Merge tag 'mac80211-for-davem-2016-04-06' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 typedef int (*remote_function_f)(void *);
53
54 struct remote_function_call {
55 struct task_struct *p;
56 remote_function_f func;
57 void *info;
58 int ret;
59 };
60
61 static void remote_function(void *data)
62 {
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82 }
83
84 /**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 struct remote_function_call data = {
101 .p = p,
102 .func = func,
103 .info = info,
104 .ret = -EAGAIN,
105 };
106 int ret;
107
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
113
114 return ret;
115 }
116
117 /**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 struct remote_function_call data = {
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138 }
139
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
148 {
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152 }
153
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156 {
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161
162 #define TASK_TOMBSTONE ((void *)-1L)
163
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168
169 /*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191 struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195 };
196
197 static int event_function(void *info)
198 {
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
201 struct perf_event_context *ctx = event->ctx;
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 int ret = 0;
205
206 WARN_ON_ONCE(!irqs_disabled());
207
208 perf_ctx_lock(cpuctx, task_ctx);
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
212 */
213 if (ctx->task) {
214 if (ctx->task != current) {
215 ret = -ESRCH;
216 goto unlock;
217 }
218
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 }
235
236 efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 perf_ctx_unlock(cpuctx, task_ctx);
239
240 return ret;
241 }
242
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 struct perf_event_context *ctx = event->ctx;
258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
264
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
273
274 if (!task) {
275 cpu_function_call(event->cpu, event_function, &efs);
276 return;
277 }
278
279 if (task == TASK_TOMBSTONE)
280 return;
281
282 again:
283 if (!task_function_call(task, event_function, &efs))
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
295 }
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
301 raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
308
309 /*
310 * branch priv levels that need permission checks
311 */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
316 enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_TIME = 0x4,
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322
323 /*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
327
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346
347 /*
348 * perf event paranoia level:
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
351 * 1 - disallow cpu events for unpriv
352 * 2 - disallow kernel profiling for unpriv
353 */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358
359 /*
360 * max perf event sample rate
361 */
362 #define DEFAULT_MAX_SAMPLE_RATE 100000
363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
371 static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373
374 static void update_perf_cpu_limits(void)
375 {
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
384 }
385
386 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
388 int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391 {
392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402 }
403
404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409 {
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
415 if (sysctl_perf_cpu_time_max_percent == 100) {
416 printk(KERN_WARNING
417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 WRITE_ONCE(perf_sample_allowed_ns, 0);
419 } else {
420 update_perf_cpu_limits();
421 }
422
423 return 0;
424 }
425
426 /*
427 * perf samples are done in some very critical code paths (NMIs).
428 * If they take too much CPU time, the system can lock up and not
429 * get any real work done. This will drop the sample rate when
430 * we detect that events are taking too long.
431 */
432 #define NR_ACCUMULATED_SAMPLES 128
433 static DEFINE_PER_CPU(u64, running_sample_length);
434
435 static u64 __report_avg;
436 static u64 __report_allowed;
437
438 static void perf_duration_warn(struct irq_work *w)
439 {
440 printk_ratelimited(KERN_WARNING
441 "perf: interrupt took too long (%lld > %lld), lowering "
442 "kernel.perf_event_max_sample_rate to %d\n",
443 __report_avg, __report_allowed,
444 sysctl_perf_event_sample_rate);
445 }
446
447 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448
449 void perf_sample_event_took(u64 sample_len_ns)
450 {
451 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 u64 running_len;
453 u64 avg_len;
454 u32 max;
455
456 if (max_len == 0)
457 return;
458
459 /* Decay the counter by 1 average sample. */
460 running_len = __this_cpu_read(running_sample_length);
461 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 running_len += sample_len_ns;
463 __this_cpu_write(running_sample_length, running_len);
464
465 /*
466 * Note: this will be biased artifically low until we have
467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 * from having to maintain a count.
469 */
470 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 if (avg_len <= max_len)
472 return;
473
474 __report_avg = avg_len;
475 __report_allowed = max_len;
476
477 /*
478 * Compute a throttle threshold 25% below the current duration.
479 */
480 avg_len += avg_len / 4;
481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 if (avg_len < max)
483 max /= (u32)avg_len;
484 else
485 max = 1;
486
487 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 WRITE_ONCE(max_samples_per_tick, max);
489
490 sysctl_perf_event_sample_rate = max * HZ;
491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492
493 if (!irq_work_queue(&perf_duration_work)) {
494 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495 "kernel.perf_event_max_sample_rate to %d\n",
496 __report_avg, __report_allowed,
497 sysctl_perf_event_sample_rate);
498 }
499 }
500
501 static atomic64_t perf_event_id;
502
503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 enum event_type_t event_type);
505
506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
507 enum event_type_t event_type,
508 struct task_struct *task);
509
510 static void update_context_time(struct perf_event_context *ctx);
511 static u64 perf_event_time(struct perf_event *event);
512
513 void __weak perf_event_print_debug(void) { }
514
515 extern __weak const char *perf_pmu_name(void)
516 {
517 return "pmu";
518 }
519
520 static inline u64 perf_clock(void)
521 {
522 return local_clock();
523 }
524
525 static inline u64 perf_event_clock(struct perf_event *event)
526 {
527 return event->clock();
528 }
529
530 #ifdef CONFIG_CGROUP_PERF
531
532 static inline bool
533 perf_cgroup_match(struct perf_event *event)
534 {
535 struct perf_event_context *ctx = event->ctx;
536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537
538 /* @event doesn't care about cgroup */
539 if (!event->cgrp)
540 return true;
541
542 /* wants specific cgroup scope but @cpuctx isn't associated with any */
543 if (!cpuctx->cgrp)
544 return false;
545
546 /*
547 * Cgroup scoping is recursive. An event enabled for a cgroup is
548 * also enabled for all its descendant cgroups. If @cpuctx's
549 * cgroup is a descendant of @event's (the test covers identity
550 * case), it's a match.
551 */
552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 event->cgrp->css.cgroup);
554 }
555
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {
558 css_put(&event->cgrp->css);
559 event->cgrp = NULL;
560 }
561
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 return event->cgrp != NULL;
565 }
566
567 static inline u64 perf_cgroup_event_time(struct perf_event *event)
568 {
569 struct perf_cgroup_info *t;
570
571 t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 return t->time;
573 }
574
575 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576 {
577 struct perf_cgroup_info *info;
578 u64 now;
579
580 now = perf_clock();
581
582 info = this_cpu_ptr(cgrp->info);
583
584 info->time += now - info->timestamp;
585 info->timestamp = now;
586 }
587
588 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589 {
590 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 if (cgrp_out)
592 __update_cgrp_time(cgrp_out);
593 }
594
595 static inline void update_cgrp_time_from_event(struct perf_event *event)
596 {
597 struct perf_cgroup *cgrp;
598
599 /*
600 * ensure we access cgroup data only when needed and
601 * when we know the cgroup is pinned (css_get)
602 */
603 if (!is_cgroup_event(event))
604 return;
605
606 cgrp = perf_cgroup_from_task(current, event->ctx);
607 /*
608 * Do not update time when cgroup is not active
609 */
610 if (cgrp == event->cgrp)
611 __update_cgrp_time(event->cgrp);
612 }
613
614 static inline void
615 perf_cgroup_set_timestamp(struct task_struct *task,
616 struct perf_event_context *ctx)
617 {
618 struct perf_cgroup *cgrp;
619 struct perf_cgroup_info *info;
620
621 /*
622 * ctx->lock held by caller
623 * ensure we do not access cgroup data
624 * unless we have the cgroup pinned (css_get)
625 */
626 if (!task || !ctx->nr_cgroups)
627 return;
628
629 cgrp = perf_cgroup_from_task(task, ctx);
630 info = this_cpu_ptr(cgrp->info);
631 info->timestamp = ctx->timestamp;
632 }
633
634 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
635 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
636
637 /*
638 * reschedule events based on the cgroup constraint of task.
639 *
640 * mode SWOUT : schedule out everything
641 * mode SWIN : schedule in based on cgroup for next
642 */
643 static void perf_cgroup_switch(struct task_struct *task, int mode)
644 {
645 struct perf_cpu_context *cpuctx;
646 struct pmu *pmu;
647 unsigned long flags;
648
649 /*
650 * disable interrupts to avoid geting nr_cgroup
651 * changes via __perf_event_disable(). Also
652 * avoids preemption.
653 */
654 local_irq_save(flags);
655
656 /*
657 * we reschedule only in the presence of cgroup
658 * constrained events.
659 */
660
661 list_for_each_entry_rcu(pmu, &pmus, entry) {
662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 if (cpuctx->unique_pmu != pmu)
664 continue; /* ensure we process each cpuctx once */
665
666 /*
667 * perf_cgroup_events says at least one
668 * context on this CPU has cgroup events.
669 *
670 * ctx->nr_cgroups reports the number of cgroup
671 * events for a context.
672 */
673 if (cpuctx->ctx.nr_cgroups > 0) {
674 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 perf_pmu_disable(cpuctx->ctx.pmu);
676
677 if (mode & PERF_CGROUP_SWOUT) {
678 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 /*
680 * must not be done before ctxswout due
681 * to event_filter_match() in event_sched_out()
682 */
683 cpuctx->cgrp = NULL;
684 }
685
686 if (mode & PERF_CGROUP_SWIN) {
687 WARN_ON_ONCE(cpuctx->cgrp);
688 /*
689 * set cgrp before ctxsw in to allow
690 * event_filter_match() to not have to pass
691 * task around
692 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 * because cgorup events are only per-cpu
694 */
695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 }
698 perf_pmu_enable(cpuctx->ctx.pmu);
699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
700 }
701 }
702
703 local_irq_restore(flags);
704 }
705
706 static inline void perf_cgroup_sched_out(struct task_struct *task,
707 struct task_struct *next)
708 {
709 struct perf_cgroup *cgrp1;
710 struct perf_cgroup *cgrp2 = NULL;
711
712 rcu_read_lock();
713 /*
714 * we come here when we know perf_cgroup_events > 0
715 * we do not need to pass the ctx here because we know
716 * we are holding the rcu lock
717 */
718 cgrp1 = perf_cgroup_from_task(task, NULL);
719 cgrp2 = perf_cgroup_from_task(next, NULL);
720
721 /*
722 * only schedule out current cgroup events if we know
723 * that we are switching to a different cgroup. Otherwise,
724 * do no touch the cgroup events.
725 */
726 if (cgrp1 != cgrp2)
727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728
729 rcu_read_unlock();
730 }
731
732 static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
734 {
735 struct perf_cgroup *cgrp1;
736 struct perf_cgroup *cgrp2 = NULL;
737
738 rcu_read_lock();
739 /*
740 * we come here when we know perf_cgroup_events > 0
741 * we do not need to pass the ctx here because we know
742 * we are holding the rcu lock
743 */
744 cgrp1 = perf_cgroup_from_task(task, NULL);
745 cgrp2 = perf_cgroup_from_task(prev, NULL);
746
747 /*
748 * only need to schedule in cgroup events if we are changing
749 * cgroup during ctxsw. Cgroup events were not scheduled
750 * out of ctxsw out if that was not the case.
751 */
752 if (cgrp1 != cgrp2)
753 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754
755 rcu_read_unlock();
756 }
757
758 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 struct perf_event_attr *attr,
760 struct perf_event *group_leader)
761 {
762 struct perf_cgroup *cgrp;
763 struct cgroup_subsys_state *css;
764 struct fd f = fdget(fd);
765 int ret = 0;
766
767 if (!f.file)
768 return -EBADF;
769
770 css = css_tryget_online_from_dir(f.file->f_path.dentry,
771 &perf_event_cgrp_subsys);
772 if (IS_ERR(css)) {
773 ret = PTR_ERR(css);
774 goto out;
775 }
776
777 cgrp = container_of(css, struct perf_cgroup, css);
778 event->cgrp = cgrp;
779
780 /*
781 * all events in a group must monitor
782 * the same cgroup because a task belongs
783 * to only one perf cgroup at a time
784 */
785 if (group_leader && group_leader->cgrp != cgrp) {
786 perf_detach_cgroup(event);
787 ret = -EINVAL;
788 }
789 out:
790 fdput(f);
791 return ret;
792 }
793
794 static inline void
795 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796 {
797 struct perf_cgroup_info *t;
798 t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 event->shadow_ctx_time = now - t->timestamp;
800 }
801
802 static inline void
803 perf_cgroup_defer_enabled(struct perf_event *event)
804 {
805 /*
806 * when the current task's perf cgroup does not match
807 * the event's, we need to remember to call the
808 * perf_mark_enable() function the first time a task with
809 * a matching perf cgroup is scheduled in.
810 */
811 if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 event->cgrp_defer_enabled = 1;
813 }
814
815 static inline void
816 perf_cgroup_mark_enabled(struct perf_event *event,
817 struct perf_event_context *ctx)
818 {
819 struct perf_event *sub;
820 u64 tstamp = perf_event_time(event);
821
822 if (!event->cgrp_defer_enabled)
823 return;
824
825 event->cgrp_defer_enabled = 0;
826
827 event->tstamp_enabled = tstamp - event->total_time_enabled;
828 list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 sub->cgrp_defer_enabled = 0;
832 }
833 }
834 }
835 #else /* !CONFIG_CGROUP_PERF */
836
837 static inline bool
838 perf_cgroup_match(struct perf_event *event)
839 {
840 return true;
841 }
842
843 static inline void perf_detach_cgroup(struct perf_event *event)
844 {}
845
846 static inline int is_cgroup_event(struct perf_event *event)
847 {
848 return 0;
849 }
850
851 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852 {
853 return 0;
854 }
855
856 static inline void update_cgrp_time_from_event(struct perf_event *event)
857 {
858 }
859
860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861 {
862 }
863
864 static inline void perf_cgroup_sched_out(struct task_struct *task,
865 struct task_struct *next)
866 {
867 }
868
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 struct task_struct *task)
871 {
872 }
873
874 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 struct perf_event_attr *attr,
876 struct perf_event *group_leader)
877 {
878 return -EINVAL;
879 }
880
881 static inline void
882 perf_cgroup_set_timestamp(struct task_struct *task,
883 struct perf_event_context *ctx)
884 {
885 }
886
887 void
888 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889 {
890 }
891
892 static inline void
893 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894 {
895 }
896
897 static inline u64 perf_cgroup_event_time(struct perf_event *event)
898 {
899 return 0;
900 }
901
902 static inline void
903 perf_cgroup_defer_enabled(struct perf_event *event)
904 {
905 }
906
907 static inline void
908 perf_cgroup_mark_enabled(struct perf_event *event,
909 struct perf_event_context *ctx)
910 {
911 }
912 #endif
913
914 /*
915 * set default to be dependent on timer tick just
916 * like original code
917 */
918 #define PERF_CPU_HRTIMER (1000 / HZ)
919 /*
920 * function must be called with interrupts disbled
921 */
922 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 {
924 struct perf_cpu_context *cpuctx;
925 int rotations = 0;
926
927 WARN_ON(!irqs_disabled());
928
929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
930 rotations = perf_rotate_context(cpuctx);
931
932 raw_spin_lock(&cpuctx->hrtimer_lock);
933 if (rotations)
934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
935 else
936 cpuctx->hrtimer_active = 0;
937 raw_spin_unlock(&cpuctx->hrtimer_lock);
938
939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 }
941
942 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943 {
944 struct hrtimer *timer = &cpuctx->hrtimer;
945 struct pmu *pmu = cpuctx->ctx.pmu;
946 u64 interval;
947
948 /* no multiplexing needed for SW PMU */
949 if (pmu->task_ctx_nr == perf_sw_context)
950 return;
951
952 /*
953 * check default is sane, if not set then force to
954 * default interval (1/tick)
955 */
956 interval = pmu->hrtimer_interval_ms;
957 if (interval < 1)
958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959
960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961
962 raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964 timer->function = perf_mux_hrtimer_handler;
965 }
966
967 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968 {
969 struct hrtimer *timer = &cpuctx->hrtimer;
970 struct pmu *pmu = cpuctx->ctx.pmu;
971 unsigned long flags;
972
973 /* not for SW PMU */
974 if (pmu->task_ctx_nr == perf_sw_context)
975 return 0;
976
977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 if (!cpuctx->hrtimer_active) {
979 cpuctx->hrtimer_active = 1;
980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 }
983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984
985 return 0;
986 }
987
988 void perf_pmu_disable(struct pmu *pmu)
989 {
990 int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 if (!(*count)++)
992 pmu->pmu_disable(pmu);
993 }
994
995 void perf_pmu_enable(struct pmu *pmu)
996 {
997 int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 if (!--(*count))
999 pmu->pmu_enable(pmu);
1000 }
1001
1002 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003
1004 /*
1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006 * perf_event_task_tick() are fully serialized because they're strictly cpu
1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008 * disabled, while perf_event_task_tick is called from IRQ context.
1009 */
1010 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011 {
1012 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013
1014 WARN_ON(!irqs_disabled());
1015
1016 WARN_ON(!list_empty(&ctx->active_ctx_list));
1017
1018 list_add(&ctx->active_ctx_list, head);
1019 }
1020
1021 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022 {
1023 WARN_ON(!irqs_disabled());
1024
1025 WARN_ON(list_empty(&ctx->active_ctx_list));
1026
1027 list_del_init(&ctx->active_ctx_list);
1028 }
1029
1030 static void get_ctx(struct perf_event_context *ctx)
1031 {
1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 }
1034
1035 static void free_ctx(struct rcu_head *head)
1036 {
1037 struct perf_event_context *ctx;
1038
1039 ctx = container_of(head, struct perf_event_context, rcu_head);
1040 kfree(ctx->task_ctx_data);
1041 kfree(ctx);
1042 }
1043
1044 static void put_ctx(struct perf_event_context *ctx)
1045 {
1046 if (atomic_dec_and_test(&ctx->refcount)) {
1047 if (ctx->parent_ctx)
1048 put_ctx(ctx->parent_ctx);
1049 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050 put_task_struct(ctx->task);
1051 call_rcu(&ctx->rcu_head, free_ctx);
1052 }
1053 }
1054
1055 /*
1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057 * perf_pmu_migrate_context() we need some magic.
1058 *
1059 * Those places that change perf_event::ctx will hold both
1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061 *
1062 * Lock ordering is by mutex address. There are two other sites where
1063 * perf_event_context::mutex nests and those are:
1064 *
1065 * - perf_event_exit_task_context() [ child , 0 ]
1066 * perf_event_exit_event()
1067 * put_event() [ parent, 1 ]
1068 *
1069 * - perf_event_init_context() [ parent, 0 ]
1070 * inherit_task_group()
1071 * inherit_group()
1072 * inherit_event()
1073 * perf_event_alloc()
1074 * perf_init_event()
1075 * perf_try_init_event() [ child , 1 ]
1076 *
1077 * While it appears there is an obvious deadlock here -- the parent and child
1078 * nesting levels are inverted between the two. This is in fact safe because
1079 * life-time rules separate them. That is an exiting task cannot fork, and a
1080 * spawning task cannot (yet) exit.
1081 *
1082 * But remember that that these are parent<->child context relations, and
1083 * migration does not affect children, therefore these two orderings should not
1084 * interact.
1085 *
1086 * The change in perf_event::ctx does not affect children (as claimed above)
1087 * because the sys_perf_event_open() case will install a new event and break
1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089 * concerned with cpuctx and that doesn't have children.
1090 *
1091 * The places that change perf_event::ctx will issue:
1092 *
1093 * perf_remove_from_context();
1094 * synchronize_rcu();
1095 * perf_install_in_context();
1096 *
1097 * to affect the change. The remove_from_context() + synchronize_rcu() should
1098 * quiesce the event, after which we can install it in the new location. This
1099 * means that only external vectors (perf_fops, prctl) can perturb the event
1100 * while in transit. Therefore all such accessors should also acquire
1101 * perf_event_context::mutex to serialize against this.
1102 *
1103 * However; because event->ctx can change while we're waiting to acquire
1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105 * function.
1106 *
1107 * Lock order:
1108 * task_struct::perf_event_mutex
1109 * perf_event_context::mutex
1110 * perf_event::child_mutex;
1111 * perf_event_context::lock
1112 * perf_event::mmap_mutex
1113 * mmap_sem
1114 */
1115 static struct perf_event_context *
1116 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1117 {
1118 struct perf_event_context *ctx;
1119
1120 again:
1121 rcu_read_lock();
1122 ctx = ACCESS_ONCE(event->ctx);
1123 if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 rcu_read_unlock();
1125 goto again;
1126 }
1127 rcu_read_unlock();
1128
1129 mutex_lock_nested(&ctx->mutex, nesting);
1130 if (event->ctx != ctx) {
1131 mutex_unlock(&ctx->mutex);
1132 put_ctx(ctx);
1133 goto again;
1134 }
1135
1136 return ctx;
1137 }
1138
1139 static inline struct perf_event_context *
1140 perf_event_ctx_lock(struct perf_event *event)
1141 {
1142 return perf_event_ctx_lock_nested(event, 0);
1143 }
1144
1145 static void perf_event_ctx_unlock(struct perf_event *event,
1146 struct perf_event_context *ctx)
1147 {
1148 mutex_unlock(&ctx->mutex);
1149 put_ctx(ctx);
1150 }
1151
1152 /*
1153 * This must be done under the ctx->lock, such as to serialize against
1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155 * calling scheduler related locks and ctx->lock nests inside those.
1156 */
1157 static __must_check struct perf_event_context *
1158 unclone_ctx(struct perf_event_context *ctx)
1159 {
1160 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161
1162 lockdep_assert_held(&ctx->lock);
1163
1164 if (parent_ctx)
1165 ctx->parent_ctx = NULL;
1166 ctx->generation++;
1167
1168 return parent_ctx;
1169 }
1170
1171 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172 {
1173 /*
1174 * only top level events have the pid namespace they were created in
1175 */
1176 if (event->parent)
1177 event = event->parent;
1178
1179 return task_tgid_nr_ns(p, event->ns);
1180 }
1181
1182 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183 {
1184 /*
1185 * only top level events have the pid namespace they were created in
1186 */
1187 if (event->parent)
1188 event = event->parent;
1189
1190 return task_pid_nr_ns(p, event->ns);
1191 }
1192
1193 /*
1194 * If we inherit events we want to return the parent event id
1195 * to userspace.
1196 */
1197 static u64 primary_event_id(struct perf_event *event)
1198 {
1199 u64 id = event->id;
1200
1201 if (event->parent)
1202 id = event->parent->id;
1203
1204 return id;
1205 }
1206
1207 /*
1208 * Get the perf_event_context for a task and lock it.
1209 *
1210 * This has to cope with with the fact that until it is locked,
1211 * the context could get moved to another task.
1212 */
1213 static struct perf_event_context *
1214 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215 {
1216 struct perf_event_context *ctx;
1217
1218 retry:
1219 /*
1220 * One of the few rules of preemptible RCU is that one cannot do
1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222 * part of the read side critical section was irqs-enabled -- see
1223 * rcu_read_unlock_special().
1224 *
1225 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226 * side critical section has interrupts disabled.
1227 */
1228 local_irq_save(*flags);
1229 rcu_read_lock();
1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 if (ctx) {
1232 /*
1233 * If this context is a clone of another, it might
1234 * get swapped for another underneath us by
1235 * perf_event_task_sched_out, though the
1236 * rcu_read_lock() protects us from any context
1237 * getting freed. Lock the context and check if it
1238 * got swapped before we could get the lock, and retry
1239 * if so. If we locked the right context, then it
1240 * can't get swapped on us any more.
1241 */
1242 raw_spin_lock(&ctx->lock);
1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244 raw_spin_unlock(&ctx->lock);
1245 rcu_read_unlock();
1246 local_irq_restore(*flags);
1247 goto retry;
1248 }
1249
1250 if (ctx->task == TASK_TOMBSTONE ||
1251 !atomic_inc_not_zero(&ctx->refcount)) {
1252 raw_spin_unlock(&ctx->lock);
1253 ctx = NULL;
1254 } else {
1255 WARN_ON_ONCE(ctx->task != task);
1256 }
1257 }
1258 rcu_read_unlock();
1259 if (!ctx)
1260 local_irq_restore(*flags);
1261 return ctx;
1262 }
1263
1264 /*
1265 * Get the context for a task and increment its pin_count so it
1266 * can't get swapped to another task. This also increments its
1267 * reference count so that the context can't get freed.
1268 */
1269 static struct perf_event_context *
1270 perf_pin_task_context(struct task_struct *task, int ctxn)
1271 {
1272 struct perf_event_context *ctx;
1273 unsigned long flags;
1274
1275 ctx = perf_lock_task_context(task, ctxn, &flags);
1276 if (ctx) {
1277 ++ctx->pin_count;
1278 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 }
1280 return ctx;
1281 }
1282
1283 static void perf_unpin_context(struct perf_event_context *ctx)
1284 {
1285 unsigned long flags;
1286
1287 raw_spin_lock_irqsave(&ctx->lock, flags);
1288 --ctx->pin_count;
1289 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 }
1291
1292 /*
1293 * Update the record of the current time in a context.
1294 */
1295 static void update_context_time(struct perf_event_context *ctx)
1296 {
1297 u64 now = perf_clock();
1298
1299 ctx->time += now - ctx->timestamp;
1300 ctx->timestamp = now;
1301 }
1302
1303 static u64 perf_event_time(struct perf_event *event)
1304 {
1305 struct perf_event_context *ctx = event->ctx;
1306
1307 if (is_cgroup_event(event))
1308 return perf_cgroup_event_time(event);
1309
1310 return ctx ? ctx->time : 0;
1311 }
1312
1313 /*
1314 * Update the total_time_enabled and total_time_running fields for a event.
1315 */
1316 static void update_event_times(struct perf_event *event)
1317 {
1318 struct perf_event_context *ctx = event->ctx;
1319 u64 run_end;
1320
1321 lockdep_assert_held(&ctx->lock);
1322
1323 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 return;
1326
1327 /*
1328 * in cgroup mode, time_enabled represents
1329 * the time the event was enabled AND active
1330 * tasks were in the monitored cgroup. This is
1331 * independent of the activity of the context as
1332 * there may be a mix of cgroup and non-cgroup events.
1333 *
1334 * That is why we treat cgroup events differently
1335 * here.
1336 */
1337 if (is_cgroup_event(event))
1338 run_end = perf_cgroup_event_time(event);
1339 else if (ctx->is_active)
1340 run_end = ctx->time;
1341 else
1342 run_end = event->tstamp_stopped;
1343
1344 event->total_time_enabled = run_end - event->tstamp_enabled;
1345
1346 if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 run_end = event->tstamp_stopped;
1348 else
1349 run_end = perf_event_time(event);
1350
1351 event->total_time_running = run_end - event->tstamp_running;
1352
1353 }
1354
1355 /*
1356 * Update total_time_enabled and total_time_running for all events in a group.
1357 */
1358 static void update_group_times(struct perf_event *leader)
1359 {
1360 struct perf_event *event;
1361
1362 update_event_times(leader);
1363 list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 update_event_times(event);
1365 }
1366
1367 static struct list_head *
1368 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 if (event->attr.pinned)
1371 return &ctx->pinned_groups;
1372 else
1373 return &ctx->flexible_groups;
1374 }
1375
1376 /*
1377 * Add a event from the lists for its context.
1378 * Must be called with ctx->mutex and ctx->lock held.
1379 */
1380 static void
1381 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382 {
1383 lockdep_assert_held(&ctx->lock);
1384
1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 event->attach_state |= PERF_ATTACH_CONTEXT;
1387
1388 /*
1389 * If we're a stand alone event or group leader, we go to the context
1390 * list, group events are kept attached to the group so that
1391 * perf_group_detach can, at all times, locate all siblings.
1392 */
1393 if (event->group_leader == event) {
1394 struct list_head *list;
1395
1396 if (is_software_event(event))
1397 event->group_flags |= PERF_GROUP_SOFTWARE;
1398
1399 list = ctx_group_list(event, ctx);
1400 list_add_tail(&event->group_entry, list);
1401 }
1402
1403 if (is_cgroup_event(event))
1404 ctx->nr_cgroups++;
1405
1406 list_add_rcu(&event->event_entry, &ctx->event_list);
1407 ctx->nr_events++;
1408 if (event->attr.inherit_stat)
1409 ctx->nr_stat++;
1410
1411 ctx->generation++;
1412 }
1413
1414 /*
1415 * Initialize event state based on the perf_event_attr::disabled.
1416 */
1417 static inline void perf_event__state_init(struct perf_event *event)
1418 {
1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 PERF_EVENT_STATE_INACTIVE;
1421 }
1422
1423 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 {
1425 int entry = sizeof(u64); /* value */
1426 int size = 0;
1427 int nr = 1;
1428
1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 size += sizeof(u64);
1431
1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 size += sizeof(u64);
1434
1435 if (event->attr.read_format & PERF_FORMAT_ID)
1436 entry += sizeof(u64);
1437
1438 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1439 nr += nr_siblings;
1440 size += sizeof(u64);
1441 }
1442
1443 size += entry * nr;
1444 event->read_size = size;
1445 }
1446
1447 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 {
1449 struct perf_sample_data *data;
1450 u16 size = 0;
1451
1452 if (sample_type & PERF_SAMPLE_IP)
1453 size += sizeof(data->ip);
1454
1455 if (sample_type & PERF_SAMPLE_ADDR)
1456 size += sizeof(data->addr);
1457
1458 if (sample_type & PERF_SAMPLE_PERIOD)
1459 size += sizeof(data->period);
1460
1461 if (sample_type & PERF_SAMPLE_WEIGHT)
1462 size += sizeof(data->weight);
1463
1464 if (sample_type & PERF_SAMPLE_READ)
1465 size += event->read_size;
1466
1467 if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 size += sizeof(data->data_src.val);
1469
1470 if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 size += sizeof(data->txn);
1472
1473 event->header_size = size;
1474 }
1475
1476 /*
1477 * Called at perf_event creation and when events are attached/detached from a
1478 * group.
1479 */
1480 static void perf_event__header_size(struct perf_event *event)
1481 {
1482 __perf_event_read_size(event,
1483 event->group_leader->nr_siblings);
1484 __perf_event_header_size(event, event->attr.sample_type);
1485 }
1486
1487 static void perf_event__id_header_size(struct perf_event *event)
1488 {
1489 struct perf_sample_data *data;
1490 u64 sample_type = event->attr.sample_type;
1491 u16 size = 0;
1492
1493 if (sample_type & PERF_SAMPLE_TID)
1494 size += sizeof(data->tid_entry);
1495
1496 if (sample_type & PERF_SAMPLE_TIME)
1497 size += sizeof(data->time);
1498
1499 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 size += sizeof(data->id);
1501
1502 if (sample_type & PERF_SAMPLE_ID)
1503 size += sizeof(data->id);
1504
1505 if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 size += sizeof(data->stream_id);
1507
1508 if (sample_type & PERF_SAMPLE_CPU)
1509 size += sizeof(data->cpu_entry);
1510
1511 event->id_header_size = size;
1512 }
1513
1514 static bool perf_event_validate_size(struct perf_event *event)
1515 {
1516 /*
1517 * The values computed here will be over-written when we actually
1518 * attach the event.
1519 */
1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 perf_event__id_header_size(event);
1523
1524 /*
1525 * Sum the lot; should not exceed the 64k limit we have on records.
1526 * Conservative limit to allow for callchains and other variable fields.
1527 */
1528 if (event->read_size + event->header_size +
1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 return false;
1531
1532 return true;
1533 }
1534
1535 static void perf_group_attach(struct perf_event *event)
1536 {
1537 struct perf_event *group_leader = event->group_leader, *pos;
1538
1539 /*
1540 * We can have double attach due to group movement in perf_event_open.
1541 */
1542 if (event->attach_state & PERF_ATTACH_GROUP)
1543 return;
1544
1545 event->attach_state |= PERF_ATTACH_GROUP;
1546
1547 if (group_leader == event)
1548 return;
1549
1550 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551
1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 !is_software_event(event))
1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555
1556 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 group_leader->nr_siblings++;
1558
1559 perf_event__header_size(group_leader);
1560
1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 perf_event__header_size(pos);
1563 }
1564
1565 /*
1566 * Remove a event from the lists for its context.
1567 * Must be called with ctx->mutex and ctx->lock held.
1568 */
1569 static void
1570 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571 {
1572 struct perf_cpu_context *cpuctx;
1573
1574 WARN_ON_ONCE(event->ctx != ctx);
1575 lockdep_assert_held(&ctx->lock);
1576
1577 /*
1578 * We can have double detach due to exit/hot-unplug + close.
1579 */
1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581 return;
1582
1583 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584
1585 if (is_cgroup_event(event)) {
1586 ctx->nr_cgroups--;
1587 /*
1588 * Because cgroup events are always per-cpu events, this will
1589 * always be called from the right CPU.
1590 */
1591 cpuctx = __get_cpu_context(ctx);
1592 /*
1593 * If there are no more cgroup events then clear cgrp to avoid
1594 * stale pointer in update_cgrp_time_from_cpuctx().
