Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
498
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
520 WARN_ON_ONCE(cpuctx->cgrp);
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 }
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537 }
538
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
541 {
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
568 {
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592 {
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
595 struct fd f = fdget(fd);
596 int ret = 0;
597
598 if (!f.file)
599 return -EBADF;
600
601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 &perf_event_cgrp_subsys);
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
619 }
620 out:
621 fdput(f);
622 return ret;
623 }
624
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631 }
632
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644 }
645
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649 {
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 return true;
672 }
673
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 return 0;
680 }
681
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 return 0;
685 }
686
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
697 {
698 }
699
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
702 {
703 }
704
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708 {
709 return -EINVAL;
710 }
711
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
715 {
716 }
717
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 return 0;
731 }
732
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744
745 /*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751 * function must be called with interrupts disbled
752 */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 struct perf_cpu_context *cpuctx;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 rotations = perf_rotate_context(cpuctx);
762
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
769
770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 struct hrtimer *timer = &cpuctx->hrtimer;
776 struct pmu *pmu = cpuctx->ctx.pmu;
777 u64 interval;
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790
791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 timer->function = perf_mux_hrtimer_handler;
796 }
797
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 struct hrtimer *timer = &cpuctx->hrtimer;
801 struct pmu *pmu = cpuctx->ctx.pmu;
802 unsigned long flags;
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
806 return 0;
807
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815
816 return 0;
817 }
818
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
824 }
825
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
831 }
832
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834
835 /*
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
840 */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
844
845 WARN_ON(!irqs_disabled());
846
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850 }
851
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
859 }
860
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865
866 static void free_ctx(struct rcu_head *head)
867 {
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873 }
874
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
880 if (ctx->task)
881 put_task_struct(ctx->task);
882 call_rcu(&ctx->rcu_head, free_ctx);
883 }
884 }
885
886 /*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 struct perf_event_context *ctx;
951
952 again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
961 mutex_lock_nested(&ctx->mutex, nesting);
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969 }
970
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 return perf_event_ctx_lock_nested(event, 0);
975 }
976
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979 {
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982 }
983
984 /*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
997 ctx->parent_ctx = NULL;
998 ctx->generation++;
999
1000 return parent_ctx;
1001 }
1002
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012 }
1013
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023 }
1024
1025 /*
1026 * If we inherit events we want to return the parent event id
1027 * to userspace.
1028 */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 u64 id = event->id;
1032
1033 if (event->parent)
1034 id = event->parent->id;
1035
1036 return id;
1037 }
1038
1039 /*
1040 * Get the perf_event_context for a task and lock it.
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 struct perf_event_context *ctx;
1048
1049 retry:
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
1066 * perf_event_task_sched_out, though the
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 rcu_read_unlock();
1077 preempt_enable();
1078 goto retry;
1079 }
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 ctx = NULL;
1084 }
1085 }
1086 rcu_read_unlock();
1087 preempt_enable();
1088 return ctx;
1089 }
1090
1091 /*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 struct perf_event_context *ctx;
1100 unsigned long flags;
1101
1102 ctx = perf_lock_task_context(task, ctxn, &flags);
1103 if (ctx) {
1104 ++ctx->pin_count;
1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 }
1107 return ctx;
1108 }
1109
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&ctx->lock, flags);
1115 --ctx->pin_count;
1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118
1119 /*
1120 * Update the record of the current time in a context.
1121 */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128 }
1129
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 struct perf_event_context *ctx = event->ctx;
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
1137 return ctx ? ctx->time : 0;
1138 }
1139
1140 /*
1141 * Update the total_time_enabled and total_time_running fields for a event.
1142 * The caller of this function needs to hold the ctx->lock.
1143 */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
1163 run_end = perf_cgroup_event_time(event);
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
1174 run_end = perf_event_time(event);
1175
1176 event->total_time_running = run_end - event->tstamp_running;
1177
1178 }
1179
1180 /*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190 }
1191
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199 }
1200
1201 /*
1202 * Add a event from the lists for its context.
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
1210
1211 /*
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
1215 */
1216 if (event->group_leader == event) {
1217 struct list_head *list;
1218
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
1224 }
1225
1226 if (is_cgroup_event(event))
1227 ctx->nr_cgroups++;
1228
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
1232 ctx->nr_stat++;
1233
1234 ctx->generation++;
1235 }
1236
1237 /*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244 }
1245
1246 /*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250 static void perf_event__read_size(struct perf_event *event)
1251 {
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272 }
1273
1274 static void perf_event__header_size(struct perf_event *event)
1275 {
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
1303 event->header_size = size;
1304 }
1305
1306 static void perf_event__id_header_size(struct perf_event *event)
1307 {
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
1330 event->id_header_size = size;
1331 }
1332
1333 static void perf_group_attach(struct perf_event *event)
1334 {
1335 struct perf_event *group_leader = event->group_leader, *pos;
1336
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
1361 }
1362
1363 /*
1364 * Remove a event from the lists for its context.
1365 * Must be called with ctx->mutex and ctx->lock held.
1366 */
1367 static void
1368 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 struct perf_cpu_context *cpuctx;
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379 return;
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
1383 if (is_cgroup_event(event)) {
1384 ctx->nr_cgroups--;
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
1394
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
1397 ctx->nr_stat--;
1398
1399 list_del_rcu(&event->event_entry);
1400
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
1403
1404 update_group_times(event);
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
1415
1416 ctx->generation++;
1417 }
1418
1419 static void perf_group_detach(struct perf_event *event)
1420 {
1421 struct perf_event *sibling, *tmp;
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
1438 goto out;
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
1443
1444 /*
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
1447 * to whatever list we are on.
1448 */
1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
1452 sibling->group_leader = sibling;
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
1458 }
1459
1460 out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
1465 }
1466
1467 /*
1468 * User event without the task.
1469 */
1470 static bool is_orphaned_event(struct perf_event *event)
1471 {
1472 return event && !is_kernel_event(event) && !event->owner;
1473 }
1474
1475 /*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479 static bool is_orphaned_child(struct perf_event *event)
1480 {
1481 return is_orphaned_event(event->parent);
1482 }
1483
1484 static void orphans_remove_work(struct work_struct *work);
1485
1486 static void schedule_orphans_remove(struct perf_event_context *ctx)
1487 {
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495 }
1496
1497 static int __init perf_workqueue_init(void)
1498 {
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502 }
1503
1504 core_initcall(perf_workqueue_init);
1505
1506 static inline int pmu_filter_match(struct perf_event *event)
1507 {
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510 }
1511
1512 static inline int
1513 event_filter_match(struct perf_event *event)
1514 {
1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
1516 && perf_cgroup_match(event) && pmu_filter_match(event);
1517 }
1518
1519 static void
1520 event_sched_out(struct perf_event *event,
1521 struct perf_cpu_context *cpuctx,
1522 struct perf_event_context *ctx)
1523 {
1524 u64 tstamp = perf_event_time(event);
1525 u64 delta;
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
1538 delta = tstamp - event->tstamp_stopped;
1539 event->tstamp_running += delta;
1540 event->tstamp_stopped = tstamp;
1541 }
1542
1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 return;
1545
1546 perf_pmu_disable(event->pmu);
1547
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
1552 }
1553 event->tstamp_stopped = tstamp;
1554 event->pmu->del(event, 0);
1555 event->oncpu = -1;
1556
1557 if (!is_software_event(event))
1558 cpuctx->active_oncpu--;
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
1564 cpuctx->exclusive = 0;
1565
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
1569 perf_pmu_enable(event->pmu);
1570 }
1571
1572 static void
1573 group_sched_out(struct perf_event *group_event,
1574 struct perf_cpu_context *cpuctx,
1575 struct perf_event_context *ctx)
1576 {
1577 struct perf_event *event;
1578 int state = group_event->state;
1579
1580 event_sched_out(group_event, cpuctx, ctx);
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
1587
1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 cpuctx->exclusive = 0;
1590 }
1591
1592 struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595 };
1596
1597 /*
1598 * Cross CPU call to remove a performance event
1599 *
1600 * We disable the event on the hardware level first. After that we
1601 * remove it from the context list.
1602 */
1603 static int __perf_remove_from_context(void *info)
1604 {
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
1607 struct perf_event_context *ctx = event->ctx;
1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609
1610 raw_spin_lock(&ctx->lock);
1611 event_sched_out(event, cpuctx, ctx);
1612 if (re->detach_group)
1613 perf_group_detach(event);
1614 list_del_event(event, ctx);
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
1619 raw_spin_unlock(&ctx->lock);
1620
1621 return 0;
1622 }
1623
1624
1625 /*
1626 * Remove the event from a task's (or a CPU's) list of events.
1627 *
1628 * CPU events are removed with a smp call. For task events we only
1629 * call when the task is on a CPU.
1630 *
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
1635 * When called from perf_event_exit_task, it's OK because the
1636 * context has been detached from its task.
1637 */
1638 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1639 {
1640 struct perf_event_context *ctx = event->ctx;
1641 struct task_struct *task = ctx->task;
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
1646
1647 lockdep_assert_held(&ctx->mutex);
1648
1649 if (!task) {
1650 /*
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
1655 */
1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1657 return;
1658 }
1659
1660 retry:
1661 if (!task_function_call(task, __perf_remove_from_context, &re))
1662 return;
1663
1664 raw_spin_lock_irq(&ctx->lock);
1665 /*
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
1668 */
1669 if (ctx->is_active) {
1670 raw_spin_unlock_irq(&ctx->lock);
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
1676 goto retry;
1677 }
1678
1679 /*
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
1682 */
1683 if (detach_group)
1684 perf_group_detach(event);
1685 list_del_event(event, ctx);
1686 raw_spin_unlock_irq(&ctx->lock);
1687 }
1688
1689 /*
1690 * Cross CPU call to disable a performance event
1691 */
1692 int __perf_event_disable(void *info)
1693 {
1694 struct perf_event *event = info;
1695 struct perf_event_context *ctx = event->ctx;
1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697
1698 /*
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
1704 */
1705 if (ctx->task && cpuctx->task_ctx != ctx)
1706 return -EINVAL;
1707
1708 raw_spin_lock(&ctx->lock);
1709
1710 /*
1711 * If the event is on, turn it off.
1712 * If it is in error state, leave it in error state.
1713 */
1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715 update_context_time(ctx);
1716 update_cgrp_time_from_event(event);
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
1720 else
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
1723 }
1724
1725 raw_spin_unlock(&ctx->lock);
1726
1727 return 0;
1728 }
1729
1730 /*
1731 * Disable a event.
1732 *
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
1735 * remains valid. This condition is satisifed when called through
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
1740 * is the current context on this CPU and preemption is disabled,
1741 * hence we can't get into perf_event_task_sched_out for this context.
1742 */
1743 static void _perf_event_disable(struct perf_event *event)
1744 {
1745 struct perf_event_context *ctx = event->ctx;
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
1750 * Disable the event on the cpu that it's on
1751 */
1752 cpu_function_call(event->cpu, __perf_event_disable, event);
1753 return;
1754 }
1755
1756 retry:
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
1759
1760 raw_spin_lock_irq(&ctx->lock);
1761 /*
1762 * If the event is still active, we need to retry the cross-call.
1763 */
1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765 raw_spin_unlock_irq(&ctx->lock);
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
1781 }
1782 raw_spin_unlock_irq(&ctx->lock);
1783 }
1784
1785 /*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789 void perf_event_disable(struct perf_event *event)
1790 {
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796 }
1797 EXPORT_SYMBOL_GPL(perf_event_disable);
1798
1799 static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802 {
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832 }
1833
1834 #define MAX_INTERRUPTS (~0ULL)
1835
1836 static void perf_log_throttle(struct perf_event *event, int enable);
1837 static void perf_log_itrace_start(struct perf_event *event);
1838
1839 static int
1840 event_sched_in(struct perf_event *event,
1841 struct perf_cpu_context *cpuctx,
1842 struct perf_event_context *ctx)
1843 {
1844 u64 tstamp = perf_event_time(event);
1845 int ret = 0;
1846
1847 lockdep_assert_held(&ctx->lock);
1848
1849 if (event->state <= PERF_EVENT_STATE_OFF)
1850 return 0;
1851
1852 event->state = PERF_EVENT_STATE_ACTIVE;
1853 event->oncpu = smp_processor_id();
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
1870 perf_pmu_disable(event->pmu);
1871
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
1874 perf_log_itrace_start(event);
1875
1876 if (event->pmu->add(event, PERF_EF_START)) {
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
1879 ret = -EAGAIN;
1880 goto out;
1881 }
1882
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
1885 if (!is_software_event(event))
1886 cpuctx->active_oncpu++;
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
1891
1892 if (event->attr.exclusive)
1893 cpuctx->exclusive = 1;
1894
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
1898 out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
1902 }
1903
1904 static int
1905 group_sched_in(struct perf_event *group_event,
1906 struct perf_cpu_context *cpuctx,
1907 struct perf_event_context *ctx)
1908 {
1909 struct perf_event *event, *partial_group = NULL;
1910 struct pmu *pmu = ctx->pmu;
1911 u64 now = ctx->time;
1912 bool simulate = false;
1913
1914 if (group_event->state == PERF_EVENT_STATE_OFF)
1915 return 0;
1916
1917 pmu->start_txn(pmu);
1918
1919 if (event_sched_in(group_event, cpuctx, ctx)) {
1920 pmu->cancel_txn(pmu);
1921 perf_mux_hrtimer_restart(cpuctx);
1922 return -EAGAIN;
1923 }
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929 if (event_sched_in(event, cpuctx, ctx)) {
1930 partial_group = event;
1931 goto group_error;
1932 }
1933 }
1934
1935 if (!pmu->commit_txn(pmu))
1936 return 0;
1937
1938 group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
1952 */
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
1963 }
1964 event_sched_out(group_event, cpuctx, ctx);
1965
1966 pmu->cancel_txn(pmu);
1967
1968 perf_mux_hrtimer_restart(cpuctx);
1969
1970 return -EAGAIN;
1971 }
1972
1973 /*
1974 * Work out whether we can put this event group on the CPU now.
1975 */
1976 static int group_can_go_on(struct perf_event *event,
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979 {
1980 /*
1981 * Groups consisting entirely of software events can always go on.
1982 */
1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
1987 * events can go on.
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
1993 * events on the CPU, it can't go on.
1994 */
1995 if (event->attr.exclusive && cpuctx->active_oncpu)
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002 }
2003
2004 static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
2006 {
2007 u64 tstamp = perf_event_time(event);
2008
2009 list_add_event(event, ctx);
2010 perf_group_attach(event);
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
2014 }
2015
2016 static void task_ctx_sched_out(struct perf_event_context *ctx);
2017 static void
2018 ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
2022
2023 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026 {
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033 }
2034
2035 /*
2036 * Cross CPU call to install and enable a performance event
2037 *
2038 * Must be called with ctx->mutex held
2039 */
2040 static int __perf_install_in_context(void *info)
2041 {
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
2048 perf_ctx_lock(cpuctx, task_ctx);
2049 perf_pmu_disable(cpuctx->ctx.pmu);
2050
2051 /*
2052 * If there was an active task_ctx schedule it out.
2053 */
2054 if (task_ctx)
2055 task_ctx_sched_out(task_ctx);
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2070 task = task_ctx->task;
2071 }
2072
2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2074
2075 update_context_time(ctx);
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
2082
2083 add_event_to_ctx(event, ctx);
2084
2085 /*
2086 * Schedule everything back in
2087 */
2088 perf_event_sched_in(cpuctx, task_ctx, task);
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
2092
2093 return 0;
2094 }
2095
2096 /*
2097 * Attach a performance event to a context
2098 *
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
2101 *
2102 * If the event is attached to a task which is on a CPU we use a smp
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106 static void
2107 perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
2109 int cpu)
2110 {
2111 struct task_struct *task = ctx->task;
2112
2113 lockdep_assert_held(&ctx->mutex);
2114
2115 event->ctx = ctx;
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
2118
2119 if (!task) {
2120 /*
2121 * Per cpu events are installed via an smp call and
2122 * the install is always successful.
2123 */
2124 cpu_function_call(cpu, __perf_install_in_context, event);
2125 return;
2126 }
2127
2128 retry:
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
2131
2132 raw_spin_lock_irq(&ctx->lock);
2133 /*
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
2136 */
2137 if (ctx->is_active) {
2138 raw_spin_unlock_irq(&ctx->lock);
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
2144 goto retry;
2145 }
2146
2147 /*
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
2150 */
2151 add_event_to_ctx(event, ctx);
2152 raw_spin_unlock_irq(&ctx->lock);
2153 }
2154
2155 /*
2156 * Put a event into inactive state and update time fields.
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
2163 static void __perf_event_mark_enabled(struct perf_event *event)
2164 {
2165 struct perf_event *sub;
2166 u64 tstamp = perf_event_time(event);
2167
2168 event->state = PERF_EVENT_STATE_INACTIVE;
2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2173 }
2174 }
2175
2176 /*
2177 * Cross CPU call to enable a performance event
2178 */
2179 static int __perf_event_enable(void *info)
2180 {
2181 struct perf_event *event = info;
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185 int err;
2186
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
2197 return -EINVAL;
2198
2199 raw_spin_lock(&ctx->lock);
2200 update_context_time(ctx);
2201
2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203 goto unlock;
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
2208 perf_cgroup_set_timestamp(current, ctx);
2209
2210 __perf_event_mark_enabled(event);
2211
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
2215 goto unlock;
2216 }
2217
2218 /*
2219 * If the event is in a group and isn't the group leader,
2220 * then don't put it on unless the group is on.
2221 */
2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223 goto unlock;
2224
2225 if (!group_can_go_on(event, cpuctx, 1)) {
2226 err = -EEXIST;
2227 } else {
2228 if (event == leader)
2229 err = group_sched_in(event, cpuctx, ctx);
2230 else
2231 err = event_sched_in(event, cpuctx, ctx);
2232 }
2233
2234 if (err) {
2235 /*
2236 * If this event can't go on and it's part of a
2237 * group, then the whole group has to come off.
2238 */
2239 if (leader != event) {
2240 group_sched_out(leader, cpuctx, ctx);
2241 perf_mux_hrtimer_restart(cpuctx);
2242 }
2243 if (leader->attr.pinned) {
2244 update_group_times(leader);
2245 leader->state = PERF_EVENT_STATE_ERROR;
2246 }
2247 }
2248
2249 unlock:
2250 raw_spin_unlock(&ctx->lock);
2251
2252 return 0;
2253 }
2254
2255 /*
2256 * Enable a event.
2257 *
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
2260 * remains valid. This condition is satisfied when called through
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
2263 */
2264 static void _perf_event_enable(struct perf_event *event)
2265 {
2266 struct perf_event_context *ctx = event->ctx;
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
2271 * Enable the event on the cpu that it's on
2272 */
2273 cpu_function_call(event->cpu, __perf_event_enable, event);
2274 return;
2275 }
2276
2277 raw_spin_lock_irq(&ctx->lock);
2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 goto out;
2280
2281 /*
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
2290
2291 retry:
2292 if (!ctx->is_active) {
2293 __perf_event_mark_enabled(event);
2294 goto out;
2295 }
2296
2297 raw_spin_unlock_irq(&ctx->lock);
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
2301
2302 raw_spin_lock_irq(&ctx->lock);
2303
2304 /*
2305 * If the context is active and the event is still off,
2306 * we need to retry the cross-call.
2307 */
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
2314 goto retry;
2315 }
2316
2317 out:
2318 raw_spin_unlock_irq(&ctx->lock);
2319 }
2320
2321 /*
2322 * See perf_event_disable();
2323 */
2324 void perf_event_enable(struct perf_event *event)
2325 {
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331 }
2332 EXPORT_SYMBOL_GPL(perf_event_enable);
2333
2334 static int _perf_event_refresh(struct perf_event *event, int refresh)
2335 {
2336 /*
2337 * not supported on inherited events
2338 */
2339 if (event->attr.inherit || !is_sampling_event(event))
2340 return -EINVAL;
2341
2342 atomic_add(refresh, &event->event_limit);
2343 _perf_event_enable(event);
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * See perf_event_disable()
2350 */
2351 int perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361 }
2362 EXPORT_SYMBOL_GPL(perf_event_refresh);
2363
2364 static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
2367 {
2368 struct perf_event *event;
2369 int is_active = ctx->is_active;
2370
2371 ctx->is_active &= ~event_type;
2372 if (likely(!ctx->nr_events))
2373 return;
2374
2375 update_context_time(ctx);
2376 update_cgrp_time_from_cpuctx(cpuctx);
2377 if (!ctx->nr_active)
2378 return;
2379
2380 perf_pmu_disable(ctx->pmu);
2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
2384 }
2385
2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388 group_sched_out(event, cpuctx, ctx);
2389 }
2390 perf_pmu_enable(ctx->pmu);
2391 }
2392
2393 /*
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
2400 */
2401 static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
2403 {
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
2429 }
2430
2431 static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
2433 {
2434 u64 value;
2435
2436 if (!event->attr.inherit_stat)
2437 return;
2438
2439 /*
2440 * Update the event value, we cannot use perf_event_read()
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
2443 * we know the event must be on the current CPU, therefore we
2444 * don't need to use it.
2445 */
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
2448 event->pmu->read(event);
2449 /* fall-through */
2450
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
2460 * In order to keep per-task stats reliable we need to flip the event
2461 * values when we flip the contexts.
2462 */
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
2466
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
2469
2470 /*
2471 * Since we swizzled the values, update the user visible data too.
2472 */
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
2475 }
2476
2477 static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
2479 {
2480 struct perf_event *event, *next_event;
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
2485 update_context_time(ctx);
2486
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
2489
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
2492
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
2495
2496 __perf_event_sync_stat(event, next_event);
2497
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
2500 }
2501 }
2502
2503 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
2505 {
2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507 struct perf_event_context *next_ctx;
2508 struct perf_event_context *parent, *next_parent;
2509 struct perf_cpu_context *cpuctx;
2510 int do_switch = 1;
2511
2512 if (likely(!ctx))
2513 return;
2514
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
2517 return;
2518
2519 rcu_read_lock();
2520 next_ctx = next->perf_event_ctxp[ctxn];
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
2528 if (!parent && !next_parent)
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543 if (context_equiv(ctx, next_ctx)) {
2544 /*
2545 * XXX do we need a memory barrier of sorts
2546 * wrt to rcu_dereference() of perf_event_ctxp
2547 */
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
2550 ctx->task = next;
2551 next_ctx->task = task;
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
2555 do_switch = 0;
2556
2557 perf_event_sync_stat(ctx, next_ctx);
2558 }
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
2561 }
2562 unlock:
2563 rcu_read_unlock();
2564
2565 if (do_switch) {
2566 raw_spin_lock(&ctx->lock);
2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568 cpuctx->task_ctx = NULL;
2569 raw_spin_unlock(&ctx->lock);
2570 }
2571 }
2572
2573 void perf_sched_cb_dec(struct pmu *pmu)
2574 {
2575 this_cpu_dec(perf_sched_cb_usages);
2576 }
2577
2578 void perf_sched_cb_inc(struct pmu *pmu)
2579 {
2580 this_cpu_inc(perf_sched_cb_usages);
2581 }
2582
2583 /*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587 static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590 {
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621 }
2622
2623 static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
2626 #define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629 /*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
2640 void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
2642 {
2643 int ctxn;
2644
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660 perf_cgroup_sched_out(task, next);
2661 }
2662
2663 static void task_ctx_sched_out(struct perf_event_context *ctx)
2664 {
2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666
2667 if (!cpuctx->task_ctx)
2668 return;
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 cpuctx->task_ctx = NULL;
2675 }
2676
2677 /*
2678 * Called with IRQs disabled
2679 */
2680 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682 {
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 }
2685
2686 static void
2687 ctx_pinned_sched_in(struct perf_event_context *ctx,
2688 struct perf_cpu_context *cpuctx)
2689 {
2690 struct perf_event *event;
2691
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
2694 continue;
2695 if (!event_filter_match(event))
2696 continue;
2697
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
2702 if (group_can_go_on(event, cpuctx, 1))
2703 group_sched_in(event, cpuctx, ctx);
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
2712 }
2713 }
2714 }
2715
2716 static void
2717 ctx_flexible_sched_in(struct perf_event_context *ctx,
2718 struct perf_cpu_context *cpuctx)
2719 {
2720 struct perf_event *event;
2721 int can_add_hw = 1;
2722
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
2726 continue;
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
2729 * of events:
2730 */
2731 if (!event_filter_match(event))
2732 continue;
2733
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739 if (group_sched_in(event, cpuctx, ctx))
2740 can_add_hw = 0;
2741 }
2742 }
2743 }
2744
2745 static void
2746 ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
2748 enum event_type_t event_type,
2749 struct task_struct *task)
2750 {
2751 u64 now;
2752 int is_active = ctx->is_active;
2753
2754 ctx->is_active |= event_type;
2755 if (likely(!ctx->nr_events))
2756 return;
2757
2758 now = perf_clock();
2759 ctx->timestamp = now;
2760 perf_cgroup_set_timestamp(task, ctx);
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766 ctx_pinned_sched_in(ctx, cpuctx);
2767
2768 /* Then walk through the lower prio flexible groups */
2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770 ctx_flexible_sched_in(ctx, cpuctx);
2771 }
2772
2773 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2774 enum event_type_t event_type,
2775 struct task_struct *task)
2776 {
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
2779 ctx_sched_in(ctx, cpuctx, event_type, task);
2780 }
2781
2782 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
2784 {
2785 struct perf_cpu_context *cpuctx;
2786
2787 cpuctx = __get_cpu_context(ctx);
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
2791 perf_ctx_lock(cpuctx, ctx);
2792 perf_pmu_disable(ctx->pmu);
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
2802
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
2807 }
2808
2809 /*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
2820 void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
2822 {
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
2831 perf_event_context_sched_in(ctx, task);
2832 }
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 perf_cgroup_sched_in(prev, task);
2840
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
2846 }
2847
2848 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849 {
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
2875 #define REDUCE_FLS(a, b) \
2876 do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884 } while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
2915 if (!divisor)
2916 return dividend;
2917
2918 return div64_u64(dividend, divisor);
2919 }
2920
2921 static DEFINE_PER_CPU(int, perf_throttled_count);
2922 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
2924 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925 {
2926 struct hw_perf_event *hwc = &event->hw;
2927 s64 period, sample_period;
2928 s64 delta;
2929
2930 period = perf_calculate_period(event, nsec, count);
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
2940 hwc->sample_period = sample_period;
2941
2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
2946 local64_set(&hwc->period_left, 0);
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
2950 }
2951 }
2952
2953 /*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
2960 {
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
2963 u64 now, period = TICK_NSEC;
2964 s64 delta;
2965
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
2972 return;
2973
2974 raw_spin_lock(&ctx->lock);
2975 perf_pmu_disable(ctx->pmu);
2976
2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 continue;
2980
2981 if (!event_filter_match(event))
2982 continue;
2983
2984 perf_pmu_disable(event->pmu);
2985
2986 hwc = &event->hw;
2987
2988 if (hwc->interrupts == MAX_INTERRUPTS) {
2989 hwc->interrupts = 0;
2990 perf_log_throttle(event, 1);
2991 event->pmu->start(event, 0);
2992 }
2993
2994 if (!event->attr.freq || !event->attr.sample_freq)
2995 goto next;
2996
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
3002 now = local64_read(&event->count);
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
3005
3006 /*
3007 * restart the event
3008 * reload only if value has changed
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
3012 */
3013 if (delta > 0)
3014 perf_adjust_period(event, period, delta, false);
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 next:
3018 perf_pmu_enable(event->pmu);
3019 }
3020
3021 perf_pmu_enable(ctx->pmu);
3022 raw_spin_unlock(&ctx->lock);
3023 }
3024
3025 /*
3026 * Round-robin a context's events:
3027 */
3028 static void rotate_ctx(struct perf_event_context *ctx)
3029 {
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
3036 }
3037
3038 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039 {
3040 struct perf_event_context *ctx = NULL;
3041 int rotate = 0;
3042
3043 if (cpuctx->ctx.nr_events) {
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
3047
3048 ctx = cpuctx->task_ctx;
3049 if (ctx && ctx->nr_events) {
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
3053
3054 if (!rotate)
3055 goto done;
3056
3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3058 perf_pmu_disable(cpuctx->ctx.pmu);
3059
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3063
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
3067
3068 perf_event_sched_in(cpuctx, ctx, current);
3069
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072 done:
3073
3074 return rotate;
3075 }
3076
3077 #ifdef CONFIG_NO_HZ_FULL
3078 bool perf_event_can_stop_tick(void)
3079 {
3080 if (atomic_read(&nr_freq_events) ||
3081 __this_cpu_read(perf_throttled_count))
3082 return false;
3083 else
3084 return true;
3085 }
3086 #endif
3087
3088 void perf_event_task_tick(void)
3089 {
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
3092 int throttled;
3093
3094 WARN_ON(!irqs_disabled());
3095
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100 perf_adjust_freq_unthr_context(ctx, throttled);
3101 }
3102
3103 static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105 {
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
3113 __perf_event_mark_enabled(event);
3114
3115 return 1;
3116 }
3117
3118 /*
3119 * Enable all of a task's events that have been marked enable-on-exec.
