GFS2: Check for glock already held in gfs2_getxattr
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152
153 /*
154 * perf event paranoia level:
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
157 * 1 - disallow cpu events for unpriv
158 * 2 - disallow kernel profiling for unpriv
159 */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164
165 /*
166 * max perf event sample rate
167 */
168 #define DEFAULT_MAX_SAMPLE_RATE 100000
169 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
170 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
171
172 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
173
174 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
175 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
176
177 static atomic_t perf_sample_allowed_ns __read_mostly =
178 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
179
180 void update_perf_cpu_limits(void)
181 {
182 u64 tmp = perf_sample_period_ns;
183
184 tmp *= sysctl_perf_cpu_time_max_percent;
185 do_div(tmp, 100);
186 atomic_set(&perf_sample_allowed_ns, tmp);
187 }
188
189 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
190
191 int perf_proc_update_handler(struct ctl_table *table, int write,
192 void __user *buffer, size_t *lenp,
193 loff_t *ppos)
194 {
195 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
196
197 if (ret || !write)
198 return ret;
199
200 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
201 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
202 update_perf_cpu_limits();
203
204 return 0;
205 }
206
207 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
208
209 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
210 void __user *buffer, size_t *lenp,
211 loff_t *ppos)
212 {
213 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
214
215 if (ret || !write)
216 return ret;
217
218 update_perf_cpu_limits();
219
220 return 0;
221 }
222
223 /*
224 * perf samples are done in some very critical code paths (NMIs).
225 * If they take too much CPU time, the system can lock up and not
226 * get any real work done. This will drop the sample rate when
227 * we detect that events are taking too long.
228 */
229 #define NR_ACCUMULATED_SAMPLES 128
230 DEFINE_PER_CPU(u64, running_sample_length);
231
232 void perf_sample_event_took(u64 sample_len_ns)
233 {
234 u64 avg_local_sample_len;
235 u64 local_samples_len;
236
237 if (atomic_read(&perf_sample_allowed_ns) == 0)
238 return;
239
240 /* decay the counter by 1 average sample */
241 local_samples_len = __get_cpu_var(running_sample_length);
242 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
243 local_samples_len += sample_len_ns;
244 __get_cpu_var(running_sample_length) = local_samples_len;
245
246 /*
247 * note: this will be biased artifically low until we have
248 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
249 * from having to maintain a count.
250 */
251 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
252
253 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
254 return;
255
256 if (max_samples_per_tick <= 1)
257 return;
258
259 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
260 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
261 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
262
263 printk_ratelimited(KERN_WARNING
264 "perf samples too long (%lld > %d), lowering "
265 "kernel.perf_event_max_sample_rate to %d\n",
266 avg_local_sample_len,
267 atomic_read(&perf_sample_allowed_ns),
268 sysctl_perf_event_sample_rate);
269
270 update_perf_cpu_limits();
271 }
272
273 static atomic64_t perf_event_id;
274
275 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
276 enum event_type_t event_type);
277
278 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
279 enum event_type_t event_type,
280 struct task_struct *task);
281
282 static void update_context_time(struct perf_event_context *ctx);
283 static u64 perf_event_time(struct perf_event *event);
284
285 void __weak perf_event_print_debug(void) { }
286
287 extern __weak const char *perf_pmu_name(void)
288 {
289 return "pmu";
290 }
291
292 static inline u64 perf_clock(void)
293 {
294 return local_clock();
295 }
296
297 static inline struct perf_cpu_context *
298 __get_cpu_context(struct perf_event_context *ctx)
299 {
300 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
301 }
302
303 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
304 struct perf_event_context *ctx)
305 {
306 raw_spin_lock(&cpuctx->ctx.lock);
307 if (ctx)
308 raw_spin_lock(&ctx->lock);
309 }
310
311 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313 {
314 if (ctx)
315 raw_spin_unlock(&ctx->lock);
316 raw_spin_unlock(&cpuctx->ctx.lock);
317 }
318
319 #ifdef CONFIG_CGROUP_PERF
320
321 /*
322 * perf_cgroup_info keeps track of time_enabled for a cgroup.
323 * This is a per-cpu dynamically allocated data structure.
324 */
325 struct perf_cgroup_info {
326 u64 time;
327 u64 timestamp;
328 };
329
330 struct perf_cgroup {
331 struct cgroup_subsys_state css;
332 struct perf_cgroup_info __percpu *info;
333 };
334
335 /*
336 * Must ensure cgroup is pinned (css_get) before calling
337 * this function. In other words, we cannot call this function
338 * if there is no cgroup event for the current CPU context.
339 */
340 static inline struct perf_cgroup *
341 perf_cgroup_from_task(struct task_struct *task)
342 {
343 return container_of(task_subsys_state(task, perf_subsys_id),
344 struct perf_cgroup, css);
345 }
346
347 static inline bool
348 perf_cgroup_match(struct perf_event *event)
349 {
350 struct perf_event_context *ctx = event->ctx;
351 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
352
353 /* @event doesn't care about cgroup */
354 if (!event->cgrp)
355 return true;
356
357 /* wants specific cgroup scope but @cpuctx isn't associated with any */
358 if (!cpuctx->cgrp)
359 return false;
360
361 /*
362 * Cgroup scoping is recursive. An event enabled for a cgroup is
363 * also enabled for all its descendant cgroups. If @cpuctx's
364 * cgroup is a descendant of @event's (the test covers identity
365 * case), it's a match.
366 */
367 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
368 event->cgrp->css.cgroup);
369 }
370
371 static inline bool perf_tryget_cgroup(struct perf_event *event)
372 {
373 return css_tryget(&event->cgrp->css);
374 }
375
376 static inline void perf_put_cgroup(struct perf_event *event)
377 {
378 css_put(&event->cgrp->css);
379 }
380
381 static inline void perf_detach_cgroup(struct perf_event *event)
382 {
383 perf_put_cgroup(event);
384 event->cgrp = NULL;
385 }
386
387 static inline int is_cgroup_event(struct perf_event *event)
388 {
389 return event->cgrp != NULL;
390 }
391
392 static inline u64 perf_cgroup_event_time(struct perf_event *event)
393 {
394 struct perf_cgroup_info *t;
395
396 t = per_cpu_ptr(event->cgrp->info, event->cpu);
397 return t->time;
398 }
399
400 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
401 {
402 struct perf_cgroup_info *info;
403 u64 now;
404
405 now = perf_clock();
406
407 info = this_cpu_ptr(cgrp->info);
408
409 info->time += now - info->timestamp;
410 info->timestamp = now;
411 }
412
413 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
414 {
415 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
416 if (cgrp_out)
417 __update_cgrp_time(cgrp_out);
418 }
419
420 static inline void update_cgrp_time_from_event(struct perf_event *event)
421 {
422 struct perf_cgroup *cgrp;
423
424 /*
425 * ensure we access cgroup data only when needed and
426 * when we know the cgroup is pinned (css_get)
427 */
428 if (!is_cgroup_event(event))
429 return;
430
431 cgrp = perf_cgroup_from_task(current);
432 /*
433 * Do not update time when cgroup is not active
434 */
435 if (cgrp == event->cgrp)
436 __update_cgrp_time(event->cgrp);
437 }
438
439 static inline void
440 perf_cgroup_set_timestamp(struct task_struct *task,
441 struct perf_event_context *ctx)
442 {
443 struct perf_cgroup *cgrp;
444 struct perf_cgroup_info *info;
445
446 /*
447 * ctx->lock held by caller
448 * ensure we do not access cgroup data
449 * unless we have the cgroup pinned (css_get)
450 */
451 if (!task || !ctx->nr_cgroups)
452 return;
453
454 cgrp = perf_cgroup_from_task(task);
455 info = this_cpu_ptr(cgrp->info);
456 info->timestamp = ctx->timestamp;
457 }
458
459 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
460 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
461
462 /*
463 * reschedule events based on the cgroup constraint of task.
464 *
465 * mode SWOUT : schedule out everything
466 * mode SWIN : schedule in based on cgroup for next
467 */
468 void perf_cgroup_switch(struct task_struct *task, int mode)
469 {
470 struct perf_cpu_context *cpuctx;
471 struct pmu *pmu;
472 unsigned long flags;
473
474 /*
475 * disable interrupts to avoid geting nr_cgroup
476 * changes via __perf_event_disable(). Also
477 * avoids preemption.
478 */
479 local_irq_save(flags);
480
481 /*
482 * we reschedule only in the presence of cgroup
483 * constrained events.
484 */
485 rcu_read_lock();
486
487 list_for_each_entry_rcu(pmu, &pmus, entry) {
488 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
489 if (cpuctx->unique_pmu != pmu)
490 continue; /* ensure we process each cpuctx once */
491
492 /*
493 * perf_cgroup_events says at least one
494 * context on this CPU has cgroup events.
495 *
496 * ctx->nr_cgroups reports the number of cgroup
497 * events for a context.
498 */
499 if (cpuctx->ctx.nr_cgroups > 0) {
500 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
501 perf_pmu_disable(cpuctx->ctx.pmu);
502
503 if (mode & PERF_CGROUP_SWOUT) {
504 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
505 /*
506 * must not be done before ctxswout due
507 * to event_filter_match() in event_sched_out()
508 */
509 cpuctx->cgrp = NULL;
510 }
511
512 if (mode & PERF_CGROUP_SWIN) {
513 WARN_ON_ONCE(cpuctx->cgrp);
514 /*
515 * set cgrp before ctxsw in to allow
516 * event_filter_match() to not have to pass
517 * task around
518 */
519 cpuctx->cgrp = perf_cgroup_from_task(task);
520 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
521 }
522 perf_pmu_enable(cpuctx->ctx.pmu);
523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
524 }
525 }
526
527 rcu_read_unlock();
528
529 local_irq_restore(flags);
530 }
531
532 static inline void perf_cgroup_sched_out(struct task_struct *task,
533 struct task_struct *next)
534 {
535 struct perf_cgroup *cgrp1;
536 struct perf_cgroup *cgrp2 = NULL;
537
538 /*
539 * we come here when we know perf_cgroup_events > 0
540 */
541 cgrp1 = perf_cgroup_from_task(task);
542
543 /*
544 * next is NULL when called from perf_event_enable_on_exec()
545 * that will systematically cause a cgroup_switch()
546 */
547 if (next)
548 cgrp2 = perf_cgroup_from_task(next);
549
550 /*
551 * only schedule out current cgroup events if we know
552 * that we are switching to a different cgroup. Otherwise,
553 * do no touch the cgroup events.
554 */
555 if (cgrp1 != cgrp2)
556 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
557 }
558
559 static inline void perf_cgroup_sched_in(struct task_struct *prev,
560 struct task_struct *task)
561 {
562 struct perf_cgroup *cgrp1;
563 struct perf_cgroup *cgrp2 = NULL;
564
565 /*
566 * we come here when we know perf_cgroup_events > 0
567 */
568 cgrp1 = perf_cgroup_from_task(task);
569
570 /* prev can never be NULL */
571 cgrp2 = perf_cgroup_from_task(prev);
572
573 /*
574 * only need to schedule in cgroup events if we are changing
575 * cgroup during ctxsw. Cgroup events were not scheduled
576 * out of ctxsw out if that was not the case.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
580 }
581
582 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
583 struct perf_event_attr *attr,
584 struct perf_event *group_leader)
585 {
586 struct perf_cgroup *cgrp;
587 struct cgroup_subsys_state *css;
588 struct fd f = fdget(fd);
589 int ret = 0;
590
591 if (!f.file)
592 return -EBADF;
593
594 css = cgroup_css_from_dir(f.file, perf_subsys_id);
595 if (IS_ERR(css)) {
596 ret = PTR_ERR(css);
597 goto out;
598 }
599
600 cgrp = container_of(css, struct perf_cgroup, css);
601 event->cgrp = cgrp;
602
603 /* must be done before we fput() the file */
604 if (!perf_tryget_cgroup(event)) {
605 event->cgrp = NULL;
606 ret = -ENOENT;
607 goto out;
608 }
609
610 /*
611 * all events in a group must monitor
612 * the same cgroup because a task belongs
613 * to only one perf cgroup at a time
614 */
615 if (group_leader && group_leader->cgrp != cgrp) {
616 perf_detach_cgroup(event);
617 ret = -EINVAL;
618 }
619 out:
620 fdput(f);
621 return ret;
622 }
623
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 struct perf_cgroup_info *t;
628 t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 event->shadow_ctx_time = now - t->timestamp;
630 }
631
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 /*
636 * when the current task's perf cgroup does not match
637 * the event's, we need to remember to call the
638 * perf_mark_enable() function the first time a task with
639 * a matching perf cgroup is scheduled in.
640 */
641 if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 event->cgrp_defer_enabled = 1;
643 }
644
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 struct perf_event_context *ctx)
648 {
649 struct perf_event *sub;
650 u64 tstamp = perf_event_time(event);
651
652 if (!event->cgrp_defer_enabled)
653 return;
654
655 event->cgrp_defer_enabled = 0;
656
657 event->tstamp_enabled = tstamp - event->total_time_enabled;
658 list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 sub->cgrp_defer_enabled = 0;
662 }
663 }
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 return true;
671 }
672
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 return 0;
679 }
680
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 return 0;
684 }
685
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 struct task_struct *next)
696 {
697 }
698
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 struct task_struct *task)
701 {
702 }
703
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 struct perf_event_attr *attr,
706 struct perf_event *group_leader)
707 {
708 return -EINVAL;
709 }
710
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 struct perf_event_context *ctx)
714 {
715 }
716
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 return 0;
730 }
731
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743
744 /*
745 * set default to be dependent on timer tick just
746 * like original code
747 */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750 * function must be called with interrupts disbled
751 */
752 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
753 {
754 struct perf_cpu_context *cpuctx;
755 enum hrtimer_restart ret = HRTIMER_NORESTART;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761
762 rotations = perf_rotate_context(cpuctx);
763
764 /*
765 * arm timer if needed
766 */
767 if (rotations) {
768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
769 ret = HRTIMER_RESTART;
770 }
771
772 return ret;
773 }
774
775 /* CPU is going down */
776 void perf_cpu_hrtimer_cancel(int cpu)
777 {
778 struct perf_cpu_context *cpuctx;
779 struct pmu *pmu;
780 unsigned long flags;
781
782 if (WARN_ON(cpu != smp_processor_id()))
783 return;
784
785 local_irq_save(flags);
786
787 rcu_read_lock();
788
789 list_for_each_entry_rcu(pmu, &pmus, entry) {
790 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
791
792 if (pmu->task_ctx_nr == perf_sw_context)
793 continue;
794
795 hrtimer_cancel(&cpuctx->hrtimer);
796 }
797
798 rcu_read_unlock();
799
800 local_irq_restore(flags);
801 }
802
803 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
804 {
805 struct hrtimer *hr = &cpuctx->hrtimer;
806 struct pmu *pmu = cpuctx->ctx.pmu;
807 int timer;
808
809 /* no multiplexing needed for SW PMU */
810 if (pmu->task_ctx_nr == perf_sw_context)
811 return;
812
813 /*
814 * check default is sane, if not set then force to
815 * default interval (1/tick)
816 */
817 timer = pmu->hrtimer_interval_ms;
818 if (timer < 1)
819 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
820
821 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
822
823 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
824 hr->function = perf_cpu_hrtimer_handler;
825 }
826
827 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
828 {
829 struct hrtimer *hr = &cpuctx->hrtimer;
830 struct pmu *pmu = cpuctx->ctx.pmu;
831
832 /* not for SW PMU */
833 if (pmu->task_ctx_nr == perf_sw_context)
834 return;
835
836 if (hrtimer_active(hr))
837 return;
838
839 if (!hrtimer_callback_running(hr))
840 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
841 0, HRTIMER_MODE_REL_PINNED, 0);
842 }
843
844 void perf_pmu_disable(struct pmu *pmu)
845 {
846 int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 if (!(*count)++)
848 pmu->pmu_disable(pmu);
849 }
850
851 void perf_pmu_enable(struct pmu *pmu)
852 {
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!--(*count))
855 pmu->pmu_enable(pmu);
856 }
857
858 static DEFINE_PER_CPU(struct list_head, rotation_list);
859
860 /*
861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
862 * because they're strictly cpu affine and rotate_start is called with IRQs
863 * disabled, while rotate_context is called from IRQ context.
864 */
865 static void perf_pmu_rotate_start(struct pmu *pmu)
866 {
867 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
868 struct list_head *head = &__get_cpu_var(rotation_list);
869
870 WARN_ON(!irqs_disabled());
871
872 if (list_empty(&cpuctx->rotation_list)) {
873 int was_empty = list_empty(head);
874 list_add(&cpuctx->rotation_list, head);
875 if (was_empty)
876 tick_nohz_full_kick();
877 }
878 }
879
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
890 if (ctx->task)
891 put_task_struct(ctx->task);
892 kfree_rcu(ctx, rcu_head);
893 }
894 }
895
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902 }
903
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905 {
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913 }
914
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916 {
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924 }
925
926 /*
927 * If we inherit events we want to return the parent event id
928 * to userspace.
929 */
930 static u64 primary_event_id(struct perf_event *event)
931 {
932 u64 id = event->id;
933
934 if (event->parent)
935 id = event->parent->id;
936
937 return id;
938 }
939
940 /*
941 * Get the perf_event_context for a task and lock it.
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947 {
948 struct perf_event_context *ctx;
949
950 retry:
951 /*
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
956 *
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
959 */
960 preempt_disable();
961 rcu_read_lock();
962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 if (ctx) {
964 /*
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
967 * perf_event_task_sched_out, though the
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
973 */
974 raw_spin_lock_irqsave(&ctx->lock, *flags);
975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 rcu_read_unlock();
978 preempt_enable();
979 goto retry;
980 }
981
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 ctx = NULL;
985 }
986 }
987 rcu_read_unlock();
988 preempt_enable();
989 return ctx;
990 }
991
992 /*
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
996 */
997 static struct perf_event_context *
998 perf_pin_task_context(struct task_struct *task, int ctxn)
999 {
1000 struct perf_event_context *ctx;
1001 unsigned long flags;
1002
1003 ctx = perf_lock_task_context(task, ctxn, &flags);
1004 if (ctx) {
1005 ++ctx->pin_count;
1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 }
1008 return ctx;
1009 }
1010
1011 static void perf_unpin_context(struct perf_event_context *ctx)
1012 {
1013 unsigned long flags;
1014
1015 raw_spin_lock_irqsave(&ctx->lock, flags);
1016 --ctx->pin_count;
1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 }
1019
1020 /*
1021 * Update the record of the current time in a context.
1022 */
1023 static void update_context_time(struct perf_event_context *ctx)
1024 {
1025 u64 now = perf_clock();
1026
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1029 }
1030
1031 static u64 perf_event_time(struct perf_event *event)
1032 {
1033 struct perf_event_context *ctx = event->ctx;
1034
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1037
1038 return ctx ? ctx->time : 0;
1039 }
1040
1041 /*
1042 * Update the total_time_enabled and total_time_running fields for a event.
1043 * The caller of this function needs to hold the ctx->lock.
1044 */
1045 static void update_event_times(struct perf_event *event)
1046 {
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1049
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
1053 /*
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1059 *
1060 * That is why we treat cgroup events differently
1061 * here.
1062 */
1063 if (is_cgroup_event(event))
1064 run_end = perf_cgroup_event_time(event);
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
1067 else
1068 run_end = event->tstamp_stopped;
1069
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
1071
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
1075 run_end = perf_event_time(event);
1076
1077 event->total_time_running = run_end - event->tstamp_running;
1078
1079 }
1080
1081 /*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084 static void update_group_times(struct perf_event *leader)
1085 {
1086 struct perf_event *event;
1087
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1091 }
1092
1093 static struct list_head *
1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095 {
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1100 }
1101
1102 /*
1103 * Add a event from the lists for its context.
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
1106 static void
1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108 {
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
1111
1112 /*
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
1116 */
1117 if (event->group_leader == event) {
1118 struct list_head *list;
1119
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1122
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
1125 }
1126
1127 if (is_cgroup_event(event))
1128 ctx->nr_cgroups++;
1129
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1132
1133 list_add_rcu(&event->event_entry, &ctx->event_list);
1134 if (!ctx->nr_events)
1135 perf_pmu_rotate_start(ctx->pmu);
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
1138 ctx->nr_stat++;
1139 }
1140
1141 /*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144 static inline void perf_event__state_init(struct perf_event *event)
1145 {
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1148 }
1149
1150 /*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154 static void perf_event__read_size(struct perf_event *event)
1155 {
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1172 }
1173
1174 size += entry * nr;
1175 event->read_size = size;
1176 }
1177
1178 static void perf_event__header_size(struct perf_event *event)
1179 {
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1183
1184 perf_event__read_size(event);
1185
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1188
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1191
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1194
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1197
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1200
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1203
1204 event->header_size = size;
1205 }
1206
1207 static void perf_event__id_header_size(struct perf_event *event)
1208 {
1209 struct perf_sample_data *data;
1210 u64 sample_type = event->attr.sample_type;
1211 u16 size = 0;
1212
1213 if (sample_type & PERF_SAMPLE_TID)
1214 size += sizeof(data->tid_entry);
1215
1216 if (sample_type & PERF_SAMPLE_TIME)
1217 size += sizeof(data->time);
1218
1219 if (sample_type & PERF_SAMPLE_ID)
1220 size += sizeof(data->id);
1221
1222 if (sample_type & PERF_SAMPLE_STREAM_ID)
1223 size += sizeof(data->stream_id);
1224
1225 if (sample_type & PERF_SAMPLE_CPU)
1226 size += sizeof(data->cpu_entry);
1227
1228 event->id_header_size = size;
1229 }
1230
1231 static void perf_group_attach(struct perf_event *event)
1232 {
1233 struct perf_event *group_leader = event->group_leader, *pos;
1234
1235 /*
1236 * We can have double attach due to group movement in perf_event_open.
1237 */
1238 if (event->attach_state & PERF_ATTACH_GROUP)
1239 return;
1240
1241 event->attach_state |= PERF_ATTACH_GROUP;
1242
1243 if (group_leader == event)
1244 return;
1245
1246 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1247 !is_software_event(event))
1248 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1249
1250 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1251 group_leader->nr_siblings++;
1252
1253 perf_event__header_size(group_leader);
1254
1255 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1256 perf_event__header_size(pos);
1257 }
1258
1259 /*
1260 * Remove a event from the lists for its context.
1261 * Must be called with ctx->mutex and ctx->lock held.
1262 */
1263 static void
1264 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265 {
1266 struct perf_cpu_context *cpuctx;
1267 /*
1268 * We can have double detach due to exit/hot-unplug + close.
1269 */
1270 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271 return;
1272
1273 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1274
1275 if (is_cgroup_event(event)) {
1276 ctx->nr_cgroups--;
1277 cpuctx = __get_cpu_context(ctx);
1278 /*
1279 * if there are no more cgroup events
1280 * then cler cgrp to avoid stale pointer
1281 * in update_cgrp_time_from_cpuctx()
1282 */
1283 if (!ctx->nr_cgroups)
1284 cpuctx->cgrp = NULL;
1285 }
1286
1287 if (has_branch_stack(event))
1288 ctx->nr_branch_stack--;
1289
1290 ctx->nr_events--;
1291 if (event->attr.inherit_stat)
1292 ctx->nr_stat--;
1293
1294 list_del_rcu(&event->event_entry);
1295
1296 if (event->group_leader == event)
1297 list_del_init(&event->group_entry);
1298
1299 update_group_times(event);
1300
1301 /*
1302 * If event was in error state, then keep it
1303 * that way, otherwise bogus counts will be
1304 * returned on read(). The only way to get out
1305 * of error state is by explicit re-enabling
1306 * of the event
1307 */
1308 if (event->state > PERF_EVENT_STATE_OFF)
1309 event->state = PERF_EVENT_STATE_OFF;
1310 }
1311
1312 static void perf_group_detach(struct perf_event *event)
1313 {
1314 struct perf_event *sibling, *tmp;
1315 struct list_head *list = NULL;
1316
1317 /*
1318 * We can have double detach due to exit/hot-unplug + close.
1319 */
1320 if (!(event->attach_state & PERF_ATTACH_GROUP))
1321 return;
1322
1323 event->attach_state &= ~PERF_ATTACH_GROUP;
1324
1325 /*
1326 * If this is a sibling, remove it from its group.
1327 */
1328 if (event->group_leader != event) {
1329 list_del_init(&event->group_entry);
1330 event->group_leader->nr_siblings--;
1331 goto out;
1332 }
1333
1334 if (!list_empty(&event->group_entry))
1335 list = &event->group_entry;
1336
1337 /*
1338 * If this was a group event with sibling events then
1339 * upgrade the siblings to singleton events by adding them
1340 * to whatever list we are on.