1595 */
1596 if (!ctx->nr_cgroups)
1597 cpuctx->cgrp = NULL;
1598 }
1599
1600 ctx->nr_events--;
1601 if (event->attr.inherit_stat)
1602 ctx->nr_stat--;
1603
1604 list_del_rcu(&event->event_entry);
1605
1606 if (event->group_leader == event)
1607 list_del_init(&event->group_entry);
1608
1609 update_group_times(event);
1610
1611 /*
1612 * If event was in error state, then keep it
1613 * that way, otherwise bogus counts will be
1614 * returned on read(). The only way to get out
1615 * of error state is by explicit re-enabling
1616 * of the event
1617 */
1618 if (event->state > PERF_EVENT_STATE_OFF)
1619 event->state = PERF_EVENT_STATE_OFF;
1620
1621 ctx->generation++;
1622 }
1623
1624 static void perf_group_detach(struct perf_event *event)
1625 {
1626 struct perf_event *sibling, *tmp;
1627 struct list_head *list = NULL;
1628
1629 /*
1630 * We can have double detach due to exit/hot-unplug + close.
1631 */
1632 if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 return;
1634
1635 event->attach_state &= ~PERF_ATTACH_GROUP;
1636
1637 /*
1638 * If this is a sibling, remove it from its group.
1639 */
1640 if (event->group_leader != event) {
1641 list_del_init(&event->group_entry);
1642 event->group_leader->nr_siblings--;
1643 goto out;
1644 }
1645
1646 if (!list_empty(&event->group_entry))
1647 list = &event->group_entry;
1648
1649 /*
1650 * If this was a group event with sibling events then
1651 * upgrade the siblings to singleton events by adding them
1652 * to whatever list we are on.
1653 */
1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 if (list)
1656 list_move_tail(&sibling->group_entry, list);
1657 sibling->group_leader = sibling;
1658
1659 /* Inherit group flags from the previous leader */
1660 sibling->group_flags = event->group_flags;
1661
1662 WARN_ON_ONCE(sibling->ctx != event->ctx);
1663 }
1664
1665 out:
1666 perf_event__header_size(event->group_leader);
1667
1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 perf_event__header_size(tmp);
1670 }
1671
1672 static bool is_orphaned_event(struct perf_event *event)
1673 {
1674 return event->state == PERF_EVENT_STATE_DEAD;
1675 }
1676
1677 static inline int pmu_filter_match(struct perf_event *event)
1678 {
1679 struct pmu *pmu = event->pmu;
1680 return pmu->filter_match ? pmu->filter_match(event) : 1;
1681 }
1682
1683 static inline int
1684 event_filter_match(struct perf_event *event)
1685 {
1686 return (event->cpu == -1 || event->cpu == smp_processor_id())
1687 && perf_cgroup_match(event) && pmu_filter_match(event);
1688 }
1689
1690 static void
1691 event_sched_out(struct perf_event *event,
1692 struct perf_cpu_context *cpuctx,
1693 struct perf_event_context *ctx)
1694 {
1695 u64 tstamp = perf_event_time(event);
1696 u64 delta;
1697
1698 WARN_ON_ONCE(event->ctx != ctx);
1699 lockdep_assert_held(&ctx->lock);
1700
1701 /*
1702 * An event which could not be activated because of
1703 * filter mismatch still needs to have its timings
1704 * maintained, otherwise bogus information is return
1705 * via read() for time_enabled, time_running:
1706 */
1707 if (event->state == PERF_EVENT_STATE_INACTIVE
1708 && !event_filter_match(event)) {
1709 delta = tstamp - event->tstamp_stopped;
1710 event->tstamp_running += delta;
1711 event->tstamp_stopped = tstamp;
1712 }
1713
1714 if (event->state != PERF_EVENT_STATE_ACTIVE)
1715 return;
1716
1717 perf_pmu_disable(event->pmu);
1718
1719 event->tstamp_stopped = tstamp;
1720 event->pmu->del(event, 0);
1721 event->oncpu = -1;
1722 event->state = PERF_EVENT_STATE_INACTIVE;
1723 if (event->pending_disable) {
1724 event->pending_disable = 0;
1725 event->state = PERF_EVENT_STATE_OFF;
1726 }
1727
1728 if (!is_software_event(event))
1729 cpuctx->active_oncpu--;
1730 if (!--ctx->nr_active)
1731 perf_event_ctx_deactivate(ctx);
1732 if (event->attr.freq && event->attr.sample_freq)
1733 ctx->nr_freq--;
1734 if (event->attr.exclusive || !cpuctx->active_oncpu)
1735 cpuctx->exclusive = 0;
1736
1737 perf_pmu_enable(event->pmu);
1738 }
1739
1740 static void
1741 group_sched_out(struct perf_event *group_event,
1742 struct perf_cpu_context *cpuctx,
1743 struct perf_event_context *ctx)
1744 {
1745 struct perf_event *event;
1746 int state = group_event->state;
1747
1748 event_sched_out(group_event, cpuctx, ctx);
1749
1750 /*
1751 * Schedule out siblings (if any):
1752 */
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 event_sched_out(event, cpuctx, ctx);
1755
1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 cpuctx->exclusive = 0;
1758 }
1759
1760 #define DETACH_GROUP 0x01UL
1761
1762 /*
1763 * Cross CPU call to remove a performance event
1764 *
1765 * We disable the event on the hardware level first. After that we
1766 * remove it from the context list.
1767 */
1768 static void
1769 __perf_remove_from_context(struct perf_event *event,
1770 struct perf_cpu_context *cpuctx,
1771 struct perf_event_context *ctx,
1772 void *info)
1773 {
1774 unsigned long flags = (unsigned long)info;
1775
1776 event_sched_out(event, cpuctx, ctx);
1777 if (flags & DETACH_GROUP)
1778 perf_group_detach(event);
1779 list_del_event(event, ctx);
1780
1781 if (!ctx->nr_events && ctx->is_active) {
1782 ctx->is_active = 0;
1783 if (ctx->task) {
1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 cpuctx->task_ctx = NULL;
1786 }
1787 }
1788 }
1789
1790 /*
1791 * Remove the event from a task's (or a CPU's) list of events.
1792 *
1793 * If event->ctx is a cloned context, callers must make sure that
1794 * every task struct that event->ctx->task could possibly point to
1795 * remains valid. This is OK when called from perf_release since
1796 * that only calls us on the top-level context, which can't be a clone.
1797 * When called from perf_event_exit_task, it's OK because the
1798 * context has been detached from its task.
1799 */
1800 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1801 {
1802 lockdep_assert_held(&event->ctx->mutex);
1803
1804 event_function_call(event, __perf_remove_from_context, (void *)flags);
1805 }
1806
1807 /*
1808 * Cross CPU call to disable a performance event
1809 */
1810 static void __perf_event_disable(struct perf_event *event,
1811 struct perf_cpu_context *cpuctx,
1812 struct perf_event_context *ctx,
1813 void *info)
1814 {
1815 if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 return;
1817
1818 update_context_time(ctx);
1819 update_cgrp_time_from_event(event);
1820 update_group_times(event);
1821 if (event == event->group_leader)
1822 group_sched_out(event, cpuctx, ctx);
1823 else
1824 event_sched_out(event, cpuctx, ctx);
1825 event->state = PERF_EVENT_STATE_OFF;
1826 }
1827
1828 /*
1829 * Disable a event.
1830 *
1831 * If event->ctx is a cloned context, callers must make sure that
1832 * every task struct that event->ctx->task could possibly point to
1833 * remains valid. This condition is satisifed when called through
1834 * perf_event_for_each_child or perf_event_for_each because they
1835 * hold the top-level event's child_mutex, so any descendant that
1836 * goes to exit will block in perf_event_exit_event().
1837 *
1838 * When called from perf_pending_event it's OK because event->ctx
1839 * is the current context on this CPU and preemption is disabled,
1840 * hence we can't get into perf_event_task_sched_out for this context.
1841 */
1842 static void _perf_event_disable(struct perf_event *event)
1843 {
1844 struct perf_event_context *ctx = event->ctx;
1845
1846 raw_spin_lock_irq(&ctx->lock);
1847 if (event->state <= PERF_EVENT_STATE_OFF) {
1848 raw_spin_unlock_irq(&ctx->lock);
1849 return;
1850 }
1851 raw_spin_unlock_irq(&ctx->lock);
1852
1853 event_function_call(event, __perf_event_disable, NULL);
1854 }
1855
1856 void perf_event_disable_local(struct perf_event *event)
1857 {
1858 event_function_local(event, __perf_event_disable, NULL);
1859 }
1860
1861 /*
1862 * Strictly speaking kernel users cannot create groups and therefore this
1863 * interface does not need the perf_event_ctx_lock() magic.
1864 */
1865 void perf_event_disable(struct perf_event *event)
1866 {
1867 struct perf_event_context *ctx;
1868
1869 ctx = perf_event_ctx_lock(event);
1870 _perf_event_disable(event);
1871 perf_event_ctx_unlock(event, ctx);
1872 }
1873 EXPORT_SYMBOL_GPL(perf_event_disable);
1874
1875 static void perf_set_shadow_time(struct perf_event *event,
1876 struct perf_event_context *ctx,
1877 u64 tstamp)
1878 {
1879 /*
1880 * use the correct time source for the time snapshot
1881 *
1882 * We could get by without this by leveraging the
1883 * fact that to get to this function, the caller
1884 * has most likely already called update_context_time()
1885 * and update_cgrp_time_xx() and thus both timestamp
1886 * are identical (or very close). Given that tstamp is,
1887 * already adjusted for cgroup, we could say that:
1888 * tstamp - ctx->timestamp
1889 * is equivalent to
1890 * tstamp - cgrp->timestamp.
1891 *
1892 * Then, in perf_output_read(), the calculation would
1893 * work with no changes because:
1894 * - event is guaranteed scheduled in
1895 * - no scheduled out in between
1896 * - thus the timestamp would be the same
1897 *
1898 * But this is a bit hairy.
1899 *
1900 * So instead, we have an explicit cgroup call to remain
1901 * within the time time source all along. We believe it
1902 * is cleaner and simpler to understand.
1903 */
1904 if (is_cgroup_event(event))
1905 perf_cgroup_set_shadow_time(event, tstamp);
1906 else
1907 event->shadow_ctx_time = tstamp - ctx->timestamp;
1908 }
1909
1910 #define MAX_INTERRUPTS (~0ULL)
1911
1912 static void perf_log_throttle(struct perf_event *event, int enable);
1913 static void perf_log_itrace_start(struct perf_event *event);
1914
1915 static int
1916 event_sched_in(struct perf_event *event,
1917 struct perf_cpu_context *cpuctx,
1918 struct perf_event_context *ctx)
1919 {
1920 u64 tstamp = perf_event_time(event);
1921 int ret = 0;
1922
1923 lockdep_assert_held(&ctx->lock);
1924
1925 if (event->state <= PERF_EVENT_STATE_OFF)
1926 return 0;
1927
1928 event->state = PERF_EVENT_STATE_ACTIVE;
1929 event->oncpu = smp_processor_id();
1930
1931 /*
1932 * Unthrottle events, since we scheduled we might have missed several
1933 * ticks already, also for a heavily scheduling task there is little
1934 * guarantee it'll get a tick in a timely manner.
1935 */
1936 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1937 perf_log_throttle(event, 1);
1938 event->hw.interrupts = 0;
1939 }
1940
1941 /*
1942 * The new state must be visible before we turn it on in the hardware:
1943 */
1944 smp_wmb();
1945
1946 perf_pmu_disable(event->pmu);
1947
1948 perf_set_shadow_time(event, ctx, tstamp);
1949
1950 perf_log_itrace_start(event);
1951
1952 if (event->pmu->add(event, PERF_EF_START)) {
1953 event->state = PERF_EVENT_STATE_INACTIVE;
1954 event->oncpu = -1;
1955 ret = -EAGAIN;
1956 goto out;
1957 }
1958
1959 event->tstamp_running += tstamp - event->tstamp_stopped;
1960
1961 if (!is_software_event(event))
1962 cpuctx->active_oncpu++;
1963 if (!ctx->nr_active++)
1964 perf_event_ctx_activate(ctx);
1965 if (event->attr.freq && event->attr.sample_freq)
1966 ctx->nr_freq++;
1967
1968 if (event->attr.exclusive)
1969 cpuctx->exclusive = 1;
1970
1971 out:
1972 perf_pmu_enable(event->pmu);
1973
1974 return ret;
1975 }
1976
1977 static int
1978 group_sched_in(struct perf_event *group_event,
1979 struct perf_cpu_context *cpuctx,
1980 struct perf_event_context *ctx)
1981 {
1982 struct perf_event *event, *partial_group = NULL;
1983 struct pmu *pmu = ctx->pmu;
1984 u64 now = ctx->time;
1985 bool simulate = false;
1986
1987 if (group_event->state == PERF_EVENT_STATE_OFF)
1988 return 0;
1989
1990 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991
1992 if (event_sched_in(group_event, cpuctx, ctx)) {
1993 pmu->cancel_txn(pmu);
1994 perf_mux_hrtimer_restart(cpuctx);
1995 return -EAGAIN;
1996 }
1997
1998 /*
1999 * Schedule in siblings as one group (if any):
2000 */
2001 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002 if (event_sched_in(event, cpuctx, ctx)) {
2003 partial_group = event;
2004 goto group_error;
2005 }
2006 }
2007
2008 if (!pmu->commit_txn(pmu))
2009 return 0;
2010
2011 group_error:
2012 /*
2013 * Groups can be scheduled in as one unit only, so undo any
2014 * partial group before returning:
2015 * The events up to the failed event are scheduled out normally,
2016 * tstamp_stopped will be updated.
2017 *
2018 * The failed events and the remaining siblings need to have
2019 * their timings updated as if they had gone thru event_sched_in()
2020 * and event_sched_out(). This is required to get consistent timings
2021 * across the group. This also takes care of the case where the group
2022 * could never be scheduled by ensuring tstamp_stopped is set to mark
2023 * the time the event was actually stopped, such that time delta
2024 * calculation in update_event_times() is correct.
2025 */
2026 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2027 if (event == partial_group)
2028 simulate = true;
2029
2030 if (simulate) {
2031 event->tstamp_running += now - event->tstamp_stopped;
2032 event->tstamp_stopped = now;
2033 } else {
2034 event_sched_out(event, cpuctx, ctx);
2035 }
2036 }
2037 event_sched_out(group_event, cpuctx, ctx);
2038
2039 pmu->cancel_txn(pmu);
2040
2041 perf_mux_hrtimer_restart(cpuctx);
2042
2043 return -EAGAIN;
2044 }
2045
2046 /*
2047 * Work out whether we can put this event group on the CPU now.
2048 */
2049 static int group_can_go_on(struct perf_event *event,
2050 struct perf_cpu_context *cpuctx,
2051 int can_add_hw)
2052 {
2053 /*
2054 * Groups consisting entirely of software events can always go on.
2055 */
2056 if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 return 1;
2058 /*
2059 * If an exclusive group is already on, no other hardware
2060 * events can go on.
2061 */
2062 if (cpuctx->exclusive)
2063 return 0;
2064 /*
2065 * If this group is exclusive and there are already
2066 * events on the CPU, it can't go on.
2067 */
2068 if (event->attr.exclusive && cpuctx->active_oncpu)
2069 return 0;
2070 /*
2071 * Otherwise, try to add it if all previous groups were able
2072 * to go on.
2073 */
2074 return can_add_hw;
2075 }
2076
2077 static void add_event_to_ctx(struct perf_event *event,
2078 struct perf_event_context *ctx)
2079 {
2080 u64 tstamp = perf_event_time(event);
2081
2082 list_add_event(event, ctx);
2083 perf_group_attach(event);
2084 event->tstamp_enabled = tstamp;
2085 event->tstamp_running = tstamp;
2086 event->tstamp_stopped = tstamp;
2087 }
2088
2089 static void ctx_sched_out(struct perf_event_context *ctx,
2090 struct perf_cpu_context *cpuctx,
2091 enum event_type_t event_type);
2092 static void
2093 ctx_sched_in(struct perf_event_context *ctx,
2094 struct perf_cpu_context *cpuctx,
2095 enum event_type_t event_type,
2096 struct task_struct *task);
2097
2098 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2099 struct perf_event_context *ctx)
2100 {
2101 if (!cpuctx->task_ctx)
2102 return;
2103
2104 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2105 return;
2106
2107 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2108 }
2109
2110 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2111 struct perf_event_context *ctx,
2112 struct task_struct *task)
2113 {
2114 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2115 if (ctx)
2116 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2117 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2118 if (ctx)
2119 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2120 }
2121
2122 static void ctx_resched(struct perf_cpu_context *cpuctx,
2123 struct perf_event_context *task_ctx)
2124 {
2125 perf_pmu_disable(cpuctx->ctx.pmu);
2126 if (task_ctx)
2127 task_ctx_sched_out(cpuctx, task_ctx);
2128 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2129 perf_event_sched_in(cpuctx, task_ctx, current);
2130 perf_pmu_enable(cpuctx->ctx.pmu);
2131 }
2132
2133 /*
2134 * Cross CPU call to install and enable a performance event
2135 *
2136 * Very similar to remote_function() + event_function() but cannot assume that
2137 * things like ctx->is_active and cpuctx->task_ctx are set.
2138 */
2139 static int __perf_install_in_context(void *info)
2140 {
2141 struct perf_event *event = info;
2142 struct perf_event_context *ctx = event->ctx;
2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145 bool activate = true;
2146 int ret = 0;
2147
2148 raw_spin_lock(&cpuctx->ctx.lock);
2149 if (ctx->task) {
2150 raw_spin_lock(&ctx->lock);
2151 task_ctx = ctx;
2152
2153 /* If we're on the wrong CPU, try again */
2154 if (task_cpu(ctx->task) != smp_processor_id()) {
2155 ret = -ESRCH;
2156 goto unlock;
2157 }
2158
2159 /*
2160 * If we're on the right CPU, see if the task we target is
2161 * current, if not we don't have to activate the ctx, a future
2162 * context switch will do that for us.
2163 */
2164 if (ctx->task != current)
2165 activate = false;
2166 else
2167 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2168
2169 } else if (task_ctx) {
2170 raw_spin_lock(&task_ctx->lock);
2171 }
2172
2173 if (activate) {
2174 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2175 add_event_to_ctx(event, ctx);
2176 ctx_resched(cpuctx, task_ctx);
2177 } else {
2178 add_event_to_ctx(event, ctx);
2179 }
2180
2181 unlock:
2182 perf_ctx_unlock(cpuctx, task_ctx);
2183
2184 return ret;
2185 }
2186
2187 /*
2188 * Attach a performance event to a context.
2189 *
2190 * Very similar to event_function_call, see comment there.
2191 */
2192 static void
2193 perf_install_in_context(struct perf_event_context *ctx,
2194 struct perf_event *event,
2195 int cpu)
2196 {
2197 struct task_struct *task = READ_ONCE(ctx->task);
2198
2199 lockdep_assert_held(&ctx->mutex);
2200
2201 event->ctx = ctx;
2202 if (event->cpu != -1)
2203 event->cpu = cpu;
2204
2205 if (!task) {
2206 cpu_function_call(cpu, __perf_install_in_context, event);
2207 return;
2208 }
2209
2210 /*
2211 * Should not happen, we validate the ctx is still alive before calling.
2212 */
2213 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2214 return;
2215
2216 /*
2217 * Installing events is tricky because we cannot rely on ctx->is_active
2218 * to be set in case this is the nr_events 0 -> 1 transition.
2219 */
2220 again:
2221 /*
2222 * Cannot use task_function_call() because we need to run on the task's
2223 * CPU regardless of whether its current or not.
2224 */
2225 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2226 return;
2227
2228 raw_spin_lock_irq(&ctx->lock);
2229 task = ctx->task;
2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2231 /*
2232 * Cannot happen because we already checked above (which also
2233 * cannot happen), and we hold ctx->mutex, which serializes us
2234 * against perf_event_exit_task_context().
2235 */
2236 raw_spin_unlock_irq(&ctx->lock);
2237 return;
2238 }
2239 raw_spin_unlock_irq(&ctx->lock);
2240 /*
2241 * Since !ctx->is_active doesn't mean anything, we must IPI
2242 * unconditionally.
2243 */
2244 goto again;
2245 }
2246
2247 /*
2248 * Put a event into inactive state and update time fields.
2249 * Enabling the leader of a group effectively enables all
2250 * the group members that aren't explicitly disabled, so we
2251 * have to update their ->tstamp_enabled also.
2252 * Note: this works for group members as well as group leaders
2253 * since the non-leader members' sibling_lists will be empty.
2254 */
2255 static void __perf_event_mark_enabled(struct perf_event *event)
2256 {
2257 struct perf_event *sub;
2258 u64 tstamp = perf_event_time(event);
2259
2260 event->state = PERF_EVENT_STATE_INACTIVE;
2261 event->tstamp_enabled = tstamp - event->total_time_enabled;
2262 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2263 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2264 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2265 }
2266 }
2267
2268 /*
2269 * Cross CPU call to enable a performance event
2270 */
2271 static void __perf_event_enable(struct perf_event *event,
2272 struct perf_cpu_context *cpuctx,
2273 struct perf_event_context *ctx,
2274 void *info)
2275 {
2276 struct perf_event *leader = event->group_leader;
2277 struct perf_event_context *task_ctx;
2278
2279 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2280 event->state <= PERF_EVENT_STATE_ERROR)
2281 return;
2282
2283 if (ctx->is_active)
2284 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285
2286 __perf_event_mark_enabled(event);
2287
2288 if (!ctx->is_active)
2289 return;
2290
2291 if (!event_filter_match(event)) {
2292 if (is_cgroup_event(event))
2293 perf_cgroup_defer_enabled(event);
2294 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2295 return;
2296 }
2297
2298 /*
2299 * If the event is in a group and isn't the group leader,
2300 * then don't put it on unless the group is on.
2301 */
2302 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304 return;
2305 }
2306
2307 task_ctx = cpuctx->task_ctx;
2308 if (ctx->task)
2309 WARN_ON_ONCE(task_ctx != ctx);
2310
2311 ctx_resched(cpuctx, task_ctx);
2312 }
2313
2314 /*
2315 * Enable a event.
2316 *
2317 * If event->ctx is a cloned context, callers must make sure that
2318 * every task struct that event->ctx->task could possibly point to
2319 * remains valid. This condition is satisfied when called through
2320 * perf_event_for_each_child or perf_event_for_each as described
2321 * for perf_event_disable.
2322 */
2323 static void _perf_event_enable(struct perf_event *event)
2324 {
2325 struct perf_event_context *ctx = event->ctx;
2326
2327 raw_spin_lock_irq(&ctx->lock);
2328 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2329 event->state < PERF_EVENT_STATE_ERROR) {
2330 raw_spin_unlock_irq(&ctx->lock);
2331 return;
2332 }
2333
2334 /*
2335 * If the event is in error state, clear that first.
2336 *
2337 * That way, if we see the event in error state below, we know that it
2338 * has gone back into error state, as distinct from the task having
2339 * been scheduled away before the cross-call arrived.
2340 */
2341 if (event->state == PERF_EVENT_STATE_ERROR)
2342 event->state = PERF_EVENT_STATE_OFF;
2343 raw_spin_unlock_irq(&ctx->lock);
2344
2345 event_function_call(event, __perf_event_enable, NULL);
2346 }
2347
2348 /*
2349 * See perf_event_disable();
2350 */
2351 void perf_event_enable(struct perf_event *event)
2352 {
2353 struct perf_event_context *ctx;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 _perf_event_enable(event);
2357 perf_event_ctx_unlock(event, ctx);
2358 }
2359 EXPORT_SYMBOL_GPL(perf_event_enable);
2360
2361 static int _perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 /*
2364 * not supported on inherited events
2365 */
2366 if (event->attr.inherit || !is_sampling_event(event))
2367 return -EINVAL;
2368
2369 atomic_add(refresh, &event->event_limit);
2370 _perf_event_enable(event);
2371
2372 return 0;
2373 }
2374
2375 /*
2376 * See perf_event_disable()
2377 */
2378 int perf_event_refresh(struct perf_event *event, int refresh)
2379 {
2380 struct perf_event_context *ctx;
2381 int ret;
2382
2383 ctx = perf_event_ctx_lock(event);
2384 ret = _perf_event_refresh(event, refresh);
2385 perf_event_ctx_unlock(event, ctx);
2386
2387 return ret;
2388 }
2389 EXPORT_SYMBOL_GPL(perf_event_refresh);
2390
2391 static void ctx_sched_out(struct perf_event_context *ctx,
2392 struct perf_cpu_context *cpuctx,
2393 enum event_type_t event_type)
2394 {
2395 int is_active = ctx->is_active;
2396 struct perf_event *event;
2397
2398 lockdep_assert_held(&ctx->lock);
2399
2400 if (likely(!ctx->nr_events)) {
2401 /*
2402 * See __perf_remove_from_context().
2403 */
2404 WARN_ON_ONCE(ctx->is_active);
2405 if (ctx->task)
2406 WARN_ON_ONCE(cpuctx->task_ctx);
2407 return;
2408 }
2409
2410 ctx->is_active &= ~event_type;
2411 if (!(ctx->is_active & EVENT_ALL))
2412 ctx->is_active = 0;
2413
2414 if (ctx->task) {
2415 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2416 if (!ctx->is_active)
2417 cpuctx->task_ctx = NULL;
2418 }
2419
2420 is_active ^= ctx->is_active; /* changed bits */
2421
2422 if (is_active & EVENT_TIME) {
2423 /* update (and stop) ctx time */
2424 update_context_time(ctx);
2425 update_cgrp_time_from_cpuctx(cpuctx);
2426 }
2427
2428 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2429 return;
2430
2431 perf_pmu_disable(ctx->pmu);
2432 if (is_active & EVENT_PINNED) {
2433 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2434 group_sched_out(event, cpuctx, ctx);
2435 }
2436
2437 if (is_active & EVENT_FLEXIBLE) {
2438 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2439 group_sched_out(event, cpuctx, ctx);
2440 }
2441 perf_pmu_enable(ctx->pmu);
2442 }
2443
2444 /*
2445 * Test whether two contexts are equivalent, i.e. whether they have both been
2446 * cloned from the same version of the same context.
2447 *
2448 * Equivalence is measured using a generation number in the context that is
2449 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2450 * and list_del_event().
2451 */
2452 static int context_equiv(struct perf_event_context *ctx1,
2453 struct perf_event_context *ctx2)
2454 {
2455 lockdep_assert_held(&ctx1->lock);
2456 lockdep_assert_held(&ctx2->lock);
2457
2458 /* Pinning disables the swap optimization */
2459 if (ctx1->pin_count || ctx2->pin_count)
2460 return 0;
2461
2462 /* If ctx1 is the parent of ctx2 */
2463 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2464 return 1;
2465
2466 /* If ctx2 is the parent of ctx1 */
2467 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2468 return 1;
2469
2470 /*
2471 * If ctx1 and ctx2 have the same parent; we flatten the parent
2472 * hierarchy, see perf_event_init_context().
2473 */
2474 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2475 ctx1->parent_gen == ctx2->parent_gen)
2476 return 1;
2477
2478 /* Unmatched */
2479 return 0;
2480 }
2481
2482 static void __perf_event_sync_stat(struct perf_event *event,
2483 struct perf_event *next_event)
2484 {
2485 u64 value;
2486
2487 if (!event->attr.inherit_stat)
2488 return;
2489
2490 /*
2491 * Update the event value, we cannot use perf_event_read()
2492 * because we're in the middle of a context switch and have IRQs
2493 * disabled, which upsets smp_call_function_single(), however
2494 * we know the event must be on the current CPU, therefore we
2495 * don't need to use it.
2496 */
2497 switch (event->state) {
2498 case PERF_EVENT_STATE_ACTIVE:
2499 event->pmu->read(event);
2500 /* fall-through */
2501
2502 case PERF_EVENT_STATE_INACTIVE:
2503 update_event_times(event);
2504 break;
2505
2506 default:
2507 break;
2508 }
2509
2510 /*
2511 * In order to keep per-task stats reliable we need to flip the event
2512 * values when we flip the contexts.
2513 */
2514 value = local64_read(&next_event->count);
2515 value = local64_xchg(&event->count, value);
2516 local64_set(&next_event->count, value);
2517
2518 swap(event->total_time_enabled, next_event->total_time_enabled);
2519 swap(event->total_time_running, next_event->total_time_running);
2520
2521 /*
2522 * Since we swizzled the values, update the user visible data too.
2523 */
2524 perf_event_update_userpage(event);
2525 perf_event_update_userpage(next_event);
2526 }
2527
2528 static void perf_event_sync_stat(struct perf_event_context *ctx,
2529 struct perf_event_context *next_ctx)
2530 {
2531 struct perf_event *event, *next_event;
2532
2533 if (!ctx->nr_stat)
2534 return;
2535
2536 update_context_time(ctx);
2537
2538 event = list_first_entry(&ctx->event_list,
2539 struct perf_event, event_entry);
2540
2541 next_event = list_first_entry(&next_ctx->event_list,
2542 struct perf_event, event_entry);
2543
2544 while (&event->event_entry != &ctx->event_list &&
2545 &next_event->event_entry != &next_ctx->event_list) {
2546
2547 __perf_event_sync_stat(event, next_event);
2548
2549 event = list_next_entry(event, event_entry);
2550 next_event = list_next_entry(next_event, event_entry);
2551 }
2552 }
2553
2554 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2555 struct task_struct *next)
2556 {
2557 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2558 struct perf_event_context *next_ctx;
2559 struct perf_event_context *parent, *next_parent;
2560 struct perf_cpu_context *cpuctx;
2561 int do_switch = 1;
2562
2563 if (likely(!ctx))
2564 return;
2565
2566 cpuctx = __get_cpu_context(ctx);
2567 if (!cpuctx->task_ctx)
2568 return;
2569
2570 rcu_read_lock();
2571 next_ctx = next->perf_event_ctxp[ctxn];
2572 if (!next_ctx)
2573 goto unlock;
2574
2575 parent = rcu_dereference(ctx->parent_ctx);
2576 next_parent = rcu_dereference(next_ctx->parent_ctx);
2577
2578 /* If neither context have a parent context; they cannot be clones. */
2579 if (!parent && !next_parent)
2580 goto unlock;
2581
2582 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2583 /*
2584 * Looks like the two contexts are clones, so we might be
2585 * able to optimize the context switch. We lock both
2586 * contexts and check that they are clones under the
2587 * lock (including re-checking that neither has been
2588 * uncloned in the meantime). It doesn't matter which
2589 * order we take the locks because no other cpu could
2590 * be trying to lock both of these tasks.
2591 */
2592 raw_spin_lock(&ctx->lock);
2593 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2594 if (context_equiv(ctx, next_ctx)) {
2595 WRITE_ONCE(ctx->task, next);
2596 WRITE_ONCE(next_ctx->task, task);
2597
2598 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2599
2600 /*
2601 * RCU_INIT_POINTER here is safe because we've not
2602 * modified the ctx and the above modification of
2603 * ctx->task and ctx->task_ctx_data are immaterial
2604 * since those values are always verified under
2605 * ctx->lock which we're now holding.
2606 */
2607 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2608 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2609
2610 do_switch = 0;
2611
2612 perf_event_sync_stat(ctx, next_ctx);
2613 }
2614 raw_spin_unlock(&next_ctx->lock);
2615 raw_spin_unlock(&ctx->lock);
2616 }
2617 unlock:
2618 rcu_read_unlock();
2619
2620 if (do_switch) {
2621 raw_spin_lock(&ctx->lock);
2622 task_ctx_sched_out(cpuctx, ctx);
2623 raw_spin_unlock(&ctx->lock);
2624 }
2625 }
2626
2627 void perf_sched_cb_dec(struct pmu *pmu)
2628 {
2629 this_cpu_dec(perf_sched_cb_usages);
2630 }
2631
2632 void perf_sched_cb_inc(struct pmu *pmu)
2633 {
2634 this_cpu_inc(perf_sched_cb_usages);
2635 }
2636
2637 /*
2638 * This function provides the context switch callback to the lower code
2639 * layer. It is invoked ONLY when the context switch callback is enabled.
2640 */
2641 static void perf_pmu_sched_task(struct task_struct *prev,
2642 struct task_struct *next,
2643 bool sched_in)
2644 {
2645 struct perf_cpu_context *cpuctx;
2646 struct pmu *pmu;
2647 unsigned long flags;
2648
2649 if (prev == next)
2650 return;
2651
2652 local_irq_save(flags);
2653
2654 rcu_read_lock();
2655
2656 list_for_each_entry_rcu(pmu, &pmus, entry) {
2657 if (pmu->sched_task) {
2658 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2659
2660 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2661
2662 perf_pmu_disable(pmu);
2663
2664 pmu->sched_task(cpuctx->task_ctx, sched_in);
2665
2666 perf_pmu_enable(pmu);
2667
2668 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2669 }
2670 }
2671
2672 rcu_read_unlock();
2673
2674 local_irq_restore(flags);
2675 }
2676
2677 static void perf_event_switch(struct task_struct *task,
2678 struct task_struct *next_prev, bool sched_in);
2679
2680 #define for_each_task_context_nr(ctxn) \
2681 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2682
2683 /*
2684 * Called from scheduler to remove the events of the current task,
2685 * with interrupts disabled.
