724 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5725 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5726 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5727 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5728 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5729 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5730 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5731 }
5732
5733 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5734 ret = perf_output_begin(&handle, event,
5735 mmap_event->event_id.header.size);
5736 if (ret)
5737 goto out;
5738
5739 mmap_event->event_id.pid = perf_event_pid(event, current);
5740 mmap_event->event_id.tid = perf_event_tid(event, current);
5741
5742 perf_output_put(&handle, mmap_event->event_id);
5743
5744 if (event->attr.mmap2) {
5745 perf_output_put(&handle, mmap_event->maj);
5746 perf_output_put(&handle, mmap_event->min);
5747 perf_output_put(&handle, mmap_event->ino);
5748 perf_output_put(&handle, mmap_event->ino_generation);
5749 perf_output_put(&handle, mmap_event->prot);
5750 perf_output_put(&handle, mmap_event->flags);
5751 }
5752
5753 __output_copy(&handle, mmap_event->file_name,
5754 mmap_event->file_size);
5755
5756 perf_event__output_id_sample(event, &handle, &sample);
5757
5758 perf_output_end(&handle);
5759 out:
5760 mmap_event->event_id.header.size = size;
5761 }
5762
5763 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5764 {
5765 struct vm_area_struct *vma = mmap_event->vma;
5766 struct file *file = vma->vm_file;
5767 int maj = 0, min = 0;
5768 u64 ino = 0, gen = 0;
5769 u32 prot = 0, flags = 0;
5770 unsigned int size;
5771 char tmp[16];
5772 char *buf = NULL;
5773 char *name;
5774
5775 if (file) {
5776 struct inode *inode;
5777 dev_t dev;
5778
5779 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5780 if (!buf) {
5781 name = "//enomem";
5782 goto cpy_name;
5783 }
5784 /*
5785 * d_path() works from the end of the rb backwards, so we
5786 * need to add enough zero bytes after the string to handle
5787 * the 64bit alignment we do later.
5788 */
5789 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5790 if (IS_ERR(name)) {
5791 name = "//toolong";
5792 goto cpy_name;
5793 }
5794 inode = file_inode(vma->vm_file);
5795 dev = inode->i_sb->s_dev;
5796 ino = inode->i_ino;
5797 gen = inode->i_generation;
5798 maj = MAJOR(dev);
5799 min = MINOR(dev);
5800
5801 if (vma->vm_flags & VM_READ)
5802 prot |= PROT_READ;
5803 if (vma->vm_flags & VM_WRITE)
5804 prot |= PROT_WRITE;
5805 if (vma->vm_flags & VM_EXEC)
5806 prot |= PROT_EXEC;
5807
5808 if (vma->vm_flags & VM_MAYSHARE)
5809 flags = MAP_SHARED;
5810 else
5811 flags = MAP_PRIVATE;
5812
5813 if (vma->vm_flags & VM_DENYWRITE)
5814 flags |= MAP_DENYWRITE;
5815 if (vma->vm_flags & VM_MAYEXEC)
5816 flags |= MAP_EXECUTABLE;
5817 if (vma->vm_flags & VM_LOCKED)
5818 flags |= MAP_LOCKED;
5819 if (vma->vm_flags & VM_HUGETLB)
5820 flags |= MAP_HUGETLB;
5821
5822 goto got_name;
5823 } else {
5824 if (vma->vm_ops && vma->vm_ops->name) {
5825 name = (char *) vma->vm_ops->name(vma);
5826 if (name)
5827 goto cpy_name;
5828 }
5829
5830 name = (char *)arch_vma_name(vma);
5831 if (name)
5832 goto cpy_name;
5833
5834 if (vma->vm_start <= vma->vm_mm->start_brk &&
5835 vma->vm_end >= vma->vm_mm->brk) {
5836 name = "[heap]";
5837 goto cpy_name;
5838 }
5839 if (vma->vm_start <= vma->vm_mm->start_stack &&
5840 vma->vm_end >= vma->vm_mm->start_stack) {
5841 name = "[stack]";
5842 goto cpy_name;
5843 }
5844
5845 name = "//anon";
5846 goto cpy_name;
5847 }
5848
5849 cpy_name:
5850 strlcpy(tmp, name, sizeof(tmp));
5851 name = tmp;
5852 got_name:
5853 /*
5854 * Since our buffer works in 8 byte units we need to align our string
5855 * size to a multiple of 8. However, we must guarantee the tail end is
5856 * zero'd out to avoid leaking random bits to userspace.
5857 */
5858 size = strlen(name)+1;
5859 while (!IS_ALIGNED(size, sizeof(u64)))
5860 name[size++] = '\0';
5861
5862 mmap_event->file_name = name;
5863 mmap_event->file_size = size;
5864 mmap_event->maj = maj;
5865 mmap_event->min = min;
5866 mmap_event->ino = ino;
5867 mmap_event->ino_generation = gen;
5868 mmap_event->prot = prot;
5869 mmap_event->flags = flags;
5870
5871 if (!(vma->vm_flags & VM_EXEC))
5872 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5873
5874 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5875
5876 perf_event_aux(perf_event_mmap_output,
5877 mmap_event,
5878 NULL);
5879
5880 kfree(buf);
5881 }
5882
5883 void perf_event_mmap(struct vm_area_struct *vma)
5884 {
5885 struct perf_mmap_event mmap_event;
5886
5887 if (!atomic_read(&nr_mmap_events))
5888 return;
5889
5890 mmap_event = (struct perf_mmap_event){
5891 .vma = vma,
5892 /* .file_name */
5893 /* .file_size */
5894 .event_id = {
5895 .header = {
5896 .type = PERF_RECORD_MMAP,
5897 .misc = PERF_RECORD_MISC_USER,
5898 /* .size */
5899 },
5900 /* .pid */
5901 /* .tid */
5902 .start = vma->vm_start,
5903 .len = vma->vm_end - vma->vm_start,
5904 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5905 },
5906 /* .maj (attr_mmap2 only) */
5907 /* .min (attr_mmap2 only) */
5908 /* .ino (attr_mmap2 only) */
5909 /* .ino_generation (attr_mmap2 only) */
5910 /* .prot (attr_mmap2 only) */
5911 /* .flags (attr_mmap2 only) */
5912 };
5913
5914 perf_event_mmap_event(&mmap_event);
5915 }
5916
5917 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5918 unsigned long size, u64 flags)
5919 {
5920 struct perf_output_handle handle;
5921 struct perf_sample_data sample;
5922 struct perf_aux_event {
5923 struct perf_event_header header;
5924 u64 offset;
5925 u64 size;
5926 u64 flags;
5927 } rec = {
5928 .header = {
5929 .type = PERF_RECORD_AUX,
5930 .misc = 0,
5931 .size = sizeof(rec),
5932 },
5933 .offset = head,
5934 .size = size,
5935 .flags = flags,
5936 };
5937 int ret;
5938
5939 perf_event_header__init_id(&rec.header, &sample, event);
5940 ret = perf_output_begin(&handle, event, rec.header.size);
5941
5942 if (ret)
5943 return;
5944
5945 perf_output_put(&handle, rec);
5946 perf_event__output_id_sample(event, &handle, &sample);
5947
5948 perf_output_end(&handle);
5949 }
5950
5951 /*
5952 * Lost/dropped samples logging
5953 */
5954 void perf_log_lost_samples(struct perf_event *event, u64 lost)
5955 {
5956 struct perf_output_handle handle;
5957 struct perf_sample_data sample;
5958 int ret;
5959
5960 struct {
5961 struct perf_event_header header;
5962 u64 lost;
5963 } lost_samples_event = {
5964 .header = {
5965 .type = PERF_RECORD_LOST_SAMPLES,
5966 .misc = 0,
5967 .size = sizeof(lost_samples_event),
5968 },
5969 .lost = lost,
5970 };
5971
5972 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
5973
5974 ret = perf_output_begin(&handle, event,
5975 lost_samples_event.header.size);
5976 if (ret)
5977 return;
5978
5979 perf_output_put(&handle, lost_samples_event);
5980 perf_event__output_id_sample(event, &handle, &sample);
5981 perf_output_end(&handle);
5982 }
5983
5984 /*
5985 * IRQ throttle logging
5986 */
5987
5988 static void perf_log_throttle(struct perf_event *event, int enable)
5989 {
5990 struct perf_output_handle handle;
5991 struct perf_sample_data sample;
5992 int ret;
5993
5994 struct {
5995 struct perf_event_header header;
5996 u64 time;
5997 u64 id;
5998 u64 stream_id;
5999 } throttle_event = {
6000 .header = {
6001 .type = PERF_RECORD_THROTTLE,
6002 .misc = 0,
6003 .size = sizeof(throttle_event),
6004 },
6005 .time = perf_event_clock(event),
6006 .id = primary_event_id(event),
6007 .stream_id = event->id,
6008 };
6009
6010 if (enable)
6011 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6012
6013 perf_event_header__init_id(&throttle_event.header, &sample, event);
6014
6015 ret = perf_output_begin(&handle, event,
6016 throttle_event.header.size);
6017 if (ret)
6018 return;
6019
6020 perf_output_put(&handle, throttle_event);
6021 perf_event__output_id_sample(event, &handle, &sample);
6022 perf_output_end(&handle);
6023 }
6024
6025 static void perf_log_itrace_start(struct perf_event *event)
6026 {
6027 struct perf_output_handle handle;
6028 struct perf_sample_data sample;
6029 struct perf_aux_event {
6030 struct perf_event_header header;
6031 u32 pid;
6032 u32 tid;
6033 } rec;
6034 int ret;
6035
6036 if (event->parent)
6037 event = event->parent;
6038
6039 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6040 event->hw.itrace_started)
6041 return;
6042
6043 event->hw.itrace_started = 1;
6044
6045 rec.header.type = PERF_RECORD_ITRACE_START;
6046 rec.header.misc = 0;
6047 rec.header.size = sizeof(rec);
6048 rec.pid = perf_event_pid(event, current);
6049 rec.tid = perf_event_tid(event, current);
6050
6051 perf_event_header__init_id(&rec.header, &sample, event);
6052 ret = perf_output_begin(&handle, event, rec.header.size);
6053
6054 if (ret)
6055 return;
6056
6057 perf_output_put(&handle, rec);
6058 perf_event__output_id_sample(event, &handle, &sample);
6059
6060 perf_output_end(&handle);
6061 }
6062
6063 /*
6064 * Generic event overflow handling, sampling.
6065 */
6066
6067 static int __perf_event_overflow(struct perf_event *event,
6068 int throttle, struct perf_sample_data *data,
6069 struct pt_regs *regs)
6070 {
6071 int events = atomic_read(&event->event_limit);
6072 struct hw_perf_event *hwc = &event->hw;
6073 u64 seq;
6074 int ret = 0;
6075
6076 /*
6077 * Non-sampling counters might still use the PMI to fold short
6078 * hardware counters, ignore those.