1341 */
1342 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343 if (list)
1344 list_move_tail(&sibling->group_entry, list);
1345 sibling->group_leader = sibling;
1346
1347 /* Inherit group flags from the previous leader */
1348 sibling->group_flags = event->group_flags;
1349 }
1350
1351 out:
1352 perf_event__header_size(event->group_leader);
1353
1354 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1355 perf_event__header_size(tmp);
1356 }
1357
1358 static inline int
1359 event_filter_match(struct perf_event *event)
1360 {
1361 return (event->cpu == -1 || event->cpu == smp_processor_id())
1362 && perf_cgroup_match(event);
1363 }
1364
1365 static void
1366 event_sched_out(struct perf_event *event,
1367 struct perf_cpu_context *cpuctx,
1368 struct perf_event_context *ctx)
1369 {
1370 u64 tstamp = perf_event_time(event);
1371 u64 delta;
1372 /*
1373 * An event which could not be activated because of
1374 * filter mismatch still needs to have its timings
1375 * maintained, otherwise bogus information is return
1376 * via read() for time_enabled, time_running:
1377 */
1378 if (event->state == PERF_EVENT_STATE_INACTIVE
1379 && !event_filter_match(event)) {
1380 delta = tstamp - event->tstamp_stopped;
1381 event->tstamp_running += delta;
1382 event->tstamp_stopped = tstamp;
1383 }
1384
1385 if (event->state != PERF_EVENT_STATE_ACTIVE)
1386 return;
1387
1388 event->state = PERF_EVENT_STATE_INACTIVE;
1389 if (event->pending_disable) {
1390 event->pending_disable = 0;
1391 event->state = PERF_EVENT_STATE_OFF;
1392 }
1393 event->tstamp_stopped = tstamp;
1394 event->pmu->del(event, 0);
1395 event->oncpu = -1;
1396
1397 if (!is_software_event(event))
1398 cpuctx->active_oncpu--;
1399 ctx->nr_active--;
1400 if (event->attr.freq && event->attr.sample_freq)
1401 ctx->nr_freq--;
1402 if (event->attr.exclusive || !cpuctx->active_oncpu)
1403 cpuctx->exclusive = 0;
1404 }
1405
1406 static void
1407 group_sched_out(struct perf_event *group_event,
1408 struct perf_cpu_context *cpuctx,
1409 struct perf_event_context *ctx)
1410 {
1411 struct perf_event *event;
1412 int state = group_event->state;
1413
1414 event_sched_out(group_event, cpuctx, ctx);
1415
1416 /*
1417 * Schedule out siblings (if any):
1418 */
1419 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1420 event_sched_out(event, cpuctx, ctx);
1421
1422 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423 cpuctx->exclusive = 0;
1424 }
1425
1426 /*
1427 * Cross CPU call to remove a performance event
1428 *
1429 * We disable the event on the hardware level first. After that we
1430 * remove it from the context list.
1431 */
1432 static int __perf_remove_from_context(void *info)
1433 {
1434 struct perf_event *event = info;
1435 struct perf_event_context *ctx = event->ctx;
1436 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1437
1438 raw_spin_lock(&ctx->lock);
1439 event_sched_out(event, cpuctx, ctx);
1440 list_del_event(event, ctx);
1441 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1442 ctx->is_active = 0;
1443 cpuctx->task_ctx = NULL;
1444 }
1445 raw_spin_unlock(&ctx->lock);
1446
1447 return 0;
1448 }
1449
1450
1451 /*
1452 * Remove the event from a task's (or a CPU's) list of events.
1453 *
1454 * CPU events are removed with a smp call. For task events we only
1455 * call when the task is on a CPU.
1456 *
1457 * If event->ctx is a cloned context, callers must make sure that
1458 * every task struct that event->ctx->task could possibly point to
1459 * remains valid. This is OK when called from perf_release since
1460 * that only calls us on the top-level context, which can't be a clone.
1461 * When called from perf_event_exit_task, it's OK because the
1462 * context has been detached from its task.
1463 */
1464 static void perf_remove_from_context(struct perf_event *event)
1465 {
1466 struct perf_event_context *ctx = event->ctx;
1467 struct task_struct *task = ctx->task;
1468
1469 lockdep_assert_held(&ctx->mutex);
1470
1471 if (!task) {
1472 /*
1473 * Per cpu events are removed via an smp call and
1474 * the removal is always successful.
1475 */
1476 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1477 return;
1478 }
1479
1480 retry:
1481 if (!task_function_call(task, __perf_remove_from_context, event))
1482 return;
1483
1484 raw_spin_lock_irq(&ctx->lock);
1485 /*
1486 * If we failed to find a running task, but find the context active now
1487 * that we've acquired the ctx->lock, retry.
1488 */
1489 if (ctx->is_active) {
1490 raw_spin_unlock_irq(&ctx->lock);
1491 goto retry;
1492 }
1493
1494 /*
1495 * Since the task isn't running, its safe to remove the event, us
1496 * holding the ctx->lock ensures the task won't get scheduled in.
1497 */
1498 list_del_event(event, ctx);
1499 raw_spin_unlock_irq(&ctx->lock);
1500 }
1501
1502 /*
1503 * Cross CPU call to disable a performance event
1504 */
1505 int __perf_event_disable(void *info)
1506 {
1507 struct perf_event *event = info;
1508 struct perf_event_context *ctx = event->ctx;
1509 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510
1511 /*
1512 * If this is a per-task event, need to check whether this
1513 * event's task is the current task on this cpu.
1514 *
1515 * Can trigger due to concurrent perf_event_context_sched_out()
1516 * flipping contexts around.
1517 */
1518 if (ctx->task && cpuctx->task_ctx != ctx)
1519 return -EINVAL;
1520
1521 raw_spin_lock(&ctx->lock);
1522
1523 /*
1524 * If the event is on, turn it off.
1525 * If it is in error state, leave it in error state.
1526 */
1527 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528 update_context_time(ctx);
1529 update_cgrp_time_from_event(event);
1530 update_group_times(event);
1531 if (event == event->group_leader)
1532 group_sched_out(event, cpuctx, ctx);
1533 else
1534 event_sched_out(event, cpuctx, ctx);
1535 event->state = PERF_EVENT_STATE_OFF;
1536 }
1537
1538 raw_spin_unlock(&ctx->lock);
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * Disable a event.
1545 *
1546 * If event->ctx is a cloned context, callers must make sure that
1547 * every task struct that event->ctx->task could possibly point to
1548 * remains valid. This condition is satisifed when called through
1549 * perf_event_for_each_child or perf_event_for_each because they
1550 * hold the top-level event's child_mutex, so any descendant that
1551 * goes to exit will block in sync_child_event.
1552 * When called from perf_pending_event it's OK because event->ctx
1553 * is the current context on this CPU and preemption is disabled,
1554 * hence we can't get into perf_event_task_sched_out for this context.
1555 */
1556 void perf_event_disable(struct perf_event *event)
1557 {
1558 struct perf_event_context *ctx = event->ctx;
1559 struct task_struct *task = ctx->task;
1560
1561 if (!task) {
1562 /*
1563 * Disable the event on the cpu that it's on
1564 */
1565 cpu_function_call(event->cpu, __perf_event_disable, event);
1566 return;
1567 }
1568
1569 retry:
1570 if (!task_function_call(task, __perf_event_disable, event))
1571 return;
1572
1573 raw_spin_lock_irq(&ctx->lock);
1574 /*
1575 * If the event is still active, we need to retry the cross-call.
1576 */
1577 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578 raw_spin_unlock_irq(&ctx->lock);
1579 /*
1580 * Reload the task pointer, it might have been changed by
1581 * a concurrent perf_event_context_sched_out().
1582 */
1583 task = ctx->task;
1584 goto retry;
1585 }
1586
1587 /*
1588 * Since we have the lock this context can't be scheduled
1589 * in, so we can change the state safely.
1590 */
1591 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1592 update_group_times(event);
1593 event->state = PERF_EVENT_STATE_OFF;
1594 }
1595 raw_spin_unlock_irq(&ctx->lock);
1596 }
1597 EXPORT_SYMBOL_GPL(perf_event_disable);
1598
1599 static void perf_set_shadow_time(struct perf_event *event,
1600 struct perf_event_context *ctx,
1601 u64 tstamp)
1602 {
1603 /*
1604 * use the correct time source for the time snapshot
1605 *
1606 * We could get by without this by leveraging the
1607 * fact that to get to this function, the caller
1608 * has most likely already called update_context_time()
1609 * and update_cgrp_time_xx() and thus both timestamp
1610 * are identical (or very close). Given that tstamp is,
1611 * already adjusted for cgroup, we could say that:
1612 * tstamp - ctx->timestamp
1613 * is equivalent to
1614 * tstamp - cgrp->timestamp.
1615 *
1616 * Then, in perf_output_read(), the calculation would
1617 * work with no changes because:
1618 * - event is guaranteed scheduled in
1619 * - no scheduled out in between
1620 * - thus the timestamp would be the same
1621 *
1622 * But this is a bit hairy.
1623 *
1624 * So instead, we have an explicit cgroup call to remain
1625 * within the time time source all along. We believe it
1626 * is cleaner and simpler to understand.
1627 */
1628 if (is_cgroup_event(event))
1629 perf_cgroup_set_shadow_time(event, tstamp);
1630 else
1631 event->shadow_ctx_time = tstamp - ctx->timestamp;
1632 }
1633
1634 #define MAX_INTERRUPTS (~0ULL)
1635
1636 static void perf_log_throttle(struct perf_event *event, int enable);
1637
1638 static int
1639 event_sched_in(struct perf_event *event,
1640 struct perf_cpu_context *cpuctx,
1641 struct perf_event_context *ctx)
1642 {
1643 u64 tstamp = perf_event_time(event);
1644
1645 if (event->state <= PERF_EVENT_STATE_OFF)
1646 return 0;
1647
1648 event->state = PERF_EVENT_STATE_ACTIVE;
1649 event->oncpu = smp_processor_id();
1650
1651 /*
1652 * Unthrottle events, since we scheduled we might have missed several
1653 * ticks already, also for a heavily scheduling task there is little
1654 * guarantee it'll get a tick in a timely manner.
1655 */
1656 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1657 perf_log_throttle(event, 1);
1658 event->hw.interrupts = 0;
1659 }
1660
1661 /*
1662 * The new state must be visible before we turn it on in the hardware:
1663 */
1664 smp_wmb();
1665
1666 if (event->pmu->add(event, PERF_EF_START)) {
1667 event->state = PERF_EVENT_STATE_INACTIVE;
1668 event->oncpu = -1;
1669 return -EAGAIN;
1670 }
1671
1672 event->tstamp_running += tstamp - event->tstamp_stopped;
1673
1674 perf_set_shadow_time(event, ctx, tstamp);
1675
1676 if (!is_software_event(event))
1677 cpuctx->active_oncpu++;
1678 ctx->nr_active++;
1679 if (event->attr.freq && event->attr.sample_freq)
1680 ctx->nr_freq++;
1681
1682 if (event->attr.exclusive)
1683 cpuctx->exclusive = 1;
1684
1685 return 0;
1686 }
1687
1688 static int
1689 group_sched_in(struct perf_event *group_event,
1690 struct perf_cpu_context *cpuctx,
1691 struct perf_event_context *ctx)
1692 {
1693 struct perf_event *event, *partial_group = NULL;
1694 struct pmu *pmu = group_event->pmu;
1695 u64 now = ctx->time;
1696 bool simulate = false;
1697
1698 if (group_event->state == PERF_EVENT_STATE_OFF)
1699 return 0;
1700
1701 pmu->start_txn(pmu);
1702
1703 if (event_sched_in(group_event, cpuctx, ctx)) {
1704 pmu->cancel_txn(pmu);
1705 perf_cpu_hrtimer_restart(cpuctx);
1706 return -EAGAIN;
1707 }
1708
1709 /*
1710 * Schedule in siblings as one group (if any):
1711 */
1712 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713 if (event_sched_in(event, cpuctx, ctx)) {
1714 partial_group = event;
1715 goto group_error;
1716 }
1717 }
1718
1719 if (!pmu->commit_txn(pmu))
1720 return 0;
1721
1722 group_error:
1723 /*
1724 * Groups can be scheduled in as one unit only, so undo any
1725 * partial group before returning:
1726 * The events up to the failed event are scheduled out normally,
1727 * tstamp_stopped will be updated.
1728 *
1729 * The failed events and the remaining siblings need to have
1730 * their timings updated as if they had gone thru event_sched_in()
1731 * and event_sched_out(). This is required to get consistent timings
1732 * across the group. This also takes care of the case where the group
1733 * could never be scheduled by ensuring tstamp_stopped is set to mark
1734 * the time the event was actually stopped, such that time delta
1735 * calculation in update_event_times() is correct.
1736 */
1737 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1738 if (event == partial_group)
1739 simulate = true;
1740
1741 if (simulate) {
1742 event->tstamp_running += now - event->tstamp_stopped;
1743 event->tstamp_stopped = now;
1744 } else {
1745 event_sched_out(event, cpuctx, ctx);
1746 }
1747 }
1748 event_sched_out(group_event, cpuctx, ctx);
1749
1750 pmu->cancel_txn(pmu);
1751
1752 perf_cpu_hrtimer_restart(cpuctx);
1753
1754 return -EAGAIN;
1755 }
1756
1757 /*
1758 * Work out whether we can put this event group on the CPU now.
1759 */
1760 static int group_can_go_on(struct perf_event *event,
1761 struct perf_cpu_context *cpuctx,
1762 int can_add_hw)
1763 {
1764 /*
1765 * Groups consisting entirely of software events can always go on.
1766 */
1767 if (event->group_flags & PERF_GROUP_SOFTWARE)
1768 return 1;
1769 /*
1770 * If an exclusive group is already on, no other hardware
1771 * events can go on.
1772 */
1773 if (cpuctx->exclusive)
1774 return 0;
1775 /*
1776 * If this group is exclusive and there are already
1777 * events on the CPU, it can't go on.
1778 */
1779 if (event->attr.exclusive && cpuctx->active_oncpu)
1780 return 0;
1781 /*
1782 * Otherwise, try to add it if all previous groups were able
1783 * to go on.
1784 */
1785 return can_add_hw;
1786 }
1787
1788 static void add_event_to_ctx(struct perf_event *event,
1789 struct perf_event_context *ctx)
1790 {
1791 u64 tstamp = perf_event_time(event);
1792
1793 list_add_event(event, ctx);
1794 perf_group_attach(event);
1795 event->tstamp_enabled = tstamp;
1796 event->tstamp_running = tstamp;
1797 event->tstamp_stopped = tstamp;
1798 }
1799
1800 static void task_ctx_sched_out(struct perf_event_context *ctx);
1801 static void
1802 ctx_sched_in(struct perf_event_context *ctx,
1803 struct perf_cpu_context *cpuctx,
1804 enum event_type_t event_type,
1805 struct task_struct *task);
1806
1807 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1808 struct perf_event_context *ctx,
1809 struct task_struct *task)
1810 {
1811 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1814 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817 }
1818
1819 /*
1820 * Cross CPU call to install and enable a performance event
1821 *
1822 * Must be called with ctx->mutex held
1823 */
1824 static int __perf_install_in_context(void *info)
1825 {
1826 struct perf_event *event = info;
1827 struct perf_event_context *ctx = event->ctx;
1828 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1830 struct task_struct *task = current;
1831
1832 perf_ctx_lock(cpuctx, task_ctx);
1833 perf_pmu_disable(cpuctx->ctx.pmu);
1834
1835 /*
1836 * If there was an active task_ctx schedule it out.
1837 */
1838 if (task_ctx)
1839 task_ctx_sched_out(task_ctx);
1840
1841 /*
1842 * If the context we're installing events in is not the
1843 * active task_ctx, flip them.
1844 */
1845 if (ctx->task && task_ctx != ctx) {
1846 if (task_ctx)
1847 raw_spin_unlock(&task_ctx->lock);
1848 raw_spin_lock(&ctx->lock);
1849 task_ctx = ctx;
1850 }
1851
1852 if (task_ctx) {
1853 cpuctx->task_ctx = task_ctx;
1854 task = task_ctx->task;
1855 }
1856
1857 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1858
1859 update_context_time(ctx);
1860 /*
1861 * update cgrp time only if current cgrp
1862 * matches event->cgrp. Must be done before
1863 * calling add_event_to_ctx()
1864 */
1865 update_cgrp_time_from_event(event);
1866
1867 add_event_to_ctx(event, ctx);
1868
1869 /*
1870 * Schedule everything back in
1871 */
1872 perf_event_sched_in(cpuctx, task_ctx, task);
1873
1874 perf_pmu_enable(cpuctx->ctx.pmu);
1875 perf_ctx_unlock(cpuctx, task_ctx);
1876
1877 return 0;
1878 }
1879
1880 /*
1881 * Attach a performance event to a context
1882 *
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
1885 *
1886 * If the event is attached to a task which is on a CPU we use a smp
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890 static void
1891 perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
1893 int cpu)
1894 {
1895 struct task_struct *task = ctx->task;
1896
1897 lockdep_assert_held(&ctx->mutex);
1898
1899 event->ctx = ctx;
1900 if (event->cpu != -1)
1901 event->cpu = cpu;
1902
1903 if (!task) {
1904 /*
1905 * Per cpu events are installed via an smp call and
1906 * the install is always successful.
1907 */
1908 cpu_function_call(cpu, __perf_install_in_context, event);
1909 return;
1910 }
1911
1912 retry:
1913 if (!task_function_call(task, __perf_install_in_context, event))
1914 return;
1915
1916 raw_spin_lock_irq(&ctx->lock);
1917 /*
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
1920 */
1921 if (ctx->is_active) {
1922 raw_spin_unlock_irq(&ctx->lock);
1923 goto retry;
1924 }
1925
1926 /*
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
1929 */
1930 add_event_to_ctx(event, ctx);
1931 raw_spin_unlock_irq(&ctx->lock);
1932 }
1933
1934 /*
1935 * Put a event into inactive state and update time fields.
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1942 static void __perf_event_mark_enabled(struct perf_event *event)
1943 {
1944 struct perf_event *sub;
1945 u64 tstamp = perf_event_time(event);
1946
1947 event->state = PERF_EVENT_STATE_INACTIVE;
1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1952 }
1953 }
1954
1955 /*
1956 * Cross CPU call to enable a performance event
1957 */
1958 static int __perf_event_enable(void *info)
1959 {
1960 struct perf_event *event = info;
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964 int err;
1965
1966 /*
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1969 * - IRQs on
1970 * - ctx->lock unlocked
1971 *
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1974 */
1975 if (!ctx->is_active)
1976 return -EINVAL;
1977
1978 raw_spin_lock(&ctx->lock);
1979 update_context_time(ctx);
1980
1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982 goto unlock;
1983
1984 /*
1985 * set current task's cgroup time reference point
1986 */
1987 perf_cgroup_set_timestamp(current, ctx);
1988
1989 __perf_event_mark_enabled(event);
1990
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
1994 goto unlock;
1995 }
1996
1997 /*
1998 * If the event is in a group and isn't the group leader,
1999 * then don't put it on unless the group is on.
2000 */
2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002 goto unlock;
2003
2004 if (!group_can_go_on(event, cpuctx, 1)) {
2005 err = -EEXIST;
2006 } else {
2007 if (event == leader)
2008 err = group_sched_in(event, cpuctx, ctx);
2009 else
2010 err = event_sched_in(event, cpuctx, ctx);
2011 }
2012
2013 if (err) {
2014 /*
2015 * If this event can't go on and it's part of a
2016 * group, then the whole group has to come off.
2017 */
2018 if (leader != event) {
2019 group_sched_out(leader, cpuctx, ctx);
2020 perf_cpu_hrtimer_restart(cpuctx);
2021 }
2022 if (leader->attr.pinned) {
2023 update_group_times(leader);
2024 leader->state = PERF_EVENT_STATE_ERROR;
2025 }
2026 }
2027
2028 unlock:
2029 raw_spin_unlock(&ctx->lock);
2030
2031 return 0;
2032 }
2033
2034 /*
2035 * Enable a event.
2036 *
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
2039 * remains valid. This condition is satisfied when called through
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
2042 */
2043 void perf_event_enable(struct perf_event *event)
2044 {
2045 struct perf_event_context *ctx = event->ctx;
2046 struct task_struct *task = ctx->task;
2047
2048 if (!task) {
2049 /*
2050 * Enable the event on the cpu that it's on
2051 */
2052 cpu_function_call(event->cpu, __perf_event_enable, event);
2053 return;
2054 }
2055
2056 raw_spin_lock_irq(&ctx->lock);
2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 goto out;
2059
2060 /*
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2066 */
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
2069
2070 retry:
2071 if (!ctx->is_active) {
2072 __perf_event_mark_enabled(event);
2073 goto out;
2074 }
2075
2076 raw_spin_unlock_irq(&ctx->lock);
2077
2078 if (!task_function_call(task, __perf_event_enable, event))
2079 return;
2080
2081 raw_spin_lock_irq(&ctx->lock);
2082
2083 /*
2084 * If the context is active and the event is still off,
2085 * we need to retry the cross-call.
2086 */
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 /*
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2091 */
2092 task = ctx->task;
2093 goto retry;
2094 }
2095
2096 out:
2097 raw_spin_unlock_irq(&ctx->lock);
2098 }
2099 EXPORT_SYMBOL_GPL(perf_event_enable);
2100
2101 int perf_event_refresh(struct perf_event *event, int refresh)
2102 {
2103 /*
2104 * not supported on inherited events
2105 */
2106 if (event->attr.inherit || !is_sampling_event(event))
2107 return -EINVAL;
2108
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2111
2112 return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(perf_event_refresh);
2115
2116 static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
2119 {
2120 struct perf_event *event;
2121 int is_active = ctx->is_active;
2122
2123 ctx->is_active &= ~event_type;
2124 if (likely(!ctx->nr_events))
2125 return;
2126
2127 update_context_time(ctx);
2128 update_cgrp_time_from_cpuctx(cpuctx);
2129 if (!ctx->nr_active)
2130 return;
2131
2132 perf_pmu_disable(ctx->pmu);
2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
2136 }
2137
2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140 group_sched_out(event, cpuctx, ctx);
2141 }
2142 perf_pmu_enable(ctx->pmu);
2143 }
2144
2145 /*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
2152 * in them directly with an fd; we can only enable/disable all
2153 * events via prctl, or enable/disable all events in a family
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
2156 static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
2158 {
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160 && ctx1->parent_gen == ctx2->parent_gen
2161 && !ctx1->pin_count && !ctx2->pin_count;
2162 }
2163
2164 static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
2166 {
2167 u64 value;
2168
2169 if (!event->attr.inherit_stat)
2170 return;
2171
2172 /*
2173 * Update the event value, we cannot use perf_event_read()
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
2176 * we know the event must be on the current CPU, therefore we
2177 * don't need to use it.
2178 */
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
2181 event->pmu->read(event);
2182 /* fall-through */
2183
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
2186 break;
2187
2188 default:
2189 break;
2190 }
2191
2192 /*
2193 * In order to keep per-task stats reliable we need to flip the event
2194 * values when we flip the contexts.
2195 */
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
2199
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
2202
2203 /*
2204 * Since we swizzled the values, update the user visible data too.