3120 * This expects task == current.
3121 */
3122 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123 {
3124 struct perf_event_context *clone_ctx = NULL;
3125 struct perf_event *event;
3126 unsigned long flags;
3127 int enabled = 0;
3128 int ret;
3129
3130 local_irq_save(flags);
3131 if (!ctx || !ctx->nr_events)
3132 goto out;
3133
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
3141 perf_cgroup_sched_out(current, NULL);
3142
3143 raw_spin_lock(&ctx->lock);
3144 task_ctx_sched_out(ctx);
3145
3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
3150 }
3151
3152 /*
3153 * Unclone this context if we enabled any event.
3154 */
3155 if (enabled)
3156 clone_ctx = unclone_ctx(ctx);
3157
3158 raw_spin_unlock(&ctx->lock);
3159
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
3163 perf_event_context_sched_in(ctx, ctx->task);
3164 out:
3165 local_irq_restore(flags);
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
3169 }
3170
3171 void perf_event_exec(void)
3172 {
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185 }
3186
3187 /*
3188 * Cross CPU call to read the hardware event
3189 */
3190 static void __perf_event_read(void *info)
3191 {
3192 struct perf_event *event = info;
3193 struct perf_event_context *ctx = event->ctx;
3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3195
3196 /*
3197 * If this is a task context, we need to check whether it is
3198 * the current task context of this cpu. If not it has been
3199 * scheduled out before the smp call arrived. In that case
3200 * event->count would have been updated to a recent sample
3201 * when the event was scheduled out.
3202 */
3203 if (ctx->task && cpuctx->task_ctx != ctx)
3204 return;
3205
3206 raw_spin_lock(&ctx->lock);
3207 if (ctx->is_active) {
3208 update_context_time(ctx);
3209 update_cgrp_time_from_event(event);
3210 }
3211 update_event_times(event);
3212 if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 event->pmu->read(event);
3214 raw_spin_unlock(&ctx->lock);
3215 }
3216
3217 static inline u64 perf_event_count(struct perf_event *event)
3218 {
3219 if (event->pmu->count)
3220 return event->pmu->count(event);
3221
3222 return __perf_event_count(event);
3223 }
3224
3225 /*
3226 * NMI-safe method to read a local event, that is an event that
3227 * is:
3228 * - either for the current task, or for this CPU
3229 * - does not have inherit set, for inherited task events
3230 * will not be local and we cannot read them atomically
3231 * - must not have a pmu::count method
3232 */
3233 u64 perf_event_read_local(struct perf_event *event)
3234 {
3235 unsigned long flags;
3236 u64 val;
3237
3238 /*
3239 * Disabling interrupts avoids all counter scheduling (context
3240 * switches, timer based rotation and IPIs).
3241 */
3242 local_irq_save(flags);
3243
3244 /* If this is a per-task event, it must be for current */
3245 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3246 event->hw.target != current);
3247
3248 /* If this is a per-CPU event, it must be for this CPU */
3249 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3250 event->cpu != smp_processor_id());
3251
3252 /*
3253 * It must not be an event with inherit set, we cannot read
3254 * all child counters from atomic context.
3255 */
3256 WARN_ON_ONCE(event->attr.inherit);
3257
3258 /*
3259 * It must not have a pmu::count method, those are not
3260 * NMI safe.
3261 */
3262 WARN_ON_ONCE(event->pmu->count);
3263
3264 /*
3265 * If the event is currently on this CPU, its either a per-task event,
3266 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3267 * oncpu == -1).
3268 */
3269 if (event->oncpu == smp_processor_id())
3270 event->pmu->read(event);
3271
3272 val = local64_read(&event->count);
3273 local_irq_restore(flags);
3274
3275 return val;
3276 }
3277
3278 static u64 perf_event_read(struct perf_event *event)
3279 {
3280 /*
3281 * If event is enabled and currently active on a CPU, update the
3282 * value in the event structure:
3283 */
3284 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3285 smp_call_function_single(event->oncpu,
3286 __perf_event_read, event, 1);
3287 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3288 struct perf_event_context *ctx = event->ctx;
3289 unsigned long flags;
3290
3291 raw_spin_lock_irqsave(&ctx->lock, flags);
3292 /*
3293 * may read while context is not active
3294 * (e.g., thread is blocked), in that case
3295 * we cannot update context time
3296 */
3297 if (ctx->is_active) {
3298 update_context_time(ctx);
3299 update_cgrp_time_from_event(event);
3300 }
3301 update_event_times(event);
3302 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3303 }
3304
3305 return perf_event_count(event);
3306 }
3307
3308 /*
3309 * Initialize the perf_event context in a task_struct:
3310 */
3311 static void __perf_event_init_context(struct perf_event_context *ctx)
3312 {
3313 raw_spin_lock_init(&ctx->lock);
3314 mutex_init(&ctx->mutex);
3315 INIT_LIST_HEAD(&ctx->active_ctx_list);
3316 INIT_LIST_HEAD(&ctx->pinned_groups);
3317 INIT_LIST_HEAD(&ctx->flexible_groups);
3318 INIT_LIST_HEAD(&ctx->event_list);
3319 atomic_set(&ctx->refcount, 1);
3320 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3321 }
3322
3323 static struct perf_event_context *
3324 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3325 {
3326 struct perf_event_context *ctx;
3327
3328 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3329 if (!ctx)
3330 return NULL;
3331
3332 __perf_event_init_context(ctx);
3333 if (task) {
3334 ctx->task = task;
3335 get_task_struct(task);
3336 }
3337 ctx->pmu = pmu;
3338
3339 return ctx;
3340 }
3341
3342 static struct task_struct *
3343 find_lively_task_by_vpid(pid_t vpid)
3344 {
3345 struct task_struct *task;
3346 int err;
3347
3348 rcu_read_lock();
3349 if (!vpid)
3350 task = current;
3351 else
3352 task = find_task_by_vpid(vpid);
3353 if (task)
3354 get_task_struct(task);
3355 rcu_read_unlock();
3356
3357 if (!task)
3358 return ERR_PTR(-ESRCH);
3359
3360 /* Reuse ptrace permission checks for now. */
3361 err = -EACCES;
3362 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3363 goto errout;
3364
3365 return task;
3366 errout:
3367 put_task_struct(task);
3368 return ERR_PTR(err);
3369
3370 }
3371
3372 /*
3373 * Returns a matching context with refcount and pincount.
3374 */
3375 static struct perf_event_context *
3376 find_get_context(struct pmu *pmu, struct task_struct *task,
3377 struct perf_event *event)
3378 {
3379 struct perf_event_context *ctx, *clone_ctx = NULL;
3380 struct perf_cpu_context *cpuctx;
3381 void *task_ctx_data = NULL;
3382 unsigned long flags;
3383 int ctxn, err;
3384 int cpu = event->cpu;
3385
3386 if (!task) {
3387 /* Must be root to operate on a CPU event: */
3388 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3389 return ERR_PTR(-EACCES);
3390
3391 /*
3392 * We could be clever and allow to attach a event to an
3393 * offline CPU and activate it when the CPU comes up, but
3394 * that's for later.
3395 */
3396 if (!cpu_online(cpu))
3397 return ERR_PTR(-ENODEV);
3398
3399 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3400 ctx = &cpuctx->ctx;
3401 get_ctx(ctx);
3402 ++ctx->pin_count;
3403
3404 return ctx;
3405 }
3406
3407 err = -EINVAL;
3408 ctxn = pmu->task_ctx_nr;
3409 if (ctxn < 0)
3410 goto errout;
3411
3412 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3413 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3414 if (!task_ctx_data) {
3415 err = -ENOMEM;
3416 goto errout;
3417 }
3418 }
3419
3420 retry:
3421 ctx = perf_lock_task_context(task, ctxn, &flags);
3422 if (ctx) {
3423 clone_ctx = unclone_ctx(ctx);
3424 ++ctx->pin_count;
3425
3426 if (task_ctx_data && !ctx->task_ctx_data) {
3427 ctx->task_ctx_data = task_ctx_data;
3428 task_ctx_data = NULL;
3429 }
3430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3431
3432 if (clone_ctx)
3433 put_ctx(clone_ctx);
3434 } else {
3435 ctx = alloc_perf_context(pmu, task);
3436 err = -ENOMEM;
3437 if (!ctx)
3438 goto errout;
3439
3440 if (task_ctx_data) {
3441 ctx->task_ctx_data = task_ctx_data;
3442 task_ctx_data = NULL;
3443 }
3444
3445 err = 0;
3446 mutex_lock(&task->perf_event_mutex);
3447 /*
3448 * If it has already passed perf_event_exit_task().
3449 * we must see PF_EXITING, it takes this mutex too.
3450 */
3451 if (task->flags & PF_EXITING)
3452 err = -ESRCH;
3453 else if (task->perf_event_ctxp[ctxn])
3454 err = -EAGAIN;
3455 else {
3456 get_ctx(ctx);
3457 ++ctx->pin_count;
3458 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3459 }
3460 mutex_unlock(&task->perf_event_mutex);
3461
3462 if (unlikely(err)) {
3463 put_ctx(ctx);
3464
3465 if (err == -EAGAIN)
3466 goto retry;
3467 goto errout;
3468 }
3469 }
3470
3471 kfree(task_ctx_data);
3472 return ctx;
3473
3474 errout:
3475 kfree(task_ctx_data);
3476 return ERR_PTR(err);
3477 }
3478
3479 static void perf_event_free_filter(struct perf_event *event);
3480 static void perf_event_free_bpf_prog(struct perf_event *event);
3481
3482 static void free_event_rcu(struct rcu_head *head)
3483 {
3484 struct perf_event *event;
3485
3486 event = container_of(head, struct perf_event, rcu_head);
3487 if (event->ns)
3488 put_pid_ns(event->ns);
3489 perf_event_free_filter(event);
3490 kfree(event);
3491 }
3492
3493 static void ring_buffer_attach(struct perf_event *event,
3494 struct ring_buffer *rb);
3495
3496 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3497 {
3498 if (event->parent)
3499 return;
3500
3501 if (is_cgroup_event(event))
3502 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3503 }
3504
3505 static void unaccount_event(struct perf_event *event)
3506 {
3507 if (event->parent)
3508 return;
3509
3510 if (event->attach_state & PERF_ATTACH_TASK)
3511 static_key_slow_dec_deferred(&perf_sched_events);
3512 if (event->attr.mmap || event->attr.mmap_data)
3513 atomic_dec(&nr_mmap_events);
3514 if (event->attr.comm)
3515 atomic_dec(&nr_comm_events);
3516 if (event->attr.task)
3517 atomic_dec(&nr_task_events);
3518 if (event->attr.freq)
3519 atomic_dec(&nr_freq_events);
3520 if (event->attr.context_switch) {
3521 static_key_slow_dec_deferred(&perf_sched_events);
3522 atomic_dec(&nr_switch_events);
3523 }
3524 if (is_cgroup_event(event))
3525 static_key_slow_dec_deferred(&perf_sched_events);
3526 if (has_branch_stack(event))
3527 static_key_slow_dec_deferred(&perf_sched_events);
3528
3529 unaccount_event_cpu(event, event->cpu);
3530 }
3531
3532 /*
3533 * The following implement mutual exclusion of events on "exclusive" pmus
3534 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3535 * at a time, so we disallow creating events that might conflict, namely:
3536 *
3537 * 1) cpu-wide events in the presence of per-task events,
3538 * 2) per-task events in the presence of cpu-wide events,
3539 * 3) two matching events on the same context.
3540 *
3541 * The former two cases are handled in the allocation path (perf_event_alloc(),
3542 * __free_event()), the latter -- before the first perf_install_in_context().
3543 */
3544 static int exclusive_event_init(struct perf_event *event)
3545 {
3546 struct pmu *pmu = event->pmu;
3547
3548 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3549 return 0;
3550
3551 /*
3552 * Prevent co-existence of per-task and cpu-wide events on the
3553 * same exclusive pmu.
3554 *
3555 * Negative pmu::exclusive_cnt means there are cpu-wide
3556 * events on this "exclusive" pmu, positive means there are
3557 * per-task events.
3558 *
3559 * Since this is called in perf_event_alloc() path, event::ctx
3560 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3561 * to mean "per-task event", because unlike other attach states it
3562 * never gets cleared.
3563 */
3564 if (event->attach_state & PERF_ATTACH_TASK) {
3565 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3566 return -EBUSY;
3567 } else {
3568 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3569 return -EBUSY;
3570 }
3571
3572 return 0;
3573 }
3574
3575 static void exclusive_event_destroy(struct perf_event *event)
3576 {
3577 struct pmu *pmu = event->pmu;
3578
3579 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3580 return;
3581
3582 /* see comment in exclusive_event_init() */
3583 if (event->attach_state & PERF_ATTACH_TASK)
3584 atomic_dec(&pmu->exclusive_cnt);
3585 else
3586 atomic_inc(&pmu->exclusive_cnt);
3587 }
3588
3589 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3590 {
3591 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3592 (e1->cpu == e2->cpu ||
3593 e1->cpu == -1 ||
3594 e2->cpu == -1))
3595 return true;
3596 return false;
3597 }
3598
3599 /* Called under the same ctx::mutex as perf_install_in_context() */
3600 static bool exclusive_event_installable(struct perf_event *event,
3601 struct perf_event_context *ctx)
3602 {
3603 struct perf_event *iter_event;
3604 struct pmu *pmu = event->pmu;
3605
3606 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3607 return true;
3608
3609 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3610 if (exclusive_event_match(iter_event, event))
3611 return false;
3612 }
3613
3614 return true;
3615 }
3616
3617 static void __free_event(struct perf_event *event)
3618 {
3619 if (!event->parent) {
3620 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3621 put_callchain_buffers();
3622 }
3623
3624 perf_event_free_bpf_prog(event);
3625
3626 if (event->destroy)
3627 event->destroy(event);
3628
3629 if (event->ctx)
3630 put_ctx(event->ctx);
3631
3632 if (event->pmu) {
3633 exclusive_event_destroy(event);
3634 module_put(event->pmu->module);
3635 }
3636
3637 call_rcu(&event->rcu_head, free_event_rcu);
3638 }
3639
3640 static void _free_event(struct perf_event *event)
3641 {
3642 irq_work_sync(&event->pending);
3643
3644 unaccount_event(event);
3645
3646 if (event->rb) {
3647 /*
3648 * Can happen when we close an event with re-directed output.
3649 *
3650 * Since we have a 0 refcount, perf_mmap_close() will skip
3651 * over us; possibly making our ring_buffer_put() the last.
3652 */
3653 mutex_lock(&event->mmap_mutex);
3654 ring_buffer_attach(event, NULL);
3655 mutex_unlock(&event->mmap_mutex);
3656 }
3657
3658 if (is_cgroup_event(event))
3659 perf_detach_cgroup(event);
3660
3661 __free_event(event);
3662 }
3663
3664 /*
3665 * Used to free events which have a known refcount of 1, such as in error paths
3666 * where the event isn't exposed yet and inherited events.
3667 */
3668 static void free_event(struct perf_event *event)
3669 {
3670 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3671 "unexpected event refcount: %ld; ptr=%p\n",
3672 atomic_long_read(&event->refcount), event)) {
3673 /* leak to avoid use-after-free */
3674 return;
3675 }
3676
3677 _free_event(event);
3678 }
3679
3680 /*
3681 * Remove user event from the owner task.
3682 */
3683 static void perf_remove_from_owner(struct perf_event *event)
3684 {
3685 struct task_struct *owner;
3686
3687 rcu_read_lock();
3688 owner = ACCESS_ONCE(event->owner);
3689 /*
3690 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3691 * !owner it means the list deletion is complete and we can indeed
3692 * free this event, otherwise we need to serialize on
3693 * owner->perf_event_mutex.
3694 */
3695 smp_read_barrier_depends();
3696 if (owner) {
3697 /*
3698 * Since delayed_put_task_struct() also drops the last
3699 * task reference we can safely take a new reference
3700 * while holding the rcu_read_lock().
3701 */
3702 get_task_struct(owner);
3703 }
3704 rcu_read_unlock();
3705
3706 if (owner) {
3707 /*
3708 * If we're here through perf_event_exit_task() we're already
3709 * holding ctx->mutex which would be an inversion wrt. the
3710 * normal lock order.
3711 *
3712 * However we can safely take this lock because its the child
3713 * ctx->mutex.
3714 */
3715 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3716
3717 /*
3718 * We have to re-check the event->owner field, if it is cleared
3719 * we raced with perf_event_exit_task(), acquiring the mutex
3720 * ensured they're done, and we can proceed with freeing the
3721 * event.
3722 */
3723 if (event->owner)
3724 list_del_init(&event->owner_entry);
3725 mutex_unlock(&owner->perf_event_mutex);
3726 put_task_struct(owner);
3727 }
3728 }
3729
3730 static void put_event(struct perf_event *event)
3731 {
3732 struct perf_event_context *ctx;
3733
3734 if (!atomic_long_dec_and_test(&event->refcount))
3735 return;
3736
3737 if (!is_kernel_event(event))
3738 perf_remove_from_owner(event);
3739
3740 /*
3741 * There are two ways this annotation is useful:
3742 *
3743 * 1) there is a lock recursion from perf_event_exit_task
3744 * see the comment there.
3745 *
3746 * 2) there is a lock-inversion with mmap_sem through
3747 * perf_event_read_group(), which takes faults while
3748 * holding ctx->mutex, however this is called after
3749 * the last filedesc died, so there is no possibility
3750 * to trigger the AB-BA case.
3751 */
3752 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3753 WARN_ON_ONCE(ctx->parent_ctx);
3754 perf_remove_from_context(event, true);
3755 perf_event_ctx_unlock(event, ctx);
3756
3757 _free_event(event);
3758 }
3759
3760 int perf_event_release_kernel(struct perf_event *event)
3761 {
3762 put_event(event);
3763 return 0;
3764 }
3765 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3766
3767 /*
3768 * Called when the last reference to the file is gone.
3769 */
3770 static int perf_release(struct inode *inode, struct file *file)
3771 {
3772 put_event(file->private_data);
3773 return 0;
3774 }
3775
3776 /*
3777 * Remove all orphanes events from the context.
3778 */
3779 static void orphans_remove_work(struct work_struct *work)
3780 {
3781 struct perf_event_context *ctx;
3782 struct perf_event *event, *tmp;
3783
3784 ctx = container_of(work, struct perf_event_context,
3785 orphans_remove.work);
3786
3787 mutex_lock(&ctx->mutex);
3788 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3789 struct perf_event *parent_event = event->parent;
3790
3791 if (!is_orphaned_child(event))
3792 continue;
3793
3794 perf_remove_from_context(event, true);
3795
3796 mutex_lock(&parent_event->child_mutex);
3797 list_del_init(&event->child_list);
3798 mutex_unlock(&parent_event->child_mutex);
3799
3800 free_event(event);
3801 put_event(parent_event);
3802 }
3803
3804 raw_spin_lock_irq(&ctx->lock);
3805 ctx->orphans_remove_sched = false;
3806 raw_spin_unlock_irq(&ctx->lock);
3807 mutex_unlock(&ctx->mutex);
3808
3809 put_ctx(ctx);
3810 }
3811
3812 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3813 {
3814 struct perf_event *child;
3815 u64 total = 0;
3816
3817 *enabled = 0;
3818 *running = 0;
3819
3820 mutex_lock(&event->child_mutex);
3821 total += perf_event_read(event);
3822 *enabled += event->total_time_enabled +
3823 atomic64_read(&event->child_total_time_enabled);
3824 *running += event->total_time_running +
3825 atomic64_read(&event->child_total_time_running);
3826
3827 list_for_each_entry(child, &event->child_list, child_list) {
3828 total += perf_event_read(child);
3829 *enabled += child->total_time_enabled;
3830 *running += child->total_time_running;
3831 }
3832 mutex_unlock(&event->child_mutex);
3833
3834 return total;
3835 }
3836 EXPORT_SYMBOL_GPL(perf_event_read_value);
3837
3838 static int perf_event_read_group(struct perf_event *event,
3839 u64 read_format, char __user *buf)
3840 {
3841 struct perf_event *leader = event->group_leader, *sub;
3842 struct perf_event_context *ctx = leader->ctx;
3843 int n = 0, size = 0, ret;
3844 u64 count, enabled, running;
3845 u64 values[5];
3846
3847 lockdep_assert_held(&ctx->mutex);
3848
3849 count = perf_event_read_value(leader, &enabled, &running);
3850
3851 values[n++] = 1 + leader->nr_siblings;
3852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3853 values[n++] = enabled;
3854 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855 values[n++] = running;
3856 values[n++] = count;
3857 if (read_format & PERF_FORMAT_ID)
3858 values[n++] = primary_event_id(leader);
3859
3860 size = n * sizeof(u64);
3861
3862 if (copy_to_user(buf, values, size))
3863 return -EFAULT;
3864
3865 ret = size;
3866
3867 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3868 n = 0;
3869
3870 values[n++] = perf_event_read_value(sub, &enabled, &running);
3871 if (read_format & PERF_FORMAT_ID)
3872 values[n++] = primary_event_id(sub);
3873
3874 size = n * sizeof(u64);
3875
3876 if (copy_to_user(buf + ret, values, size)) {
3877 return -EFAULT;
3878 }
3879
3880 ret += size;
3881 }
3882
3883 return ret;
3884 }
3885
3886 static int perf_event_read_one(struct perf_event *event,
3887 u64 read_format, char __user *buf)
3888 {
3889 u64 enabled, running;
3890 u64 values[4];
3891 int n = 0;
3892
3893 values[n++] = perf_event_read_value(event, &enabled, &running);
3894 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3895 values[n++] = enabled;
3896 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3897 values[n++] = running;
3898 if (read_format & PERF_FORMAT_ID)
3899 values[n++] = primary_event_id(event);
3900
3901 if (copy_to_user(buf, values, n * sizeof(u64)))
3902 return -EFAULT;
3903
3904 return n * sizeof(u64);
3905 }
3906
3907 static bool is_event_hup(struct perf_event *event)
3908 {
3909 bool no_children;
3910
3911 if (event->state != PERF_EVENT_STATE_EXIT)
3912 return false;
3913
3914 mutex_lock(&event->child_mutex);
3915 no_children = list_empty(&event->child_list);
3916 mutex_unlock(&event->child_mutex);
3917 return no_children;
3918 }
3919
3920 /*
3921 * Read the performance event - simple non blocking version for now
3922 */
3923 static ssize_t
3924 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3925 {
3926 u64 read_format = event->attr.read_format;
3927 int ret;
3928
3929 /*
3930 * Return end-of-file for a read on a event that is in
3931 * error state (i.e. because it was pinned but it couldn't be
3932 * scheduled on to the CPU at some point).