6079 */
6080 if (unlikely(!is_sampling_event(event)))
6081 return 0;
6082
6083 seq = __this_cpu_read(perf_throttled_seq);
6084 if (seq != hwc->interrupts_seq) {
6085 hwc->interrupts_seq = seq;
6086 hwc->interrupts = 1;
6087 } else {
6088 hwc->interrupts++;
6089 if (unlikely(throttle
6090 && hwc->interrupts >= max_samples_per_tick)) {
6091 __this_cpu_inc(perf_throttled_count);
6092 hwc->interrupts = MAX_INTERRUPTS;
6093 perf_log_throttle(event, 0);
6094 tick_nohz_full_kick();
6095 ret = 1;
6096 }
6097 }
6098
6099 if (event->attr.freq) {
6100 u64 now = perf_clock();
6101 s64 delta = now - hwc->freq_time_stamp;
6102
6103 hwc->freq_time_stamp = now;
6104
6105 if (delta > 0 && delta < 2*TICK_NSEC)
6106 perf_adjust_period(event, delta, hwc->last_period, true);
6107 }
6108
6109 /*
6110 * XXX event_limit might not quite work as expected on inherited
6111 * events
6112 */
6113
6114 event->pending_kill = POLL_IN;
6115 if (events && atomic_dec_and_test(&event->event_limit)) {
6116 ret = 1;
6117 event->pending_kill = POLL_HUP;
6118 event->pending_disable = 1;
6119 irq_work_queue(&event->pending);
6120 }
6121
6122 if (event->overflow_handler)
6123 event->overflow_handler(event, data, regs);
6124 else
6125 perf_event_output(event, data, regs);
6126
6127 if (event->fasync && event->pending_kill) {
6128 event->pending_wakeup = 1;
6129 irq_work_queue(&event->pending);
6130 }
6131
6132 return ret;
6133 }
6134
6135 int perf_event_overflow(struct perf_event *event,
6136 struct perf_sample_data *data,
6137 struct pt_regs *regs)
6138 {
6139 return __perf_event_overflow(event, 1, data, regs);
6140 }
6141
6142 /*
6143 * Generic software event infrastructure
6144 */
6145
6146 struct swevent_htable {
6147 struct swevent_hlist *swevent_hlist;
6148 struct mutex hlist_mutex;
6149 int hlist_refcount;
6150
6151 /* Recursion avoidance in each contexts */
6152 int recursion[PERF_NR_CONTEXTS];
6153
6154 /* Keeps track of cpu being initialized/exited */
6155 bool online;
6156 };
6157
6158 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6159
6160 /*
6161 * We directly increment event->count and keep a second value in
6162 * event->hw.period_left to count intervals. This period event
6163 * is kept in the range [-sample_period, 0] so that we can use the
6164 * sign as trigger.
6165 */
6166
6167 u64 perf_swevent_set_period(struct perf_event *event)
6168 {
6169 struct hw_perf_event *hwc = &event->hw;
6170 u64 period = hwc->last_period;
6171 u64 nr, offset;
6172 s64 old, val;
6173
6174 hwc->last_period = hwc->sample_period;
6175
6176 again:
6177 old = val = local64_read(&hwc->period_left);
6178 if (val < 0)
6179 return 0;
6180
6181 nr = div64_u64(period + val, period);
6182 offset = nr * period;
6183 val -= offset;
6184 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6185 goto again;
6186
6187 return nr;
6188 }
6189
6190 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6191 struct perf_sample_data *data,
6192 struct pt_regs *regs)
6193 {
6194 struct hw_perf_event *hwc = &event->hw;
6195 int throttle = 0;
6196
6197 if (!overflow)
6198 overflow = perf_swevent_set_period(event);
6199
6200 if (hwc->interrupts == MAX_INTERRUPTS)
6201 return;
6202
6203 for (; overflow; overflow--) {
6204 if (__perf_event_overflow(event, throttle,
6205 data, regs)) {
6206 /*
6207 * We inhibit the overflow from happening when
6208 * hwc->interrupts == MAX_INTERRUPTS.
6209 */
6210 break;
6211 }
6212 throttle = 1;
6213 }
6214 }
6215
6216 static void perf_swevent_event(struct perf_event *event, u64 nr,
6217 struct perf_sample_data *data,
6218 struct pt_regs *regs)
6219 {
6220 struct hw_perf_event *hwc = &event->hw;
6221
6222 local64_add(nr, &event->count);
6223
6224 if (!regs)
6225 return;
6226
6227 if (!is_sampling_event(event))
6228 return;
6229
6230 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6231 data->period = nr;
6232 return perf_swevent_overflow(event, 1, data, regs);
6233 } else
6234 data->period = event->hw.last_period;
6235
6236 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6237 return perf_swevent_overflow(event, 1, data, regs);
6238
6239 if (local64_add_negative(nr, &hwc->period_left))
6240 return;
6241
6242 perf_swevent_overflow(event, 0, data, regs);
6243 }
6244
6245 static int perf_exclude_event(struct perf_event *event,
6246 struct pt_regs *regs)
6247 {
6248 if (event->hw.state & PERF_HES_STOPPED)
6249 return 1;
6250
6251 if (regs) {
6252 if (event->attr.exclude_user && user_mode(regs))
6253 return 1;
6254
6255 if (event->attr.exclude_kernel && !user_mode(regs))
6256 return 1;
6257 }
6258
6259 return 0;
6260 }
6261
6262 static int perf_swevent_match(struct perf_event *event,
6263 enum perf_type_id type,
6264 u32 event_id,
6265 struct perf_sample_data *data,
6266 struct pt_regs *regs)
6267 {
6268 if (event->attr.type != type)
6269 return 0;
6270
6271 if (event->attr.config != event_id)
6272 return 0;
6273
6274 if (perf_exclude_event(event, regs))
6275 return 0;
6276
6277 return 1;
6278 }
6279
6280 static inline u64 swevent_hash(u64 type, u32 event_id)
6281 {
6282 u64 val = event_id | (type << 32);
6283
6284 return hash_64(val, SWEVENT_HLIST_BITS);
6285 }
6286
6287 static inline struct hlist_head *
6288 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6289 {
6290 u64 hash = swevent_hash(type, event_id);
6291
6292 return &hlist->heads[hash];
6293 }
6294
6295 /* For the read side: events when they trigger */
6296 static inline struct hlist_head *
6297 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6298 {
6299 struct swevent_hlist *hlist;
6300
6301 hlist = rcu_dereference(swhash->swevent_hlist);
6302 if (!hlist)
6303 return NULL;
6304
6305 return __find_swevent_head(hlist, type, event_id);
6306 }
6307
6308 /* For the event head insertion and removal in the hlist */
6309 static inline struct hlist_head *
6310 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6311 {
6312 struct swevent_hlist *hlist;
6313 u32 event_id = event->attr.config;
6314 u64 type = event->attr.type;
6315
6316 /*
6317 * Event scheduling is always serialized against hlist allocation
6318 * and release. Which makes the protected version suitable here.
6319 * The context lock guarantees that.
6320 */
6321 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6322 lockdep_is_held(&event->ctx->lock));
6323 if (!hlist)
6324 return NULL;
6325
6326 return __find_swevent_head(hlist, type, event_id);
6327 }
6328
6329 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6330 u64 nr,
6331 struct perf_sample_data *data,
6332 struct pt_regs *regs)
6333 {
6334 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6335 struct perf_event *event;
6336 struct hlist_head *head;
6337
6338 rcu_read_lock();
6339 head = find_swevent_head_rcu(swhash, type, event_id);
6340 if (!head)
6341 goto end;
6342
6343 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6344 if (perf_swevent_match(event, type, event_id, data, regs))
6345 perf_swevent_event(event, nr, data, regs);
6346 }
6347 end:
6348 rcu_read_unlock();
6349 }
6350
6351 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6352
6353 int perf_swevent_get_recursion_context(void)
6354 {
6355 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6356
6357 return get_recursion_context(swhash->recursion);
6358 }
6359 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6360
6361 inline void perf_swevent_put_recursion_context(int rctx)
6362 {
6363 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6364
6365 put_recursion_context(swhash->recursion, rctx);
6366 }
6367
6368 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6369 {
6370 struct perf_sample_data data;
6371
6372 if (WARN_ON_ONCE(!regs))
6373 return;
6374
6375 perf_sample_data_init(&data, addr, 0);
6376 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6377 }
6378
6379 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6380 {
6381 int rctx;
6382
6383 preempt_disable_notrace();
6384 rctx = perf_swevent_get_recursion_context();
6385 if (unlikely(rctx < 0))
6386 goto fail;
6387
6388 ___perf_sw_event(event_id, nr, regs, addr);
6389
6390 perf_swevent_put_recursion_context(rctx);
6391 fail:
6392 preempt_enable_notrace();
6393 }
6394
6395 static void perf_swevent_read(struct perf_event *event)
6396 {
6397 }
6398
6399 static int perf_swevent_add(struct perf_event *event, int flags)
6400 {
6401 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6402 struct hw_perf_event *hwc = &event->hw;
6403 struct hlist_head *head;
6404
6405 if (is_sampling_event(event)) {
6406 hwc->last_period = hwc->sample_period;
6407 perf_swevent_set_period(event);
6408 }
6409
6410 hwc->state = !(flags & PERF_EF_START);
6411
6412 head = find_swevent_head(swhash, event);
6413 if (!head) {
6414 /*
6415 * We can race with cpu hotplug code. Do not
6416 * WARN if the cpu just got unplugged.
6417 */
6418 WARN_ON_ONCE(swhash->online);
6419 return -EINVAL;
6420 }
6421
6422 hlist_add_head_rcu(&event->hlist_entry, head);
6423 perf_event_update_userpage(event);
6424
6425 return 0;
6426 }
6427
6428 static void perf_swevent_del(struct perf_event *event, int flags)
6429 {
6430 hlist_del_rcu(&event->hlist_entry);
6431 }
6432
6433 static void perf_swevent_start(struct perf_event *event, int flags)
6434 {
6435 event->hw.state = 0;
6436 }
6437
6438 static void perf_swevent_stop(struct perf_event *event, int flags)
6439 {
6440 event->hw.state = PERF_HES_STOPPED;
6441 }
6442
6443 /* Deref the hlist from the update side */
6444 static inline struct swevent_hlist *
6445 swevent_hlist_deref(struct swevent_htable *swhash)
6446 {
6447 return rcu_dereference_protected(swhash->swevent_hlist,
6448 lockdep_is_held(&swhash->hlist_mutex));
6449 }
6450
6451 static void swevent_hlist_release(struct swevent_htable *swhash)
6452 {
6453 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6454
6455 if (!hlist)
6456 return;
6457
6458 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6459 kfree_rcu(hlist, rcu_head);
6460 }
6461
6462 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6463 {
6464 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6465
6466 mutex_lock(&swhash->hlist_mutex);
6467
6468 if (!--swhash->hlist_refcount)
6469 swevent_hlist_release(swhash);
6470
6471 mutex_unlock(&swhash->hlist_mutex);
6472 }
6473
6474 static void swevent_hlist_put(struct perf_event *event)
6475 {
6476 int cpu;
6477
6478 for_each_possible_cpu(cpu)
6479 swevent_hlist_put_cpu(event, cpu);
6480 }
6481
6482 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6483 {
6484 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6485 int err = 0;
6486
6487 mutex_lock(&swhash->hlist_mutex);
6488
6489 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6490 struct swevent_hlist *hlist;
6491
6492 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6493 if (!hlist) {
6494 err = -ENOMEM;
6495 goto exit;
6496 }
6497 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6498 }
6499 swhash->hlist_refcount++;
6500 exit:
6501 mutex_unlock(&swhash->hlist_mutex);
6502
6503 return err;
6504 }
6505
6506 static int swevent_hlist_get(struct perf_event *event)
6507 {
6508 int err;
6509 int cpu, failed_cpu;
6510
6511 get_online_cpus();
6512 for_each_possible_cpu(cpu) {
6513 err = swevent_hlist_get_cpu(event, cpu);
6514 if (err) {
6515 failed_cpu = cpu;
6516 goto fail;
6517 }
6518 }
6519 put_online_cpus();
6520
6521 return 0;
6522 fail:
6523 for_each_possible_cpu(cpu) {
6524 if (cpu == failed_cpu)
6525 break;
6526 swevent_hlist_put_cpu(event, cpu);
6527 }
6528
6529 put_online_cpus();
6530 return err;
6531 }
6532
6533 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6534
6535 static void sw_perf_event_destroy(struct perf_event *event)
6536 {
6537 u64 event_id = event->attr.config;
6538
6539 WARN_ON(event->parent);
6540
6541 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6542 swevent_hlist_put(event);
6543 }
6544
6545 static int perf_swevent_init(struct perf_event *event)
6546 {
6547 u64 event_id = event->attr.config;
6548
6549 if (event->attr.type != PERF_TYPE_SOFTWARE)
6550 return -ENOENT;
6551
6552 /*
6553 * no branch sampling for software events
6554 */
6555 if (has_branch_stack(event))
6556 return -EOPNOTSUPP;
6557
6558 switch (event_id) {
6559 case PERF_COUNT_SW_CPU_CLOCK:
6560 case PERF_COUNT_SW_TASK_CLOCK:
6561 return -ENOENT;
6562
6563 default:
6564 break;
6565 }
6566
6567 if (event_id >= PERF_COUNT_SW_MAX)
6568 return -ENOENT;
6569
6570 if (!event->parent) {
6571 int err;
6572
6573 err = swevent_hlist_get(event);
6574 if (err)
6575 return err;
6576
6577 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6578 event->destroy = sw_perf_event_destroy;
6579 }
6580
6581 return 0;
6582 }
6583
6584 static struct pmu perf_swevent = {
6585 .task_ctx_nr = perf_sw_context,
6586
6587 .capabilities = PERF_PMU_CAP_NO_NMI,
6588
6589 .event_init = perf_swevent_init,
6590 .add = perf_swevent_add,
6591 .del = perf_swevent_del,
6592 .start = perf_swevent_start,
6593 .stop = perf_swevent_stop,
6594 .read = perf_swevent_read,
6595 };
6596
6597 #ifdef CONFIG_EVENT_TRACING
6598
6599 static int perf_tp_filter_match(struct perf_event *event,
6600 struct perf_sample_data *data)
6601 {
6602 void *record = data->raw->data;
6603
6604 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6605 return 1;
6606 return 0;
6607 }
6608
6609 static int perf_tp_event_match(struct perf_event *event,
6610 struct perf_sample_data *data,
6611 struct pt_regs *regs)
6612 {
6613 if (event->hw.state & PERF_HES_STOPPED)
6614 return 0;
6615 /*
6616 * All tracepoints are from kernel-space.