2205 */
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
2208 }
2209
2210 #define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2212
2213 static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
2215 {
2216 struct perf_event *event, *next_event;
2217
2218 if (!ctx->nr_stat)
2219 return;
2220
2221 update_context_time(ctx);
2222
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
2225
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
2228
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
2231
2232 __perf_event_sync_stat(event, next_event);
2233
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
2236 }
2237 }
2238
2239 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
2241 {
2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
2245 struct perf_cpu_context *cpuctx;
2246 int do_switch = 1;
2247
2248 if (likely(!ctx))
2249 return;
2250
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
2253 return;
2254
2255 rcu_read_lock();
2256 parent = rcu_dereference(ctx->parent_ctx);
2257 next_ctx = next->perf_event_ctxp[ctxn];
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 /*
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2268 */
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271 if (context_equiv(ctx, next_ctx)) {
2272 /*
2273 * XXX do we need a memory barrier of sorts
2274 * wrt to rcu_dereference() of perf_event_ctxp
2275 */
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
2278 ctx->task = next;
2279 next_ctx->task = task;
2280 do_switch = 0;
2281
2282 perf_event_sync_stat(ctx, next_ctx);
2283 }
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
2286 }
2287 rcu_read_unlock();
2288
2289 if (do_switch) {
2290 raw_spin_lock(&ctx->lock);
2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292 cpuctx->task_ctx = NULL;
2293 raw_spin_unlock(&ctx->lock);
2294 }
2295 }
2296
2297 #define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300 /*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
2311 void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
2313 {
2314 int ctxn;
2315
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
2318
2319 /*
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2323 */
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325 perf_cgroup_sched_out(task, next);
2326 }
2327
2328 static void task_ctx_sched_out(struct perf_event_context *ctx)
2329 {
2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331
2332 if (!cpuctx->task_ctx)
2333 return;
2334
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 return;
2337
2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 cpuctx->task_ctx = NULL;
2340 }
2341
2342 /*
2343 * Called with IRQs disabled
2344 */
2345 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2347 {
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 }
2350
2351 static void
2352 ctx_pinned_sched_in(struct perf_event_context *ctx,
2353 struct perf_cpu_context *cpuctx)
2354 {
2355 struct perf_event *event;
2356
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
2359 continue;
2360 if (!event_filter_match(event))
2361 continue;
2362
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2366
2367 if (group_can_go_on(event, cpuctx, 1))
2368 group_sched_in(event, cpuctx, ctx);
2369
2370 /*
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2373 */
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
2377 }
2378 }
2379 }
2380
2381 static void
2382 ctx_flexible_sched_in(struct perf_event_context *ctx,
2383 struct perf_cpu_context *cpuctx)
2384 {
2385 struct perf_event *event;
2386 int can_add_hw = 1;
2387
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
2391 continue;
2392 /*
2393 * Listen to the 'cpu' scheduling filter constraint
2394 * of events:
2395 */
2396 if (!event_filter_match(event))
2397 continue;
2398
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2402
2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404 if (group_sched_in(event, cpuctx, ctx))
2405 can_add_hw = 0;
2406 }
2407 }
2408 }
2409
2410 static void
2411 ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
2413 enum event_type_t event_type,
2414 struct task_struct *task)
2415 {
2416 u64 now;
2417 int is_active = ctx->is_active;
2418
2419 ctx->is_active |= event_type;
2420 if (likely(!ctx->nr_events))
2421 return;
2422
2423 now = perf_clock();
2424 ctx->timestamp = now;
2425 perf_cgroup_set_timestamp(task, ctx);
2426 /*
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2429 */
2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431 ctx_pinned_sched_in(ctx, cpuctx);
2432
2433 /* Then walk through the lower prio flexible groups */
2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435 ctx_flexible_sched_in(ctx, cpuctx);
2436 }
2437
2438 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2439 enum event_type_t event_type,
2440 struct task_struct *task)
2441 {
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2443
2444 ctx_sched_in(ctx, cpuctx, event_type, task);
2445 }
2446
2447 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
2449 {
2450 struct perf_cpu_context *cpuctx;
2451
2452 cpuctx = __get_cpu_context(ctx);
2453 if (cpuctx->task_ctx == ctx)
2454 return;
2455
2456 perf_ctx_lock(cpuctx, ctx);
2457 perf_pmu_disable(ctx->pmu);
2458 /*
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2462 */
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
2465 if (ctx->nr_events)
2466 cpuctx->task_ctx = ctx;
2467
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2472
2473 /*
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2476 */
2477 perf_pmu_rotate_start(ctx->pmu);
2478 }
2479
2480 /*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496 static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2498 {
2499 struct perf_cpu_context *cpuctx;
2500 struct pmu *pmu;
2501 unsigned long flags;
2502
2503 /* no need to flush branch stack if not changing task */
2504 if (prev == task)
2505 return;
2506
2507 local_irq_save(flags);
2508
2509 rcu_read_lock();
2510
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514 /*
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2517 */
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2520
2521 pmu = cpuctx->ctx.pmu;
2522
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525 perf_pmu_disable(pmu);
2526
2527 pmu->flush_branch_stack();
2528
2529 perf_pmu_enable(pmu);
2530
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 }
2533 }
2534
2535 rcu_read_unlock();
2536
2537 local_irq_restore(flags);
2538 }
2539
2540 /*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
2551 void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
2553 {
2554 struct perf_event_context *ctx;
2555 int ctxn;
2556
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2559 if (likely(!ctx))
2560 continue;
2561
2562 perf_event_context_sched_in(ctx, task);
2563 }
2564 /*
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2568 */
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570 perf_cgroup_sched_in(prev, task);
2571
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
2575 }
2576
2577 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578 {
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2582
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2588 sec_fls = 30;
2589
2590 /*
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2593 *
2594 * @count * 10^9
2595 * period = -------------------
2596 * @nsec * sample_freq
2597 *
2598 */
2599
2600 /*
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2603 */
2604 #define REDUCE_FLS(a, b) \
2605 do { \
2606 if (a##_fls > b##_fls) { \
2607 a >>= 1; \
2608 a##_fls--; \
2609 } else { \
2610 b >>= 1; \
2611 b##_fls--; \
2612 } \
2613 } while (0)
2614
2615 /*
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2618 */
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2622 }
2623
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2626
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2629 divisor >>= 1;
2630 }
2631
2632 dividend = count * sec;
2633 } else {
2634 dividend = count * sec;
2635
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2638 dividend >>= 1;
2639 }
2640
2641 divisor = nsec * frequency;
2642 }
2643
2644 if (!divisor)
2645 return dividend;
2646
2647 return div64_u64(dividend, divisor);
2648 }
2649
2650 static DEFINE_PER_CPU(int, perf_throttled_count);
2651 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
2653 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654 {
2655 struct hw_perf_event *hwc = &event->hw;
2656 s64 period, sample_period;
2657 s64 delta;
2658
2659 period = perf_calculate_period(event, nsec, count);
2660
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2663
2664 sample_period = hwc->sample_period + delta;
2665
2666 if (!sample_period)
2667 sample_period = 1;
2668
2669 hwc->sample_period = sample_period;
2670
2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 if (disable)
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2674
2675 local64_set(&hwc->period_left, 0);
2676
2677 if (disable)
2678 event->pmu->start(event, PERF_EF_RELOAD);
2679 }
2680 }
2681
2682 /*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 int needs_unthr)
2689 {
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
2692 u64 now, period = TICK_NSEC;
2693 s64 delta;
2694
2695 /*
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2699 */
2700 if (!(ctx->nr_freq || needs_unthr))
2701 return;
2702
2703 raw_spin_lock(&ctx->lock);
2704 perf_pmu_disable(ctx->pmu);
2705
2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 continue;
2709
2710 if (!event_filter_match(event))
2711 continue;
2712
2713 hwc = &event->hw;
2714
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
2717 perf_log_throttle(event, 1);
2718 event->pmu->start(event, 0);
2719 }
2720
2721 if (!event->attr.freq || !event->attr.sample_freq)
2722 continue;
2723
2724 /*
2725 * stop the event and update event->count
2726 */
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2728
2729 now = local64_read(&event->count);
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
2732
2733 /*
2734 * restart the event
2735 * reload only if value has changed
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2738 * twice.
2739 */
2740 if (delta > 0)
2741 perf_adjust_period(event, period, delta, false);
2742
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744 }
2745
2746 perf_pmu_enable(ctx->pmu);
2747 raw_spin_unlock(&ctx->lock);
2748 }
2749
2750 /*
2751 * Round-robin a context's events:
2752 */
2753 static void rotate_ctx(struct perf_event_context *ctx)
2754 {
2755 /*
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2758 */
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
2761 }
2762
2763 /*
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
2767 */
2768 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769 {
2770 struct perf_event_context *ctx = NULL;
2771 int rotate = 0, remove = 1;
2772
2773 if (cpuctx->ctx.nr_events) {
2774 remove = 0;
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 rotate = 1;
2777 }
2778
2779 ctx = cpuctx->task_ctx;
2780 if (ctx && ctx->nr_events) {
2781 remove = 0;
2782 if (ctx->nr_events != ctx->nr_active)
2783 rotate = 1;
2784 }
2785
2786 if (!rotate)
2787 goto done;
2788
2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2790 perf_pmu_disable(cpuctx->ctx.pmu);
2791
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 if (ctx)
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2795
2796 rotate_ctx(&cpuctx->ctx);
2797 if (ctx)
2798 rotate_ctx(ctx);
2799
2800 perf_event_sched_in(cpuctx, ctx, current);
2801
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804 done:
2805 if (remove)
2806 list_del_init(&cpuctx->rotation_list);
2807
2808 return rotate;
2809 }
2810
2811 #ifdef CONFIG_NO_HZ_FULL
2812 bool perf_event_can_stop_tick(void)
2813 {
2814 if (list_empty(&__get_cpu_var(rotation_list)))
2815 return true;
2816 else
2817 return false;
2818 }
2819 #endif
2820
2821 void perf_event_task_tick(void)
2822 {
2823 struct list_head *head = &__get_cpu_var(rotation_list);
2824 struct perf_cpu_context *cpuctx, *tmp;
2825 struct perf_event_context *ctx;
2826 int throttled;
2827
2828 WARN_ON(!irqs_disabled());
2829
2830 __this_cpu_inc(perf_throttled_seq);
2831 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2832
2833 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2834 ctx = &cpuctx->ctx;
2835 perf_adjust_freq_unthr_context(ctx, throttled);
2836
2837 ctx = cpuctx->task_ctx;
2838 if (ctx)
2839 perf_adjust_freq_unthr_context(ctx, throttled);
2840 }
2841 }
2842
2843 static int event_enable_on_exec(struct perf_event *event,
2844 struct perf_event_context *ctx)
2845 {
2846 if (!event->attr.enable_on_exec)
2847 return 0;
2848
2849 event->attr.enable_on_exec = 0;
2850 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2851 return 0;
2852
2853 __perf_event_mark_enabled(event);
2854
2855 return 1;
2856 }
2857
2858 /*
2859 * Enable all of a task's events that have been marked enable-on-exec.
2860 * This expects task == current.
2861 */
2862 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2863 {
2864 struct perf_event *event;
2865 unsigned long flags;
2866 int enabled = 0;
2867 int ret;
2868
2869 local_irq_save(flags);
2870 if (!ctx || !ctx->nr_events)
2871 goto out;
2872
2873 /*
2874 * We must ctxsw out cgroup events to avoid conflict
2875 * when invoking perf_task_event_sched_in() later on
2876 * in this function. Otherwise we end up trying to
2877 * ctxswin cgroup events which are already scheduled
2878 * in.
2879 */
2880 perf_cgroup_sched_out(current, NULL);
2881
2882 raw_spin_lock(&ctx->lock);
2883 task_ctx_sched_out(ctx);
2884
2885 list_for_each_entry(event, &ctx->event_list, event_entry) {
2886 ret = event_enable_on_exec(event, ctx);
2887 if (ret)
2888 enabled = 1;
2889 }
2890
2891 /*
2892 * Unclone this context if we enabled any event.
2893 */
2894 if (enabled)
2895 unclone_ctx(ctx);
2896
2897 raw_spin_unlock(&ctx->lock);
2898
2899 /*
2900 * Also calls ctxswin for cgroup events, if any:
2901 */
2902 perf_event_context_sched_in(ctx, ctx->task);
2903 out:
2904 local_irq_restore(flags);
2905 }
2906
2907 /*
2908 * Cross CPU call to read the hardware event
2909 */
2910 static void __perf_event_read(void *info)
2911 {
2912 struct perf_event *event = info;
2913 struct perf_event_context *ctx = event->ctx;
2914 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2915
2916 /*
2917 * If this is a task context, we need to check whether it is
2918 * the current task context of this cpu. If not it has been
2919 * scheduled out before the smp call arrived. In that case
2920 * event->count would have been updated to a recent sample
2921 * when the event was scheduled out.
2922 */
2923 if (ctx->task && cpuctx->task_ctx != ctx)
2924 return;
2925
2926 raw_spin_lock(&ctx->lock);
2927 if (ctx->is_active) {
2928 update_context_time(ctx);
2929 update_cgrp_time_from_event(event);
2930 }
2931 update_event_times(event);
2932 if (event->state == PERF_EVENT_STATE_ACTIVE)
2933 event->pmu->read(event);
2934 raw_spin_unlock(&ctx->lock);
2935 }
2936
2937 static inline u64 perf_event_count(struct perf_event *event)
2938 {
2939 return local64_read(&event->count) + atomic64_read(&event->child_count);
2940 }
2941
2942 static u64 perf_event_read(struct perf_event *event)
2943 {
2944 /*
2945 * If event is enabled and currently active on a CPU, update the
2946 * value in the event structure:
2947 */
2948 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2949 smp_call_function_single(event->oncpu,
2950 __perf_event_read, event, 1);
2951 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2952 struct perf_event_context *ctx = event->ctx;
2953 unsigned long flags;
2954
2955 raw_spin_lock_irqsave(&ctx->lock, flags);
2956 /*
2957 * may read while context is not active
2958 * (e.g., thread is blocked), in that case
2959 * we cannot update context time
2960 */
2961 if (ctx->is_active) {
2962 update_context_time(ctx);
2963 update_cgrp_time_from_event(event);
2964 }
2965 update_event_times(event);
2966 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2967 }
2968
2969 return perf_event_count(event);
2970 }
2971
2972 /*
2973 * Initialize the perf_event context in a task_struct:
2974 */
2975 static void __perf_event_init_context(struct perf_event_context *ctx)
2976 {
2977 raw_spin_lock_init(&ctx->lock);
2978 mutex_init(&ctx->mutex);
2979 INIT_LIST_HEAD(&ctx->pinned_groups);
2980 INIT_LIST_HEAD(&ctx->flexible_groups);
2981 INIT_LIST_HEAD(&ctx->event_list);
2982 atomic_set(&ctx->refcount, 1);
2983 }
2984
2985 static struct perf_event_context *
2986 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2987 {
2988 struct perf_event_context *ctx;
2989
2990 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2991 if (!ctx)
2992 return NULL;
2993
2994 __perf_event_init_context(ctx);
2995 if (task) {
2996 ctx->task = task;
2997 get_task_struct(task);
2998 }
2999 ctx->pmu = pmu;
3000
3001 return ctx;
3002 }
3003
3004 static struct task_struct *
3005 find_lively_task_by_vpid(pid_t vpid)
3006 {
3007 struct task_struct *task;
3008 int err;
3009
3010 rcu_read_lock();
3011 if (!vpid)
3012 task = current;
3013 else
3014 task = find_task_by_vpid(vpid);
3015 if (task)
3016 get_task_struct(task);
3017 rcu_read_unlock();
3018
3019 if (!task)
3020 return ERR_PTR(-ESRCH);
3021
3022 /* Reuse ptrace permission checks for now. */
3023 err = -EACCES;
3024 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3025 goto errout;
3026
3027 return task;
3028 errout:
3029 put_task_struct(task);
3030 return ERR_PTR(err);
3031
3032 }
3033
3034 /*
3035 * Returns a matching context with refcount and pincount.
3036 */
3037 static struct perf_event_context *
3038 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3039 {
3040 struct perf_event_context *ctx;
3041 struct perf_cpu_context *cpuctx;
3042 unsigned long flags;
3043 int ctxn, err;
3044
3045 if (!task) {
3046 /* Must be root to operate on a CPU event: */
3047 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3048 return ERR_PTR(-EACCES);
3049
3050 /*
3051 * We could be clever and allow to attach a event to an
3052 * offline CPU and activate it when the CPU comes up, but
3053 * that's for later.
3054 */
3055 if (!cpu_online(cpu))
3056 return ERR_PTR(-ENODEV);
3057
3058 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3059 ctx = &cpuctx->ctx;
3060 get_ctx(ctx);
3061 ++ctx->pin_count;
3062
3063 return ctx;
3064 }
3065
3066 err = -EINVAL;
3067 ctxn = pmu->task_ctx_nr;
3068 if (ctxn < 0)
3069 goto errout;
3070
3071 retry:
3072 ctx = perf_lock_task_context(task, ctxn, &flags);
3073 if (ctx) {
3074 unclone_ctx(ctx);
3075 ++ctx->pin_count;
3076 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3077 } else {
3078 ctx = alloc_perf_context(pmu, task);
3079 err = -ENOMEM;
3080 if (!ctx)
3081 goto errout;
3082
3083 err = 0;
3084 mutex_lock(&task->perf_event_mutex);
3085 /*
3086 * If it has already passed perf_event_exit_task().
3087 * we must see PF_EXITING, it takes this mutex too.
3088 */
3089 if (task->flags & PF_EXITING)
3090 err = -ESRCH;
3091 else if (task->perf_event_ctxp[ctxn])
3092 err = -EAGAIN;
3093 else {
3094 get_ctx(ctx);
3095 ++ctx->pin_count;
3096 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3097 }
3098 mutex_unlock(&task->perf_event_mutex);
3099
3100 if (unlikely(err)) {
3101 put_ctx(ctx);
3102
3103 if (err == -EAGAIN)
3104 goto retry;
3105 goto errout;
3106 }
3107 }
3108
3109 return ctx;
3110
3111 errout:
3112 return ERR_PTR(err);
3113 }
3114
3115 static void perf_event_free_filter(struct perf_event *event);
3116
3117 static void free_event_rcu(struct rcu_head *head)
3118 {
3119 struct perf_event *event;
3120
3121 event = container_of(head, struct perf_event, rcu_head);
3122 if (event->ns)
3123 put_pid_ns(event->ns);
3124 perf_event_free_filter(event);
3125 kfree(event);
3126 }
3127
3128 static void ring_buffer_put(struct ring_buffer *rb);
3129 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3130
3131 static void free_event(struct perf_event *event)
3132 {
3133 irq_work_sync(&event->pending);
3134
3135 if (!event->parent) {
3136 if (event->attach_state & PERF_ATTACH_TASK)
3137 static_key_slow_dec_deferred(&perf_sched_events);
3138 if (event->attr.mmap || event->attr.mmap_data)
3139 atomic_dec(&nr_mmap_events);
3140 if (event->attr.comm)
3141 atomic_dec(&nr_comm_events);
3142 if (event->attr.task)
3143 atomic_dec(&nr_task_events);
3144 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3145 put_callchain_buffers();
3146 if (is_cgroup_event(event)) {
3147 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3148 static_key_slow_dec_deferred(&perf_sched_events);
3149 }
3150
3151 if (has_branch_stack(event)) {
3152 static_key_slow_dec_deferred(&perf_sched_events);
3153 /* is system-wide event */
3154 if (!(event->attach_state & PERF_ATTACH_TASK)) {
3155 atomic_dec(&per_cpu(perf_branch_stack_events,
3156 event->cpu));
3157 }
3158 }
3159 }
3160
3161 if (event->rb) {
3162 struct ring_buffer *rb;
3163
3164 /*
3165 * Can happen when we close an event with re-directed output.
3166 *
3167 * Since we have a 0 refcount, perf_mmap_close() will skip
3168 * over us; possibly making our ring_buffer_put() the last.
3169 */
3170 mutex_lock(&event->mmap_mutex);
3171 rb = event->rb;
3172 if (rb) {
3173 rcu_assign_pointer(event->rb, NULL);
3174 ring_buffer_detach(event, rb);
3175 ring_buffer_put(rb); /* could be last */
3176 }
3177 mutex_unlock(&event->mmap_mutex);
3178 }
3179
3180 if (is_cgroup_event(event))
3181 perf_detach_cgroup(event);
3182
3183 if (event->destroy)
3184 event->destroy(event);
3185
3186 if (event->ctx)
3187 put_ctx(event->ctx);
3188
3189 call_rcu(&event->rcu_head, free_event_rcu);
3190 }
3191
3192 int perf_event_release_kernel(struct perf_event *event)
3193 {
3194 struct perf_event_context *ctx = event->ctx;
3195
3196 WARN_ON_ONCE(ctx->parent_ctx);
3197 /*
3198 * There are two ways this annotation is useful:
3199 *
3200 * 1) there is a lock recursion from perf_event_exit_task
3201 * see the comment there.
3202 *
3203 * 2) there is a lock-inversion with mmap_sem through
3204 * perf_event_read_group(), which takes faults while
3205 * holding ctx->mutex, however this is called after
3206 * the last filedesc died, so there is no possibility
3207 * to trigger the AB-BA case.
3208 */
3209 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3210 raw_spin_lock_irq(&ctx->lock);
3211 perf_group_detach(event);
3212 raw_spin_unlock_irq(&ctx->lock);
3213 perf_remove_from_context(event);
3214 mutex_unlock(&ctx->mutex);
3215
3216 free_event(event);
3217
3218 return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3221
3222 /*
3223 * Called when the last reference to the file is gone.
3224 */
3225 static void put_event(struct perf_event *event)
3226 {
3227 struct task_struct *owner;
3228
3229 if (!atomic_long_dec_and_test(&event->refcount))
3230 return;
3231
3232 rcu_read_lock();
3233 owner = ACCESS_ONCE(event->owner);
3234 /*
3235 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3236 * !owner it means the list deletion is complete and we can indeed
3237 * free this event, otherwise we need to serialize on
3238 * owner->perf_event_mutex.
3239 */
3240 smp_read_barrier_depends();
3241 if (owner) {
3242 /*
3243 * Since delayed_put_task_struct() also drops the last
3244 * task reference we can safely take a new reference
3245 * while holding the rcu_read_lock().
3246 */
3247 get_task_struct(owner);
3248 }
3249 rcu_read_unlock();
3250
3251 if (owner) {
3252 mutex_lock(&owner->perf_event_mutex);
3253 /*
3254 * We have to re-check the event->owner field, if it is cleared
3255 * we raced with perf_event_exit_task(), acquiring the mutex
3256 * ensured they're done, and we can proceed with freeing the
3257 * event.
3258 */
3259 if (event->owner)
3260 list_del_init(&event->owner_entry);
3261 mutex_unlock(&owner->perf_event_mutex);
3262 put_task_struct(owner);
3263 }
3264
3265 perf_event_release_kernel(event);
3266 }
3267
3268 static int perf_release(struct inode *inode, struct file *file)
3269 {
3270 put_event(file->private_data);
3271 return 0;
3272 }
3273
3274 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3275 {
3276 struct perf_event *child;
3277 u64 total = 0;
3278
3279 *enabled = 0;
3280 *running = 0;
3281
3282 mutex_lock(&event->child_mutex);
3283 total += perf_event_read(event);
3284 *enabled += event->total_time_enabled +
3285 atomic64_read(&event->child_total_time_enabled);
3286 *running += event->total_time_running +
3287 atomic64_read(&event->child_total_time_running);
3288
3289 list_for_each_entry(child, &event->child_list, child_list) {
3290 total += perf_event_read(child);
3291 *enabled += child->total_time_enabled;
3292 *running += child->total_time_running;
3293 }
3294 mutex_unlock(&event->child_mutex);
3295
3296 return total;
3297 }
3298 EXPORT_SYMBOL_GPL(perf_event_read_value);
3299
3300 static int perf_event_read_group(struct perf_event *event,
3301 u64 read_format, char __user *buf)
3302 {
3303 struct perf_event *leader = event->group_leader, *sub;
3304 int n = 0, size = 0, ret = -EFAULT;
3305 struct perf_event_context *ctx = leader->ctx;
3306 u64 values[5];
3307 u64 count, enabled, running;
3308
3309 mutex_lock(&ctx->mutex);
3310 count = perf_event_read_value(leader, &enabled, &running);
3311
3312 values[n++] = 1 + leader->nr_siblings;
3313 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3314 values[n++] = enabled;
3315 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3316 values[n++] = running;
3317 values[n++] = count;
3318 if (read_format & PERF_FORMAT_ID)
3319 values[n++] = primary_event_id(leader);
3320
3321 size = n * sizeof(u64);
3322
3323 if (copy_to_user(buf, values, size))
3324 goto unlock;
3325
3326 ret = size;
3327
3328 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3329 n = 0;
3330
3331 values[n++] = perf_event_read_value(sub, &enabled, &running);
3332 if (read_format & PERF_FORMAT_ID)
3333 values[n++] = primary_event_id(sub);
3334
3335 size = n * sizeof(u64);
3336
3337 if (copy_to_user(buf + ret, values, size)) {
3338 ret = -EFAULT;
3339 goto unlock;
3340 }
3341
3342 ret += size;
3343 }
3344 unlock:
3345 mutex_unlock(&ctx->mutex);
3346
3347 return ret;
3348 }
3349
3350 static int perf_event_read_one(struct perf_event *event,
3351 u64 read_format, char __user *buf)
3352 {
3353 u64 enabled, running;
3354 u64 values[4];
3355 int n = 0;
3356
3357 values[n++] = perf_event_read_value(event, &enabled, &running);
3358 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3359 values[n++] = enabled;
3360 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3361 values[n++] = running;
3362 if (read_format & PERF_FORMAT_ID)
3363 values[n++] = primary_event_id(event);
3364
3365 if (copy_to_user(buf, values, n * sizeof(u64)))
3366 return -EFAULT;
3367
3368 return n * sizeof(u64);
3369 }
3370
3371 /*
3372 * Read the performance event - simple non blocking version for now
3373 */
3374 static ssize_t
3375 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3376 {
3377 u64 read_format = event->attr.read_format;
3378 int ret;
3379
3380 /*
3381 * Return end-of-file for a read on a event that is in
3382 * error state (i.e. because it was pinned but it couldn't be
3383 * scheduled on to the CPU at some point).
3384 */
3385 if (event->state == PERF_EVENT_STATE_ERROR)
3386 return 0;
3387
3388 if (count < event->read_size)
3389 return -ENOSPC;
3390
3391 WARN_ON_ONCE(event->ctx->parent_ctx);
3392 if (read_format & PERF_FORMAT_GROUP)
3393 ret = perf_event_read_group(event, read_format, buf);
3394 else
3395 ret = perf_event_read_one(event, read_format, buf);
3396
3397 return ret;
3398 }
3399
3400 static ssize_t
3401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3402 {
3403 struct perf_event *event = file->private_data;
3404
3405 return perf_read_hw(event, buf, count);
3406 }
3407
3408 static unsigned int perf_poll(struct file *file, poll_table *wait)
3409 {
3410 struct perf_event *event = file->private_data;
3411 struct ring_buffer *rb;
3412 unsigned int events = POLL_HUP;
3413
3414 /*
3415 * Pin the event->rb by taking event->mmap_mutex; otherwise
3416 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3417 */
3418 mutex_lock(&event->mmap_mutex);
3419 rb = event->rb;
3420 if (rb)
3421 events = atomic_xchg(&rb->poll, 0);
3422 mutex_unlock(&event->mmap_mutex);
3423
3424 poll_wait(file, &event->waitq, wait);
3425
3426 return events;
3427 }
3428
3429 static void perf_event_reset(struct perf_event *event)
3430 {
3431 (void)perf_event_read(event);
3432 local64_set(&event->count, 0);
3433 perf_event_update_userpage(event);
3434 }
3435
3436 /*
3437 * Holding the top-level event's child_mutex means that any
3438 * descendant process that has inherited this event will block
3439 * in sync_child_event if it goes to exit, thus satisfying the
3440 * task existence requirements of perf_event_enable/disable.