2686 *
2687 * We stop each event and update the event value in event->count.
2688 *
2689 * This does not protect us against NMI, but disable()
2690 * sets the disabled bit in the control field of event _before_
2691 * accessing the event control register. If a NMI hits, then it will
2692 * not restart the event.
2693 */
2694 void __perf_event_task_sched_out(struct task_struct *task,
2695 struct task_struct *next)
2696 {
2697 int ctxn;
2698
2699 if (__this_cpu_read(perf_sched_cb_usages))
2700 perf_pmu_sched_task(task, next, false);
2701
2702 if (atomic_read(&nr_switch_events))
2703 perf_event_switch(task, next, false);
2704
2705 for_each_task_context_nr(ctxn)
2706 perf_event_context_sched_out(task, ctxn, next);
2707
2708 /*
2709 * if cgroup events exist on this CPU, then we need
2710 * to check if we have to switch out PMU state.
2711 * cgroup event are system-wide mode only
2712 */
2713 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2714 perf_cgroup_sched_out(task, next);
2715 }
2716
2717 /*
2718 * Called with IRQs disabled
2719 */
2720 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2721 enum event_type_t event_type)
2722 {
2723 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2724 }
2725
2726 static void
2727 ctx_pinned_sched_in(struct perf_event_context *ctx,
2728 struct perf_cpu_context *cpuctx)
2729 {
2730 struct perf_event *event;
2731
2732 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2733 if (event->state <= PERF_EVENT_STATE_OFF)
2734 continue;
2735 if (!event_filter_match(event))
2736 continue;
2737
2738 /* may need to reset tstamp_enabled */
2739 if (is_cgroup_event(event))
2740 perf_cgroup_mark_enabled(event, ctx);
2741
2742 if (group_can_go_on(event, cpuctx, 1))
2743 group_sched_in(event, cpuctx, ctx);
2744
2745 /*
2746 * If this pinned group hasn't been scheduled,
2747 * put it in error state.
2748 */
2749 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2750 update_group_times(event);
2751 event->state = PERF_EVENT_STATE_ERROR;
2752 }
2753 }
2754 }
2755
2756 static void
2757 ctx_flexible_sched_in(struct perf_event_context *ctx,
2758 struct perf_cpu_context *cpuctx)
2759 {
2760 struct perf_event *event;
2761 int can_add_hw = 1;
2762
2763 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2764 /* Ignore events in OFF or ERROR state */
2765 if (event->state <= PERF_EVENT_STATE_OFF)
2766 continue;
2767 /*
2768 * Listen to the 'cpu' scheduling filter constraint
2769 * of events:
2770 */
2771 if (!event_filter_match(event))
2772 continue;
2773
2774 /* may need to reset tstamp_enabled */
2775 if (is_cgroup_event(event))
2776 perf_cgroup_mark_enabled(event, ctx);
2777
2778 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2779 if (group_sched_in(event, cpuctx, ctx))
2780 can_add_hw = 0;
2781 }
2782 }
2783 }
2784
2785 static void
2786 ctx_sched_in(struct perf_event_context *ctx,
2787 struct perf_cpu_context *cpuctx,
2788 enum event_type_t event_type,
2789 struct task_struct *task)
2790 {
2791 int is_active = ctx->is_active;
2792 u64 now;
2793
2794 lockdep_assert_held(&ctx->lock);
2795
2796 if (likely(!ctx->nr_events))
2797 return;
2798
2799 ctx->is_active |= (event_type | EVENT_TIME);
2800 if (ctx->task) {
2801 if (!is_active)
2802 cpuctx->task_ctx = ctx;
2803 else
2804 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2805 }
2806
2807 is_active ^= ctx->is_active; /* changed bits */
2808
2809 if (is_active & EVENT_TIME) {
2810 /* start ctx time */
2811 now = perf_clock();
2812 ctx->timestamp = now;
2813 perf_cgroup_set_timestamp(task, ctx);
2814 }
2815
2816 /*
2817 * First go through the list and put on any pinned groups
2818 * in order to give them the best chance of going on.
2819 */
2820 if (is_active & EVENT_PINNED)
2821 ctx_pinned_sched_in(ctx, cpuctx);
2822
2823 /* Then walk through the lower prio flexible groups */
2824 if (is_active & EVENT_FLEXIBLE)
2825 ctx_flexible_sched_in(ctx, cpuctx);
2826 }
2827
2828 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2829 enum event_type_t event_type,
2830 struct task_struct *task)
2831 {
2832 struct perf_event_context *ctx = &cpuctx->ctx;
2833
2834 ctx_sched_in(ctx, cpuctx, event_type, task);
2835 }
2836
2837 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2838 struct task_struct *task)
2839 {
2840 struct perf_cpu_context *cpuctx;
2841
2842 cpuctx = __get_cpu_context(ctx);
2843 if (cpuctx->task_ctx == ctx)
2844 return;
2845
2846 perf_ctx_lock(cpuctx, ctx);
2847 perf_pmu_disable(ctx->pmu);
2848 /*
2849 * We want to keep the following priority order:
2850 * cpu pinned (that don't need to move), task pinned,
2851 * cpu flexible, task flexible.
2852 */
2853 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2854 perf_event_sched_in(cpuctx, ctx, task);
2855 perf_pmu_enable(ctx->pmu);
2856 perf_ctx_unlock(cpuctx, ctx);
2857 }
2858
2859 /*
2860 * Called from scheduler to add the events of the current task
2861 * with interrupts disabled.
2862 *
2863 * We restore the event value and then enable it.
2864 *
2865 * This does not protect us against NMI, but enable()
2866 * sets the enabled bit in the control field of event _before_
2867 * accessing the event control register. If a NMI hits, then it will
2868 * keep the event running.
2869 */
2870 void __perf_event_task_sched_in(struct task_struct *prev,
2871 struct task_struct *task)
2872 {
2873 struct perf_event_context *ctx;
2874 int ctxn;
2875
2876 /*
2877 * If cgroup events exist on this CPU, then we need to check if we have
2878 * to switch in PMU state; cgroup event are system-wide mode only.
2879 *
2880 * Since cgroup events are CPU events, we must schedule these in before
2881 * we schedule in the task events.
2882 */
2883 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2884 perf_cgroup_sched_in(prev, task);
2885
2886 for_each_task_context_nr(ctxn) {
2887 ctx = task->perf_event_ctxp[ctxn];
2888 if (likely(!ctx))
2889 continue;
2890
2891 perf_event_context_sched_in(ctx, task);
2892 }
2893
2894 if (atomic_read(&nr_switch_events))
2895 perf_event_switch(task, prev, true);
2896
2897 if (__this_cpu_read(perf_sched_cb_usages))
2898 perf_pmu_sched_task(prev, task, true);
2899 }
2900
2901 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2902 {
2903 u64 frequency = event->attr.sample_freq;
2904 u64 sec = NSEC_PER_SEC;
2905 u64 divisor, dividend;
2906
2907 int count_fls, nsec_fls, frequency_fls, sec_fls;
2908
2909 count_fls = fls64(count);
2910 nsec_fls = fls64(nsec);
2911 frequency_fls = fls64(frequency);
2912 sec_fls = 30;
2913
2914 /*
2915 * We got @count in @nsec, with a target of sample_freq HZ
2916 * the target period becomes:
2917 *
2918 * @count * 10^9
2919 * period = -------------------
2920 * @nsec * sample_freq
2921 *
2922 */
2923
2924 /*
2925 * Reduce accuracy by one bit such that @a and @b converge
2926 * to a similar magnitude.
2927 */
2928 #define REDUCE_FLS(a, b) \
2929 do { \
2930 if (a##_fls > b##_fls) { \
2931 a >>= 1; \
2932 a##_fls--; \
2933 } else { \
2934 b >>= 1; \
2935 b##_fls--; \
2936 } \
2937 } while (0)
2938
2939 /*
2940 * Reduce accuracy until either term fits in a u64, then proceed with
2941 * the other, so that finally we can do a u64/u64 division.
2942 */
2943 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2944 REDUCE_FLS(nsec, frequency);
2945 REDUCE_FLS(sec, count);
2946 }
2947
2948 if (count_fls + sec_fls > 64) {
2949 divisor = nsec * frequency;
2950
2951 while (count_fls + sec_fls > 64) {
2952 REDUCE_FLS(count, sec);
2953 divisor >>= 1;
2954 }
2955
2956 dividend = count * sec;
2957 } else {
2958 dividend = count * sec;
2959
2960 while (nsec_fls + frequency_fls > 64) {
2961 REDUCE_FLS(nsec, frequency);
2962 dividend >>= 1;
2963 }
2964
2965 divisor = nsec * frequency;
2966 }
2967
2968 if (!divisor)
2969 return dividend;
2970
2971 return div64_u64(dividend, divisor);
2972 }
2973
2974 static DEFINE_PER_CPU(int, perf_throttled_count);
2975 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2976
2977 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2978 {
2979 struct hw_perf_event *hwc = &event->hw;
2980 s64 period, sample_period;
2981 s64 delta;
2982
2983 period = perf_calculate_period(event, nsec, count);
2984
2985 delta = (s64)(period - hwc->sample_period);
2986 delta = (delta + 7) / 8; /* low pass filter */
2987
2988 sample_period = hwc->sample_period + delta;
2989
2990 if (!sample_period)
2991 sample_period = 1;
2992
2993 hwc->sample_period = sample_period;
2994
2995 if (local64_read(&hwc->period_left) > 8*sample_period) {
2996 if (disable)
2997 event->pmu->stop(event, PERF_EF_UPDATE);
2998
2999 local64_set(&hwc->period_left, 0);
3000
3001 if (disable)
3002 event->pmu->start(event, PERF_EF_RELOAD);
3003 }
3004 }
3005
3006 /*
3007 * combine freq adjustment with unthrottling to avoid two passes over the
3008 * events. At the same time, make sure, having freq events does not change
3009 * the rate of unthrottling as that would introduce bias.
3010 */
3011 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3012 int needs_unthr)
3013 {
3014 struct perf_event *event;
3015 struct hw_perf_event *hwc;
3016 u64 now, period = TICK_NSEC;
3017 s64 delta;
3018
3019 /*
3020 * only need to iterate over all events iff:
3021 * - context have events in frequency mode (needs freq adjust)
3022 * - there are events to unthrottle on this cpu
3023 */
3024 if (!(ctx->nr_freq || needs_unthr))
3025 return;
3026
3027 raw_spin_lock(&ctx->lock);
3028 perf_pmu_disable(ctx->pmu);
3029
3030 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3031 if (event->state != PERF_EVENT_STATE_ACTIVE)
3032 continue;
3033
3034 if (!event_filter_match(event))
3035 continue;
3036
3037 perf_pmu_disable(event->pmu);
3038
3039 hwc = &event->hw;
3040
3041 if (hwc->interrupts == MAX_INTERRUPTS) {
3042 hwc->interrupts = 0;
3043 perf_log_throttle(event, 1);
3044 event->pmu->start(event, 0);
3045 }
3046
3047 if (!event->attr.freq || !event->attr.sample_freq)
3048 goto next;
3049
3050 /*
3051 * stop the event and update event->count
3052 */
3053 event->pmu->stop(event, PERF_EF_UPDATE);
3054
3055 now = local64_read(&event->count);
3056 delta = now - hwc->freq_count_stamp;
3057 hwc->freq_count_stamp = now;
3058
3059 /*
3060 * restart the event
3061 * reload only if value has changed
3062 * we have stopped the event so tell that
3063 * to perf_adjust_period() to avoid stopping it
3064 * twice.
3065 */
3066 if (delta > 0)
3067 perf_adjust_period(event, period, delta, false);
3068
3069 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3070 next:
3071 perf_pmu_enable(event->pmu);
3072 }
3073
3074 perf_pmu_enable(ctx->pmu);
3075 raw_spin_unlock(&ctx->lock);
3076 }
3077
3078 /*
3079 * Round-robin a context's events:
3080 */
3081 static void rotate_ctx(struct perf_event_context *ctx)
3082 {
3083 /*
3084 * Rotate the first entry last of non-pinned groups. Rotation might be
3085 * disabled by the inheritance code.
3086 */
3087 if (!ctx->rotate_disable)
3088 list_rotate_left(&ctx->flexible_groups);
3089 }
3090
3091 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3092 {
3093 struct perf_event_context *ctx = NULL;
3094 int rotate = 0;
3095
3096 if (cpuctx->ctx.nr_events) {
3097 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3098 rotate = 1;
3099 }
3100
3101 ctx = cpuctx->task_ctx;
3102 if (ctx && ctx->nr_events) {
3103 if (ctx->nr_events != ctx->nr_active)
3104 rotate = 1;
3105 }
3106
3107 if (!rotate)
3108 goto done;
3109
3110 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3111 perf_pmu_disable(cpuctx->ctx.pmu);
3112
3113 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3114 if (ctx)
3115 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3116
3117 rotate_ctx(&cpuctx->ctx);
3118 if (ctx)
3119 rotate_ctx(ctx);
3120
3121 perf_event_sched_in(cpuctx, ctx, current);
3122
3123 perf_pmu_enable(cpuctx->ctx.pmu);
3124 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3125 done:
3126
3127 return rotate;
3128 }
3129
3130 void perf_event_task_tick(void)
3131 {
3132 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3133 struct perf_event_context *ctx, *tmp;
3134 int throttled;
3135
3136 WARN_ON(!irqs_disabled());
3137
3138 __this_cpu_inc(perf_throttled_seq);
3139 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3140 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3141
3142 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3143 perf_adjust_freq_unthr_context(ctx, throttled);
3144 }
3145
3146 static int event_enable_on_exec(struct perf_event *event,
3147 struct perf_event_context *ctx)
3148 {
3149 if (!event->attr.enable_on_exec)
3150 return 0;
3151
3152 event->attr.enable_on_exec = 0;
3153 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3154 return 0;
3155
3156 __perf_event_mark_enabled(event);
3157
3158 return 1;
3159 }
3160
3161 /*
3162 * Enable all of a task's events that have been marked enable-on-exec.
3163 * This expects task == current.
3164 */
3165 static void perf_event_enable_on_exec(int ctxn)
3166 {
3167 struct perf_event_context *ctx, *clone_ctx = NULL;
3168 struct perf_cpu_context *cpuctx;
3169 struct perf_event *event;
3170 unsigned long flags;
3171 int enabled = 0;
3172
3173 local_irq_save(flags);
3174 ctx = current->perf_event_ctxp[ctxn];
3175 if (!ctx || !ctx->nr_events)
3176 goto out;
3177
3178 cpuctx = __get_cpu_context(ctx);
3179 perf_ctx_lock(cpuctx, ctx);
3180 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3181 list_for_each_entry(event, &ctx->event_list, event_entry)
3182 enabled |= event_enable_on_exec(event, ctx);
3183
3184 /*
3185 * Unclone and reschedule this context if we enabled any event.
3186 */
3187 if (enabled) {
3188 clone_ctx = unclone_ctx(ctx);
3189 ctx_resched(cpuctx, ctx);
3190 }
3191 perf_ctx_unlock(cpuctx, ctx);
3192
3193 out:
3194 local_irq_restore(flags);
3195
3196 if (clone_ctx)
3197 put_ctx(clone_ctx);
3198 }
3199
3200 void perf_event_exec(void)
3201 {
3202 int ctxn;
3203
3204 rcu_read_lock();
3205 for_each_task_context_nr(ctxn)
3206 perf_event_enable_on_exec(ctxn);
3207 rcu_read_unlock();
3208 }
3209
3210 struct perf_read_data {
3211 struct perf_event *event;
3212 bool group;
3213 int ret;
3214 };
3215
3216 /*
3217 * Cross CPU call to read the hardware event
3218 */
3219 static void __perf_event_read(void *info)
3220 {
3221 struct perf_read_data *data = info;
3222 struct perf_event *sub, *event = data->event;
3223 struct perf_event_context *ctx = event->ctx;
3224 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3225 struct pmu *pmu = event->pmu;
3226
3227 /*
3228 * If this is a task context, we need to check whether it is
3229 * the current task context of this cpu. If not it has been
3230 * scheduled out before the smp call arrived. In that case
3231 * event->count would have been updated to a recent sample
3232 * when the event was scheduled out.
3233 */
3234 if (ctx->task && cpuctx->task_ctx != ctx)
3235 return;
3236
3237 raw_spin_lock(&ctx->lock);
3238 if (ctx->is_active) {
3239 update_context_time(ctx);
3240 update_cgrp_time_from_event(event);
3241 }
3242
3243 update_event_times(event);
3244 if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 goto unlock;
3246
3247 if (!data->group) {
3248 pmu->read(event);
3249 data->ret = 0;
3250 goto unlock;
3251 }
3252
3253 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3254
3255 pmu->read(event);
3256
3257 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3258 update_event_times(sub);
3259 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3260 /*
3261 * Use sibling's PMU rather than @event's since
3262 * sibling could be on different (eg: software) PMU.
3263 */
3264 sub->pmu->read(sub);
3265 }
3266 }
3267
3268 data->ret = pmu->commit_txn(pmu);
3269
3270 unlock:
3271 raw_spin_unlock(&ctx->lock);
3272 }
3273
3274 static inline u64 perf_event_count(struct perf_event *event)
3275 {
3276 if (event->pmu->count)
3277 return event->pmu->count(event);
3278
3279 return __perf_event_count(event);
3280 }
3281
3282 /*
3283 * NMI-safe method to read a local event, that is an event that
3284 * is:
3285 * - either for the current task, or for this CPU
3286 * - does not have inherit set, for inherited task events
3287 * will not be local and we cannot read them atomically
3288 * - must not have a pmu::count method
3289 */
3290 u64 perf_event_read_local(struct perf_event *event)
3291 {
3292 unsigned long flags;
3293 u64 val;
3294
3295 /*
3296 * Disabling interrupts avoids all counter scheduling (context
3297 * switches, timer based rotation and IPIs).
3298 */
3299 local_irq_save(flags);
3300
3301 /* If this is a per-task event, it must be for current */
3302 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3303 event->hw.target != current);
3304
3305 /* If this is a per-CPU event, it must be for this CPU */
3306 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3307 event->cpu != smp_processor_id());
3308
3309 /*
3310 * It must not be an event with inherit set, we cannot read
3311 * all child counters from atomic context.
3312 */
3313 WARN_ON_ONCE(event->attr.inherit);
3314
3315 /*
3316 * It must not have a pmu::count method, those are not
3317 * NMI safe.
3318 */
3319 WARN_ON_ONCE(event->pmu->count);
3320
3321 /*
3322 * If the event is currently on this CPU, its either a per-task event,
3323 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3324 * oncpu == -1).
3325 */
3326 if (event->oncpu == smp_processor_id())
3327 event->pmu->read(event);
3328
3329 val = local64_read(&event->count);
3330 local_irq_restore(flags);
3331
3332 return val;
3333 }
3334
3335 static int perf_event_read(struct perf_event *event, bool group)
3336 {
3337 int ret = 0;
3338
3339 /*
3340 * If event is enabled and currently active on a CPU, update the
3341 * value in the event structure:
3342 */
3343 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3344 struct perf_read_data data = {
3345 .event = event,
3346 .group = group,
3347 .ret = 0,
3348 };
3349 smp_call_function_single(event->oncpu,
3350 __perf_event_read, &data, 1);
3351 ret = data.ret;
3352 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3353 struct perf_event_context *ctx = event->ctx;
3354 unsigned long flags;
3355
3356 raw_spin_lock_irqsave(&ctx->lock, flags);
3357 /*
3358 * may read while context is not active
3359 * (e.g., thread is blocked), in that case
3360 * we cannot update context time
3361 */
3362 if (ctx->is_active) {
3363 update_context_time(ctx);
3364 update_cgrp_time_from_event(event);
3365 }
3366 if (group)
3367 update_group_times(event);
3368 else
3369 update_event_times(event);
3370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3371 }
3372
3373 return ret;
3374 }
3375
3376 /*
3377 * Initialize the perf_event context in a task_struct:
3378 */
3379 static void __perf_event_init_context(struct perf_event_context *ctx)
3380 {
3381 raw_spin_lock_init(&ctx->lock);
3382 mutex_init(&ctx->mutex);
3383 INIT_LIST_HEAD(&ctx->active_ctx_list);
3384 INIT_LIST_HEAD(&ctx->pinned_groups);
3385 INIT_LIST_HEAD(&ctx->flexible_groups);
3386 INIT_LIST_HEAD(&ctx->event_list);
3387 atomic_set(&ctx->refcount, 1);
3388 }
3389
3390 static struct perf_event_context *
3391 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3392 {
3393 struct perf_event_context *ctx;
3394
3395 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3396 if (!ctx)
3397 return NULL;
3398
3399 __perf_event_init_context(ctx);
3400 if (task) {
3401 ctx->task = task;
3402 get_task_struct(task);
3403 }
3404 ctx->pmu = pmu;
3405
3406 return ctx;
3407 }
3408
3409 static struct task_struct *
3410 find_lively_task_by_vpid(pid_t vpid)
3411 {
3412 struct task_struct *task;
3413 int err;
3414
3415 rcu_read_lock();
3416 if (!vpid)
3417 task = current;
3418 else
3419 task = find_task_by_vpid(vpid);
3420 if (task)
3421 get_task_struct(task);
3422 rcu_read_unlock();
3423
3424 if (!task)
3425 return ERR_PTR(-ESRCH);
3426
3427 /* Reuse ptrace permission checks for now. */
3428 err = -EACCES;
3429 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3430 goto errout;
3431
3432 return task;
3433 errout:
3434 put_task_struct(task);
3435 return ERR_PTR(err);
3436
3437 }
3438
3439 /*
3440 * Returns a matching context with refcount and pincount.
3441 */
3442 static struct perf_event_context *
3443 find_get_context(struct pmu *pmu, struct task_struct *task,
3444 struct perf_event *event)
3445 {
3446 struct perf_event_context *ctx, *clone_ctx = NULL;
3447 struct perf_cpu_context *cpuctx;
3448 void *task_ctx_data = NULL;
3449 unsigned long flags;
3450 int ctxn, err;
3451 int cpu = event->cpu;
3452
3453 if (!task) {
3454 /* Must be root to operate on a CPU event: */
3455 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3456 return ERR_PTR(-EACCES);
3457
3458 /*
3459 * We could be clever and allow to attach a event to an
3460 * offline CPU and activate it when the CPU comes up, but
3461 * that's for later.
3462 */
3463 if (!cpu_online(cpu))
3464 return ERR_PTR(-ENODEV);
3465
3466 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3467 ctx = &cpuctx->ctx;
3468 get_ctx(ctx);
3469 ++ctx->pin_count;
3470
3471 return ctx;
3472 }
3473
3474 err = -EINVAL;
3475 ctxn = pmu->task_ctx_nr;
3476 if (ctxn < 0)
3477 goto errout;
3478
3479 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3480 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3481 if (!task_ctx_data) {
3482 err = -ENOMEM;
3483 goto errout;
3484 }
3485 }
3486
3487 retry:
3488 ctx = perf_lock_task_context(task, ctxn, &flags);
3489 if (ctx) {
3490 clone_ctx = unclone_ctx(ctx);
3491 ++ctx->pin_count;
3492
3493 if (task_ctx_data && !ctx->task_ctx_data) {
3494 ctx->task_ctx_data = task_ctx_data;
3495 task_ctx_data = NULL;
3496 }
3497 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3498
3499 if (clone_ctx)
3500 put_ctx(clone_ctx);
3501 } else {
3502 ctx = alloc_perf_context(pmu, task);
3503 err = -ENOMEM;
3504 if (!ctx)
3505 goto errout;
3506
3507 if (task_ctx_data) {
3508 ctx->task_ctx_data = task_ctx_data;
3509 task_ctx_data = NULL;
3510 }
3511
3512 err = 0;
3513 mutex_lock(&task->perf_event_mutex);
3514 /*
3515 * If it has already passed perf_event_exit_task().
3516 * we must see PF_EXITING, it takes this mutex too.
3517 */
3518 if (task->flags & PF_EXITING)
3519 err = -ESRCH;
3520 else if (task->perf_event_ctxp[ctxn])
3521 err = -EAGAIN;
3522 else {
3523 get_ctx(ctx);
3524 ++ctx->pin_count;
3525 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3526 }
3527 mutex_unlock(&task->perf_event_mutex);
3528
3529 if (unlikely(err)) {
3530 put_ctx(ctx);
3531
3532 if (err == -EAGAIN)
3533 goto retry;
3534 goto errout;
3535 }
3536 }
3537
3538 kfree(task_ctx_data);
3539 return ctx;
3540
3541 errout:
3542 kfree(task_ctx_data);
3543 return ERR_PTR(err);
3544 }
3545
3546 static void perf_event_free_filter(struct perf_event *event);
3547 static void perf_event_free_bpf_prog(struct perf_event *event);
3548
3549 static void free_event_rcu(struct rcu_head *head)
3550 {
3551 struct perf_event *event;
3552
3553 event = container_of(head, struct perf_event, rcu_head);
3554 if (event->ns)
3555 put_pid_ns(event->ns);
3556 perf_event_free_filter(event);
3557 kfree(event);
3558 }
3559
3560 static void ring_buffer_attach(struct perf_event *event,
3561 struct ring_buffer *rb);
3562
3563 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3564 {
3565 if (event->parent)
3566 return;
3567
3568 if (is_cgroup_event(event))
3569 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3570 }
3571
3572 #ifdef CONFIG_NO_HZ_FULL
3573 static DEFINE_SPINLOCK(nr_freq_lock);
3574 #endif
3575
3576 static void unaccount_freq_event_nohz(void)
3577 {
3578 #ifdef CONFIG_NO_HZ_FULL
3579 spin_lock(&nr_freq_lock);
3580 if (atomic_dec_and_test(&nr_freq_events))
3581 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3582 spin_unlock(&nr_freq_lock);
3583 #endif
3584 }
3585
3586 static void unaccount_freq_event(void)
3587 {
3588 if (tick_nohz_full_enabled())
3589 unaccount_freq_event_nohz();
3590 else
3591 atomic_dec(&nr_freq_events);
3592 }
3593
3594 static void unaccount_event(struct perf_event *event)
3595 {
3596 bool dec = false;
3597
3598 if (event->parent)
3599 return;
3600
3601 if (event->attach_state & PERF_ATTACH_TASK)
3602 dec = true;
3603 if (event->attr.mmap || event->attr.mmap_data)
3604 atomic_dec(&nr_mmap_events);
3605 if (event->attr.comm)
3606 atomic_dec(&nr_comm_events);
3607 if (event->attr.task)
3608 atomic_dec(&nr_task_events);
3609 if (event->attr.freq)
3610 unaccount_freq_event();
3611 if (event->attr.context_switch) {
3612 dec = true;
3613 atomic_dec(&nr_switch_events);
3614 }
3615 if (is_cgroup_event(event))
3616 dec = true;
3617 if (has_branch_stack(event))
3618 dec = true;
3619
3620 if (dec) {
3621 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3622 schedule_delayed_work(&perf_sched_work, HZ);
3623 }
3624
3625 unaccount_event_cpu(event, event->cpu);
3626 }
3627
3628 static void perf_sched_delayed(struct work_struct *work)
3629 {
3630 mutex_lock(&perf_sched_mutex);
3631 if (atomic_dec_and_test(&perf_sched_count))
3632 static_branch_disable(&perf_sched_events);
3633 mutex_unlock(&perf_sched_mutex);
3634 }
3635
3636 /*
3637 * The following implement mutual exclusion of events on "exclusive" pmus
3638 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3639 * at a time, so we disallow creating events that might conflict, namely:
3640 *
3641 * 1) cpu-wide events in the presence of per-task events,
3642 * 2) per-task events in the presence of cpu-wide events,
3643 * 3) two matching events on the same context.
3644 *
3645 * The former two cases are handled in the allocation path (perf_event_alloc(),
3646 * _free_event()), the latter -- before the first perf_install_in_context().
3647 */
3648 static int exclusive_event_init(struct perf_event *event)
3649 {
3650 struct pmu *pmu = event->pmu;
3651
3652 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3653 return 0;
3654
3655 /*
3656 * Prevent co-existence of per-task and cpu-wide events on the
3657 * same exclusive pmu.
3658 *
3659 * Negative pmu::exclusive_cnt means there are cpu-wide
3660 * events on this "exclusive" pmu, positive means there are
3661 * per-task events.
3662 *
3663 * Since this is called in perf_event_alloc() path, event::ctx
3664 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3665 * to mean "per-task event", because unlike other attach states it
3666 * never gets cleared.
3667 */
3668 if (event->attach_state & PERF_ATTACH_TASK) {
3669 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3670 return -EBUSY;
3671 } else {
3672 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3673 return -EBUSY;
3674 }
3675
3676 return 0;
3677 }
3678
3679 static void exclusive_event_destroy(struct perf_event *event)
3680 {
3681 struct pmu *pmu = event->pmu;
3682
3683 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3684 return;
3685
3686 /* see comment in exclusive_event_init() */
3687 if (event->attach_state & PERF_ATTACH_TASK)
3688 atomic_dec(&pmu->exclusive_cnt);
3689 else
3690 atomic_inc(&pmu->exclusive_cnt);
3691 }
3692
3693 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3694 {
3695 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3696 (e1->cpu == e2->cpu ||
3697 e1->cpu == -1 ||
3698 e2->cpu == -1))
3699 return true;
3700 return false;
3701 }
3702
3703 /* Called under the same ctx::mutex as perf_install_in_context() */
3704 static bool exclusive_event_installable(struct perf_event *event,
3705 struct perf_event_context *ctx)
3706 {
3707 struct perf_event *iter_event;
3708 struct pmu *pmu = event->pmu;
3709
3710 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3711 return true;
3712
3713 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3714 if (exclusive_event_match(iter_event, event))
3715 return false;
3716 }
3717
3718 return true;
3719 }
3720
3721 static void _free_event(struct perf_event *event)
3722 {
3723 irq_work_sync(&event->pending);
3724
3725 unaccount_event(event);
3726
3727 if (event->rb) {
3728 /*
3729 * Can happen when we close an event with re-directed output.
3730 *
3731 * Since we have a 0 refcount, perf_mmap_close() will skip
3732 * over us; possibly making our ring_buffer_put() the last.
3733 */
3734 mutex_lock(&event->mmap_mutex);
3735 ring_buffer_attach(event, NULL);
3736 mutex_unlock(&event->mmap_mutex);
3737 }
3738
3739 if (is_cgroup_event(event))
3740 perf_detach_cgroup(event);
3741
3742 if (!event->parent) {
3743 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3744 put_callchain_buffers();
3745 }
3746
3747 perf_event_free_bpf_prog(event);
3748
3749 if (event->destroy)
3750 event->destroy(event);
3751
3752 if (event->ctx)
3753 put_ctx(event->ctx);
3754
3755 if (event->pmu) {
3756 exclusive_event_destroy(event);
3757 module_put(event->pmu->module);
3758 }
3759
3760 call_rcu(&event->rcu_head, free_event_rcu);
3761 }
3762
3763 /*
3764 * Used to free events which have a known refcount of 1, such as in error paths
3765 * where the event isn't exposed yet and inherited events.
3766 */
3767 static void free_event(struct perf_event *event)
3768 {
3769 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3770 "unexpected event refcount: %ld; ptr=%p\n",
3771 atomic_long_read(&event->refcount), event)) {
3772 /* leak to avoid use-after-free */
3773 return;
3774 }
3775
3776 _free_event(event);
3777 }
3778
3779 /*
3780 * Remove user event from the owner task.
3781 */
3782 static void perf_remove_from_owner(struct perf_event *event)
3783 {
3784 struct task_struct *owner;
3785
3786 rcu_read_lock();
3787 /*
3788 * Matches the smp_store_release() in perf_event_exit_task(). If we
3789 * observe !owner it means the list deletion is complete and we can
3790 * indeed free this event, otherwise we need to serialize on
3791 * owner->perf_event_mutex.
3792 */
3793 owner = lockless_dereference(event->owner);
3794 if (owner) {
3795 /*
3796 * Since delayed_put_task_struct() also drops the last
3797 * task reference we can safely take a new reference
3798 * while holding the rcu_read_lock().
3799 */
3800 get_task_struct(owner);
3801 }
3802 rcu_read_unlock();
3803
3804 if (owner) {
3805 /*
3806 * If we're here through perf_event_exit_task() we're already
3807 * holding ctx->mutex which would be an inversion wrt. the
3808 * normal lock order.
3809 *
3810 * However we can safely take this lock because its the child
3811 * ctx->mutex.
3812 */
3813 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3814
3815 /*
3816 * We have to re-check the event->owner field, if it is cleared
3817 * we raced with perf_event_exit_task(), acquiring the mutex
3818 * ensured they're done, and we can proceed with freeing the
3819 * event.
3820 */
3821 if (event->owner) {
3822 list_del_init(&event->owner_entry);
3823 smp_store_release(&event->owner, NULL);
3824 }
3825 mutex_unlock(&owner->perf_event_mutex);
3826 put_task_struct(owner);
3827 }
3828 }
3829
3830 static void put_event(struct perf_event *event)
3831 {
3832 if (!atomic_long_dec_and_test(&event->refcount))
3833 return;
3834
3835 _free_event(event);
3836 }
3837
3838 /*
3839 * Kill an event dead; while event:refcount will preserve the event
3840 * object, it will not preserve its functionality. Once the last 'user'
3841 * gives up the object, we'll destroy the thing.