6617 */
6618 if (event->attr.exclude_kernel)
6619 return 0;
6620
6621 if (!perf_tp_filter_match(event, data))
6622 return 0;
6623
6624 return 1;
6625 }
6626
6627 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6628 struct pt_regs *regs, struct hlist_head *head, int rctx,
6629 struct task_struct *task)
6630 {
6631 struct perf_sample_data data;
6632 struct perf_event *event;
6633
6634 struct perf_raw_record raw = {
6635 .size = entry_size,
6636 .data = record,
6637 };
6638
6639 perf_sample_data_init(&data, addr, 0);
6640 data.raw = &raw;
6641
6642 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6643 if (perf_tp_event_match(event, &data, regs))
6644 perf_swevent_event(event, count, &data, regs);
6645 }
6646
6647 /*
6648 * If we got specified a target task, also iterate its context and
6649 * deliver this event there too.
6650 */
6651 if (task && task != current) {
6652 struct perf_event_context *ctx;
6653 struct trace_entry *entry = record;
6654
6655 rcu_read_lock();
6656 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6657 if (!ctx)
6658 goto unlock;
6659
6660 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6661 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6662 continue;
6663 if (event->attr.config != entry->type)
6664 continue;
6665 if (perf_tp_event_match(event, &data, regs))
6666 perf_swevent_event(event, count, &data, regs);
6667 }
6668 unlock:
6669 rcu_read_unlock();
6670 }
6671
6672 perf_swevent_put_recursion_context(rctx);
6673 }
6674 EXPORT_SYMBOL_GPL(perf_tp_event);
6675
6676 static void tp_perf_event_destroy(struct perf_event *event)
6677 {
6678 perf_trace_destroy(event);
6679 }
6680
6681 static int perf_tp_event_init(struct perf_event *event)
6682 {
6683 int err;
6684
6685 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6686 return -ENOENT;
6687
6688 /*
6689 * no branch sampling for tracepoint events
6690 */
6691 if (has_branch_stack(event))
6692 return -EOPNOTSUPP;
6693
6694 err = perf_trace_init(event);
6695 if (err)
6696 return err;
6697
6698 event->destroy = tp_perf_event_destroy;
6699
6700 return 0;
6701 }
6702
6703 static struct pmu perf_tracepoint = {
6704 .task_ctx_nr = perf_sw_context,
6705
6706 .event_init = perf_tp_event_init,
6707 .add = perf_trace_add,
6708 .del = perf_trace_del,
6709 .start = perf_swevent_start,
6710 .stop = perf_swevent_stop,
6711 .read = perf_swevent_read,
6712 };
6713
6714 static inline void perf_tp_register(void)
6715 {
6716 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6717 }
6718
6719 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6720 {
6721 char *filter_str;
6722 int ret;
6723
6724 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6725 return -EINVAL;
6726
6727 filter_str = strndup_user(arg, PAGE_SIZE);
6728 if (IS_ERR(filter_str))
6729 return PTR_ERR(filter_str);
6730
6731 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6732
6733 kfree(filter_str);
6734 return ret;
6735 }
6736
6737 static void perf_event_free_filter(struct perf_event *event)
6738 {
6739 ftrace_profile_free_filter(event);
6740 }
6741
6742 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6743 {
6744 struct bpf_prog *prog;
6745
6746 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6747 return -EINVAL;
6748
6749 if (event->tp_event->prog)
6750 return -EEXIST;
6751
6752 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6753 /* bpf programs can only be attached to kprobes */
6754 return -EINVAL;
6755
6756 prog = bpf_prog_get(prog_fd);
6757 if (IS_ERR(prog))
6758 return PTR_ERR(prog);
6759
6760 if (prog->type != BPF_PROG_TYPE_KPROBE) {
6761 /* valid fd, but invalid bpf program type */
6762 bpf_prog_put(prog);
6763 return -EINVAL;
6764 }
6765
6766 event->tp_event->prog = prog;
6767
6768 return 0;
6769 }
6770
6771 static void perf_event_free_bpf_prog(struct perf_event *event)
6772 {
6773 struct bpf_prog *prog;
6774
6775 if (!event->tp_event)
6776 return;
6777
6778 prog = event->tp_event->prog;
6779 if (prog) {
6780 event->tp_event->prog = NULL;
6781 bpf_prog_put(prog);
6782 }
6783 }
6784
6785 #else
6786
6787 static inline void perf_tp_register(void)
6788 {
6789 }
6790
6791 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6792 {
6793 return -ENOENT;
6794 }
6795
6796 static void perf_event_free_filter(struct perf_event *event)
6797 {
6798 }
6799
6800 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6801 {
6802 return -ENOENT;
6803 }
6804
6805 static void perf_event_free_bpf_prog(struct perf_event *event)
6806 {
6807 }
6808 #endif /* CONFIG_EVENT_TRACING */
6809
6810 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6811 void perf_bp_event(struct perf_event *bp, void *data)
6812 {
6813 struct perf_sample_data sample;
6814 struct pt_regs *regs = data;
6815
6816 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6817
6818 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6819 perf_swevent_event(bp, 1, &sample, regs);
6820 }
6821 #endif
6822
6823 /*
6824 * hrtimer based swevent callback
6825 */
6826
6827 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6828 {
6829 enum hrtimer_restart ret = HRTIMER_RESTART;
6830 struct perf_sample_data data;
6831 struct pt_regs *regs;
6832 struct perf_event *event;
6833 u64 period;
6834
6835 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6836
6837 if (event->state != PERF_EVENT_STATE_ACTIVE)
6838 return HRTIMER_NORESTART;
6839
6840 event->pmu->read(event);
6841
6842 perf_sample_data_init(&data, 0, event->hw.last_period);
6843 regs = get_irq_regs();
6844
6845 if (regs && !perf_exclude_event(event, regs)) {
6846 if (!(event->attr.exclude_idle && is_idle_task(current)))
6847 if (__perf_event_overflow(event, 1, &data, regs))
6848 ret = HRTIMER_NORESTART;
6849 }
6850
6851 period = max_t(u64, 10000, event->hw.sample_period);
6852 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6853
6854 return ret;
6855 }
6856
6857 static void perf_swevent_start_hrtimer(struct perf_event *event)
6858 {
6859 struct hw_perf_event *hwc = &event->hw;
6860 s64 period;
6861
6862 if (!is_sampling_event(event))
6863 return;
6864
6865 period = local64_read(&hwc->period_left);
6866 if (period) {
6867 if (period < 0)
6868 period = 10000;
6869
6870 local64_set(&hwc->period_left, 0);
6871 } else {
6872 period = max_t(u64, 10000, hwc->sample_period);
6873 }
6874 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6875 HRTIMER_MODE_REL_PINNED);
6876 }
6877
6878 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6879 {
6880 struct hw_perf_event *hwc = &event->hw;
6881
6882 if (is_sampling_event(event)) {
6883 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6884 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6885
6886 hrtimer_cancel(&hwc->hrtimer);
6887 }
6888 }
6889
6890 static void perf_swevent_init_hrtimer(struct perf_event *event)
6891 {
6892 struct hw_perf_event *hwc = &event->hw;
6893
6894 if (!is_sampling_event(event))
6895 return;
6896
6897 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6898 hwc->hrtimer.function = perf_swevent_hrtimer;
6899
6900 /*
6901 * Since hrtimers have a fixed rate, we can do a static freq->period
6902 * mapping and avoid the whole period adjust feedback stuff.
6903 */
6904 if (event->attr.freq) {
6905 long freq = event->attr.sample_freq;
6906
6907 event->attr.sample_period = NSEC_PER_SEC / freq;
6908 hwc->sample_period = event->attr.sample_period;
6909 local64_set(&hwc->period_left, hwc->sample_period);
6910 hwc->last_period = hwc->sample_period;
6911 event->attr.freq = 0;
6912 }
6913 }
6914
6915 /*
6916 * Software event: cpu wall time clock
6917 */
6918
6919 static void cpu_clock_event_update(struct perf_event *event)
6920 {
6921 s64 prev;
6922 u64 now;
6923
6924 now = local_clock();
6925 prev = local64_xchg(&event->hw.prev_count, now);
6926 local64_add(now - prev, &event->count);
6927 }
6928
6929 static void cpu_clock_event_start(struct perf_event *event, int flags)
6930 {
6931 local64_set(&event->hw.prev_count, local_clock());
6932 perf_swevent_start_hrtimer(event);
6933 }
6934
6935 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6936 {
6937 perf_swevent_cancel_hrtimer(event);
6938 cpu_clock_event_update(event);
6939 }
6940
6941 static int cpu_clock_event_add(struct perf_event *event, int flags)
6942 {
6943 if (flags & PERF_EF_START)
6944 cpu_clock_event_start(event, flags);
6945 perf_event_update_userpage(event);
6946
6947 return 0;
6948 }
6949
6950 static void cpu_clock_event_del(struct perf_event *event, int flags)
6951 {
6952 cpu_clock_event_stop(event, flags);
6953 }
6954
6955 static void cpu_clock_event_read(struct perf_event *event)
6956 {
6957 cpu_clock_event_update(event);
6958 }
6959
6960 static int cpu_clock_event_init(struct perf_event *event)
6961 {
6962 if (event->attr.type != PERF_TYPE_SOFTWARE)
6963 return -ENOENT;
6964
6965 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6966 return -ENOENT;
6967
6968 /*
6969 * no branch sampling for software events
6970 */
6971 if (has_branch_stack(event))
6972 return -EOPNOTSUPP;
6973
6974 perf_swevent_init_hrtimer(event);
6975
6976 return 0;
6977 }
6978
6979 static struct pmu perf_cpu_clock = {
6980 .task_ctx_nr = perf_sw_context,
6981
6982 .capabilities = PERF_PMU_CAP_NO_NMI,
6983
6984 .event_init = cpu_clock_event_init,
6985 .add = cpu_clock_event_add,
6986 .del = cpu_clock_event_del,
6987 .start = cpu_clock_event_start,
6988 .stop = cpu_clock_event_stop,
6989 .read = cpu_clock_event_read,
6990 };
6991
6992 /*
6993 * Software event: task time clock
6994 */
6995
6996 static void task_clock_event_update(struct perf_event *event, u64 now)
6997 {
6998 u64 prev;
6999 s64 delta;
7000
7001 prev = local64_xchg(&event->hw.prev_count, now);
7002 delta = now - prev;
7003 local64_add(delta, &event->count);
7004 }
7005
7006 static void task_clock_event_start(struct perf_event *event, int flags)
7007 {
7008 local64_set(&event->hw.prev_count, event->ctx->time);
7009 perf_swevent_start_hrtimer(event);
7010 }
7011
7012 static void task_clock_event_stop(struct perf_event *event, int flags)
7013 {
7014 perf_swevent_cancel_hrtimer(event);
7015 task_clock_event_update(event, event->ctx->time);
7016 }
7017
7018 static int task_clock_event_add(struct perf_event *event, int flags)
7019 {
7020 if (flags & PERF_EF_START)
7021 task_clock_event_start(event, flags);
7022 perf_event_update_userpage(event);
7023
7024 return 0;
7025 }
7026
7027 static void task_clock_event_del(struct perf_event *event, int flags)
7028 {
7029 task_clock_event_stop(event, PERF_EF_UPDATE);
7030 }
7031
7032 static void task_clock_event_read(struct perf_event *event)
7033 {
7034 u64 now = perf_clock();
7035 u64 delta = now - event->ctx->timestamp;
7036 u64 time = event->ctx->time + delta;
7037
7038 task_clock_event_update(event, time);
7039 }
7040
7041 static int task_clock_event_init(struct perf_event *event)
7042 {
7043 if (event->attr.type != PERF_TYPE_SOFTWARE)
7044 return -ENOENT;
7045
7046 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7047 return -ENOENT;
7048
7049 /*
7050 * no branch sampling for software events
7051 */
7052 if (has_branch_stack(event))
7053 return -EOPNOTSUPP;
7054
7055 perf_swevent_init_hrtimer(event);
7056
7057 return 0;
7058 }
7059
7060 static struct pmu perf_task_clock = {
7061 .task_ctx_nr = perf_sw_context,
7062
7063 .capabilities = PERF_PMU_CAP_NO_NMI,
7064
7065 .event_init = task_clock_event_init,
7066 .add = task_clock_event_add,
7067 .del = task_clock_event_del,
7068 .start = task_clock_event_start,
7069 .stop = task_clock_event_stop,
7070 .read = task_clock_event_read,
7071 };
7072
7073 static void perf_pmu_nop_void(struct pmu *pmu)
7074 {
7075 }
7076
7077 static int perf_pmu_nop_int(struct pmu *pmu)
7078 {
7079 return 0;
7080 }
7081
7082 static void perf_pmu_start_txn(struct pmu *pmu)
7083 {
7084 perf_pmu_disable(pmu);
7085 }
7086
7087 static int perf_pmu_commit_txn(struct pmu *pmu)
7088 {
7089 perf_pmu_enable(pmu);
7090 return 0;
7091 }
7092
7093 static void perf_pmu_cancel_txn(struct pmu *pmu)
7094 {
7095 perf_pmu_enable(pmu);
7096 }
7097
7098 static int perf_event_idx_default(struct perf_event *event)
7099 {
7100 return 0;
7101 }
7102
7103 /*
7104 * Ensures all contexts with the same task_ctx_nr have the same
7105 * pmu_cpu_context too.