3933 */
3934 if (event->state == PERF_EVENT_STATE_ERROR)
3935 return 0;
3936
3937 if (count < event->read_size)
3938 return -ENOSPC;
3939
3940 WARN_ON_ONCE(event->ctx->parent_ctx);
3941 if (read_format & PERF_FORMAT_GROUP)
3942 ret = perf_event_read_group(event, read_format, buf);
3943 else
3944 ret = perf_event_read_one(event, read_format, buf);
3945
3946 return ret;
3947 }
3948
3949 static ssize_t
3950 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3951 {
3952 struct perf_event *event = file->private_data;
3953 struct perf_event_context *ctx;
3954 int ret;
3955
3956 ctx = perf_event_ctx_lock(event);
3957 ret = perf_read_hw(event, buf, count);
3958 perf_event_ctx_unlock(event, ctx);
3959
3960 return ret;
3961 }
3962
3963 static unsigned int perf_poll(struct file *file, poll_table *wait)
3964 {
3965 struct perf_event *event = file->private_data;
3966 struct ring_buffer *rb;
3967 unsigned int events = POLLHUP;
3968
3969 poll_wait(file, &event->waitq, wait);
3970
3971 if (is_event_hup(event))
3972 return events;
3973
3974 /*
3975 * Pin the event->rb by taking event->mmap_mutex; otherwise
3976 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3977 */
3978 mutex_lock(&event->mmap_mutex);
3979 rb = event->rb;
3980 if (rb)
3981 events = atomic_xchg(&rb->poll, 0);
3982 mutex_unlock(&event->mmap_mutex);
3983 return events;
3984 }
3985
3986 static void _perf_event_reset(struct perf_event *event)
3987 {
3988 (void)perf_event_read(event);
3989 local64_set(&event->count, 0);
3990 perf_event_update_userpage(event);
3991 }
3992
3993 /*
3994 * Holding the top-level event's child_mutex means that any
3995 * descendant process that has inherited this event will block
3996 * in sync_child_event if it goes to exit, thus satisfying the
3997 * task existence requirements of perf_event_enable/disable.
3998 */
3999 static void perf_event_for_each_child(struct perf_event *event,
4000 void (*func)(struct perf_event *))
4001 {
4002 struct perf_event *child;
4003
4004 WARN_ON_ONCE(event->ctx->parent_ctx);
4005
4006 mutex_lock(&event->child_mutex);
4007 func(event);
4008 list_for_each_entry(child, &event->child_list, child_list)
4009 func(child);
4010 mutex_unlock(&event->child_mutex);
4011 }
4012
4013 static void perf_event_for_each(struct perf_event *event,
4014 void (*func)(struct perf_event *))
4015 {
4016 struct perf_event_context *ctx = event->ctx;
4017 struct perf_event *sibling;
4018
4019 lockdep_assert_held(&ctx->mutex);
4020
4021 event = event->group_leader;
4022
4023 perf_event_for_each_child(event, func);
4024 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4025 perf_event_for_each_child(sibling, func);
4026 }
4027
4028 struct period_event {
4029 struct perf_event *event;
4030 u64 value;
4031 };
4032
4033 static int __perf_event_period(void *info)
4034 {
4035 struct period_event *pe = info;
4036 struct perf_event *event = pe->event;
4037 struct perf_event_context *ctx = event->ctx;
4038 u64 value = pe->value;
4039 bool active;
4040
4041 raw_spin_lock(&ctx->lock);
4042 if (event->attr.freq) {
4043 event->attr.sample_freq = value;
4044 } else {
4045 event->attr.sample_period = value;
4046 event->hw.sample_period = value;
4047 }
4048
4049 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4050 if (active) {
4051 perf_pmu_disable(ctx->pmu);
4052 event->pmu->stop(event, PERF_EF_UPDATE);
4053 }
4054
4055 local64_set(&event->hw.period_left, 0);
4056
4057 if (active) {
4058 event->pmu->start(event, PERF_EF_RELOAD);
4059 perf_pmu_enable(ctx->pmu);
4060 }
4061 raw_spin_unlock(&ctx->lock);
4062
4063 return 0;
4064 }
4065
4066 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4067 {
4068 struct period_event pe = { .event = event, };
4069 struct perf_event_context *ctx = event->ctx;
4070 struct task_struct *task;
4071 u64 value;
4072
4073 if (!is_sampling_event(event))
4074 return -EINVAL;
4075
4076 if (copy_from_user(&value, arg, sizeof(value)))
4077 return -EFAULT;
4078
4079 if (!value)
4080 return -EINVAL;
4081
4082 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4083 return -EINVAL;
4084
4085 task = ctx->task;
4086 pe.value = value;
4087
4088 if (!task) {
4089 cpu_function_call(event->cpu, __perf_event_period, &pe);
4090 return 0;
4091 }
4092
4093 retry:
4094 if (!task_function_call(task, __perf_event_period, &pe))
4095 return 0;
4096
4097 raw_spin_lock_irq(&ctx->lock);
4098 if (ctx->is_active) {
4099 raw_spin_unlock_irq(&ctx->lock);
4100 task = ctx->task;
4101 goto retry;
4102 }
4103
4104 __perf_event_period(&pe);
4105 raw_spin_unlock_irq(&ctx->lock);
4106
4107 return 0;
4108 }
4109
4110 static const struct file_operations perf_fops;
4111
4112 static inline int perf_fget_light(int fd, struct fd *p)
4113 {
4114 struct fd f = fdget(fd);
4115 if (!f.file)
4116 return -EBADF;
4117
4118 if (f.file->f_op != &perf_fops) {
4119 fdput(f);
4120 return -EBADF;
4121 }
4122 *p = f;
4123 return 0;
4124 }
4125
4126 static int perf_event_set_output(struct perf_event *event,
4127 struct perf_event *output_event);
4128 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4129 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4130
4131 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4132 {
4133 void (*func)(struct perf_event *);
4134 u32 flags = arg;
4135
4136 switch (cmd) {
4137 case PERF_EVENT_IOC_ENABLE:
4138 func = _perf_event_enable;
4139 break;
4140 case PERF_EVENT_IOC_DISABLE:
4141 func = _perf_event_disable;
4142 break;
4143 case PERF_EVENT_IOC_RESET:
4144 func = _perf_event_reset;
4145 break;
4146
4147 case PERF_EVENT_IOC_REFRESH:
4148 return _perf_event_refresh(event, arg);
4149
4150 case PERF_EVENT_IOC_PERIOD:
4151 return perf_event_period(event, (u64 __user *)arg);
4152
4153 case PERF_EVENT_IOC_ID:
4154 {
4155 u64 id = primary_event_id(event);
4156
4157 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4158 return -EFAULT;
4159 return 0;
4160 }
4161
4162 case PERF_EVENT_IOC_SET_OUTPUT:
4163 {
4164 int ret;
4165 if (arg != -1) {
4166 struct perf_event *output_event;
4167 struct fd output;
4168 ret = perf_fget_light(arg, &output);
4169 if (ret)
4170 return ret;
4171 output_event = output.file->private_data;
4172 ret = perf_event_set_output(event, output_event);
4173 fdput(output);
4174 } else {
4175 ret = perf_event_set_output(event, NULL);
4176 }
4177 return ret;
4178 }
4179
4180 case PERF_EVENT_IOC_SET_FILTER:
4181 return perf_event_set_filter(event, (void __user *)arg);
4182
4183 case PERF_EVENT_IOC_SET_BPF:
4184 return perf_event_set_bpf_prog(event, arg);
4185
4186 default:
4187 return -ENOTTY;
4188 }
4189
4190 if (flags & PERF_IOC_FLAG_GROUP)
4191 perf_event_for_each(event, func);
4192 else
4193 perf_event_for_each_child(event, func);
4194
4195 return 0;
4196 }
4197
4198 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4199 {
4200 struct perf_event *event = file->private_data;
4201 struct perf_event_context *ctx;
4202 long ret;
4203
4204 ctx = perf_event_ctx_lock(event);
4205 ret = _perf_ioctl(event, cmd, arg);
4206 perf_event_ctx_unlock(event, ctx);
4207
4208 return ret;
4209 }
4210
4211 #ifdef CONFIG_COMPAT
4212 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4213 unsigned long arg)
4214 {
4215 switch (_IOC_NR(cmd)) {
4216 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4217 case _IOC_NR(PERF_EVENT_IOC_ID):
4218 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4219 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4220 cmd &= ~IOCSIZE_MASK;
4221 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4222 }
4223 break;
4224 }
4225 return perf_ioctl(file, cmd, arg);
4226 }
4227 #else
4228 # define perf_compat_ioctl NULL
4229 #endif
4230
4231 int perf_event_task_enable(void)
4232 {
4233 struct perf_event_context *ctx;
4234 struct perf_event *event;
4235
4236 mutex_lock(&current->perf_event_mutex);
4237 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4238 ctx = perf_event_ctx_lock(event);
4239 perf_event_for_each_child(event, _perf_event_enable);
4240 perf_event_ctx_unlock(event, ctx);
4241 }
4242 mutex_unlock(&current->perf_event_mutex);
4243
4244 return 0;
4245 }
4246
4247 int perf_event_task_disable(void)
4248 {
4249 struct perf_event_context *ctx;
4250 struct perf_event *event;
4251
4252 mutex_lock(&current->perf_event_mutex);
4253 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4254 ctx = perf_event_ctx_lock(event);
4255 perf_event_for_each_child(event, _perf_event_disable);
4256 perf_event_ctx_unlock(event, ctx);
4257 }
4258 mutex_unlock(&current->perf_event_mutex);
4259
4260 return 0;
4261 }
4262
4263 static int perf_event_index(struct perf_event *event)
4264 {
4265 if (event->hw.state & PERF_HES_STOPPED)
4266 return 0;
4267
4268 if (event->state != PERF_EVENT_STATE_ACTIVE)
4269 return 0;
4270
4271 return event->pmu->event_idx(event);
4272 }
4273
4274 static void calc_timer_values(struct perf_event *event,
4275 u64 *now,
4276 u64 *enabled,
4277 u64 *running)
4278 {
4279 u64 ctx_time;
4280
4281 *now = perf_clock();
4282 ctx_time = event->shadow_ctx_time + *now;
4283 *enabled = ctx_time - event->tstamp_enabled;
4284 *running = ctx_time - event->tstamp_running;
4285 }
4286
4287 static void perf_event_init_userpage(struct perf_event *event)
4288 {
4289 struct perf_event_mmap_page *userpg;
4290 struct ring_buffer *rb;
4291
4292 rcu_read_lock();
4293 rb = rcu_dereference(event->rb);
4294 if (!rb)
4295 goto unlock;
4296
4297 userpg = rb->user_page;
4298
4299 /* Allow new userspace to detect that bit 0 is deprecated */
4300 userpg->cap_bit0_is_deprecated = 1;
4301 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4302 userpg->data_offset = PAGE_SIZE;
4303 userpg->data_size = perf_data_size(rb);
4304
4305 unlock:
4306 rcu_read_unlock();
4307 }
4308
4309 void __weak arch_perf_update_userpage(
4310 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4311 {
4312 }
4313
4314 /*
4315 * Callers need to ensure there can be no nesting of this function, otherwise
4316 * the seqlock logic goes bad. We can not serialize this because the arch
4317 * code calls this from NMI context.
4318 */
4319 void perf_event_update_userpage(struct perf_event *event)
4320 {
4321 struct perf_event_mmap_page *userpg;
4322 struct ring_buffer *rb;
4323 u64 enabled, running, now;
4324
4325 rcu_read_lock();
4326 rb = rcu_dereference(event->rb);
4327 if (!rb)
4328 goto unlock;
4329
4330 /*
4331 * compute total_time_enabled, total_time_running
4332 * based on snapshot values taken when the event
4333 * was last scheduled in.
4334 *
4335 * we cannot simply called update_context_time()
4336 * because of locking issue as we can be called in
4337 * NMI context
4338 */
4339 calc_timer_values(event, &now, &enabled, &running);
4340
4341 userpg = rb->user_page;
4342 /*
4343 * Disable preemption so as to not let the corresponding user-space
4344 * spin too long if we get preempted.
4345 */
4346 preempt_disable();
4347 ++userpg->lock;
4348 barrier();
4349 userpg->index = perf_event_index(event);
4350 userpg->offset = perf_event_count(event);
4351 if (userpg->index)
4352 userpg->offset -= local64_read(&event->hw.prev_count);
4353
4354 userpg->time_enabled = enabled +
4355 atomic64_read(&event->child_total_time_enabled);
4356
4357 userpg->time_running = running +
4358 atomic64_read(&event->child_total_time_running);
4359
4360 arch_perf_update_userpage(event, userpg, now);
4361
4362 barrier();
4363 ++userpg->lock;
4364 preempt_enable();
4365 unlock:
4366 rcu_read_unlock();
4367 }
4368
4369 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4370 {
4371 struct perf_event *event = vma->vm_file->private_data;
4372 struct ring_buffer *rb;
4373 int ret = VM_FAULT_SIGBUS;
4374
4375 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4376 if (vmf->pgoff == 0)
4377 ret = 0;
4378 return ret;
4379 }
4380
4381 rcu_read_lock();
4382 rb = rcu_dereference(event->rb);
4383 if (!rb)
4384 goto unlock;
4385
4386 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4387 goto unlock;
4388
4389 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4390 if (!vmf->page)
4391 goto unlock;
4392
4393 get_page(vmf->page);
4394 vmf->page->mapping = vma->vm_file->f_mapping;
4395 vmf->page->index = vmf->pgoff;
4396
4397 ret = 0;
4398 unlock:
4399 rcu_read_unlock();
4400
4401 return ret;
4402 }
4403
4404 static void ring_buffer_attach(struct perf_event *event,
4405 struct ring_buffer *rb)
4406 {
4407 struct ring_buffer *old_rb = NULL;
4408 unsigned long flags;
4409
4410 if (event->rb) {
4411 /*
4412 * Should be impossible, we set this when removing
4413 * event->rb_entry and wait/clear when adding event->rb_entry.
4414 */
4415 WARN_ON_ONCE(event->rcu_pending);
4416
4417 old_rb = event->rb;
4418 spin_lock_irqsave(&old_rb->event_lock, flags);
4419 list_del_rcu(&event->rb_entry);
4420 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4421
4422 event->rcu_batches = get_state_synchronize_rcu();
4423 event->rcu_pending = 1;
4424 }
4425
4426 if (rb) {
4427 if (event->rcu_pending) {
4428 cond_synchronize_rcu(event->rcu_batches);
4429 event->rcu_pending = 0;
4430 }
4431
4432 spin_lock_irqsave(&rb->event_lock, flags);
4433 list_add_rcu(&event->rb_entry, &rb->event_list);
4434 spin_unlock_irqrestore(&rb->event_lock, flags);
4435 }
4436
4437 rcu_assign_pointer(event->rb, rb);
4438
4439 if (old_rb) {
4440 ring_buffer_put(old_rb);
4441 /*
4442 * Since we detached before setting the new rb, so that we
4443 * could attach the new rb, we could have missed a wakeup.
4444 * Provide it now.
4445 */
4446 wake_up_all(&event->waitq);
4447 }
4448 }
4449
4450 static void ring_buffer_wakeup(struct perf_event *event)
4451 {
4452 struct ring_buffer *rb;
4453
4454 rcu_read_lock();
4455 rb = rcu_dereference(event->rb);
4456 if (rb) {
4457 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4458 wake_up_all(&event->waitq);
4459 }
4460 rcu_read_unlock();
4461 }
4462
4463 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4464 {
4465 struct ring_buffer *rb;
4466
4467 rcu_read_lock();
4468 rb = rcu_dereference(event->rb);
4469 if (rb) {
4470 if (!atomic_inc_not_zero(&rb->refcount))
4471 rb = NULL;
4472 }
4473 rcu_read_unlock();
4474
4475 return rb;
4476 }
4477
4478 void ring_buffer_put(struct ring_buffer *rb)
4479 {
4480 if (!atomic_dec_and_test(&rb->refcount))
4481 return;
4482
4483 WARN_ON_ONCE(!list_empty(&rb->event_list));
4484
4485 call_rcu(&rb->rcu_head, rb_free_rcu);
4486 }
4487
4488 static void perf_mmap_open(struct vm_area_struct *vma)
4489 {
4490 struct perf_event *event = vma->vm_file->private_data;
4491
4492 atomic_inc(&event->mmap_count);
4493 atomic_inc(&event->rb->mmap_count);
4494
4495 if (vma->vm_pgoff)
4496 atomic_inc(&event->rb->aux_mmap_count);
4497
4498 if (event->pmu->event_mapped)
4499 event->pmu->event_mapped(event);
4500 }
4501
4502 /*
4503 * A buffer can be mmap()ed multiple times; either directly through the same
4504 * event, or through other events by use of perf_event_set_output().
4505 *
4506 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4507 * the buffer here, where we still have a VM context. This means we need
4508 * to detach all events redirecting to us.
4509 */
4510 static void perf_mmap_close(struct vm_area_struct *vma)
4511 {
4512 struct perf_event *event = vma->vm_file->private_data;
4513
4514 struct ring_buffer *rb = ring_buffer_get(event);
4515 struct user_struct *mmap_user = rb->mmap_user;
4516 int mmap_locked = rb->mmap_locked;
4517 unsigned long size = perf_data_size(rb);
4518
4519 if (event->pmu->event_unmapped)
4520 event->pmu->event_unmapped(event);
4521
4522 /*
4523 * rb->aux_mmap_count will always drop before rb->mmap_count and
4524 * event->mmap_count, so it is ok to use event->mmap_mutex to
4525 * serialize with perf_mmap here.
4526 */
4527 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4528 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4529 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4530 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4531
4532 rb_free_aux(rb);
4533 mutex_unlock(&event->mmap_mutex);
4534 }
4535
4536 atomic_dec(&rb->mmap_count);
4537
4538 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4539 goto out_put;
4540
4541 ring_buffer_attach(event, NULL);
4542 mutex_unlock(&event->mmap_mutex);
4543
4544 /* If there's still other mmap()s of this buffer, we're done. */
4545 if (atomic_read(&rb->mmap_count))
4546 goto out_put;
4547
4548 /*
4549 * No other mmap()s, detach from all other events that might redirect
4550 * into the now unreachable buffer. Somewhat complicated by the
4551 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4552 */
4553 again:
4554 rcu_read_lock();
4555 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4556 if (!atomic_long_inc_not_zero(&event->refcount)) {
4557 /*
4558 * This event is en-route to free_event() which will
4559 * detach it and remove it from the list.
4560 */
4561 continue;
4562 }
4563 rcu_read_unlock();
4564
4565 mutex_lock(&event->mmap_mutex);
4566 /*
4567 * Check we didn't race with perf_event_set_output() which can
4568 * swizzle the rb from under us while we were waiting to
4569 * acquire mmap_mutex.
4570 *
4571 * If we find a different rb; ignore this event, a next
4572 * iteration will no longer find it on the list. We have to
4573 * still restart the iteration to make sure we're not now
4574 * iterating the wrong list.
4575 */
4576 if (event->rb == rb)
4577 ring_buffer_attach(event, NULL);
4578
4579 mutex_unlock(&event->mmap_mutex);
4580 put_event(event);
4581
4582 /*
4583 * Restart the iteration; either we're on the wrong list or
4584 * destroyed its integrity by doing a deletion.
4585 */
4586 goto again;
4587 }
4588 rcu_read_unlock();
4589
4590 /*
4591 * It could be there's still a few 0-ref events on the list; they'll
4592 * get cleaned up by free_event() -- they'll also still have their
4593 * ref on the rb and will free it whenever they are done with it.
4594 *
4595 * Aside from that, this buffer is 'fully' detached and unmapped,
4596 * undo the VM accounting.
4597 */
4598
4599 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4600 vma->vm_mm->pinned_vm -= mmap_locked;
4601 free_uid(mmap_user);
4602
4603 out_put:
4604 ring_buffer_put(rb); /* could be last */
4605 }
4606
4607 static const struct vm_operations_struct perf_mmap_vmops = {
4608 .open = perf_mmap_open,
4609 .close = perf_mmap_close, /* non mergable */
4610 .fault = perf_mmap_fault,
4611 .page_mkwrite = perf_mmap_fault,
4612 };
4613
4614 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4615 {
4616 struct perf_event *event = file->private_data;
4617 unsigned long user_locked, user_lock_limit;
4618 struct user_struct *user = current_user();
4619 unsigned long locked, lock_limit;
4620 struct ring_buffer *rb = NULL;
4621 unsigned long vma_size;
4622 unsigned long nr_pages;
4623 long user_extra = 0, extra = 0;
4624 int ret = 0, flags = 0;
4625
4626 /*
4627 * Don't allow mmap() of inherited per-task counters. This would
4628 * create a performance issue due to all children writing to the
4629 * same rb.
4630 */
4631 if (event->cpu == -1 && event->attr.inherit)
4632 return -EINVAL;
4633
4634 if (!(vma->vm_flags & VM_SHARED))
4635 return -EINVAL;
4636
4637 vma_size = vma->vm_end - vma->vm_start;
4638
4639 if (vma->vm_pgoff == 0) {
4640 nr_pages = (vma_size / PAGE_SIZE) - 1;
4641 } else {
4642 /*
4643 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4644 * mapped, all subsequent mappings should have the same size
4645 * and offset. Must be above the normal perf buffer.
4646 */
4647 u64 aux_offset, aux_size;
4648
4649 if (!event->rb)
4650 return -EINVAL;
4651
4652 nr_pages = vma_size / PAGE_SIZE;
4653
4654 mutex_lock(&event->mmap_mutex);
4655 ret = -EINVAL;
4656
4657 rb = event->rb;
4658 if (!rb)
4659 goto aux_unlock;
4660
4661 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4662 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4663
4664 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4665 goto aux_unlock;
4666
4667 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4668 goto aux_unlock;
4669
4670 /* already mapped with a different offset */
4671 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4672 goto aux_unlock;
4673
4674 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4675 goto aux_unlock;
4676
4677 /* already mapped with a different size */
4678 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4679 goto aux_unlock;
4680
4681 if (!is_power_of_2(nr_pages))
4682 goto aux_unlock;
4683
4684 if (!atomic_inc_not_zero(&rb->mmap_count))
4685 goto aux_unlock;
4686
4687 if (rb_has_aux(rb)) {
4688 atomic_inc(&rb->aux_mmap_count);
4689 ret = 0;
4690 goto unlock;
4691 }
4692
4693 atomic_set(&rb->aux_mmap_count, 1);
4694 user_extra = nr_pages;
4695
4696 goto accounting;
4697 }
4698
4699 /*
4700 * If we have rb pages ensure they're a power-of-two number, so we
4701 * can do bitmasks instead of modulo.
4702 */
4703 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4704 return -EINVAL;
4705
4706 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4707 return -EINVAL;
4708
4709 WARN_ON_ONCE(event->ctx->parent_ctx);
4710 again:
4711 mutex_lock(&event->mmap_mutex);
4712 if (event->rb) {
4713 if (event->rb->nr_pages != nr_pages) {
4714 ret = -EINVAL;
4715 goto unlock;
4716 }
4717
4718 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4719 /*
4720 * Raced against perf_mmap_close() through
4721 * perf_event_set_output(). Try again, hope for better
4722 * luck.
4723 */
4724 mutex_unlock(&event->mmap_mutex);
4725 goto again;
4726 }
4727
4728 goto unlock;
4729 }
4730
4731 user_extra = nr_pages + 1;
4732
4733 accounting:
4734 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4735
4736 /*
4737 * Increase the limit linearly with more CPUs:
4738 */
4739 user_lock_limit *= num_online_cpus();
4740
4741 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4742
4743 if (user_locked > user_lock_limit)
4744 extra = user_locked - user_lock_limit;
4745
4746 lock_limit = rlimit(RLIMIT_MEMLOCK);
4747 lock_limit >>= PAGE_SHIFT;
4748 locked = vma->vm_mm->pinned_vm + extra;
4749
4750 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4751 !capable(CAP_IPC_LOCK)) {
4752 ret = -EPERM;
4753 goto unlock;
4754 }
4755
4756 WARN_ON(!rb && event->rb);
4757
4758 if (vma->vm_flags & VM_WRITE)
4759 flags |= RING_BUFFER_WRITABLE;
4760
4761 if (!rb) {
4762 rb = rb_alloc(nr_pages,
4763 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4764 event->cpu, flags);
4765
4766 if (!rb) {
4767 ret = -ENOMEM;
4768 goto unlock;
4769 }
4770
4771 atomic_set(&rb->mmap_count, 1);
4772 rb->mmap_user = get_current_user();
4773 rb->mmap_locked = extra;
4774
4775 ring_buffer_attach(event, rb);
4776
4777 perf_event_init_userpage(event);
4778 perf_event_update_userpage(event);
4779 } else {
4780 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4781 event->attr.aux_watermark, flags);
4782 if (!ret)
4783 rb->aux_mmap_locked = extra;
4784 }
4785
4786 unlock:
4787 if (!ret) {
4788 atomic_long_add(user_extra, &user->locked_vm);
4789 vma->vm_mm->pinned_vm += extra;
4790
4791 atomic_inc(&event->mmap_count);
4792 } else if (rb) {
4793 atomic_dec(&rb->mmap_count);
4794 }
4795 aux_unlock:
4796 mutex_unlock(&event->mmap_mutex);
4797
4798 /*
4799 * Since pinned accounting is per vm we cannot allow fork() to copy our
4800 * vma.