3842 */
3843 int perf_event_release_kernel(struct perf_event *event)
3844 {
3845 struct perf_event_context *ctx = event->ctx;
3846 struct perf_event *child, *tmp;
3847
3848 /*
3849 * If we got here through err_file: fput(event_file); we will not have
3850 * attached to a context yet.
3851 */
3852 if (!ctx) {
3853 WARN_ON_ONCE(event->attach_state &
3854 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3855 goto no_ctx;
3856 }
3857
3858 if (!is_kernel_event(event))
3859 perf_remove_from_owner(event);
3860
3861 ctx = perf_event_ctx_lock(event);
3862 WARN_ON_ONCE(ctx->parent_ctx);
3863 perf_remove_from_context(event, DETACH_GROUP);
3864
3865 raw_spin_lock_irq(&ctx->lock);
3866 /*
3867 * Mark this even as STATE_DEAD, there is no external reference to it
3868 * anymore.
3869 *
3870 * Anybody acquiring event->child_mutex after the below loop _must_
3871 * also see this, most importantly inherit_event() which will avoid
3872 * placing more children on the list.
3873 *
3874 * Thus this guarantees that we will in fact observe and kill _ALL_
3875 * child events.
3876 */
3877 event->state = PERF_EVENT_STATE_DEAD;
3878 raw_spin_unlock_irq(&ctx->lock);
3879
3880 perf_event_ctx_unlock(event, ctx);
3881
3882 again:
3883 mutex_lock(&event->child_mutex);
3884 list_for_each_entry(child, &event->child_list, child_list) {
3885
3886 /*
3887 * Cannot change, child events are not migrated, see the
3888 * comment with perf_event_ctx_lock_nested().
3889 */
3890 ctx = lockless_dereference(child->ctx);
3891 /*
3892 * Since child_mutex nests inside ctx::mutex, we must jump
3893 * through hoops. We start by grabbing a reference on the ctx.
3894 *
3895 * Since the event cannot get freed while we hold the
3896 * child_mutex, the context must also exist and have a !0
3897 * reference count.
3898 */
3899 get_ctx(ctx);
3900
3901 /*
3902 * Now that we have a ctx ref, we can drop child_mutex, and
3903 * acquire ctx::mutex without fear of it going away. Then we
3904 * can re-acquire child_mutex.
3905 */
3906 mutex_unlock(&event->child_mutex);
3907 mutex_lock(&ctx->mutex);
3908 mutex_lock(&event->child_mutex);
3909
3910 /*
3911 * Now that we hold ctx::mutex and child_mutex, revalidate our
3912 * state, if child is still the first entry, it didn't get freed
3913 * and we can continue doing so.
3914 */
3915 tmp = list_first_entry_or_null(&event->child_list,
3916 struct perf_event, child_list);
3917 if (tmp == child) {
3918 perf_remove_from_context(child, DETACH_GROUP);
3919 list_del(&child->child_list);
3920 free_event(child);
3921 /*
3922 * This matches the refcount bump in inherit_event();
3923 * this can't be the last reference.
3924 */
3925 put_event(event);
3926 }
3927
3928 mutex_unlock(&event->child_mutex);
3929 mutex_unlock(&ctx->mutex);
3930 put_ctx(ctx);
3931 goto again;
3932 }
3933 mutex_unlock(&event->child_mutex);
3934
3935 no_ctx:
3936 put_event(event); /* Must be the 'last' reference */
3937 return 0;
3938 }
3939 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3940
3941 /*
3942 * Called when the last reference to the file is gone.
3943 */
3944 static int perf_release(struct inode *inode, struct file *file)
3945 {
3946 perf_event_release_kernel(file->private_data);
3947 return 0;
3948 }
3949
3950 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3951 {
3952 struct perf_event *child;
3953 u64 total = 0;
3954
3955 *enabled = 0;
3956 *running = 0;
3957
3958 mutex_lock(&event->child_mutex);
3959
3960 (void)perf_event_read(event, false);
3961 total += perf_event_count(event);
3962
3963 *enabled += event->total_time_enabled +
3964 atomic64_read(&event->child_total_time_enabled);
3965 *running += event->total_time_running +
3966 atomic64_read(&event->child_total_time_running);
3967
3968 list_for_each_entry(child, &event->child_list, child_list) {
3969 (void)perf_event_read(child, false);
3970 total += perf_event_count(child);
3971 *enabled += child->total_time_enabled;
3972 *running += child->total_time_running;
3973 }
3974 mutex_unlock(&event->child_mutex);
3975
3976 return total;
3977 }
3978 EXPORT_SYMBOL_GPL(perf_event_read_value);
3979
3980 static int __perf_read_group_add(struct perf_event *leader,
3981 u64 read_format, u64 *values)
3982 {
3983 struct perf_event *sub;
3984 int n = 1; /* skip @nr */
3985 int ret;
3986
3987 ret = perf_event_read(leader, true);
3988 if (ret)
3989 return ret;
3990
3991 /*
3992 * Since we co-schedule groups, {enabled,running} times of siblings
3993 * will be identical to those of the leader, so we only publish one
3994 * set.
3995 */
3996 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3997 values[n++] += leader->total_time_enabled +
3998 atomic64_read(&leader->child_total_time_enabled);
3999 }
4000
4001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4002 values[n++] += leader->total_time_running +
4003 atomic64_read(&leader->child_total_time_running);
4004 }
4005
4006 /*
4007 * Write {count,id} tuples for every sibling.
4008 */
4009 values[n++] += perf_event_count(leader);
4010 if (read_format & PERF_FORMAT_ID)
4011 values[n++] = primary_event_id(leader);
4012
4013 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4014 values[n++] += perf_event_count(sub);
4015 if (read_format & PERF_FORMAT_ID)
4016 values[n++] = primary_event_id(sub);
4017 }
4018
4019 return 0;
4020 }
4021
4022 static int perf_read_group(struct perf_event *event,
4023 u64 read_format, char __user *buf)
4024 {
4025 struct perf_event *leader = event->group_leader, *child;
4026 struct perf_event_context *ctx = leader->ctx;
4027 int ret;
4028 u64 *values;
4029
4030 lockdep_assert_held(&ctx->mutex);
4031
4032 values = kzalloc(event->read_size, GFP_KERNEL);
4033 if (!values)
4034 return -ENOMEM;
4035
4036 values[0] = 1 + leader->nr_siblings;
4037
4038 /*
4039 * By locking the child_mutex of the leader we effectively
4040 * lock the child list of all siblings.. XXX explain how.
4041 */
4042 mutex_lock(&leader->child_mutex);
4043
4044 ret = __perf_read_group_add(leader, read_format, values);
4045 if (ret)
4046 goto unlock;
4047
4048 list_for_each_entry(child, &leader->child_list, child_list) {
4049 ret = __perf_read_group_add(child, read_format, values);
4050 if (ret)
4051 goto unlock;
4052 }
4053
4054 mutex_unlock(&leader->child_mutex);
4055
4056 ret = event->read_size;
4057 if (copy_to_user(buf, values, event->read_size))
4058 ret = -EFAULT;
4059 goto out;
4060
4061 unlock:
4062 mutex_unlock(&leader->child_mutex);
4063 out:
4064 kfree(values);
4065 return ret;
4066 }
4067
4068 static int perf_read_one(struct perf_event *event,
4069 u64 read_format, char __user *buf)
4070 {
4071 u64 enabled, running;
4072 u64 values[4];
4073 int n = 0;
4074
4075 values[n++] = perf_event_read_value(event, &enabled, &running);
4076 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4077 values[n++] = enabled;
4078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4079 values[n++] = running;
4080 if (read_format & PERF_FORMAT_ID)
4081 values[n++] = primary_event_id(event);
4082
4083 if (copy_to_user(buf, values, n * sizeof(u64)))
4084 return -EFAULT;
4085
4086 return n * sizeof(u64);
4087 }
4088
4089 static bool is_event_hup(struct perf_event *event)
4090 {
4091 bool no_children;
4092
4093 if (event->state > PERF_EVENT_STATE_EXIT)
4094 return false;
4095
4096 mutex_lock(&event->child_mutex);
4097 no_children = list_empty(&event->child_list);
4098 mutex_unlock(&event->child_mutex);
4099 return no_children;
4100 }
4101
4102 /*
4103 * Read the performance event - simple non blocking version for now
4104 */
4105 static ssize_t
4106 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4107 {
4108 u64 read_format = event->attr.read_format;
4109 int ret;
4110
4111 /*
4112 * Return end-of-file for a read on a event that is in
4113 * error state (i.e. because it was pinned but it couldn't be
4114 * scheduled on to the CPU at some point).
4115 */
4116 if (event->state == PERF_EVENT_STATE_ERROR)
4117 return 0;
4118
4119 if (count < event->read_size)
4120 return -ENOSPC;
4121
4122 WARN_ON_ONCE(event->ctx->parent_ctx);
4123 if (read_format & PERF_FORMAT_GROUP)
4124 ret = perf_read_group(event, read_format, buf);
4125 else
4126 ret = perf_read_one(event, read_format, buf);
4127
4128 return ret;
4129 }
4130
4131 static ssize_t
4132 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4133 {
4134 struct perf_event *event = file->private_data;
4135 struct perf_event_context *ctx;
4136 int ret;
4137
4138 ctx = perf_event_ctx_lock(event);
4139 ret = __perf_read(event, buf, count);
4140 perf_event_ctx_unlock(event, ctx);
4141
4142 return ret;
4143 }
4144
4145 static unsigned int perf_poll(struct file *file, poll_table *wait)
4146 {
4147 struct perf_event *event = file->private_data;
4148 struct ring_buffer *rb;
4149 unsigned int events = POLLHUP;
4150
4151 poll_wait(file, &event->waitq, wait);
4152
4153 if (is_event_hup(event))
4154 return events;
4155
4156 /*
4157 * Pin the event->rb by taking event->mmap_mutex; otherwise
4158 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4159 */
4160 mutex_lock(&event->mmap_mutex);
4161 rb = event->rb;
4162 if (rb)
4163 events = atomic_xchg(&rb->poll, 0);
4164 mutex_unlock(&event->mmap_mutex);
4165 return events;
4166 }
4167
4168 static void _perf_event_reset(struct perf_event *event)
4169 {
4170 (void)perf_event_read(event, false);
4171 local64_set(&event->count, 0);
4172 perf_event_update_userpage(event);
4173 }
4174
4175 /*
4176 * Holding the top-level event's child_mutex means that any
4177 * descendant process that has inherited this event will block
4178 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4179 * task existence requirements of perf_event_enable/disable.
4180 */
4181 static void perf_event_for_each_child(struct perf_event *event,
4182 void (*func)(struct perf_event *))
4183 {
4184 struct perf_event *child;
4185
4186 WARN_ON_ONCE(event->ctx->parent_ctx);
4187
4188 mutex_lock(&event->child_mutex);
4189 func(event);
4190 list_for_each_entry(child, &event->child_list, child_list)
4191 func(child);
4192 mutex_unlock(&event->child_mutex);
4193 }
4194
4195 static void perf_event_for_each(struct perf_event *event,
4196 void (*func)(struct perf_event *))
4197 {
4198 struct perf_event_context *ctx = event->ctx;
4199 struct perf_event *sibling;
4200
4201 lockdep_assert_held(&ctx->mutex);
4202
4203 event = event->group_leader;
4204
4205 perf_event_for_each_child(event, func);
4206 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4207 perf_event_for_each_child(sibling, func);
4208 }
4209
4210 static void __perf_event_period(struct perf_event *event,
4211 struct perf_cpu_context *cpuctx,
4212 struct perf_event_context *ctx,
4213 void *info)
4214 {
4215 u64 value = *((u64 *)info);
4216 bool active;
4217
4218 if (event->attr.freq) {
4219 event->attr.sample_freq = value;
4220 } else {
4221 event->attr.sample_period = value;
4222 event->hw.sample_period = value;
4223 }
4224
4225 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4226 if (active) {
4227 perf_pmu_disable(ctx->pmu);
4228 /*
4229 * We could be throttled; unthrottle now to avoid the tick
4230 * trying to unthrottle while we already re-started the event.
4231 */
4232 if (event->hw.interrupts == MAX_INTERRUPTS) {
4233 event->hw.interrupts = 0;
4234 perf_log_throttle(event, 1);
4235 }
4236 event->pmu->stop(event, PERF_EF_UPDATE);
4237 }
4238
4239 local64_set(&event->hw.period_left, 0);
4240
4241 if (active) {
4242 event->pmu->start(event, PERF_EF_RELOAD);
4243 perf_pmu_enable(ctx->pmu);
4244 }
4245 }
4246
4247 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4248 {
4249 u64 value;
4250
4251 if (!is_sampling_event(event))
4252 return -EINVAL;
4253
4254 if (copy_from_user(&value, arg, sizeof(value)))
4255 return -EFAULT;
4256
4257 if (!value)
4258 return -EINVAL;
4259
4260 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4261 return -EINVAL;
4262
4263 event_function_call(event, __perf_event_period, &value);
4264
4265 return 0;
4266 }
4267
4268 static const struct file_operations perf_fops;
4269
4270 static inline int perf_fget_light(int fd, struct fd *p)
4271 {
4272 struct fd f = fdget(fd);
4273 if (!f.file)
4274 return -EBADF;
4275
4276 if (f.file->f_op != &perf_fops) {
4277 fdput(f);
4278 return -EBADF;
4279 }
4280 *p = f;
4281 return 0;
4282 }
4283
4284 static int perf_event_set_output(struct perf_event *event,
4285 struct perf_event *output_event);
4286 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4287 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4288
4289 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4290 {
4291 void (*func)(struct perf_event *);
4292 u32 flags = arg;
4293
4294 switch (cmd) {
4295 case PERF_EVENT_IOC_ENABLE:
4296 func = _perf_event_enable;
4297 break;
4298 case PERF_EVENT_IOC_DISABLE:
4299 func = _perf_event_disable;
4300 break;
4301 case PERF_EVENT_IOC_RESET:
4302 func = _perf_event_reset;
4303 break;
4304
4305 case PERF_EVENT_IOC_REFRESH:
4306 return _perf_event_refresh(event, arg);
4307
4308 case PERF_EVENT_IOC_PERIOD:
4309 return perf_event_period(event, (u64 __user *)arg);
4310
4311 case PERF_EVENT_IOC_ID:
4312 {
4313 u64 id = primary_event_id(event);
4314
4315 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4316 return -EFAULT;
4317 return 0;
4318 }
4319
4320 case PERF_EVENT_IOC_SET_OUTPUT:
4321 {
4322 int ret;
4323 if (arg != -1) {
4324 struct perf_event *output_event;
4325 struct fd output;
4326 ret = perf_fget_light(arg, &output);
4327 if (ret)
4328 return ret;
4329 output_event = output.file->private_data;
4330 ret = perf_event_set_output(event, output_event);
4331 fdput(output);
4332 } else {
4333 ret = perf_event_set_output(event, NULL);
4334 }
4335 return ret;
4336 }
4337
4338 case PERF_EVENT_IOC_SET_FILTER:
4339 return perf_event_set_filter(event, (void __user *)arg);
4340
4341 case PERF_EVENT_IOC_SET_BPF:
4342 return perf_event_set_bpf_prog(event, arg);
4343
4344 default:
4345 return -ENOTTY;
4346 }
4347
4348 if (flags & PERF_IOC_FLAG_GROUP)
4349 perf_event_for_each(event, func);
4350 else
4351 perf_event_for_each_child(event, func);
4352
4353 return 0;
4354 }
4355
4356 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4357 {
4358 struct perf_event *event = file->private_data;
4359 struct perf_event_context *ctx;
4360 long ret;
4361
4362 ctx = perf_event_ctx_lock(event);
4363 ret = _perf_ioctl(event, cmd, arg);
4364 perf_event_ctx_unlock(event, ctx);
4365
4366 return ret;
4367 }
4368
4369 #ifdef CONFIG_COMPAT
4370 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4371 unsigned long arg)
4372 {
4373 switch (_IOC_NR(cmd)) {
4374 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4375 case _IOC_NR(PERF_EVENT_IOC_ID):
4376 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4377 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4378 cmd &= ~IOCSIZE_MASK;
4379 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4380 }
4381 break;
4382 }
4383 return perf_ioctl(file, cmd, arg);
4384 }
4385 #else
4386 # define perf_compat_ioctl NULL
4387 #endif
4388
4389 int perf_event_task_enable(void)
4390 {
4391 struct perf_event_context *ctx;
4392 struct perf_event *event;
4393
4394 mutex_lock(&current->perf_event_mutex);
4395 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4396 ctx = perf_event_ctx_lock(event);
4397 perf_event_for_each_child(event, _perf_event_enable);
4398 perf_event_ctx_unlock(event, ctx);
4399 }
4400 mutex_unlock(&current->perf_event_mutex);
4401
4402 return 0;
4403 }
4404
4405 int perf_event_task_disable(void)
4406 {
4407 struct perf_event_context *ctx;
4408 struct perf_event *event;
4409
4410 mutex_lock(&current->perf_event_mutex);
4411 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4412 ctx = perf_event_ctx_lock(event);
4413 perf_event_for_each_child(event, _perf_event_disable);
4414 perf_event_ctx_unlock(event, ctx);
4415 }
4416 mutex_unlock(&current->perf_event_mutex);
4417
4418 return 0;
4419 }
4420
4421 static int perf_event_index(struct perf_event *event)
4422 {
4423 if (event->hw.state & PERF_HES_STOPPED)
4424 return 0;
4425
4426 if (event->state != PERF_EVENT_STATE_ACTIVE)
4427 return 0;
4428
4429 return event->pmu->event_idx(event);
4430 }
4431
4432 static void calc_timer_values(struct perf_event *event,
4433 u64 *now,
4434 u64 *enabled,
4435 u64 *running)
4436 {
4437 u64 ctx_time;
4438
4439 *now = perf_clock();
4440 ctx_time = event->shadow_ctx_time + *now;
4441 *enabled = ctx_time - event->tstamp_enabled;
4442 *running = ctx_time - event->tstamp_running;
4443 }
4444
4445 static void perf_event_init_userpage(struct perf_event *event)
4446 {
4447 struct perf_event_mmap_page *userpg;
4448 struct ring_buffer *rb;
4449
4450 rcu_read_lock();
4451 rb = rcu_dereference(event->rb);
4452 if (!rb)
4453 goto unlock;
4454
4455 userpg = rb->user_page;
4456
4457 /* Allow new userspace to detect that bit 0 is deprecated */
4458 userpg->cap_bit0_is_deprecated = 1;
4459 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4460 userpg->data_offset = PAGE_SIZE;
4461 userpg->data_size = perf_data_size(rb);
4462
4463 unlock:
4464 rcu_read_unlock();
4465 }
4466
4467 void __weak arch_perf_update_userpage(
4468 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4469 {
4470 }
4471
4472 /*
4473 * Callers need to ensure there can be no nesting of this function, otherwise
4474 * the seqlock logic goes bad. We can not serialize this because the arch
4475 * code calls this from NMI context.
4476 */
4477 void perf_event_update_userpage(struct perf_event *event)
4478 {
4479 struct perf_event_mmap_page *userpg;
4480 struct ring_buffer *rb;
4481 u64 enabled, running, now;
4482
4483 rcu_read_lock();
4484 rb = rcu_dereference(event->rb);
4485 if (!rb)
4486 goto unlock;
4487
4488 /*
4489 * compute total_time_enabled, total_time_running
4490 * based on snapshot values taken when the event
4491 * was last scheduled in.
4492 *
4493 * we cannot simply called update_context_time()
4494 * because of locking issue as we can be called in
4495 * NMI context
4496 */
4497 calc_timer_values(event, &now, &enabled, &running);
4498
4499 userpg = rb->user_page;
4500 /*
4501 * Disable preemption so as to not let the corresponding user-space
4502 * spin too long if we get preempted.
4503 */
4504 preempt_disable();
4505 ++userpg->lock;
4506 barrier();
4507 userpg->index = perf_event_index(event);
4508 userpg->offset = perf_event_count(event);
4509 if (userpg->index)
4510 userpg->offset -= local64_read(&event->hw.prev_count);
4511
4512 userpg->time_enabled = enabled +
4513 atomic64_read(&event->child_total_time_enabled);
4514
4515 userpg->time_running = running +
4516 atomic64_read(&event->child_total_time_running);
4517
4518 arch_perf_update_userpage(event, userpg, now);
4519
4520 barrier();
4521 ++userpg->lock;
4522 preempt_enable();
4523 unlock:
4524 rcu_read_unlock();
4525 }
4526
4527 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4528 {
4529 struct perf_event *event = vma->vm_file->private_data;
4530 struct ring_buffer *rb;
4531 int ret = VM_FAULT_SIGBUS;
4532
4533 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4534 if (vmf->pgoff == 0)
4535 ret = 0;
4536 return ret;
4537 }
4538
4539 rcu_read_lock();
4540 rb = rcu_dereference(event->rb);
4541 if (!rb)
4542 goto unlock;
4543
4544 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4545 goto unlock;
4546
4547 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4548 if (!vmf->page)
4549 goto unlock;
4550
4551 get_page(vmf->page);
4552 vmf->page->mapping = vma->vm_file->f_mapping;
4553 vmf->page->index = vmf->pgoff;
4554
4555 ret = 0;
4556 unlock:
4557 rcu_read_unlock();
4558
4559 return ret;
4560 }
4561
4562 static void ring_buffer_attach(struct perf_event *event,
4563 struct ring_buffer *rb)
4564 {
4565 struct ring_buffer *old_rb = NULL;
4566 unsigned long flags;
4567
4568 if (event->rb) {
4569 /*
4570 * Should be impossible, we set this when removing
4571 * event->rb_entry and wait/clear when adding event->rb_entry.
4572 */
4573 WARN_ON_ONCE(event->rcu_pending);
4574
4575 old_rb = event->rb;
4576 spin_lock_irqsave(&old_rb->event_lock, flags);
4577 list_del_rcu(&event->rb_entry);
4578 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4579
4580 event->rcu_batches = get_state_synchronize_rcu();
4581 event->rcu_pending = 1;
4582 }
4583
4584 if (rb) {
4585 if (event->rcu_pending) {
4586 cond_synchronize_rcu(event->rcu_batches);
4587 event->rcu_pending = 0;
4588 }
4589
4590 spin_lock_irqsave(&rb->event_lock, flags);
4591 list_add_rcu(&event->rb_entry, &rb->event_list);
4592 spin_unlock_irqrestore(&rb->event_lock, flags);
4593 }
4594
4595 rcu_assign_pointer(event->rb, rb);
4596
4597 if (old_rb) {
4598 ring_buffer_put(old_rb);
4599 /*
4600 * Since we detached before setting the new rb, so that we
4601 * could attach the new rb, we could have missed a wakeup.
4602 * Provide it now.
4603 */
4604 wake_up_all(&event->waitq);
4605 }
4606 }
4607
4608 static void ring_buffer_wakeup(struct perf_event *event)
4609 {
4610 struct ring_buffer *rb;
4611
4612 rcu_read_lock();
4613 rb = rcu_dereference(event->rb);
4614 if (rb) {
4615 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4616 wake_up_all(&event->waitq);
4617 }
4618 rcu_read_unlock();
4619 }
4620
4621 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4622 {
4623 struct ring_buffer *rb;
4624
4625 rcu_read_lock();
4626 rb = rcu_dereference(event->rb);
4627 if (rb) {
4628 if (!atomic_inc_not_zero(&rb->refcount))
4629 rb = NULL;
4630 }
4631 rcu_read_unlock();
4632
4633 return rb;
4634 }
4635
4636 void ring_buffer_put(struct ring_buffer *rb)
4637 {
4638 if (!atomic_dec_and_test(&rb->refcount))
4639 return;
4640
4641 WARN_ON_ONCE(!list_empty(&rb->event_list));
4642
4643 call_rcu(&rb->rcu_head, rb_free_rcu);
4644 }
4645
4646 static void perf_mmap_open(struct vm_area_struct *vma)
4647 {
4648 struct perf_event *event = vma->vm_file->private_data;
4649
4650 atomic_inc(&event->mmap_count);
4651 atomic_inc(&event->rb->mmap_count);
4652
4653 if (vma->vm_pgoff)
4654 atomic_inc(&event->rb->aux_mmap_count);
4655
4656 if (event->pmu->event_mapped)
4657 event->pmu->event_mapped(event);
4658 }
4659
4660 /*
4661 * A buffer can be mmap()ed multiple times; either directly through the same
4662 * event, or through other events by use of perf_event_set_output().
4663 *
4664 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4665 * the buffer here, where we still have a VM context. This means we need
4666 * to detach all events redirecting to us.
4667 */
4668 static void perf_mmap_close(struct vm_area_struct *vma)
4669 {
4670 struct perf_event *event = vma->vm_file->private_data;
4671
4672 struct ring_buffer *rb = ring_buffer_get(event);
4673 struct user_struct *mmap_user = rb->mmap_user;
4674 int mmap_locked = rb->mmap_locked;
4675 unsigned long size = perf_data_size(rb);
4676
4677 if (event->pmu->event_unmapped)
4678 event->pmu->event_unmapped(event);
4679
4680 /*
4681 * rb->aux_mmap_count will always drop before rb->mmap_count and
4682 * event->mmap_count, so it is ok to use event->mmap_mutex to
4683 * serialize with perf_mmap here.
4684 */
4685 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4686 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4687 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4688 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4689
4690 rb_free_aux(rb);
4691 mutex_unlock(&event->mmap_mutex);
4692 }
4693
4694 atomic_dec(&rb->mmap_count);
4695
4696 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4697 goto out_put;
4698
4699 ring_buffer_attach(event, NULL);
4700 mutex_unlock(&event->mmap_mutex);
4701
4702 /* If there's still other mmap()s of this buffer, we're done. */
4703 if (atomic_read(&rb->mmap_count))
4704 goto out_put;
4705
4706 /*
4707 * No other mmap()s, detach from all other events that might redirect
4708 * into the now unreachable buffer. Somewhat complicated by the
4709 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4710 */
4711 again:
4712 rcu_read_lock();
4713 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4714 if (!atomic_long_inc_not_zero(&event->refcount)) {
4715 /*
4716 * This event is en-route to free_event() which will
4717 * detach it and remove it from the list.
4718 */
4719 continue;
4720 }
4721 rcu_read_unlock();
4722
4723 mutex_lock(&event->mmap_mutex);
4724 /*
4725 * Check we didn't race with perf_event_set_output() which can
4726 * swizzle the rb from under us while we were waiting to
4727 * acquire mmap_mutex.
4728 *
4729 * If we find a different rb; ignore this event, a next
4730 * iteration will no longer find it on the list. We have to
4731 * still restart the iteration to make sure we're not now
4732 * iterating the wrong list.
4733 */
4734 if (event->rb == rb)
4735 ring_buffer_attach(event, NULL);
4736
4737 mutex_unlock(&event->mmap_mutex);
4738 put_event(event);
4739
4740 /*
4741 * Restart the iteration; either we're on the wrong list or
4742 * destroyed its integrity by doing a deletion.
4743 */
4744 goto again;
4745 }
4746 rcu_read_unlock();
4747
4748 /*
4749 * It could be there's still a few 0-ref events on the list; they'll
4750 * get cleaned up by free_event() -- they'll also still have their
4751 * ref on the rb and will free it whenever they are done with it.
4752 *
4753 * Aside from that, this buffer is 'fully' detached and unmapped,
4754 * undo the VM accounting.
4755 */
4756
4757 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4758 vma->vm_mm->pinned_vm -= mmap_locked;
4759 free_uid(mmap_user);
4760
4761 out_put:
4762 ring_buffer_put(rb); /* could be last */
4763 }
4764
4765 static const struct vm_operations_struct perf_mmap_vmops = {
4766 .open = perf_mmap_open,
4767 .close = perf_mmap_close, /* non mergable */
4768 .fault = perf_mmap_fault,
4769 .page_mkwrite = perf_mmap_fault,
4770 };
4771
4772 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4773 {
4774 struct perf_event *event = file->private_data;
4775 unsigned long user_locked, user_lock_limit;
4776 struct user_struct *user = current_user();
4777 unsigned long locked, lock_limit;
4778 struct ring_buffer *rb = NULL;
4779 unsigned long vma_size;
4780 unsigned long nr_pages;
4781 long user_extra = 0, extra = 0;
4782 int ret = 0, flags = 0;
4783
4784 /*
4785 * Don't allow mmap() of inherited per-task counters. This would
4786 * create a performance issue due to all children writing to the
4787 * same rb.
4788 */
4789 if (event->cpu == -1 && event->attr.inherit)
4790 return -EINVAL;
4791
4792 if (!(vma->vm_flags & VM_SHARED))
4793 return -EINVAL;
4794
4795 vma_size = vma->vm_end - vma->vm_start;
4796
4797 if (vma->vm_pgoff == 0) {
4798 nr_pages = (vma_size / PAGE_SIZE) - 1;
4799 } else {
4800 /*
4801 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4802 * mapped, all subsequent mappings should have the same size
4803 * and offset. Must be above the normal perf buffer.
4804 */
4805 u64 aux_offset, aux_size;
4806
4807 if (!event->rb)
4808 return -EINVAL;
4809
4810 nr_pages = vma_size / PAGE_SIZE;
4811
4812 mutex_lock(&event->mmap_mutex);
4813 ret = -EINVAL;
4814
4815 rb = event->rb;
4816 if (!rb)
4817 goto aux_unlock;
4818
4819 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4820 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4821
4822 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4823 goto aux_unlock;
4824
4825 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4826 goto aux_unlock;
4827
4828 /* already mapped with a different offset */
4829 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4830 goto aux_unlock;
4831
4832 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4833 goto aux_unlock;
4834
4835 /* already mapped with a different size */
4836 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4837 goto aux_unlock;
4838
4839 if (!is_power_of_2(nr_pages))
4840 goto aux_unlock;
4841
4842 if (!atomic_inc_not_zero(&rb->mmap_count))
4843 goto aux_unlock;
4844
4845 if (rb_has_aux(rb)) {
4846 atomic_inc(&rb->aux_mmap_count);
4847 ret = 0;
4848 goto unlock;
4849 }
4850
4851 atomic_set(&rb->aux_mmap_count, 1);
4852 user_extra = nr_pages;
4853
4854 goto accounting;
4855 }
4856
4857 /*
4858 * If we have rb pages ensure they're a power-of-two number, so we
4859 * can do bitmasks instead of modulo.
4860 */
4861 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4862 return -EINVAL;
4863
4864 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4865 return -EINVAL;
4866
4867 WARN_ON_ONCE(event->ctx->parent_ctx);
4868 again:
4869 mutex_lock(&event->mmap_mutex);
4870 if (event->rb) {
4871 if (event->rb->nr_pages != nr_pages) {
4872 ret = -EINVAL;
4873 goto unlock;
4874 }
4875
4876 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4877 /*
4878 * Raced against perf_mmap_close() through
4879 * perf_event_set_output(). Try again, hope for better
4880 * luck.
4881 */
4882 mutex_unlock(&event->mmap_mutex);
4883 goto again;
4884 }
4885
4886 goto unlock;
4887 }
4888
4889 user_extra = nr_pages + 1;
4890
4891 accounting:
4892 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4893
4894 /*
4895 * Increase the limit linearly with more CPUs:
4896 */
4897 user_lock_limit *= num_online_cpus();
4898
4899 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4900
4901 if (user_locked > user_lock_limit)
4902 extra = user_locked - user_lock_limit;
4903
4904 lock_limit = rlimit(RLIMIT_MEMLOCK);
4905 lock_limit >>= PAGE_SHIFT;
4906 locked = vma->vm_mm->pinned_vm + extra;
4907
4908 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4909 !capable(CAP_IPC_LOCK)) {
4910 ret = -EPERM;
4911 goto unlock;
4912 }
4913
4914 WARN_ON(!rb && event->rb);
4915
4916 if (vma->vm_flags & VM_WRITE)
4917 flags |= RING_BUFFER_WRITABLE;
4918
4919 if (!rb) {
4920 rb = rb_alloc(nr_pages,
4921 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4922 event->cpu, flags);
4923
4924 if (!rb) {
4925 ret = -ENOMEM;
4926 goto unlock;
4927 }
4928
4929 atomic_set(&rb->mmap_count, 1);
4930 rb->mmap_user = get_current_user();
4931 rb->mmap_locked = extra;
4932
4933 ring_buffer_attach(event, rb);
4934
4935 perf_event_init_userpage(event);
4936 perf_event_update_userpage(event);
4937 } else {
4938 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4939 event->attr.aux_watermark, flags);
4940 if (!ret)
4941 rb->aux_mmap_locked = extra;
4942 }
4943
4944 unlock:
4945 if (!ret) {
4946 atomic_long_add(user_extra, &user->locked_vm);
4947 vma->vm_mm->pinned_vm += extra;
4948
4949 atomic_inc(&event->mmap_count);
4950 } else if (rb) {
4951 atomic_dec(&rb->mmap_count);
4952 }
4953 aux_unlock:
4954 mutex_unlock(&event->mmap_mutex);
4955
4956 /*
4957 * Since pinned accounting is per vm we cannot allow fork() to copy our
4958 * vma.