7106 */
7107 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7108 {
7109 struct pmu *pmu;
7110
7111 if (ctxn < 0)
7112 return NULL;
7113
7114 list_for_each_entry(pmu, &pmus, entry) {
7115 if (pmu->task_ctx_nr == ctxn)
7116 return pmu->pmu_cpu_context;
7117 }
7118
7119 return NULL;
7120 }
7121
7122 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7123 {
7124 int cpu;
7125
7126 for_each_possible_cpu(cpu) {
7127 struct perf_cpu_context *cpuctx;
7128
7129 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7130
7131 if (cpuctx->unique_pmu == old_pmu)
7132 cpuctx->unique_pmu = pmu;
7133 }
7134 }
7135
7136 static void free_pmu_context(struct pmu *pmu)
7137 {
7138 struct pmu *i;
7139
7140 mutex_lock(&pmus_lock);
7141 /*
7142 * Like a real lame refcount.
7143 */
7144 list_for_each_entry(i, &pmus, entry) {
7145 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7146 update_pmu_context(i, pmu);
7147 goto out;
7148 }
7149 }
7150
7151 free_percpu(pmu->pmu_cpu_context);
7152 out:
7153 mutex_unlock(&pmus_lock);
7154 }
7155 static struct idr pmu_idr;
7156
7157 static ssize_t
7158 type_show(struct device *dev, struct device_attribute *attr, char *page)
7159 {
7160 struct pmu *pmu = dev_get_drvdata(dev);
7161
7162 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7163 }
7164 static DEVICE_ATTR_RO(type);
7165
7166 static ssize_t
7167 perf_event_mux_interval_ms_show(struct device *dev,
7168 struct device_attribute *attr,
7169 char *page)
7170 {
7171 struct pmu *pmu = dev_get_drvdata(dev);
7172
7173 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7174 }
7175
7176 static DEFINE_MUTEX(mux_interval_mutex);
7177
7178 static ssize_t
7179 perf_event_mux_interval_ms_store(struct device *dev,
7180 struct device_attribute *attr,
7181 const char *buf, size_t count)
7182 {
7183 struct pmu *pmu = dev_get_drvdata(dev);
7184 int timer, cpu, ret;
7185
7186 ret = kstrtoint(buf, 0, &timer);
7187 if (ret)
7188 return ret;
7189
7190 if (timer < 1)
7191 return -EINVAL;
7192
7193 /* same value, noting to do */
7194 if (timer == pmu->hrtimer_interval_ms)
7195 return count;
7196
7197 mutex_lock(&mux_interval_mutex);
7198 pmu->hrtimer_interval_ms = timer;
7199
7200 /* update all cpuctx for this PMU */
7201 get_online_cpus();
7202 for_each_online_cpu(cpu) {
7203 struct perf_cpu_context *cpuctx;
7204 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7205 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7206
7207 cpu_function_call(cpu,
7208 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7209 }
7210 put_online_cpus();
7211 mutex_unlock(&mux_interval_mutex);
7212
7213 return count;
7214 }
7215 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7216
7217 static struct attribute *pmu_dev_attrs[] = {
7218 &dev_attr_type.attr,
7219 &dev_attr_perf_event_mux_interval_ms.attr,
7220 NULL,
7221 };
7222 ATTRIBUTE_GROUPS(pmu_dev);
7223
7224 static int pmu_bus_running;
7225 static struct bus_type pmu_bus = {
7226 .name = "event_source",
7227 .dev_groups = pmu_dev_groups,
7228 };
7229
7230 static void pmu_dev_release(struct device *dev)
7231 {
7232 kfree(dev);
7233 }
7234
7235 static int pmu_dev_alloc(struct pmu *pmu)
7236 {
7237 int ret = -ENOMEM;
7238
7239 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7240 if (!pmu->dev)
7241 goto out;
7242
7243 pmu->dev->groups = pmu->attr_groups;
7244 device_initialize(pmu->dev);
7245 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7246 if (ret)
7247 goto free_dev;
7248
7249 dev_set_drvdata(pmu->dev, pmu);
7250 pmu->dev->bus = &pmu_bus;
7251 pmu->dev->release = pmu_dev_release;
7252 ret = device_add(pmu->dev);
7253 if (ret)
7254 goto free_dev;
7255
7256 out:
7257 return ret;
7258
7259 free_dev:
7260 put_device(pmu->dev);
7261 goto out;
7262 }
7263
7264 static struct lock_class_key cpuctx_mutex;
7265 static struct lock_class_key cpuctx_lock;
7266
7267 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7268 {
7269 int cpu, ret;
7270
7271 mutex_lock(&pmus_lock);
7272 ret = -ENOMEM;
7273 pmu->pmu_disable_count = alloc_percpu(int);
7274 if (!pmu->pmu_disable_count)
7275 goto unlock;
7276
7277 pmu->type = -1;
7278 if (!name)
7279 goto skip_type;
7280 pmu->name = name;
7281
7282 if (type < 0) {
7283 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7284 if (type < 0) {
7285 ret = type;
7286 goto free_pdc;
7287 }
7288 }
7289 pmu->type = type;
7290
7291 if (pmu_bus_running) {
7292 ret = pmu_dev_alloc(pmu);
7293 if (ret)
7294 goto free_idr;
7295 }
7296
7297 skip_type:
7298 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7299 if (pmu->pmu_cpu_context)
7300 goto got_cpu_context;
7301
7302 ret = -ENOMEM;
7303 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7304 if (!pmu->pmu_cpu_context)
7305 goto free_dev;
7306
7307 for_each_possible_cpu(cpu) {
7308 struct perf_cpu_context *cpuctx;
7309
7310 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7311 __perf_event_init_context(&cpuctx->ctx);
7312 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7313 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7314 cpuctx->ctx.pmu = pmu;
7315
7316 __perf_mux_hrtimer_init(cpuctx, cpu);
7317
7318 cpuctx->unique_pmu = pmu;
7319 }
7320
7321 got_cpu_context:
7322 if (!pmu->start_txn) {
7323 if (pmu->pmu_enable) {
7324 /*
7325 * If we have pmu_enable/pmu_disable calls, install
7326 * transaction stubs that use that to try and batch
7327 * hardware accesses.
7328 */
7329 pmu->start_txn = perf_pmu_start_txn;
7330 pmu->commit_txn = perf_pmu_commit_txn;
7331 pmu->cancel_txn = perf_pmu_cancel_txn;
7332 } else {
7333 pmu->start_txn = perf_pmu_nop_void;
7334 pmu->commit_txn = perf_pmu_nop_int;
7335 pmu->cancel_txn = perf_pmu_nop_void;
7336 }
7337 }
7338
7339 if (!pmu->pmu_enable) {
7340 pmu->pmu_enable = perf_pmu_nop_void;
7341 pmu->pmu_disable = perf_pmu_nop_void;
7342 }
7343
7344 if (!pmu->event_idx)
7345 pmu->event_idx = perf_event_idx_default;
7346
7347 list_add_rcu(&pmu->entry, &pmus);
7348 atomic_set(&pmu->exclusive_cnt, 0);
7349 ret = 0;
7350 unlock:
7351 mutex_unlock(&pmus_lock);
7352
7353 return ret;
7354
7355 free_dev:
7356 device_del(pmu->dev);
7357 put_device(pmu->dev);
7358
7359 free_idr:
7360 if (pmu->type >= PERF_TYPE_MAX)
7361 idr_remove(&pmu_idr, pmu->type);
7362
7363 free_pdc:
7364 free_percpu(pmu->pmu_disable_count);
7365 goto unlock;
7366 }
7367 EXPORT_SYMBOL_GPL(perf_pmu_register);
7368
7369 void perf_pmu_unregister(struct pmu *pmu)
7370 {
7371 mutex_lock(&pmus_lock);
7372 list_del_rcu(&pmu->entry);
7373 mutex_unlock(&pmus_lock);
7374
7375 /*
7376 * We dereference the pmu list under both SRCU and regular RCU, so
7377 * synchronize against both of those.
7378 */
7379 synchronize_srcu(&pmus_srcu);
7380 synchronize_rcu();
7381
7382 free_percpu(pmu->pmu_disable_count);
7383 if (pmu->type >= PERF_TYPE_MAX)
7384 idr_remove(&pmu_idr, pmu->type);
7385 device_del(pmu->dev);
7386 put_device(pmu->dev);
7387 free_pmu_context(pmu);
7388 }
7389 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7390
7391 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7392 {
7393 struct perf_event_context *ctx = NULL;
7394 int ret;
7395
7396 if (!try_module_get(pmu->module))
7397 return -ENODEV;
7398
7399 if (event->group_leader != event) {
7400 /*
7401 * This ctx->mutex can nest when we're called through
7402 * inheritance. See the perf_event_ctx_lock_nested() comment.