4801 */
4802 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4803 vma->vm_ops = &perf_mmap_vmops;
4804
4805 if (event->pmu->event_mapped)
4806 event->pmu->event_mapped(event);
4807
4808 return ret;
4809 }
4810
4811 static int perf_fasync(int fd, struct file *filp, int on)
4812 {
4813 struct inode *inode = file_inode(filp);
4814 struct perf_event *event = filp->private_data;
4815 int retval;
4816
4817 mutex_lock(&inode->i_mutex);
4818 retval = fasync_helper(fd, filp, on, &event->fasync);
4819 mutex_unlock(&inode->i_mutex);
4820
4821 if (retval < 0)
4822 return retval;
4823
4824 return 0;
4825 }
4826
4827 static const struct file_operations perf_fops = {
4828 .llseek = no_llseek,
4829 .release = perf_release,
4830 .read = perf_read,
4831 .poll = perf_poll,
4832 .unlocked_ioctl = perf_ioctl,
4833 .compat_ioctl = perf_compat_ioctl,
4834 .mmap = perf_mmap,
4835 .fasync = perf_fasync,
4836 };
4837
4838 /*
4839 * Perf event wakeup
4840 *
4841 * If there's data, ensure we set the poll() state and publish everything
4842 * to user-space before waking everybody up.
4843 */
4844
4845 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4846 {
4847 /* only the parent has fasync state */
4848 if (event->parent)
4849 event = event->parent;
4850 return &event->fasync;
4851 }
4852
4853 void perf_event_wakeup(struct perf_event *event)
4854 {
4855 ring_buffer_wakeup(event);
4856
4857 if (event->pending_kill) {
4858 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4859 event->pending_kill = 0;
4860 }
4861 }
4862
4863 static void perf_pending_event(struct irq_work *entry)
4864 {
4865 struct perf_event *event = container_of(entry,
4866 struct perf_event, pending);
4867 int rctx;
4868
4869 rctx = perf_swevent_get_recursion_context();
4870 /*
4871 * If we 'fail' here, that's OK, it means recursion is already disabled
4872 * and we won't recurse 'further'.
4873 */
4874
4875 if (event->pending_disable) {
4876 event->pending_disable = 0;
4877 __perf_event_disable(event);
4878 }
4879
4880 if (event->pending_wakeup) {
4881 event->pending_wakeup = 0;
4882 perf_event_wakeup(event);
4883 }
4884
4885 if (rctx >= 0)
4886 perf_swevent_put_recursion_context(rctx);
4887 }
4888
4889 /*
4890 * We assume there is only KVM supporting the callbacks.
4891 * Later on, we might change it to a list if there is
4892 * another virtualization implementation supporting the callbacks.
4893 */
4894 struct perf_guest_info_callbacks *perf_guest_cbs;
4895
4896 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4897 {
4898 perf_guest_cbs = cbs;
4899 return 0;
4900 }
4901 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4902
4903 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4904 {
4905 perf_guest_cbs = NULL;
4906 return 0;
4907 }
4908 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4909
4910 static void
4911 perf_output_sample_regs(struct perf_output_handle *handle,
4912 struct pt_regs *regs, u64 mask)
4913 {
4914 int bit;
4915
4916 for_each_set_bit(bit, (const unsigned long *) &mask,
4917 sizeof(mask) * BITS_PER_BYTE) {
4918 u64 val;
4919
4920 val = perf_reg_value(regs, bit);
4921 perf_output_put(handle, val);
4922 }
4923 }
4924
4925 static void perf_sample_regs_user(struct perf_regs *regs_user,
4926 struct pt_regs *regs,
4927 struct pt_regs *regs_user_copy)
4928 {
4929 if (user_mode(regs)) {
4930 regs_user->abi = perf_reg_abi(current);
4931 regs_user->regs = regs;
4932 } else if (current->mm) {
4933 perf_get_regs_user(regs_user, regs, regs_user_copy);
4934 } else {
4935 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4936 regs_user->regs = NULL;
4937 }
4938 }
4939
4940 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4941 struct pt_regs *regs)
4942 {
4943 regs_intr->regs = regs;
4944 regs_intr->abi = perf_reg_abi(current);
4945 }
4946
4947
4948 /*
4949 * Get remaining task size from user stack pointer.
4950 *
4951 * It'd be better to take stack vma map and limit this more
4952 * precisly, but there's no way to get it safely under interrupt,
4953 * so using TASK_SIZE as limit.
4954 */
4955 static u64 perf_ustack_task_size(struct pt_regs *regs)
4956 {
4957 unsigned long addr = perf_user_stack_pointer(regs);
4958
4959 if (!addr || addr >= TASK_SIZE)
4960 return 0;
4961
4962 return TASK_SIZE - addr;
4963 }
4964
4965 static u16
4966 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4967 struct pt_regs *regs)
4968 {
4969 u64 task_size;
4970
4971 /* No regs, no stack pointer, no dump. */
4972 if (!regs)
4973 return 0;
4974
4975 /*
4976 * Check if we fit in with the requested stack size into the:
4977 * - TASK_SIZE
4978 * If we don't, we limit the size to the TASK_SIZE.
4979 *
4980 * - remaining sample size
4981 * If we don't, we customize the stack size to
4982 * fit in to the remaining sample size.
4983 */
4984
4985 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4986 stack_size = min(stack_size, (u16) task_size);
4987
4988 /* Current header size plus static size and dynamic size. */
4989 header_size += 2 * sizeof(u64);
4990
4991 /* Do we fit in with the current stack dump size? */
4992 if ((u16) (header_size + stack_size) < header_size) {
4993 /*
4994 * If we overflow the maximum size for the sample,
4995 * we customize the stack dump size to fit in.
4996 */
4997 stack_size = USHRT_MAX - header_size - sizeof(u64);
4998 stack_size = round_up(stack_size, sizeof(u64));
4999 }
5000
5001 return stack_size;
5002 }
5003
5004 static void
5005 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5006 struct pt_regs *regs)
5007 {
5008 /* Case of a kernel thread, nothing to dump */
5009 if (!regs) {
5010 u64 size = 0;
5011 perf_output_put(handle, size);
5012 } else {
5013 unsigned long sp;
5014 unsigned int rem;
5015 u64 dyn_size;
5016
5017 /*
5018 * We dump:
5019 * static size
5020 * - the size requested by user or the best one we can fit
5021 * in to the sample max size
5022 * data
5023 * - user stack dump data
5024 * dynamic size
5025 * - the actual dumped size
5026 */
5027
5028 /* Static size. */
5029 perf_output_put(handle, dump_size);
5030
5031 /* Data. */
5032 sp = perf_user_stack_pointer(regs);
5033 rem = __output_copy_user(handle, (void *) sp, dump_size);
5034 dyn_size = dump_size - rem;
5035
5036 perf_output_skip(handle, rem);
5037
5038 /* Dynamic size. */
5039 perf_output_put(handle, dyn_size);
5040 }
5041 }
5042
5043 static void __perf_event_header__init_id(struct perf_event_header *header,
5044 struct perf_sample_data *data,
5045 struct perf_event *event)
5046 {
5047 u64 sample_type = event->attr.sample_type;
5048
5049 data->type = sample_type;
5050 header->size += event->id_header_size;
5051
5052 if (sample_type & PERF_SAMPLE_TID) {
5053 /* namespace issues */
5054 data->tid_entry.pid = perf_event_pid(event, current);
5055 data->tid_entry.tid = perf_event_tid(event, current);
5056 }
5057
5058 if (sample_type & PERF_SAMPLE_TIME)
5059 data->time = perf_event_clock(event);
5060
5061 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5062 data->id = primary_event_id(event);
5063
5064 if (sample_type & PERF_SAMPLE_STREAM_ID)
5065 data->stream_id = event->id;
5066
5067 if (sample_type & PERF_SAMPLE_CPU) {
5068 data->cpu_entry.cpu = raw_smp_processor_id();
5069 data->cpu_entry.reserved = 0;
5070 }
5071 }
5072
5073 void perf_event_header__init_id(struct perf_event_header *header,
5074 struct perf_sample_data *data,
5075 struct perf_event *event)
5076 {
5077 if (event->attr.sample_id_all)
5078 __perf_event_header__init_id(header, data, event);
5079 }
5080
5081 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5082 struct perf_sample_data *data)
5083 {
5084 u64 sample_type = data->type;
5085
5086 if (sample_type & PERF_SAMPLE_TID)
5087 perf_output_put(handle, data->tid_entry);
5088
5089 if (sample_type & PERF_SAMPLE_TIME)
5090 perf_output_put(handle, data->time);
5091
5092 if (sample_type & PERF_SAMPLE_ID)
5093 perf_output_put(handle, data->id);
5094
5095 if (sample_type & PERF_SAMPLE_STREAM_ID)
5096 perf_output_put(handle, data->stream_id);
5097
5098 if (sample_type & PERF_SAMPLE_CPU)
5099 perf_output_put(handle, data->cpu_entry);
5100
5101 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5102 perf_output_put(handle, data->id);
5103 }
5104
5105 void perf_event__output_id_sample(struct perf_event *event,
5106 struct perf_output_handle *handle,
5107 struct perf_sample_data *sample)
5108 {
5109 if (event->attr.sample_id_all)
5110 __perf_event__output_id_sample(handle, sample);
5111 }
5112
5113 static void perf_output_read_one(struct perf_output_handle *handle,
5114 struct perf_event *event,
5115 u64 enabled, u64 running)
5116 {
5117 u64 read_format = event->attr.read_format;
5118 u64 values[4];
5119 int n = 0;
5120
5121 values[n++] = perf_event_count(event);
5122 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5123 values[n++] = enabled +
5124 atomic64_read(&event->child_total_time_enabled);
5125 }
5126 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5127 values[n++] = running +
5128 atomic64_read(&event->child_total_time_running);
5129 }
5130 if (read_format & PERF_FORMAT_ID)
5131 values[n++] = primary_event_id(event);
5132
5133 __output_copy(handle, values, n * sizeof(u64));
5134 }
5135
5136 /*
5137 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5138 */
5139 static void perf_output_read_group(struct perf_output_handle *handle,
5140 struct perf_event *event,
5141 u64 enabled, u64 running)
5142 {
5143 struct perf_event *leader = event->group_leader, *sub;
5144 u64 read_format = event->attr.read_format;
5145 u64 values[5];
5146 int n = 0;
5147
5148 values[n++] = 1 + leader->nr_siblings;
5149
5150 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5151 values[n++] = enabled;
5152
5153 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5154 values[n++] = running;
5155
5156 if (leader != event)
5157 leader->pmu->read(leader);
5158
5159 values[n++] = perf_event_count(leader);
5160 if (read_format & PERF_FORMAT_ID)
5161 values[n++] = primary_event_id(leader);
5162
5163 __output_copy(handle, values, n * sizeof(u64));
5164
5165 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5166 n = 0;
5167
5168 if ((sub != event) &&
5169 (sub->state == PERF_EVENT_STATE_ACTIVE))
5170 sub->pmu->read(sub);
5171
5172 values[n++] = perf_event_count(sub);
5173 if (read_format & PERF_FORMAT_ID)
5174 values[n++] = primary_event_id(sub);
5175
5176 __output_copy(handle, values, n * sizeof(u64));
5177 }
5178 }
5179
5180 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5181 PERF_FORMAT_TOTAL_TIME_RUNNING)
5182
5183 static void perf_output_read(struct perf_output_handle *handle,
5184 struct perf_event *event)
5185 {
5186 u64 enabled = 0, running = 0, now;
5187 u64 read_format = event->attr.read_format;
5188
5189 /*
5190 * compute total_time_enabled, total_time_running
5191 * based on snapshot values taken when the event
5192 * was last scheduled in.
5193 *
5194 * we cannot simply called update_context_time()
5195 * because of locking issue as we are called in
5196 * NMI context
5197 */
5198 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5199 calc_timer_values(event, &now, &enabled, &running);
5200
5201 if (event->attr.read_format & PERF_FORMAT_GROUP)
5202 perf_output_read_group(handle, event, enabled, running);
5203 else
5204 perf_output_read_one(handle, event, enabled, running);
5205 }
5206
5207 void perf_output_sample(struct perf_output_handle *handle,
5208 struct perf_event_header *header,
5209 struct perf_sample_data *data,
5210 struct perf_event *event)
5211 {
5212 u64 sample_type = data->type;
5213
5214 perf_output_put(handle, *header);
5215
5216 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5217 perf_output_put(handle, data->id);
5218
5219 if (sample_type & PERF_SAMPLE_IP)
5220 perf_output_put(handle, data->ip);
5221
5222 if (sample_type & PERF_SAMPLE_TID)
5223 perf_output_put(handle, data->tid_entry);
5224
5225 if (sample_type & PERF_SAMPLE_TIME)
5226 perf_output_put(handle, data->time);
5227
5228 if (sample_type & PERF_SAMPLE_ADDR)
5229 perf_output_put(handle, data->addr);
5230
5231 if (sample_type & PERF_SAMPLE_ID)
5232 perf_output_put(handle, data->id);
5233
5234 if (sample_type & PERF_SAMPLE_STREAM_ID)
5235 perf_output_put(handle, data->stream_id);
5236
5237 if (sample_type & PERF_SAMPLE_CPU)
5238 perf_output_put(handle, data->cpu_entry);
5239
5240 if (sample_type & PERF_SAMPLE_PERIOD)
5241 perf_output_put(handle, data->period);
5242
5243 if (sample_type & PERF_SAMPLE_READ)
5244 perf_output_read(handle, event);
5245
5246 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5247 if (data->callchain) {
5248 int size = 1;
5249
5250 if (data->callchain)
5251 size += data->callchain->nr;
5252
5253 size *= sizeof(u64);
5254
5255 __output_copy(handle, data->callchain, size);
5256 } else {
5257 u64 nr = 0;
5258 perf_output_put(handle, nr);
5259 }
5260 }
5261
5262 if (sample_type & PERF_SAMPLE_RAW) {
5263 if (data->raw) {
5264 perf_output_put(handle, data->raw->size);
5265 __output_copy(handle, data->raw->data,
5266 data->raw->size);
5267 } else {
5268 struct {
5269 u32 size;
5270 u32 data;
5271 } raw = {
5272 .size = sizeof(u32),
5273 .data = 0,
5274 };
5275 perf_output_put(handle, raw);
5276 }
5277 }
5278
5279 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5280 if (data->br_stack) {
5281 size_t size;
5282
5283 size = data->br_stack->nr
5284 * sizeof(struct perf_branch_entry);
5285
5286 perf_output_put(handle, data->br_stack->nr);
5287 perf_output_copy(handle, data->br_stack->entries, size);
5288 } else {
5289 /*
5290 * we always store at least the value of nr
5291 */
5292 u64 nr = 0;
5293 perf_output_put(handle, nr);
5294 }
5295 }
5296
5297 if (sample_type & PERF_SAMPLE_REGS_USER) {
5298 u64 abi = data->regs_user.abi;
5299
5300 /*
5301 * If there are no regs to dump, notice it through
5302 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5303 */
5304 perf_output_put(handle, abi);
5305
5306 if (abi) {
5307 u64 mask = event->attr.sample_regs_user;
5308 perf_output_sample_regs(handle,
5309 data->regs_user.regs,
5310 mask);
5311 }
5312 }
5313
5314 if (sample_type & PERF_SAMPLE_STACK_USER) {
5315 perf_output_sample_ustack(handle,
5316 data->stack_user_size,
5317 data->regs_user.regs);
5318 }
5319
5320 if (sample_type & PERF_SAMPLE_WEIGHT)
5321 perf_output_put(handle, data->weight);
5322
5323 if (sample_type & PERF_SAMPLE_DATA_SRC)
5324 perf_output_put(handle, data->data_src.val);
5325
5326 if (sample_type & PERF_SAMPLE_TRANSACTION)
5327 perf_output_put(handle, data->txn);
5328
5329 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5330 u64 abi = data->regs_intr.abi;
5331 /*
5332 * If there are no regs to dump, notice it through
5333 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5334 */
5335 perf_output_put(handle, abi);
5336
5337 if (abi) {
5338 u64 mask = event->attr.sample_regs_intr;
5339
5340 perf_output_sample_regs(handle,
5341 data->regs_intr.regs,
5342 mask);
5343 }
5344 }
5345
5346 if (!event->attr.watermark) {
5347 int wakeup_events = event->attr.wakeup_events;
5348
5349 if (wakeup_events) {
5350 struct ring_buffer *rb = handle->rb;
5351 int events = local_inc_return(&rb->events);
5352
5353 if (events >= wakeup_events) {
5354 local_sub(wakeup_events, &rb->events);
5355 local_inc(&rb->wakeup);
5356 }
5357 }
5358 }
5359 }
5360
5361 void perf_prepare_sample(struct perf_event_header *header,
5362 struct perf_sample_data *data,
5363 struct perf_event *event,
5364 struct pt_regs *regs)
5365 {
5366 u64 sample_type = event->attr.sample_type;
5367
5368 header->type = PERF_RECORD_SAMPLE;
5369 header->size = sizeof(*header) + event->header_size;
5370
5371 header->misc = 0;
5372 header->misc |= perf_misc_flags(regs);
5373
5374 __perf_event_header__init_id(header, data, event);
5375
5376 if (sample_type & PERF_SAMPLE_IP)
5377 data->ip = perf_instruction_pointer(regs);
5378
5379 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5380 int size = 1;
5381
5382 data->callchain = perf_callchain(event, regs);
5383
5384 if (data->callchain)
5385 size += data->callchain->nr;
5386
5387 header->size += size * sizeof(u64);
5388 }
5389
5390 if (sample_type & PERF_SAMPLE_RAW) {
5391 int size = sizeof(u32);
5392
5393 if (data->raw)
5394 size += data->raw->size;
5395 else
5396 size += sizeof(u32);
5397
5398 WARN_ON_ONCE(size & (sizeof(u64)-1));
5399 header->size += size;
5400 }
5401
5402 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5403 int size = sizeof(u64); /* nr */
5404 if (data->br_stack) {
5405 size += data->br_stack->nr
5406 * sizeof(struct perf_branch_entry);
5407 }
5408 header->size += size;
5409 }
5410
5411 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5412 perf_sample_regs_user(&data->regs_user, regs,
5413 &data->regs_user_copy);
5414
5415 if (sample_type & PERF_SAMPLE_REGS_USER) {
5416 /* regs dump ABI info */
5417 int size = sizeof(u64);
5418
5419 if (data->regs_user.regs) {
5420 u64 mask = event->attr.sample_regs_user;
5421 size += hweight64(mask) * sizeof(u64);
5422 }
5423
5424 header->size += size;
5425 }
5426
5427 if (sample_type & PERF_SAMPLE_STACK_USER) {
5428 /*
5429 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5430 * processed as the last one or have additional check added
5431 * in case new sample type is added, because we could eat
5432 * up the rest of the sample size.
5433 */
5434 u16 stack_size = event->attr.sample_stack_user;
5435 u16 size = sizeof(u64);
5436
5437 stack_size = perf_sample_ustack_size(stack_size, header->size,
5438 data->regs_user.regs);
5439
5440 /*
5441 * If there is something to dump, add space for the dump
5442 * itself and for the field that tells the dynamic size,
5443 * which is how many have been actually dumped.