4959 */
4960 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4961 vma->vm_ops = &perf_mmap_vmops;
4962
4963 if (event->pmu->event_mapped)
4964 event->pmu->event_mapped(event);
4965
4966 return ret;
4967 }
4968
4969 static int perf_fasync(int fd, struct file *filp, int on)
4970 {
4971 struct inode *inode = file_inode(filp);
4972 struct perf_event *event = filp->private_data;
4973 int retval;
4974
4975 inode_lock(inode);
4976 retval = fasync_helper(fd, filp, on, &event->fasync);
4977 inode_unlock(inode);
4978
4979 if (retval < 0)
4980 return retval;
4981
4982 return 0;
4983 }
4984
4985 static const struct file_operations perf_fops = {
4986 .llseek = no_llseek,
4987 .release = perf_release,
4988 .read = perf_read,
4989 .poll = perf_poll,
4990 .unlocked_ioctl = perf_ioctl,
4991 .compat_ioctl = perf_compat_ioctl,
4992 .mmap = perf_mmap,
4993 .fasync = perf_fasync,
4994 };
4995
4996 /*
4997 * Perf event wakeup
4998 *
4999 * If there's data, ensure we set the poll() state and publish everything
5000 * to user-space before waking everybody up.
5001 */
5002
5003 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5004 {
5005 /* only the parent has fasync state */
5006 if (event->parent)
5007 event = event->parent;
5008 return &event->fasync;
5009 }
5010
5011 void perf_event_wakeup(struct perf_event *event)
5012 {
5013 ring_buffer_wakeup(event);
5014
5015 if (event->pending_kill) {
5016 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5017 event->pending_kill = 0;
5018 }
5019 }
5020
5021 static void perf_pending_event(struct irq_work *entry)
5022 {
5023 struct perf_event *event = container_of(entry,
5024 struct perf_event, pending);
5025 int rctx;
5026
5027 rctx = perf_swevent_get_recursion_context();
5028 /*
5029 * If we 'fail' here, that's OK, it means recursion is already disabled
5030 * and we won't recurse 'further'.
5031 */
5032
5033 if (event->pending_disable) {
5034 event->pending_disable = 0;
5035 perf_event_disable_local(event);
5036 }
5037
5038 if (event->pending_wakeup) {
5039 event->pending_wakeup = 0;
5040 perf_event_wakeup(event);
5041 }
5042
5043 if (rctx >= 0)
5044 perf_swevent_put_recursion_context(rctx);
5045 }
5046
5047 /*
5048 * We assume there is only KVM supporting the callbacks.
5049 * Later on, we might change it to a list if there is
5050 * another virtualization implementation supporting the callbacks.
5051 */
5052 struct perf_guest_info_callbacks *perf_guest_cbs;
5053
5054 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5055 {
5056 perf_guest_cbs = cbs;
5057 return 0;
5058 }
5059 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5060
5061 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5062 {
5063 perf_guest_cbs = NULL;
5064 return 0;
5065 }
5066 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5067
5068 static void
5069 perf_output_sample_regs(struct perf_output_handle *handle,
5070 struct pt_regs *regs, u64 mask)
5071 {
5072 int bit;
5073
5074 for_each_set_bit(bit, (const unsigned long *) &mask,
5075 sizeof(mask) * BITS_PER_BYTE) {
5076 u64 val;
5077
5078 val = perf_reg_value(regs, bit);
5079 perf_output_put(handle, val);
5080 }
5081 }
5082
5083 static void perf_sample_regs_user(struct perf_regs *regs_user,
5084 struct pt_regs *regs,
5085 struct pt_regs *regs_user_copy)
5086 {
5087 if (user_mode(regs)) {
5088 regs_user->abi = perf_reg_abi(current);
5089 regs_user->regs = regs;
5090 } else if (current->mm) {
5091 perf_get_regs_user(regs_user, regs, regs_user_copy);
5092 } else {
5093 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5094 regs_user->regs = NULL;
5095 }
5096 }
5097
5098 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5099 struct pt_regs *regs)
5100 {
5101 regs_intr->regs = regs;
5102 regs_intr->abi = perf_reg_abi(current);
5103 }
5104
5105
5106 /*
5107 * Get remaining task size from user stack pointer.
5108 *
5109 * It'd be better to take stack vma map and limit this more
5110 * precisly, but there's no way to get it safely under interrupt,
5111 * so using TASK_SIZE as limit.
5112 */
5113 static u64 perf_ustack_task_size(struct pt_regs *regs)
5114 {
5115 unsigned long addr = perf_user_stack_pointer(regs);
5116
5117 if (!addr || addr >= TASK_SIZE)
5118 return 0;
5119
5120 return TASK_SIZE - addr;
5121 }
5122
5123 static u16
5124 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5125 struct pt_regs *regs)
5126 {
5127 u64 task_size;
5128
5129 /* No regs, no stack pointer, no dump. */
5130 if (!regs)
5131 return 0;
5132
5133 /*
5134 * Check if we fit in with the requested stack size into the:
5135 * - TASK_SIZE
5136 * If we don't, we limit the size to the TASK_SIZE.
5137 *
5138 * - remaining sample size
5139 * If we don't, we customize the stack size to
5140 * fit in to the remaining sample size.
5141 */
5142
5143 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5144 stack_size = min(stack_size, (u16) task_size);
5145
5146 /* Current header size plus static size and dynamic size. */
5147 header_size += 2 * sizeof(u64);
5148
5149 /* Do we fit in with the current stack dump size? */
5150 if ((u16) (header_size + stack_size) < header_size) {
5151 /*
5152 * If we overflow the maximum size for the sample,
5153 * we customize the stack dump size to fit in.
5154 */
5155 stack_size = USHRT_MAX - header_size - sizeof(u64);
5156 stack_size = round_up(stack_size, sizeof(u64));
5157 }
5158
5159 return stack_size;
5160 }
5161
5162 static void
5163 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5164 struct pt_regs *regs)
5165 {
5166 /* Case of a kernel thread, nothing to dump */
5167 if (!regs) {
5168 u64 size = 0;
5169 perf_output_put(handle, size);
5170 } else {
5171 unsigned long sp;
5172 unsigned int rem;
5173 u64 dyn_size;
5174
5175 /*
5176 * We dump:
5177 * static size
5178 * - the size requested by user or the best one we can fit
5179 * in to the sample max size
5180 * data
5181 * - user stack dump data
5182 * dynamic size
5183 * - the actual dumped size
5184 */
5185
5186 /* Static size. */
5187 perf_output_put(handle, dump_size);
5188
5189 /* Data. */
5190 sp = perf_user_stack_pointer(regs);
5191 rem = __output_copy_user(handle, (void *) sp, dump_size);
5192 dyn_size = dump_size - rem;
5193
5194 perf_output_skip(handle, rem);
5195
5196 /* Dynamic size. */
5197 perf_output_put(handle, dyn_size);
5198 }
5199 }
5200
5201 static void __perf_event_header__init_id(struct perf_event_header *header,
5202 struct perf_sample_data *data,
5203 struct perf_event *event)
5204 {
5205 u64 sample_type = event->attr.sample_type;
5206
5207 data->type = sample_type;
5208 header->size += event->id_header_size;
5209
5210 if (sample_type & PERF_SAMPLE_TID) {
5211 /* namespace issues */
5212 data->tid_entry.pid = perf_event_pid(event, current);
5213 data->tid_entry.tid = perf_event_tid(event, current);
5214 }
5215
5216 if (sample_type & PERF_SAMPLE_TIME)
5217 data->time = perf_event_clock(event);
5218
5219 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5220 data->id = primary_event_id(event);
5221
5222 if (sample_type & PERF_SAMPLE_STREAM_ID)
5223 data->stream_id = event->id;
5224
5225 if (sample_type & PERF_SAMPLE_CPU) {
5226 data->cpu_entry.cpu = raw_smp_processor_id();
5227 data->cpu_entry.reserved = 0;
5228 }
5229 }
5230
5231 void perf_event_header__init_id(struct perf_event_header *header,
5232 struct perf_sample_data *data,
5233 struct perf_event *event)
5234 {
5235 if (event->attr.sample_id_all)
5236 __perf_event_header__init_id(header, data, event);
5237 }
5238
5239 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5240 struct perf_sample_data *data)
5241 {
5242 u64 sample_type = data->type;
5243
5244 if (sample_type & PERF_SAMPLE_TID)
5245 perf_output_put(handle, data->tid_entry);
5246
5247 if (sample_type & PERF_SAMPLE_TIME)
5248 perf_output_put(handle, data->time);
5249
5250 if (sample_type & PERF_SAMPLE_ID)
5251 perf_output_put(handle, data->id);
5252
5253 if (sample_type & PERF_SAMPLE_STREAM_ID)
5254 perf_output_put(handle, data->stream_id);
5255
5256 if (sample_type & PERF_SAMPLE_CPU)
5257 perf_output_put(handle, data->cpu_entry);
5258
5259 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5260 perf_output_put(handle, data->id);
5261 }
5262
5263 void perf_event__output_id_sample(struct perf_event *event,
5264 struct perf_output_handle *handle,
5265 struct perf_sample_data *sample)
5266 {
5267 if (event->attr.sample_id_all)
5268 __perf_event__output_id_sample(handle, sample);
5269 }
5270
5271 static void perf_output_read_one(struct perf_output_handle *handle,
5272 struct perf_event *event,
5273 u64 enabled, u64 running)
5274 {
5275 u64 read_format = event->attr.read_format;
5276 u64 values[4];
5277 int n = 0;
5278
5279 values[n++] = perf_event_count(event);
5280 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5281 values[n++] = enabled +
5282 atomic64_read(&event->child_total_time_enabled);
5283 }
5284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5285 values[n++] = running +
5286 atomic64_read(&event->child_total_time_running);
5287 }
5288 if (read_format & PERF_FORMAT_ID)
5289 values[n++] = primary_event_id(event);
5290
5291 __output_copy(handle, values, n * sizeof(u64));
5292 }
5293
5294 /*
5295 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5296 */
5297 static void perf_output_read_group(struct perf_output_handle *handle,
5298 struct perf_event *event,
5299 u64 enabled, u64 running)
5300 {
5301 struct perf_event *leader = event->group_leader, *sub;
5302 u64 read_format = event->attr.read_format;
5303 u64 values[5];
5304 int n = 0;
5305
5306 values[n++] = 1 + leader->nr_siblings;
5307
5308 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5309 values[n++] = enabled;
5310
5311 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5312 values[n++] = running;
5313
5314 if (leader != event)
5315 leader->pmu->read(leader);
5316
5317 values[n++] = perf_event_count(leader);
5318 if (read_format & PERF_FORMAT_ID)
5319 values[n++] = primary_event_id(leader);
5320
5321 __output_copy(handle, values, n * sizeof(u64));
5322
5323 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5324 n = 0;
5325
5326 if ((sub != event) &&
5327 (sub->state == PERF_EVENT_STATE_ACTIVE))
5328 sub->pmu->read(sub);
5329
5330 values[n++] = perf_event_count(sub);
5331 if (read_format & PERF_FORMAT_ID)
5332 values[n++] = primary_event_id(sub);
5333
5334 __output_copy(handle, values, n * sizeof(u64));
5335 }
5336 }
5337
5338 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5339 PERF_FORMAT_TOTAL_TIME_RUNNING)
5340
5341 static void perf_output_read(struct perf_output_handle *handle,
5342 struct perf_event *event)
5343 {
5344 u64 enabled = 0, running = 0, now;
5345 u64 read_format = event->attr.read_format;
5346
5347 /*
5348 * compute total_time_enabled, total_time_running
5349 * based on snapshot values taken when the event
5350 * was last scheduled in.
5351 *
5352 * we cannot simply called update_context_time()
5353 * because of locking issue as we are called in
5354 * NMI context
5355 */
5356 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5357 calc_timer_values(event, &now, &enabled, &running);
5358
5359 if (event->attr.read_format & PERF_FORMAT_GROUP)
5360 perf_output_read_group(handle, event, enabled, running);
5361 else
5362 perf_output_read_one(handle, event, enabled, running);
5363 }
5364
5365 void perf_output_sample(struct perf_output_handle *handle,
5366 struct perf_event_header *header,
5367 struct perf_sample_data *data,
5368 struct perf_event *event)
5369 {
5370 u64 sample_type = data->type;
5371
5372 perf_output_put(handle, *header);
5373
5374 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5375 perf_output_put(handle, data->id);
5376
5377 if (sample_type & PERF_SAMPLE_IP)
5378 perf_output_put(handle, data->ip);
5379
5380 if (sample_type & PERF_SAMPLE_TID)
5381 perf_output_put(handle, data->tid_entry);
5382
5383 if (sample_type & PERF_SAMPLE_TIME)
5384 perf_output_put(handle, data->time);
5385
5386 if (sample_type & PERF_SAMPLE_ADDR)
5387 perf_output_put(handle, data->addr);
5388
5389 if (sample_type & PERF_SAMPLE_ID)
5390 perf_output_put(handle, data->id);
5391
5392 if (sample_type & PERF_SAMPLE_STREAM_ID)
5393 perf_output_put(handle, data->stream_id);
5394
5395 if (sample_type & PERF_SAMPLE_CPU)
5396 perf_output_put(handle, data->cpu_entry);
5397
5398 if (sample_type & PERF_SAMPLE_PERIOD)
5399 perf_output_put(handle, data->period);
5400
5401 if (sample_type & PERF_SAMPLE_READ)
5402 perf_output_read(handle, event);
5403
5404 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5405 if (data->callchain) {
5406 int size = 1;
5407
5408 if (data->callchain)
5409 size += data->callchain->nr;
5410
5411 size *= sizeof(u64);
5412
5413 __output_copy(handle, data->callchain, size);
5414 } else {
5415 u64 nr = 0;
5416 perf_output_put(handle, nr);
5417 }
5418 }
5419
5420 if (sample_type & PERF_SAMPLE_RAW) {
5421 if (data->raw) {
5422 u32 raw_size = data->raw->size;
5423 u32 real_size = round_up(raw_size + sizeof(u32),
5424 sizeof(u64)) - sizeof(u32);
5425 u64 zero = 0;
5426
5427 perf_output_put(handle, real_size);
5428 __output_copy(handle, data->raw->data, raw_size);
5429 if (real_size - raw_size)
5430 __output_copy(handle, &zero, real_size - raw_size);
5431 } else {
5432 struct {
5433 u32 size;
5434 u32 data;
5435 } raw = {
5436 .size = sizeof(u32),
5437 .data = 0,
5438 };
5439 perf_output_put(handle, raw);
5440 }
5441 }
5442
5443 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5444 if (data->br_stack) {
5445 size_t size;
5446
5447 size = data->br_stack->nr
5448 * sizeof(struct perf_branch_entry);
5449
5450 perf_output_put(handle, data->br_stack->nr);
5451 perf_output_copy(handle, data->br_stack->entries, size);
5452 } else {
5453 /*
5454 * we always store at least the value of nr
5455 */
5456 u64 nr = 0;
5457 perf_output_put(handle, nr);
5458 }
5459 }
5460
5461 if (sample_type & PERF_SAMPLE_REGS_USER) {
5462 u64 abi = data->regs_user.abi;
5463
5464 /*
5465 * If there are no regs to dump, notice it through
5466 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5467 */
5468 perf_output_put(handle, abi);
5469
5470 if (abi) {
5471 u64 mask = event->attr.sample_regs_user;
5472 perf_output_sample_regs(handle,
5473 data->regs_user.regs,
5474 mask);
5475 }
5476 }
5477
5478 if (sample_type & PERF_SAMPLE_STACK_USER) {
5479 perf_output_sample_ustack(handle,
5480 data->stack_user_size,
5481 data->regs_user.regs);
5482 }
5483
5484 if (sample_type & PERF_SAMPLE_WEIGHT)
5485 perf_output_put(handle, data->weight);
5486
5487 if (sample_type & PERF_SAMPLE_DATA_SRC)
5488 perf_output_put(handle, data->data_src.val);
5489
5490 if (sample_type & PERF_SAMPLE_TRANSACTION)
5491 perf_output_put(handle, data->txn);
5492
5493 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5494 u64 abi = data->regs_intr.abi;
5495 /*
5496 * If there are no regs to dump, notice it through
5497 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5498 */
5499 perf_output_put(handle, abi);
5500
5501 if (abi) {
5502 u64 mask = event->attr.sample_regs_intr;
5503
5504 perf_output_sample_regs(handle,
5505 data->regs_intr.regs,
5506 mask);
5507 }
5508 }
5509
5510 if (!event->attr.watermark) {
5511 int wakeup_events = event->attr.wakeup_events;
5512
5513 if (wakeup_events) {
5514 struct ring_buffer *rb = handle->rb;
5515 int events = local_inc_return(&rb->events);
5516
5517 if (events >= wakeup_events) {
5518 local_sub(wakeup_events, &rb->events);
5519 local_inc(&rb->wakeup);
5520 }
5521 }
5522 }
5523 }
5524
5525 void perf_prepare_sample(struct perf_event_header *header,
5526 struct perf_sample_data *data,
5527 struct perf_event *event,
5528 struct pt_regs *regs)
5529 {
5530 u64 sample_type = event->attr.sample_type;
5531
5532 header->type = PERF_RECORD_SAMPLE;
5533 header->size = sizeof(*header) + event->header_size;
5534
5535 header->misc = 0;
5536 header->misc |= perf_misc_flags(regs);
5537
5538 __perf_event_header__init_id(header, data, event);
5539
5540 if (sample_type & PERF_SAMPLE_IP)
5541 data->ip = perf_instruction_pointer(regs);
5542
5543 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5544 int size = 1;
5545
5546 data->callchain = perf_callchain(event, regs);
5547
5548 if (data->callchain)
5549 size += data->callchain->nr;
5550
5551 header->size += size * sizeof(u64);
5552 }
5553
5554 if (sample_type & PERF_SAMPLE_RAW) {
5555 int size = sizeof(u32);
5556
5557 if (data->raw)
5558 size += data->raw->size;
5559 else
5560 size += sizeof(u32);
5561
5562 header->size += round_up(size, sizeof(u64));
5563 }
5564
5565 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5566 int size = sizeof(u64); /* nr */
5567 if (data->br_stack) {
5568 size += data->br_stack->nr
5569 * sizeof(struct perf_branch_entry);
5570 }
5571 header->size += size;
5572 }
5573
5574 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5575 perf_sample_regs_user(&data->regs_user, regs,
5576 &data->regs_user_copy);
5577
5578 if (sample_type & PERF_SAMPLE_REGS_USER) {
5579 /* regs dump ABI info */
5580 int size = sizeof(u64);
5581
5582 if (data->regs_user.regs) {
5583 u64 mask = event->attr.sample_regs_user;
5584 size += hweight64(mask) * sizeof(u64);
5585 }
5586
5587 header->size += size;
5588 }
5589
5590 if (sample_type & PERF_SAMPLE_STACK_USER) {
5591 /*
5592 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5593 * processed as the last one or have additional check added
5594 * in case new sample type is added, because we could eat
5595 * up the rest of the sample size.
5596 */
5597 u16 stack_size = event->attr.sample_stack_user;
5598 u16 size = sizeof(u64);
5599
5600 stack_size = perf_sample_ustack_size(stack_size, header->size,
5601 data->regs_user.regs);
5602
5603 /*
5604 * If there is something to dump, add space for the dump
5605 * itself and for the field that tells the dynamic size,
5606 * which is how many have been actually dumped.
5607 */
5608 if (stack_size)
5609 size += sizeof(u64) + stack_size;
5610
5611 data->stack_user_size = stack_size;
5612 header->size += size;
5613 }
5614
5615 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5616 /* regs dump ABI info */
5617 int size = sizeof(u64);
5618
5619 perf_sample_regs_intr(&data->regs_intr, regs);
5620
5621 if (data->regs_intr.regs) {
5622 u64 mask = event->attr.sample_regs_intr;
5623
5624 size += hweight64(mask) * sizeof(u64);
5625 }
5626
5627 header->size += size;
5628 }
5629 }
5630
5631 void perf_event_output(struct perf_event *event,
5632 struct perf_sample_data *data,
5633 struct pt_regs *regs)
5634 {
5635 struct perf_output_handle handle;
5636 struct perf_event_header header;
5637
5638 /* protect the callchain buffers */
5639 rcu_read_lock();
5640
5641 perf_prepare_sample(&header, data, event, regs);
5642
5643 if (perf_output_begin(&handle, event, header.size))
5644 goto exit;
5645
5646 perf_output_sample(&handle, &header, data, event);
5647
5648 perf_output_end(&handle);
5649
5650 exit:
5651 rcu_read_unlock();
5652 }
5653
5654 /*
5655 * read event_id
5656 */
5657
5658 struct perf_read_event {
5659 struct perf_event_header header;
5660
5661 u32 pid;
5662 u32 tid;
5663 };
5664
5665 static void
5666 perf_event_read_event(struct perf_event *event,
5667 struct task_struct *task)
5668 {
5669 struct perf_output_handle handle;
5670 struct perf_sample_data sample;
5671 struct perf_read_event read_event = {
5672 .header = {
5673 .type = PERF_RECORD_READ,
5674 .misc = 0,
5675 .size = sizeof(read_event) + event->read_size,
5676 },
5677 .pid = perf_event_pid(event, task),
5678 .tid = perf_event_tid(event, task),
5679 };
5680 int ret;
5681
5682 perf_event_header__init_id(&read_event.header, &sample, event);
5683 ret = perf_output_begin(&handle, event, read_event.header.size);
5684 if (ret)
5685 return;
5686
5687 perf_output_put(&handle, read_event);
5688 perf_output_read(&handle, event);
5689 perf_event__output_id_sample(event, &handle, &sample);
5690
5691 perf_output_end(&handle);
5692 }
5693
5694 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5695
5696 static void
5697 perf_event_aux_ctx(struct perf_event_context *ctx,
5698 perf_event_aux_output_cb output,
5699 void *data)
5700 {
5701 struct perf_event *event;
5702
5703 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5704 if (event->state < PERF_EVENT_STATE_INACTIVE)
5705 continue;
5706 if (!event_filter_match(event))
5707 continue;
5708 output(event, data);
5709 }
5710 }
5711
5712 static void
5713 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5714 struct perf_event_context *task_ctx)
5715 {
5716 rcu_read_lock();
5717 preempt_disable();
5718 perf_event_aux_ctx(task_ctx, output, data);
5719 preempt_enable();
5720 rcu_read_unlock();
5721 }
5722
5723 static void
5724 perf_event_aux(perf_event_aux_output_cb output, void *data,
5725 struct perf_event_context *task_ctx)
5726 {
5727 struct perf_cpu_context *cpuctx;
5728 struct perf_event_context *ctx;
5729 struct pmu *pmu;
5730 int ctxn;
5731
5732 /*
5733 * If we have task_ctx != NULL we only notify
5734 * the task context itself. The task_ctx is set
5735 * only for EXIT events before releasing task
5736 * context.
5737 */
5738 if (task_ctx) {
5739 perf_event_aux_task_ctx(output, data, task_ctx);
5740 return;
5741 }
5742
5743 rcu_read_lock();
5744 list_for_each_entry_rcu(pmu, &pmus, entry) {
5745 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5746 if (cpuctx->unique_pmu != pmu)
5747 goto next;
5748 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5749 ctxn = pmu->task_ctx_nr;
5750 if (ctxn < 0)
5751 goto next;
5752 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5753 if (ctx)
5754 perf_event_aux_ctx(ctx, output, data);
5755 next:
5756 put_cpu_ptr(pmu->pmu_cpu_context);
5757 }
5758 rcu_read_unlock();
5759 }
5760
5761 /*
5762 * task tracking -- fork/exit
5763 *
5764 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5765 */
5766
5767 struct perf_task_event {
5768 struct task_struct *task;
5769 struct perf_event_context *task_ctx;
5770
5771 struct {
5772 struct perf_event_header header;
5773
5774 u32 pid;
5775 u32 ppid;
5776 u32 tid;
5777 u32 ptid;
5778 u64 time;
5779 } event_id;
5780 };
5781
5782 static int perf_event_task_match(struct perf_event *event)
5783 {
5784 return event->attr.comm || event->attr.mmap ||
5785 event->attr.mmap2 || event->attr.mmap_data ||
5786 event->attr.task;
5787 }
5788
5789 static void perf_event_task_output(struct perf_event *event,
5790 void *data)
5791 {
5792 struct perf_task_event *task_event = data;
5793 struct perf_output_handle handle;
5794 struct perf_sample_data sample;
5795 struct task_struct *task = task_event->task;
5796 int ret, size = task_event->event_id.header.size;
5797
5798 if (!perf_event_task_match(event))
5799 return;
5800
5801 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5802
5803 ret = perf_output_begin(&handle, event,
5804 task_event->event_id.header.size);
5805 if (ret)
5806 goto out;
5807
5808 task_event->event_id.pid = perf_event_pid(event, task);
5809 task_event->event_id.ppid = perf_event_pid(event, current);
5810
5811 task_event->event_id.tid = perf_event_tid(event, task);
5812 task_event->event_id.ptid = perf_event_tid(event, current);
5813
5814 task_event->event_id.time = perf_event_clock(event);
5815
5816 perf_output_put(&handle, task_event->event_id);
5817
5818 perf_event__output_id_sample(event, &handle, &sample);
5819
5820 perf_output_end(&handle);
5821 out:
5822 task_event->event_id.header.size = size;
5823 }
5824
5825 static void perf_event_task(struct task_struct *task,
5826 struct perf_event_context *task_ctx,
5827 int new)
5828 {
5829 struct perf_task_event task_event;
5830
5831 if (!atomic_read(&nr_comm_events) &&
5832 !atomic_read(&nr_mmap_events) &&
5833 !atomic_read(&nr_task_events))
5834 return;
5835
5836 task_event = (struct perf_task_event){
5837 .task = task,
5838 .task_ctx = task_ctx,
5839 .event_id = {
5840 .header = {
5841 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5842 .misc = 0,
5843 .size = sizeof(task_event.event_id),
5844 },
5845 /* .pid */
5846 /* .ppid */
5847 /* .tid */
5848 /* .ptid */
5849 /* .time */
5850 },
5851 };
5852
5853 perf_event_aux(perf_event_task_output,
5854 &task_event,
5855 task_ctx);
5856 }
5857
5858 void perf_event_fork(struct task_struct *task)
5859 {
5860 perf_event_task(task, NULL, 1);
5861 }
5862
5863 /*
5864 * comm tracking
5865 */
5866
5867 struct perf_comm_event {
5868 struct task_struct *task;
5869 char *comm;
5870 int comm_size;
5871
5872 struct {
5873 struct perf_event_header header;
5874
5875 u32 pid;
5876 u32 tid;
5877 } event_id;
5878 };
5879
5880 static int perf_event_comm_match(struct perf_event *event)
5881 {
5882 return event->attr.comm;
5883 }
5884
5885 static void perf_event_comm_output(struct perf_event *event,
5886 void *data)
5887 {
5888 struct perf_comm_event *comm_event = data;
5889 struct perf_output_handle handle;
5890 struct perf_sample_data sample;
5891 int size = comm_event->event_id.header.size;
5892 int ret;
5893
5894 if (!perf_event_comm_match(event))
5895 return;
5896
5897 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5898 ret = perf_output_begin(&handle, event,
5899 comm_event->event_id.header.size);
5900
5901 if (ret)
5902 goto out;
5903
5904 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5905 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5906
5907 perf_output_put(&handle, comm_event->event_id);
5908 __output_copy(&handle, comm_event->comm,
5909 comm_event->comm_size);
5910
5911 perf_event__output_id_sample(event, &handle, &sample);
5912
5913 perf_output_end(&handle);
5914 out:
5915 comm_event->event_id.header.size = size;
5916 }
5917
5918 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5919 {
5920 char comm[TASK_COMM_LEN];
5921 unsigned int size;
5922
5923 memset(comm, 0, sizeof(comm));
5924 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5925 size = ALIGN(strlen(comm)+1, sizeof(u64));
5926
5927 comm_event->comm = comm;
5928 comm_event->comm_size = size;
5929
5930 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5931
5932 perf_event_aux(perf_event_comm_output,
5933 comm_event,
5934 NULL);
5935 }
5936
5937 void perf_event_comm(struct task_struct *task, bool exec)
5938 {
5939 struct perf_comm_event comm_event;
5940
5941 if (!atomic_read(&nr_comm_events))
5942 return;
5943
5944 comm_event = (struct perf_comm_event){
5945 .task = task,
5946 /* .comm */
5947 /* .comm_size */
5948 .event_id = {
5949 .header = {
5950 .type = PERF_RECORD_COMM,
5951 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5952 /* .size */
5953 },
5954 /* .pid */
5955 /* .tid */
5956 },
5957 };
5958
5959 perf_event_comm_event(&comm_event);
5960 }
5961
5962 /*
5963 * mmap tracking
5964 */
5965
5966 struct perf_mmap_event {
5967 struct vm_area_struct *vma;
5968
5969 const char *file_name;
5970 int file_size;
5971 int maj, min;
5972 u64 ino;
5973 u64 ino_generation;
5974 u32 prot, flags;
5975
5976 struct {
5977 struct perf_event_header header;
5978
5979 u32 pid;
5980 u32 tid;
5981 u64 start;
5982 u64 len;
5983 u64 pgoff;
5984 } event_id;
5985 };
5986
5987 static int perf_event_mmap_match(struct perf_event *event,
5988 void *data)
5989 {
5990 struct perf_mmap_event *mmap_event = data;
5991 struct vm_area_struct *vma = mmap_event->vma;
5992 int executable = vma->vm_flags & VM_EXEC;
5993
5994 return (!executable && event->attr.mmap_data) ||
5995 (executable && (event->attr.mmap || event->attr.mmap2));
5996 }
5997
5998 static void perf_event_mmap_output(struct perf_event *event,
5999 void *data)
6000 {
6001 struct perf_mmap_event *mmap_event = data;
6002 struct perf_output_handle handle;
6003 struct perf_sample_data sample;
6004 int size = mmap_event->event_id.header.size;
6005 int ret;
6006
6007 if (!perf_event_mmap_match(event, data))
6008 return;
6009
6010 if (event->attr.mmap2) {
6011 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6012 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6013 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6014 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6015 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6016 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6017 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6018 }
6019
6020 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6021 ret = perf_output_begin(&handle, event,
6022 mmap_event->event_id.header.size);
6023 if (ret)
6024 goto out;
6025
6026 mmap_event->event_id.pid = perf_event_pid(event, current);
6027 mmap_event->event_id.tid = perf_event_tid(event, current);
6028
6029 perf_output_put(&handle, mmap_event->event_id);
6030
6031 if (event->attr.mmap2) {
6032 perf_output_put(&handle, mmap_event->maj);
6033 perf_output_put(&handle, mmap_event->min);
6034 perf_output_put(&handle, mmap_event->ino);
6035 perf_output_put(&handle, mmap_event->ino_generation);
6036 perf_output_put(&handle, mmap_event->prot);
6037 perf_output_put(&handle, mmap_event->flags);
6038 }
6039
6040 __output_copy(&handle, mmap_event->file_name,
6041 mmap_event->file_size);
6042
6043 perf_event__output_id_sample(event, &handle, &sample);
6044
6045 perf_output_end(&handle);
6046 out:
6047 mmap_event->event_id.header.size = size;
6048 }
6049
6050 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6051 {
6052 struct vm_area_struct *vma = mmap_event->vma;
6053 struct file *file = vma->vm_file;
6054 int maj = 0, min = 0;
6055 u64 ino = 0, gen = 0;
6056 u32 prot = 0, flags = 0;
6057 unsigned int size;
6058 char tmp[16];
6059 char *buf = NULL;
6060 char *name;
6061
6062 if (file) {
6063 struct inode *inode;
6064 dev_t dev;
6065
6066 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6067 if (!buf) {
6068 name = "//enomem";
6069 goto cpy_name;
6070 }
6071 /*
6072 * d_path() works from the end of the rb backwards, so we
6073 * need to add enough zero bytes after the string to handle
6074 * the 64bit alignment we do later.