3441 */
3442 static void perf_event_for_each_child(struct perf_event *event,
3443 void (*func)(struct perf_event *))
3444 {
3445 struct perf_event *child;
3446
3447 WARN_ON_ONCE(event->ctx->parent_ctx);
3448 mutex_lock(&event->child_mutex);
3449 func(event);
3450 list_for_each_entry(child, &event->child_list, child_list)
3451 func(child);
3452 mutex_unlock(&event->child_mutex);
3453 }
3454
3455 static void perf_event_for_each(struct perf_event *event,
3456 void (*func)(struct perf_event *))
3457 {
3458 struct perf_event_context *ctx = event->ctx;
3459 struct perf_event *sibling;
3460
3461 WARN_ON_ONCE(ctx->parent_ctx);
3462 mutex_lock(&ctx->mutex);
3463 event = event->group_leader;
3464
3465 perf_event_for_each_child(event, func);
3466 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3467 perf_event_for_each_child(sibling, func);
3468 mutex_unlock(&ctx->mutex);
3469 }
3470
3471 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3472 {
3473 struct perf_event_context *ctx = event->ctx;
3474 int ret = 0;
3475 u64 value;
3476
3477 if (!is_sampling_event(event))
3478 return -EINVAL;
3479
3480 if (copy_from_user(&value, arg, sizeof(value)))
3481 return -EFAULT;
3482
3483 if (!value)
3484 return -EINVAL;
3485
3486 raw_spin_lock_irq(&ctx->lock);
3487 if (event->attr.freq) {
3488 if (value > sysctl_perf_event_sample_rate) {
3489 ret = -EINVAL;
3490 goto unlock;
3491 }
3492
3493 event->attr.sample_freq = value;
3494 } else {
3495 event->attr.sample_period = value;
3496 event->hw.sample_period = value;
3497 }
3498 unlock:
3499 raw_spin_unlock_irq(&ctx->lock);
3500
3501 return ret;
3502 }
3503
3504 static const struct file_operations perf_fops;
3505
3506 static inline int perf_fget_light(int fd, struct fd *p)
3507 {
3508 struct fd f = fdget(fd);
3509 if (!f.file)
3510 return -EBADF;
3511
3512 if (f.file->f_op != &perf_fops) {
3513 fdput(f);
3514 return -EBADF;
3515 }
3516 *p = f;
3517 return 0;
3518 }
3519
3520 static int perf_event_set_output(struct perf_event *event,
3521 struct perf_event *output_event);
3522 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3523
3524 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3525 {
3526 struct perf_event *event = file->private_data;
3527 void (*func)(struct perf_event *);
3528 u32 flags = arg;
3529
3530 switch (cmd) {
3531 case PERF_EVENT_IOC_ENABLE:
3532 func = perf_event_enable;
3533 break;
3534 case PERF_EVENT_IOC_DISABLE:
3535 func = perf_event_disable;
3536 break;
3537 case PERF_EVENT_IOC_RESET:
3538 func = perf_event_reset;
3539 break;
3540
3541 case PERF_EVENT_IOC_REFRESH:
3542 return perf_event_refresh(event, arg);
3543
3544 case PERF_EVENT_IOC_PERIOD:
3545 return perf_event_period(event, (u64 __user *)arg);
3546
3547 case PERF_EVENT_IOC_SET_OUTPUT:
3548 {
3549 int ret;
3550 if (arg != -1) {
3551 struct perf_event *output_event;
3552 struct fd output;
3553 ret = perf_fget_light(arg, &output);
3554 if (ret)
3555 return ret;
3556 output_event = output.file->private_data;
3557 ret = perf_event_set_output(event, output_event);
3558 fdput(output);
3559 } else {
3560 ret = perf_event_set_output(event, NULL);
3561 }
3562 return ret;
3563 }
3564
3565 case PERF_EVENT_IOC_SET_FILTER:
3566 return perf_event_set_filter(event, (void __user *)arg);
3567
3568 default:
3569 return -ENOTTY;
3570 }
3571
3572 if (flags & PERF_IOC_FLAG_GROUP)
3573 perf_event_for_each(event, func);
3574 else
3575 perf_event_for_each_child(event, func);
3576
3577 return 0;
3578 }
3579
3580 int perf_event_task_enable(void)
3581 {
3582 struct perf_event *event;
3583
3584 mutex_lock(&current->perf_event_mutex);
3585 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3586 perf_event_for_each_child(event, perf_event_enable);
3587 mutex_unlock(&current->perf_event_mutex);
3588
3589 return 0;
3590 }
3591
3592 int perf_event_task_disable(void)
3593 {
3594 struct perf_event *event;
3595
3596 mutex_lock(&current->perf_event_mutex);
3597 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3598 perf_event_for_each_child(event, perf_event_disable);
3599 mutex_unlock(&current->perf_event_mutex);
3600
3601 return 0;
3602 }
3603
3604 static int perf_event_index(struct perf_event *event)
3605 {
3606 if (event->hw.state & PERF_HES_STOPPED)
3607 return 0;
3608
3609 if (event->state != PERF_EVENT_STATE_ACTIVE)
3610 return 0;
3611
3612 return event->pmu->event_idx(event);
3613 }
3614
3615 static void calc_timer_values(struct perf_event *event,
3616 u64 *now,
3617 u64 *enabled,
3618 u64 *running)
3619 {
3620 u64 ctx_time;
3621
3622 *now = perf_clock();
3623 ctx_time = event->shadow_ctx_time + *now;
3624 *enabled = ctx_time - event->tstamp_enabled;
3625 *running = ctx_time - event->tstamp_running;
3626 }
3627
3628 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3629 {
3630 }
3631
3632 /*
3633 * Callers need to ensure there can be no nesting of this function, otherwise
3634 * the seqlock logic goes bad. We can not serialize this because the arch
3635 * code calls this from NMI context.
3636 */
3637 void perf_event_update_userpage(struct perf_event *event)
3638 {
3639 struct perf_event_mmap_page *userpg;
3640 struct ring_buffer *rb;
3641 u64 enabled, running, now;
3642
3643 rcu_read_lock();
3644 /*
3645 * compute total_time_enabled, total_time_running
3646 * based on snapshot values taken when the event
3647 * was last scheduled in.
3648 *
3649 * we cannot simply called update_context_time()
3650 * because of locking issue as we can be called in
3651 * NMI context
3652 */
3653 calc_timer_values(event, &now, &enabled, &running);
3654 rb = rcu_dereference(event->rb);
3655 if (!rb)
3656 goto unlock;
3657
3658 userpg = rb->user_page;
3659
3660 /*
3661 * Disable preemption so as to not let the corresponding user-space
3662 * spin too long if we get preempted.
3663 */
3664 preempt_disable();
3665 ++userpg->lock;
3666 barrier();
3667 userpg->index = perf_event_index(event);
3668 userpg->offset = perf_event_count(event);
3669 if (userpg->index)
3670 userpg->offset -= local64_read(&event->hw.prev_count);
3671
3672 userpg->time_enabled = enabled +
3673 atomic64_read(&event->child_total_time_enabled);
3674
3675 userpg->time_running = running +
3676 atomic64_read(&event->child_total_time_running);
3677
3678 arch_perf_update_userpage(userpg, now);
3679
3680 barrier();
3681 ++userpg->lock;
3682 preempt_enable();
3683 unlock:
3684 rcu_read_unlock();
3685 }
3686
3687 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3688 {
3689 struct perf_event *event = vma->vm_file->private_data;
3690 struct ring_buffer *rb;
3691 int ret = VM_FAULT_SIGBUS;
3692
3693 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3694 if (vmf->pgoff == 0)
3695 ret = 0;
3696 return ret;
3697 }
3698
3699 rcu_read_lock();
3700 rb = rcu_dereference(event->rb);
3701 if (!rb)
3702 goto unlock;
3703
3704 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3705 goto unlock;
3706
3707 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3708 if (!vmf->page)
3709 goto unlock;
3710
3711 get_page(vmf->page);
3712 vmf->page->mapping = vma->vm_file->f_mapping;
3713 vmf->page->index = vmf->pgoff;
3714
3715 ret = 0;
3716 unlock:
3717 rcu_read_unlock();
3718
3719 return ret;
3720 }
3721
3722 static void ring_buffer_attach(struct perf_event *event,
3723 struct ring_buffer *rb)
3724 {
3725 unsigned long flags;
3726
3727 if (!list_empty(&event->rb_entry))
3728 return;
3729
3730 spin_lock_irqsave(&rb->event_lock, flags);
3731 if (list_empty(&event->rb_entry))
3732 list_add(&event->rb_entry, &rb->event_list);
3733 spin_unlock_irqrestore(&rb->event_lock, flags);
3734 }
3735
3736 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3737 {
3738 unsigned long flags;
3739
3740 if (list_empty(&event->rb_entry))
3741 return;
3742
3743 spin_lock_irqsave(&rb->event_lock, flags);
3744 list_del_init(&event->rb_entry);
3745 wake_up_all(&event->waitq);
3746 spin_unlock_irqrestore(&rb->event_lock, flags);
3747 }
3748
3749 static void ring_buffer_wakeup(struct perf_event *event)
3750 {
3751 struct ring_buffer *rb;
3752
3753 rcu_read_lock();
3754 rb = rcu_dereference(event->rb);
3755 if (rb) {
3756 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3757 wake_up_all(&event->waitq);
3758 }
3759 rcu_read_unlock();
3760 }
3761
3762 static void rb_free_rcu(struct rcu_head *rcu_head)
3763 {
3764 struct ring_buffer *rb;
3765
3766 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3767 rb_free(rb);
3768 }
3769
3770 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3771 {
3772 struct ring_buffer *rb;
3773
3774 rcu_read_lock();
3775 rb = rcu_dereference(event->rb);
3776 if (rb) {
3777 if (!atomic_inc_not_zero(&rb->refcount))
3778 rb = NULL;
3779 }
3780 rcu_read_unlock();
3781
3782 return rb;
3783 }
3784
3785 static void ring_buffer_put(struct ring_buffer *rb)
3786 {
3787 if (!atomic_dec_and_test(&rb->refcount))
3788 return;
3789
3790 WARN_ON_ONCE(!list_empty(&rb->event_list));
3791
3792 call_rcu(&rb->rcu_head, rb_free_rcu);
3793 }
3794
3795 static void perf_mmap_open(struct vm_area_struct *vma)
3796 {
3797 struct perf_event *event = vma->vm_file->private_data;
3798
3799 atomic_inc(&event->mmap_count);
3800 atomic_inc(&event->rb->mmap_count);
3801 }
3802
3803 /*
3804 * A buffer can be mmap()ed multiple times; either directly through the same
3805 * event, or through other events by use of perf_event_set_output().
3806 *
3807 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3808 * the buffer here, where we still have a VM context. This means we need
3809 * to detach all events redirecting to us.
3810 */
3811 static void perf_mmap_close(struct vm_area_struct *vma)
3812 {
3813 struct perf_event *event = vma->vm_file->private_data;
3814
3815 struct ring_buffer *rb = event->rb;
3816 struct user_struct *mmap_user = rb->mmap_user;
3817 int mmap_locked = rb->mmap_locked;
3818 unsigned long size = perf_data_size(rb);
3819
3820 atomic_dec(&rb->mmap_count);
3821
3822 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3823 return;
3824
3825 /* Detach current event from the buffer. */
3826 rcu_assign_pointer(event->rb, NULL);
3827 ring_buffer_detach(event, rb);
3828 mutex_unlock(&event->mmap_mutex);
3829
3830 /* If there's still other mmap()s of this buffer, we're done. */
3831 if (atomic_read(&rb->mmap_count)) {
3832 ring_buffer_put(rb); /* can't be last */
3833 return;
3834 }
3835
3836 /*
3837 * No other mmap()s, detach from all other events that might redirect
3838 * into the now unreachable buffer. Somewhat complicated by the
3839 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3840 */
3841 again:
3842 rcu_read_lock();
3843 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3844 if (!atomic_long_inc_not_zero(&event->refcount)) {
3845 /*
3846 * This event is en-route to free_event() which will
3847 * detach it and remove it from the list.
3848 */
3849 continue;
3850 }
3851 rcu_read_unlock();
3852
3853 mutex_lock(&event->mmap_mutex);
3854 /*
3855 * Check we didn't race with perf_event_set_output() which can
3856 * swizzle the rb from under us while we were waiting to
3857 * acquire mmap_mutex.
3858 *
3859 * If we find a different rb; ignore this event, a next
3860 * iteration will no longer find it on the list. We have to
3861 * still restart the iteration to make sure we're not now
3862 * iterating the wrong list.
3863 */
3864 if (event->rb == rb) {
3865 rcu_assign_pointer(event->rb, NULL);
3866 ring_buffer_detach(event, rb);
3867 ring_buffer_put(rb); /* can't be last, we still have one */
3868 }
3869 mutex_unlock(&event->mmap_mutex);
3870 put_event(event);
3871
3872 /*
3873 * Restart the iteration; either we're on the wrong list or
3874 * destroyed its integrity by doing a deletion.
3875 */
3876 goto again;
3877 }
3878 rcu_read_unlock();
3879
3880 /*
3881 * It could be there's still a few 0-ref events on the list; they'll
3882 * get cleaned up by free_event() -- they'll also still have their
3883 * ref on the rb and will free it whenever they are done with it.
3884 *
3885 * Aside from that, this buffer is 'fully' detached and unmapped,
3886 * undo the VM accounting.
3887 */
3888
3889 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3890 vma->vm_mm->pinned_vm -= mmap_locked;
3891 free_uid(mmap_user);
3892
3893 ring_buffer_put(rb); /* could be last */
3894 }
3895
3896 static const struct vm_operations_struct perf_mmap_vmops = {
3897 .open = perf_mmap_open,
3898 .close = perf_mmap_close,
3899 .fault = perf_mmap_fault,
3900 .page_mkwrite = perf_mmap_fault,
3901 };
3902
3903 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3904 {
3905 struct perf_event *event = file->private_data;
3906 unsigned long user_locked, user_lock_limit;
3907 struct user_struct *user = current_user();
3908 unsigned long locked, lock_limit;
3909 struct ring_buffer *rb;
3910 unsigned long vma_size;
3911 unsigned long nr_pages;
3912 long user_extra, extra;
3913 int ret = 0, flags = 0;
3914
3915 /*
3916 * Don't allow mmap() of inherited per-task counters. This would
3917 * create a performance issue due to all children writing to the
3918 * same rb.
3919 */
3920 if (event->cpu == -1 && event->attr.inherit)
3921 return -EINVAL;
3922
3923 if (!(vma->vm_flags & VM_SHARED))
3924 return -EINVAL;
3925
3926 vma_size = vma->vm_end - vma->vm_start;
3927 nr_pages = (vma_size / PAGE_SIZE) - 1;
3928
3929 /*
3930 * If we have rb pages ensure they're a power-of-two number, so we
3931 * can do bitmasks instead of modulo.
3932 */
3933 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3934 return -EINVAL;
3935
3936 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3937 return -EINVAL;
3938
3939 if (vma->vm_pgoff != 0)
3940 return -EINVAL;
3941
3942 WARN_ON_ONCE(event->ctx->parent_ctx);
3943 again:
3944 mutex_lock(&event->mmap_mutex);
3945 if (event->rb) {
3946 if (event->rb->nr_pages != nr_pages) {
3947 ret = -EINVAL;
3948 goto unlock;
3949 }
3950
3951 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3952 /*
3953 * Raced against perf_mmap_close() through
3954 * perf_event_set_output(). Try again, hope for better
3955 * luck.
3956 */
3957 mutex_unlock(&event->mmap_mutex);
3958 goto again;
3959 }
3960
3961 goto unlock;
3962 }
3963
3964 user_extra = nr_pages + 1;
3965 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3966
3967 /*
3968 * Increase the limit linearly with more CPUs:
3969 */
3970 user_lock_limit *= num_online_cpus();
3971
3972 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3973
3974 extra = 0;
3975 if (user_locked > user_lock_limit)
3976 extra = user_locked - user_lock_limit;
3977
3978 lock_limit = rlimit(RLIMIT_MEMLOCK);
3979 lock_limit >>= PAGE_SHIFT;
3980 locked = vma->vm_mm->pinned_vm + extra;
3981
3982 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3983 !capable(CAP_IPC_LOCK)) {
3984 ret = -EPERM;
3985 goto unlock;
3986 }
3987
3988 WARN_ON(event->rb);
3989
3990 if (vma->vm_flags & VM_WRITE)
3991 flags |= RING_BUFFER_WRITABLE;
3992
3993 rb = rb_alloc(nr_pages,
3994 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3995 event->cpu, flags);
3996
3997 if (!rb) {
3998 ret = -ENOMEM;
3999 goto unlock;
4000 }
4001
4002 atomic_set(&rb->mmap_count, 1);
4003 rb->mmap_locked = extra;
4004 rb->mmap_user = get_current_user();
4005
4006 atomic_long_add(user_extra, &user->locked_vm);
4007 vma->vm_mm->pinned_vm += extra;
4008
4009 ring_buffer_attach(event, rb);
4010 rcu_assign_pointer(event->rb, rb);
4011
4012 perf_event_update_userpage(event);
4013
4014 unlock:
4015 if (!ret)
4016 atomic_inc(&event->mmap_count);
4017 mutex_unlock(&event->mmap_mutex);
4018
4019 /*
4020 * Since pinned accounting is per vm we cannot allow fork() to copy our
4021 * vma.
4022 */
4023 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4024 vma->vm_ops = &perf_mmap_vmops;
4025
4026 return ret;
4027 }
4028
4029 static int perf_fasync(int fd, struct file *filp, int on)
4030 {
4031 struct inode *inode = file_inode(filp);
4032 struct perf_event *event = filp->private_data;
4033 int retval;
4034
4035 mutex_lock(&inode->i_mutex);
4036 retval = fasync_helper(fd, filp, on, &event->fasync);
4037 mutex_unlock(&inode->i_mutex);
4038
4039 if (retval < 0)
4040 return retval;
4041
4042 return 0;
4043 }
4044
4045 static const struct file_operations perf_fops = {
4046 .llseek = no_llseek,
4047 .release = perf_release,
4048 .read = perf_read,
4049 .poll = perf_poll,
4050 .unlocked_ioctl = perf_ioctl,
4051 .compat_ioctl = perf_ioctl,
4052 .mmap = perf_mmap,
4053 .fasync = perf_fasync,
4054 };
4055
4056 /*
4057 * Perf event wakeup
4058 *
4059 * If there's data, ensure we set the poll() state and publish everything
4060 * to user-space before waking everybody up.
4061 */
4062
4063 void perf_event_wakeup(struct perf_event *event)
4064 {
4065 ring_buffer_wakeup(event);
4066
4067 if (event->pending_kill) {
4068 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4069 event->pending_kill = 0;
4070 }
4071 }
4072
4073 static void perf_pending_event(struct irq_work *entry)
4074 {
4075 struct perf_event *event = container_of(entry,
4076 struct perf_event, pending);
4077
4078 if (event->pending_disable) {
4079 event->pending_disable = 0;
4080 __perf_event_disable(event);
4081 }
4082
4083 if (event->pending_wakeup) {
4084 event->pending_wakeup = 0;
4085 perf_event_wakeup(event);
4086 }
4087 }
4088
4089 /*
4090 * We assume there is only KVM supporting the callbacks.
4091 * Later on, we might change it to a list if there is
4092 * another virtualization implementation supporting the callbacks.
4093 */
4094 struct perf_guest_info_callbacks *perf_guest_cbs;
4095
4096 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4097 {
4098 perf_guest_cbs = cbs;
4099 return 0;
4100 }
4101 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4102
4103 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4104 {
4105 perf_guest_cbs = NULL;
4106 return 0;
4107 }
4108 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4109
4110 static void
4111 perf_output_sample_regs(struct perf_output_handle *handle,
4112 struct pt_regs *regs, u64 mask)
4113 {
4114 int bit;
4115
4116 for_each_set_bit(bit, (const unsigned long *) &mask,
4117 sizeof(mask) * BITS_PER_BYTE) {
4118 u64 val;
4119
4120 val = perf_reg_value(regs, bit);
4121 perf_output_put(handle, val);
4122 }
4123 }
4124
4125 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4126 struct pt_regs *regs)
4127 {
4128 if (!user_mode(regs)) {
4129 if (current->mm)
4130 regs = task_pt_regs(current);
4131 else
4132 regs = NULL;
4133 }
4134
4135 if (regs) {
4136 regs_user->regs = regs;
4137 regs_user->abi = perf_reg_abi(current);
4138 }
4139 }
4140
4141 /*
4142 * Get remaining task size from user stack pointer.
4143 *
4144 * It'd be better to take stack vma map and limit this more
4145 * precisly, but there's no way to get it safely under interrupt,
4146 * so using TASK_SIZE as limit.
4147 */
4148 static u64 perf_ustack_task_size(struct pt_regs *regs)
4149 {
4150 unsigned long addr = perf_user_stack_pointer(regs);
4151
4152 if (!addr || addr >= TASK_SIZE)
4153 return 0;
4154
4155 return TASK_SIZE - addr;
4156 }
4157
4158 static u16
4159 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4160 struct pt_regs *regs)
4161 {
4162 u64 task_size;
4163
4164 /* No regs, no stack pointer, no dump. */
4165 if (!regs)
4166 return 0;
4167
4168 /*
4169 * Check if we fit in with the requested stack size into the:
4170 * - TASK_SIZE
4171 * If we don't, we limit the size to the TASK_SIZE.
4172 *
4173 * - remaining sample size
4174 * If we don't, we customize the stack size to
4175 * fit in to the remaining sample size.
4176 */
4177
4178 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4179 stack_size = min(stack_size, (u16) task_size);
4180
4181 /* Current header size plus static size and dynamic size. */
4182 header_size += 2 * sizeof(u64);
4183
4184 /* Do we fit in with the current stack dump size? */
4185 if ((u16) (header_size + stack_size) < header_size) {
4186 /*
4187 * If we overflow the maximum size for the sample,
4188 * we customize the stack dump size to fit in.
4189 */
4190 stack_size = USHRT_MAX - header_size - sizeof(u64);
4191 stack_size = round_up(stack_size, sizeof(u64));
4192 }
4193
4194 return stack_size;
4195 }
4196
4197 static void
4198 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4199 struct pt_regs *regs)
4200 {
4201 /* Case of a kernel thread, nothing to dump */
4202 if (!regs) {
4203 u64 size = 0;
4204 perf_output_put(handle, size);
4205 } else {
4206 unsigned long sp;
4207 unsigned int rem;
4208 u64 dyn_size;
4209
4210 /*
4211 * We dump:
4212 * static size
4213 * - the size requested by user or the best one we can fit
4214 * in to the sample max size
4215 * data
4216 * - user stack dump data
4217 * dynamic size
4218 * - the actual dumped size
4219 */
4220
4221 /* Static size. */
4222 perf_output_put(handle, dump_size);
4223
4224 /* Data. */
4225 sp = perf_user_stack_pointer(regs);
4226 rem = __output_copy_user(handle, (void *) sp, dump_size);
4227 dyn_size = dump_size - rem;
4228
4229 perf_output_skip(handle, rem);
4230
4231 /* Dynamic size. */
4232 perf_output_put(handle, dyn_size);
4233 }
4234 }
4235
4236 static void __perf_event_header__init_id(struct perf_event_header *header,
4237 struct perf_sample_data *data,
4238 struct perf_event *event)
4239 {
4240 u64 sample_type = event->attr.sample_type;
4241
4242 data->type = sample_type;
4243 header->size += event->id_header_size;
4244
4245 if (sample_type & PERF_SAMPLE_TID) {
4246 /* namespace issues */
4247 data->tid_entry.pid = perf_event_pid(event, current);
4248 data->tid_entry.tid = perf_event_tid(event, current);
4249 }
4250
4251 if (sample_type & PERF_SAMPLE_TIME)
4252 data->time = perf_clock();
4253
4254 if (sample_type & PERF_SAMPLE_ID)
4255 data->id = primary_event_id(event);
4256
4257 if (sample_type & PERF_SAMPLE_STREAM_ID)
4258 data->stream_id = event->id;
4259
4260 if (sample_type & PERF_SAMPLE_CPU) {
4261 data->cpu_entry.cpu = raw_smp_processor_id();
4262 data->cpu_entry.reserved = 0;
4263 }
4264 }
4265
4266 void perf_event_header__init_id(struct perf_event_header *header,
4267 struct perf_sample_data *data,
4268 struct perf_event *event)
4269 {
4270 if (event->attr.sample_id_all)
4271 __perf_event_header__init_id(header, data, event);
4272 }
4273
4274 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4275 struct perf_sample_data *data)
4276 {
4277 u64 sample_type = data->type;
4278
4279 if (sample_type & PERF_SAMPLE_TID)
4280 perf_output_put(handle, data->tid_entry);
4281
4282 if (sample_type & PERF_SAMPLE_TIME)
4283 perf_output_put(handle, data->time);
4284
4285 if (sample_type & PERF_SAMPLE_ID)
4286 perf_output_put(handle, data->id);
4287
4288 if (sample_type & PERF_SAMPLE_STREAM_ID)
4289 perf_output_put(handle, data->stream_id);
4290
4291 if (sample_type & PERF_SAMPLE_CPU)
4292 perf_output_put(handle, data->cpu_entry);
4293 }
4294
4295 void perf_event__output_id_sample(struct perf_event *event,
4296 struct perf_output_handle *handle,
4297 struct perf_sample_data *sample)
4298 {
4299 if (event->attr.sample_id_all)
4300 __perf_event__output_id_sample(handle, sample);
4301 }
4302
4303 static void perf_output_read_one(struct perf_output_handle *handle,
4304 struct perf_event *event,
4305 u64 enabled, u64 running)
4306 {
4307 u64 read_format = event->attr.read_format;
4308 u64 values[4];
4309 int n = 0;
4310
4311 values[n++] = perf_event_count(event);
4312 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4313 values[n++] = enabled +
4314 atomic64_read(&event->child_total_time_enabled);
4315 }
4316 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4317 values[n++] = running +
4318 atomic64_read(&event->child_total_time_running);
4319 }
4320 if (read_format & PERF_FORMAT_ID)
4321 values[n++] = primary_event_id(event);
4322
4323 __output_copy(handle, values, n * sizeof(u64));
4324 }
4325
4326 /*
4327 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4328 */
4329 static void perf_output_read_group(struct perf_output_handle *handle,
4330 struct perf_event *event,
4331 u64 enabled, u64 running)
4332 {
4333 struct perf_event *leader = event->group_leader, *sub;
4334 u64 read_format = event->attr.read_format;
4335 u64 values[5];
4336 int n = 0;
4337
4338 values[n++] = 1 + leader->nr_siblings;
4339
4340 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4341 values[n++] = enabled;
4342
4343 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4344 values[n++] = running;
4345
4346 if (leader != event)
4347 leader->pmu->read(leader);
4348
4349 values[n++] = perf_event_count(leader);
4350 if (read_format & PERF_FORMAT_ID)
4351 values[n++] = primary_event_id(leader);
4352
4353 __output_copy(handle, values, n * sizeof(u64));
4354
4355 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4356 n = 0;
4357
4358 if (sub != event)
4359 sub->pmu->read(sub);
4360
4361 values[n++] = perf_event_count(sub);
4362 if (read_format & PERF_FORMAT_ID)
4363 values[n++] = primary_event_id(sub);
4364
4365 __output_copy(handle, values, n * sizeof(u64));
4366 }
4367 }
4368
4369 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4370 PERF_FORMAT_TOTAL_TIME_RUNNING)
4371
4372 static void perf_output_read(struct perf_output_handle *handle,
4373 struct perf_event *event)
4374 {
4375 u64 enabled = 0, running = 0, now;
4376 u64 read_format = event->attr.read_format;
4377
4378 /*
4379 * compute total_time_enabled, total_time_running
4380 * based on snapshot values taken when the event
4381 * was last scheduled in.