5444 */
5445 if (stack_size)
5446 size += sizeof(u64) + stack_size;
5447
5448 data->stack_user_size = stack_size;
5449 header->size += size;
5450 }
5451
5452 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5453 /* regs dump ABI info */
5454 int size = sizeof(u64);
5455
5456 perf_sample_regs_intr(&data->regs_intr, regs);
5457
5458 if (data->regs_intr.regs) {
5459 u64 mask = event->attr.sample_regs_intr;
5460
5461 size += hweight64(mask) * sizeof(u64);
5462 }
5463
5464 header->size += size;
5465 }
5466 }
5467
5468 void perf_event_output(struct perf_event *event,
5469 struct perf_sample_data *data,
5470 struct pt_regs *regs)
5471 {
5472 struct perf_output_handle handle;
5473 struct perf_event_header header;
5474
5475 /* protect the callchain buffers */
5476 rcu_read_lock();
5477
5478 perf_prepare_sample(&header, data, event, regs);
5479
5480 if (perf_output_begin(&handle, event, header.size))
5481 goto exit;
5482
5483 perf_output_sample(&handle, &header, data, event);
5484
5485 perf_output_end(&handle);
5486
5487 exit:
5488 rcu_read_unlock();
5489 }
5490
5491 /*
5492 * read event_id
5493 */
5494
5495 struct perf_read_event {
5496 struct perf_event_header header;
5497
5498 u32 pid;
5499 u32 tid;
5500 };
5501
5502 static void
5503 perf_event_read_event(struct perf_event *event,
5504 struct task_struct *task)
5505 {
5506 struct perf_output_handle handle;
5507 struct perf_sample_data sample;
5508 struct perf_read_event read_event = {
5509 .header = {
5510 .type = PERF_RECORD_READ,
5511 .misc = 0,
5512 .size = sizeof(read_event) + event->read_size,
5513 },
5514 .pid = perf_event_pid(event, task),
5515 .tid = perf_event_tid(event, task),
5516 };
5517 int ret;
5518
5519 perf_event_header__init_id(&read_event.header, &sample, event);
5520 ret = perf_output_begin(&handle, event, read_event.header.size);
5521 if (ret)
5522 return;
5523
5524 perf_output_put(&handle, read_event);
5525 perf_output_read(&handle, event);
5526 perf_event__output_id_sample(event, &handle, &sample);
5527
5528 perf_output_end(&handle);
5529 }
5530
5531 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5532
5533 static void
5534 perf_event_aux_ctx(struct perf_event_context *ctx,
5535 perf_event_aux_output_cb output,
5536 void *data)
5537 {
5538 struct perf_event *event;
5539
5540 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5541 if (event->state < PERF_EVENT_STATE_INACTIVE)
5542 continue;
5543 if (!event_filter_match(event))
5544 continue;
5545 output(event, data);
5546 }
5547 }
5548
5549 static void
5550 perf_event_aux(perf_event_aux_output_cb output, void *data,
5551 struct perf_event_context *task_ctx)
5552 {
5553 struct perf_cpu_context *cpuctx;
5554 struct perf_event_context *ctx;
5555 struct pmu *pmu;
5556 int ctxn;
5557
5558 rcu_read_lock();
5559 list_for_each_entry_rcu(pmu, &pmus, entry) {
5560 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5561 if (cpuctx->unique_pmu != pmu)
5562 goto next;
5563 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5564 if (task_ctx)
5565 goto next;
5566 ctxn = pmu->task_ctx_nr;
5567 if (ctxn < 0)
5568 goto next;
5569 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5570 if (ctx)
5571 perf_event_aux_ctx(ctx, output, data);
5572 next:
5573 put_cpu_ptr(pmu->pmu_cpu_context);
5574 }
5575
5576 if (task_ctx) {
5577 preempt_disable();
5578 perf_event_aux_ctx(task_ctx, output, data);
5579 preempt_enable();
5580 }
5581 rcu_read_unlock();
5582 }
5583
5584 /*
5585 * task tracking -- fork/exit
5586 *
5587 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5588 */
5589
5590 struct perf_task_event {
5591 struct task_struct *task;
5592 struct perf_event_context *task_ctx;
5593
5594 struct {
5595 struct perf_event_header header;
5596
5597 u32 pid;
5598 u32 ppid;
5599 u32 tid;
5600 u32 ptid;
5601 u64 time;
5602 } event_id;
5603 };
5604
5605 static int perf_event_task_match(struct perf_event *event)
5606 {
5607 return event->attr.comm || event->attr.mmap ||
5608 event->attr.mmap2 || event->attr.mmap_data ||
5609 event->attr.task;
5610 }
5611
5612 static void perf_event_task_output(struct perf_event *event,
5613 void *data)
5614 {
5615 struct perf_task_event *task_event = data;
5616 struct perf_output_handle handle;
5617 struct perf_sample_data sample;
5618 struct task_struct *task = task_event->task;
5619 int ret, size = task_event->event_id.header.size;
5620
5621 if (!perf_event_task_match(event))
5622 return;
5623
5624 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5625
5626 ret = perf_output_begin(&handle, event,
5627 task_event->event_id.header.size);
5628 if (ret)
5629 goto out;
5630
5631 task_event->event_id.pid = perf_event_pid(event, task);
5632 task_event->event_id.ppid = perf_event_pid(event, current);
5633
5634 task_event->event_id.tid = perf_event_tid(event, task);
5635 task_event->event_id.ptid = perf_event_tid(event, current);
5636
5637 task_event->event_id.time = perf_event_clock(event);
5638
5639 perf_output_put(&handle, task_event->event_id);
5640
5641 perf_event__output_id_sample(event, &handle, &sample);
5642
5643 perf_output_end(&handle);
5644 out:
5645 task_event->event_id.header.size = size;
5646 }
5647
5648 static void perf_event_task(struct task_struct *task,
5649 struct perf_event_context *task_ctx,
5650 int new)
5651 {
5652 struct perf_task_event task_event;
5653
5654 if (!atomic_read(&nr_comm_events) &&
5655 !atomic_read(&nr_mmap_events) &&
5656 !atomic_read(&nr_task_events))
5657 return;
5658
5659 task_event = (struct perf_task_event){
5660 .task = task,
5661 .task_ctx = task_ctx,
5662 .event_id = {
5663 .header = {
5664 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5665 .misc = 0,
5666 .size = sizeof(task_event.event_id),
5667 },
5668 /* .pid */
5669 /* .ppid */
5670 /* .tid */
5671 /* .ptid */
5672 /* .time */
5673 },
5674 };
5675
5676 perf_event_aux(perf_event_task_output,
5677 &task_event,
5678 task_ctx);
5679 }
5680
5681 void perf_event_fork(struct task_struct *task)
5682 {
5683 perf_event_task(task, NULL, 1);
5684 }
5685
5686 /*
5687 * comm tracking
5688 */
5689
5690 struct perf_comm_event {
5691 struct task_struct *task;
5692 char *comm;
5693 int comm_size;
5694
5695 struct {
5696 struct perf_event_header header;
5697
5698 u32 pid;
5699 u32 tid;
5700 } event_id;
5701 };
5702
5703 static int perf_event_comm_match(struct perf_event *event)
5704 {
5705 return event->attr.comm;
5706 }
5707
5708 static void perf_event_comm_output(struct perf_event *event,
5709 void *data)
5710 {
5711 struct perf_comm_event *comm_event = data;
5712 struct perf_output_handle handle;
5713 struct perf_sample_data sample;
5714 int size = comm_event->event_id.header.size;
5715 int ret;
5716
5717 if (!perf_event_comm_match(event))
5718 return;
5719
5720 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5721 ret = perf_output_begin(&handle, event,
5722 comm_event->event_id.header.size);
5723
5724 if (ret)
5725 goto out;
5726
5727 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5728 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5729
5730 perf_output_put(&handle, comm_event->event_id);
5731 __output_copy(&handle, comm_event->comm,
5732 comm_event->comm_size);
5733
5734 perf_event__output_id_sample(event, &handle, &sample);
5735
5736 perf_output_end(&handle);
5737 out:
5738 comm_event->event_id.header.size = size;
5739 }
5740
5741 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5742 {
5743 char comm[TASK_COMM_LEN];
5744 unsigned int size;
5745
5746 memset(comm, 0, sizeof(comm));
5747 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5748 size = ALIGN(strlen(comm)+1, sizeof(u64));
5749
5750 comm_event->comm = comm;
5751 comm_event->comm_size = size;
5752
5753 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5754
5755 perf_event_aux(perf_event_comm_output,
5756 comm_event,
5757 NULL);
5758 }
5759
5760 void perf_event_comm(struct task_struct *task, bool exec)
5761 {
5762 struct perf_comm_event comm_event;
5763
5764 if (!atomic_read(&nr_comm_events))
5765 return;
5766
5767 comm_event = (struct perf_comm_event){
5768 .task = task,
5769 /* .comm */
5770 /* .comm_size */
5771 .event_id = {
5772 .header = {
5773 .type = PERF_RECORD_COMM,
5774 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5775 /* .size */
5776 },
5777 /* .pid */
5778 /* .tid */
5779 },
5780 };
5781
5782 perf_event_comm_event(&comm_event);
5783 }
5784
5785 /*
5786 * mmap tracking
5787 */
5788
5789 struct perf_mmap_event {
5790 struct vm_area_struct *vma;
5791
5792 const char *file_name;
5793 int file_size;
5794 int maj, min;
5795 u64 ino;
5796 u64 ino_generation;
5797 u32 prot, flags;
5798
5799 struct {
5800 struct perf_event_header header;
5801
5802 u32 pid;
5803 u32 tid;
5804 u64 start;
5805 u64 len;
5806 u64 pgoff;
5807 } event_id;
5808 };
5809
5810 static int perf_event_mmap_match(struct perf_event *event,
5811 void *data)
5812 {
5813 struct perf_mmap_event *mmap_event = data;
5814 struct vm_area_struct *vma = mmap_event->vma;
5815 int executable = vma->vm_flags & VM_EXEC;
5816
5817 return (!executable && event->attr.mmap_data) ||
5818 (executable && (event->attr.mmap || event->attr.mmap2));
5819 }
5820
5821 static void perf_event_mmap_output(struct perf_event *event,
5822 void *data)
5823 {
5824 struct perf_mmap_event *mmap_event = data;
5825 struct perf_output_handle handle;
5826 struct perf_sample_data sample;
5827 int size = mmap_event->event_id.header.size;
5828 int ret;
5829
5830 if (!perf_event_mmap_match(event, data))
5831 return;
5832
5833 if (event->attr.mmap2) {
5834 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5835 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5836 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5837 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5838 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5839 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5840 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5841 }
5842
5843 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5844 ret = perf_output_begin(&handle, event,
5845 mmap_event->event_id.header.size);
5846 if (ret)
5847 goto out;
5848
5849 mmap_event->event_id.pid = perf_event_pid(event, current);
5850 mmap_event->event_id.tid = perf_event_tid(event, current);
5851
5852 perf_output_put(&handle, mmap_event->event_id);
5853
5854 if (event->attr.mmap2) {
5855 perf_output_put(&handle, mmap_event->maj);
5856 perf_output_put(&handle, mmap_event->min);
5857 perf_output_put(&handle, mmap_event->ino);
5858 perf_output_put(&handle, mmap_event->ino_generation);
5859 perf_output_put(&handle, mmap_event->prot);
5860 perf_output_put(&handle, mmap_event->flags);
5861 }
5862
5863 __output_copy(&handle, mmap_event->file_name,
5864 mmap_event->file_size);
5865
5866 perf_event__output_id_sample(event, &handle, &sample);
5867
5868 perf_output_end(&handle);
5869 out:
5870 mmap_event->event_id.header.size = size;
5871 }
5872
5873 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5874 {
5875 struct vm_area_struct *vma = mmap_event->vma;
5876 struct file *file = vma->vm_file;
5877 int maj = 0, min = 0;
5878 u64 ino = 0, gen = 0;
5879 u32 prot = 0, flags = 0;
5880 unsigned int size;
5881 char tmp[16];
5882 char *buf = NULL;
5883 char *name;
5884
5885 if (file) {
5886 struct inode *inode;
5887 dev_t dev;
5888
5889 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5890 if (!buf) {
5891 name = "//enomem";
5892 goto cpy_name;
5893 }
5894 /*
5895 * d_path() works from the end of the rb backwards, so we
5896 * need to add enough zero bytes after the string to handle
5897 * the 64bit alignment we do later.
5898 */
5899 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5900 if (IS_ERR(name)) {
5901 name = "//toolong";
5902 goto cpy_name;
5903 }
5904 inode = file_inode(vma->vm_file);
5905 dev = inode->i_sb->s_dev;
5906 ino = inode->i_ino;
5907 gen = inode->i_generation;
5908 maj = MAJOR(dev);
5909 min = MINOR(dev);
5910
5911 if (vma->vm_flags & VM_READ)
5912 prot |= PROT_READ;
5913 if (vma->vm_flags & VM_WRITE)
5914 prot |= PROT_WRITE;
5915 if (vma->vm_flags & VM_EXEC)
5916 prot |= PROT_EXEC;
5917
5918 if (vma->vm_flags & VM_MAYSHARE)
5919 flags = MAP_SHARED;
5920 else
5921 flags = MAP_PRIVATE;
5922
5923 if (vma->vm_flags & VM_DENYWRITE)
5924 flags |= MAP_DENYWRITE;
5925 if (vma->vm_flags & VM_MAYEXEC)
5926 flags |= MAP_EXECUTABLE;
5927 if (vma->vm_flags & VM_LOCKED)
5928 flags |= MAP_LOCKED;
5929 if (vma->vm_flags & VM_HUGETLB)
5930 flags |= MAP_HUGETLB;
5931
5932 goto got_name;
5933 } else {
5934 if (vma->vm_ops && vma->vm_ops->name) {
5935 name = (char *) vma->vm_ops->name(vma);
5936 if (name)
5937 goto cpy_name;
5938 }
5939
5940 name = (char *)arch_vma_name(vma);
5941 if (name)
5942 goto cpy_name;
5943
5944 if (vma->vm_start <= vma->vm_mm->start_brk &&
5945 vma->vm_end >= vma->vm_mm->brk) {
5946 name = "[heap]";
5947 goto cpy_name;
5948 }
5949 if (vma->vm_start <= vma->vm_mm->start_stack &&
5950 vma->vm_end >= vma->vm_mm->start_stack) {
5951 name = "[stack]";
5952 goto cpy_name;
5953 }
5954
5955 name = "//anon";
5956 goto cpy_name;
5957 }
5958
5959 cpy_name:
5960 strlcpy(tmp, name, sizeof(tmp));
5961 name = tmp;
5962 got_name:
5963 /*
5964 * Since our buffer works in 8 byte units we need to align our string
5965 * size to a multiple of 8. However, we must guarantee the tail end is
5966 * zero'd out to avoid leaking random bits to userspace.
5967 */
5968 size = strlen(name)+1;
5969 while (!IS_ALIGNED(size, sizeof(u64)))
5970 name[size++] = '\0';
5971
5972 mmap_event->file_name = name;
5973 mmap_event->file_size = size;
5974 mmap_event->maj = maj;
5975 mmap_event->min = min;
5976 mmap_event->ino = ino;
5977 mmap_event->ino_generation = gen;
5978 mmap_event->prot = prot;
5979 mmap_event->flags = flags;
5980
5981 if (!(vma->vm_flags & VM_EXEC))
5982 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5983
5984 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5985
5986 perf_event_aux(perf_event_mmap_output,
5987 mmap_event,
5988 NULL);
5989
5990 kfree(buf);
5991 }
5992
5993 void perf_event_mmap(struct vm_area_struct *vma)
5994 {
5995 struct perf_mmap_event mmap_event;
5996
5997 if (!atomic_read(&nr_mmap_events))
5998 return;
5999
6000 mmap_event = (struct perf_mmap_event){
6001 .vma = vma,
6002 /* .file_name */
6003 /* .file_size */
6004 .event_id = {
6005 .header = {
6006 .type = PERF_RECORD_MMAP,
6007 .misc = PERF_RECORD_MISC_USER,
6008 /* .size */
6009 },
6010 /* .pid */
6011 /* .tid */
6012 .start = vma->vm_start,
6013 .len = vma->vm_end - vma->vm_start,
6014 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6015 },
6016 /* .maj (attr_mmap2 only) */
6017 /* .min (attr_mmap2 only) */
6018 /* .ino (attr_mmap2 only) */
6019 /* .ino_generation (attr_mmap2 only) */
6020 /* .prot (attr_mmap2 only) */
6021 /* .flags (attr_mmap2 only) */
6022 };
6023
6024 perf_event_mmap_event(&mmap_event);
6025 }
6026
6027 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6028 unsigned long size, u64 flags)
6029 {
6030 struct perf_output_handle handle;
6031 struct perf_sample_data sample;
6032 struct perf_aux_event {
6033 struct perf_event_header header;
6034 u64 offset;
6035 u64 size;
6036 u64 flags;
6037 } rec = {
6038 .header = {
6039 .type = PERF_RECORD_AUX,
6040 .misc = 0,
6041 .size = sizeof(rec),
6042 },
6043 .offset = head,
6044 .size = size,
6045 .flags = flags,
6046 };
6047 int ret;
6048
6049 perf_event_header__init_id(&rec.header, &sample, event);
6050 ret = perf_output_begin(&handle, event, rec.header.size);
6051
6052 if (ret)
6053 return;
6054
6055 perf_output_put(&handle, rec);
6056 perf_event__output_id_sample(event, &handle, &sample);
6057
6058 perf_output_end(&handle);
6059 }
6060
6061 /*
6062 * Lost/dropped samples logging
6063 */
6064 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6065 {
6066 struct perf_output_handle handle;
6067 struct perf_sample_data sample;
6068 int ret;
6069
6070 struct {
6071 struct perf_event_header header;
6072 u64 lost;
6073 } lost_samples_event = {
6074 .header = {
6075 .type = PERF_RECORD_LOST_SAMPLES,
6076 .misc = 0,
6077 .size = sizeof(lost_samples_event),
6078 },
6079 .lost = lost,
6080 };
6081
6082 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6083
6084 ret = perf_output_begin(&handle, event,
6085 lost_samples_event.header.size);
6086 if (ret)
6087 return;
6088
6089 perf_output_put(&handle, lost_samples_event);
6090 perf_event__output_id_sample(event, &handle, &sample);
6091 perf_output_end(&handle);
6092 }
6093
6094 /*
6095 * context_switch tracking
6096 */
6097
6098 struct perf_switch_event {
6099 struct task_struct *task;
6100 struct task_struct *next_prev;
6101
6102 struct {
6103 struct perf_event_header header;
6104 u32 next_prev_pid;
6105 u32 next_prev_tid;
6106 } event_id;
6107 };
6108
6109 static int perf_event_switch_match(struct perf_event *event)
6110 {
6111 return event->attr.context_switch;
6112 }
6113
6114 static void perf_event_switch_output(struct perf_event *event, void *data)
6115 {
6116 struct perf_switch_event *se = data;
6117 struct perf_output_handle handle;
6118 struct perf_sample_data sample;
6119 int ret;
6120
6121 if (!perf_event_switch_match(event))
6122 return;
6123
6124 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6125 if (event->ctx->task) {
6126 se->event_id.header.type = PERF_RECORD_SWITCH;
6127 se->event_id.header.size = sizeof(se->event_id.header);
6128 } else {
6129 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6130 se->event_id.header.size = sizeof(se->event_id);
6131 se->event_id.next_prev_pid =
6132 perf_event_pid(event, se->next_prev);
6133 se->event_id.next_prev_tid =
6134 perf_event_tid(event, se->next_prev);
6135 }
6136
6137 perf_event_header__init_id(&se->event_id.header, &sample, event);
6138
6139 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6140 if (ret)
6141 return;
6142
6143 if (event->ctx->task)
6144 perf_output_put(&handle, se->event_id.header);
6145 else
6146 perf_output_put(&handle, se->event_id);
6147
6148 perf_event__output_id_sample(event, &handle, &sample);
6149
6150 perf_output_end(&handle);
6151 }
6152
6153 static void perf_event_switch(struct task_struct *task,
6154 struct task_struct *next_prev, bool sched_in)
6155 {
6156 struct perf_switch_event switch_event;
6157
6158 /* N.B. caller checks nr_switch_events != 0 */
6159
6160 switch_event = (struct perf_switch_event){
6161 .task = task,
6162 .next_prev = next_prev,
6163 .event_id = {
6164 .header = {
6165 /* .type */
6166 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6167 /* .size */
6168 },
6169 /* .next_prev_pid */
6170 /* .next_prev_tid */
6171 },
6172 };
6173
6174 perf_event_aux(perf_event_switch_output,
6175 &switch_event,
6176 NULL);
6177 }
6178
6179 /*
6180 * IRQ throttle logging
6181 */
6182
6183 static void perf_log_throttle(struct perf_event *event, int enable)
6184 {
6185 struct perf_output_handle handle;
6186 struct perf_sample_data sample;
6187 int ret;
6188
6189 struct {
6190 struct perf_event_header header;
6191 u64 time;
6192 u64 id;
6193 u64 stream_id;
6194 } throttle_event = {
6195 .header = {
6196 .type = PERF_RECORD_THROTTLE,
6197 .misc = 0,
6198 .size = sizeof(throttle_event),
6199 },
6200 .time = perf_event_clock(event),
6201 .id = primary_event_id(event),
6202 .stream_id = event->id,
6203 };
6204
6205 if (enable)
6206 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6207
6208 perf_event_header__init_id(&throttle_event.header, &sample, event);
6209
6210 ret = perf_output_begin(&handle, event,
6211 throttle_event.header.size);
6212 if (ret)
6213 return;
6214
6215 perf_output_put(&handle, throttle_event);
6216 perf_event__output_id_sample(event, &handle, &sample);
6217 perf_output_end(&handle);
6218 }
6219
6220 static void perf_log_itrace_start(struct perf_event *event)
6221 {
6222 struct perf_output_handle handle;
6223 struct perf_sample_data sample;
6224 struct perf_aux_event {
6225 struct perf_event_header header;
6226 u32 pid;
6227 u32 tid;
6228 } rec;
6229 int ret;
6230
6231 if (event->parent)
6232 event = event->parent;
6233
6234 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6235 event->hw.itrace_started)
6236 return;
6237
6238 rec.header.type = PERF_RECORD_ITRACE_START;
6239 rec.header.misc = 0;
6240 rec.header.size = sizeof(rec);
6241 rec.pid = perf_event_pid(event, current);
6242 rec.tid = perf_event_tid(event, current);
6243
6244 perf_event_header__init_id(&rec.header, &sample, event);
6245 ret = perf_output_begin(&handle, event, rec.header.size);
6246
6247 if (ret)
6248 return;
6249
6250 perf_output_put(&handle, rec);
6251 perf_event__output_id_sample(event, &handle, &sample);
6252
6253 perf_output_end(&handle);
6254 }
6255
6256 /*
6257 * Generic event overflow handling, sampling.
6258 */
6259
6260 static int __perf_event_overflow(struct perf_event *event,
6261 int throttle, struct perf_sample_data *data,
6262 struct pt_regs *regs)
6263 {
6264 int events = atomic_read(&event->event_limit);
6265 struct hw_perf_event *hwc = &event->hw;
6266 u64 seq;
6267 int ret = 0;
6268
6269 /*
6270 * Non-sampling counters might still use the PMI to fold short
6271 * hardware counters, ignore those.
6272 */
6273 if (unlikely(!is_sampling_event(event)))
6274 return 0;
6275
6276 seq = __this_cpu_read(perf_throttled_seq);
6277 if (seq != hwc->interrupts_seq) {
6278 hwc->interrupts_seq = seq;
6279 hwc->interrupts = 1;
6280 } else {
6281 hwc->interrupts++;
6282 if (unlikely(throttle
6283 && hwc->interrupts >= max_samples_per_tick)) {
6284 __this_cpu_inc(perf_throttled_count);
6285 hwc->interrupts = MAX_INTERRUPTS;
6286 perf_log_throttle(event, 0);
6287 tick_nohz_full_kick();
6288 ret = 1;
6289 }
6290 }
6291
6292 if (event->attr.freq) {
6293 u64 now = perf_clock();
6294 s64 delta = now - hwc->freq_time_stamp;
6295
6296 hwc->freq_time_stamp = now;
6297
6298 if (delta > 0 && delta < 2*TICK_NSEC)
6299 perf_adjust_period(event, delta, hwc->last_period, true);
6300 }
6301
6302 /*
6303 * XXX event_limit might not quite work as expected on inherited
6304 * events
6305 */
6306
6307 event->pending_kill = POLL_IN;
6308 if (events && atomic_dec_and_test(&event->event_limit)) {
6309 ret = 1;
6310 event->pending_kill = POLL_HUP;
6311 event->pending_disable = 1;
6312 irq_work_queue(&event->pending);
6313 }
6314
6315 if (event->overflow_handler)
6316 event->overflow_handler(event, data, regs);
6317 else
6318 perf_event_output(event, data, regs);
6319
6320 if (*perf_event_fasync(event) && event->pending_kill) {
6321 event->pending_wakeup = 1;
6322 irq_work_queue(&event->pending);
6323 }
6324
6325 return ret;
6326 }
6327
6328 int perf_event_overflow(struct perf_event *event,
6329 struct perf_sample_data *data,
6330 struct pt_regs *regs)
6331 {
6332 return __perf_event_overflow(event, 1, data, regs);
6333 }
6334
6335 /*
6336 * Generic software event infrastructure
6337 */
6338
6339 struct swevent_htable {
6340 struct swevent_hlist *swevent_hlist;
6341 struct mutex hlist_mutex;
6342 int hlist_refcount;
6343
6344 /* Recursion avoidance in each contexts */
6345 int recursion[PERF_NR_CONTEXTS];
6346
6347 /* Keeps track of cpu being initialized/exited */
6348 bool online;
6349 };
6350
6351 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6352
6353 /*
6354 * We directly increment event->count and keep a second value in
6355 * event->hw.period_left to count intervals. This period event
6356 * is kept in the range [-sample_period, 0] so that we can use the
6357 * sign as trigger.
6358 */
6359
6360 u64 perf_swevent_set_period(struct perf_event *event)
6361 {
6362 struct hw_perf_event *hwc = &event->hw;
6363 u64 period = hwc->last_period;
6364 u64 nr, offset;
6365 s64 old, val;
6366
6367 hwc->last_period = hwc->sample_period;
6368
6369 again:
6370 old = val = local64_read(&hwc->period_left);
6371 if (val < 0)
6372 return 0;
6373
6374 nr = div64_u64(period + val, period);
6375 offset = nr * period;
6376 val -= offset;
6377 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6378 goto again;
6379
6380 return nr;
6381 }
6382
6383 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6384 struct perf_sample_data *data,
6385 struct pt_regs *regs)
6386 {
6387 struct hw_perf_event *hwc = &event->hw;
6388 int throttle = 0;
6389
6390 if (!overflow)
6391 overflow = perf_swevent_set_period(event);
6392
6393 if (hwc->interrupts == MAX_INTERRUPTS)
6394 return;
6395
6396 for (; overflow; overflow--) {
6397 if (__perf_event_overflow(event, throttle,
6398 data, regs)) {
6399 /*
6400 * We inhibit the overflow from happening when
6401 * hwc->interrupts == MAX_INTERRUPTS.
6402 */
6403 break;
6404 }
6405 throttle = 1;
6406 }
6407 }
6408
6409 static void perf_swevent_event(struct perf_event *event, u64 nr,
6410 struct perf_sample_data *data,
6411 struct pt_regs *regs)
6412 {
6413 struct hw_perf_event *hwc = &event->hw;
6414
6415 local64_add(nr, &event->count);
6416
6417 if (!regs)
6418 return;
6419
6420 if (!is_sampling_event(event))
6421 return;
6422
6423 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6424 data->period = nr;
6425 return perf_swevent_overflow(event, 1, data, regs);
6426 } else
6427 data->period = event->hw.last_period;
6428
6429 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6430 return perf_swevent_overflow(event, 1, data, regs);
6431
6432 if (local64_add_negative(nr, &hwc->period_left))
6433 return;
6434
6435 perf_swevent_overflow(event, 0, data, regs);
6436 }
6437
6438 static int perf_exclude_event(struct perf_event *event,
6439 struct pt_regs *regs)
6440 {
6441 if (event->hw.state & PERF_HES_STOPPED)
6442 return 1;
6443
6444 if (regs) {
6445 if (event->attr.exclude_user && user_mode(regs))
6446 return 1;
6447
6448 if (event->attr.exclude_kernel && !user_mode(regs))
6449 return 1;
6450 }
6451
6452 return 0;
6453 }
6454
6455 static int perf_swevent_match(struct perf_event *event,
6456 enum perf_type_id type,
6457 u32 event_id,
6458 struct perf_sample_data *data,
6459 struct pt_regs *regs)
6460 {
6461 if (event->attr.type != type)
6462 return 0;
6463
6464 if (event->attr.config != event_id)
6465 return 0;
6466
6467 if (perf_exclude_event(event, regs))
6468 return 0;
6469
6470 return 1;
6471 }
6472
6473 static inline u64 swevent_hash(u64 type, u32 event_id)
6474 {
6475 u64 val = event_id | (type << 32);
6476
6477 return hash_64(val, SWEVENT_HLIST_BITS);
6478 }
6479
6480 static inline struct hlist_head *
6481 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6482 {
6483 u64 hash = swevent_hash(type, event_id);
6484
6485 return &hlist->heads[hash];
6486 }
6487
6488 /* For the read side: events when they trigger */
6489 static inline struct hlist_head *
6490 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6491 {
6492 struct swevent_hlist *hlist;
6493
6494 hlist = rcu_dereference(swhash->swevent_hlist);
6495 if (!hlist)
6496 return NULL;
6497
6498 return __find_swevent_head(hlist, type, event_id);
6499 }
6500
6501 /* For the event head insertion and removal in the hlist */
6502 static inline struct hlist_head *
6503 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6504 {
6505 struct swevent_hlist *hlist;
6506 u32 event_id = event->attr.config;
6507 u64 type = event->attr.type;
6508
6509 /*
6510 * Event scheduling is always serialized against hlist allocation
6511 * and release. Which makes the protected version suitable here.
6512 * The context lock guarantees that.