6075 */
6076 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6077 if (IS_ERR(name)) {
6078 name = "//toolong";
6079 goto cpy_name;
6080 }
6081 inode = file_inode(vma->vm_file);
6082 dev = inode->i_sb->s_dev;
6083 ino = inode->i_ino;
6084 gen = inode->i_generation;
6085 maj = MAJOR(dev);
6086 min = MINOR(dev);
6087
6088 if (vma->vm_flags & VM_READ)
6089 prot |= PROT_READ;
6090 if (vma->vm_flags & VM_WRITE)
6091 prot |= PROT_WRITE;
6092 if (vma->vm_flags & VM_EXEC)
6093 prot |= PROT_EXEC;
6094
6095 if (vma->vm_flags & VM_MAYSHARE)
6096 flags = MAP_SHARED;
6097 else
6098 flags = MAP_PRIVATE;
6099
6100 if (vma->vm_flags & VM_DENYWRITE)
6101 flags |= MAP_DENYWRITE;
6102 if (vma->vm_flags & VM_MAYEXEC)
6103 flags |= MAP_EXECUTABLE;
6104 if (vma->vm_flags & VM_LOCKED)
6105 flags |= MAP_LOCKED;
6106 if (vma->vm_flags & VM_HUGETLB)
6107 flags |= MAP_HUGETLB;
6108
6109 goto got_name;
6110 } else {
6111 if (vma->vm_ops && vma->vm_ops->name) {
6112 name = (char *) vma->vm_ops->name(vma);
6113 if (name)
6114 goto cpy_name;
6115 }
6116
6117 name = (char *)arch_vma_name(vma);
6118 if (name)
6119 goto cpy_name;
6120
6121 if (vma->vm_start <= vma->vm_mm->start_brk &&
6122 vma->vm_end >= vma->vm_mm->brk) {
6123 name = "[heap]";
6124 goto cpy_name;
6125 }
6126 if (vma->vm_start <= vma->vm_mm->start_stack &&
6127 vma->vm_end >= vma->vm_mm->start_stack) {
6128 name = "[stack]";
6129 goto cpy_name;
6130 }
6131
6132 name = "//anon";
6133 goto cpy_name;
6134 }
6135
6136 cpy_name:
6137 strlcpy(tmp, name, sizeof(tmp));
6138 name = tmp;
6139 got_name:
6140 /*
6141 * Since our buffer works in 8 byte units we need to align our string
6142 * size to a multiple of 8. However, we must guarantee the tail end is
6143 * zero'd out to avoid leaking random bits to userspace.
6144 */
6145 size = strlen(name)+1;
6146 while (!IS_ALIGNED(size, sizeof(u64)))
6147 name[size++] = '\0';
6148
6149 mmap_event->file_name = name;
6150 mmap_event->file_size = size;
6151 mmap_event->maj = maj;
6152 mmap_event->min = min;
6153 mmap_event->ino = ino;
6154 mmap_event->ino_generation = gen;
6155 mmap_event->prot = prot;
6156 mmap_event->flags = flags;
6157
6158 if (!(vma->vm_flags & VM_EXEC))
6159 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6160
6161 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6162
6163 perf_event_aux(perf_event_mmap_output,
6164 mmap_event,
6165 NULL);
6166
6167 kfree(buf);
6168 }
6169
6170 void perf_event_mmap(struct vm_area_struct *vma)
6171 {
6172 struct perf_mmap_event mmap_event;
6173
6174 if (!atomic_read(&nr_mmap_events))
6175 return;
6176
6177 mmap_event = (struct perf_mmap_event){
6178 .vma = vma,
6179 /* .file_name */
6180 /* .file_size */
6181 .event_id = {
6182 .header = {
6183 .type = PERF_RECORD_MMAP,
6184 .misc = PERF_RECORD_MISC_USER,
6185 /* .size */
6186 },
6187 /* .pid */
6188 /* .tid */
6189 .start = vma->vm_start,
6190 .len = vma->vm_end - vma->vm_start,
6191 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6192 },
6193 /* .maj (attr_mmap2 only) */
6194 /* .min (attr_mmap2 only) */
6195 /* .ino (attr_mmap2 only) */
6196 /* .ino_generation (attr_mmap2 only) */
6197 /* .prot (attr_mmap2 only) */
6198 /* .flags (attr_mmap2 only) */
6199 };
6200
6201 perf_event_mmap_event(&mmap_event);
6202 }
6203
6204 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6205 unsigned long size, u64 flags)
6206 {
6207 struct perf_output_handle handle;
6208 struct perf_sample_data sample;
6209 struct perf_aux_event {
6210 struct perf_event_header header;
6211 u64 offset;
6212 u64 size;
6213 u64 flags;
6214 } rec = {
6215 .header = {
6216 .type = PERF_RECORD_AUX,
6217 .misc = 0,
6218 .size = sizeof(rec),
6219 },
6220 .offset = head,
6221 .size = size,
6222 .flags = flags,
6223 };
6224 int ret;
6225
6226 perf_event_header__init_id(&rec.header, &sample, event);
6227 ret = perf_output_begin(&handle, event, rec.header.size);
6228
6229 if (ret)
6230 return;
6231
6232 perf_output_put(&handle, rec);
6233 perf_event__output_id_sample(event, &handle, &sample);
6234
6235 perf_output_end(&handle);
6236 }
6237
6238 /*
6239 * Lost/dropped samples logging
6240 */
6241 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6242 {
6243 struct perf_output_handle handle;
6244 struct perf_sample_data sample;
6245 int ret;
6246
6247 struct {
6248 struct perf_event_header header;
6249 u64 lost;
6250 } lost_samples_event = {
6251 .header = {
6252 .type = PERF_RECORD_LOST_SAMPLES,
6253 .misc = 0,
6254 .size = sizeof(lost_samples_event),
6255 },
6256 .lost = lost,
6257 };
6258
6259 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6260
6261 ret = perf_output_begin(&handle, event,
6262 lost_samples_event.header.size);
6263 if (ret)
6264 return;
6265
6266 perf_output_put(&handle, lost_samples_event);
6267 perf_event__output_id_sample(event, &handle, &sample);
6268 perf_output_end(&handle);
6269 }
6270
6271 /*
6272 * context_switch tracking
6273 */
6274
6275 struct perf_switch_event {
6276 struct task_struct *task;
6277 struct task_struct *next_prev;
6278
6279 struct {
6280 struct perf_event_header header;
6281 u32 next_prev_pid;
6282 u32 next_prev_tid;
6283 } event_id;
6284 };
6285
6286 static int perf_event_switch_match(struct perf_event *event)
6287 {
6288 return event->attr.context_switch;
6289 }
6290
6291 static void perf_event_switch_output(struct perf_event *event, void *data)
6292 {
6293 struct perf_switch_event *se = data;
6294 struct perf_output_handle handle;
6295 struct perf_sample_data sample;
6296 int ret;
6297
6298 if (!perf_event_switch_match(event))
6299 return;
6300
6301 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6302 if (event->ctx->task) {
6303 se->event_id.header.type = PERF_RECORD_SWITCH;
6304 se->event_id.header.size = sizeof(se->event_id.header);
6305 } else {
6306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6307 se->event_id.header.size = sizeof(se->event_id);
6308 se->event_id.next_prev_pid =
6309 perf_event_pid(event, se->next_prev);
6310 se->event_id.next_prev_tid =
6311 perf_event_tid(event, se->next_prev);
6312 }
6313
6314 perf_event_header__init_id(&se->event_id.header, &sample, event);
6315
6316 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6317 if (ret)
6318 return;
6319
6320 if (event->ctx->task)
6321 perf_output_put(&handle, se->event_id.header);
6322 else
6323 perf_output_put(&handle, se->event_id);
6324
6325 perf_event__output_id_sample(event, &handle, &sample);
6326
6327 perf_output_end(&handle);
6328 }
6329
6330 static void perf_event_switch(struct task_struct *task,
6331 struct task_struct *next_prev, bool sched_in)
6332 {
6333 struct perf_switch_event switch_event;
6334
6335 /* N.B. caller checks nr_switch_events != 0 */
6336
6337 switch_event = (struct perf_switch_event){
6338 .task = task,
6339 .next_prev = next_prev,
6340 .event_id = {
6341 .header = {
6342 /* .type */
6343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6344 /* .size */
6345 },
6346 /* .next_prev_pid */
6347 /* .next_prev_tid */
6348 },
6349 };
6350
6351 perf_event_aux(perf_event_switch_output,
6352 &switch_event,
6353 NULL);
6354 }
6355
6356 /*
6357 * IRQ throttle logging
6358 */
6359
6360 static void perf_log_throttle(struct perf_event *event, int enable)
6361 {
6362 struct perf_output_handle handle;
6363 struct perf_sample_data sample;
6364 int ret;
6365
6366 struct {
6367 struct perf_event_header header;
6368 u64 time;
6369 u64 id;
6370 u64 stream_id;
6371 } throttle_event = {
6372 .header = {
6373 .type = PERF_RECORD_THROTTLE,
6374 .misc = 0,
6375 .size = sizeof(throttle_event),
6376 },
6377 .time = perf_event_clock(event),
6378 .id = primary_event_id(event),
6379 .stream_id = event->id,
6380 };
6381
6382 if (enable)
6383 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6384
6385 perf_event_header__init_id(&throttle_event.header, &sample, event);
6386
6387 ret = perf_output_begin(&handle, event,
6388 throttle_event.header.size);
6389 if (ret)
6390 return;
6391
6392 perf_output_put(&handle, throttle_event);
6393 perf_event__output_id_sample(event, &handle, &sample);
6394 perf_output_end(&handle);
6395 }
6396
6397 static void perf_log_itrace_start(struct perf_event *event)
6398 {
6399 struct perf_output_handle handle;
6400 struct perf_sample_data sample;
6401 struct perf_aux_event {
6402 struct perf_event_header header;
6403 u32 pid;
6404 u32 tid;
6405 } rec;
6406 int ret;
6407
6408 if (event->parent)
6409 event = event->parent;
6410
6411 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6412 event->hw.itrace_started)
6413 return;
6414
6415 rec.header.type = PERF_RECORD_ITRACE_START;
6416 rec.header.misc = 0;
6417 rec.header.size = sizeof(rec);
6418 rec.pid = perf_event_pid(event, current);
6419 rec.tid = perf_event_tid(event, current);
6420
6421 perf_event_header__init_id(&rec.header, &sample, event);
6422 ret = perf_output_begin(&handle, event, rec.header.size);
6423
6424 if (ret)
6425 return;
6426
6427 perf_output_put(&handle, rec);
6428 perf_event__output_id_sample(event, &handle, &sample);
6429
6430 perf_output_end(&handle);
6431 }
6432
6433 /*
6434 * Generic event overflow handling, sampling.
6435 */
6436
6437 static int __perf_event_overflow(struct perf_event *event,
6438 int throttle, struct perf_sample_data *data,
6439 struct pt_regs *regs)
6440 {
6441 int events = atomic_read(&event->event_limit);
6442 struct hw_perf_event *hwc = &event->hw;
6443 u64 seq;
6444 int ret = 0;
6445
6446 /*
6447 * Non-sampling counters might still use the PMI to fold short
6448 * hardware counters, ignore those.
6449 */
6450 if (unlikely(!is_sampling_event(event)))
6451 return 0;
6452
6453 seq = __this_cpu_read(perf_throttled_seq);
6454 if (seq != hwc->interrupts_seq) {
6455 hwc->interrupts_seq = seq;
6456 hwc->interrupts = 1;
6457 } else {
6458 hwc->interrupts++;
6459 if (unlikely(throttle
6460 && hwc->interrupts >= max_samples_per_tick)) {
6461 __this_cpu_inc(perf_throttled_count);
6462 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6463 hwc->interrupts = MAX_INTERRUPTS;
6464 perf_log_throttle(event, 0);
6465 ret = 1;
6466 }
6467 }
6468
6469 if (event->attr.freq) {
6470 u64 now = perf_clock();
6471 s64 delta = now - hwc->freq_time_stamp;
6472
6473 hwc->freq_time_stamp = now;
6474
6475 if (delta > 0 && delta < 2*TICK_NSEC)
6476 perf_adjust_period(event, delta, hwc->last_period, true);
6477 }
6478
6479 /*
6480 * XXX event_limit might not quite work as expected on inherited
6481 * events
6482 */
6483
6484 event->pending_kill = POLL_IN;
6485 if (events && atomic_dec_and_test(&event->event_limit)) {
6486 ret = 1;
6487 event->pending_kill = POLL_HUP;
6488 event->pending_disable = 1;
6489 irq_work_queue(&event->pending);
6490 }
6491
6492 if (event->overflow_handler)
6493 event->overflow_handler(event, data, regs);
6494 else
6495 perf_event_output(event, data, regs);
6496
6497 if (*perf_event_fasync(event) && event->pending_kill) {
6498 event->pending_wakeup = 1;
6499 irq_work_queue(&event->pending);
6500 }
6501
6502 return ret;
6503 }
6504
6505 int perf_event_overflow(struct perf_event *event,
6506 struct perf_sample_data *data,
6507 struct pt_regs *regs)
6508 {
6509 return __perf_event_overflow(event, 1, data, regs);
6510 }
6511
6512 /*
6513 * Generic software event infrastructure
6514 */
6515
6516 struct swevent_htable {
6517 struct swevent_hlist *swevent_hlist;
6518 struct mutex hlist_mutex;
6519 int hlist_refcount;
6520
6521 /* Recursion avoidance in each contexts */
6522 int recursion[PERF_NR_CONTEXTS];
6523 };
6524
6525 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6526
6527 /*
6528 * We directly increment event->count and keep a second value in
6529 * event->hw.period_left to count intervals. This period event
6530 * is kept in the range [-sample_period, 0] so that we can use the
6531 * sign as trigger.
6532 */
6533
6534 u64 perf_swevent_set_period(struct perf_event *event)
6535 {
6536 struct hw_perf_event *hwc = &event->hw;
6537 u64 period = hwc->last_period;
6538 u64 nr, offset;
6539 s64 old, val;
6540
6541 hwc->last_period = hwc->sample_period;
6542
6543 again:
6544 old = val = local64_read(&hwc->period_left);
6545 if (val < 0)
6546 return 0;
6547
6548 nr = div64_u64(period + val, period);
6549 offset = nr * period;
6550 val -= offset;
6551 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6552 goto again;
6553
6554 return nr;
6555 }
6556
6557 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6558 struct perf_sample_data *data,
6559 struct pt_regs *regs)
6560 {
6561 struct hw_perf_event *hwc = &event->hw;
6562 int throttle = 0;
6563
6564 if (!overflow)
6565 overflow = perf_swevent_set_period(event);
6566
6567 if (hwc->interrupts == MAX_INTERRUPTS)
6568 return;
6569
6570 for (; overflow; overflow--) {
6571 if (__perf_event_overflow(event, throttle,
6572 data, regs)) {
6573 /*
6574 * We inhibit the overflow from happening when
6575 * hwc->interrupts == MAX_INTERRUPTS.
6576 */
6577 break;
6578 }
6579 throttle = 1;
6580 }
6581 }
6582
6583 static void perf_swevent_event(struct perf_event *event, u64 nr,
6584 struct perf_sample_data *data,
6585 struct pt_regs *regs)
6586 {
6587 struct hw_perf_event *hwc = &event->hw;
6588
6589 local64_add(nr, &event->count);
6590
6591 if (!regs)
6592 return;
6593
6594 if (!is_sampling_event(event))
6595 return;
6596
6597 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6598 data->period = nr;
6599 return perf_swevent_overflow(event, 1, data, regs);
6600 } else
6601 data->period = event->hw.last_period;
6602
6603 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6604 return perf_swevent_overflow(event, 1, data, regs);
6605
6606 if (local64_add_negative(nr, &hwc->period_left))
6607 return;
6608
6609 perf_swevent_overflow(event, 0, data, regs);
6610 }
6611
6612 static int perf_exclude_event(struct perf_event *event,
6613 struct pt_regs *regs)
6614 {
6615 if (event->hw.state & PERF_HES_STOPPED)
6616 return 1;
6617
6618 if (regs) {
6619 if (event->attr.exclude_user && user_mode(regs))
6620 return 1;
6621
6622 if (event->attr.exclude_kernel && !user_mode(regs))
6623 return 1;
6624 }
6625
6626 return 0;
6627 }
6628
6629 static int perf_swevent_match(struct perf_event *event,
6630 enum perf_type_id type,
6631 u32 event_id,
6632 struct perf_sample_data *data,
6633 struct pt_regs *regs)
6634 {
6635 if (event->attr.type != type)
6636 return 0;
6637
6638 if (event->attr.config != event_id)
6639 return 0;
6640
6641 if (perf_exclude_event(event, regs))
6642 return 0;
6643
6644 return 1;
6645 }
6646
6647 static inline u64 swevent_hash(u64 type, u32 event_id)
6648 {
6649 u64 val = event_id | (type << 32);
6650
6651 return hash_64(val, SWEVENT_HLIST_BITS);
6652 }
6653
6654 static inline struct hlist_head *
6655 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6656 {
6657 u64 hash = swevent_hash(type, event_id);
6658
6659 return &hlist->heads[hash];
6660 }
6661
6662 /* For the read side: events when they trigger */
6663 static inline struct hlist_head *
6664 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6665 {
6666 struct swevent_hlist *hlist;
6667
6668 hlist = rcu_dereference(swhash->swevent_hlist);
6669 if (!hlist)
6670 return NULL;
6671
6672 return __find_swevent_head(hlist, type, event_id);
6673 }
6674
6675 /* For the event head insertion and removal in the hlist */
6676 static inline struct hlist_head *
6677 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6678 {
6679 struct swevent_hlist *hlist;
6680 u32 event_id = event->attr.config;
6681 u64 type = event->attr.type;
6682
6683 /*
6684 * Event scheduling is always serialized against hlist allocation
6685 * and release. Which makes the protected version suitable here.
6686 * The context lock guarantees that.
6687 */
6688 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6689 lockdep_is_held(&event->ctx->lock));
6690 if (!hlist)
6691 return NULL;
6692
6693 return __find_swevent_head(hlist, type, event_id);
6694 }
6695
6696 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6697 u64 nr,
6698 struct perf_sample_data *data,
6699 struct pt_regs *regs)
6700 {
6701 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6702 struct perf_event *event;
6703 struct hlist_head *head;
6704
6705 rcu_read_lock();
6706 head = find_swevent_head_rcu(swhash, type, event_id);
6707 if (!head)
6708 goto end;
6709
6710 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6711 if (perf_swevent_match(event, type, event_id, data, regs))
6712 perf_swevent_event(event, nr, data, regs);
6713 }
6714 end:
6715 rcu_read_unlock();
6716 }
6717
6718 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6719
6720 int perf_swevent_get_recursion_context(void)
6721 {
6722 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6723
6724 return get_recursion_context(swhash->recursion);
6725 }
6726 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6727
6728 inline void perf_swevent_put_recursion_context(int rctx)
6729 {
6730 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6731
6732 put_recursion_context(swhash->recursion, rctx);
6733 }
6734
6735 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6736 {
6737 struct perf_sample_data data;
6738
6739 if (WARN_ON_ONCE(!regs))
6740 return;
6741
6742 perf_sample_data_init(&data, addr, 0);
6743 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6744 }
6745
6746 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6747 {
6748 int rctx;
6749
6750 preempt_disable_notrace();
6751 rctx = perf_swevent_get_recursion_context();
6752 if (unlikely(rctx < 0))
6753 goto fail;
6754
6755 ___perf_sw_event(event_id, nr, regs, addr);
6756
6757 perf_swevent_put_recursion_context(rctx);
6758 fail:
6759 preempt_enable_notrace();
6760 }
6761
6762 static void perf_swevent_read(struct perf_event *event)
6763 {
6764 }
6765
6766 static int perf_swevent_add(struct perf_event *event, int flags)
6767 {
6768 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6769 struct hw_perf_event *hwc = &event->hw;
6770 struct hlist_head *head;
6771
6772 if (is_sampling_event(event)) {
6773 hwc->last_period = hwc->sample_period;
6774 perf_swevent_set_period(event);
6775 }
6776
6777 hwc->state = !(flags & PERF_EF_START);
6778
6779 head = find_swevent_head(swhash, event);
6780 if (WARN_ON_ONCE(!head))
6781 return -EINVAL;
6782
6783 hlist_add_head_rcu(&event->hlist_entry, head);
6784 perf_event_update_userpage(event);
6785
6786 return 0;
6787 }
6788
6789 static void perf_swevent_del(struct perf_event *event, int flags)
6790 {
6791 hlist_del_rcu(&event->hlist_entry);
6792 }
6793
6794 static void perf_swevent_start(struct perf_event *event, int flags)
6795 {
6796 event->hw.state = 0;
6797 }
6798
6799 static void perf_swevent_stop(struct perf_event *event, int flags)
6800 {
6801 event->hw.state = PERF_HES_STOPPED;
6802 }
6803
6804 /* Deref the hlist from the update side */
6805 static inline struct swevent_hlist *
6806 swevent_hlist_deref(struct swevent_htable *swhash)
6807 {
6808 return rcu_dereference_protected(swhash->swevent_hlist,
6809 lockdep_is_held(&swhash->hlist_mutex));
6810 }
6811
6812 static void swevent_hlist_release(struct swevent_htable *swhash)
6813 {
6814 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6815
6816 if (!hlist)
6817 return;
6818
6819 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6820 kfree_rcu(hlist, rcu_head);
6821 }
6822
6823 static void swevent_hlist_put_cpu(int cpu)
6824 {
6825 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6826
6827 mutex_lock(&swhash->hlist_mutex);
6828
6829 if (!--swhash->hlist_refcount)
6830 swevent_hlist_release(swhash);
6831
6832 mutex_unlock(&swhash->hlist_mutex);
6833 }
6834
6835 static void swevent_hlist_put(void)
6836 {
6837 int cpu;
6838
6839 for_each_possible_cpu(cpu)
6840 swevent_hlist_put_cpu(cpu);
6841 }
6842
6843 static int swevent_hlist_get_cpu(int cpu)
6844 {
6845 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6846 int err = 0;
6847
6848 mutex_lock(&swhash->hlist_mutex);
6849 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6850 struct swevent_hlist *hlist;
6851
6852 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6853 if (!hlist) {
6854 err = -ENOMEM;
6855 goto exit;
6856 }
6857 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6858 }
6859 swhash->hlist_refcount++;
6860 exit:
6861 mutex_unlock(&swhash->hlist_mutex);
6862
6863 return err;
6864 }
6865
6866 static int swevent_hlist_get(void)
6867 {
6868 int err, cpu, failed_cpu;
6869
6870 get_online_cpus();
6871 for_each_possible_cpu(cpu) {
6872 err = swevent_hlist_get_cpu(cpu);
6873 if (err) {
6874 failed_cpu = cpu;
6875 goto fail;
6876 }
6877 }
6878 put_online_cpus();
6879
6880 return 0;
6881 fail:
6882 for_each_possible_cpu(cpu) {
6883 if (cpu == failed_cpu)
6884 break;
6885 swevent_hlist_put_cpu(cpu);
6886 }
6887
6888 put_online_cpus();
6889 return err;
6890 }
6891
6892 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6893
6894 static void sw_perf_event_destroy(struct perf_event *event)
6895 {
6896 u64 event_id = event->attr.config;
6897
6898 WARN_ON(event->parent);
6899
6900 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6901 swevent_hlist_put();
6902 }
6903
6904 static int perf_swevent_init(struct perf_event *event)
6905 {
6906 u64 event_id = event->attr.config;
6907
6908 if (event->attr.type != PERF_TYPE_SOFTWARE)
6909 return -ENOENT;
6910
6911 /*
6912 * no branch sampling for software events
6913 */
6914 if (has_branch_stack(event))
6915 return -EOPNOTSUPP;
6916
6917 switch (event_id) {
6918 case PERF_COUNT_SW_CPU_CLOCK:
6919 case PERF_COUNT_SW_TASK_CLOCK:
6920 return -ENOENT;
6921
6922 default:
6923 break;
6924 }
6925
6926 if (event_id >= PERF_COUNT_SW_MAX)
6927 return -ENOENT;
6928
6929 if (!event->parent) {
6930 int err;
6931
6932 err = swevent_hlist_get();
6933 if (err)
6934 return err;
6935
6936 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6937 event->destroy = sw_perf_event_destroy;
6938 }
6939
6940 return 0;
6941 }
6942
6943 static struct pmu perf_swevent = {
6944 .task_ctx_nr = perf_sw_context,
6945
6946 .capabilities = PERF_PMU_CAP_NO_NMI,
6947
6948 .event_init = perf_swevent_init,
6949 .add = perf_swevent_add,
6950 .del = perf_swevent_del,
6951 .start = perf_swevent_start,
6952 .stop = perf_swevent_stop,
6953 .read = perf_swevent_read,
6954 };
6955
6956 #ifdef CONFIG_EVENT_TRACING
6957
6958 static int perf_tp_filter_match(struct perf_event *event,
6959 struct perf_sample_data *data)
6960 {
6961 void *record = data->raw->data;
6962
6963 /* only top level events have filters set */
6964 if (event->parent)
6965 event = event->parent;
6966
6967 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6968 return 1;
6969 return 0;
6970 }
6971
6972 static int perf_tp_event_match(struct perf_event *event,
6973 struct perf_sample_data *data,
6974 struct pt_regs *regs)
6975 {
6976 if (event->hw.state & PERF_HES_STOPPED)
6977 return 0;
6978 /*
6979 * All tracepoints are from kernel-space.
6980 */
6981 if (event->attr.exclude_kernel)
6982 return 0;
6983
6984 if (!perf_tp_filter_match(event, data))
6985 return 0;
6986
6987 return 1;
6988 }
6989
6990 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6991 struct pt_regs *regs, struct hlist_head *head, int rctx,
6992 struct task_struct *task)
6993 {
6994 struct perf_sample_data data;
6995 struct perf_event *event;
6996
6997 struct perf_raw_record raw = {
6998 .size = entry_size,
6999 .data = record,
7000 };
7001
7002 perf_sample_data_init(&data, addr, 0);
7003 data.raw = &raw;
7004
7005 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7006 if (perf_tp_event_match(event, &data, regs))
7007 perf_swevent_event(event, count, &data, regs);
7008 }
7009
7010 /*
7011 * If we got specified a target task, also iterate its context and
7012 * deliver this event there too.
7013 */
7014 if (task && task != current) {
7015 struct perf_event_context *ctx;
7016 struct trace_entry *entry = record;
7017
7018 rcu_read_lock();
7019 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7020 if (!ctx)
7021 goto unlock;
7022
7023 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7024 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7025 continue;
7026 if (event->attr.config != entry->type)
7027 continue;
7028 if (perf_tp_event_match(event, &data, regs))
7029 perf_swevent_event(event, count, &data, regs);
7030 }
7031 unlock:
7032 rcu_read_unlock();
7033 }
7034
7035 perf_swevent_put_recursion_context(rctx);
7036 }
7037 EXPORT_SYMBOL_GPL(perf_tp_event);
7038
7039 static void tp_perf_event_destroy(struct perf_event *event)
7040 {
7041 perf_trace_destroy(event);
7042 }
7043
7044 static int perf_tp_event_init(struct perf_event *event)
7045 {
7046 int err;
7047
7048 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7049 return -ENOENT;
7050
7051 /*
7052 * no branch sampling for tracepoint events
7053 */
7054 if (has_branch_stack(event))
7055 return -EOPNOTSUPP;
7056
7057 err = perf_trace_init(event);
7058 if (err)
7059 return err;
7060
7061 event->destroy = tp_perf_event_destroy;
7062
7063 return 0;
7064 }
7065
7066 static struct pmu perf_tracepoint = {
7067 .task_ctx_nr = perf_sw_context,
7068
7069 .event_init = perf_tp_event_init,
7070 .add = perf_trace_add,
7071 .del = perf_trace_del,
7072 .start = perf_swevent_start,
7073 .stop = perf_swevent_stop,
7074 .read = perf_swevent_read,
7075 };
7076
7077 static inline void perf_tp_register(void)
7078 {
7079 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7080 }
7081
7082 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7083 {
7084 char *filter_str;
7085 int ret;
7086
7087 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7088 return -EINVAL;
7089
7090 filter_str = strndup_user(arg, PAGE_SIZE);
7091 if (IS_ERR(filter_str))
7092 return PTR_ERR(filter_str);
7093
7094 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7095
7096 kfree(filter_str);
7097 return ret;
7098 }
7099
7100 static void perf_event_free_filter(struct perf_event *event)
7101 {
7102 ftrace_profile_free_filter(event);
7103 }
7104
7105 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7106 {
7107 struct bpf_prog *prog;
7108
7109 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7110 return -EINVAL;
7111
7112 if (event->tp_event->prog)
7113 return -EEXIST;
7114
7115 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7116 /* bpf programs can only be attached to u/kprobes */
7117 return -EINVAL;
7118
7119 prog = bpf_prog_get(prog_fd);
7120 if (IS_ERR(prog))
7121 return PTR_ERR(prog);
7122
7123 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7124 /* valid fd, but invalid bpf program type */
7125 bpf_prog_put(prog);
7126 return -EINVAL;
7127 }
7128
7129 event->tp_event->prog = prog;
7130
7131 return 0;
7132 }
7133
7134 static void perf_event_free_bpf_prog(struct perf_event *event)
7135 {
7136 struct bpf_prog *prog;
7137
7138 if (!event->tp_event)
7139 return;
7140
7141 prog = event->tp_event->prog;
7142 if (prog) {
7143 event->tp_event->prog = NULL;
7144 bpf_prog_put(prog);
7145 }
7146 }
7147
7148 #else
7149
7150 static inline void perf_tp_register(void)
7151 {
7152 }
7153
7154 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7155 {
7156 return -ENOENT;
7157 }
7158
7159 static void perf_event_free_filter(struct perf_event *event)
7160 {
7161 }
7162
7163 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7164 {
7165 return -ENOENT;
7166 }
7167
7168 static void perf_event_free_bpf_prog(struct perf_event *event)
7169 {
7170 }
7171 #endif /* CONFIG_EVENT_TRACING */
7172
7173 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7174 void perf_bp_event(struct perf_event *bp, void *data)
7175 {
7176 struct perf_sample_data sample;
7177 struct pt_regs *regs = data;
7178
7179 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7180
7181 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7182 perf_swevent_event(bp, 1, &sample, regs);
7183 }
7184 #endif
7185
7186 /*
7187 * hrtimer based swevent callback
7188 */
7189
7190 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7191 {
7192 enum hrtimer_restart ret = HRTIMER_RESTART;
7193 struct perf_sample_data data;
7194 struct pt_regs *regs;
7195 struct perf_event *event;
7196 u64 period;
7197
7198 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7199
7200 if (event->state != PERF_EVENT_STATE_ACTIVE)
7201 return HRTIMER_NORESTART;
7202
7203 event->pmu->read(event);
7204
7205 perf_sample_data_init(&data, 0, event->hw.last_period);
7206 regs = get_irq_regs();
7207
7208 if (regs && !perf_exclude_event(event, regs)) {
7209 if (!(event->attr.exclude_idle && is_idle_task(current)))
7210 if (__perf_event_overflow(event, 1, &data, regs))
7211 ret = HRTIMER_NORESTART;
7212 }
7213
7214 period = max_t(u64, 10000, event->hw.sample_period);
7215 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7216
7217 return ret;
7218 }
7219
7220 static void perf_swevent_start_hrtimer(struct perf_event *event)
7221 {
7222 struct hw_perf_event *hwc = &event->hw;
7223 s64 period;
7224
7225 if (!is_sampling_event(event))
7226 return;
7227
7228 period = local64_read(&hwc->period_left);
7229 if (period) {
7230 if (period < 0)
7231 period = 10000;
7232
7233 local64_set(&hwc->period_left, 0);
7234 } else {
7235 period = max_t(u64, 10000, hwc->sample_period);
7236 }
7237 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7238 HRTIMER_MODE_REL_PINNED);
7239 }
7240
7241 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7242 {
7243 struct hw_perf_event *hwc = &event->hw;
7244
7245 if (is_sampling_event(event)) {
7246 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7247 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7248
7249 hrtimer_cancel(&hwc->hrtimer);
7250 }
7251 }
7252
7253 static void perf_swevent_init_hrtimer(struct perf_event *event)
7254 {
7255 struct hw_perf_event *hwc = &event->hw;
7256
7257 if (!is_sampling_event(event))
7258 return;
7259
7260 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7261 hwc->hrtimer.function = perf_swevent_hrtimer;
7262
7263 /*
7264 * Since hrtimers have a fixed rate, we can do a static freq->period
7265 * mapping and avoid the whole period adjust feedback stuff.