7403 */
7404 ctx = perf_event_ctx_lock_nested(event->group_leader,
7405 SINGLE_DEPTH_NESTING);
7406 BUG_ON(!ctx);
7407 }
7408
7409 event->pmu = pmu;
7410 ret = pmu->event_init(event);
7411
7412 if (ctx)
7413 perf_event_ctx_unlock(event->group_leader, ctx);
7414
7415 if (ret)
7416 module_put(pmu->module);
7417
7418 return ret;
7419 }
7420
7421 struct pmu *perf_init_event(struct perf_event *event)
7422 {
7423 struct pmu *pmu = NULL;
7424 int idx;
7425 int ret;
7426
7427 idx = srcu_read_lock(&pmus_srcu);
7428
7429 rcu_read_lock();
7430 pmu = idr_find(&pmu_idr, event->attr.type);
7431 rcu_read_unlock();
7432 if (pmu) {
7433 ret = perf_try_init_event(pmu, event);
7434 if (ret)
7435 pmu = ERR_PTR(ret);
7436 goto unlock;
7437 }
7438
7439 list_for_each_entry_rcu(pmu, &pmus, entry) {
7440 ret = perf_try_init_event(pmu, event);
7441 if (!ret)
7442 goto unlock;
7443
7444 if (ret != -ENOENT) {
7445 pmu = ERR_PTR(ret);
7446 goto unlock;
7447 }
7448 }
7449 pmu = ERR_PTR(-ENOENT);
7450 unlock:
7451 srcu_read_unlock(&pmus_srcu, idx);
7452
7453 return pmu;
7454 }
7455
7456 static void account_event_cpu(struct perf_event *event, int cpu)
7457 {
7458 if (event->parent)
7459 return;
7460
7461 if (is_cgroup_event(event))
7462 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7463 }
7464
7465 static void account_event(struct perf_event *event)
7466 {
7467 if (event->parent)
7468 return;
7469
7470 if (event->attach_state & PERF_ATTACH_TASK)
7471 static_key_slow_inc(&perf_sched_events.key);
7472 if (event->attr.mmap || event->attr.mmap_data)
7473 atomic_inc(&nr_mmap_events);
7474 if (event->attr.comm)
7475 atomic_inc(&nr_comm_events);
7476 if (event->attr.task)
7477 atomic_inc(&nr_task_events);
7478 if (event->attr.freq) {
7479 if (atomic_inc_return(&nr_freq_events) == 1)
7480 tick_nohz_full_kick_all();
7481 }
7482 if (has_branch_stack(event))
7483 static_key_slow_inc(&perf_sched_events.key);
7484 if (is_cgroup_event(event))
7485 static_key_slow_inc(&perf_sched_events.key);
7486
7487 account_event_cpu(event, event->cpu);
7488 }
7489
7490 /*
7491 * Allocate and initialize a event structure
7492 */
7493 static struct perf_event *
7494 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7495 struct task_struct *task,
7496 struct perf_event *group_leader,
7497 struct perf_event *parent_event,
7498 perf_overflow_handler_t overflow_handler,
7499 void *context, int cgroup_fd)
7500 {
7501 struct pmu *pmu;
7502 struct perf_event *event;
7503 struct hw_perf_event *hwc;
7504 long err = -EINVAL;
7505
7506 if ((unsigned)cpu >= nr_cpu_ids) {
7507 if (!task || cpu != -1)
7508 return ERR_PTR(-EINVAL);
7509 }
7510
7511 event = kzalloc(sizeof(*event), GFP_KERNEL);
7512 if (!event)
7513 return ERR_PTR(-ENOMEM);
7514
7515 /*
7516 * Single events are their own group leaders, with an
7517 * empty sibling list:
7518 */
7519 if (!group_leader)
7520 group_leader = event;
7521
7522 mutex_init(&event->child_mutex);
7523 INIT_LIST_HEAD(&event->child_list);
7524
7525 INIT_LIST_HEAD(&event->group_entry);
7526 INIT_LIST_HEAD(&event->event_entry);
7527 INIT_LIST_HEAD(&event->sibling_list);
7528 INIT_LIST_HEAD(&event->rb_entry);
7529 INIT_LIST_HEAD(&event->active_entry);
7530 INIT_HLIST_NODE(&event->hlist_entry);
7531
7532
7533 init_waitqueue_head(&event->waitq);
7534 init_irq_work(&event->pending, perf_pending_event);
7535
7536 mutex_init(&event->mmap_mutex);
7537
7538 atomic_long_set(&event->refcount, 1);
7539 event->cpu = cpu;
7540 event->attr = *attr;
7541 event->group_leader = group_leader;
7542 event->pmu = NULL;
7543 event->oncpu = -1;
7544
7545 event->parent = parent_event;
7546
7547 event->ns = get_pid_ns(task_active_pid_ns(current));
7548 event->id = atomic64_inc_return(&perf_event_id);
7549
7550 event->state = PERF_EVENT_STATE_INACTIVE;
7551
7552 if (task) {
7553 event->attach_state = PERF_ATTACH_TASK;
7554 /*
7555 * XXX pmu::event_init needs to know what task to account to
7556 * and we cannot use the ctx information because we need the
7557 * pmu before we get a ctx.
7558 */
7559 event->hw.target = task;
7560 }
7561
7562 event->clock = &local_clock;
7563 if (parent_event)
7564 event->clock = parent_event->clock;
7565
7566 if (!overflow_handler && parent_event) {
7567 overflow_handler = parent_event->overflow_handler;
7568 context = parent_event->overflow_handler_context;
7569 }
7570
7571 event->overflow_handler = overflow_handler;
7572 event->overflow_handler_context = context;
7573
7574 perf_event__state_init(event);
7575
7576 pmu = NULL;
7577
7578 hwc = &event->hw;
7579 hwc->sample_period = attr->sample_period;
7580 if (attr->freq && attr->sample_freq)
7581 hwc->sample_period = 1;
7582 hwc->last_period = hwc->sample_period;
7583
7584 local64_set(&hwc->period_left, hwc->sample_period);
7585
7586 /*
7587 * we currently do not support PERF_FORMAT_GROUP on inherited events
7588 */
7589 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7590 goto err_ns;
7591
7592 if (!has_branch_stack(event))
7593 event->attr.branch_sample_type = 0;
7594
7595 if (cgroup_fd != -1) {
7596 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7597 if (err)
7598 goto err_ns;
7599 }
7600
7601 pmu = perf_init_event(event);
7602 if (!pmu)
7603 goto err_ns;
7604 else if (IS_ERR(pmu)) {
7605 err = PTR_ERR(pmu);
7606 goto err_ns;
7607 }
7608
7609 err = exclusive_event_init(event);
7610 if (err)
7611 goto err_pmu;
7612
7613 if (!event->parent) {
7614 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7615 err = get_callchain_buffers();
7616 if (err)
7617 goto err_per_task;
7618 }
7619 }
7620
7621 return event;
7622
7623 err_per_task:
7624 exclusive_event_destroy(event);
7625
7626 err_pmu:
7627 if (event->destroy)
7628 event->destroy(event);
7629 module_put(pmu->module);
7630 err_ns:
7631 if (is_cgroup_event(event))
7632 perf_detach_cgroup(event);
7633 if (event->ns)
7634 put_pid_ns(event->ns);
7635 kfree(event);
7636
7637 return ERR_PTR(err);
7638 }
7639
7640 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7641 struct perf_event_attr *attr)
7642 {
7643 u32 size;
7644 int ret;
7645
7646 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7647 return -EFAULT;
7648
7649 /*
7650 * zero the full structure, so that a short copy will be nice.
7651 */
7652 memset(attr, 0, sizeof(*attr));
7653
7654 ret = get_user(size, &uattr->size);
7655 if (ret)
7656 return ret;
7657
7658 if (size > PAGE_SIZE) /* silly large */
7659 goto err_size;
7660
7661 if (!size) /* abi compat */
7662 size = PERF_ATTR_SIZE_VER0;
7663
7664 if (size < PERF_ATTR_SIZE_VER0)
7665 goto err_size;
7666
7667 /*
7668 * If we're handed a bigger struct than we know of,
7669 * ensure all the unknown bits are 0 - i.e. new
7670 * user-space does not rely on any kernel feature
7671 * extensions we dont know about yet.
7672 */
7673 if (size > sizeof(*attr)) {
7674 unsigned char __user *addr;
7675 unsigned char __user *end;
7676 unsigned char val;
7677
7678 addr = (void __user *)uattr + sizeof(*attr);
7679 end = (void __user *)uattr + size;
7680
7681 for (; addr < end; addr++) {
7682 ret = get_user(val, addr);
7683 if (ret)
7684 return ret;
7685 if (val)
7686 goto err_size;
7687 }
7688 size = sizeof(*attr);
7689 }
7690
7691 ret = copy_from_user(attr, uattr, size);
7692 if (ret)
7693 return -EFAULT;
7694
7695 if (attr->__reserved_1)
7696 return -EINVAL;
7697
7698 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7699 return -EINVAL;
7700
7701 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7702 return -EINVAL;
7703
7704 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7705 u64 mask = attr->branch_sample_type;
7706
7707 /* only using defined bits */
7708 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7709 return -EINVAL;
7710
7711 /* at least one branch bit must be set */
7712 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7713 return -EINVAL;
7714
7715 /* propagate priv level, when not set for branch */
7716 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7717
7718 /* exclude_kernel checked on syscall entry */
7719 if (!attr->exclude_kernel)
7720 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7721
7722 if (!attr->exclude_user)
7723 mask |= PERF_SAMPLE_BRANCH_USER;
7724
7725 if (!attr->exclude_hv)
7726 mask |= PERF_SAMPLE_BRANCH_HV;
7727 /*
7728 * adjust user setting (for HW filter setup)
7729 */
7730 attr->branch_sample_type = mask;
7731 }
7732 /* privileged levels capture (kernel, hv): check permissions */
7733 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7734 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7735 return -EACCES;
7736 }
7737
7738 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7739 ret = perf_reg_validate(attr->sample_regs_user);
7740 if (ret)
7741 return ret;
7742 }
7743
7744 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7745 if (!arch_perf_have_user_stack_dump())
7746 return -ENOSYS;
7747
7748 /*
7749 * We have __u32 type for the size, but so far
7750 * we can only use __u16 as maximum due to the
7751 * __u16 sample size limit.
7752 */
7753 if (attr->sample_stack_user >= USHRT_MAX)
7754 ret = -EINVAL;
7755 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7756 ret = -EINVAL;
7757 }
7758
7759 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7760 ret = perf_reg_validate(attr->sample_regs_intr);
7761 out:
7762 return ret;
7763
7764 err_size:
7765 put_user(sizeof(*attr), &uattr->size);
7766 ret = -E2BIG;
7767 goto out;
7768 }
7769
7770 static int
7771 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7772 {
7773 struct ring_buffer *rb = NULL;
7774 int ret = -EINVAL;
7775
7776 if (!output_event)
7777 goto set;
7778
7779 /* don't allow circular references */
7780 if (event == output_event)
7781 goto out;
7782
7783 /*
7784 * Don't allow cross-cpu buffers
7785 */
7786 if (output_event->cpu != event->cpu)
7787 goto out;
7788
7789 /*
7790 * If its not a per-cpu rb, it must be the same task.
7791 */
7792 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7793 goto out;
7794
7795 /*
7796 * Mixing clocks in the same buffer is trouble you don't need.