4382 *
4383 * we cannot simply called update_context_time()
4384 * because of locking issue as we are called in
4385 * NMI context
4386 */
4387 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4388 calc_timer_values(event, &now, &enabled, &running);
4389
4390 if (event->attr.read_format & PERF_FORMAT_GROUP)
4391 perf_output_read_group(handle, event, enabled, running);
4392 else
4393 perf_output_read_one(handle, event, enabled, running);
4394 }
4395
4396 void perf_output_sample(struct perf_output_handle *handle,
4397 struct perf_event_header *header,
4398 struct perf_sample_data *data,
4399 struct perf_event *event)
4400 {
4401 u64 sample_type = data->type;
4402
4403 perf_output_put(handle, *header);
4404
4405 if (sample_type & PERF_SAMPLE_IP)
4406 perf_output_put(handle, data->ip);
4407
4408 if (sample_type & PERF_SAMPLE_TID)
4409 perf_output_put(handle, data->tid_entry);
4410
4411 if (sample_type & PERF_SAMPLE_TIME)
4412 perf_output_put(handle, data->time);
4413
4414 if (sample_type & PERF_SAMPLE_ADDR)
4415 perf_output_put(handle, data->addr);
4416
4417 if (sample_type & PERF_SAMPLE_ID)
4418 perf_output_put(handle, data->id);
4419
4420 if (sample_type & PERF_SAMPLE_STREAM_ID)
4421 perf_output_put(handle, data->stream_id);
4422
4423 if (sample_type & PERF_SAMPLE_CPU)
4424 perf_output_put(handle, data->cpu_entry);
4425
4426 if (sample_type & PERF_SAMPLE_PERIOD)
4427 perf_output_put(handle, data->period);
4428
4429 if (sample_type & PERF_SAMPLE_READ)
4430 perf_output_read(handle, event);
4431
4432 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4433 if (data->callchain) {
4434 int size = 1;
4435
4436 if (data->callchain)
4437 size += data->callchain->nr;
4438
4439 size *= sizeof(u64);
4440
4441 __output_copy(handle, data->callchain, size);
4442 } else {
4443 u64 nr = 0;
4444 perf_output_put(handle, nr);
4445 }
4446 }
4447
4448 if (sample_type & PERF_SAMPLE_RAW) {
4449 if (data->raw) {
4450 perf_output_put(handle, data->raw->size);
4451 __output_copy(handle, data->raw->data,
4452 data->raw->size);
4453 } else {
4454 struct {
4455 u32 size;
4456 u32 data;
4457 } raw = {
4458 .size = sizeof(u32),
4459 .data = 0,
4460 };
4461 perf_output_put(handle, raw);
4462 }
4463 }
4464
4465 if (!event->attr.watermark) {
4466 int wakeup_events = event->attr.wakeup_events;
4467
4468 if (wakeup_events) {
4469 struct ring_buffer *rb = handle->rb;
4470 int events = local_inc_return(&rb->events);
4471
4472 if (events >= wakeup_events) {
4473 local_sub(wakeup_events, &rb->events);
4474 local_inc(&rb->wakeup);
4475 }
4476 }
4477 }
4478
4479 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4480 if (data->br_stack) {
4481 size_t size;
4482
4483 size = data->br_stack->nr
4484 * sizeof(struct perf_branch_entry);
4485
4486 perf_output_put(handle, data->br_stack->nr);
4487 perf_output_copy(handle, data->br_stack->entries, size);
4488 } else {
4489 /*
4490 * we always store at least the value of nr
4491 */
4492 u64 nr = 0;
4493 perf_output_put(handle, nr);
4494 }
4495 }
4496
4497 if (sample_type & PERF_SAMPLE_REGS_USER) {
4498 u64 abi = data->regs_user.abi;
4499
4500 /*
4501 * If there are no regs to dump, notice it through
4502 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4503 */
4504 perf_output_put(handle, abi);
4505
4506 if (abi) {
4507 u64 mask = event->attr.sample_regs_user;
4508 perf_output_sample_regs(handle,
4509 data->regs_user.regs,
4510 mask);
4511 }
4512 }
4513
4514 if (sample_type & PERF_SAMPLE_STACK_USER)
4515 perf_output_sample_ustack(handle,
4516 data->stack_user_size,
4517 data->regs_user.regs);
4518
4519 if (sample_type & PERF_SAMPLE_WEIGHT)
4520 perf_output_put(handle, data->weight);
4521
4522 if (sample_type & PERF_SAMPLE_DATA_SRC)
4523 perf_output_put(handle, data->data_src.val);
4524 }
4525
4526 void perf_prepare_sample(struct perf_event_header *header,
4527 struct perf_sample_data *data,
4528 struct perf_event *event,
4529 struct pt_regs *regs)
4530 {
4531 u64 sample_type = event->attr.sample_type;
4532
4533 header->type = PERF_RECORD_SAMPLE;
4534 header->size = sizeof(*header) + event->header_size;
4535
4536 header->misc = 0;
4537 header->misc |= perf_misc_flags(regs);
4538
4539 __perf_event_header__init_id(header, data, event);
4540
4541 if (sample_type & PERF_SAMPLE_IP)
4542 data->ip = perf_instruction_pointer(regs);
4543
4544 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4545 int size = 1;
4546
4547 data->callchain = perf_callchain(event, regs);
4548
4549 if (data->callchain)
4550 size += data->callchain->nr;
4551
4552 header->size += size * sizeof(u64);
4553 }
4554
4555 if (sample_type & PERF_SAMPLE_RAW) {
4556 int size = sizeof(u32);
4557
4558 if (data->raw)
4559 size += data->raw->size;
4560 else
4561 size += sizeof(u32);
4562
4563 WARN_ON_ONCE(size & (sizeof(u64)-1));
4564 header->size += size;
4565 }
4566
4567 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4568 int size = sizeof(u64); /* nr */
4569 if (data->br_stack) {
4570 size += data->br_stack->nr
4571 * sizeof(struct perf_branch_entry);
4572 }
4573 header->size += size;
4574 }
4575
4576 if (sample_type & PERF_SAMPLE_REGS_USER) {
4577 /* regs dump ABI info */
4578 int size = sizeof(u64);
4579
4580 perf_sample_regs_user(&data->regs_user, regs);
4581
4582 if (data->regs_user.regs) {
4583 u64 mask = event->attr.sample_regs_user;
4584 size += hweight64(mask) * sizeof(u64);
4585 }
4586
4587 header->size += size;
4588 }
4589
4590 if (sample_type & PERF_SAMPLE_STACK_USER) {
4591 /*
4592 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4593 * processed as the last one or have additional check added
4594 * in case new sample type is added, because we could eat
4595 * up the rest of the sample size.
4596 */
4597 struct perf_regs_user *uregs = &data->regs_user;
4598 u16 stack_size = event->attr.sample_stack_user;
4599 u16 size = sizeof(u64);
4600
4601 if (!uregs->abi)
4602 perf_sample_regs_user(uregs, regs);
4603
4604 stack_size = perf_sample_ustack_size(stack_size, header->size,
4605 uregs->regs);
4606
4607 /*
4608 * If there is something to dump, add space for the dump
4609 * itself and for the field that tells the dynamic size,
4610 * which is how many have been actually dumped.
4611 */
4612 if (stack_size)
4613 size += sizeof(u64) + stack_size;
4614
4615 data->stack_user_size = stack_size;
4616 header->size += size;
4617 }
4618 }
4619
4620 static void perf_event_output(struct perf_event *event,
4621 struct perf_sample_data *data,
4622 struct pt_regs *regs)
4623 {
4624 struct perf_output_handle handle;
4625 struct perf_event_header header;
4626
4627 /* protect the callchain buffers */
4628 rcu_read_lock();
4629
4630 perf_prepare_sample(&header, data, event, regs);
4631
4632 if (perf_output_begin(&handle, event, header.size))
4633 goto exit;
4634
4635 perf_output_sample(&handle, &header, data, event);
4636
4637 perf_output_end(&handle);
4638
4639 exit:
4640 rcu_read_unlock();
4641 }
4642
4643 /*
4644 * read event_id
4645 */
4646
4647 struct perf_read_event {
4648 struct perf_event_header header;
4649
4650 u32 pid;
4651 u32 tid;
4652 };
4653
4654 static void
4655 perf_event_read_event(struct perf_event *event,
4656 struct task_struct *task)
4657 {
4658 struct perf_output_handle handle;
4659 struct perf_sample_data sample;
4660 struct perf_read_event read_event = {
4661 .header = {
4662 .type = PERF_RECORD_READ,
4663 .misc = 0,
4664 .size = sizeof(read_event) + event->read_size,
4665 },
4666 .pid = perf_event_pid(event, task),
4667 .tid = perf_event_tid(event, task),
4668 };
4669 int ret;
4670
4671 perf_event_header__init_id(&read_event.header, &sample, event);
4672 ret = perf_output_begin(&handle, event, read_event.header.size);
4673 if (ret)
4674 return;
4675
4676 perf_output_put(&handle, read_event);
4677 perf_output_read(&handle, event);
4678 perf_event__output_id_sample(event, &handle, &sample);
4679
4680 perf_output_end(&handle);
4681 }
4682
4683 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4684 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4685
4686 static void
4687 perf_event_aux_ctx(struct perf_event_context *ctx,
4688 perf_event_aux_match_cb match,
4689 perf_event_aux_output_cb output,
4690 void *data)
4691 {
4692 struct perf_event *event;
4693
4694 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4695 if (event->state < PERF_EVENT_STATE_INACTIVE)
4696 continue;
4697 if (!event_filter_match(event))
4698 continue;
4699 if (match(event, data))
4700 output(event, data);
4701 }
4702 }
4703
4704 static void
4705 perf_event_aux(perf_event_aux_match_cb match,
4706 perf_event_aux_output_cb output,
4707 void *data,
4708 struct perf_event_context *task_ctx)
4709 {
4710 struct perf_cpu_context *cpuctx;
4711 struct perf_event_context *ctx;
4712 struct pmu *pmu;
4713 int ctxn;
4714
4715 rcu_read_lock();
4716 list_for_each_entry_rcu(pmu, &pmus, entry) {
4717 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4718 if (cpuctx->unique_pmu != pmu)
4719 goto next;
4720 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4721 if (task_ctx)
4722 goto next;
4723 ctxn = pmu->task_ctx_nr;
4724 if (ctxn < 0)
4725 goto next;
4726 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4727 if (ctx)
4728 perf_event_aux_ctx(ctx, match, output, data);
4729 next:
4730 put_cpu_ptr(pmu->pmu_cpu_context);
4731 }
4732
4733 if (task_ctx) {
4734 preempt_disable();
4735 perf_event_aux_ctx(task_ctx, match, output, data);
4736 preempt_enable();
4737 }
4738 rcu_read_unlock();
4739 }
4740
4741 /*
4742 * task tracking -- fork/exit
4743 *
4744 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4745 */
4746
4747 struct perf_task_event {
4748 struct task_struct *task;
4749 struct perf_event_context *task_ctx;
4750
4751 struct {
4752 struct perf_event_header header;
4753
4754 u32 pid;
4755 u32 ppid;
4756 u32 tid;
4757 u32 ptid;
4758 u64 time;
4759 } event_id;
4760 };
4761
4762 static void perf_event_task_output(struct perf_event *event,
4763 void *data)
4764 {
4765 struct perf_task_event *task_event = data;
4766 struct perf_output_handle handle;
4767 struct perf_sample_data sample;
4768 struct task_struct *task = task_event->task;
4769 int ret, size = task_event->event_id.header.size;
4770
4771 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4772
4773 ret = perf_output_begin(&handle, event,
4774 task_event->event_id.header.size);
4775 if (ret)
4776 goto out;
4777
4778 task_event->event_id.pid = perf_event_pid(event, task);
4779 task_event->event_id.ppid = perf_event_pid(event, current);
4780
4781 task_event->event_id.tid = perf_event_tid(event, task);
4782 task_event->event_id.ptid = perf_event_tid(event, current);
4783
4784 perf_output_put(&handle, task_event->event_id);
4785
4786 perf_event__output_id_sample(event, &handle, &sample);
4787
4788 perf_output_end(&handle);
4789 out:
4790 task_event->event_id.header.size = size;
4791 }
4792
4793 static int perf_event_task_match(struct perf_event *event,
4794 void *data __maybe_unused)
4795 {
4796 return event->attr.comm || event->attr.mmap ||
4797 event->attr.mmap_data || event->attr.task;
4798 }
4799
4800 static void perf_event_task(struct task_struct *task,
4801 struct perf_event_context *task_ctx,
4802 int new)
4803 {
4804 struct perf_task_event task_event;
4805
4806 if (!atomic_read(&nr_comm_events) &&
4807 !atomic_read(&nr_mmap_events) &&
4808 !atomic_read(&nr_task_events))
4809 return;
4810
4811 task_event = (struct perf_task_event){
4812 .task = task,
4813 .task_ctx = task_ctx,
4814 .event_id = {
4815 .header = {
4816 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4817 .misc = 0,
4818 .size = sizeof(task_event.event_id),
4819 },
4820 /* .pid */
4821 /* .ppid */
4822 /* .tid */
4823 /* .ptid */
4824 .time = perf_clock(),
4825 },
4826 };
4827
4828 perf_event_aux(perf_event_task_match,
4829 perf_event_task_output,
4830 &task_event,
4831 task_ctx);
4832 }
4833
4834 void perf_event_fork(struct task_struct *task)
4835 {
4836 perf_event_task(task, NULL, 1);
4837 }
4838
4839 /*
4840 * comm tracking
4841 */
4842
4843 struct perf_comm_event {
4844 struct task_struct *task;
4845 char *comm;
4846 int comm_size;
4847
4848 struct {
4849 struct perf_event_header header;
4850
4851 u32 pid;
4852 u32 tid;
4853 } event_id;
4854 };
4855
4856 static void perf_event_comm_output(struct perf_event *event,
4857 void *data)
4858 {
4859 struct perf_comm_event *comm_event = data;
4860 struct perf_output_handle handle;
4861 struct perf_sample_data sample;
4862 int size = comm_event->event_id.header.size;
4863 int ret;
4864
4865 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4866 ret = perf_output_begin(&handle, event,
4867 comm_event->event_id.header.size);
4868
4869 if (ret)
4870 goto out;
4871
4872 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4873 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4874
4875 perf_output_put(&handle, comm_event->event_id);
4876 __output_copy(&handle, comm_event->comm,
4877 comm_event->comm_size);
4878
4879 perf_event__output_id_sample(event, &handle, &sample);
4880
4881 perf_output_end(&handle);
4882 out:
4883 comm_event->event_id.header.size = size;
4884 }
4885
4886 static int perf_event_comm_match(struct perf_event *event,
4887 void *data __maybe_unused)
4888 {
4889 return event->attr.comm;
4890 }
4891
4892 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4893 {
4894 char comm[TASK_COMM_LEN];
4895 unsigned int size;
4896
4897 memset(comm, 0, sizeof(comm));
4898 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4899 size = ALIGN(strlen(comm)+1, sizeof(u64));
4900
4901 comm_event->comm = comm;
4902 comm_event->comm_size = size;
4903
4904 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4905
4906 perf_event_aux(perf_event_comm_match,
4907 perf_event_comm_output,
4908 comm_event,
4909 NULL);
4910 }
4911
4912 void perf_event_comm(struct task_struct *task)
4913 {
4914 struct perf_comm_event comm_event;
4915 struct perf_event_context *ctx;
4916 int ctxn;
4917
4918 rcu_read_lock();
4919 for_each_task_context_nr(ctxn) {
4920 ctx = task->perf_event_ctxp[ctxn];
4921 if (!ctx)
4922 continue;
4923
4924 perf_event_enable_on_exec(ctx);
4925 }
4926 rcu_read_unlock();
4927
4928 if (!atomic_read(&nr_comm_events))
4929 return;
4930
4931 comm_event = (struct perf_comm_event){
4932 .task = task,
4933 /* .comm */
4934 /* .comm_size */
4935 .event_id = {
4936 .header = {
4937 .type = PERF_RECORD_COMM,
4938 .misc = 0,
4939 /* .size */
4940 },
4941 /* .pid */
4942 /* .tid */
4943 },
4944 };
4945
4946 perf_event_comm_event(&comm_event);
4947 }
4948
4949 /*
4950 * mmap tracking
4951 */
4952
4953 struct perf_mmap_event {
4954 struct vm_area_struct *vma;
4955
4956 const char *file_name;
4957 int file_size;
4958
4959 struct {
4960 struct perf_event_header header;
4961
4962 u32 pid;
4963 u32 tid;
4964 u64 start;
4965 u64 len;
4966 u64 pgoff;
4967 } event_id;
4968 };
4969
4970 static void perf_event_mmap_output(struct perf_event *event,
4971 void *data)
4972 {
4973 struct perf_mmap_event *mmap_event = data;
4974 struct perf_output_handle handle;
4975 struct perf_sample_data sample;
4976 int size = mmap_event->event_id.header.size;
4977 int ret;
4978
4979 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4980 ret = perf_output_begin(&handle, event,
4981 mmap_event->event_id.header.size);
4982 if (ret)
4983 goto out;
4984
4985 mmap_event->event_id.pid = perf_event_pid(event, current);
4986 mmap_event->event_id.tid = perf_event_tid(event, current);
4987
4988 perf_output_put(&handle, mmap_event->event_id);
4989 __output_copy(&handle, mmap_event->file_name,
4990 mmap_event->file_size);
4991
4992 perf_event__output_id_sample(event, &handle, &sample);
4993
4994 perf_output_end(&handle);
4995 out:
4996 mmap_event->event_id.header.size = size;
4997 }
4998
4999 static int perf_event_mmap_match(struct perf_event *event,
5000 void *data)
5001 {
5002 struct perf_mmap_event *mmap_event = data;
5003 struct vm_area_struct *vma = mmap_event->vma;
5004 int executable = vma->vm_flags & VM_EXEC;
5005
5006 return (!executable && event->attr.mmap_data) ||
5007 (executable && event->attr.mmap);
5008 }
5009
5010 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5011 {
5012 struct vm_area_struct *vma = mmap_event->vma;
5013 struct file *file = vma->vm_file;
5014 unsigned int size;
5015 char tmp[16];
5016 char *buf = NULL;
5017 const char *name;
5018
5019 memset(tmp, 0, sizeof(tmp));
5020
5021 if (file) {
5022 /*
5023 * d_path works from the end of the rb backwards, so we
5024 * need to add enough zero bytes after the string to handle
5025 * the 64bit alignment we do later.
5026 */
5027 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5028 if (!buf) {
5029 name = strncpy(tmp, "//enomem", sizeof(tmp));
5030 goto got_name;
5031 }
5032 name = d_path(&file->f_path, buf, PATH_MAX);
5033 if (IS_ERR(name)) {
5034 name = strncpy(tmp, "//toolong", sizeof(tmp));
5035 goto got_name;
5036 }
5037 } else {
5038 if (arch_vma_name(mmap_event->vma)) {
5039 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5040 sizeof(tmp) - 1);
5041 tmp[sizeof(tmp) - 1] = '\0';
5042 goto got_name;
5043 }
5044
5045 if (!vma->vm_mm) {
5046 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5047 goto got_name;
5048 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5049 vma->vm_end >= vma->vm_mm->brk) {
5050 name = strncpy(tmp, "[heap]", sizeof(tmp));
5051 goto got_name;
5052 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5053 vma->vm_end >= vma->vm_mm->start_stack) {
5054 name = strncpy(tmp, "[stack]", sizeof(tmp));
5055 goto got_name;
5056 }
5057
5058 name = strncpy(tmp, "//anon", sizeof(tmp));
5059 goto got_name;
5060 }
5061
5062 got_name:
5063 size = ALIGN(strlen(name)+1, sizeof(u64));
5064
5065 mmap_event->file_name = name;
5066 mmap_event->file_size = size;
5067
5068 if (!(vma->vm_flags & VM_EXEC))
5069 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5070
5071 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5072
5073 perf_event_aux(perf_event_mmap_match,
5074 perf_event_mmap_output,
5075 mmap_event,
5076 NULL);
5077
5078 kfree(buf);
5079 }
5080
5081 void perf_event_mmap(struct vm_area_struct *vma)
5082 {
5083 struct perf_mmap_event mmap_event;
5084
5085 if (!atomic_read(&nr_mmap_events))
5086 return;
5087
5088 mmap_event = (struct perf_mmap_event){
5089 .vma = vma,
5090 /* .file_name */
5091 /* .file_size */
5092 .event_id = {
5093 .header = {
5094 .type = PERF_RECORD_MMAP,
5095 .misc = PERF_RECORD_MISC_USER,
5096 /* .size */
5097 },
5098 /* .pid */
5099 /* .tid */
5100 .start = vma->vm_start,
5101 .len = vma->vm_end - vma->vm_start,
5102 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5103 },
5104 };
5105
5106 perf_event_mmap_event(&mmap_event);
5107 }
5108
5109 /*
5110 * IRQ throttle logging
5111 */
5112
5113 static void perf_log_throttle(struct perf_event *event, int enable)
5114 {
5115 struct perf_output_handle handle;
5116 struct perf_sample_data sample;
5117 int ret;
5118
5119 struct {
5120 struct perf_event_header header;
5121 u64 time;
5122 u64 id;
5123 u64 stream_id;
5124 } throttle_event = {
5125 .header = {
5126 .type = PERF_RECORD_THROTTLE,
5127 .misc = 0,
5128 .size = sizeof(throttle_event),
5129 },
5130 .time = perf_clock(),
5131 .id = primary_event_id(event),
5132 .stream_id = event->id,
5133 };
5134
5135 if (enable)
5136 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5137
5138 perf_event_header__init_id(&throttle_event.header, &sample, event);
5139
5140 ret = perf_output_begin(&handle, event,
5141 throttle_event.header.size);
5142 if (ret)
5143 return;
5144
5145 perf_output_put(&handle, throttle_event);
5146 perf_event__output_id_sample(event, &handle, &sample);
5147 perf_output_end(&handle);
5148 }
5149
5150 /*
5151 * Generic event overflow handling, sampling.
5152 */
5153
5154 static int __perf_event_overflow(struct perf_event *event,
5155 int throttle, struct perf_sample_data *data,
5156 struct pt_regs *regs)
5157 {
5158 int events = atomic_read(&event->event_limit);
5159 struct hw_perf_event *hwc = &event->hw;
5160 u64 seq;
5161 int ret = 0;
5162
5163 /*
5164 * Non-sampling counters might still use the PMI to fold short
5165 * hardware counters, ignore those.