6513 */
6514 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6515 lockdep_is_held(&event->ctx->lock));
6516 if (!hlist)
6517 return NULL;
6518
6519 return __find_swevent_head(hlist, type, event_id);
6520 }
6521
6522 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6523 u64 nr,
6524 struct perf_sample_data *data,
6525 struct pt_regs *regs)
6526 {
6527 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6528 struct perf_event *event;
6529 struct hlist_head *head;
6530
6531 rcu_read_lock();
6532 head = find_swevent_head_rcu(swhash, type, event_id);
6533 if (!head)
6534 goto end;
6535
6536 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6537 if (perf_swevent_match(event, type, event_id, data, regs))
6538 perf_swevent_event(event, nr, data, regs);
6539 }
6540 end:
6541 rcu_read_unlock();
6542 }
6543
6544 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6545
6546 int perf_swevent_get_recursion_context(void)
6547 {
6548 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6549
6550 return get_recursion_context(swhash->recursion);
6551 }
6552 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6553
6554 inline void perf_swevent_put_recursion_context(int rctx)
6555 {
6556 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6557
6558 put_recursion_context(swhash->recursion, rctx);
6559 }
6560
6561 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6562 {
6563 struct perf_sample_data data;
6564
6565 if (WARN_ON_ONCE(!regs))
6566 return;
6567
6568 perf_sample_data_init(&data, addr, 0);
6569 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6570 }
6571
6572 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6573 {
6574 int rctx;
6575
6576 preempt_disable_notrace();
6577 rctx = perf_swevent_get_recursion_context();
6578 if (unlikely(rctx < 0))
6579 goto fail;
6580
6581 ___perf_sw_event(event_id, nr, regs, addr);
6582
6583 perf_swevent_put_recursion_context(rctx);
6584 fail:
6585 preempt_enable_notrace();
6586 }
6587
6588 static void perf_swevent_read(struct perf_event *event)
6589 {
6590 }
6591
6592 static int perf_swevent_add(struct perf_event *event, int flags)
6593 {
6594 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6595 struct hw_perf_event *hwc = &event->hw;
6596 struct hlist_head *head;
6597
6598 if (is_sampling_event(event)) {
6599 hwc->last_period = hwc->sample_period;
6600 perf_swevent_set_period(event);
6601 }
6602
6603 hwc->state = !(flags & PERF_EF_START);
6604
6605 head = find_swevent_head(swhash, event);
6606 if (!head) {
6607 /*
6608 * We can race with cpu hotplug code. Do not
6609 * WARN if the cpu just got unplugged.
6610 */
6611 WARN_ON_ONCE(swhash->online);
6612 return -EINVAL;
6613 }
6614
6615 hlist_add_head_rcu(&event->hlist_entry, head);
6616 perf_event_update_userpage(event);
6617
6618 return 0;
6619 }
6620
6621 static void perf_swevent_del(struct perf_event *event, int flags)
6622 {
6623 hlist_del_rcu(&event->hlist_entry);
6624 }
6625
6626 static void perf_swevent_start(struct perf_event *event, int flags)
6627 {
6628 event->hw.state = 0;
6629 }
6630
6631 static void perf_swevent_stop(struct perf_event *event, int flags)
6632 {
6633 event->hw.state = PERF_HES_STOPPED;
6634 }
6635
6636 /* Deref the hlist from the update side */
6637 static inline struct swevent_hlist *
6638 swevent_hlist_deref(struct swevent_htable *swhash)
6639 {
6640 return rcu_dereference_protected(swhash->swevent_hlist,
6641 lockdep_is_held(&swhash->hlist_mutex));
6642 }
6643
6644 static void swevent_hlist_release(struct swevent_htable *swhash)
6645 {
6646 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6647
6648 if (!hlist)
6649 return;
6650
6651 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6652 kfree_rcu(hlist, rcu_head);
6653 }
6654
6655 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6656 {
6657 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6658
6659 mutex_lock(&swhash->hlist_mutex);
6660
6661 if (!--swhash->hlist_refcount)
6662 swevent_hlist_release(swhash);
6663
6664 mutex_unlock(&swhash->hlist_mutex);
6665 }
6666
6667 static void swevent_hlist_put(struct perf_event *event)
6668 {
6669 int cpu;
6670
6671 for_each_possible_cpu(cpu)
6672 swevent_hlist_put_cpu(event, cpu);
6673 }
6674
6675 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6676 {
6677 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6678 int err = 0;
6679
6680 mutex_lock(&swhash->hlist_mutex);
6681
6682 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6683 struct swevent_hlist *hlist;
6684
6685 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6686 if (!hlist) {
6687 err = -ENOMEM;
6688 goto exit;
6689 }
6690 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6691 }
6692 swhash->hlist_refcount++;
6693 exit:
6694 mutex_unlock(&swhash->hlist_mutex);
6695
6696 return err;
6697 }
6698
6699 static int swevent_hlist_get(struct perf_event *event)
6700 {
6701 int err;
6702 int cpu, failed_cpu;
6703
6704 get_online_cpus();
6705 for_each_possible_cpu(cpu) {
6706 err = swevent_hlist_get_cpu(event, cpu);
6707 if (err) {
6708 failed_cpu = cpu;
6709 goto fail;
6710 }
6711 }
6712 put_online_cpus();
6713
6714 return 0;
6715 fail:
6716 for_each_possible_cpu(cpu) {
6717 if (cpu == failed_cpu)
6718 break;
6719 swevent_hlist_put_cpu(event, cpu);
6720 }
6721
6722 put_online_cpus();
6723 return err;
6724 }
6725
6726 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6727
6728 static void sw_perf_event_destroy(struct perf_event *event)
6729 {
6730 u64 event_id = event->attr.config;
6731
6732 WARN_ON(event->parent);
6733
6734 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6735 swevent_hlist_put(event);
6736 }
6737
6738 static int perf_swevent_init(struct perf_event *event)
6739 {
6740 u64 event_id = event->attr.config;
6741
6742 if (event->attr.type != PERF_TYPE_SOFTWARE)
6743 return -ENOENT;
6744
6745 /*
6746 * no branch sampling for software events
6747 */
6748 if (has_branch_stack(event))
6749 return -EOPNOTSUPP;
6750
6751 switch (event_id) {
6752 case PERF_COUNT_SW_CPU_CLOCK:
6753 case PERF_COUNT_SW_TASK_CLOCK:
6754 return -ENOENT;
6755
6756 default:
6757 break;
6758 }
6759
6760 if (event_id >= PERF_COUNT_SW_MAX)
6761 return -ENOENT;
6762
6763 if (!event->parent) {
6764 int err;
6765
6766 err = swevent_hlist_get(event);
6767 if (err)
6768 return err;
6769
6770 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6771 event->destroy = sw_perf_event_destroy;
6772 }
6773
6774 return 0;
6775 }
6776
6777 static struct pmu perf_swevent = {
6778 .task_ctx_nr = perf_sw_context,
6779
6780 .capabilities = PERF_PMU_CAP_NO_NMI,
6781
6782 .event_init = perf_swevent_init,
6783 .add = perf_swevent_add,
6784 .del = perf_swevent_del,
6785 .start = perf_swevent_start,
6786 .stop = perf_swevent_stop,
6787 .read = perf_swevent_read,
6788 };
6789
6790 #ifdef CONFIG_EVENT_TRACING
6791
6792 static int perf_tp_filter_match(struct perf_event *event,
6793 struct perf_sample_data *data)
6794 {
6795 void *record = data->raw->data;
6796
6797 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6798 return 1;
6799 return 0;
6800 }
6801
6802 static int perf_tp_event_match(struct perf_event *event,
6803 struct perf_sample_data *data,
6804 struct pt_regs *regs)
6805 {
6806 if (event->hw.state & PERF_HES_STOPPED)
6807 return 0;
6808 /*
6809 * All tracepoints are from kernel-space.
6810 */
6811 if (event->attr.exclude_kernel)
6812 return 0;
6813
6814 if (!perf_tp_filter_match(event, data))
6815 return 0;
6816
6817 return 1;
6818 }
6819
6820 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6821 struct pt_regs *regs, struct hlist_head *head, int rctx,
6822 struct task_struct *task)
6823 {
6824 struct perf_sample_data data;
6825 struct perf_event *event;
6826
6827 struct perf_raw_record raw = {
6828 .size = entry_size,
6829 .data = record,
6830 };
6831
6832 perf_sample_data_init(&data, addr, 0);
6833 data.raw = &raw;
6834
6835 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6836 if (perf_tp_event_match(event, &data, regs))
6837 perf_swevent_event(event, count, &data, regs);
6838 }
6839
6840 /*
6841 * If we got specified a target task, also iterate its context and
6842 * deliver this event there too.
6843 */
6844 if (task && task != current) {
6845 struct perf_event_context *ctx;
6846 struct trace_entry *entry = record;
6847
6848 rcu_read_lock();
6849 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6850 if (!ctx)
6851 goto unlock;
6852
6853 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6854 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6855 continue;
6856 if (event->attr.config != entry->type)
6857 continue;
6858 if (perf_tp_event_match(event, &data, regs))
6859 perf_swevent_event(event, count, &data, regs);
6860 }
6861 unlock:
6862 rcu_read_unlock();
6863 }
6864
6865 perf_swevent_put_recursion_context(rctx);
6866 }
6867 EXPORT_SYMBOL_GPL(perf_tp_event);
6868
6869 static void tp_perf_event_destroy(struct perf_event *event)
6870 {
6871 perf_trace_destroy(event);
6872 }
6873
6874 static int perf_tp_event_init(struct perf_event *event)
6875 {
6876 int err;
6877
6878 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6879 return -ENOENT;
6880
6881 /*
6882 * no branch sampling for tracepoint events
6883 */
6884 if (has_branch_stack(event))
6885 return -EOPNOTSUPP;
6886
6887 err = perf_trace_init(event);
6888 if (err)
6889 return err;
6890
6891 event->destroy = tp_perf_event_destroy;
6892
6893 return 0;
6894 }
6895
6896 static struct pmu perf_tracepoint = {
6897 .task_ctx_nr = perf_sw_context,
6898
6899 .event_init = perf_tp_event_init,
6900 .add = perf_trace_add,
6901 .del = perf_trace_del,
6902 .start = perf_swevent_start,
6903 .stop = perf_swevent_stop,
6904 .read = perf_swevent_read,
6905 };
6906
6907 static inline void perf_tp_register(void)
6908 {
6909 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6910 }
6911
6912 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6913 {
6914 char *filter_str;
6915 int ret;
6916
6917 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6918 return -EINVAL;
6919
6920 filter_str = strndup_user(arg, PAGE_SIZE);
6921 if (IS_ERR(filter_str))
6922 return PTR_ERR(filter_str);
6923
6924 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6925
6926 kfree(filter_str);
6927 return ret;
6928 }
6929
6930 static void perf_event_free_filter(struct perf_event *event)
6931 {
6932 ftrace_profile_free_filter(event);
6933 }
6934
6935 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6936 {
6937 struct bpf_prog *prog;
6938
6939 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6940 return -EINVAL;
6941
6942 if (event->tp_event->prog)
6943 return -EEXIST;
6944
6945 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6946 /* bpf programs can only be attached to u/kprobes */
6947 return -EINVAL;
6948
6949 prog = bpf_prog_get(prog_fd);
6950 if (IS_ERR(prog))
6951 return PTR_ERR(prog);
6952
6953 if (prog->type != BPF_PROG_TYPE_KPROBE) {
6954 /* valid fd, but invalid bpf program type */
6955 bpf_prog_put(prog);
6956 return -EINVAL;
6957 }
6958
6959 event->tp_event->prog = prog;
6960
6961 return 0;
6962 }
6963
6964 static void perf_event_free_bpf_prog(struct perf_event *event)
6965 {
6966 struct bpf_prog *prog;
6967
6968 if (!event->tp_event)
6969 return;
6970
6971 prog = event->tp_event->prog;
6972 if (prog) {
6973 event->tp_event->prog = NULL;
6974 bpf_prog_put(prog);
6975 }
6976 }
6977
6978 #else
6979
6980 static inline void perf_tp_register(void)
6981 {
6982 }
6983
6984 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6985 {
6986 return -ENOENT;
6987 }
6988
6989 static void perf_event_free_filter(struct perf_event *event)
6990 {
6991 }
6992
6993 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6994 {
6995 return -ENOENT;
6996 }
6997
6998 static void perf_event_free_bpf_prog(struct perf_event *event)
6999 {
7000 }
7001 #endif /* CONFIG_EVENT_TRACING */
7002
7003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7004 void perf_bp_event(struct perf_event *bp, void *data)
7005 {
7006 struct perf_sample_data sample;
7007 struct pt_regs *regs = data;
7008
7009 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7010
7011 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7012 perf_swevent_event(bp, 1, &sample, regs);
7013 }
7014 #endif
7015
7016 /*
7017 * hrtimer based swevent callback
7018 */
7019
7020 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7021 {
7022 enum hrtimer_restart ret = HRTIMER_RESTART;
7023 struct perf_sample_data data;
7024 struct pt_regs *regs;
7025 struct perf_event *event;
7026 u64 period;
7027
7028 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7029
7030 if (event->state != PERF_EVENT_STATE_ACTIVE)
7031 return HRTIMER_NORESTART;
7032
7033 event->pmu->read(event);
7034
7035 perf_sample_data_init(&data, 0, event->hw.last_period);
7036 regs = get_irq_regs();
7037
7038 if (regs && !perf_exclude_event(event, regs)) {
7039 if (!(event->attr.exclude_idle && is_idle_task(current)))
7040 if (__perf_event_overflow(event, 1, &data, regs))
7041 ret = HRTIMER_NORESTART;
7042 }
7043
7044 period = max_t(u64, 10000, event->hw.sample_period);
7045 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7046
7047 return ret;
7048 }
7049
7050 static void perf_swevent_start_hrtimer(struct perf_event *event)
7051 {
7052 struct hw_perf_event *hwc = &event->hw;
7053 s64 period;
7054
7055 if (!is_sampling_event(event))
7056 return;
7057
7058 period = local64_read(&hwc->period_left);
7059 if (period) {
7060 if (period < 0)
7061 period = 10000;
7062
7063 local64_set(&hwc->period_left, 0);
7064 } else {
7065 period = max_t(u64, 10000, hwc->sample_period);
7066 }
7067 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7068 HRTIMER_MODE_REL_PINNED);
7069 }
7070
7071 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7072 {
7073 struct hw_perf_event *hwc = &event->hw;
7074
7075 if (is_sampling_event(event)) {
7076 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7077 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7078
7079 hrtimer_cancel(&hwc->hrtimer);
7080 }
7081 }
7082
7083 static void perf_swevent_init_hrtimer(struct perf_event *event)
7084 {
7085 struct hw_perf_event *hwc = &event->hw;
7086
7087 if (!is_sampling_event(event))
7088 return;
7089
7090 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7091 hwc->hrtimer.function = perf_swevent_hrtimer;
7092
7093 /*
7094 * Since hrtimers have a fixed rate, we can do a static freq->period
7095 * mapping and avoid the whole period adjust feedback stuff.
7096 */
7097 if (event->attr.freq) {
7098 long freq = event->attr.sample_freq;
7099
7100 event->attr.sample_period = NSEC_PER_SEC / freq;
7101 hwc->sample_period = event->attr.sample_period;
7102 local64_set(&hwc->period_left, hwc->sample_period);
7103 hwc->last_period = hwc->sample_period;
7104 event->attr.freq = 0;
7105 }
7106 }
7107
7108 /*
7109 * Software event: cpu wall time clock
7110 */
7111
7112 static void cpu_clock_event_update(struct perf_event *event)
7113 {
7114 s64 prev;
7115 u64 now;
7116
7117 now = local_clock();
7118 prev = local64_xchg(&event->hw.prev_count, now);
7119 local64_add(now - prev, &event->count);
7120 }
7121
7122 static void cpu_clock_event_start(struct perf_event *event, int flags)
7123 {
7124 local64_set(&event->hw.prev_count, local_clock());
7125 perf_swevent_start_hrtimer(event);
7126 }
7127
7128 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7129 {
7130 perf_swevent_cancel_hrtimer(event);
7131 cpu_clock_event_update(event);
7132 }
7133
7134 static int cpu_clock_event_add(struct perf_event *event, int flags)
7135 {
7136 if (flags & PERF_EF_START)
7137 cpu_clock_event_start(event, flags);
7138 perf_event_update_userpage(event);
7139
7140 return 0;
7141 }
7142
7143 static void cpu_clock_event_del(struct perf_event *event, int flags)
7144 {
7145 cpu_clock_event_stop(event, flags);
7146 }
7147
7148 static void cpu_clock_event_read(struct perf_event *event)
7149 {
7150 cpu_clock_event_update(event);
7151 }
7152
7153 static int cpu_clock_event_init(struct perf_event *event)
7154 {
7155 if (event->attr.type != PERF_TYPE_SOFTWARE)
7156 return -ENOENT;
7157
7158 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7159 return -ENOENT;
7160
7161 /*
7162 * no branch sampling for software events
7163 */
7164 if (has_branch_stack(event))
7165 return -EOPNOTSUPP;
7166
7167 perf_swevent_init_hrtimer(event);
7168
7169 return 0;
7170 }
7171
7172 static struct pmu perf_cpu_clock = {
7173 .task_ctx_nr = perf_sw_context,
7174
7175 .capabilities = PERF_PMU_CAP_NO_NMI,
7176
7177 .event_init = cpu_clock_event_init,
7178 .add = cpu_clock_event_add,
7179 .del = cpu_clock_event_del,
7180 .start = cpu_clock_event_start,
7181 .stop = cpu_clock_event_stop,
7182 .read = cpu_clock_event_read,
7183 };
7184
7185 /*
7186 * Software event: task time clock
7187 */
7188
7189 static void task_clock_event_update(struct perf_event *event, u64 now)
7190 {
7191 u64 prev;
7192 s64 delta;
7193
7194 prev = local64_xchg(&event->hw.prev_count, now);
7195 delta = now - prev;
7196 local64_add(delta, &event->count);
7197 }
7198
7199 static void task_clock_event_start(struct perf_event *event, int flags)
7200 {
7201 local64_set(&event->hw.prev_count, event->ctx->time);
7202 perf_swevent_start_hrtimer(event);
7203 }
7204
7205 static void task_clock_event_stop(struct perf_event *event, int flags)
7206 {
7207 perf_swevent_cancel_hrtimer(event);
7208 task_clock_event_update(event, event->ctx->time);
7209 }
7210
7211 static int task_clock_event_add(struct perf_event *event, int flags)
7212 {
7213 if (flags & PERF_EF_START)
7214 task_clock_event_start(event, flags);
7215 perf_event_update_userpage(event);
7216
7217 return 0;
7218 }
7219
7220 static void task_clock_event_del(struct perf_event *event, int flags)
7221 {
7222 task_clock_event_stop(event, PERF_EF_UPDATE);
7223 }
7224
7225 static void task_clock_event_read(struct perf_event *event)
7226 {
7227 u64 now = perf_clock();
7228 u64 delta = now - event->ctx->timestamp;
7229 u64 time = event->ctx->time + delta;
7230
7231 task_clock_event_update(event, time);
7232 }
7233
7234 static int task_clock_event_init(struct perf_event *event)
7235 {
7236 if (event->attr.type != PERF_TYPE_SOFTWARE)
7237 return -ENOENT;
7238
7239 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7240 return -ENOENT;
7241
7242 /*
7243 * no branch sampling for software events
7244 */
7245 if (has_branch_stack(event))
7246 return -EOPNOTSUPP;
7247
7248 perf_swevent_init_hrtimer(event);
7249
7250 return 0;
7251 }
7252
7253 static struct pmu perf_task_clock = {
7254 .task_ctx_nr = perf_sw_context,
7255
7256 .capabilities = PERF_PMU_CAP_NO_NMI,
7257
7258 .event_init = task_clock_event_init,
7259 .add = task_clock_event_add,
7260 .del = task_clock_event_del,
7261 .start = task_clock_event_start,
7262 .stop = task_clock_event_stop,
7263 .read = task_clock_event_read,
7264 };
7265
7266 static void perf_pmu_nop_void(struct pmu *pmu)
7267 {
7268 }
7269
7270 static int perf_pmu_nop_int(struct pmu *pmu)
7271 {
7272 return 0;
7273 }
7274
7275 static void perf_pmu_start_txn(struct pmu *pmu)
7276 {
7277 perf_pmu_disable(pmu);
7278 }
7279
7280 static int perf_pmu_commit_txn(struct pmu *pmu)
7281 {
7282 perf_pmu_enable(pmu);
7283 return 0;
7284 }
7285
7286 static void perf_pmu_cancel_txn(struct pmu *pmu)
7287 {
7288 perf_pmu_enable(pmu);
7289 }
7290
7291 static int perf_event_idx_default(struct perf_event *event)
7292 {
7293 return 0;
7294 }
7295
7296 /*
7297 * Ensures all contexts with the same task_ctx_nr have the same
7298 * pmu_cpu_context too.
7299 */
7300 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7301 {
7302 struct pmu *pmu;
7303
7304 if (ctxn < 0)
7305 return NULL;
7306
7307 list_for_each_entry(pmu, &pmus, entry) {
7308 if (pmu->task_ctx_nr == ctxn)
7309 return pmu->pmu_cpu_context;
7310 }
7311
7312 return NULL;
7313 }
7314
7315 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7316 {
7317 int cpu;
7318
7319 for_each_possible_cpu(cpu) {
7320 struct perf_cpu_context *cpuctx;
7321
7322 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7323
7324 if (cpuctx->unique_pmu == old_pmu)
7325 cpuctx->unique_pmu = pmu;
7326 }
7327 }
7328
7329 static void free_pmu_context(struct pmu *pmu)
7330 {
7331 struct pmu *i;
7332
7333 mutex_lock(&pmus_lock);
7334 /*
7335 * Like a real lame refcount.
7336 */
7337 list_for_each_entry(i, &pmus, entry) {
7338 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7339 update_pmu_context(i, pmu);
7340 goto out;
7341 }
7342 }
7343
7344 free_percpu(pmu->pmu_cpu_context);
7345 out:
7346 mutex_unlock(&pmus_lock);
7347 }
7348 static struct idr pmu_idr;
7349
7350 static ssize_t
7351 type_show(struct device *dev, struct device_attribute *attr, char *page)
7352 {
7353 struct pmu *pmu = dev_get_drvdata(dev);
7354
7355 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7356 }
7357 static DEVICE_ATTR_RO(type);
7358
7359 static ssize_t
7360 perf_event_mux_interval_ms_show(struct device *dev,
7361 struct device_attribute *attr,
7362 char *page)
7363 {
7364 struct pmu *pmu = dev_get_drvdata(dev);
7365
7366 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7367 }
7368
7369 static DEFINE_MUTEX(mux_interval_mutex);
7370
7371 static ssize_t
7372 perf_event_mux_interval_ms_store(struct device *dev,
7373 struct device_attribute *attr,
7374 const char *buf, size_t count)
7375 {
7376 struct pmu *pmu = dev_get_drvdata(dev);
7377 int timer, cpu, ret;
7378
7379 ret = kstrtoint(buf, 0, &timer);
7380 if (ret)
7381 return ret;
7382
7383 if (timer < 1)
7384 return -EINVAL;
7385
7386 /* same value, noting to do */
7387 if (timer == pmu->hrtimer_interval_ms)
7388 return count;
7389
7390 mutex_lock(&mux_interval_mutex);
7391 pmu->hrtimer_interval_ms = timer;
7392
7393 /* update all cpuctx for this PMU */
7394 get_online_cpus();
7395 for_each_online_cpu(cpu) {
7396 struct perf_cpu_context *cpuctx;
7397 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7398 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7399
7400 cpu_function_call(cpu,
7401 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7402 }
7403 put_online_cpus();
7404 mutex_unlock(&mux_interval_mutex);
7405
7406 return count;
7407 }
7408 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7409
7410 static struct attribute *pmu_dev_attrs[] = {
7411 &dev_attr_type.attr,
7412 &dev_attr_perf_event_mux_interval_ms.attr,
7413 NULL,
7414 };
7415 ATTRIBUTE_GROUPS(pmu_dev);
7416
7417 static int pmu_bus_running;
7418 static struct bus_type pmu_bus = {
7419 .name = "event_source",
7420 .dev_groups = pmu_dev_groups,
7421 };
7422
7423 static void pmu_dev_release(struct device *dev)
7424 {
7425 kfree(dev);
7426 }
7427
7428 static int pmu_dev_alloc(struct pmu *pmu)
7429 {
7430 int ret = -ENOMEM;
7431
7432 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7433 if (!pmu->dev)
7434 goto out;
7435
7436 pmu->dev->groups = pmu->attr_groups;
7437 device_initialize(pmu->dev);
7438 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7439 if (ret)
7440 goto free_dev;
7441
7442 dev_set_drvdata(pmu->dev, pmu);
7443 pmu->dev->bus = &pmu_bus;
7444 pmu->dev->release = pmu_dev_release;
7445 ret = device_add(pmu->dev);
7446 if (ret)
7447 goto free_dev;
7448
7449 out:
7450 return ret;
7451
7452 free_dev:
7453 put_device(pmu->dev);
7454 goto out;
7455 }
7456
7457 static struct lock_class_key cpuctx_mutex;
7458 static struct lock_class_key cpuctx_lock;
7459
7460 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7461 {
7462 int cpu, ret;
7463
7464 mutex_lock(&pmus_lock);
7465 ret = -ENOMEM;
7466 pmu->pmu_disable_count = alloc_percpu(int);
7467 if (!pmu->pmu_disable_count)
7468 goto unlock;
7469
7470 pmu->type = -1;
7471 if (!name)
7472 goto skip_type;
7473 pmu->name = name;
7474
7475 if (type < 0) {
7476 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7477 if (type < 0) {
7478 ret = type;
7479 goto free_pdc;
7480 }
7481 }
7482 pmu->type = type;
7483
7484 if (pmu_bus_running) {
7485 ret = pmu_dev_alloc(pmu);
7486 if (ret)
7487 goto free_idr;
7488 }
7489
7490 skip_type:
7491 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7492 if (pmu->pmu_cpu_context)
7493 goto got_cpu_context;
7494
7495 ret = -ENOMEM;
7496 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7497 if (!pmu->pmu_cpu_context)
7498 goto free_dev;
7499
7500 for_each_possible_cpu(cpu) {
7501 struct perf_cpu_context *cpuctx;
7502
7503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7504 __perf_event_init_context(&cpuctx->ctx);
7505 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7506 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7507 cpuctx->ctx.pmu = pmu;
7508
7509 __perf_mux_hrtimer_init(cpuctx, cpu);
7510
7511 cpuctx->unique_pmu = pmu;
7512 }
7513
7514 got_cpu_context:
7515 if (!pmu->start_txn) {
7516 if (pmu->pmu_enable) {
7517 /*
7518 * If we have pmu_enable/pmu_disable calls, install
7519 * transaction stubs that use that to try and batch
7520 * hardware accesses.