7797 */
7798 if (output_event->clock != event->clock)
7799 goto out;
7800
7801 /*
7802 * If both events generate aux data, they must be on the same PMU
7803 */
7804 if (has_aux(event) && has_aux(output_event) &&
7805 event->pmu != output_event->pmu)
7806 goto out;
7807
7808 set:
7809 mutex_lock(&event->mmap_mutex);
7810 /* Can't redirect output if we've got an active mmap() */
7811 if (atomic_read(&event->mmap_count))
7812 goto unlock;
7813
7814 if (output_event) {
7815 /* get the rb we want to redirect to */
7816 rb = ring_buffer_get(output_event);
7817 if (!rb)
7818 goto unlock;
7819 }
7820
7821 ring_buffer_attach(event, rb);
7822
7823 ret = 0;
7824 unlock:
7825 mutex_unlock(&event->mmap_mutex);
7826
7827 out:
7828 return ret;
7829 }
7830
7831 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7832 {
7833 if (b < a)
7834 swap(a, b);
7835
7836 mutex_lock(a);
7837 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7838 }
7839
7840 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7841 {
7842 bool nmi_safe = false;
7843
7844 switch (clk_id) {
7845 case CLOCK_MONOTONIC:
7846 event->clock = &ktime_get_mono_fast_ns;
7847 nmi_safe = true;
7848 break;
7849
7850 case CLOCK_MONOTONIC_RAW:
7851 event->clock = &ktime_get_raw_fast_ns;
7852 nmi_safe = true;
7853 break;
7854
7855 case CLOCK_REALTIME:
7856 event->clock = &ktime_get_real_ns;
7857 break;
7858
7859 case CLOCK_BOOTTIME:
7860 event->clock = &ktime_get_boot_ns;
7861 break;
7862
7863 case CLOCK_TAI:
7864 event->clock = &ktime_get_tai_ns;
7865 break;
7866
7867 default:
7868 return -EINVAL;
7869 }
7870
7871 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7872 return -EINVAL;
7873
7874 return 0;
7875 }
7876
7877 /**
7878 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7879 *
7880 * @attr_uptr: event_id type attributes for monitoring/sampling
7881 * @pid: target pid
7882 * @cpu: target cpu
7883 * @group_fd: group leader event fd
7884 */
7885 SYSCALL_DEFINE5(perf_event_open,
7886 struct perf_event_attr __user *, attr_uptr,
7887 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7888 {
7889 struct perf_event *group_leader = NULL, *output_event = NULL;
7890 struct perf_event *event, *sibling;
7891 struct perf_event_attr attr;
7892 struct perf_event_context *ctx, *uninitialized_var(gctx);
7893 struct file *event_file = NULL;
7894 struct fd group = {NULL, 0};
7895 struct task_struct *task = NULL;
7896 struct pmu *pmu;
7897 int event_fd;
7898 int move_group = 0;
7899 int err;
7900 int f_flags = O_RDWR;
7901 int cgroup_fd = -1;
7902
7903 /* for future expandability... */
7904 if (flags & ~PERF_FLAG_ALL)
7905 return -EINVAL;
7906
7907 err = perf_copy_attr(attr_uptr, &attr);
7908 if (err)
7909 return err;
7910
7911 if (!attr.exclude_kernel) {
7912 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7913 return -EACCES;
7914 }
7915
7916 if (attr.freq) {
7917 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7918 return -EINVAL;
7919 } else {
7920 if (attr.sample_period & (1ULL << 63))
7921 return -EINVAL;
7922 }
7923
7924 /*
7925 * In cgroup mode, the pid argument is used to pass the fd
7926 * opened to the cgroup directory in cgroupfs. The cpu argument
7927 * designates the cpu on which to monitor threads from that
7928 * cgroup.
7929 */
7930 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7931 return -EINVAL;
7932
7933 if (flags & PERF_FLAG_FD_CLOEXEC)
7934 f_flags |= O_CLOEXEC;
7935
7936 event_fd = get_unused_fd_flags(f_flags);
7937 if (event_fd < 0)
7938 return event_fd;
7939
7940 if (group_fd != -1) {
7941 err = perf_fget_light(group_fd, &group);
7942 if (err)
7943 goto err_fd;
7944 group_leader = group.file->private_data;
7945 if (flags & PERF_FLAG_FD_OUTPUT)
7946 output_event = group_leader;
7947 if (flags & PERF_FLAG_FD_NO_GROUP)
7948 group_leader = NULL;
7949 }
7950
7951 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7952 task = find_lively_task_by_vpid(pid);
7953 if (IS_ERR(task)) {
7954 err = PTR_ERR(task);
7955 goto err_group_fd;
7956 }
7957 }
7958
7959 if (task && group_leader &&
7960 group_leader->attr.inherit != attr.inherit) {
7961 err = -EINVAL;
7962 goto err_task;
7963 }
7964
7965 get_online_cpus();
7966
7967 if (flags & PERF_FLAG_PID_CGROUP)
7968 cgroup_fd = pid;
7969
7970 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7971 NULL, NULL, cgroup_fd);
7972 if (IS_ERR(event)) {
7973 err = PTR_ERR(event);
7974 goto err_cpus;
7975 }
7976
7977 if (is_sampling_event(event)) {
7978 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7979 err = -ENOTSUPP;
7980 goto err_alloc;
7981 }
7982 }
7983
7984 account_event(event);
7985
7986 /*
7987 * Special case software events and allow them to be part of
7988 * any hardware group.
7989 */
7990 pmu = event->pmu;
7991
7992 if (attr.use_clockid) {
7993 err = perf_event_set_clock(event, attr.clockid);
7994 if (err)
7995 goto err_alloc;
7996 }
7997
7998 if (group_leader &&
7999 (is_software_event(event) != is_software_event(group_leader))) {
8000 if (is_software_event(event)) {
8001 /*
8002 * If event and group_leader are not both a software
8003 * event, and event is, then group leader is not.
8004 *
8005 * Allow the addition of software events to !software
8006 * groups, this is safe because software events never
8007 * fail to schedule.
8008 */
8009 pmu = group_leader->pmu;
8010 } else if (is_software_event(group_leader) &&
8011 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8012 /*
8013 * In case the group is a pure software group, and we
8014 * try to add a hardware event, move the whole group to
8015 * the hardware context.
8016 */
8017 move_group = 1;
8018 }
8019 }
8020
8021 /*
8022 * Get the target context (task or percpu):
8023 */
8024 ctx = find_get_context(pmu, task, event);
8025 if (IS_ERR(ctx)) {
8026 err = PTR_ERR(ctx);
8027 goto err_alloc;
8028 }
8029
8030 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8031 err = -EBUSY;
8032 goto err_context;
8033 }
8034
8035 if (task) {
8036 put_task_struct(task);
8037 task = NULL;
8038 }
8039
8040 /*
8041 * Look up the group leader (we will attach this event to it):
8042 */
8043 if (group_leader) {
8044 err = -EINVAL;
8045
8046 /*
8047 * Do not allow a recursive hierarchy (this new sibling
8048 * becoming part of another group-sibling):
8049 */
8050 if (group_leader->group_leader != group_leader)
8051 goto err_context;
8052
8053 /* All events in a group should have the same clock */
8054 if (group_leader->clock != event->clock)
8055 goto err_context;
8056
8057 /*
8058 * Do not allow to attach to a group in a different
8059 * task or CPU context:
8060 */
8061 if (move_group) {
8062 /*
8063 * Make sure we're both on the same task, or both
8064 * per-cpu events.
8065 */
8066 if (group_leader->ctx->task != ctx->task)
8067 goto err_context;
8068
8069 /*
8070 * Make sure we're both events for the same CPU;
8071 * grouping events for different CPUs is broken; since
8072 * you can never concurrently schedule them anyhow.
8073 */
8074 if (group_leader->cpu != event->cpu)
8075 goto err_context;
8076 } else {
8077 if (group_leader->ctx != ctx)
8078 goto err_context;
8079 }
8080
8081 /*
8082 * Only a group leader can be exclusive or pinned
8083 */
8084 if (attr.exclusive || attr.pinned)
8085 goto err_context;
8086 }
8087
8088 if (output_event) {
8089 err = perf_event_set_output(event, output_event);
8090 if (err)
8091 goto err_context;
8092 }
8093
8094 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8095 f_flags);
8096 if (IS_ERR(event_file)) {
8097 err = PTR_ERR(event_file);
8098 goto err_context;
8099 }
8100
8101 if (move_group) {
8102 gctx = group_leader->ctx;
8103
8104 /*
8105 * See perf_event_ctx_lock() for comments on the details
8106 * of swizzling perf_event::ctx.
8107 */
8108 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8109
8110 perf_remove_from_context(group_leader, false);
8111
8112 list_for_each_entry(sibling, &group_leader->sibling_list,
8113 group_entry) {
8114 perf_remove_from_context(sibling, false);
8115 put_ctx(gctx);
8116 }
8117 } else {
8118 mutex_lock(&ctx->mutex);
8119 }
8120
8121 WARN_ON_ONCE(ctx->parent_ctx);
8122
8123 if (move_group) {
8124 /*
8125 * Wait for everybody to stop referencing the events through
8126 * the old lists, before installing it on new lists.
8127 */
8128 synchronize_rcu();
8129
8130 /*
8131 * Install the group siblings before the group leader.
8132 *
8133 * Because a group leader will try and install the entire group
8134 * (through the sibling list, which is still in-tact), we can
8135 * end up with siblings installed in the wrong context.
8136 *
8137 * By installing siblings first we NO-OP because they're not
8138 * reachable through the group lists.
8139 */
8140 list_for_each_entry(sibling, &group_leader->sibling_list,
8141 group_entry) {
8142 perf_event__state_init(sibling);
8143 perf_install_in_context(ctx, sibling, sibling->cpu);
8144 get_ctx(ctx);
8145 }
8146
8147 /*
8148 * Removing from the context ends up with disabled
8149 * event. What we want here is event in the initial
8150 * startup state, ready to be add into new context.
8151 */
8152 perf_event__state_init(group_leader);
8153 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8154 get_ctx(ctx);
8155 }
8156
8157 if (!exclusive_event_installable(event, ctx)) {
8158 err = -EBUSY;
8159 mutex_unlock(&ctx->mutex);
8160 fput(event_file);
8161 goto err_context;
8162 }
8163
8164 perf_install_in_context(ctx, event, event->cpu);
8165 perf_unpin_context(ctx);
8166
8167 if (move_group) {
8168 mutex_unlock(&gctx->mutex);
8169 put_ctx(gctx);
8170 }
8171 mutex_unlock(&ctx->mutex);
8172
8173 put_online_cpus();
8174
8175 event->owner = current;
8176
8177 mutex_lock(&current->perf_event_mutex);
8178 list_add_tail(&event->owner_entry, &current->perf_event_list);
8179 mutex_unlock(&current->perf_event_mutex);
8180
8181 /*
8182 * Precalculate sample_data sizes
8183 */
8184 perf_event__header_size(event);
8185 perf_event__id_header_size(event);
8186
8187 /*
8188 * Drop the reference on the group_event after placing the
8189 * new event on the sibling_list. This ensures destruction
8190 * of the group leader will find the pointer to itself in
8191 * perf_group_detach().
8192 */
8193 fdput(group);
8194 fd_install(event_fd, event_file);
8195 return event_fd;
8196
8197 err_context:
8198 perf_unpin_context(ctx);
8199 put_ctx(ctx);
8200 err_alloc:
8201 free_event(event);
8202 err_cpus:
8203 put_online_cpus();
8204 err_task:
8205 if (task)
8206 put_task_struct(task);
8207 err_group_fd:
8208 fdput(group);
8209 err_fd:
8210 put_unused_fd(event_fd);
8211 return err;
8212 }
8213
8214 /**
8215 * perf_event_create_kernel_counter
8216 *
8217 * @attr: attributes of the counter to create
8218 * @cpu: cpu in which the counter is bound
8219 * @task: task to profile (NULL for percpu)
8220 */
8221 struct perf_event *
8222 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8223 struct task_struct *task,
8224 perf_overflow_handler_t overflow_handler,
8225 void *context)
8226 {
8227 struct perf_event_context *ctx;
8228 struct perf_event *event;
8229 int err;
8230
8231 /*
8232 * Get the target context (task or percpu):
8233 */
8234
8235 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8236 overflow_handler, context, -1);
8237 if (IS_ERR(event)) {
8238 err = PTR_ERR(event);
8239 goto err;
8240 }
8241
8242 /* Mark owner so we could distinguish it from user events. */
8243 event->owner = EVENT_OWNER_KERNEL;
8244
8245 account_event(event);
8246
8247 ctx = find_get_context(event->pmu, task, event);
8248 if (IS_ERR(ctx)) {
8249 err = PTR_ERR(ctx);
8250 goto err_free;
8251 }
8252
8253 WARN_ON_ONCE(ctx->parent_ctx);
8254 mutex_lock(&ctx->mutex);
8255 if (!exclusive_event_installable(event, ctx)) {
8256 mutex_unlock(&ctx->mutex);
8257 perf_unpin_context(ctx);
8258 put_ctx(ctx);
8259 err = -EBUSY;
8260 goto err_free;
8261 }
8262
8263 perf_install_in_context(ctx, event, cpu);
8264 perf_unpin_context(ctx);
8265 mutex_unlock(&ctx->mutex);
8266
8267 return event;
8268
8269 err_free:
8270 free_event(event);
8271 err:
8272 return ERR_PTR(err);
8273 }
8274 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8275
8276 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8277 {
8278 struct perf_event_context *src_ctx;
8279 struct perf_event_context *dst_ctx;
8280 struct perf_event *event, *tmp;
8281 LIST_HEAD(events);
8282
8283 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8284 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8285
8286 /*
8287 * See perf_event_ctx_lock() for comments on the details
8288 * of swizzling perf_event::ctx.