5166 */
5167 if (unlikely(!is_sampling_event(event)))
5168 return 0;
5169
5170 seq = __this_cpu_read(perf_throttled_seq);
5171 if (seq != hwc->interrupts_seq) {
5172 hwc->interrupts_seq = seq;
5173 hwc->interrupts = 1;
5174 } else {
5175 hwc->interrupts++;
5176 if (unlikely(throttle
5177 && hwc->interrupts >= max_samples_per_tick)) {
5178 __this_cpu_inc(perf_throttled_count);
5179 hwc->interrupts = MAX_INTERRUPTS;
5180 perf_log_throttle(event, 0);
5181 ret = 1;
5182 }
5183 }
5184
5185 if (event->attr.freq) {
5186 u64 now = perf_clock();
5187 s64 delta = now - hwc->freq_time_stamp;
5188
5189 hwc->freq_time_stamp = now;
5190
5191 if (delta > 0 && delta < 2*TICK_NSEC)
5192 perf_adjust_period(event, delta, hwc->last_period, true);
5193 }
5194
5195 /*
5196 * XXX event_limit might not quite work as expected on inherited
5197 * events
5198 */
5199
5200 event->pending_kill = POLL_IN;
5201 if (events && atomic_dec_and_test(&event->event_limit)) {
5202 ret = 1;
5203 event->pending_kill = POLL_HUP;
5204 event->pending_disable = 1;
5205 irq_work_queue(&event->pending);
5206 }
5207
5208 if (event->overflow_handler)
5209 event->overflow_handler(event, data, regs);
5210 else
5211 perf_event_output(event, data, regs);
5212
5213 if (event->fasync && event->pending_kill) {
5214 event->pending_wakeup = 1;
5215 irq_work_queue(&event->pending);
5216 }
5217
5218 return ret;
5219 }
5220
5221 int perf_event_overflow(struct perf_event *event,
5222 struct perf_sample_data *data,
5223 struct pt_regs *regs)
5224 {
5225 return __perf_event_overflow(event, 1, data, regs);
5226 }
5227
5228 /*
5229 * Generic software event infrastructure
5230 */
5231
5232 struct swevent_htable {
5233 struct swevent_hlist *swevent_hlist;
5234 struct mutex hlist_mutex;
5235 int hlist_refcount;
5236
5237 /* Recursion avoidance in each contexts */
5238 int recursion[PERF_NR_CONTEXTS];
5239 };
5240
5241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5242
5243 /*
5244 * We directly increment event->count and keep a second value in
5245 * event->hw.period_left to count intervals. This period event
5246 * is kept in the range [-sample_period, 0] so that we can use the
5247 * sign as trigger.
5248 */
5249
5250 u64 perf_swevent_set_period(struct perf_event *event)
5251 {
5252 struct hw_perf_event *hwc = &event->hw;
5253 u64 period = hwc->last_period;
5254 u64 nr, offset;
5255 s64 old, val;
5256
5257 hwc->last_period = hwc->sample_period;
5258
5259 again:
5260 old = val = local64_read(&hwc->period_left);
5261 if (val < 0)
5262 return 0;
5263
5264 nr = div64_u64(period + val, period);
5265 offset = nr * period;
5266 val -= offset;
5267 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5268 goto again;
5269
5270 return nr;
5271 }
5272
5273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5274 struct perf_sample_data *data,
5275 struct pt_regs *regs)
5276 {
5277 struct hw_perf_event *hwc = &event->hw;
5278 int throttle = 0;
5279
5280 if (!overflow)
5281 overflow = perf_swevent_set_period(event);
5282
5283 if (hwc->interrupts == MAX_INTERRUPTS)
5284 return;
5285
5286 for (; overflow; overflow--) {
5287 if (__perf_event_overflow(event, throttle,
5288 data, regs)) {
5289 /*
5290 * We inhibit the overflow from happening when
5291 * hwc->interrupts == MAX_INTERRUPTS.
5292 */
5293 break;
5294 }
5295 throttle = 1;
5296 }
5297 }
5298
5299 static void perf_swevent_event(struct perf_event *event, u64 nr,
5300 struct perf_sample_data *data,
5301 struct pt_regs *regs)
5302 {
5303 struct hw_perf_event *hwc = &event->hw;
5304
5305 local64_add(nr, &event->count);
5306
5307 if (!regs)
5308 return;
5309
5310 if (!is_sampling_event(event))
5311 return;
5312
5313 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5314 data->period = nr;
5315 return perf_swevent_overflow(event, 1, data, regs);
5316 } else
5317 data->period = event->hw.last_period;
5318
5319 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5320 return perf_swevent_overflow(event, 1, data, regs);
5321
5322 if (local64_add_negative(nr, &hwc->period_left))
5323 return;
5324
5325 perf_swevent_overflow(event, 0, data, regs);
5326 }
5327
5328 static int perf_exclude_event(struct perf_event *event,
5329 struct pt_regs *regs)
5330 {
5331 if (event->hw.state & PERF_HES_STOPPED)
5332 return 1;
5333
5334 if (regs) {
5335 if (event->attr.exclude_user && user_mode(regs))
5336 return 1;
5337
5338 if (event->attr.exclude_kernel && !user_mode(regs))
5339 return 1;
5340 }
5341
5342 return 0;
5343 }
5344
5345 static int perf_swevent_match(struct perf_event *event,
5346 enum perf_type_id type,
5347 u32 event_id,
5348 struct perf_sample_data *data,
5349 struct pt_regs *regs)
5350 {
5351 if (event->attr.type != type)
5352 return 0;
5353
5354 if (event->attr.config != event_id)
5355 return 0;
5356
5357 if (perf_exclude_event(event, regs))
5358 return 0;
5359
5360 return 1;
5361 }
5362
5363 static inline u64 swevent_hash(u64 type, u32 event_id)
5364 {
5365 u64 val = event_id | (type << 32);
5366
5367 return hash_64(val, SWEVENT_HLIST_BITS);
5368 }
5369
5370 static inline struct hlist_head *
5371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5372 {
5373 u64 hash = swevent_hash(type, event_id);
5374
5375 return &hlist->heads[hash];
5376 }
5377
5378 /* For the read side: events when they trigger */
5379 static inline struct hlist_head *
5380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5381 {
5382 struct swevent_hlist *hlist;
5383
5384 hlist = rcu_dereference(swhash->swevent_hlist);
5385 if (!hlist)
5386 return NULL;
5387
5388 return __find_swevent_head(hlist, type, event_id);
5389 }
5390
5391 /* For the event head insertion and removal in the hlist */
5392 static inline struct hlist_head *
5393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5394 {
5395 struct swevent_hlist *hlist;
5396 u32 event_id = event->attr.config;
5397 u64 type = event->attr.type;
5398
5399 /*
5400 * Event scheduling is always serialized against hlist allocation
5401 * and release. Which makes the protected version suitable here.
5402 * The context lock guarantees that.
5403 */
5404 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5405 lockdep_is_held(&event->ctx->lock));
5406 if (!hlist)
5407 return NULL;
5408
5409 return __find_swevent_head(hlist, type, event_id);
5410 }
5411
5412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5413 u64 nr,
5414 struct perf_sample_data *data,
5415 struct pt_regs *regs)
5416 {
5417 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5418 struct perf_event *event;
5419 struct hlist_head *head;
5420
5421 rcu_read_lock();
5422 head = find_swevent_head_rcu(swhash, type, event_id);
5423 if (!head)
5424 goto end;
5425
5426 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5427 if (perf_swevent_match(event, type, event_id, data, regs))
5428 perf_swevent_event(event, nr, data, regs);
5429 }
5430 end:
5431 rcu_read_unlock();
5432 }
5433
5434 int perf_swevent_get_recursion_context(void)
5435 {
5436 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5437
5438 return get_recursion_context(swhash->recursion);
5439 }
5440 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5441
5442 inline void perf_swevent_put_recursion_context(int rctx)
5443 {
5444 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5445
5446 put_recursion_context(swhash->recursion, rctx);
5447 }
5448
5449 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5450 {
5451 struct perf_sample_data data;
5452 int rctx;
5453
5454 preempt_disable_notrace();
5455 rctx = perf_swevent_get_recursion_context();
5456 if (rctx < 0)
5457 return;
5458
5459 perf_sample_data_init(&data, addr, 0);
5460
5461 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5462
5463 perf_swevent_put_recursion_context(rctx);
5464 preempt_enable_notrace();
5465 }
5466
5467 static void perf_swevent_read(struct perf_event *event)
5468 {
5469 }
5470
5471 static int perf_swevent_add(struct perf_event *event, int flags)
5472 {
5473 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5474 struct hw_perf_event *hwc = &event->hw;
5475 struct hlist_head *head;
5476
5477 if (is_sampling_event(event)) {
5478 hwc->last_period = hwc->sample_period;
5479 perf_swevent_set_period(event);
5480 }
5481
5482 hwc->state = !(flags & PERF_EF_START);
5483
5484 head = find_swevent_head(swhash, event);
5485 if (WARN_ON_ONCE(!head))
5486 return -EINVAL;
5487
5488 hlist_add_head_rcu(&event->hlist_entry, head);
5489
5490 return 0;
5491 }
5492
5493 static void perf_swevent_del(struct perf_event *event, int flags)
5494 {
5495 hlist_del_rcu(&event->hlist_entry);
5496 }
5497
5498 static void perf_swevent_start(struct perf_event *event, int flags)
5499 {
5500 event->hw.state = 0;
5501 }
5502
5503 static void perf_swevent_stop(struct perf_event *event, int flags)
5504 {
5505 event->hw.state = PERF_HES_STOPPED;
5506 }
5507
5508 /* Deref the hlist from the update side */
5509 static inline struct swevent_hlist *
5510 swevent_hlist_deref(struct swevent_htable *swhash)
5511 {
5512 return rcu_dereference_protected(swhash->swevent_hlist,
5513 lockdep_is_held(&swhash->hlist_mutex));
5514 }
5515
5516 static void swevent_hlist_release(struct swevent_htable *swhash)
5517 {
5518 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5519
5520 if (!hlist)
5521 return;
5522
5523 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5524 kfree_rcu(hlist, rcu_head);
5525 }
5526
5527 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5528 {
5529 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5530
5531 mutex_lock(&swhash->hlist_mutex);
5532
5533 if (!--swhash->hlist_refcount)
5534 swevent_hlist_release(swhash);
5535
5536 mutex_unlock(&swhash->hlist_mutex);
5537 }
5538
5539 static void swevent_hlist_put(struct perf_event *event)
5540 {
5541 int cpu;
5542
5543 if (event->cpu != -1) {
5544 swevent_hlist_put_cpu(event, event->cpu);
5545 return;
5546 }
5547
5548 for_each_possible_cpu(cpu)
5549 swevent_hlist_put_cpu(event, cpu);
5550 }
5551
5552 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5553 {
5554 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5555 int err = 0;
5556
5557 mutex_lock(&swhash->hlist_mutex);
5558
5559 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5560 struct swevent_hlist *hlist;
5561
5562 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5563 if (!hlist) {
5564 err = -ENOMEM;
5565 goto exit;
5566 }
5567 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5568 }
5569 swhash->hlist_refcount++;
5570 exit:
5571 mutex_unlock(&swhash->hlist_mutex);
5572
5573 return err;
5574 }
5575
5576 static int swevent_hlist_get(struct perf_event *event)
5577 {
5578 int err;
5579 int cpu, failed_cpu;
5580
5581 if (event->cpu != -1)
5582 return swevent_hlist_get_cpu(event, event->cpu);
5583
5584 get_online_cpus();
5585 for_each_possible_cpu(cpu) {
5586 err = swevent_hlist_get_cpu(event, cpu);
5587 if (err) {
5588 failed_cpu = cpu;
5589 goto fail;
5590 }
5591 }
5592 put_online_cpus();
5593
5594 return 0;
5595 fail:
5596 for_each_possible_cpu(cpu) {
5597 if (cpu == failed_cpu)
5598 break;
5599 swevent_hlist_put_cpu(event, cpu);
5600 }
5601
5602 put_online_cpus();
5603 return err;
5604 }
5605
5606 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5607
5608 static void sw_perf_event_destroy(struct perf_event *event)
5609 {
5610 u64 event_id = event->attr.config;
5611
5612 WARN_ON(event->parent);
5613
5614 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5615 swevent_hlist_put(event);
5616 }
5617
5618 static int perf_swevent_init(struct perf_event *event)
5619 {
5620 u64 event_id = event->attr.config;
5621
5622 if (event->attr.type != PERF_TYPE_SOFTWARE)
5623 return -ENOENT;
5624
5625 /*
5626 * no branch sampling for software events
5627 */
5628 if (has_branch_stack(event))
5629 return -EOPNOTSUPP;
5630
5631 switch (event_id) {
5632 case PERF_COUNT_SW_CPU_CLOCK:
5633 case PERF_COUNT_SW_TASK_CLOCK:
5634 return -ENOENT;
5635
5636 default:
5637 break;
5638 }
5639
5640 if (event_id >= PERF_COUNT_SW_MAX)
5641 return -ENOENT;
5642
5643 if (!event->parent) {
5644 int err;
5645
5646 err = swevent_hlist_get(event);
5647 if (err)
5648 return err;
5649
5650 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5651 event->destroy = sw_perf_event_destroy;
5652 }
5653
5654 return 0;
5655 }
5656
5657 static int perf_swevent_event_idx(struct perf_event *event)
5658 {
5659 return 0;
5660 }
5661
5662 static struct pmu perf_swevent = {
5663 .task_ctx_nr = perf_sw_context,
5664
5665 .event_init = perf_swevent_init,
5666 .add = perf_swevent_add,
5667 .del = perf_swevent_del,
5668 .start = perf_swevent_start,
5669 .stop = perf_swevent_stop,
5670 .read = perf_swevent_read,
5671
5672 .event_idx = perf_swevent_event_idx,
5673 };
5674
5675 #ifdef CONFIG_EVENT_TRACING
5676
5677 static int perf_tp_filter_match(struct perf_event *event,
5678 struct perf_sample_data *data)
5679 {
5680 void *record = data->raw->data;
5681
5682 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5683 return 1;
5684 return 0;
5685 }
5686
5687 static int perf_tp_event_match(struct perf_event *event,
5688 struct perf_sample_data *data,
5689 struct pt_regs *regs)
5690 {
5691 if (event->hw.state & PERF_HES_STOPPED)
5692 return 0;
5693 /*
5694 * All tracepoints are from kernel-space.
5695 */
5696 if (event->attr.exclude_kernel)
5697 return 0;
5698
5699 if (!perf_tp_filter_match(event, data))
5700 return 0;
5701
5702 return 1;
5703 }
5704
5705 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5706 struct pt_regs *regs, struct hlist_head *head, int rctx,
5707 struct task_struct *task)
5708 {
5709 struct perf_sample_data data;
5710 struct perf_event *event;
5711
5712 struct perf_raw_record raw = {
5713 .size = entry_size,
5714 .data = record,
5715 };
5716
5717 perf_sample_data_init(&data, addr, 0);
5718 data.raw = &raw;
5719
5720 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5721 if (perf_tp_event_match(event, &data, regs))
5722 perf_swevent_event(event, count, &data, regs);
5723 }
5724
5725 /*
5726 * If we got specified a target task, also iterate its context and
5727 * deliver this event there too.
5728 */
5729 if (task && task != current) {
5730 struct perf_event_context *ctx;
5731 struct trace_entry *entry = record;
5732
5733 rcu_read_lock();
5734 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5735 if (!ctx)
5736 goto unlock;
5737
5738 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5739 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5740 continue;
5741 if (event->attr.config != entry->type)
5742 continue;
5743 if (perf_tp_event_match(event, &data, regs))
5744 perf_swevent_event(event, count, &data, regs);
5745 }
5746 unlock:
5747 rcu_read_unlock();
5748 }
5749
5750 perf_swevent_put_recursion_context(rctx);
5751 }
5752 EXPORT_SYMBOL_GPL(perf_tp_event);
5753
5754 static void tp_perf_event_destroy(struct perf_event *event)
5755 {
5756 perf_trace_destroy(event);
5757 }
5758
5759 static int perf_tp_event_init(struct perf_event *event)
5760 {
5761 int err;
5762
5763 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5764 return -ENOENT;
5765
5766 /*
5767 * no branch sampling for tracepoint events
5768 */
5769 if (has_branch_stack(event))
5770 return -EOPNOTSUPP;
5771
5772 err = perf_trace_init(event);
5773 if (err)
5774 return err;
5775
5776 event->destroy = tp_perf_event_destroy;
5777
5778 return 0;
5779 }
5780
5781 static struct pmu perf_tracepoint = {
5782 .task_ctx_nr = perf_sw_context,
5783
5784 .event_init = perf_tp_event_init,
5785 .add = perf_trace_add,
5786 .del = perf_trace_del,
5787 .start = perf_swevent_start,
5788 .stop = perf_swevent_stop,
5789 .read = perf_swevent_read,
5790
5791 .event_idx = perf_swevent_event_idx,
5792 };
5793
5794 static inline void perf_tp_register(void)
5795 {
5796 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5797 }
5798
5799 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5800 {
5801 char *filter_str;
5802 int ret;
5803
5804 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5805 return -EINVAL;
5806
5807 filter_str = strndup_user(arg, PAGE_SIZE);
5808 if (IS_ERR(filter_str))
5809 return PTR_ERR(filter_str);
5810
5811 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5812
5813 kfree(filter_str);
5814 return ret;
5815 }
5816
5817 static void perf_event_free_filter(struct perf_event *event)
5818 {
5819 ftrace_profile_free_filter(event);
5820 }
5821
5822 #else
5823
5824 static inline void perf_tp_register(void)
5825 {
5826 }
5827
5828 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5829 {
5830 return -ENOENT;
5831 }
5832
5833 static void perf_event_free_filter(struct perf_event *event)
5834 {
5835 }
5836
5837 #endif /* CONFIG_EVENT_TRACING */
5838
5839 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5840 void perf_bp_event(struct perf_event *bp, void *data)
5841 {
5842 struct perf_sample_data sample;
5843 struct pt_regs *regs = data;
5844
5845 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5846
5847 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5848 perf_swevent_event(bp, 1, &sample, regs);
5849 }
5850 #endif
5851
5852 /*
5853 * hrtimer based swevent callback
5854 */
5855
5856 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5857 {
5858 enum hrtimer_restart ret = HRTIMER_RESTART;
5859 struct perf_sample_data data;
5860 struct pt_regs *regs;
5861 struct perf_event *event;
5862 u64 period;
5863
5864 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5865
5866 if (event->state != PERF_EVENT_STATE_ACTIVE)
5867 return HRTIMER_NORESTART;
5868
5869 event->pmu->read(event);
5870
5871 perf_sample_data_init(&data, 0, event->hw.last_period);
5872 regs = get_irq_regs();
5873
5874 if (regs && !perf_exclude_event(event, regs)) {
5875 if (!(event->attr.exclude_idle && is_idle_task(current)))
5876 if (__perf_event_overflow(event, 1, &data, regs))
5877 ret = HRTIMER_NORESTART;
5878 }
5879
5880 period = max_t(u64, 10000, event->hw.sample_period);
5881 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5882
5883 return ret;
5884 }
5885
5886 static void perf_swevent_start_hrtimer(struct perf_event *event)
5887 {
5888 struct hw_perf_event *hwc = &event->hw;
5889 s64 period;
5890
5891 if (!is_sampling_event(event))
5892 return;
5893
5894 period = local64_read(&hwc->period_left);
5895 if (period) {
5896 if (period < 0)
5897 period = 10000;
5898
5899 local64_set(&hwc->period_left, 0);
5900 } else {
5901 period = max_t(u64, 10000, hwc->sample_period);
5902 }
5903 __hrtimer_start_range_ns(&hwc->hrtimer,
5904 ns_to_ktime(period), 0,
5905 HRTIMER_MODE_REL_PINNED, 0);
5906 }
5907
5908 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5909 {
5910 struct hw_perf_event *hwc = &event->hw;
5911
5912 if (is_sampling_event(event)) {
5913 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5914 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5915
5916 hrtimer_cancel(&hwc->hrtimer);
5917 }
5918 }
5919
5920 static void perf_swevent_init_hrtimer(struct perf_event *event)
5921 {
5922 struct hw_perf_event *hwc = &event->hw;
5923
5924 if (!is_sampling_event(event))
5925 return;
5926
5927 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5928 hwc->hrtimer.function = perf_swevent_hrtimer;
5929
5930 /*
5931 * Since hrtimers have a fixed rate, we can do a static freq->period
5932 * mapping and avoid the whole period adjust feedback stuff.
5933 */
5934 if (event->attr.freq) {
5935 long freq = event->attr.sample_freq;
5936
5937 event->attr.sample_period = NSEC_PER_SEC / freq;
5938 hwc->sample_period = event->attr.sample_period;
5939 local64_set(&hwc->period_left, hwc->sample_period);
5940 hwc->last_period = hwc->sample_period;
5941 event->attr.freq = 0;
5942 }
5943 }
5944
5945 /*
5946 * Software event: cpu wall time clock
5947 */
5948
5949 static void cpu_clock_event_update(struct perf_event *event)
5950 {
5951 s64 prev;
5952 u64 now;
5953
5954 now = local_clock();
5955 prev = local64_xchg(&event->hw.prev_count, now);
5956 local64_add(now - prev, &event->count);
5957 }
5958
5959 static void cpu_clock_event_start(struct perf_event *event, int flags)
5960 {
5961 local64_set(&event->hw.prev_count, local_clock());
5962 perf_swevent_start_hrtimer(event);
5963 }
5964
5965 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5966 {
5967 perf_swevent_cancel_hrtimer(event);
5968 cpu_clock_event_update(event);
5969 }
5970
5971 static int cpu_clock_event_add(struct perf_event *event, int flags)
5972 {
5973 if (flags & PERF_EF_START)
5974 cpu_clock_event_start(event, flags);
5975
5976 return 0;
5977 }
5978
5979 static void cpu_clock_event_del(struct perf_event *event, int flags)
5980 {
5981 cpu_clock_event_stop(event, flags);
5982 }
5983
5984 static void cpu_clock_event_read(struct perf_event *event)
5985 {
5986 cpu_clock_event_update(event);
5987 }
5988
5989 static int cpu_clock_event_init(struct perf_event *event)
5990 {
5991 if (event->attr.type != PERF_TYPE_SOFTWARE)
5992 return -ENOENT;
5993
5994 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5995 return -ENOENT;
5996
5997 /*
5998 * no branch sampling for software events
5999 */
6000 if (has_branch_stack(event))
6001 return -EOPNOTSUPP;
6002
6003 perf_swevent_init_hrtimer(event);
6004
6005 return 0;
6006 }
6007
6008 static struct pmu perf_cpu_clock = {
6009 .task_ctx_nr = perf_sw_context,
6010
6011 .event_init = cpu_clock_event_init,
6012 .add = cpu_clock_event_add,
6013 .del = cpu_clock_event_del,
6014 .start = cpu_clock_event_start,
6015 .stop = cpu_clock_event_stop,
6016 .read = cpu_clock_event_read,
6017
6018 .event_idx = perf_swevent_event_idx,
6019 };
6020
6021 /*
6022 * Software event: task time clock
6023 */
6024
6025 static void task_clock_event_update(struct perf_event *event, u64 now)
6026 {
6027 u64 prev;
6028 s64 delta;
6029
6030 prev = local64_xchg(&event->hw.prev_count, now);
6031 delta = now - prev;
6032 local64_add(delta, &event->count);
6033 }
6034
6035 static void task_clock_event_start(struct perf_event *event, int flags)
6036 {
6037 local64_set(&event->hw.prev_count, event->ctx->time);
6038 perf_swevent_start_hrtimer(event);
6039 }
6040
6041 static void task_clock_event_stop(struct perf_event *event, int flags)
6042 {
6043 perf_swevent_cancel_hrtimer(event);
6044 task_clock_event_update(event, event->ctx->time);
6045 }
6046
6047 static int task_clock_event_add(struct perf_event *event, int flags)
6048 {
6049 if (flags & PERF_EF_START)
6050 task_clock_event_start(event, flags);
6051
6052 return 0;
6053 }
6054
6055 static void task_clock_event_del(struct perf_event *event, int flags)
6056 {
6057 task_clock_event_stop(event, PERF_EF_UPDATE);
6058 }
6059
6060 static void task_clock_event_read(struct perf_event *event)
6061 {
6062 u64 now = perf_clock();
6063 u64 delta = now - event->ctx->timestamp;
6064 u64 time = event->ctx->time + delta;
6065
6066 task_clock_event_update(event, time);
6067 }
6068
6069 static int task_clock_event_init(struct perf_event *event)
6070 {
6071 if (event->attr.type != PERF_TYPE_SOFTWARE)
6072 return -ENOENT;
6073
6074 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6075 return -ENOENT;
6076
6077 /*
6078 * no branch sampling for software events
6079 */
6080 if (has_branch_stack(event))
6081 return -EOPNOTSUPP;
6082
6083 perf_swevent_init_hrtimer(event);
6084
6085 return 0;
6086 }
6087
6088 static struct pmu perf_task_clock = {
6089 .task_ctx_nr = perf_sw_context,
6090
6091 .event_init = task_clock_event_init,
6092 .add = task_clock_event_add,
6093 .del = task_clock_event_del,
6094 .start = task_clock_event_start,
6095 .stop = task_clock_event_stop,
6096 .read = task_clock_event_read,
6097
6098 .event_idx = perf_swevent_event_idx,
6099 };
6100
6101 static void perf_pmu_nop_void(struct pmu *pmu)
6102 {
6103 }
6104
6105 static int perf_pmu_nop_int(struct pmu *pmu)
6106 {
6107 return 0;
6108 }
6109
6110 static void perf_pmu_start_txn(struct pmu *pmu)
6111 {
6112 perf_pmu_disable(pmu);
6113 }
6114
6115 static int perf_pmu_commit_txn(struct pmu *pmu)
6116 {
6117 perf_pmu_enable(pmu);
6118 return 0;
6119 }
6120
6121 static void perf_pmu_cancel_txn(struct pmu *pmu)
6122 {
6123 perf_pmu_enable(pmu);
6124 }
6125
6126 static int perf_event_idx_default(struct perf_event *event)
6127 {
6128 return event->hw.idx + 1;
6129 }
6130
6131 /*
6132 * Ensures all contexts with the same task_ctx_nr have the same
6133 * pmu_cpu_context too.