7521 */
7522 pmu->start_txn = perf_pmu_start_txn;
7523 pmu->commit_txn = perf_pmu_commit_txn;
7524 pmu->cancel_txn = perf_pmu_cancel_txn;
7525 } else {
7526 pmu->start_txn = perf_pmu_nop_void;
7527 pmu->commit_txn = perf_pmu_nop_int;
7528 pmu->cancel_txn = perf_pmu_nop_void;
7529 }
7530 }
7531
7532 if (!pmu->pmu_enable) {
7533 pmu->pmu_enable = perf_pmu_nop_void;
7534 pmu->pmu_disable = perf_pmu_nop_void;
7535 }
7536
7537 if (!pmu->event_idx)
7538 pmu->event_idx = perf_event_idx_default;
7539
7540 list_add_rcu(&pmu->entry, &pmus);
7541 atomic_set(&pmu->exclusive_cnt, 0);
7542 ret = 0;
7543 unlock:
7544 mutex_unlock(&pmus_lock);
7545
7546 return ret;
7547
7548 free_dev:
7549 device_del(pmu->dev);
7550 put_device(pmu->dev);
7551
7552 free_idr:
7553 if (pmu->type >= PERF_TYPE_MAX)
7554 idr_remove(&pmu_idr, pmu->type);
7555
7556 free_pdc:
7557 free_percpu(pmu->pmu_disable_count);
7558 goto unlock;
7559 }
7560 EXPORT_SYMBOL_GPL(perf_pmu_register);
7561
7562 void perf_pmu_unregister(struct pmu *pmu)
7563 {
7564 mutex_lock(&pmus_lock);
7565 list_del_rcu(&pmu->entry);
7566 mutex_unlock(&pmus_lock);
7567
7568 /*
7569 * We dereference the pmu list under both SRCU and regular RCU, so
7570 * synchronize against both of those.
7571 */
7572 synchronize_srcu(&pmus_srcu);
7573 synchronize_rcu();
7574
7575 free_percpu(pmu->pmu_disable_count);
7576 if (pmu->type >= PERF_TYPE_MAX)
7577 idr_remove(&pmu_idr, pmu->type);
7578 device_del(pmu->dev);
7579 put_device(pmu->dev);
7580 free_pmu_context(pmu);
7581 }
7582 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7583
7584 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7585 {
7586 struct perf_event_context *ctx = NULL;
7587 int ret;
7588
7589 if (!try_module_get(pmu->module))
7590 return -ENODEV;
7591
7592 if (event->group_leader != event) {
7593 /*
7594 * This ctx->mutex can nest when we're called through
7595 * inheritance. See the perf_event_ctx_lock_nested() comment.
7596 */
7597 ctx = perf_event_ctx_lock_nested(event->group_leader,
7598 SINGLE_DEPTH_NESTING);
7599 BUG_ON(!ctx);
7600 }
7601
7602 event->pmu = pmu;
7603 ret = pmu->event_init(event);
7604
7605 if (ctx)
7606 perf_event_ctx_unlock(event->group_leader, ctx);
7607
7608 if (ret)
7609 module_put(pmu->module);
7610
7611 return ret;
7612 }
7613
7614 struct pmu *perf_init_event(struct perf_event *event)
7615 {
7616 struct pmu *pmu = NULL;
7617 int idx;
7618 int ret;
7619
7620 idx = srcu_read_lock(&pmus_srcu);
7621
7622 rcu_read_lock();
7623 pmu = idr_find(&pmu_idr, event->attr.type);
7624 rcu_read_unlock();
7625 if (pmu) {
7626 ret = perf_try_init_event(pmu, event);
7627 if (ret)
7628 pmu = ERR_PTR(ret);
7629 goto unlock;
7630 }
7631
7632 list_for_each_entry_rcu(pmu, &pmus, entry) {
7633 ret = perf_try_init_event(pmu, event);
7634 if (!ret)
7635 goto unlock;
7636
7637 if (ret != -ENOENT) {
7638 pmu = ERR_PTR(ret);
7639 goto unlock;
7640 }
7641 }
7642 pmu = ERR_PTR(-ENOENT);
7643 unlock:
7644 srcu_read_unlock(&pmus_srcu, idx);
7645
7646 return pmu;
7647 }
7648
7649 static void account_event_cpu(struct perf_event *event, int cpu)
7650 {
7651 if (event->parent)
7652 return;
7653
7654 if (is_cgroup_event(event))
7655 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7656 }
7657
7658 static void account_event(struct perf_event *event)
7659 {
7660 if (event->parent)
7661 return;
7662
7663 if (event->attach_state & PERF_ATTACH_TASK)
7664 static_key_slow_inc(&perf_sched_events.key);
7665 if (event->attr.mmap || event->attr.mmap_data)
7666 atomic_inc(&nr_mmap_events);
7667 if (event->attr.comm)
7668 atomic_inc(&nr_comm_events);
7669 if (event->attr.task)
7670 atomic_inc(&nr_task_events);
7671 if (event->attr.freq) {
7672 if (atomic_inc_return(&nr_freq_events) == 1)
7673 tick_nohz_full_kick_all();
7674 }
7675 if (event->attr.context_switch) {
7676 atomic_inc(&nr_switch_events);
7677 static_key_slow_inc(&perf_sched_events.key);
7678 }
7679 if (has_branch_stack(event))
7680 static_key_slow_inc(&perf_sched_events.key);
7681 if (is_cgroup_event(event))
7682 static_key_slow_inc(&perf_sched_events.key);
7683
7684 account_event_cpu(event, event->cpu);
7685 }
7686
7687 /*
7688 * Allocate and initialize a event structure
7689 */
7690 static struct perf_event *
7691 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7692 struct task_struct *task,
7693 struct perf_event *group_leader,
7694 struct perf_event *parent_event,
7695 perf_overflow_handler_t overflow_handler,
7696 void *context, int cgroup_fd)
7697 {
7698 struct pmu *pmu;
7699 struct perf_event *event;
7700 struct hw_perf_event *hwc;
7701 long err = -EINVAL;
7702
7703 if ((unsigned)cpu >= nr_cpu_ids) {
7704 if (!task || cpu != -1)
7705 return ERR_PTR(-EINVAL);
7706 }
7707
7708 event = kzalloc(sizeof(*event), GFP_KERNEL);
7709 if (!event)
7710 return ERR_PTR(-ENOMEM);
7711
7712 /*
7713 * Single events are their own group leaders, with an
7714 * empty sibling list:
7715 */
7716 if (!group_leader)
7717 group_leader = event;
7718
7719 mutex_init(&event->child_mutex);
7720 INIT_LIST_HEAD(&event->child_list);
7721
7722 INIT_LIST_HEAD(&event->group_entry);
7723 INIT_LIST_HEAD(&event->event_entry);
7724 INIT_LIST_HEAD(&event->sibling_list);
7725 INIT_LIST_HEAD(&event->rb_entry);
7726 INIT_LIST_HEAD(&event->active_entry);
7727 INIT_HLIST_NODE(&event->hlist_entry);
7728
7729
7730 init_waitqueue_head(&event->waitq);
7731 init_irq_work(&event->pending, perf_pending_event);
7732
7733 mutex_init(&event->mmap_mutex);
7734
7735 atomic_long_set(&event->refcount, 1);
7736 event->cpu = cpu;
7737 event->attr = *attr;
7738 event->group_leader = group_leader;
7739 event->pmu = NULL;
7740 event->oncpu = -1;
7741
7742 event->parent = parent_event;
7743
7744 event->ns = get_pid_ns(task_active_pid_ns(current));
7745 event->id = atomic64_inc_return(&perf_event_id);
7746
7747 event->state = PERF_EVENT_STATE_INACTIVE;
7748
7749 if (task) {
7750 event->attach_state = PERF_ATTACH_TASK;
7751 /*
7752 * XXX pmu::event_init needs to know what task to account to
7753 * and we cannot use the ctx information because we need the
7754 * pmu before we get a ctx.
7755 */
7756 event->hw.target = task;
7757 }
7758
7759 event->clock = &local_clock;
7760 if (parent_event)
7761 event->clock = parent_event->clock;
7762
7763 if (!overflow_handler && parent_event) {
7764 overflow_handler = parent_event->overflow_handler;
7765 context = parent_event->overflow_handler_context;
7766 }
7767
7768 event->overflow_handler = overflow_handler;
7769 event->overflow_handler_context = context;
7770
7771 perf_event__state_init(event);
7772
7773 pmu = NULL;
7774
7775 hwc = &event->hw;
7776 hwc->sample_period = attr->sample_period;
7777 if (attr->freq && attr->sample_freq)
7778 hwc->sample_period = 1;
7779 hwc->last_period = hwc->sample_period;
7780
7781 local64_set(&hwc->period_left, hwc->sample_period);
7782
7783 /*
7784 * we currently do not support PERF_FORMAT_GROUP on inherited events
7785 */
7786 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7787 goto err_ns;
7788
7789 if (!has_branch_stack(event))
7790 event->attr.branch_sample_type = 0;
7791
7792 if (cgroup_fd != -1) {
7793 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7794 if (err)
7795 goto err_ns;
7796 }
7797
7798 pmu = perf_init_event(event);
7799 if (!pmu)
7800 goto err_ns;
7801 else if (IS_ERR(pmu)) {
7802 err = PTR_ERR(pmu);
7803 goto err_ns;
7804 }
7805
7806 err = exclusive_event_init(event);
7807 if (err)
7808 goto err_pmu;
7809
7810 if (!event->parent) {
7811 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7812 err = get_callchain_buffers();
7813 if (err)
7814 goto err_per_task;
7815 }
7816 }
7817
7818 return event;
7819
7820 err_per_task:
7821 exclusive_event_destroy(event);
7822
7823 err_pmu:
7824 if (event->destroy)
7825 event->destroy(event);
7826 module_put(pmu->module);
7827 err_ns:
7828 if (is_cgroup_event(event))
7829 perf_detach_cgroup(event);
7830 if (event->ns)
7831 put_pid_ns(event->ns);
7832 kfree(event);
7833
7834 return ERR_PTR(err);
7835 }
7836
7837 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7838 struct perf_event_attr *attr)
7839 {
7840 u32 size;
7841 int ret;
7842
7843 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7844 return -EFAULT;
7845
7846 /*
7847 * zero the full structure, so that a short copy will be nice.
7848 */
7849 memset(attr, 0, sizeof(*attr));
7850
7851 ret = get_user(size, &uattr->size);
7852 if (ret)
7853 return ret;
7854
7855 if (size > PAGE_SIZE) /* silly large */
7856 goto err_size;
7857
7858 if (!size) /* abi compat */
7859 size = PERF_ATTR_SIZE_VER0;
7860
7861 if (size < PERF_ATTR_SIZE_VER0)
7862 goto err_size;
7863
7864 /*
7865 * If we're handed a bigger struct than we know of,
7866 * ensure all the unknown bits are 0 - i.e. new
7867 * user-space does not rely on any kernel feature
7868 * extensions we dont know about yet.
7869 */
7870 if (size > sizeof(*attr)) {
7871 unsigned char __user *addr;
7872 unsigned char __user *end;
7873 unsigned char val;
7874
7875 addr = (void __user *)uattr + sizeof(*attr);
7876 end = (void __user *)uattr + size;
7877
7878 for (; addr < end; addr++) {
7879 ret = get_user(val, addr);
7880 if (ret)
7881 return ret;
7882 if (val)
7883 goto err_size;
7884 }
7885 size = sizeof(*attr);
7886 }
7887
7888 ret = copy_from_user(attr, uattr, size);
7889 if (ret)
7890 return -EFAULT;
7891
7892 if (attr->__reserved_1)
7893 return -EINVAL;
7894
7895 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7896 return -EINVAL;
7897
7898 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7899 return -EINVAL;
7900
7901 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7902 u64 mask = attr->branch_sample_type;
7903
7904 /* only using defined bits */
7905 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7906 return -EINVAL;
7907
7908 /* at least one branch bit must be set */
7909 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7910 return -EINVAL;
7911
7912 /* propagate priv level, when not set for branch */
7913 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7914
7915 /* exclude_kernel checked on syscall entry */
7916 if (!attr->exclude_kernel)
7917 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7918
7919 if (!attr->exclude_user)
7920 mask |= PERF_SAMPLE_BRANCH_USER;
7921
7922 if (!attr->exclude_hv)
7923 mask |= PERF_SAMPLE_BRANCH_HV;
7924 /*
7925 * adjust user setting (for HW filter setup)
7926 */
7927 attr->branch_sample_type = mask;
7928 }
7929 /* privileged levels capture (kernel, hv): check permissions */
7930 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7931 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7932 return -EACCES;
7933 }
7934
7935 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7936 ret = perf_reg_validate(attr->sample_regs_user);
7937 if (ret)
7938 return ret;
7939 }
7940
7941 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7942 if (!arch_perf_have_user_stack_dump())
7943 return -ENOSYS;
7944
7945 /*
7946 * We have __u32 type for the size, but so far
7947 * we can only use __u16 as maximum due to the
7948 * __u16 sample size limit.
7949 */
7950 if (attr->sample_stack_user >= USHRT_MAX)
7951 ret = -EINVAL;
7952 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7953 ret = -EINVAL;
7954 }
7955
7956 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7957 ret = perf_reg_validate(attr->sample_regs_intr);
7958 out:
7959 return ret;
7960
7961 err_size:
7962 put_user(sizeof(*attr), &uattr->size);
7963 ret = -E2BIG;
7964 goto out;
7965 }
7966
7967 static int
7968 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7969 {
7970 struct ring_buffer *rb = NULL;
7971 int ret = -EINVAL;
7972
7973 if (!output_event)
7974 goto set;
7975
7976 /* don't allow circular references */
7977 if (event == output_event)
7978 goto out;
7979
7980 /*
7981 * Don't allow cross-cpu buffers
7982 */
7983 if (output_event->cpu != event->cpu)
7984 goto out;
7985
7986 /*
7987 * If its not a per-cpu rb, it must be the same task.
7988 */
7989 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7990 goto out;
7991
7992 /*
7993 * Mixing clocks in the same buffer is trouble you don't need.
7994 */
7995 if (output_event->clock != event->clock)
7996 goto out;
7997
7998 /*
7999 * If both events generate aux data, they must be on the same PMU
8000 */
8001 if (has_aux(event) && has_aux(output_event) &&
8002 event->pmu != output_event->pmu)
8003 goto out;
8004
8005 set:
8006 mutex_lock(&event->mmap_mutex);
8007 /* Can't redirect output if we've got an active mmap() */
8008 if (atomic_read(&event->mmap_count))
8009 goto unlock;
8010
8011 if (output_event) {
8012 /* get the rb we want to redirect to */
8013 rb = ring_buffer_get(output_event);
8014 if (!rb)
8015 goto unlock;
8016 }
8017
8018 ring_buffer_attach(event, rb);
8019
8020 ret = 0;
8021 unlock:
8022 mutex_unlock(&event->mmap_mutex);
8023
8024 out:
8025 return ret;
8026 }
8027
8028 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8029 {
8030 if (b < a)
8031 swap(a, b);
8032
8033 mutex_lock(a);
8034 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8035 }
8036
8037 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8038 {
8039 bool nmi_safe = false;
8040
8041 switch (clk_id) {
8042 case CLOCK_MONOTONIC:
8043 event->clock = &ktime_get_mono_fast_ns;
8044 nmi_safe = true;
8045 break;
8046
8047 case CLOCK_MONOTONIC_RAW:
8048 event->clock = &ktime_get_raw_fast_ns;
8049 nmi_safe = true;
8050 break;
8051
8052 case CLOCK_REALTIME:
8053 event->clock = &ktime_get_real_ns;
8054 break;
8055
8056 case CLOCK_BOOTTIME:
8057 event->clock = &ktime_get_boot_ns;
8058 break;
8059
8060 case CLOCK_TAI:
8061 event->clock = &ktime_get_tai_ns;
8062 break;
8063
8064 default:
8065 return -EINVAL;
8066 }
8067
8068 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8069 return -EINVAL;
8070
8071 return 0;
8072 }
8073
8074 /**
8075 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8076 *
8077 * @attr_uptr: event_id type attributes for monitoring/sampling
8078 * @pid: target pid
8079 * @cpu: target cpu
8080 * @group_fd: group leader event fd
8081 */
8082 SYSCALL_DEFINE5(perf_event_open,
8083 struct perf_event_attr __user *, attr_uptr,
8084 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8085 {
8086 struct perf_event *group_leader = NULL, *output_event = NULL;
8087 struct perf_event *event, *sibling;
8088 struct perf_event_attr attr;
8089 struct perf_event_context *ctx, *uninitialized_var(gctx);
8090 struct file *event_file = NULL;
8091 struct fd group = {NULL, 0};
8092 struct task_struct *task = NULL;
8093 struct pmu *pmu;
8094 int event_fd;
8095 int move_group = 0;
8096 int err;
8097 int f_flags = O_RDWR;
8098 int cgroup_fd = -1;
8099
8100 /* for future expandability... */
8101 if (flags & ~PERF_FLAG_ALL)
8102 return -EINVAL;
8103
8104 err = perf_copy_attr(attr_uptr, &attr);
8105 if (err)
8106 return err;
8107
8108 if (!attr.exclude_kernel) {
8109 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8110 return -EACCES;
8111 }
8112
8113 if (attr.freq) {
8114 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8115 return -EINVAL;
8116 } else {
8117 if (attr.sample_period & (1ULL << 63))
8118 return -EINVAL;
8119 }
8120
8121 /*
8122 * In cgroup mode, the pid argument is used to pass the fd
8123 * opened to the cgroup directory in cgroupfs. The cpu argument
8124 * designates the cpu on which to monitor threads from that
8125 * cgroup.
8126 */
8127 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8128 return -EINVAL;
8129
8130 if (flags & PERF_FLAG_FD_CLOEXEC)
8131 f_flags |= O_CLOEXEC;
8132
8133 event_fd = get_unused_fd_flags(f_flags);
8134 if (event_fd < 0)
8135 return event_fd;
8136
8137 if (group_fd != -1) {
8138 err = perf_fget_light(group_fd, &group);
8139 if (err)
8140 goto err_fd;
8141 group_leader = group.file->private_data;
8142 if (flags & PERF_FLAG_FD_OUTPUT)
8143 output_event = group_leader;
8144 if (flags & PERF_FLAG_FD_NO_GROUP)
8145 group_leader = NULL;
8146 }
8147
8148 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8149 task = find_lively_task_by_vpid(pid);
8150 if (IS_ERR(task)) {
8151 err = PTR_ERR(task);
8152 goto err_group_fd;
8153 }
8154 }
8155
8156 if (task && group_leader &&
8157 group_leader->attr.inherit != attr.inherit) {
8158 err = -EINVAL;
8159 goto err_task;
8160 }
8161
8162 get_online_cpus();
8163
8164 if (flags & PERF_FLAG_PID_CGROUP)
8165 cgroup_fd = pid;
8166
8167 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8168 NULL, NULL, cgroup_fd);
8169 if (IS_ERR(event)) {
8170 err = PTR_ERR(event);
8171 goto err_cpus;
8172 }
8173
8174 if (is_sampling_event(event)) {
8175 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8176 err = -ENOTSUPP;
8177 goto err_alloc;
8178 }
8179 }
8180
8181 account_event(event);
8182
8183 /*
8184 * Special case software events and allow them to be part of
8185 * any hardware group.
8186 */
8187 pmu = event->pmu;
8188
8189 if (attr.use_clockid) {
8190 err = perf_event_set_clock(event, attr.clockid);
8191 if (err)
8192 goto err_alloc;
8193 }
8194
8195 if (group_leader &&
8196 (is_software_event(event) != is_software_event(group_leader))) {
8197 if (is_software_event(event)) {
8198 /*
8199 * If event and group_leader are not both a software
8200 * event, and event is, then group leader is not.
8201 *
8202 * Allow the addition of software events to !software
8203 * groups, this is safe because software events never
8204 * fail to schedule.
8205 */
8206 pmu = group_leader->pmu;
8207 } else if (is_software_event(group_leader) &&
8208 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8209 /*
8210 * In case the group is a pure software group, and we
8211 * try to add a hardware event, move the whole group to
8212 * the hardware context.
8213 */
8214 move_group = 1;
8215 }
8216 }
8217
8218 /*
8219 * Get the target context (task or percpu):
8220 */
8221 ctx = find_get_context(pmu, task, event);
8222 if (IS_ERR(ctx)) {
8223 err = PTR_ERR(ctx);
8224 goto err_alloc;
8225 }
8226
8227 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8228 err = -EBUSY;
8229 goto err_context;
8230 }
8231
8232 if (task) {
8233 put_task_struct(task);
8234 task = NULL;
8235 }
8236
8237 /*
8238 * Look up the group leader (we will attach this event to it):
8239 */
8240 if (group_leader) {
8241 err = -EINVAL;
8242
8243 /*
8244 * Do not allow a recursive hierarchy (this new sibling
8245 * becoming part of another group-sibling):
8246 */
8247 if (group_leader->group_leader != group_leader)
8248 goto err_context;
8249
8250 /* All events in a group should have the same clock */
8251 if (group_leader->clock != event->clock)
8252 goto err_context;
8253
8254 /*
8255 * Do not allow to attach to a group in a different
8256 * task or CPU context:
8257 */
8258 if (move_group) {
8259 /*
8260 * Make sure we're both on the same task, or both
8261 * per-cpu events.
8262 */
8263 if (group_leader->ctx->task != ctx->task)
8264 goto err_context;
8265
8266 /*
8267 * Make sure we're both events for the same CPU;
8268 * grouping events for different CPUs is broken; since
8269 * you can never concurrently schedule them anyhow.
8270 */
8271 if (group_leader->cpu != event->cpu)
8272 goto err_context;
8273 } else {
8274 if (group_leader->ctx != ctx)
8275 goto err_context;
8276 }
8277
8278 /*
8279 * Only a group leader can be exclusive or pinned
8280 */
8281 if (attr.exclusive || attr.pinned)
8282 goto err_context;
8283 }
8284
8285 if (output_event) {
8286 err = perf_event_set_output(event, output_event);
8287 if (err)
8288 goto err_context;
8289 }
8290
8291 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8292 f_flags);
8293 if (IS_ERR(event_file)) {
8294 err = PTR_ERR(event_file);
8295 goto err_context;
8296 }
8297
8298 if (move_group) {
8299 gctx = group_leader->ctx;
8300
8301 /*
8302 * See perf_event_ctx_lock() for comments on the details
8303 * of swizzling perf_event::ctx.
8304 */
8305 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8306
8307 perf_remove_from_context(group_leader, false);
8308
8309 list_for_each_entry(sibling, &group_leader->sibling_list,
8310 group_entry) {
8311 perf_remove_from_context(sibling, false);
8312 put_ctx(gctx);
8313 }
8314 } else {
8315 mutex_lock(&ctx->mutex);
8316 }
8317
8318 WARN_ON_ONCE(ctx->parent_ctx);
8319
8320 if (move_group) {
8321 /*
8322 * Wait for everybody to stop referencing the events through
8323 * the old lists, before installing it on new lists.
8324 */
8325 synchronize_rcu();
8326
8327 /*
8328 * Install the group siblings before the group leader.
8329 *
8330 * Because a group leader will try and install the entire group
8331 * (through the sibling list, which is still in-tact), we can
8332 * end up with siblings installed in the wrong context.
8333 *
8334 * By installing siblings first we NO-OP because they're not
8335 * reachable through the group lists.
8336 */
8337 list_for_each_entry(sibling, &group_leader->sibling_list,
8338 group_entry) {
8339 perf_event__state_init(sibling);
8340 perf_install_in_context(ctx, sibling, sibling->cpu);
8341 get_ctx(ctx);
8342 }
8343
8344 /*
8345 * Removing from the context ends up with disabled
8346 * event. What we want here is event in the initial
8347 * startup state, ready to be add into new context.