8289 */
8290 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8291 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8292 event_entry) {
8293 perf_remove_from_context(event, false);
8294 unaccount_event_cpu(event, src_cpu);
8295 put_ctx(src_ctx);
8296 list_add(&event->migrate_entry, &events);
8297 }
8298
8299 /*
8300 * Wait for the events to quiesce before re-instating them.
8301 */
8302 synchronize_rcu();
8303
8304 /*
8305 * Re-instate events in 2 passes.
8306 *
8307 * Skip over group leaders and only install siblings on this first
8308 * pass, siblings will not get enabled without a leader, however a
8309 * leader will enable its siblings, even if those are still on the old
8310 * context.
8311 */
8312 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8313 if (event->group_leader == event)
8314 continue;
8315
8316 list_del(&event->migrate_entry);
8317 if (event->state >= PERF_EVENT_STATE_OFF)
8318 event->state = PERF_EVENT_STATE_INACTIVE;
8319 account_event_cpu(event, dst_cpu);
8320 perf_install_in_context(dst_ctx, event, dst_cpu);
8321 get_ctx(dst_ctx);
8322 }
8323
8324 /*
8325 * Once all the siblings are setup properly, install the group leaders
8326 * to make it go.
8327 */
8328 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8329 list_del(&event->migrate_entry);
8330 if (event->state >= PERF_EVENT_STATE_OFF)
8331 event->state = PERF_EVENT_STATE_INACTIVE;
8332 account_event_cpu(event, dst_cpu);
8333 perf_install_in_context(dst_ctx, event, dst_cpu);
8334 get_ctx(dst_ctx);
8335 }
8336 mutex_unlock(&dst_ctx->mutex);
8337 mutex_unlock(&src_ctx->mutex);
8338 }
8339 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8340
8341 static void sync_child_event(struct perf_event *child_event,
8342 struct task_struct *child)
8343 {
8344 struct perf_event *parent_event = child_event->parent;
8345 u64 child_val;
8346
8347 if (child_event->attr.inherit_stat)
8348 perf_event_read_event(child_event, child);
8349
8350 child_val = perf_event_count(child_event);
8351
8352 /*
8353 * Add back the child's count to the parent's count:
8354 */
8355 atomic64_add(child_val, &parent_event->child_count);
8356 atomic64_add(child_event->total_time_enabled,
8357 &parent_event->child_total_time_enabled);
8358 atomic64_add(child_event->total_time_running,
8359 &parent_event->child_total_time_running);
8360
8361 /*
8362 * Remove this event from the parent's list
8363 */
8364 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8365 mutex_lock(&parent_event->child_mutex);
8366 list_del_init(&child_event->child_list);
8367 mutex_unlock(&parent_event->child_mutex);
8368
8369 /*
8370 * Make sure user/parent get notified, that we just
8371 * lost one event.
8372 */
8373 perf_event_wakeup(parent_event);
8374
8375 /*
8376 * Release the parent event, if this was the last
8377 * reference to it.
8378 */
8379 put_event(parent_event);
8380 }
8381
8382 static void
8383 __perf_event_exit_task(struct perf_event *child_event,
8384 struct perf_event_context *child_ctx,
8385 struct task_struct *child)
8386 {
8387 /*
8388 * Do not destroy the 'original' grouping; because of the context
8389 * switch optimization the original events could've ended up in a
8390 * random child task.
8391 *
8392 * If we were to destroy the original group, all group related
8393 * operations would cease to function properly after this random
8394 * child dies.
8395 *
8396 * Do destroy all inherited groups, we don't care about those
8397 * and being thorough is better.
8398 */
8399 perf_remove_from_context(child_event, !!child_event->parent);
8400
8401 /*
8402 * It can happen that the parent exits first, and has events
8403 * that are still around due to the child reference. These
8404 * events need to be zapped.
8405 */
8406 if (child_event->parent) {
8407 sync_child_event(child_event, child);
8408 free_event(child_event);
8409 } else {
8410 child_event->state = PERF_EVENT_STATE_EXIT;
8411 perf_event_wakeup(child_event);
8412 }
8413 }
8414
8415 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8416 {
8417 struct perf_event *child_event, *next;
8418 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8419 unsigned long flags;
8420
8421 if (likely(!child->perf_event_ctxp[ctxn])) {
8422 perf_event_task(child, NULL, 0);
8423 return;
8424 }
8425
8426 local_irq_save(flags);
8427 /*
8428 * We can't reschedule here because interrupts are disabled,
8429 * and either child is current or it is a task that can't be
8430 * scheduled, so we are now safe from rescheduling changing
8431 * our context.
8432 */
8433 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8434
8435 /*
8436 * Take the context lock here so that if find_get_context is
8437 * reading child->perf_event_ctxp, we wait until it has
8438 * incremented the context's refcount before we do put_ctx below.
8439 */
8440 raw_spin_lock(&child_ctx->lock);
8441 task_ctx_sched_out(child_ctx);
8442 child->perf_event_ctxp[ctxn] = NULL;
8443
8444 /*
8445 * If this context is a clone; unclone it so it can't get
8446 * swapped to another process while we're removing all
8447 * the events from it.
8448 */
8449 clone_ctx = unclone_ctx(child_ctx);
8450 update_context_time(child_ctx);
8451 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8452
8453 if (clone_ctx)
8454 put_ctx(clone_ctx);
8455
8456 /*
8457 * Report the task dead after unscheduling the events so that we
8458 * won't get any samples after PERF_RECORD_EXIT. We can however still
8459 * get a few PERF_RECORD_READ events.
8460 */
8461 perf_event_task(child, child_ctx, 0);
8462
8463 /*
8464 * We can recurse on the same lock type through:
8465 *
8466 * __perf_event_exit_task()
8467 * sync_child_event()
8468 * put_event()
8469 * mutex_lock(&ctx->mutex)
8470 *
8471 * But since its the parent context it won't be the same instance.
8472 */
8473 mutex_lock(&child_ctx->mutex);
8474
8475 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8476 __perf_event_exit_task(child_event, child_ctx, child);
8477
8478 mutex_unlock(&child_ctx->mutex);
8479
8480 put_ctx(child_ctx);
8481 }
8482
8483 /*
8484 * When a child task exits, feed back event values to parent events.
8485 */
8486 void perf_event_exit_task(struct task_struct *child)
8487 {
8488 struct perf_event *event, *tmp;
8489 int ctxn;
8490
8491 mutex_lock(&child->perf_event_mutex);
8492 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8493 owner_entry) {
8494 list_del_init(&event->owner_entry);
8495
8496 /*
8497 * Ensure the list deletion is visible before we clear
8498 * the owner, closes a race against perf_release() where
8499 * we need to serialize on the owner->perf_event_mutex.
8500 */
8501 smp_wmb();
8502 event->owner = NULL;
8503 }
8504 mutex_unlock(&child->perf_event_mutex);
8505
8506 for_each_task_context_nr(ctxn)
8507 perf_event_exit_task_context(child, ctxn);
8508 }
8509
8510 static void perf_free_event(struct perf_event *event,
8511 struct perf_event_context *ctx)
8512 {
8513 struct perf_event *parent = event->parent;
8514
8515 if (WARN_ON_ONCE(!parent))
8516 return;
8517
8518 mutex_lock(&parent->child_mutex);
8519 list_del_init(&event->child_list);
8520 mutex_unlock(&parent->child_mutex);
8521
8522 put_event(parent);
8523
8524 raw_spin_lock_irq(&ctx->lock);
8525 perf_group_detach(event);
8526 list_del_event(event, ctx);
8527 raw_spin_unlock_irq(&ctx->lock);
8528 free_event(event);
8529 }
8530
8531 /*
8532 * Free an unexposed, unused context as created by inheritance by
8533 * perf_event_init_task below, used by fork() in case of fail.
8534 *
8535 * Not all locks are strictly required, but take them anyway to be nice and
8536 * help out with the lockdep assertions.
8537 */
8538 void perf_event_free_task(struct task_struct *task)
8539 {
8540 struct perf_event_context *ctx;
8541 struct perf_event *event, *tmp;
8542 int ctxn;
8543
8544 for_each_task_context_nr(ctxn) {
8545 ctx = task->perf_event_ctxp[ctxn];
8546 if (!ctx)
8547 continue;
8548
8549 mutex_lock(&ctx->mutex);
8550 again:
8551 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8552 group_entry)
8553 perf_free_event(event, ctx);
8554
8555 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8556 group_entry)
8557 perf_free_event(event, ctx);
8558
8559 if (!list_empty(&ctx->pinned_groups) ||
8560 !list_empty(&ctx->flexible_groups))
8561 goto again;
8562
8563 mutex_unlock(&ctx->mutex);
8564
8565 put_ctx(ctx);
8566 }
8567 }
8568
8569 void perf_event_delayed_put(struct task_struct *task)
8570 {
8571 int ctxn;
8572
8573 for_each_task_context_nr(ctxn)
8574 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8575 }
8576
8577 /*
8578 * inherit a event from parent task to child task:
8579 */
8580 static struct perf_event *
8581 inherit_event(struct perf_event *parent_event,
8582 struct task_struct *parent,
8583 struct perf_event_context *parent_ctx,
8584 struct task_struct *child,
8585 struct perf_event *group_leader,
8586 struct perf_event_context *child_ctx)
8587 {
8588 enum perf_event_active_state parent_state = parent_event->state;
8589 struct perf_event *child_event;
8590 unsigned long flags;
8591
8592 /*
8593 * Instead of creating recursive hierarchies of events,
8594 * we link inherited events back to the original parent,
8595 * which has a filp for sure, which we use as the reference
8596 * count:
8597 */
8598 if (parent_event->parent)
8599 parent_event = parent_event->parent;
8600
8601 child_event = perf_event_alloc(&parent_event->attr,
8602 parent_event->cpu,
8603 child,
8604 group_leader, parent_event,
8605 NULL, NULL, -1);
8606 if (IS_ERR(child_event))
8607 return child_event;
8608
8609 if (is_orphaned_event(parent_event) ||
8610 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8611 free_event(child_event);
8612 return NULL;
8613 }
8614
8615 get_ctx(child_ctx);
8616
8617 /*
8618 * Make the child state follow the state of the parent event,
8619 * not its attr.disabled bit. We hold the parent's mutex,
8620 * so we won't race with perf_event_{en, dis}able_family.
8621 */
8622 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8623 child_event->state = PERF_EVENT_STATE_INACTIVE;
8624 else
8625 child_event->state = PERF_EVENT_STATE_OFF;
8626
8627 if (parent_event->attr.freq) {
8628 u64 sample_period = parent_event->hw.sample_period;
8629 struct hw_perf_event *hwc = &child_event->hw;
8630
8631 hwc->sample_period = sample_period;
8632 hwc->last_period = sample_period;
8633
8634 local64_set(&hwc->period_left, sample_period);
8635 }
8636
8637 child_event->ctx = child_ctx;
8638 child_event->overflow_handler = parent_event->overflow_handler;
8639 child_event->overflow_handler_context
8640 = parent_event->overflow_handler_context;
8641
8642 /*
8643 * Precalculate sample_data sizes
8644 */
8645 perf_event__header_size(child_event);
8646 perf_event__id_header_size(child_event);
8647
8648 /*
8649 * Link it up in the child's context:
8650 */
8651 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8652 add_event_to_ctx(child_event, child_ctx);
8653 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8654
8655 /*
8656 * Link this into the parent event's child list
8657 */
8658 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8659 mutex_lock(&parent_event->child_mutex);
8660 list_add_tail(&child_event->child_list, &parent_event->child_list);
8661 mutex_unlock(&parent_event->child_mutex);
8662
8663 return child_event;
8664 }
8665
8666 static int inherit_group(struct perf_event *parent_event,
8667 struct task_struct *parent,
8668 struct perf_event_context *parent_ctx,
8669 struct task_struct *child,
8670 struct perf_event_context *child_ctx)
8671 {
8672 struct perf_event *leader;
8673 struct perf_event *sub;
8674 struct perf_event *child_ctr;
8675
8676 leader = inherit_event(parent_event, parent, parent_ctx,
8677 child, NULL, child_ctx);
8678 if (IS_ERR(leader))
8679 return PTR_ERR(leader);
8680 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8681 child_ctr = inherit_event(sub, parent, parent_ctx,
8682 child, leader, child_ctx);
8683 if (IS_ERR(child_ctr))
8684 return PTR_ERR(child_ctr);
8685 }
8686 return 0;
8687 }
8688
8689 static int
8690 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8691 struct perf_event_context *parent_ctx,
8692 struct task_struct *child, int ctxn,
8693 int *inherited_all)
8694 {
8695 int ret;
8696 struct perf_event_context *child_ctx;
8697
8698 if (!event->attr.inherit) {
8699 *inherited_all = 0;
8700 return 0;
8701 }
8702
8703 child_ctx = child->perf_event_ctxp[ctxn];
8704 if (!child_ctx) {
8705 /*
8706 * This is executed from the parent task context, so
8707 * inherit events that have been marked for cloning.