6134 */
6135 static void *find_pmu_context(int ctxn)
6136 {
6137 struct pmu *pmu;
6138
6139 if (ctxn < 0)
6140 return NULL;
6141
6142 list_for_each_entry(pmu, &pmus, entry) {
6143 if (pmu->task_ctx_nr == ctxn)
6144 return pmu->pmu_cpu_context;
6145 }
6146
6147 return NULL;
6148 }
6149
6150 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6151 {
6152 int cpu;
6153
6154 for_each_possible_cpu(cpu) {
6155 struct perf_cpu_context *cpuctx;
6156
6157 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6158
6159 if (cpuctx->unique_pmu == old_pmu)
6160 cpuctx->unique_pmu = pmu;
6161 }
6162 }
6163
6164 static void free_pmu_context(struct pmu *pmu)
6165 {
6166 struct pmu *i;
6167
6168 mutex_lock(&pmus_lock);
6169 /*
6170 * Like a real lame refcount.
6171 */
6172 list_for_each_entry(i, &pmus, entry) {
6173 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6174 update_pmu_context(i, pmu);
6175 goto out;
6176 }
6177 }
6178
6179 free_percpu(pmu->pmu_cpu_context);
6180 out:
6181 mutex_unlock(&pmus_lock);
6182 }
6183 static struct idr pmu_idr;
6184
6185 static ssize_t
6186 type_show(struct device *dev, struct device_attribute *attr, char *page)
6187 {
6188 struct pmu *pmu = dev_get_drvdata(dev);
6189
6190 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6191 }
6192
6193 static ssize_t
6194 perf_event_mux_interval_ms_show(struct device *dev,
6195 struct device_attribute *attr,
6196 char *page)
6197 {
6198 struct pmu *pmu = dev_get_drvdata(dev);
6199
6200 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6201 }
6202
6203 static ssize_t
6204 perf_event_mux_interval_ms_store(struct device *dev,
6205 struct device_attribute *attr,
6206 const char *buf, size_t count)
6207 {
6208 struct pmu *pmu = dev_get_drvdata(dev);
6209 int timer, cpu, ret;
6210
6211 ret = kstrtoint(buf, 0, &timer);
6212 if (ret)
6213 return ret;
6214
6215 if (timer < 1)
6216 return -EINVAL;
6217
6218 /* same value, noting to do */
6219 if (timer == pmu->hrtimer_interval_ms)
6220 return count;
6221
6222 pmu->hrtimer_interval_ms = timer;
6223
6224 /* update all cpuctx for this PMU */
6225 for_each_possible_cpu(cpu) {
6226 struct perf_cpu_context *cpuctx;
6227 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6228 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6229
6230 if (hrtimer_active(&cpuctx->hrtimer))
6231 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6232 }
6233
6234 return count;
6235 }
6236
6237 #define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)
6238
6239 static struct device_attribute pmu_dev_attrs[] = {
6240 __ATTR_RO(type),
6241 __ATTR_RW(perf_event_mux_interval_ms),
6242 __ATTR_NULL,
6243 };
6244
6245 static int pmu_bus_running;
6246 static struct bus_type pmu_bus = {
6247 .name = "event_source",
6248 .dev_attrs = pmu_dev_attrs,
6249 };
6250
6251 static void pmu_dev_release(struct device *dev)
6252 {
6253 kfree(dev);
6254 }
6255
6256 static int pmu_dev_alloc(struct pmu *pmu)
6257 {
6258 int ret = -ENOMEM;
6259
6260 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6261 if (!pmu->dev)
6262 goto out;
6263
6264 pmu->dev->groups = pmu->attr_groups;
6265 device_initialize(pmu->dev);
6266 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6267 if (ret)
6268 goto free_dev;
6269
6270 dev_set_drvdata(pmu->dev, pmu);
6271 pmu->dev->bus = &pmu_bus;
6272 pmu->dev->release = pmu_dev_release;
6273 ret = device_add(pmu->dev);
6274 if (ret)
6275 goto free_dev;
6276
6277 out:
6278 return ret;
6279
6280 free_dev:
6281 put_device(pmu->dev);
6282 goto out;
6283 }
6284
6285 static struct lock_class_key cpuctx_mutex;
6286 static struct lock_class_key cpuctx_lock;
6287
6288 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6289 {
6290 int cpu, ret;
6291
6292 mutex_lock(&pmus_lock);
6293 ret = -ENOMEM;
6294 pmu->pmu_disable_count = alloc_percpu(int);
6295 if (!pmu->pmu_disable_count)
6296 goto unlock;
6297
6298 pmu->type = -1;
6299 if (!name)
6300 goto skip_type;
6301 pmu->name = name;
6302
6303 if (type < 0) {
6304 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6305 if (type < 0) {
6306 ret = type;
6307 goto free_pdc;
6308 }
6309 }
6310 pmu->type = type;
6311
6312 if (pmu_bus_running) {
6313 ret = pmu_dev_alloc(pmu);
6314 if (ret)
6315 goto free_idr;
6316 }
6317
6318 skip_type:
6319 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6320 if (pmu->pmu_cpu_context)
6321 goto got_cpu_context;
6322
6323 ret = -ENOMEM;
6324 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6325 if (!pmu->pmu_cpu_context)
6326 goto free_dev;
6327
6328 for_each_possible_cpu(cpu) {
6329 struct perf_cpu_context *cpuctx;
6330
6331 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6332 __perf_event_init_context(&cpuctx->ctx);
6333 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6334 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6335 cpuctx->ctx.type = cpu_context;
6336 cpuctx->ctx.pmu = pmu;
6337
6338 __perf_cpu_hrtimer_init(cpuctx, cpu);
6339
6340 INIT_LIST_HEAD(&cpuctx->rotation_list);
6341 cpuctx->unique_pmu = pmu;
6342 }
6343
6344 got_cpu_context:
6345 if (!pmu->start_txn) {
6346 if (pmu->pmu_enable) {
6347 /*
6348 * If we have pmu_enable/pmu_disable calls, install
6349 * transaction stubs that use that to try and batch
6350 * hardware accesses.
6351 */
6352 pmu->start_txn = perf_pmu_start_txn;
6353 pmu->commit_txn = perf_pmu_commit_txn;
6354 pmu->cancel_txn = perf_pmu_cancel_txn;
6355 } else {
6356 pmu->start_txn = perf_pmu_nop_void;
6357 pmu->commit_txn = perf_pmu_nop_int;
6358 pmu->cancel_txn = perf_pmu_nop_void;
6359 }
6360 }
6361
6362 if (!pmu->pmu_enable) {
6363 pmu->pmu_enable = perf_pmu_nop_void;
6364 pmu->pmu_disable = perf_pmu_nop_void;
6365 }
6366
6367 if (!pmu->event_idx)
6368 pmu->event_idx = perf_event_idx_default;
6369
6370 list_add_rcu(&pmu->entry, &pmus);
6371 ret = 0;
6372 unlock:
6373 mutex_unlock(&pmus_lock);
6374
6375 return ret;
6376
6377 free_dev:
6378 device_del(pmu->dev);
6379 put_device(pmu->dev);
6380
6381 free_idr:
6382 if (pmu->type >= PERF_TYPE_MAX)
6383 idr_remove(&pmu_idr, pmu->type);
6384
6385 free_pdc:
6386 free_percpu(pmu->pmu_disable_count);
6387 goto unlock;
6388 }
6389
6390 void perf_pmu_unregister(struct pmu *pmu)
6391 {
6392 mutex_lock(&pmus_lock);
6393 list_del_rcu(&pmu->entry);
6394 mutex_unlock(&pmus_lock);
6395
6396 /*
6397 * We dereference the pmu list under both SRCU and regular RCU, so
6398 * synchronize against both of those.
6399 */
6400 synchronize_srcu(&pmus_srcu);
6401 synchronize_rcu();
6402
6403 free_percpu(pmu->pmu_disable_count);
6404 if (pmu->type >= PERF_TYPE_MAX)
6405 idr_remove(&pmu_idr, pmu->type);
6406 device_del(pmu->dev);
6407 put_device(pmu->dev);
6408 free_pmu_context(pmu);
6409 }
6410
6411 struct pmu *perf_init_event(struct perf_event *event)
6412 {
6413 struct pmu *pmu = NULL;
6414 int idx;
6415 int ret;
6416
6417 idx = srcu_read_lock(&pmus_srcu);
6418
6419 rcu_read_lock();
6420 pmu = idr_find(&pmu_idr, event->attr.type);
6421 rcu_read_unlock();
6422 if (pmu) {
6423 event->pmu = pmu;
6424 ret = pmu->event_init(event);
6425 if (ret)
6426 pmu = ERR_PTR(ret);
6427 goto unlock;
6428 }
6429
6430 list_for_each_entry_rcu(pmu, &pmus, entry) {
6431 event->pmu = pmu;
6432 ret = pmu->event_init(event);
6433 if (!ret)
6434 goto unlock;
6435
6436 if (ret != -ENOENT) {
6437 pmu = ERR_PTR(ret);
6438 goto unlock;
6439 }
6440 }
6441 pmu = ERR_PTR(-ENOENT);
6442 unlock:
6443 srcu_read_unlock(&pmus_srcu, idx);
6444
6445 return pmu;
6446 }
6447
6448 /*
6449 * Allocate and initialize a event structure
6450 */
6451 static struct perf_event *
6452 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6453 struct task_struct *task,
6454 struct perf_event *group_leader,
6455 struct perf_event *parent_event,
6456 perf_overflow_handler_t overflow_handler,
6457 void *context)
6458 {
6459 struct pmu *pmu;
6460 struct perf_event *event;
6461 struct hw_perf_event *hwc;
6462 long err;
6463
6464 if ((unsigned)cpu >= nr_cpu_ids) {
6465 if (!task || cpu != -1)
6466 return ERR_PTR(-EINVAL);
6467 }
6468
6469 event = kzalloc(sizeof(*event), GFP_KERNEL);
6470 if (!event)
6471 return ERR_PTR(-ENOMEM);
6472
6473 /*
6474 * Single events are their own group leaders, with an
6475 * empty sibling list:
6476 */
6477 if (!group_leader)
6478 group_leader = event;
6479
6480 mutex_init(&event->child_mutex);
6481 INIT_LIST_HEAD(&event->child_list);
6482
6483 INIT_LIST_HEAD(&event->group_entry);
6484 INIT_LIST_HEAD(&event->event_entry);
6485 INIT_LIST_HEAD(&event->sibling_list);
6486 INIT_LIST_HEAD(&event->rb_entry);
6487
6488 init_waitqueue_head(&event->waitq);
6489 init_irq_work(&event->pending, perf_pending_event);
6490
6491 mutex_init(&event->mmap_mutex);
6492
6493 atomic_long_set(&event->refcount, 1);
6494 event->cpu = cpu;
6495 event->attr = *attr;
6496 event->group_leader = group_leader;
6497 event->pmu = NULL;
6498 event->oncpu = -1;
6499
6500 event->parent = parent_event;
6501
6502 event->ns = get_pid_ns(task_active_pid_ns(current));
6503 event->id = atomic64_inc_return(&perf_event_id);
6504
6505 event->state = PERF_EVENT_STATE_INACTIVE;
6506
6507 if (task) {
6508 event->attach_state = PERF_ATTACH_TASK;
6509
6510 if (attr->type == PERF_TYPE_TRACEPOINT)
6511 event->hw.tp_target = task;
6512 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6513 /*
6514 * hw_breakpoint is a bit difficult here..
6515 */
6516 else if (attr->type == PERF_TYPE_BREAKPOINT)
6517 event->hw.bp_target = task;
6518 #endif
6519 }
6520
6521 if (!overflow_handler && parent_event) {
6522 overflow_handler = parent_event->overflow_handler;
6523 context = parent_event->overflow_handler_context;
6524 }
6525
6526 event->overflow_handler = overflow_handler;
6527 event->overflow_handler_context = context;
6528
6529 perf_event__state_init(event);
6530
6531 pmu = NULL;
6532
6533 hwc = &event->hw;
6534 hwc->sample_period = attr->sample_period;
6535 if (attr->freq && attr->sample_freq)
6536 hwc->sample_period = 1;
6537 hwc->last_period = hwc->sample_period;
6538
6539 local64_set(&hwc->period_left, hwc->sample_period);
6540
6541 /*
6542 * we currently do not support PERF_FORMAT_GROUP on inherited events
6543 */
6544 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6545 goto done;
6546
6547 pmu = perf_init_event(event);
6548
6549 done:
6550 err = 0;
6551 if (!pmu)
6552 err = -EINVAL;
6553 else if (IS_ERR(pmu))
6554 err = PTR_ERR(pmu);
6555
6556 if (err) {
6557 if (event->ns)
6558 put_pid_ns(event->ns);
6559 kfree(event);
6560 return ERR_PTR(err);
6561 }
6562
6563 if (!event->parent) {
6564 if (event->attach_state & PERF_ATTACH_TASK)
6565 static_key_slow_inc(&perf_sched_events.key);
6566 if (event->attr.mmap || event->attr.mmap_data)
6567 atomic_inc(&nr_mmap_events);
6568 if (event->attr.comm)
6569 atomic_inc(&nr_comm_events);
6570 if (event->attr.task)
6571 atomic_inc(&nr_task_events);
6572 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6573 err = get_callchain_buffers();
6574 if (err) {
6575 free_event(event);
6576 return ERR_PTR(err);
6577 }
6578 }
6579 if (has_branch_stack(event)) {
6580 static_key_slow_inc(&perf_sched_events.key);
6581 if (!(event->attach_state & PERF_ATTACH_TASK))
6582 atomic_inc(&per_cpu(perf_branch_stack_events,
6583 event->cpu));
6584 }
6585 }
6586
6587 return event;
6588 }
6589
6590 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6591 struct perf_event_attr *attr)
6592 {
6593 u32 size;
6594 int ret;
6595
6596 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6597 return -EFAULT;
6598
6599 /*
6600 * zero the full structure, so that a short copy will be nice.
6601 */
6602 memset(attr, 0, sizeof(*attr));
6603
6604 ret = get_user(size, &uattr->size);
6605 if (ret)
6606 return ret;
6607
6608 if (size > PAGE_SIZE) /* silly large */
6609 goto err_size;
6610
6611 if (!size) /* abi compat */
6612 size = PERF_ATTR_SIZE_VER0;
6613
6614 if (size < PERF_ATTR_SIZE_VER0)
6615 goto err_size;
6616
6617 /*
6618 * If we're handed a bigger struct than we know of,
6619 * ensure all the unknown bits are 0 - i.e. new
6620 * user-space does not rely on any kernel feature
6621 * extensions we dont know about yet.
6622 */
6623 if (size > sizeof(*attr)) {
6624 unsigned char __user *addr;
6625 unsigned char __user *end;
6626 unsigned char val;
6627
6628 addr = (void __user *)uattr + sizeof(*attr);
6629 end = (void __user *)uattr + size;
6630
6631 for (; addr < end; addr++) {
6632 ret = get_user(val, addr);
6633 if (ret)
6634 return ret;
6635 if (val)
6636 goto err_size;
6637 }
6638 size = sizeof(*attr);
6639 }
6640
6641 ret = copy_from_user(attr, uattr, size);
6642 if (ret)
6643 return -EFAULT;
6644
6645 if (attr->__reserved_1)
6646 return -EINVAL;
6647
6648 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6649 return -EINVAL;
6650
6651 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6652 return -EINVAL;
6653
6654 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6655 u64 mask = attr->branch_sample_type;
6656
6657 /* only using defined bits */
6658 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6659 return -EINVAL;
6660
6661 /* at least one branch bit must be set */
6662 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6663 return -EINVAL;
6664
6665 /* propagate priv level, when not set for branch */
6666 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6667
6668 /* exclude_kernel checked on syscall entry */
6669 if (!attr->exclude_kernel)
6670 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6671
6672 if (!attr->exclude_user)
6673 mask |= PERF_SAMPLE_BRANCH_USER;
6674
6675 if (!attr->exclude_hv)
6676 mask |= PERF_SAMPLE_BRANCH_HV;
6677 /*
6678 * adjust user setting (for HW filter setup)
6679 */
6680 attr->branch_sample_type = mask;
6681 }
6682 /* privileged levels capture (kernel, hv): check permissions */
6683 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6684 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6685 return -EACCES;
6686 }
6687
6688 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6689 ret = perf_reg_validate(attr->sample_regs_user);
6690 if (ret)
6691 return ret;
6692 }
6693
6694 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6695 if (!arch_perf_have_user_stack_dump())
6696 return -ENOSYS;
6697
6698 /*
6699 * We have __u32 type for the size, but so far
6700 * we can only use __u16 as maximum due to the
6701 * __u16 sample size limit.
6702 */
6703 if (attr->sample_stack_user >= USHRT_MAX)
6704 ret = -EINVAL;
6705 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6706 ret = -EINVAL;
6707 }
6708
6709 out:
6710 return ret;
6711
6712 err_size:
6713 put_user(sizeof(*attr), &uattr->size);
6714 ret = -E2BIG;
6715 goto out;
6716 }
6717
6718 static int
6719 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6720 {
6721 struct ring_buffer *rb = NULL, *old_rb = NULL;
6722 int ret = -EINVAL;
6723
6724 if (!output_event)
6725 goto set;
6726
6727 /* don't allow circular references */
6728 if (event == output_event)
6729 goto out;
6730
6731 /*
6732 * Don't allow cross-cpu buffers
6733 */
6734 if (output_event->cpu != event->cpu)
6735 goto out;
6736
6737 /*
6738 * If its not a per-cpu rb, it must be the same task.
6739 */
6740 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6741 goto out;
6742
6743 set:
6744 mutex_lock(&event->mmap_mutex);
6745 /* Can't redirect output if we've got an active mmap() */
6746 if (atomic_read(&event->mmap_count))
6747 goto unlock;
6748
6749 old_rb = event->rb;
6750
6751 if (output_event) {
6752 /* get the rb we want to redirect to */
6753 rb = ring_buffer_get(output_event);
6754 if (!rb)
6755 goto unlock;
6756 }
6757
6758 if (old_rb)
6759 ring_buffer_detach(event, old_rb);
6760
6761 if (rb)
6762 ring_buffer_attach(event, rb);
6763
6764 rcu_assign_pointer(event->rb, rb);
6765
6766 if (old_rb) {
6767 ring_buffer_put(old_rb);
6768 /*
6769 * Since we detached before setting the new rb, so that we
6770 * could attach the new rb, we could have missed a wakeup.
6771 * Provide it now.
6772 */
6773 wake_up_all(&event->waitq);
6774 }
6775
6776 ret = 0;
6777 unlock:
6778 mutex_unlock(&event->mmap_mutex);
6779
6780 out:
6781 return ret;
6782 }
6783
6784 /**
6785 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6786 *
6787 * @attr_uptr: event_id type attributes for monitoring/sampling
6788 * @pid: target pid
6789 * @cpu: target cpu
6790 * @group_fd: group leader event fd
6791 */
6792 SYSCALL_DEFINE5(perf_event_open,
6793 struct perf_event_attr __user *, attr_uptr,
6794 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6795 {
6796 struct perf_event *group_leader = NULL, *output_event = NULL;
6797 struct perf_event *event, *sibling;
6798 struct perf_event_attr attr;
6799 struct perf_event_context *ctx;
6800 struct file *event_file = NULL;
6801 struct fd group = {NULL, 0};
6802 struct task_struct *task = NULL;
6803 struct pmu *pmu;
6804 int event_fd;
6805 int move_group = 0;
6806 int err;
6807
6808 /* for future expandability... */
6809 if (flags & ~PERF_FLAG_ALL)
6810 return -EINVAL;
6811
6812 err = perf_copy_attr(attr_uptr, &attr);
6813 if (err)
6814 return err;
6815
6816 if (!attr.exclude_kernel) {
6817 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6818 return -EACCES;
6819 }
6820
6821 if (attr.freq) {
6822 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6823 return -EINVAL;
6824 }
6825
6826 /*
6827 * In cgroup mode, the pid argument is used to pass the fd
6828 * opened to the cgroup directory in cgroupfs. The cpu argument
6829 * designates the cpu on which to monitor threads from that
6830 * cgroup.
6831 */
6832 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6833 return -EINVAL;
6834
6835 event_fd = get_unused_fd();
6836 if (event_fd < 0)
6837 return event_fd;
6838
6839 if (group_fd != -1) {
6840 err = perf_fget_light(group_fd, &group);
6841 if (err)
6842 goto err_fd;
6843 group_leader = group.file->private_data;
6844 if (flags & PERF_FLAG_FD_OUTPUT)
6845 output_event = group_leader;
6846 if (flags & PERF_FLAG_FD_NO_GROUP)
6847 group_leader = NULL;
6848 }
6849
6850 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6851 task = find_lively_task_by_vpid(pid);
6852 if (IS_ERR(task)) {
6853 err = PTR_ERR(task);
6854 goto err_group_fd;
6855 }
6856 }
6857
6858 get_online_cpus();
6859
6860 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6861 NULL, NULL);
6862 if (IS_ERR(event)) {
6863 err = PTR_ERR(event);
6864 goto err_task;
6865 }
6866
6867 if (flags & PERF_FLAG_PID_CGROUP) {
6868 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6869 if (err)
6870 goto err_alloc;
6871 /*
6872 * one more event:
6873 * - that has cgroup constraint on event->cpu
6874 * - that may need work on context switch
6875 */
6876 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6877 static_key_slow_inc(&perf_sched_events.key);
6878 }
6879
6880 /*
6881 * Special case software events and allow them to be part of
6882 * any hardware group.
6883 */
6884 pmu = event->pmu;
6885
6886 if (group_leader &&
6887 (is_software_event(event) != is_software_event(group_leader))) {
6888 if (is_software_event(event)) {
6889 /*
6890 * If event and group_leader are not both a software
6891 * event, and event is, then group leader is not.
6892 *
6893 * Allow the addition of software events to !software
6894 * groups, this is safe because software events never
6895 * fail to schedule.
6896 */
6897 pmu = group_leader->pmu;
6898 } else if (is_software_event(group_leader) &&
6899 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6900 /*
6901 * In case the group is a pure software group, and we
6902 * try to add a hardware event, move the whole group to
6903 * the hardware context.
6904 */
6905 move_group = 1;
6906 }
6907 }
6908
6909 /*
6910 * Get the target context (task or percpu):
6911 */
6912 ctx = find_get_context(pmu, task, event->cpu);
6913 if (IS_ERR(ctx)) {
6914 err = PTR_ERR(ctx);
6915 goto err_alloc;
6916 }
6917
6918 if (task) {
6919 put_task_struct(task);
6920 task = NULL;
6921 }
6922
6923 /*
6924 * Look up the group leader (we will attach this event to it):
6925 */
6926 if (group_leader) {
6927 err = -EINVAL;
6928
6929 /*
6930 * Do not allow a recursive hierarchy (this new sibling
6931 * becoming part of another group-sibling):
6932 */
6933 if (group_leader->group_leader != group_leader)
6934 goto err_context;
6935 /*
6936 * Do not allow to attach to a group in a different
6937 * task or CPU context:
6938 */
6939 if (move_group) {
6940 if (group_leader->ctx->type != ctx->type)
6941 goto err_context;
6942 } else {
6943 if (group_leader->ctx != ctx)
6944 goto err_context;
6945 }
6946
6947 /*
6948 * Only a group leader can be exclusive or pinned
6949 */
6950 if (attr.exclusive || attr.pinned)
6951 goto err_context;
6952 }
6953
6954 if (output_event) {
6955 err = perf_event_set_output(event, output_event);
6956 if (err)
6957 goto err_context;
6958 }
6959
6960 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6961 if (IS_ERR(event_file)) {
6962 err = PTR_ERR(event_file);
6963 goto err_context;
6964 }
6965
6966 if (move_group) {
6967 struct perf_event_context *gctx = group_leader->ctx;
6968
6969 mutex_lock(&gctx->mutex);
6970 perf_remove_from_context(group_leader);
6971
6972 /*
6973 * Removing from the context ends up with disabled
6974 * event. What we want here is event in the initial
6975 * startup state, ready to be add into new context.
6976 */
6977 perf_event__state_init(group_leader);
6978 list_for_each_entry(sibling, &group_leader->sibling_list,
6979 group_entry) {
6980 perf_remove_from_context(sibling);
6981 perf_event__state_init(sibling);
6982 put_ctx(gctx);
6983 }
6984 mutex_unlock(&gctx->mutex);
6985 put_ctx(gctx);
6986 }
6987
6988 WARN_ON_ONCE(ctx->parent_ctx);
6989 mutex_lock(&ctx->mutex);
6990
6991 if (move_group) {
6992 synchronize_rcu();
6993 perf_install_in_context(ctx, group_leader, event->cpu);
6994 get_ctx(ctx);
6995 list_for_each_entry(sibling, &group_leader->sibling_list,
6996 group_entry) {
6997 perf_install_in_context(ctx, sibling, event->cpu);
6998 get_ctx(ctx);
6999 }
7000 }
7001
7002 perf_install_in_context(ctx, event, event->cpu);
7003 ++ctx->generation;
7004 perf_unpin_context(ctx);
7005 mutex_unlock(&ctx->mutex);
7006
7007 put_online_cpus();
7008
7009 event->owner = current;
7010
7011 mutex_lock(&current->perf_event_mutex);
7012 list_add_tail(&event->owner_entry, &current->perf_event_list);
7013 mutex_unlock(&current->perf_event_mutex);
7014
7015 /*
7016 * Precalculate sample_data sizes
7017 */
7018 perf_event__header_size(event);
7019 perf_event__id_header_size(event);
7020
7021 /*
7022 * Drop the reference on the group_event after placing the
7023 * new event on the sibling_list. This ensures destruction
7024 * of the group leader will find the pointer to itself in
7025 * perf_group_detach().