7266 */
7267 if (event->attr.freq) {
7268 long freq = event->attr.sample_freq;
7269
7270 event->attr.sample_period = NSEC_PER_SEC / freq;
7271 hwc->sample_period = event->attr.sample_period;
7272 local64_set(&hwc->period_left, hwc->sample_period);
7273 hwc->last_period = hwc->sample_period;
7274 event->attr.freq = 0;
7275 }
7276 }
7277
7278 /*
7279 * Software event: cpu wall time clock
7280 */
7281
7282 static void cpu_clock_event_update(struct perf_event *event)
7283 {
7284 s64 prev;
7285 u64 now;
7286
7287 now = local_clock();
7288 prev = local64_xchg(&event->hw.prev_count, now);
7289 local64_add(now - prev, &event->count);
7290 }
7291
7292 static void cpu_clock_event_start(struct perf_event *event, int flags)
7293 {
7294 local64_set(&event->hw.prev_count, local_clock());
7295 perf_swevent_start_hrtimer(event);
7296 }
7297
7298 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7299 {
7300 perf_swevent_cancel_hrtimer(event);
7301 cpu_clock_event_update(event);
7302 }
7303
7304 static int cpu_clock_event_add(struct perf_event *event, int flags)
7305 {
7306 if (flags & PERF_EF_START)
7307 cpu_clock_event_start(event, flags);
7308 perf_event_update_userpage(event);
7309
7310 return 0;
7311 }
7312
7313 static void cpu_clock_event_del(struct perf_event *event, int flags)
7314 {
7315 cpu_clock_event_stop(event, flags);
7316 }
7317
7318 static void cpu_clock_event_read(struct perf_event *event)
7319 {
7320 cpu_clock_event_update(event);
7321 }
7322
7323 static int cpu_clock_event_init(struct perf_event *event)
7324 {
7325 if (event->attr.type != PERF_TYPE_SOFTWARE)
7326 return -ENOENT;
7327
7328 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7329 return -ENOENT;
7330
7331 /*
7332 * no branch sampling for software events
7333 */
7334 if (has_branch_stack(event))
7335 return -EOPNOTSUPP;
7336
7337 perf_swevent_init_hrtimer(event);
7338
7339 return 0;
7340 }
7341
7342 static struct pmu perf_cpu_clock = {
7343 .task_ctx_nr = perf_sw_context,
7344
7345 .capabilities = PERF_PMU_CAP_NO_NMI,
7346
7347 .event_init = cpu_clock_event_init,
7348 .add = cpu_clock_event_add,
7349 .del = cpu_clock_event_del,
7350 .start = cpu_clock_event_start,
7351 .stop = cpu_clock_event_stop,
7352 .read = cpu_clock_event_read,
7353 };
7354
7355 /*
7356 * Software event: task time clock
7357 */
7358
7359 static void task_clock_event_update(struct perf_event *event, u64 now)
7360 {
7361 u64 prev;
7362 s64 delta;
7363
7364 prev = local64_xchg(&event->hw.prev_count, now);
7365 delta = now - prev;
7366 local64_add(delta, &event->count);
7367 }
7368
7369 static void task_clock_event_start(struct perf_event *event, int flags)
7370 {
7371 local64_set(&event->hw.prev_count, event->ctx->time);
7372 perf_swevent_start_hrtimer(event);
7373 }
7374
7375 static void task_clock_event_stop(struct perf_event *event, int flags)
7376 {
7377 perf_swevent_cancel_hrtimer(event);
7378 task_clock_event_update(event, event->ctx->time);
7379 }
7380
7381 static int task_clock_event_add(struct perf_event *event, int flags)
7382 {
7383 if (flags & PERF_EF_START)
7384 task_clock_event_start(event, flags);
7385 perf_event_update_userpage(event);
7386
7387 return 0;
7388 }
7389
7390 static void task_clock_event_del(struct perf_event *event, int flags)
7391 {
7392 task_clock_event_stop(event, PERF_EF_UPDATE);
7393 }
7394
7395 static void task_clock_event_read(struct perf_event *event)
7396 {
7397 u64 now = perf_clock();
7398 u64 delta = now - event->ctx->timestamp;
7399 u64 time = event->ctx->time + delta;
7400
7401 task_clock_event_update(event, time);
7402 }
7403
7404 static int task_clock_event_init(struct perf_event *event)
7405 {
7406 if (event->attr.type != PERF_TYPE_SOFTWARE)
7407 return -ENOENT;
7408
7409 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7410 return -ENOENT;
7411
7412 /*
7413 * no branch sampling for software events
7414 */
7415 if (has_branch_stack(event))
7416 return -EOPNOTSUPP;
7417
7418 perf_swevent_init_hrtimer(event);
7419
7420 return 0;
7421 }
7422
7423 static struct pmu perf_task_clock = {
7424 .task_ctx_nr = perf_sw_context,
7425
7426 .capabilities = PERF_PMU_CAP_NO_NMI,
7427
7428 .event_init = task_clock_event_init,
7429 .add = task_clock_event_add,
7430 .del = task_clock_event_del,
7431 .start = task_clock_event_start,
7432 .stop = task_clock_event_stop,
7433 .read = task_clock_event_read,
7434 };
7435
7436 static void perf_pmu_nop_void(struct pmu *pmu)
7437 {
7438 }
7439
7440 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7441 {
7442 }
7443
7444 static int perf_pmu_nop_int(struct pmu *pmu)
7445 {
7446 return 0;
7447 }
7448
7449 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7450
7451 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7452 {
7453 __this_cpu_write(nop_txn_flags, flags);
7454
7455 if (flags & ~PERF_PMU_TXN_ADD)
7456 return;
7457
7458 perf_pmu_disable(pmu);
7459 }
7460
7461 static int perf_pmu_commit_txn(struct pmu *pmu)
7462 {
7463 unsigned int flags = __this_cpu_read(nop_txn_flags);
7464
7465 __this_cpu_write(nop_txn_flags, 0);
7466
7467 if (flags & ~PERF_PMU_TXN_ADD)
7468 return 0;
7469
7470 perf_pmu_enable(pmu);
7471 return 0;
7472 }
7473
7474 static void perf_pmu_cancel_txn(struct pmu *pmu)
7475 {
7476 unsigned int flags = __this_cpu_read(nop_txn_flags);
7477
7478 __this_cpu_write(nop_txn_flags, 0);
7479
7480 if (flags & ~PERF_PMU_TXN_ADD)
7481 return;
7482
7483 perf_pmu_enable(pmu);
7484 }
7485
7486 static int perf_event_idx_default(struct perf_event *event)
7487 {
7488 return 0;
7489 }
7490
7491 /*
7492 * Ensures all contexts with the same task_ctx_nr have the same
7493 * pmu_cpu_context too.
7494 */
7495 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7496 {
7497 struct pmu *pmu;
7498
7499 if (ctxn < 0)
7500 return NULL;
7501
7502 list_for_each_entry(pmu, &pmus, entry) {
7503 if (pmu->task_ctx_nr == ctxn)
7504 return pmu->pmu_cpu_context;
7505 }
7506
7507 return NULL;
7508 }
7509
7510 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7511 {
7512 int cpu;
7513
7514 for_each_possible_cpu(cpu) {
7515 struct perf_cpu_context *cpuctx;
7516
7517 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7518
7519 if (cpuctx->unique_pmu == old_pmu)
7520 cpuctx->unique_pmu = pmu;
7521 }
7522 }
7523
7524 static void free_pmu_context(struct pmu *pmu)
7525 {
7526 struct pmu *i;
7527
7528 mutex_lock(&pmus_lock);
7529 /*
7530 * Like a real lame refcount.
7531 */
7532 list_for_each_entry(i, &pmus, entry) {
7533 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7534 update_pmu_context(i, pmu);
7535 goto out;
7536 }
7537 }
7538
7539 free_percpu(pmu->pmu_cpu_context);
7540 out:
7541 mutex_unlock(&pmus_lock);
7542 }
7543 static struct idr pmu_idr;
7544
7545 static ssize_t
7546 type_show(struct device *dev, struct device_attribute *attr, char *page)
7547 {
7548 struct pmu *pmu = dev_get_drvdata(dev);
7549
7550 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7551 }
7552 static DEVICE_ATTR_RO(type);
7553
7554 static ssize_t
7555 perf_event_mux_interval_ms_show(struct device *dev,
7556 struct device_attribute *attr,
7557 char *page)
7558 {
7559 struct pmu *pmu = dev_get_drvdata(dev);
7560
7561 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7562 }
7563
7564 static DEFINE_MUTEX(mux_interval_mutex);
7565
7566 static ssize_t
7567 perf_event_mux_interval_ms_store(struct device *dev,
7568 struct device_attribute *attr,
7569 const char *buf, size_t count)
7570 {
7571 struct pmu *pmu = dev_get_drvdata(dev);
7572 int timer, cpu, ret;
7573
7574 ret = kstrtoint(buf, 0, &timer);
7575 if (ret)
7576 return ret;
7577
7578 if (timer < 1)
7579 return -EINVAL;
7580
7581 /* same value, noting to do */
7582 if (timer == pmu->hrtimer_interval_ms)
7583 return count;
7584
7585 mutex_lock(&mux_interval_mutex);
7586 pmu->hrtimer_interval_ms = timer;
7587
7588 /* update all cpuctx for this PMU */
7589 get_online_cpus();
7590 for_each_online_cpu(cpu) {
7591 struct perf_cpu_context *cpuctx;
7592 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7593 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7594
7595 cpu_function_call(cpu,
7596 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7597 }
7598 put_online_cpus();
7599 mutex_unlock(&mux_interval_mutex);
7600
7601 return count;
7602 }
7603 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7604
7605 static struct attribute *pmu_dev_attrs[] = {
7606 &dev_attr_type.attr,
7607 &dev_attr_perf_event_mux_interval_ms.attr,
7608 NULL,
7609 };
7610 ATTRIBUTE_GROUPS(pmu_dev);
7611
7612 static int pmu_bus_running;
7613 static struct bus_type pmu_bus = {
7614 .name = "event_source",
7615 .dev_groups = pmu_dev_groups,
7616 };
7617
7618 static void pmu_dev_release(struct device *dev)
7619 {
7620 kfree(dev);
7621 }
7622
7623 static int pmu_dev_alloc(struct pmu *pmu)
7624 {
7625 int ret = -ENOMEM;
7626
7627 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7628 if (!pmu->dev)
7629 goto out;
7630
7631 pmu->dev->groups = pmu->attr_groups;
7632 device_initialize(pmu->dev);
7633 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7634 if (ret)
7635 goto free_dev;
7636
7637 dev_set_drvdata(pmu->dev, pmu);
7638 pmu->dev->bus = &pmu_bus;
7639 pmu->dev->release = pmu_dev_release;
7640 ret = device_add(pmu->dev);
7641 if (ret)
7642 goto free_dev;
7643
7644 out:
7645 return ret;
7646
7647 free_dev:
7648 put_device(pmu->dev);
7649 goto out;
7650 }
7651
7652 static struct lock_class_key cpuctx_mutex;
7653 static struct lock_class_key cpuctx_lock;
7654
7655 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7656 {
7657 int cpu, ret;
7658
7659 mutex_lock(&pmus_lock);
7660 ret = -ENOMEM;
7661 pmu->pmu_disable_count = alloc_percpu(int);
7662 if (!pmu->pmu_disable_count)
7663 goto unlock;
7664
7665 pmu->type = -1;
7666 if (!name)
7667 goto skip_type;
7668 pmu->name = name;
7669
7670 if (type < 0) {
7671 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7672 if (type < 0) {
7673 ret = type;
7674 goto free_pdc;
7675 }
7676 }
7677 pmu->type = type;
7678
7679 if (pmu_bus_running) {
7680 ret = pmu_dev_alloc(pmu);
7681 if (ret)
7682 goto free_idr;
7683 }
7684
7685 skip_type:
7686 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7687 if (pmu->pmu_cpu_context)
7688 goto got_cpu_context;
7689
7690 ret = -ENOMEM;
7691 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7692 if (!pmu->pmu_cpu_context)
7693 goto free_dev;
7694
7695 for_each_possible_cpu(cpu) {
7696 struct perf_cpu_context *cpuctx;
7697
7698 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7699 __perf_event_init_context(&cpuctx->ctx);
7700 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7701 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7702 cpuctx->ctx.pmu = pmu;
7703
7704 __perf_mux_hrtimer_init(cpuctx, cpu);
7705
7706 cpuctx->unique_pmu = pmu;
7707 }
7708
7709 got_cpu_context:
7710 if (!pmu->start_txn) {
7711 if (pmu->pmu_enable) {
7712 /*
7713 * If we have pmu_enable/pmu_disable calls, install
7714 * transaction stubs that use that to try and batch
7715 * hardware accesses.
7716 */
7717 pmu->start_txn = perf_pmu_start_txn;
7718 pmu->commit_txn = perf_pmu_commit_txn;
7719 pmu->cancel_txn = perf_pmu_cancel_txn;
7720 } else {
7721 pmu->start_txn = perf_pmu_nop_txn;
7722 pmu->commit_txn = perf_pmu_nop_int;
7723 pmu->cancel_txn = perf_pmu_nop_void;
7724 }
7725 }
7726
7727 if (!pmu->pmu_enable) {
7728 pmu->pmu_enable = perf_pmu_nop_void;
7729 pmu->pmu_disable = perf_pmu_nop_void;
7730 }
7731
7732 if (!pmu->event_idx)
7733 pmu->event_idx = perf_event_idx_default;
7734
7735 list_add_rcu(&pmu->entry, &pmus);
7736 atomic_set(&pmu->exclusive_cnt, 0);
7737 ret = 0;
7738 unlock:
7739 mutex_unlock(&pmus_lock);
7740
7741 return ret;
7742
7743 free_dev:
7744 device_del(pmu->dev);
7745 put_device(pmu->dev);
7746
7747 free_idr:
7748 if (pmu->type >= PERF_TYPE_MAX)
7749 idr_remove(&pmu_idr, pmu->type);
7750
7751 free_pdc:
7752 free_percpu(pmu->pmu_disable_count);
7753 goto unlock;
7754 }
7755 EXPORT_SYMBOL_GPL(perf_pmu_register);
7756
7757 void perf_pmu_unregister(struct pmu *pmu)
7758 {
7759 mutex_lock(&pmus_lock);
7760 list_del_rcu(&pmu->entry);
7761 mutex_unlock(&pmus_lock);
7762
7763 /*
7764 * We dereference the pmu list under both SRCU and regular RCU, so
7765 * synchronize against both of those.
7766 */
7767 synchronize_srcu(&pmus_srcu);
7768 synchronize_rcu();
7769
7770 free_percpu(pmu->pmu_disable_count);
7771 if (pmu->type >= PERF_TYPE_MAX)
7772 idr_remove(&pmu_idr, pmu->type);
7773 device_del(pmu->dev);
7774 put_device(pmu->dev);
7775 free_pmu_context(pmu);
7776 }
7777 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7778
7779 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7780 {
7781 struct perf_event_context *ctx = NULL;
7782 int ret;
7783
7784 if (!try_module_get(pmu->module))
7785 return -ENODEV;
7786
7787 if (event->group_leader != event) {
7788 /*
7789 * This ctx->mutex can nest when we're called through
7790 * inheritance. See the perf_event_ctx_lock_nested() comment.
7791 */
7792 ctx = perf_event_ctx_lock_nested(event->group_leader,
7793 SINGLE_DEPTH_NESTING);
7794 BUG_ON(!ctx);
7795 }
7796
7797 event->pmu = pmu;
7798 ret = pmu->event_init(event);
7799
7800 if (ctx)
7801 perf_event_ctx_unlock(event->group_leader, ctx);
7802
7803 if (ret)
7804 module_put(pmu->module);
7805
7806 return ret;
7807 }
7808
7809 static struct pmu *perf_init_event(struct perf_event *event)
7810 {
7811 struct pmu *pmu = NULL;
7812 int idx;
7813 int ret;
7814
7815 idx = srcu_read_lock(&pmus_srcu);
7816
7817 rcu_read_lock();
7818 pmu = idr_find(&pmu_idr, event->attr.type);
7819 rcu_read_unlock();
7820 if (pmu) {
7821 ret = perf_try_init_event(pmu, event);
7822 if (ret)
7823 pmu = ERR_PTR(ret);
7824 goto unlock;
7825 }
7826
7827 list_for_each_entry_rcu(pmu, &pmus, entry) {
7828 ret = perf_try_init_event(pmu, event);
7829 if (!ret)
7830 goto unlock;
7831
7832 if (ret != -ENOENT) {
7833 pmu = ERR_PTR(ret);
7834 goto unlock;
7835 }
7836 }
7837 pmu = ERR_PTR(-ENOENT);
7838 unlock:
7839 srcu_read_unlock(&pmus_srcu, idx);
7840
7841 return pmu;
7842 }
7843
7844 static void account_event_cpu(struct perf_event *event, int cpu)
7845 {
7846 if (event->parent)
7847 return;
7848
7849 if (is_cgroup_event(event))
7850 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7851 }
7852
7853 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7854 static void account_freq_event_nohz(void)
7855 {
7856 #ifdef CONFIG_NO_HZ_FULL
7857 /* Lock so we don't race with concurrent unaccount */
7858 spin_lock(&nr_freq_lock);
7859 if (atomic_inc_return(&nr_freq_events) == 1)
7860 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7861 spin_unlock(&nr_freq_lock);
7862 #endif
7863 }
7864
7865 static void account_freq_event(void)
7866 {
7867 if (tick_nohz_full_enabled())
7868 account_freq_event_nohz();
7869 else
7870 atomic_inc(&nr_freq_events);
7871 }
7872
7873
7874 static void account_event(struct perf_event *event)
7875 {
7876 bool inc = false;
7877
7878 if (event->parent)
7879 return;
7880
7881 if (event->attach_state & PERF_ATTACH_TASK)
7882 inc = true;
7883 if (event->attr.mmap || event->attr.mmap_data)
7884 atomic_inc(&nr_mmap_events);
7885 if (event->attr.comm)
7886 atomic_inc(&nr_comm_events);
7887 if (event->attr.task)
7888 atomic_inc(&nr_task_events);
7889 if (event->attr.freq)
7890 account_freq_event();
7891 if (event->attr.context_switch) {
7892 atomic_inc(&nr_switch_events);
7893 inc = true;
7894 }
7895 if (has_branch_stack(event))
7896 inc = true;
7897 if (is_cgroup_event(event))
7898 inc = true;
7899
7900 if (inc) {
7901 if (atomic_inc_not_zero(&perf_sched_count))
7902 goto enabled;
7903
7904 mutex_lock(&perf_sched_mutex);
7905 if (!atomic_read(&perf_sched_count)) {
7906 static_branch_enable(&perf_sched_events);
7907 /*
7908 * Guarantee that all CPUs observe they key change and
7909 * call the perf scheduling hooks before proceeding to
7910 * install events that need them.
7911 */
7912 synchronize_sched();
7913 }
7914 /*
7915 * Now that we have waited for the sync_sched(), allow further
7916 * increments to by-pass the mutex.
7917 */
7918 atomic_inc(&perf_sched_count);
7919 mutex_unlock(&perf_sched_mutex);
7920 }
7921 enabled:
7922
7923 account_event_cpu(event, event->cpu);
7924 }
7925
7926 /*
7927 * Allocate and initialize a event structure
7928 */
7929 static struct perf_event *
7930 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7931 struct task_struct *task,
7932 struct perf_event *group_leader,
7933 struct perf_event *parent_event,
7934 perf_overflow_handler_t overflow_handler,
7935 void *context, int cgroup_fd)
7936 {
7937 struct pmu *pmu;
7938 struct perf_event *event;
7939 struct hw_perf_event *hwc;
7940 long err = -EINVAL;
7941
7942 if ((unsigned)cpu >= nr_cpu_ids) {
7943 if (!task || cpu != -1)
7944 return ERR_PTR(-EINVAL);
7945 }
7946
7947 event = kzalloc(sizeof(*event), GFP_KERNEL);
7948 if (!event)
7949 return ERR_PTR(-ENOMEM);
7950
7951 /*
7952 * Single events are their own group leaders, with an
7953 * empty sibling list:
7954 */
7955 if (!group_leader)
7956 group_leader = event;
7957
7958 mutex_init(&event->child_mutex);
7959 INIT_LIST_HEAD(&event->child_list);
7960
7961 INIT_LIST_HEAD(&event->group_entry);
7962 INIT_LIST_HEAD(&event->event_entry);
7963 INIT_LIST_HEAD(&event->sibling_list);
7964 INIT_LIST_HEAD(&event->rb_entry);
7965 INIT_LIST_HEAD(&event->active_entry);
7966 INIT_HLIST_NODE(&event->hlist_entry);
7967
7968
7969 init_waitqueue_head(&event->waitq);
7970 init_irq_work(&event->pending, perf_pending_event);
7971
7972 mutex_init(&event->mmap_mutex);
7973
7974 atomic_long_set(&event->refcount, 1);
7975 event->cpu = cpu;
7976 event->attr = *attr;
7977 event->group_leader = group_leader;
7978 event->pmu = NULL;
7979 event->oncpu = -1;
7980
7981 event->parent = parent_event;
7982
7983 event->ns = get_pid_ns(task_active_pid_ns(current));
7984 event->id = atomic64_inc_return(&perf_event_id);
7985
7986 event->state = PERF_EVENT_STATE_INACTIVE;
7987
7988 if (task) {
7989 event->attach_state = PERF_ATTACH_TASK;
7990 /*
7991 * XXX pmu::event_init needs to know what task to account to
7992 * and we cannot use the ctx information because we need the
7993 * pmu before we get a ctx.
7994 */
7995 event->hw.target = task;
7996 }
7997
7998 event->clock = &local_clock;
7999 if (parent_event)
8000 event->clock = parent_event->clock;
8001
8002 if (!overflow_handler && parent_event) {
8003 overflow_handler = parent_event->overflow_handler;
8004 context = parent_event->overflow_handler_context;
8005 }
8006
8007 event->overflow_handler = overflow_handler;
8008 event->overflow_handler_context = context;
8009
8010 perf_event__state_init(event);
8011
8012 pmu = NULL;
8013
8014 hwc = &event->hw;
8015 hwc->sample_period = attr->sample_period;
8016 if (attr->freq && attr->sample_freq)
8017 hwc->sample_period = 1;
8018 hwc->last_period = hwc->sample_period;
8019
8020 local64_set(&hwc->period_left, hwc->sample_period);
8021
8022 /*
8023 * we currently do not support PERF_FORMAT_GROUP on inherited events
8024 */
8025 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8026 goto err_ns;
8027
8028 if (!has_branch_stack(event))
8029 event->attr.branch_sample_type = 0;
8030
8031 if (cgroup_fd != -1) {
8032 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8033 if (err)
8034 goto err_ns;
8035 }
8036
8037 pmu = perf_init_event(event);
8038 if (!pmu)
8039 goto err_ns;
8040 else if (IS_ERR(pmu)) {
8041 err = PTR_ERR(pmu);
8042 goto err_ns;
8043 }
8044
8045 err = exclusive_event_init(event);
8046 if (err)
8047 goto err_pmu;
8048
8049 if (!event->parent) {
8050 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8051 err = get_callchain_buffers();
8052 if (err)
8053 goto err_per_task;
8054 }
8055 }
8056
8057 /* symmetric to unaccount_event() in _free_event() */
8058 account_event(event);
8059
8060 return event;
8061
8062 err_per_task:
8063 exclusive_event_destroy(event);
8064
8065 err_pmu:
8066 if (event->destroy)
8067 event->destroy(event);
8068 module_put(pmu->module);
8069 err_ns:
8070 if (is_cgroup_event(event))
8071 perf_detach_cgroup(event);
8072 if (event->ns)
8073 put_pid_ns(event->ns);
8074 kfree(event);
8075
8076 return ERR_PTR(err);
8077 }
8078
8079 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8080 struct perf_event_attr *attr)
8081 {
8082 u32 size;
8083 int ret;
8084
8085 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8086 return -EFAULT;
8087
8088 /*
8089 * zero the full structure, so that a short copy will be nice.
8090 */
8091 memset(attr, 0, sizeof(*attr));
8092
8093 ret = get_user(size, &uattr->size);
8094 if (ret)
8095 return ret;
8096
8097 if (size > PAGE_SIZE) /* silly large */
8098 goto err_size;
8099
8100 if (!size) /* abi compat */
8101 size = PERF_ATTR_SIZE_VER0;
8102
8103 if (size < PERF_ATTR_SIZE_VER0)
8104 goto err_size;
8105
8106 /*
8107 * If we're handed a bigger struct than we know of,
8108 * ensure all the unknown bits are 0 - i.e. new
8109 * user-space does not rely on any kernel feature
8110 * extensions we dont know about yet.
8111 */
8112 if (size > sizeof(*attr)) {
8113 unsigned char __user *addr;
8114 unsigned char __user *end;
8115 unsigned char val;
8116
8117 addr = (void __user *)uattr + sizeof(*attr);
8118 end = (void __user *)uattr + size;
8119
8120 for (; addr < end; addr++) {
8121 ret = get_user(val, addr);
8122 if (ret)
8123 return ret;
8124 if (val)
8125 goto err_size;
8126 }
8127 size = sizeof(*attr);
8128 }
8129
8130 ret = copy_from_user(attr, uattr, size);
8131 if (ret)
8132 return -EFAULT;
8133
8134 if (attr->__reserved_1)
8135 return -EINVAL;
8136
8137 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8138 return -EINVAL;
8139
8140 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8141 return -EINVAL;
8142
8143 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8144 u64 mask = attr->branch_sample_type;
8145
8146 /* only using defined bits */
8147 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8148 return -EINVAL;
8149
8150 /* at least one branch bit must be set */
8151 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8152 return -EINVAL;
8153
8154 /* propagate priv level, when not set for branch */
8155 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8156
8157 /* exclude_kernel checked on syscall entry */
8158 if (!attr->exclude_kernel)
8159 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8160
8161 if (!attr->exclude_user)
8162 mask |= PERF_SAMPLE_BRANCH_USER;
8163
8164 if (!attr->exclude_hv)
8165 mask |= PERF_SAMPLE_BRANCH_HV;
8166 /*
8167 * adjust user setting (for HW filter setup)
8168 */
8169 attr->branch_sample_type = mask;
8170 }
8171 /* privileged levels capture (kernel, hv): check permissions */
8172 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8173 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8174 return -EACCES;
8175 }
8176
8177 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8178 ret = perf_reg_validate(attr->sample_regs_user);
8179 if (ret)
8180 return ret;
8181 }
8182
8183 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8184 if (!arch_perf_have_user_stack_dump())
8185 return -ENOSYS;
8186
8187 /*
8188 * We have __u32 type for the size, but so far
8189 * we can only use __u16 as maximum due to the
8190 * __u16 sample size limit.
8191 */
8192 if (attr->sample_stack_user >= USHRT_MAX)
8193 ret = -EINVAL;
8194 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8195 ret = -EINVAL;
8196 }
8197
8198 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8199 ret = perf_reg_validate(attr->sample_regs_intr);
8200 out:
8201 return ret;
8202
8203 err_size:
8204 put_user(sizeof(*attr), &uattr->size);
8205 ret = -E2BIG;
8206 goto out;
8207 }
8208
8209 static int
8210 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8211 {
8212 struct ring_buffer *rb = NULL;
8213 int ret = -EINVAL;
8214
8215 if (!output_event)
8216 goto set;
8217
8218 /* don't allow circular references */
8219 if (event == output_event)
8220 goto out;
8221
8222 /*
8223 * Don't allow cross-cpu buffers
8224 */
8225 if (output_event->cpu != event->cpu)
8226 goto out;
8227
8228 /*
8229 * If its not a per-cpu rb, it must be the same task.
8230 */
8231 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8232 goto out;
8233
8234 /*
8235 * Mixing clocks in the same buffer is trouble you don't need.
8236 */
8237 if (output_event->clock != event->clock)
8238 goto out;
8239
8240 /*
8241 * If both events generate aux data, they must be on the same PMU
8242 */
8243 if (has_aux(event) && has_aux(output_event) &&
8244 event->pmu != output_event->pmu)
8245 goto out;
8246
8247 set:
8248 mutex_lock(&event->mmap_mutex);
8249 /* Can't redirect output if we've got an active mmap() */
8250 if (atomic_read(&event->mmap_count))
8251 goto unlock;
8252
8253 if (output_event) {
8254 /* get the rb we want to redirect to */
8255 rb = ring_buffer_get(output_event);
8256 if (!rb)
8257 goto unlock;
8258 }
8259
8260 ring_buffer_attach(event, rb);
8261
8262 ret = 0;
8263 unlock:
8264 mutex_unlock(&event->mmap_mutex);
8265
8266 out:
8267 return ret;
8268 }
8269
8270 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8271 {
8272 if (b < a)
8273 swap(a, b);
8274
8275 mutex_lock(a);
8276 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8277 }
8278
8279 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8280 {
8281 bool nmi_safe = false;
8282
8283 switch (clk_id) {
8284 case CLOCK_MONOTONIC:
8285 event->clock = &ktime_get_mono_fast_ns;
8286 nmi_safe = true;
8287 break;
8288
8289 case CLOCK_MONOTONIC_RAW:
8290 event->clock = &ktime_get_raw_fast_ns;
8291 nmi_safe = true;
8292 break;
8293
8294 case CLOCK_REALTIME:
8295 event->clock = &ktime_get_real_ns;
8296 break;
8297
8298 case CLOCK_BOOTTIME:
8299 event->clock = &ktime_get_boot_ns;
8300 break;
8301
8302 case CLOCK_TAI:
8303 event->clock = &ktime_get_tai_ns;
8304 break;
8305
8306 default:
8307 return -EINVAL;
8308 }
8309
8310 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8311 return -EINVAL;
8312
8313 return 0;
8314 }
8315
8316 /**
8317 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8318 *
8319 * @attr_uptr: event_id type attributes for monitoring/sampling
8320 * @pid: target pid
8321 * @cpu: target cpu
8322 * @group_fd: group leader event fd
8323 */
8324 SYSCALL_DEFINE5(perf_event_open,
8325 struct perf_event_attr __user *, attr_uptr,
8326 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8327 {
8328 struct perf_event *group_leader = NULL, *output_event = NULL;
8329 struct perf_event *event, *sibling;
8330 struct perf_event_attr attr;
8331 struct perf_event_context *ctx, *uninitialized_var(gctx);
8332 struct file *event_file = NULL;
8333 struct fd group = {NULL, 0};
8334 struct task_struct *task = NULL;
8335 struct pmu *pmu;
8336 int event_fd;
8337 int move_group = 0;
8338 int err;
8339 int f_flags = O_RDWR;
8340 int cgroup_fd = -1;
8341
8342 /* for future expandability... */
8343 if (flags & ~PERF_FLAG_ALL)
8344 return -EINVAL;
8345
8346 err = perf_copy_attr(attr_uptr, &attr);
8347 if (err)
8348 return err;
8349
8350 if (!attr.exclude_kernel) {
8351 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8352 return -EACCES;
8353 }
8354
8355 if (attr.freq) {
8356 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8357 return -EINVAL;
8358 } else {
8359 if (attr.sample_period & (1ULL << 63))
8360 return -EINVAL;
8361 }
8362
8363 /*
8364 * In cgroup mode, the pid argument is used to pass the fd
8365 * opened to the cgroup directory in cgroupfs. The cpu argument
8366 * designates the cpu on which to monitor threads from that
8367 * cgroup.
8368 */
8369 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8370 return -EINVAL;
8371
8372 if (flags & PERF_FLAG_FD_CLOEXEC)
8373 f_flags |= O_CLOEXEC;
8374
8375 event_fd = get_unused_fd_flags(f_flags);
8376 if (event_fd < 0)
8377 return event_fd;
8378
8379 if (group_fd != -1) {
8380 err = perf_fget_light(group_fd, &group);
8381 if (err)
8382 goto err_fd;
8383 group_leader = group.file->private_data;
8384 if (flags & PERF_FLAG_FD_OUTPUT)
8385 output_event = group_leader;
8386 if (flags & PERF_FLAG_FD_NO_GROUP)
8387 group_leader = NULL;
8388 }
8389
8390 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8391 task = find_lively_task_by_vpid(pid);
8392 if (IS_ERR(task)) {
8393 err = PTR_ERR(task);
8394 goto err_group_fd;
8395 }
8396 }
8397
8398 if (task && group_leader &&
8399 group_leader->attr.inherit != attr.inherit) {
8400 err = -EINVAL;
8401 goto err_task;
8402 }
8403
8404 get_online_cpus();
8405
8406 if (flags & PERF_FLAG_PID_CGROUP)
8407 cgroup_fd = pid;
8408
8409 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8410 NULL, NULL, cgroup_fd);
8411 if (IS_ERR(event)) {
8412 err = PTR_ERR(event);
8413 goto err_cpus;
8414 }
8415
8416 if (is_sampling_event(event)) {
8417 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8418 err = -ENOTSUPP;
8419 goto err_alloc;
8420 }
8421 }
8422
8423 /*
8424 * Special case software events and allow them to be part of
8425 * any hardware group.
8426 */
8427 pmu = event->pmu;
8428
8429 if (attr.use_clockid) {
8430 err = perf_event_set_clock(event, attr.clockid);
8431 if (err)
8432 goto err_alloc;
8433 }
8434
8435 if (group_leader &&
8436 (is_software_event(event) != is_software_event(group_leader))) {
8437 if (is_software_event(event)) {
8438 /*
8439 * If event and group_leader are not both a software
8440 * event, and event is, then group leader is not.
8441 *
8442 * Allow the addition of software events to !software
8443 * groups, this is safe because software events never
8444 * fail to schedule.
8445 */
8446 pmu = group_leader->pmu;
8447 } else if (is_software_event(group_leader) &&
8448 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8449 /*
8450 * In case the group is a pure software group, and we
8451 * try to add a hardware event, move the whole group to
8452 * the hardware context.
8453 */
8454 move_group = 1;
8455 }
8456 }
8457
8458 /*
8459 * Get the target context (task or percpu):
8460 */
8461 ctx = find_get_context(pmu, task, event);
8462 if (IS_ERR(ctx)) {
8463 err = PTR_ERR(ctx);
8464 goto err_alloc;
8465 }
8466
8467 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8468 err = -EBUSY;
8469 goto err_context;
8470 }
8471
8472 if (task) {
8473 put_task_struct(task);
8474 task = NULL;
8475 }
8476
8477 /*
8478 * Look up the group leader (we will attach this event to it):
8479 */
8480 if (group_leader) {
8481 err = -EINVAL;
8482
8483 /*
8484 * Do not allow a recursive hierarchy (this new sibling
8485 * becoming part of another group-sibling):
8486 */
8487 if (group_leader->group_leader != group_leader)
8488 goto err_context;
8489
8490 /* All events in a group should have the same clock */
8491 if (group_leader->clock != event->clock)
8492 goto err_context;
8493
8494 /*
8495 * Do not allow to attach to a group in a different
8496 * task or CPU context:
8497 */
8498 if (move_group) {
8499 /*
8500 * Make sure we're both on the same task, or both
8501 * per-cpu events.