8708 * First allocate and initialize a context for the
8709 * child.
8710 */
8711
8712 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8713 if (!child_ctx)
8714 return -ENOMEM;
8715
8716 child->perf_event_ctxp[ctxn] = child_ctx;
8717 }
8718
8719 ret = inherit_group(event, parent, parent_ctx,
8720 child, child_ctx);
8721
8722 if (ret)
8723 *inherited_all = 0;
8724
8725 return ret;
8726 }
8727
8728 /*
8729 * Initialize the perf_event context in task_struct
8730 */
8731 static int perf_event_init_context(struct task_struct *child, int ctxn)
8732 {
8733 struct perf_event_context *child_ctx, *parent_ctx;
8734 struct perf_event_context *cloned_ctx;
8735 struct perf_event *event;
8736 struct task_struct *parent = current;
8737 int inherited_all = 1;
8738 unsigned long flags;
8739 int ret = 0;
8740
8741 if (likely(!parent->perf_event_ctxp[ctxn]))
8742 return 0;
8743
8744 /*
8745 * If the parent's context is a clone, pin it so it won't get
8746 * swapped under us.
8747 */
8748 parent_ctx = perf_pin_task_context(parent, ctxn);
8749 if (!parent_ctx)
8750 return 0;
8751
8752 /*
8753 * No need to check if parent_ctx != NULL here; since we saw
8754 * it non-NULL earlier, the only reason for it to become NULL
8755 * is if we exit, and since we're currently in the middle of
8756 * a fork we can't be exiting at the same time.
8757 */
8758
8759 /*
8760 * Lock the parent list. No need to lock the child - not PID
8761 * hashed yet and not running, so nobody can access it.
8762 */
8763 mutex_lock(&parent_ctx->mutex);
8764
8765 /*
8766 * We dont have to disable NMIs - we are only looking at
8767 * the list, not manipulating it:
8768 */
8769 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8770 ret = inherit_task_group(event, parent, parent_ctx,
8771 child, ctxn, &inherited_all);
8772 if (ret)
8773 break;
8774 }
8775
8776 /*
8777 * We can't hold ctx->lock when iterating the ->flexible_group list due
8778 * to allocations, but we need to prevent rotation because
8779 * rotate_ctx() will change the list from interrupt context.
8780 */
8781 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8782 parent_ctx->rotate_disable = 1;
8783 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8784
8785 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8786 ret = inherit_task_group(event, parent, parent_ctx,
8787 child, ctxn, &inherited_all);
8788 if (ret)
8789 break;
8790 }
8791
8792 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8793 parent_ctx->rotate_disable = 0;
8794
8795 child_ctx = child->perf_event_ctxp[ctxn];
8796
8797 if (child_ctx && inherited_all) {
8798 /*
8799 * Mark the child context as a clone of the parent
8800 * context, or of whatever the parent is a clone of.
8801 *
8802 * Note that if the parent is a clone, the holding of
8803 * parent_ctx->lock avoids it from being uncloned.
8804 */
8805 cloned_ctx = parent_ctx->parent_ctx;
8806 if (cloned_ctx) {
8807 child_ctx->parent_ctx = cloned_ctx;
8808 child_ctx->parent_gen = parent_ctx->parent_gen;
8809 } else {
8810 child_ctx->parent_ctx = parent_ctx;
8811 child_ctx->parent_gen = parent_ctx->generation;
8812 }
8813 get_ctx(child_ctx->parent_ctx);
8814 }
8815
8816 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8817 mutex_unlock(&parent_ctx->mutex);
8818
8819 perf_unpin_context(parent_ctx);
8820 put_ctx(parent_ctx);
8821
8822 return ret;
8823 }
8824
8825 /*
8826 * Initialize the perf_event context in task_struct
8827 */
8828 int perf_event_init_task(struct task_struct *child)
8829 {
8830 int ctxn, ret;
8831
8832 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8833 mutex_init(&child->perf_event_mutex);
8834 INIT_LIST_HEAD(&child->perf_event_list);
8835
8836 for_each_task_context_nr(ctxn) {
8837 ret = perf_event_init_context(child, ctxn);
8838 if (ret) {
8839 perf_event_free_task(child);
8840 return ret;
8841 }
8842 }
8843
8844 return 0;
8845 }
8846
8847 static void __init perf_event_init_all_cpus(void)
8848 {
8849 struct swevent_htable *swhash;
8850 int cpu;
8851
8852 for_each_possible_cpu(cpu) {
8853 swhash = &per_cpu(swevent_htable, cpu);
8854 mutex_init(&swhash->hlist_mutex);
8855 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8856 }
8857 }
8858
8859 static void perf_event_init_cpu(int cpu)
8860 {
8861 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8862
8863 mutex_lock(&swhash->hlist_mutex);
8864 swhash->online = true;
8865 if (swhash->hlist_refcount > 0) {
8866 struct swevent_hlist *hlist;
8867
8868 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8869 WARN_ON(!hlist);
8870 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8871 }
8872 mutex_unlock(&swhash->hlist_mutex);
8873 }
8874
8875 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8876 static void __perf_event_exit_context(void *__info)
8877 {
8878 struct remove_event re = { .detach_group = true };
8879 struct perf_event_context *ctx = __info;
8880
8881 rcu_read_lock();
8882 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8883 __perf_remove_from_context(&re);
8884 rcu_read_unlock();
8885 }
8886
8887 static void perf_event_exit_cpu_context(int cpu)
8888 {
8889 struct perf_event_context *ctx;
8890 struct pmu *pmu;
8891 int idx;
8892
8893 idx = srcu_read_lock(&pmus_srcu);
8894 list_for_each_entry_rcu(pmu, &pmus, entry) {
8895 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8896
8897 mutex_lock(&ctx->mutex);
8898 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8899 mutex_unlock(&ctx->mutex);
8900 }
8901 srcu_read_unlock(&pmus_srcu, idx);
8902 }
8903
8904 static void perf_event_exit_cpu(int cpu)
8905 {
8906 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8907
8908 perf_event_exit_cpu_context(cpu);
8909
8910 mutex_lock(&swhash->hlist_mutex);
8911 swhash->online = false;
8912 swevent_hlist_release(swhash);
8913 mutex_unlock(&swhash->hlist_mutex);
8914 }
8915 #else
8916 static inline void perf_event_exit_cpu(int cpu) { }
8917 #endif
8918
8919 static int
8920 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8921 {
8922 int cpu;
8923
8924 for_each_online_cpu(cpu)
8925 perf_event_exit_cpu(cpu);
8926
8927 return NOTIFY_OK;
8928 }
8929
8930 /*
8931 * Run the perf reboot notifier at the very last possible moment so that
8932 * the generic watchdog code runs as long as possible.
8933 */
8934 static struct notifier_block perf_reboot_notifier = {
8935 .notifier_call = perf_reboot,
8936 .priority = INT_MIN,
8937 };
8938
8939 static int
8940 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8941 {
8942 unsigned int cpu = (long)hcpu;
8943
8944 switch (action & ~CPU_TASKS_FROZEN) {
8945
8946 case CPU_UP_PREPARE:
8947 case CPU_DOWN_FAILED:
8948 perf_event_init_cpu(cpu);
8949 break;
8950
8951 case CPU_UP_CANCELED:
8952 case CPU_DOWN_PREPARE:
8953 perf_event_exit_cpu(cpu);
8954 break;
8955 default:
8956 break;
8957 }
8958
8959 return NOTIFY_OK;
8960 }
8961
8962 void __init perf_event_init(void)
8963 {
8964 int ret;
8965
8966 idr_init(&pmu_idr);
8967
8968 perf_event_init_all_cpus();
8969 init_srcu_struct(&pmus_srcu);
8970 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8971 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8972 perf_pmu_register(&perf_task_clock, NULL, -1);
8973 perf_tp_register();
8974 perf_cpu_notifier(perf_cpu_notify);
8975 register_reboot_notifier(&perf_reboot_notifier);
8976
8977 ret = init_hw_breakpoint();
8978 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8979
8980 /* do not patch jump label more than once per second */
8981 jump_label_rate_limit(&perf_sched_events, HZ);
8982
8983 /*
8984 * Build time assertion that we keep the data_head at the intended
8985 * location. IOW, validation we got the __reserved[] size right.
8986 */
8987 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8988 != 1024);
8989 }
8990
8991 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8992 char *page)
8993 {
8994 struct perf_pmu_events_attr *pmu_attr =
8995 container_of(attr, struct perf_pmu_events_attr, attr);
8996
8997 if (pmu_attr->event_str)
8998 return sprintf(page, "%s\n", pmu_attr->event_str);
8999
9000 return 0;
9001 }
9002
9003 static int __init perf_event_sysfs_init(void)
9004 {
9005 struct pmu *pmu;
9006 int ret;
9007
9008 mutex_lock(&pmus_lock);
9009
9010 ret = bus_register(&pmu_bus);
9011 if (ret)
9012 goto unlock;
9013
9014 list_for_each_entry(pmu, &pmus, entry) {
9015 if (!pmu->name || pmu->type < 0)
9016 continue;
9017
9018 ret = pmu_dev_alloc(pmu);
9019 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9020 }
9021 pmu_bus_running = 1;
9022 ret = 0;
9023
9024 unlock:
9025 mutex_unlock(&pmus_lock);
9026
9027 return ret;
9028 }
9029 device_initcall(perf_event_sysfs_init);
9030
9031 #ifdef CONFIG_CGROUP_PERF
9032 static struct cgroup_subsys_state *
9033 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9034 {
9035 struct perf_cgroup *jc;
9036
9037 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9038 if (!jc)
9039 return ERR_PTR(-ENOMEM);
9040
9041 jc->info = alloc_percpu(struct perf_cgroup_info);
9042 if (!jc->info) {
9043 kfree(jc);
9044 return ERR_PTR(-ENOMEM);
9045 }
9046
9047 return &jc->css;
9048 }
9049
9050 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9051 {
9052 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9053
9054 free_percpu(jc->info);
9055 kfree(jc);
9056 }
9057
9058 static int __perf_cgroup_move(void *info)
9059 {
9060 struct task_struct *task = info;
9061 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9062 return 0;
9063 }
9064
9065 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9066 struct cgroup_taskset *tset)
9067 {
9068 struct task_struct *task;
9069
9070 cgroup_taskset_for_each(task, tset)
9071 task_function_call(task, __perf_cgroup_move, task);
9072 }
9073
9074 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9075 struct cgroup_subsys_state *old_css,
9076 struct task_struct *task)
9077 {
9078 /*
9079 * cgroup_exit() is called in the copy_process() failure path.
9080 * Ignore this case since the task hasn't ran yet, this avoids
9081 * trying to poke a half freed task state from generic code.
9082 */
9083 if (!(task->flags & PF_EXITING))
9084 return;
9085
9086 task_function_call(task, __perf_cgroup_move, task);
9087 }
9088
9089 struct cgroup_subsys perf_event_cgrp_subsys = {
9090 .css_alloc = perf_cgroup_css_alloc,
9091 .css_free = perf_cgroup_css_free,
9092 .exit = perf_cgroup_exit,
9093 .attach = perf_cgroup_attach,
9094 };
9095 #endif /* CONFIG_CGROUP_PERF */
This page took 0.218411 seconds and 5 git commands to generate.