7026 */
7027 fdput(group);
7028 fd_install(event_fd, event_file);
7029 return event_fd;
7030
7031 err_context:
7032 perf_unpin_context(ctx);
7033 put_ctx(ctx);
7034 err_alloc:
7035 free_event(event);
7036 err_task:
7037 put_online_cpus();
7038 if (task)
7039 put_task_struct(task);
7040 err_group_fd:
7041 fdput(group);
7042 err_fd:
7043 put_unused_fd(event_fd);
7044 return err;
7045 }
7046
7047 /**
7048 * perf_event_create_kernel_counter
7049 *
7050 * @attr: attributes of the counter to create
7051 * @cpu: cpu in which the counter is bound
7052 * @task: task to profile (NULL for percpu)
7053 */
7054 struct perf_event *
7055 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7056 struct task_struct *task,
7057 perf_overflow_handler_t overflow_handler,
7058 void *context)
7059 {
7060 struct perf_event_context *ctx;
7061 struct perf_event *event;
7062 int err;
7063
7064 /*
7065 * Get the target context (task or percpu):
7066 */
7067
7068 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7069 overflow_handler, context);
7070 if (IS_ERR(event)) {
7071 err = PTR_ERR(event);
7072 goto err;
7073 }
7074
7075 ctx = find_get_context(event->pmu, task, cpu);
7076 if (IS_ERR(ctx)) {
7077 err = PTR_ERR(ctx);
7078 goto err_free;
7079 }
7080
7081 WARN_ON_ONCE(ctx->parent_ctx);
7082 mutex_lock(&ctx->mutex);
7083 perf_install_in_context(ctx, event, cpu);
7084 ++ctx->generation;
7085 perf_unpin_context(ctx);
7086 mutex_unlock(&ctx->mutex);
7087
7088 return event;
7089
7090 err_free:
7091 free_event(event);
7092 err:
7093 return ERR_PTR(err);
7094 }
7095 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7096
7097 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7098 {
7099 struct perf_event_context *src_ctx;
7100 struct perf_event_context *dst_ctx;
7101 struct perf_event *event, *tmp;
7102 LIST_HEAD(events);
7103
7104 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7105 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7106
7107 mutex_lock(&src_ctx->mutex);
7108 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7109 event_entry) {
7110 perf_remove_from_context(event);
7111 put_ctx(src_ctx);
7112 list_add(&event->event_entry, &events);
7113 }
7114 mutex_unlock(&src_ctx->mutex);
7115
7116 synchronize_rcu();
7117
7118 mutex_lock(&dst_ctx->mutex);
7119 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7120 list_del(&event->event_entry);
7121 if (event->state >= PERF_EVENT_STATE_OFF)
7122 event->state = PERF_EVENT_STATE_INACTIVE;
7123 perf_install_in_context(dst_ctx, event, dst_cpu);
7124 get_ctx(dst_ctx);
7125 }
7126 mutex_unlock(&dst_ctx->mutex);
7127 }
7128 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7129
7130 static void sync_child_event(struct perf_event *child_event,
7131 struct task_struct *child)
7132 {
7133 struct perf_event *parent_event = child_event->parent;
7134 u64 child_val;
7135
7136 if (child_event->attr.inherit_stat)
7137 perf_event_read_event(child_event, child);
7138
7139 child_val = perf_event_count(child_event);
7140
7141 /*
7142 * Add back the child's count to the parent's count:
7143 */
7144 atomic64_add(child_val, &parent_event->child_count);
7145 atomic64_add(child_event->total_time_enabled,
7146 &parent_event->child_total_time_enabled);
7147 atomic64_add(child_event->total_time_running,
7148 &parent_event->child_total_time_running);
7149
7150 /*
7151 * Remove this event from the parent's list
7152 */
7153 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7154 mutex_lock(&parent_event->child_mutex);
7155 list_del_init(&child_event->child_list);
7156 mutex_unlock(&parent_event->child_mutex);
7157
7158 /*
7159 * Release the parent event, if this was the last
7160 * reference to it.
7161 */
7162 put_event(parent_event);
7163 }
7164
7165 static void
7166 __perf_event_exit_task(struct perf_event *child_event,
7167 struct perf_event_context *child_ctx,
7168 struct task_struct *child)
7169 {
7170 if (child_event->parent) {
7171 raw_spin_lock_irq(&child_ctx->lock);
7172 perf_group_detach(child_event);
7173 raw_spin_unlock_irq(&child_ctx->lock);
7174 }
7175
7176 perf_remove_from_context(child_event);
7177
7178 /*
7179 * It can happen that the parent exits first, and has events
7180 * that are still around due to the child reference. These
7181 * events need to be zapped.
7182 */
7183 if (child_event->parent) {
7184 sync_child_event(child_event, child);
7185 free_event(child_event);
7186 }
7187 }
7188
7189 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7190 {
7191 struct perf_event *child_event, *tmp;
7192 struct perf_event_context *child_ctx;
7193 unsigned long flags;
7194
7195 if (likely(!child->perf_event_ctxp[ctxn])) {
7196 perf_event_task(child, NULL, 0);
7197 return;
7198 }
7199
7200 local_irq_save(flags);
7201 /*
7202 * We can't reschedule here because interrupts are disabled,
7203 * and either child is current or it is a task that can't be
7204 * scheduled, so we are now safe from rescheduling changing
7205 * our context.
7206 */
7207 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7208
7209 /*
7210 * Take the context lock here so that if find_get_context is
7211 * reading child->perf_event_ctxp, we wait until it has
7212 * incremented the context's refcount before we do put_ctx below.
7213 */
7214 raw_spin_lock(&child_ctx->lock);
7215 task_ctx_sched_out(child_ctx);
7216 child->perf_event_ctxp[ctxn] = NULL;
7217 /*
7218 * If this context is a clone; unclone it so it can't get
7219 * swapped to another process while we're removing all
7220 * the events from it.
7221 */
7222 unclone_ctx(child_ctx);
7223 update_context_time(child_ctx);
7224 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7225
7226 /*
7227 * Report the task dead after unscheduling the events so that we
7228 * won't get any samples after PERF_RECORD_EXIT. We can however still
7229 * get a few PERF_RECORD_READ events.
7230 */
7231 perf_event_task(child, child_ctx, 0);
7232
7233 /*
7234 * We can recurse on the same lock type through:
7235 *
7236 * __perf_event_exit_task()
7237 * sync_child_event()
7238 * put_event()
7239 * mutex_lock(&ctx->mutex)
7240 *
7241 * But since its the parent context it won't be the same instance.
7242 */
7243 mutex_lock(&child_ctx->mutex);
7244
7245 again:
7246 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7247 group_entry)
7248 __perf_event_exit_task(child_event, child_ctx, child);
7249
7250 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7251 group_entry)
7252 __perf_event_exit_task(child_event, child_ctx, child);
7253
7254 /*
7255 * If the last event was a group event, it will have appended all
7256 * its siblings to the list, but we obtained 'tmp' before that which
7257 * will still point to the list head terminating the iteration.
7258 */
7259 if (!list_empty(&child_ctx->pinned_groups) ||
7260 !list_empty(&child_ctx->flexible_groups))
7261 goto again;
7262
7263 mutex_unlock(&child_ctx->mutex);
7264
7265 put_ctx(child_ctx);
7266 }
7267
7268 /*
7269 * When a child task exits, feed back event values to parent events.
7270 */
7271 void perf_event_exit_task(struct task_struct *child)
7272 {
7273 struct perf_event *event, *tmp;
7274 int ctxn;
7275
7276 mutex_lock(&child->perf_event_mutex);
7277 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7278 owner_entry) {
7279 list_del_init(&event->owner_entry);
7280
7281 /*
7282 * Ensure the list deletion is visible before we clear
7283 * the owner, closes a race against perf_release() where
7284 * we need to serialize on the owner->perf_event_mutex.
7285 */
7286 smp_wmb();
7287 event->owner = NULL;
7288 }
7289 mutex_unlock(&child->perf_event_mutex);
7290
7291 for_each_task_context_nr(ctxn)
7292 perf_event_exit_task_context(child, ctxn);
7293 }
7294
7295 static void perf_free_event(struct perf_event *event,
7296 struct perf_event_context *ctx)
7297 {
7298 struct perf_event *parent = event->parent;
7299
7300 if (WARN_ON_ONCE(!parent))
7301 return;
7302
7303 mutex_lock(&parent->child_mutex);
7304 list_del_init(&event->child_list);
7305 mutex_unlock(&parent->child_mutex);
7306
7307 put_event(parent);
7308
7309 perf_group_detach(event);
7310 list_del_event(event, ctx);
7311 free_event(event);
7312 }
7313
7314 /*
7315 * free an unexposed, unused context as created by inheritance by
7316 * perf_event_init_task below, used by fork() in case of fail.
7317 */
7318 void perf_event_free_task(struct task_struct *task)
7319 {
7320 struct perf_event_context *ctx;
7321 struct perf_event *event, *tmp;
7322 int ctxn;
7323
7324 for_each_task_context_nr(ctxn) {
7325 ctx = task->perf_event_ctxp[ctxn];
7326 if (!ctx)
7327 continue;
7328
7329 mutex_lock(&ctx->mutex);
7330 again:
7331 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7332 group_entry)
7333 perf_free_event(event, ctx);
7334
7335 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7336 group_entry)
7337 perf_free_event(event, ctx);
7338
7339 if (!list_empty(&ctx->pinned_groups) ||
7340 !list_empty(&ctx->flexible_groups))
7341 goto again;
7342
7343 mutex_unlock(&ctx->mutex);
7344
7345 put_ctx(ctx);
7346 }
7347 }
7348
7349 void perf_event_delayed_put(struct task_struct *task)
7350 {
7351 int ctxn;
7352
7353 for_each_task_context_nr(ctxn)
7354 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7355 }
7356
7357 /*
7358 * inherit a event from parent task to child task:
7359 */
7360 static struct perf_event *
7361 inherit_event(struct perf_event *parent_event,
7362 struct task_struct *parent,
7363 struct perf_event_context *parent_ctx,
7364 struct task_struct *child,
7365 struct perf_event *group_leader,
7366 struct perf_event_context *child_ctx)
7367 {
7368 struct perf_event *child_event;
7369 unsigned long flags;
7370
7371 /*
7372 * Instead of creating recursive hierarchies of events,
7373 * we link inherited events back to the original parent,
7374 * which has a filp for sure, which we use as the reference
7375 * count:
7376 */
7377 if (parent_event->parent)
7378 parent_event = parent_event->parent;
7379
7380 child_event = perf_event_alloc(&parent_event->attr,
7381 parent_event->cpu,
7382 child,
7383 group_leader, parent_event,
7384 NULL, NULL);
7385 if (IS_ERR(child_event))
7386 return child_event;
7387
7388 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7389 free_event(child_event);
7390 return NULL;
7391 }
7392
7393 get_ctx(child_ctx);
7394
7395 /*
7396 * Make the child state follow the state of the parent event,
7397 * not its attr.disabled bit. We hold the parent's mutex,
7398 * so we won't race with perf_event_{en, dis}able_family.
7399 */
7400 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7401 child_event->state = PERF_EVENT_STATE_INACTIVE;
7402 else
7403 child_event->state = PERF_EVENT_STATE_OFF;
7404
7405 if (parent_event->attr.freq) {
7406 u64 sample_period = parent_event->hw.sample_period;
7407 struct hw_perf_event *hwc = &child_event->hw;
7408
7409 hwc->sample_period = sample_period;
7410 hwc->last_period = sample_period;
7411
7412 local64_set(&hwc->period_left, sample_period);
7413 }
7414
7415 child_event->ctx = child_ctx;
7416 child_event->overflow_handler = parent_event->overflow_handler;
7417 child_event->overflow_handler_context
7418 = parent_event->overflow_handler_context;
7419
7420 /*
7421 * Precalculate sample_data sizes
7422 */
7423 perf_event__header_size(child_event);
7424 perf_event__id_header_size(child_event);
7425
7426 /*
7427 * Link it up in the child's context:
7428 */
7429 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7430 add_event_to_ctx(child_event, child_ctx);
7431 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7432
7433 /*
7434 * Link this into the parent event's child list
7435 */
7436 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7437 mutex_lock(&parent_event->child_mutex);
7438 list_add_tail(&child_event->child_list, &parent_event->child_list);
7439 mutex_unlock(&parent_event->child_mutex);
7440
7441 return child_event;
7442 }
7443
7444 static int inherit_group(struct perf_event *parent_event,
7445 struct task_struct *parent,
7446 struct perf_event_context *parent_ctx,
7447 struct task_struct *child,
7448 struct perf_event_context *child_ctx)
7449 {
7450 struct perf_event *leader;
7451 struct perf_event *sub;
7452 struct perf_event *child_ctr;
7453
7454 leader = inherit_event(parent_event, parent, parent_ctx,
7455 child, NULL, child_ctx);
7456 if (IS_ERR(leader))
7457 return PTR_ERR(leader);
7458 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7459 child_ctr = inherit_event(sub, parent, parent_ctx,
7460 child, leader, child_ctx);
7461 if (IS_ERR(child_ctr))
7462 return PTR_ERR(child_ctr);
7463 }
7464 return 0;
7465 }
7466
7467 static int
7468 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7469 struct perf_event_context *parent_ctx,
7470 struct task_struct *child, int ctxn,
7471 int *inherited_all)
7472 {
7473 int ret;
7474 struct perf_event_context *child_ctx;
7475
7476 if (!event->attr.inherit) {
7477 *inherited_all = 0;
7478 return 0;
7479 }
7480
7481 child_ctx = child->perf_event_ctxp[ctxn];
7482 if (!child_ctx) {
7483 /*
7484 * This is executed from the parent task context, so
7485 * inherit events that have been marked for cloning.
7486 * First allocate and initialize a context for the
7487 * child.
7488 */
7489
7490 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7491 if (!child_ctx)
7492 return -ENOMEM;
7493
7494 child->perf_event_ctxp[ctxn] = child_ctx;
7495 }
7496
7497 ret = inherit_group(event, parent, parent_ctx,
7498 child, child_ctx);
7499
7500 if (ret)
7501 *inherited_all = 0;
7502
7503 return ret;
7504 }
7505
7506 /*
7507 * Initialize the perf_event context in task_struct
7508 */
7509 int perf_event_init_context(struct task_struct *child, int ctxn)
7510 {
7511 struct perf_event_context *child_ctx, *parent_ctx;
7512 struct perf_event_context *cloned_ctx;
7513 struct perf_event *event;
7514 struct task_struct *parent = current;
7515 int inherited_all = 1;
7516 unsigned long flags;
7517 int ret = 0;
7518
7519 if (likely(!parent->perf_event_ctxp[ctxn]))
7520 return 0;
7521
7522 /*
7523 * If the parent's context is a clone, pin it so it won't get
7524 * swapped under us.
7525 */
7526 parent_ctx = perf_pin_task_context(parent, ctxn);
7527
7528 /*
7529 * No need to check if parent_ctx != NULL here; since we saw
7530 * it non-NULL earlier, the only reason for it to become NULL
7531 * is if we exit, and since we're currently in the middle of
7532 * a fork we can't be exiting at the same time.
7533 */
7534
7535 /*
7536 * Lock the parent list. No need to lock the child - not PID
7537 * hashed yet and not running, so nobody can access it.
7538 */
7539 mutex_lock(&parent_ctx->mutex);
7540
7541 /*
7542 * We dont have to disable NMIs - we are only looking at
7543 * the list, not manipulating it:
7544 */
7545 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7546 ret = inherit_task_group(event, parent, parent_ctx,
7547 child, ctxn, &inherited_all);
7548 if (ret)
7549 break;
7550 }
7551
7552 /*
7553 * We can't hold ctx->lock when iterating the ->flexible_group list due
7554 * to allocations, but we need to prevent rotation because
7555 * rotate_ctx() will change the list from interrupt context.
7556 */
7557 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7558 parent_ctx->rotate_disable = 1;
7559 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7560
7561 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7562 ret = inherit_task_group(event, parent, parent_ctx,
7563 child, ctxn, &inherited_all);
7564 if (ret)
7565 break;
7566 }
7567
7568 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7569 parent_ctx->rotate_disable = 0;
7570
7571 child_ctx = child->perf_event_ctxp[ctxn];
7572
7573 if (child_ctx && inherited_all) {
7574 /*
7575 * Mark the child context as a clone of the parent
7576 * context, or of whatever the parent is a clone of.
7577 *
7578 * Note that if the parent is a clone, the holding of
7579 * parent_ctx->lock avoids it from being uncloned.
7580 */
7581 cloned_ctx = parent_ctx->parent_ctx;
7582 if (cloned_ctx) {
7583 child_ctx->parent_ctx = cloned_ctx;
7584 child_ctx->parent_gen = parent_ctx->parent_gen;
7585 } else {
7586 child_ctx->parent_ctx = parent_ctx;
7587 child_ctx->parent_gen = parent_ctx->generation;
7588 }
7589 get_ctx(child_ctx->parent_ctx);
7590 }
7591
7592 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7593 mutex_unlock(&parent_ctx->mutex);
7594
7595 perf_unpin_context(parent_ctx);
7596 put_ctx(parent_ctx);
7597
7598 return ret;
7599 }
7600
7601 /*
7602 * Initialize the perf_event context in task_struct
7603 */
7604 int perf_event_init_task(struct task_struct *child)
7605 {
7606 int ctxn, ret;
7607
7608 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7609 mutex_init(&child->perf_event_mutex);
7610 INIT_LIST_HEAD(&child->perf_event_list);
7611
7612 for_each_task_context_nr(ctxn) {
7613 ret = perf_event_init_context(child, ctxn);
7614 if (ret)
7615 return ret;
7616 }
7617
7618 return 0;
7619 }
7620
7621 static void __init perf_event_init_all_cpus(void)
7622 {
7623 struct swevent_htable *swhash;
7624 int cpu;
7625
7626 for_each_possible_cpu(cpu) {
7627 swhash = &per_cpu(swevent_htable, cpu);
7628 mutex_init(&swhash->hlist_mutex);
7629 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7630 }
7631 }
7632
7633 static void __cpuinit perf_event_init_cpu(int cpu)
7634 {
7635 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7636
7637 mutex_lock(&swhash->hlist_mutex);
7638 if (swhash->hlist_refcount > 0) {
7639 struct swevent_hlist *hlist;
7640
7641 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7642 WARN_ON(!hlist);
7643 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7644 }
7645 mutex_unlock(&swhash->hlist_mutex);
7646 }
7647
7648 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7649 static void perf_pmu_rotate_stop(struct pmu *pmu)
7650 {
7651 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7652
7653 WARN_ON(!irqs_disabled());
7654
7655 list_del_init(&cpuctx->rotation_list);
7656 }
7657
7658 static void __perf_event_exit_context(void *__info)
7659 {
7660 struct perf_event_context *ctx = __info;
7661 struct perf_event *event, *tmp;
7662
7663 perf_pmu_rotate_stop(ctx->pmu);
7664
7665 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7666 __perf_remove_from_context(event);
7667 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7668 __perf_remove_from_context(event);
7669 }
7670
7671 static void perf_event_exit_cpu_context(int cpu)
7672 {
7673 struct perf_event_context *ctx;
7674 struct pmu *pmu;
7675 int idx;
7676
7677 idx = srcu_read_lock(&pmus_srcu);
7678 list_for_each_entry_rcu(pmu, &pmus, entry) {
7679 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7680
7681 mutex_lock(&ctx->mutex);
7682 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7683 mutex_unlock(&ctx->mutex);
7684 }
7685 srcu_read_unlock(&pmus_srcu, idx);
7686 }
7687
7688 static void perf_event_exit_cpu(int cpu)
7689 {
7690 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7691
7692 mutex_lock(&swhash->hlist_mutex);
7693 swevent_hlist_release(swhash);
7694 mutex_unlock(&swhash->hlist_mutex);
7695
7696 perf_event_exit_cpu_context(cpu);
7697 }
7698 #else
7699 static inline void perf_event_exit_cpu(int cpu) { }
7700 #endif
7701
7702 static int
7703 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7704 {
7705 int cpu;
7706
7707 for_each_online_cpu(cpu)
7708 perf_event_exit_cpu(cpu);
7709
7710 return NOTIFY_OK;
7711 }
7712
7713 /*
7714 * Run the perf reboot notifier at the very last possible moment so that
7715 * the generic watchdog code runs as long as possible.
7716 */
7717 static struct notifier_block perf_reboot_notifier = {
7718 .notifier_call = perf_reboot,
7719 .priority = INT_MIN,
7720 };
7721
7722 static int __cpuinit
7723 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7724 {
7725 unsigned int cpu = (long)hcpu;
7726
7727 switch (action & ~CPU_TASKS_FROZEN) {
7728
7729 case CPU_UP_PREPARE:
7730 case CPU_DOWN_FAILED:
7731 perf_event_init_cpu(cpu);
7732 break;
7733
7734 case CPU_UP_CANCELED:
7735 case CPU_DOWN_PREPARE:
7736 perf_event_exit_cpu(cpu);
7737 break;
7738 default:
7739 break;
7740 }
7741
7742 return NOTIFY_OK;
7743 }
7744
7745 void __init perf_event_init(void)
7746 {
7747 int ret;
7748
7749 idr_init(&pmu_idr);
7750
7751 perf_event_init_all_cpus();
7752 init_srcu_struct(&pmus_srcu);
7753 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7754 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7755 perf_pmu_register(&perf_task_clock, NULL, -1);
7756 perf_tp_register();
7757 perf_cpu_notifier(perf_cpu_notify);
7758 register_reboot_notifier(&perf_reboot_notifier);
7759
7760 ret = init_hw_breakpoint();
7761 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7762
7763 /* do not patch jump label more than once per second */
7764 jump_label_rate_limit(&perf_sched_events, HZ);
7765
7766 /*
7767 * Build time assertion that we keep the data_head at the intended
7768 * location. IOW, validation we got the __reserved[] size right.
7769 */
7770 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7771 != 1024);
7772 }
7773
7774 static int __init perf_event_sysfs_init(void)
7775 {
7776 struct pmu *pmu;
7777 int ret;
7778
7779 mutex_lock(&pmus_lock);
7780
7781 ret = bus_register(&pmu_bus);
7782 if (ret)
7783 goto unlock;
7784
7785 list_for_each_entry(pmu, &pmus, entry) {
7786 if (!pmu->name || pmu->type < 0)
7787 continue;
7788
7789 ret = pmu_dev_alloc(pmu);
7790 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7791 }
7792 pmu_bus_running = 1;
7793 ret = 0;
7794
7795 unlock:
7796 mutex_unlock(&pmus_lock);
7797
7798 return ret;
7799 }
7800 device_initcall(perf_event_sysfs_init);
7801
7802 #ifdef CONFIG_CGROUP_PERF
7803 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7804 {
7805 struct perf_cgroup *jc;
7806
7807 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7808 if (!jc)
7809 return ERR_PTR(-ENOMEM);
7810
7811 jc->info = alloc_percpu(struct perf_cgroup_info);
7812 if (!jc->info) {
7813 kfree(jc);
7814 return ERR_PTR(-ENOMEM);
7815 }
7816
7817 return &jc->css;
7818 }
7819
7820 static void perf_cgroup_css_free(struct cgroup *cont)
7821 {
7822 struct perf_cgroup *jc;
7823 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7824 struct perf_cgroup, css);
7825 free_percpu(jc->info);
7826 kfree(jc);
7827 }
7828
7829 static int __perf_cgroup_move(void *info)
7830 {
7831 struct task_struct *task = info;
7832 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7833 return 0;
7834 }
7835
7836 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7837 {
7838 struct task_struct *task;
7839
7840 cgroup_taskset_for_each(task, cgrp, tset)
7841 task_function_call(task, __perf_cgroup_move, task);
7842 }
7843
7844 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7845 struct task_struct *task)
7846 {
7847 /*
7848 * cgroup_exit() is called in the copy_process() failure path.
7849 * Ignore this case since the task hasn't ran yet, this avoids
7850 * trying to poke a half freed task state from generic code.
7851 */
7852 if (!(task->flags & PF_EXITING))
7853 return;
7854
7855 task_function_call(task, __perf_cgroup_move, task);
7856 }
7857
7858 struct cgroup_subsys perf_subsys = {
7859 .name = "perf_event",
7860 .subsys_id = perf_subsys_id,
7861 .css_alloc = perf_cgroup_css_alloc,
7862 .css_free = perf_cgroup_css_free,
7863 .exit = perf_cgroup_exit,
7864 .attach = perf_cgroup_attach,
7865 };
7866 #endif /* CONFIG_CGROUP_PERF */
This page took 0.195255 seconds and 5 git commands to generate.