8502 */
8503 if (group_leader->ctx->task != ctx->task)
8504 goto err_context;
8505
8506 /*
8507 * Make sure we're both events for the same CPU;
8508 * grouping events for different CPUs is broken; since
8509 * you can never concurrently schedule them anyhow.
8510 */
8511 if (group_leader->cpu != event->cpu)
8512 goto err_context;
8513 } else {
8514 if (group_leader->ctx != ctx)
8515 goto err_context;
8516 }
8517
8518 /*
8519 * Only a group leader can be exclusive or pinned
8520 */
8521 if (attr.exclusive || attr.pinned)
8522 goto err_context;
8523 }
8524
8525 if (output_event) {
8526 err = perf_event_set_output(event, output_event);
8527 if (err)
8528 goto err_context;
8529 }
8530
8531 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8532 f_flags);
8533 if (IS_ERR(event_file)) {
8534 err = PTR_ERR(event_file);
8535 goto err_context;
8536 }
8537
8538 if (move_group) {
8539 gctx = group_leader->ctx;
8540 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8541 if (gctx->task == TASK_TOMBSTONE) {
8542 err = -ESRCH;
8543 goto err_locked;
8544 }
8545 } else {
8546 mutex_lock(&ctx->mutex);
8547 }
8548
8549 if (ctx->task == TASK_TOMBSTONE) {
8550 err = -ESRCH;
8551 goto err_locked;
8552 }
8553
8554 if (!perf_event_validate_size(event)) {
8555 err = -E2BIG;
8556 goto err_locked;
8557 }
8558
8559 /*
8560 * Must be under the same ctx::mutex as perf_install_in_context(),
8561 * because we need to serialize with concurrent event creation.
8562 */
8563 if (!exclusive_event_installable(event, ctx)) {
8564 /* exclusive and group stuff are assumed mutually exclusive */
8565 WARN_ON_ONCE(move_group);
8566
8567 err = -EBUSY;
8568 goto err_locked;
8569 }
8570
8571 WARN_ON_ONCE(ctx->parent_ctx);
8572
8573 if (move_group) {
8574 /*
8575 * See perf_event_ctx_lock() for comments on the details
8576 * of swizzling perf_event::ctx.
8577 */
8578 perf_remove_from_context(group_leader, 0);
8579
8580 list_for_each_entry(sibling, &group_leader->sibling_list,
8581 group_entry) {
8582 perf_remove_from_context(sibling, 0);
8583 put_ctx(gctx);
8584 }
8585
8586 /*
8587 * Wait for everybody to stop referencing the events through
8588 * the old lists, before installing it on new lists.
8589 */
8590 synchronize_rcu();
8591
8592 /*
8593 * Install the group siblings before the group leader.
8594 *
8595 * Because a group leader will try and install the entire group
8596 * (through the sibling list, which is still in-tact), we can
8597 * end up with siblings installed in the wrong context.
8598 *
8599 * By installing siblings first we NO-OP because they're not
8600 * reachable through the group lists.
8601 */
8602 list_for_each_entry(sibling, &group_leader->sibling_list,
8603 group_entry) {
8604 perf_event__state_init(sibling);
8605 perf_install_in_context(ctx, sibling, sibling->cpu);
8606 get_ctx(ctx);
8607 }
8608
8609 /*
8610 * Removing from the context ends up with disabled
8611 * event. What we want here is event in the initial
8612 * startup state, ready to be add into new context.
8613 */
8614 perf_event__state_init(group_leader);
8615 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8616 get_ctx(ctx);
8617
8618 /*
8619 * Now that all events are installed in @ctx, nothing
8620 * references @gctx anymore, so drop the last reference we have
8621 * on it.
8622 */
8623 put_ctx(gctx);
8624 }
8625
8626 /*
8627 * Precalculate sample_data sizes; do while holding ctx::mutex such
8628 * that we're serialized against further additions and before
8629 * perf_install_in_context() which is the point the event is active and
8630 * can use these values.
8631 */
8632 perf_event__header_size(event);
8633 perf_event__id_header_size(event);
8634
8635 event->owner = current;
8636
8637 perf_install_in_context(ctx, event, event->cpu);
8638 perf_unpin_context(ctx);
8639
8640 if (move_group)
8641 mutex_unlock(&gctx->mutex);
8642 mutex_unlock(&ctx->mutex);
8643
8644 put_online_cpus();
8645
8646 mutex_lock(&current->perf_event_mutex);
8647 list_add_tail(&event->owner_entry, &current->perf_event_list);
8648 mutex_unlock(&current->perf_event_mutex);
8649
8650 /*
8651 * Drop the reference on the group_event after placing the
8652 * new event on the sibling_list. This ensures destruction
8653 * of the group leader will find the pointer to itself in
8654 * perf_group_detach().
8655 */
8656 fdput(group);
8657 fd_install(event_fd, event_file);
8658 return event_fd;
8659
8660 err_locked:
8661 if (move_group)
8662 mutex_unlock(&gctx->mutex);
8663 mutex_unlock(&ctx->mutex);
8664 /* err_file: */
8665 fput(event_file);
8666 err_context:
8667 perf_unpin_context(ctx);
8668 put_ctx(ctx);
8669 err_alloc:
8670 /*
8671 * If event_file is set, the fput() above will have called ->release()
8672 * and that will take care of freeing the event.
8673 */
8674 if (!event_file)
8675 free_event(event);
8676 err_cpus:
8677 put_online_cpus();
8678 err_task:
8679 if (task)
8680 put_task_struct(task);
8681 err_group_fd:
8682 fdput(group);
8683 err_fd:
8684 put_unused_fd(event_fd);
8685 return err;
8686 }
8687
8688 /**
8689 * perf_event_create_kernel_counter
8690 *
8691 * @attr: attributes of the counter to create
8692 * @cpu: cpu in which the counter is bound
8693 * @task: task to profile (NULL for percpu)
8694 */
8695 struct perf_event *
8696 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8697 struct task_struct *task,
8698 perf_overflow_handler_t overflow_handler,
8699 void *context)
8700 {
8701 struct perf_event_context *ctx;
8702 struct perf_event *event;
8703 int err;
8704
8705 /*
8706 * Get the target context (task or percpu):
8707 */
8708
8709 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8710 overflow_handler, context, -1);
8711 if (IS_ERR(event)) {
8712 err = PTR_ERR(event);
8713 goto err;
8714 }
8715
8716 /* Mark owner so we could distinguish it from user events. */
8717 event->owner = TASK_TOMBSTONE;
8718
8719 ctx = find_get_context(event->pmu, task, event);
8720 if (IS_ERR(ctx)) {
8721 err = PTR_ERR(ctx);
8722 goto err_free;
8723 }
8724
8725 WARN_ON_ONCE(ctx->parent_ctx);
8726 mutex_lock(&ctx->mutex);
8727 if (ctx->task == TASK_TOMBSTONE) {
8728 err = -ESRCH;
8729 goto err_unlock;
8730 }
8731
8732 if (!exclusive_event_installable(event, ctx)) {
8733 err = -EBUSY;
8734 goto err_unlock;
8735 }
8736
8737 perf_install_in_context(ctx, event, cpu);
8738 perf_unpin_context(ctx);
8739 mutex_unlock(&ctx->mutex);
8740
8741 return event;
8742
8743 err_unlock:
8744 mutex_unlock(&ctx->mutex);
8745 perf_unpin_context(ctx);
8746 put_ctx(ctx);
8747 err_free:
8748 free_event(event);
8749 err:
8750 return ERR_PTR(err);
8751 }
8752 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8753
8754 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8755 {
8756 struct perf_event_context *src_ctx;
8757 struct perf_event_context *dst_ctx;
8758 struct perf_event *event, *tmp;
8759 LIST_HEAD(events);
8760
8761 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8762 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8763
8764 /*
8765 * See perf_event_ctx_lock() for comments on the details
8766 * of swizzling perf_event::ctx.
8767 */
8768 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8769 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8770 event_entry) {
8771 perf_remove_from_context(event, 0);
8772 unaccount_event_cpu(event, src_cpu);
8773 put_ctx(src_ctx);
8774 list_add(&event->migrate_entry, &events);
8775 }
8776
8777 /*
8778 * Wait for the events to quiesce before re-instating them.
8779 */
8780 synchronize_rcu();
8781
8782 /*
8783 * Re-instate events in 2 passes.
8784 *
8785 * Skip over group leaders and only install siblings on this first
8786 * pass, siblings will not get enabled without a leader, however a
8787 * leader will enable its siblings, even if those are still on the old
8788 * context.
8789 */
8790 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8791 if (event->group_leader == event)
8792 continue;
8793
8794 list_del(&event->migrate_entry);
8795 if (event->state >= PERF_EVENT_STATE_OFF)
8796 event->state = PERF_EVENT_STATE_INACTIVE;
8797 account_event_cpu(event, dst_cpu);
8798 perf_install_in_context(dst_ctx, event, dst_cpu);
8799 get_ctx(dst_ctx);
8800 }
8801
8802 /*
8803 * Once all the siblings are setup properly, install the group leaders
8804 * to make it go.
8805 */
8806 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8807 list_del(&event->migrate_entry);
8808 if (event->state >= PERF_EVENT_STATE_OFF)
8809 event->state = PERF_EVENT_STATE_INACTIVE;
8810 account_event_cpu(event, dst_cpu);
8811 perf_install_in_context(dst_ctx, event, dst_cpu);
8812 get_ctx(dst_ctx);
8813 }
8814 mutex_unlock(&dst_ctx->mutex);
8815 mutex_unlock(&src_ctx->mutex);
8816 }
8817 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8818
8819 static void sync_child_event(struct perf_event *child_event,
8820 struct task_struct *child)
8821 {
8822 struct perf_event *parent_event = child_event->parent;
8823 u64 child_val;
8824
8825 if (child_event->attr.inherit_stat)
8826 perf_event_read_event(child_event, child);
8827
8828 child_val = perf_event_count(child_event);
8829
8830 /*
8831 * Add back the child's count to the parent's count:
8832 */
8833 atomic64_add(child_val, &parent_event->child_count);
8834 atomic64_add(child_event->total_time_enabled,
8835 &parent_event->child_total_time_enabled);
8836 atomic64_add(child_event->total_time_running,
8837 &parent_event->child_total_time_running);
8838 }
8839
8840 static void
8841 perf_event_exit_event(struct perf_event *child_event,
8842 struct perf_event_context *child_ctx,
8843 struct task_struct *child)
8844 {
8845 struct perf_event *parent_event = child_event->parent;
8846
8847 /*
8848 * Do not destroy the 'original' grouping; because of the context
8849 * switch optimization the original events could've ended up in a
8850 * random child task.
8851 *
8852 * If we were to destroy the original group, all group related
8853 * operations would cease to function properly after this random
8854 * child dies.
8855 *
8856 * Do destroy all inherited groups, we don't care about those
8857 * and being thorough is better.
8858 */
8859 raw_spin_lock_irq(&child_ctx->lock);
8860 WARN_ON_ONCE(child_ctx->is_active);
8861
8862 if (parent_event)
8863 perf_group_detach(child_event);
8864 list_del_event(child_event, child_ctx);
8865 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8866 raw_spin_unlock_irq(&child_ctx->lock);
8867
8868 /*
8869 * Parent events are governed by their filedesc, retain them.
8870 */
8871 if (!parent_event) {
8872 perf_event_wakeup(child_event);
8873 return;
8874 }
8875 /*
8876 * Child events can be cleaned up.
8877 */
8878
8879 sync_child_event(child_event, child);
8880
8881 /*
8882 * Remove this event from the parent's list
8883 */
8884 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8885 mutex_lock(&parent_event->child_mutex);
8886 list_del_init(&child_event->child_list);
8887 mutex_unlock(&parent_event->child_mutex);
8888
8889 /*
8890 * Kick perf_poll() for is_event_hup().
8891 */
8892 perf_event_wakeup(parent_event);
8893 free_event(child_event);
8894 put_event(parent_event);
8895 }
8896
8897 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8898 {
8899 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8900 struct perf_event *child_event, *next;
8901
8902 WARN_ON_ONCE(child != current);
8903
8904 child_ctx = perf_pin_task_context(child, ctxn);
8905 if (!child_ctx)
8906 return;
8907
8908 /*
8909 * In order to reduce the amount of tricky in ctx tear-down, we hold
8910 * ctx::mutex over the entire thing. This serializes against almost
8911 * everything that wants to access the ctx.
8912 *
8913 * The exception is sys_perf_event_open() /
8914 * perf_event_create_kernel_count() which does find_get_context()
8915 * without ctx::mutex (it cannot because of the move_group double mutex
8916 * lock thing). See the comments in perf_install_in_context().
8917 */
8918 mutex_lock(&child_ctx->mutex);
8919
8920 /*
8921 * In a single ctx::lock section, de-schedule the events and detach the
8922 * context from the task such that we cannot ever get it scheduled back
8923 * in.
8924 */
8925 raw_spin_lock_irq(&child_ctx->lock);
8926 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8927
8928 /*
8929 * Now that the context is inactive, destroy the task <-> ctx relation
8930 * and mark the context dead.
8931 */
8932 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8933 put_ctx(child_ctx); /* cannot be last */
8934 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8935 put_task_struct(current); /* cannot be last */
8936
8937 clone_ctx = unclone_ctx(child_ctx);
8938 raw_spin_unlock_irq(&child_ctx->lock);
8939
8940 if (clone_ctx)
8941 put_ctx(clone_ctx);
8942
8943 /*
8944 * Report the task dead after unscheduling the events so that we
8945 * won't get any samples after PERF_RECORD_EXIT. We can however still
8946 * get a few PERF_RECORD_READ events.
8947 */
8948 perf_event_task(child, child_ctx, 0);
8949
8950 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8951 perf_event_exit_event(child_event, child_ctx, child);
8952
8953 mutex_unlock(&child_ctx->mutex);
8954
8955 put_ctx(child_ctx);
8956 }
8957
8958 /*
8959 * When a child task exits, feed back event values to parent events.
8960 */
8961 void perf_event_exit_task(struct task_struct *child)
8962 {
8963 struct perf_event *event, *tmp;
8964 int ctxn;
8965
8966 mutex_lock(&child->perf_event_mutex);
8967 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8968 owner_entry) {
8969 list_del_init(&event->owner_entry);
8970
8971 /*
8972 * Ensure the list deletion is visible before we clear
8973 * the owner, closes a race against perf_release() where
8974 * we need to serialize on the owner->perf_event_mutex.
8975 */
8976 smp_store_release(&event->owner, NULL);
8977 }
8978 mutex_unlock(&child->perf_event_mutex);
8979
8980 for_each_task_context_nr(ctxn)
8981 perf_event_exit_task_context(child, ctxn);
8982
8983 /*
8984 * The perf_event_exit_task_context calls perf_event_task
8985 * with child's task_ctx, which generates EXIT events for
8986 * child contexts and sets child->perf_event_ctxp[] to NULL.
8987 * At this point we need to send EXIT events to cpu contexts.
8988 */
8989 perf_event_task(child, NULL, 0);
8990 }
8991
8992 static void perf_free_event(struct perf_event *event,
8993 struct perf_event_context *ctx)
8994 {
8995 struct perf_event *parent = event->parent;
8996
8997 if (WARN_ON_ONCE(!parent))
8998 return;
8999
9000 mutex_lock(&parent->child_mutex);
9001 list_del_init(&event->child_list);
9002 mutex_unlock(&parent->child_mutex);
9003
9004 put_event(parent);
9005
9006 raw_spin_lock_irq(&ctx->lock);
9007 perf_group_detach(event);
9008 list_del_event(event, ctx);
9009 raw_spin_unlock_irq(&ctx->lock);
9010 free_event(event);
9011 }
9012
9013 /*
9014 * Free an unexposed, unused context as created by inheritance by
9015 * perf_event_init_task below, used by fork() in case of fail.
9016 *
9017 * Not all locks are strictly required, but take them anyway to be nice and
9018 * help out with the lockdep assertions.
9019 */
9020 void perf_event_free_task(struct task_struct *task)
9021 {
9022 struct perf_event_context *ctx;
9023 struct perf_event *event, *tmp;
9024 int ctxn;
9025
9026 for_each_task_context_nr(ctxn) {
9027 ctx = task->perf_event_ctxp[ctxn];
9028 if (!ctx)
9029 continue;
9030
9031 mutex_lock(&ctx->mutex);
9032 again:
9033 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9034 group_entry)
9035 perf_free_event(event, ctx);
9036
9037 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9038 group_entry)
9039 perf_free_event(event, ctx);
9040
9041 if (!list_empty(&ctx->pinned_groups) ||
9042 !list_empty(&ctx->flexible_groups))
9043 goto again;
9044
9045 mutex_unlock(&ctx->mutex);
9046
9047 put_ctx(ctx);
9048 }
9049 }
9050
9051 void perf_event_delayed_put(struct task_struct *task)
9052 {
9053 int ctxn;
9054
9055 for_each_task_context_nr(ctxn)
9056 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9057 }
9058
9059 struct file *perf_event_get(unsigned int fd)
9060 {
9061 struct file *file;
9062
9063 file = fget_raw(fd);
9064 if (!file)
9065 return ERR_PTR(-EBADF);
9066
9067 if (file->f_op != &perf_fops) {
9068 fput(file);
9069 return ERR_PTR(-EBADF);
9070 }
9071
9072 return file;
9073 }
9074
9075 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9076 {
9077 if (!event)
9078 return ERR_PTR(-EINVAL);
9079
9080 return &event->attr;
9081 }
9082
9083 /*
9084 * inherit a event from parent task to child task:
9085 */
9086 static struct perf_event *
9087 inherit_event(struct perf_event *parent_event,
9088 struct task_struct *parent,
9089 struct perf_event_context *parent_ctx,
9090 struct task_struct *child,
9091 struct perf_event *group_leader,
9092 struct perf_event_context *child_ctx)
9093 {
9094 enum perf_event_active_state parent_state = parent_event->state;
9095 struct perf_event *child_event;
9096 unsigned long flags;
9097
9098 /*
9099 * Instead of creating recursive hierarchies of events,
9100 * we link inherited events back to the original parent,
9101 * which has a filp for sure, which we use as the reference
9102 * count:
9103 */
9104 if (parent_event->parent)
9105 parent_event = parent_event->parent;
9106
9107 child_event = perf_event_alloc(&parent_event->attr,
9108 parent_event->cpu,
9109 child,
9110 group_leader, parent_event,
9111 NULL, NULL, -1);
9112 if (IS_ERR(child_event))
9113 return child_event;
9114
9115 /*
9116 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9117 * must be under the same lock in order to serialize against
9118 * perf_event_release_kernel(), such that either we must observe
9119 * is_orphaned_event() or they will observe us on the child_list.
9120 */
9121 mutex_lock(&parent_event->child_mutex);
9122 if (is_orphaned_event(parent_event) ||
9123 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9124 mutex_unlock(&parent_event->child_mutex);
9125 free_event(child_event);
9126 return NULL;
9127 }
9128
9129 get_ctx(child_ctx);
9130
9131 /*
9132 * Make the child state follow the state of the parent event,
9133 * not its attr.disabled bit. We hold the parent's mutex,
9134 * so we won't race with perf_event_{en, dis}able_family.
9135 */
9136 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9137 child_event->state = PERF_EVENT_STATE_INACTIVE;
9138 else
9139 child_event->state = PERF_EVENT_STATE_OFF;
9140
9141 if (parent_event->attr.freq) {
9142 u64 sample_period = parent_event->hw.sample_period;
9143 struct hw_perf_event *hwc = &child_event->hw;
9144
9145 hwc->sample_period = sample_period;
9146 hwc->last_period = sample_period;
9147
9148 local64_set(&hwc->period_left, sample_period);
9149 }
9150
9151 child_event->ctx = child_ctx;
9152 child_event->overflow_handler = parent_event->overflow_handler;
9153 child_event->overflow_handler_context
9154 = parent_event->overflow_handler_context;
9155
9156 /*
9157 * Precalculate sample_data sizes
9158 */
9159 perf_event__header_size(child_event);
9160 perf_event__id_header_size(child_event);
9161
9162 /*
9163 * Link it up in the child's context:
9164 */
9165 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9166 add_event_to_ctx(child_event, child_ctx);
9167 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9168
9169 /*
9170 * Link this into the parent event's child list
9171 */
9172 list_add_tail(&child_event->child_list, &parent_event->child_list);
9173 mutex_unlock(&parent_event->child_mutex);
9174
9175 return child_event;
9176 }
9177
9178 static int inherit_group(struct perf_event *parent_event,
9179 struct task_struct *parent,
9180 struct perf_event_context *parent_ctx,
9181 struct task_struct *child,
9182 struct perf_event_context *child_ctx)
9183 {
9184 struct perf_event *leader;
9185 struct perf_event *sub;
9186 struct perf_event *child_ctr;
9187
9188 leader = inherit_event(parent_event, parent, parent_ctx,
9189 child, NULL, child_ctx);
9190 if (IS_ERR(leader))
9191 return PTR_ERR(leader);
9192 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9193 child_ctr = inherit_event(sub, parent, parent_ctx,
9194 child, leader, child_ctx);
9195 if (IS_ERR(child_ctr))
9196 return PTR_ERR(child_ctr);
9197 }
9198 return 0;
9199 }
9200
9201 static int
9202 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9203 struct perf_event_context *parent_ctx,
9204 struct task_struct *child, int ctxn,
9205 int *inherited_all)
9206 {
9207 int ret;
9208 struct perf_event_context *child_ctx;
9209
9210 if (!event->attr.inherit) {
9211 *inherited_all = 0;
9212 return 0;
9213 }
9214
9215 child_ctx = child->perf_event_ctxp[ctxn];
9216 if (!child_ctx) {
9217 /*
9218 * This is executed from the parent task context, so
9219 * inherit events that have been marked for cloning.
9220 * First allocate and initialize a context for the
9221 * child.
9222 */
9223
9224 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9225 if (!child_ctx)
9226 return -ENOMEM;
9227
9228 child->perf_event_ctxp[ctxn] = child_ctx;
9229 }
9230
9231 ret = inherit_group(event, parent, parent_ctx,
9232 child, child_ctx);
9233
9234 if (ret)
9235 *inherited_all = 0;
9236
9237 return ret;
9238 }
9239
9240 /*
9241 * Initialize the perf_event context in task_struct
9242 */
9243 static int perf_event_init_context(struct task_struct *child, int ctxn)
9244 {
9245 struct perf_event_context *child_ctx, *parent_ctx;
9246 struct perf_event_context *cloned_ctx;
9247 struct perf_event *event;
9248 struct task_struct *parent = current;
9249 int inherited_all = 1;
9250 unsigned long flags;
9251 int ret = 0;
9252
9253 if (likely(!parent->perf_event_ctxp[ctxn]))
9254 return 0;
9255
9256 /*
9257 * If the parent's context is a clone, pin it so it won't get
9258 * swapped under us.
9259 */
9260 parent_ctx = perf_pin_task_context(parent, ctxn);
9261 if (!parent_ctx)
9262 return 0;
9263
9264 /*
9265 * No need to check if parent_ctx != NULL here; since we saw
9266 * it non-NULL earlier, the only reason for it to become NULL
9267 * is if we exit, and since we're currently in the middle of
9268 * a fork we can't be exiting at the same time.
9269 */
9270
9271 /*
9272 * Lock the parent list. No need to lock the child - not PID
9273 * hashed yet and not running, so nobody can access it.
9274 */
9275 mutex_lock(&parent_ctx->mutex);
9276
9277 /*
9278 * We dont have to disable NMIs - we are only looking at
9279 * the list, not manipulating it:
9280 */
9281 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9282 ret = inherit_task_group(event, parent, parent_ctx,
9283 child, ctxn, &inherited_all);
9284 if (ret)
9285 break;
9286 }
9287
9288 /*
9289 * We can't hold ctx->lock when iterating the ->flexible_group list due
9290 * to allocations, but we need to prevent rotation because
9291 * rotate_ctx() will change the list from interrupt context.
9292 */
9293 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9294 parent_ctx->rotate_disable = 1;
9295 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9296
9297 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9298 ret = inherit_task_group(event, parent, parent_ctx,
9299 child, ctxn, &inherited_all);
9300 if (ret)
9301 break;
9302 }
9303
9304 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9305 parent_ctx->rotate_disable = 0;
9306
9307 child_ctx = child->perf_event_ctxp[ctxn];
9308
9309 if (child_ctx && inherited_all) {
9310 /*
9311 * Mark the child context as a clone of the parent
9312 * context, or of whatever the parent is a clone of.
9313 *
9314 * Note that if the parent is a clone, the holding of
9315 * parent_ctx->lock avoids it from being uncloned.
9316 */
9317 cloned_ctx = parent_ctx->parent_ctx;
9318 if (cloned_ctx) {
9319 child_ctx->parent_ctx = cloned_ctx;
9320 child_ctx->parent_gen = parent_ctx->parent_gen;
9321 } else {
9322 child_ctx->parent_ctx = parent_ctx;
9323 child_ctx->parent_gen = parent_ctx->generation;
9324 }
9325 get_ctx(child_ctx->parent_ctx);
9326 }
9327
9328 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9329 mutex_unlock(&parent_ctx->mutex);
9330
9331 perf_unpin_context(parent_ctx);
9332 put_ctx(parent_ctx);
9333
9334 return ret;
9335 }
9336
9337 /*
9338 * Initialize the perf_event context in task_struct
9339 */
9340 int perf_event_init_task(struct task_struct *child)
9341 {
9342 int ctxn, ret;
9343
9344 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9345 mutex_init(&child->perf_event_mutex);
9346 INIT_LIST_HEAD(&child->perf_event_list);
9347
9348 for_each_task_context_nr(ctxn) {
9349 ret = perf_event_init_context(child, ctxn);
9350 if (ret) {
9351 perf_event_free_task(child);
9352 return ret;
9353 }
9354 }
9355
9356 return 0;
9357 }
9358
9359 static void __init perf_event_init_all_cpus(void)
9360 {
9361 struct swevent_htable *swhash;
9362 int cpu;
9363
9364 for_each_possible_cpu(cpu) {
9365 swhash = &per_cpu(swevent_htable, cpu);
9366 mutex_init(&swhash->hlist_mutex);
9367 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9368 }
9369 }
9370
9371 static void perf_event_init_cpu(int cpu)
9372 {
9373 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9374
9375 mutex_lock(&swhash->hlist_mutex);
9376 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9377 struct swevent_hlist *hlist;
9378
9379 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9380 WARN_ON(!hlist);
9381 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9382 }
9383 mutex_unlock(&swhash->hlist_mutex);
9384 }
9385
9386 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9387 static void __perf_event_exit_context(void *__info)
9388 {
9389 struct perf_event_context *ctx = __info;
9390 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9391 struct perf_event *event;
9392
9393 raw_spin_lock(&ctx->lock);
9394 list_for_each_entry(event, &ctx->event_list, event_entry)
9395 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9396 raw_spin_unlock(&ctx->lock);
9397 }
9398
9399 static void perf_event_exit_cpu_context(int cpu)
9400 {
9401 struct perf_event_context *ctx;
9402 struct pmu *pmu;
9403 int idx;
9404
9405 idx = srcu_read_lock(&pmus_srcu);
9406 list_for_each_entry_rcu(pmu, &pmus, entry) {
9407 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9408
9409 mutex_lock(&ctx->mutex);
9410 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9411 mutex_unlock(&ctx->mutex);
9412 }
9413 srcu_read_unlock(&pmus_srcu, idx);
9414 }
9415
9416 static void perf_event_exit_cpu(int cpu)
9417 {
9418 perf_event_exit_cpu_context(cpu);
9419 }
9420 #else
9421 static inline void perf_event_exit_cpu(int cpu) { }
9422 #endif
9423
9424 static int
9425 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9426 {
9427 int cpu;
9428
9429 for_each_online_cpu(cpu)
9430 perf_event_exit_cpu(cpu);
9431
9432 return NOTIFY_OK;
9433 }
9434
9435 /*
9436 * Run the perf reboot notifier at the very last possible moment so that
9437 * the generic watchdog code runs as long as possible.
9438 */
9439 static struct notifier_block perf_reboot_notifier = {
9440 .notifier_call = perf_reboot,
9441 .priority = INT_MIN,
9442 };
9443
9444 static int
9445 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9446 {
9447 unsigned int cpu = (long)hcpu;
9448
9449 switch (action & ~CPU_TASKS_FROZEN) {
9450
9451 case CPU_UP_PREPARE:
9452 /*
9453 * This must be done before the CPU comes alive, because the
9454 * moment we can run tasks we can encounter (software) events.
9455 *
9456 * Specifically, someone can have inherited events on kthreadd
9457 * or a pre-existing worker thread that gets re-bound.
9458 */
9459 perf_event_init_cpu(cpu);
9460 break;
9461
9462 case CPU_DOWN_PREPARE:
9463 /*
9464 * This must be done before the CPU dies because after that an
9465 * active event might want to IPI the CPU and that'll not work
9466 * so great for dead CPUs.
9467 *
9468 * XXX smp_call_function_single() return -ENXIO without a warn
9469 * so we could possibly deal with this.
9470 *
9471 * This is safe against new events arriving because
9472 * sys_perf_event_open() serializes against hotplug using
9473 * get_online_cpus().
9474 */
9475 perf_event_exit_cpu(cpu);
9476 break;
9477 default:
9478 break;
9479 }
9480
9481 return NOTIFY_OK;
9482 }
9483
9484 void __init perf_event_init(void)
9485 {
9486 int ret;
9487
9488 idr_init(&pmu_idr);
9489
9490 perf_event_init_all_cpus();
9491 init_srcu_struct(&pmus_srcu);
9492 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9493 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9494 perf_pmu_register(&perf_task_clock, NULL, -1);
9495 perf_tp_register();
9496 perf_cpu_notifier(perf_cpu_notify);
9497 register_reboot_notifier(&perf_reboot_notifier);
9498
9499 ret = init_hw_breakpoint();
9500 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9501
9502 /*
9503 * Build time assertion that we keep the data_head at the intended
9504 * location. IOW, validation we got the __reserved[] size right.
9505 */
9506 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9507 != 1024);
9508 }
9509
9510 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9511 char *page)
9512 {
9513 struct perf_pmu_events_attr *pmu_attr =
9514 container_of(attr, struct perf_pmu_events_attr, attr);
9515
9516 if (pmu_attr->event_str)
9517 return sprintf(page, "%s\n", pmu_attr->event_str);
9518
9519 return 0;
9520 }
9521 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9522
9523 static int __init perf_event_sysfs_init(void)
9524 {
9525 struct pmu *pmu;
9526 int ret;
9527
9528 mutex_lock(&pmus_lock);
9529
9530 ret = bus_register(&pmu_bus);
9531 if (ret)
9532 goto unlock;
9533
9534 list_for_each_entry(pmu, &pmus, entry) {
9535 if (!pmu->name || pmu->type < 0)
9536 continue;
9537
9538 ret = pmu_dev_alloc(pmu);
9539 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9540 }
9541 pmu_bus_running = 1;
9542 ret = 0;
9543
9544 unlock:
9545 mutex_unlock(&pmus_lock);
9546
9547 return ret;
9548 }
9549 device_initcall(perf_event_sysfs_init);
9550
9551 #ifdef CONFIG_CGROUP_PERF
9552 static struct cgroup_subsys_state *
9553 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9554 {
9555 struct perf_cgroup *jc;
9556
9557 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9558 if (!jc)
9559 return ERR_PTR(-ENOMEM);
9560
9561 jc->info = alloc_percpu(struct perf_cgroup_info);
9562 if (!jc->info) {
9563 kfree(jc);
9564 return ERR_PTR(-ENOMEM);
9565 }
9566
9567 return &jc->css;
9568 }
9569
9570 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9571 {
9572 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9573
9574 free_percpu(jc->info);
9575 kfree(jc);
9576 }
9577
9578 static int __perf_cgroup_move(void *info)
9579 {
9580 struct task_struct *task = info;
9581 rcu_read_lock();
9582 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9583 rcu_read_unlock();
9584 return 0;
9585 }
9586
9587 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9588 {
9589 struct task_struct *task;
9590 struct cgroup_subsys_state *css;
9591
9592 cgroup_taskset_for_each(task, css, tset)
9593 task_function_call(task, __perf_cgroup_move, task);
9594 }
9595
9596 struct cgroup_subsys perf_event_cgrp_subsys = {
9597 .css_alloc = perf_cgroup_css_alloc,
9598 .css_free = perf_cgroup_css_free,
9599 .attach = perf_cgroup_attach,
9600 };
9601 #endif /* CONFIG_CGROUP_PERF */
This page took 0.228688 seconds and 5 git commands to generate.