8348 */
8349 perf_event__state_init(group_leader);
8350 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8351 get_ctx(ctx);
8352 }
8353
8354 if (!exclusive_event_installable(event, ctx)) {
8355 err = -EBUSY;
8356 mutex_unlock(&ctx->mutex);
8357 fput(event_file);
8358 goto err_context;
8359 }
8360
8361 perf_install_in_context(ctx, event, event->cpu);
8362 perf_unpin_context(ctx);
8363
8364 if (move_group) {
8365 mutex_unlock(&gctx->mutex);
8366 put_ctx(gctx);
8367 }
8368 mutex_unlock(&ctx->mutex);
8369
8370 put_online_cpus();
8371
8372 event->owner = current;
8373
8374 mutex_lock(&current->perf_event_mutex);
8375 list_add_tail(&event->owner_entry, &current->perf_event_list);
8376 mutex_unlock(&current->perf_event_mutex);
8377
8378 /*
8379 * Precalculate sample_data sizes
8380 */
8381 perf_event__header_size(event);
8382 perf_event__id_header_size(event);
8383
8384 /*
8385 * Drop the reference on the group_event after placing the
8386 * new event on the sibling_list. This ensures destruction
8387 * of the group leader will find the pointer to itself in
8388 * perf_group_detach().
8389 */
8390 fdput(group);
8391 fd_install(event_fd, event_file);
8392 return event_fd;
8393
8394 err_context:
8395 perf_unpin_context(ctx);
8396 put_ctx(ctx);
8397 err_alloc:
8398 free_event(event);
8399 err_cpus:
8400 put_online_cpus();
8401 err_task:
8402 if (task)
8403 put_task_struct(task);
8404 err_group_fd:
8405 fdput(group);
8406 err_fd:
8407 put_unused_fd(event_fd);
8408 return err;
8409 }
8410
8411 /**
8412 * perf_event_create_kernel_counter
8413 *
8414 * @attr: attributes of the counter to create
8415 * @cpu: cpu in which the counter is bound
8416 * @task: task to profile (NULL for percpu)
8417 */
8418 struct perf_event *
8419 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8420 struct task_struct *task,
8421 perf_overflow_handler_t overflow_handler,
8422 void *context)
8423 {
8424 struct perf_event_context *ctx;
8425 struct perf_event *event;
8426 int err;
8427
8428 /*
8429 * Get the target context (task or percpu):
8430 */
8431
8432 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8433 overflow_handler, context, -1);
8434 if (IS_ERR(event)) {
8435 err = PTR_ERR(event);
8436 goto err;
8437 }
8438
8439 /* Mark owner so we could distinguish it from user events. */
8440 event->owner = EVENT_OWNER_KERNEL;
8441
8442 account_event(event);
8443
8444 ctx = find_get_context(event->pmu, task, event);
8445 if (IS_ERR(ctx)) {
8446 err = PTR_ERR(ctx);
8447 goto err_free;
8448 }
8449
8450 WARN_ON_ONCE(ctx->parent_ctx);
8451 mutex_lock(&ctx->mutex);
8452 if (!exclusive_event_installable(event, ctx)) {
8453 mutex_unlock(&ctx->mutex);
8454 perf_unpin_context(ctx);
8455 put_ctx(ctx);
8456 err = -EBUSY;
8457 goto err_free;
8458 }
8459
8460 perf_install_in_context(ctx, event, cpu);
8461 perf_unpin_context(ctx);
8462 mutex_unlock(&ctx->mutex);
8463
8464 return event;
8465
8466 err_free:
8467 free_event(event);
8468 err:
8469 return ERR_PTR(err);
8470 }
8471 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8472
8473 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8474 {
8475 struct perf_event_context *src_ctx;
8476 struct perf_event_context *dst_ctx;
8477 struct perf_event *event, *tmp;
8478 LIST_HEAD(events);
8479
8480 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8481 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8482
8483 /*
8484 * See perf_event_ctx_lock() for comments on the details
8485 * of swizzling perf_event::ctx.
8486 */
8487 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8488 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8489 event_entry) {
8490 perf_remove_from_context(event, false);
8491 unaccount_event_cpu(event, src_cpu);
8492 put_ctx(src_ctx);
8493 list_add(&event->migrate_entry, &events);
8494 }
8495
8496 /*
8497 * Wait for the events to quiesce before re-instating them.
8498 */
8499 synchronize_rcu();
8500
8501 /*
8502 * Re-instate events in 2 passes.
8503 *
8504 * Skip over group leaders and only install siblings on this first
8505 * pass, siblings will not get enabled without a leader, however a
8506 * leader will enable its siblings, even if those are still on the old
8507 * context.
8508 */
8509 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8510 if (event->group_leader == event)
8511 continue;
8512
8513 list_del(&event->migrate_entry);
8514 if (event->state >= PERF_EVENT_STATE_OFF)
8515 event->state = PERF_EVENT_STATE_INACTIVE;
8516 account_event_cpu(event, dst_cpu);
8517 perf_install_in_context(dst_ctx, event, dst_cpu);
8518 get_ctx(dst_ctx);
8519 }
8520
8521 /*
8522 * Once all the siblings are setup properly, install the group leaders
8523 * to make it go.
8524 */
8525 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8526 list_del(&event->migrate_entry);
8527 if (event->state >= PERF_EVENT_STATE_OFF)
8528 event->state = PERF_EVENT_STATE_INACTIVE;
8529 account_event_cpu(event, dst_cpu);
8530 perf_install_in_context(dst_ctx, event, dst_cpu);
8531 get_ctx(dst_ctx);
8532 }
8533 mutex_unlock(&dst_ctx->mutex);
8534 mutex_unlock(&src_ctx->mutex);
8535 }
8536 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8537
8538 static void sync_child_event(struct perf_event *child_event,
8539 struct task_struct *child)
8540 {
8541 struct perf_event *parent_event = child_event->parent;
8542 u64 child_val;
8543
8544 if (child_event->attr.inherit_stat)
8545 perf_event_read_event(child_event, child);
8546
8547 child_val = perf_event_count(child_event);
8548
8549 /*
8550 * Add back the child's count to the parent's count:
8551 */
8552 atomic64_add(child_val, &parent_event->child_count);
8553 atomic64_add(child_event->total_time_enabled,
8554 &parent_event->child_total_time_enabled);
8555 atomic64_add(child_event->total_time_running,
8556 &parent_event->child_total_time_running);
8557
8558 /*
8559 * Remove this event from the parent's list
8560 */
8561 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8562 mutex_lock(&parent_event->child_mutex);
8563 list_del_init(&child_event->child_list);
8564 mutex_unlock(&parent_event->child_mutex);
8565
8566 /*
8567 * Make sure user/parent get notified, that we just
8568 * lost one event.
8569 */
8570 perf_event_wakeup(parent_event);
8571
8572 /*
8573 * Release the parent event, if this was the last
8574 * reference to it.
8575 */
8576 put_event(parent_event);
8577 }
8578
8579 static void
8580 __perf_event_exit_task(struct perf_event *child_event,
8581 struct perf_event_context *child_ctx,
8582 struct task_struct *child)
8583 {
8584 /*
8585 * Do not destroy the 'original' grouping; because of the context
8586 * switch optimization the original events could've ended up in a
8587 * random child task.
8588 *
8589 * If we were to destroy the original group, all group related
8590 * operations would cease to function properly after this random
8591 * child dies.
8592 *
8593 * Do destroy all inherited groups, we don't care about those
8594 * and being thorough is better.
8595 */
8596 perf_remove_from_context(child_event, !!child_event->parent);
8597
8598 /*
8599 * It can happen that the parent exits first, and has events
8600 * that are still around due to the child reference. These
8601 * events need to be zapped.
8602 */
8603 if (child_event->parent) {
8604 sync_child_event(child_event, child);
8605 free_event(child_event);
8606 } else {
8607 child_event->state = PERF_EVENT_STATE_EXIT;
8608 perf_event_wakeup(child_event);
8609 }
8610 }
8611
8612 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8613 {
8614 struct perf_event *child_event, *next;
8615 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8616 unsigned long flags;
8617
8618 if (likely(!child->perf_event_ctxp[ctxn])) {
8619 perf_event_task(child, NULL, 0);
8620 return;
8621 }
8622
8623 local_irq_save(flags);
8624 /*
8625 * We can't reschedule here because interrupts are disabled,
8626 * and either child is current or it is a task that can't be
8627 * scheduled, so we are now safe from rescheduling changing
8628 * our context.
8629 */
8630 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8631
8632 /*
8633 * Take the context lock here so that if find_get_context is
8634 * reading child->perf_event_ctxp, we wait until it has
8635 * incremented the context's refcount before we do put_ctx below.
8636 */
8637 raw_spin_lock(&child_ctx->lock);
8638 task_ctx_sched_out(child_ctx);
8639 child->perf_event_ctxp[ctxn] = NULL;
8640
8641 /*
8642 * If this context is a clone; unclone it so it can't get
8643 * swapped to another process while we're removing all
8644 * the events from it.
8645 */
8646 clone_ctx = unclone_ctx(child_ctx);
8647 update_context_time(child_ctx);
8648 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8649
8650 if (clone_ctx)
8651 put_ctx(clone_ctx);
8652
8653 /*
8654 * Report the task dead after unscheduling the events so that we
8655 * won't get any samples after PERF_RECORD_EXIT. We can however still
8656 * get a few PERF_RECORD_READ events.
8657 */
8658 perf_event_task(child, child_ctx, 0);
8659
8660 /*
8661 * We can recurse on the same lock type through:
8662 *
8663 * __perf_event_exit_task()
8664 * sync_child_event()
8665 * put_event()
8666 * mutex_lock(&ctx->mutex)
8667 *
8668 * But since its the parent context it won't be the same instance.
8669 */
8670 mutex_lock(&child_ctx->mutex);
8671
8672 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8673 __perf_event_exit_task(child_event, child_ctx, child);
8674
8675 mutex_unlock(&child_ctx->mutex);
8676
8677 put_ctx(child_ctx);
8678 }
8679
8680 /*
8681 * When a child task exits, feed back event values to parent events.
8682 */
8683 void perf_event_exit_task(struct task_struct *child)
8684 {
8685 struct perf_event *event, *tmp;
8686 int ctxn;
8687
8688 mutex_lock(&child->perf_event_mutex);
8689 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8690 owner_entry) {
8691 list_del_init(&event->owner_entry);
8692
8693 /*
8694 * Ensure the list deletion is visible before we clear
8695 * the owner, closes a race against perf_release() where
8696 * we need to serialize on the owner->perf_event_mutex.
8697 */
8698 smp_wmb();
8699 event->owner = NULL;
8700 }
8701 mutex_unlock(&child->perf_event_mutex);
8702
8703 for_each_task_context_nr(ctxn)
8704 perf_event_exit_task_context(child, ctxn);
8705 }
8706
8707 static void perf_free_event(struct perf_event *event,
8708 struct perf_event_context *ctx)
8709 {
8710 struct perf_event *parent = event->parent;
8711
8712 if (WARN_ON_ONCE(!parent))
8713 return;
8714
8715 mutex_lock(&parent->child_mutex);
8716 list_del_init(&event->child_list);
8717 mutex_unlock(&parent->child_mutex);
8718
8719 put_event(parent);
8720
8721 raw_spin_lock_irq(&ctx->lock);
8722 perf_group_detach(event);
8723 list_del_event(event, ctx);
8724 raw_spin_unlock_irq(&ctx->lock);
8725 free_event(event);
8726 }
8727
8728 /*
8729 * Free an unexposed, unused context as created by inheritance by
8730 * perf_event_init_task below, used by fork() in case of fail.
8731 *
8732 * Not all locks are strictly required, but take them anyway to be nice and
8733 * help out with the lockdep assertions.
8734 */
8735 void perf_event_free_task(struct task_struct *task)
8736 {
8737 struct perf_event_context *ctx;
8738 struct perf_event *event, *tmp;
8739 int ctxn;
8740
8741 for_each_task_context_nr(ctxn) {
8742 ctx = task->perf_event_ctxp[ctxn];
8743 if (!ctx)
8744 continue;
8745
8746 mutex_lock(&ctx->mutex);
8747 again:
8748 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8749 group_entry)
8750 perf_free_event(event, ctx);
8751
8752 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8753 group_entry)
8754 perf_free_event(event, ctx);
8755
8756 if (!list_empty(&ctx->pinned_groups) ||
8757 !list_empty(&ctx->flexible_groups))
8758 goto again;
8759
8760 mutex_unlock(&ctx->mutex);
8761
8762 put_ctx(ctx);
8763 }
8764 }
8765
8766 void perf_event_delayed_put(struct task_struct *task)
8767 {
8768 int ctxn;
8769
8770 for_each_task_context_nr(ctxn)
8771 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8772 }
8773
8774 struct perf_event *perf_event_get(unsigned int fd)
8775 {
8776 int err;
8777 struct fd f;
8778 struct perf_event *event;
8779
8780 err = perf_fget_light(fd, &f);
8781 if (err)
8782 return ERR_PTR(err);
8783
8784 event = f.file->private_data;
8785 atomic_long_inc(&event->refcount);
8786 fdput(f);
8787
8788 return event;
8789 }
8790
8791 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8792 {
8793 if (!event)
8794 return ERR_PTR(-EINVAL);
8795
8796 return &event->attr;
8797 }
8798
8799 /*
8800 * inherit a event from parent task to child task:
8801 */
8802 static struct perf_event *
8803 inherit_event(struct perf_event *parent_event,
8804 struct task_struct *parent,
8805 struct perf_event_context *parent_ctx,
8806 struct task_struct *child,
8807 struct perf_event *group_leader,
8808 struct perf_event_context *child_ctx)
8809 {
8810 enum perf_event_active_state parent_state = parent_event->state;
8811 struct perf_event *child_event;
8812 unsigned long flags;
8813
8814 /*
8815 * Instead of creating recursive hierarchies of events,
8816 * we link inherited events back to the original parent,
8817 * which has a filp for sure, which we use as the reference
8818 * count:
8819 */
8820 if (parent_event->parent)
8821 parent_event = parent_event->parent;
8822
8823 child_event = perf_event_alloc(&parent_event->attr,
8824 parent_event->cpu,
8825 child,
8826 group_leader, parent_event,
8827 NULL, NULL, -1);
8828 if (IS_ERR(child_event))
8829 return child_event;
8830
8831 if (is_orphaned_event(parent_event) ||
8832 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8833 free_event(child_event);
8834 return NULL;
8835 }
8836
8837 get_ctx(child_ctx);
8838
8839 /*
8840 * Make the child state follow the state of the parent event,
8841 * not its attr.disabled bit. We hold the parent's mutex,
8842 * so we won't race with perf_event_{en, dis}able_family.
8843 */
8844 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8845 child_event->state = PERF_EVENT_STATE_INACTIVE;
8846 else
8847 child_event->state = PERF_EVENT_STATE_OFF;
8848
8849 if (parent_event->attr.freq) {
8850 u64 sample_period = parent_event->hw.sample_period;
8851 struct hw_perf_event *hwc = &child_event->hw;
8852
8853 hwc->sample_period = sample_period;
8854 hwc->last_period = sample_period;
8855
8856 local64_set(&hwc->period_left, sample_period);
8857 }
8858
8859 child_event->ctx = child_ctx;
8860 child_event->overflow_handler = parent_event->overflow_handler;
8861 child_event->overflow_handler_context
8862 = parent_event->overflow_handler_context;
8863
8864 /*
8865 * Precalculate sample_data sizes
8866 */
8867 perf_event__header_size(child_event);
8868 perf_event__id_header_size(child_event);
8869
8870 /*
8871 * Link it up in the child's context:
8872 */
8873 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8874 add_event_to_ctx(child_event, child_ctx);
8875 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8876
8877 /*
8878 * Link this into the parent event's child list
8879 */
8880 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8881 mutex_lock(&parent_event->child_mutex);
8882 list_add_tail(&child_event->child_list, &parent_event->child_list);
8883 mutex_unlock(&parent_event->child_mutex);
8884
8885 return child_event;
8886 }
8887
8888 static int inherit_group(struct perf_event *parent_event,
8889 struct task_struct *parent,
8890 struct perf_event_context *parent_ctx,
8891 struct task_struct *child,
8892 struct perf_event_context *child_ctx)
8893 {
8894 struct perf_event *leader;
8895 struct perf_event *sub;
8896 struct perf_event *child_ctr;
8897
8898 leader = inherit_event(parent_event, parent, parent_ctx,
8899 child, NULL, child_ctx);
8900 if (IS_ERR(leader))
8901 return PTR_ERR(leader);
8902 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8903 child_ctr = inherit_event(sub, parent, parent_ctx,
8904 child, leader, child_ctx);
8905 if (IS_ERR(child_ctr))
8906 return PTR_ERR(child_ctr);
8907 }
8908 return 0;
8909 }
8910
8911 static int
8912 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8913 struct perf_event_context *parent_ctx,
8914 struct task_struct *child, int ctxn,
8915 int *inherited_all)
8916 {
8917 int ret;
8918 struct perf_event_context *child_ctx;
8919
8920 if (!event->attr.inherit) {
8921 *inherited_all = 0;
8922 return 0;
8923 }
8924
8925 child_ctx = child->perf_event_ctxp[ctxn];
8926 if (!child_ctx) {
8927 /*
8928 * This is executed from the parent task context, so
8929 * inherit events that have been marked for cloning.
8930 * First allocate and initialize a context for the
8931 * child.
8932 */
8933
8934 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8935 if (!child_ctx)
8936 return -ENOMEM;
8937
8938 child->perf_event_ctxp[ctxn] = child_ctx;
8939 }
8940
8941 ret = inherit_group(event, parent, parent_ctx,
8942 child, child_ctx);
8943
8944 if (ret)
8945 *inherited_all = 0;
8946
8947 return ret;
8948 }
8949
8950 /*
8951 * Initialize the perf_event context in task_struct
8952 */
8953 static int perf_event_init_context(struct task_struct *child, int ctxn)
8954 {
8955 struct perf_event_context *child_ctx, *parent_ctx;
8956 struct perf_event_context *cloned_ctx;
8957 struct perf_event *event;
8958 struct task_struct *parent = current;
8959 int inherited_all = 1;
8960 unsigned long flags;
8961 int ret = 0;
8962
8963 if (likely(!parent->perf_event_ctxp[ctxn]))
8964 return 0;
8965
8966 /*
8967 * If the parent's context is a clone, pin it so it won't get
8968 * swapped under us.
8969 */
8970 parent_ctx = perf_pin_task_context(parent, ctxn);
8971 if (!parent_ctx)
8972 return 0;
8973
8974 /*
8975 * No need to check if parent_ctx != NULL here; since we saw
8976 * it non-NULL earlier, the only reason for it to become NULL
8977 * is if we exit, and since we're currently in the middle of
8978 * a fork we can't be exiting at the same time.
8979 */
8980
8981 /*
8982 * Lock the parent list. No need to lock the child - not PID
8983 * hashed yet and not running, so nobody can access it.
8984 */
8985 mutex_lock(&parent_ctx->mutex);
8986
8987 /*
8988 * We dont have to disable NMIs - we are only looking at
8989 * the list, not manipulating it:
8990 */
8991 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8992 ret = inherit_task_group(event, parent, parent_ctx,
8993 child, ctxn, &inherited_all);
8994 if (ret)
8995 break;
8996 }
8997
8998 /*
8999 * We can't hold ctx->lock when iterating the ->flexible_group list due
9000 * to allocations, but we need to prevent rotation because
9001 * rotate_ctx() will change the list from interrupt context.
9002 */
9003 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9004 parent_ctx->rotate_disable = 1;
9005 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9006
9007 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9008 ret = inherit_task_group(event, parent, parent_ctx,
9009 child, ctxn, &inherited_all);
9010 if (ret)
9011 break;
9012 }
9013
9014 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9015 parent_ctx->rotate_disable = 0;
9016
9017 child_ctx = child->perf_event_ctxp[ctxn];
9018
9019 if (child_ctx && inherited_all) {
9020 /*
9021 * Mark the child context as a clone of the parent
9022 * context, or of whatever the parent is a clone of.
9023 *
9024 * Note that if the parent is a clone, the holding of
9025 * parent_ctx->lock avoids it from being uncloned.
9026 */
9027 cloned_ctx = parent_ctx->parent_ctx;
9028 if (cloned_ctx) {
9029 child_ctx->parent_ctx = cloned_ctx;
9030 child_ctx->parent_gen = parent_ctx->parent_gen;
9031 } else {
9032 child_ctx->parent_ctx = parent_ctx;
9033 child_ctx->parent_gen = parent_ctx->generation;
9034 }
9035 get_ctx(child_ctx->parent_ctx);
9036 }
9037
9038 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9039 mutex_unlock(&parent_ctx->mutex);
9040
9041 perf_unpin_context(parent_ctx);
9042 put_ctx(parent_ctx);
9043
9044 return ret;
9045 }
9046
9047 /*
9048 * Initialize the perf_event context in task_struct
9049 */
9050 int perf_event_init_task(struct task_struct *child)
9051 {
9052 int ctxn, ret;
9053
9054 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9055 mutex_init(&child->perf_event_mutex);
9056 INIT_LIST_HEAD(&child->perf_event_list);
9057
9058 for_each_task_context_nr(ctxn) {
9059 ret = perf_event_init_context(child, ctxn);
9060 if (ret) {
9061 perf_event_free_task(child);
9062 return ret;
9063 }
9064 }
9065
9066 return 0;
9067 }
9068
9069 static void __init perf_event_init_all_cpus(void)
9070 {
9071 struct swevent_htable *swhash;
9072 int cpu;
9073
9074 for_each_possible_cpu(cpu) {
9075 swhash = &per_cpu(swevent_htable, cpu);
9076 mutex_init(&swhash->hlist_mutex);
9077 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9078 }
9079 }
9080
9081 static void perf_event_init_cpu(int cpu)
9082 {
9083 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9084
9085 mutex_lock(&swhash->hlist_mutex);
9086 swhash->online = true;
9087 if (swhash->hlist_refcount > 0) {
9088 struct swevent_hlist *hlist;
9089
9090 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9091 WARN_ON(!hlist);
9092 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9093 }
9094 mutex_unlock(&swhash->hlist_mutex);
9095 }
9096
9097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9098 static void __perf_event_exit_context(void *__info)
9099 {
9100 struct remove_event re = { .detach_group = true };
9101 struct perf_event_context *ctx = __info;
9102
9103 rcu_read_lock();
9104 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9105 __perf_remove_from_context(&re);
9106 rcu_read_unlock();
9107 }
9108
9109 static void perf_event_exit_cpu_context(int cpu)
9110 {
9111 struct perf_event_context *ctx;
9112 struct pmu *pmu;
9113 int idx;
9114
9115 idx = srcu_read_lock(&pmus_srcu);
9116 list_for_each_entry_rcu(pmu, &pmus, entry) {
9117 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9118
9119 mutex_lock(&ctx->mutex);
9120 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9121 mutex_unlock(&ctx->mutex);
9122 }
9123 srcu_read_unlock(&pmus_srcu, idx);
9124 }
9125
9126 static void perf_event_exit_cpu(int cpu)
9127 {
9128 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9129
9130 perf_event_exit_cpu_context(cpu);
9131
9132 mutex_lock(&swhash->hlist_mutex);
9133 swhash->online = false;
9134 swevent_hlist_release(swhash);
9135 mutex_unlock(&swhash->hlist_mutex);
9136 }
9137 #else
9138 static inline void perf_event_exit_cpu(int cpu) { }
9139 #endif
9140
9141 static int
9142 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9143 {
9144 int cpu;
9145
9146 for_each_online_cpu(cpu)
9147 perf_event_exit_cpu(cpu);
9148
9149 return NOTIFY_OK;
9150 }
9151
9152 /*
9153 * Run the perf reboot notifier at the very last possible moment so that
9154 * the generic watchdog code runs as long as possible.
9155 */
9156 static struct notifier_block perf_reboot_notifier = {
9157 .notifier_call = perf_reboot,
9158 .priority = INT_MIN,
9159 };
9160
9161 static int
9162 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9163 {
9164 unsigned int cpu = (long)hcpu;
9165
9166 switch (action & ~CPU_TASKS_FROZEN) {
9167
9168 case CPU_UP_PREPARE:
9169 case CPU_DOWN_FAILED:
9170 perf_event_init_cpu(cpu);
9171 break;
9172
9173 case CPU_UP_CANCELED:
9174 case CPU_DOWN_PREPARE:
9175 perf_event_exit_cpu(cpu);
9176 break;
9177 default:
9178 break;
9179 }
9180
9181 return NOTIFY_OK;
9182 }
9183
9184 void __init perf_event_init(void)
9185 {
9186 int ret;
9187
9188 idr_init(&pmu_idr);
9189
9190 perf_event_init_all_cpus();
9191 init_srcu_struct(&pmus_srcu);
9192 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9193 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9194 perf_pmu_register(&perf_task_clock, NULL, -1);
9195 perf_tp_register();
9196 perf_cpu_notifier(perf_cpu_notify);
9197 register_reboot_notifier(&perf_reboot_notifier);
9198
9199 ret = init_hw_breakpoint();
9200 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9201
9202 /* do not patch jump label more than once per second */
9203 jump_label_rate_limit(&perf_sched_events, HZ);
9204
9205 /*
9206 * Build time assertion that we keep the data_head at the intended
9207 * location. IOW, validation we got the __reserved[] size right.
9208 */
9209 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9210 != 1024);
9211 }
9212
9213 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9214 char *page)
9215 {
9216 struct perf_pmu_events_attr *pmu_attr =
9217 container_of(attr, struct perf_pmu_events_attr, attr);
9218
9219 if (pmu_attr->event_str)
9220 return sprintf(page, "%s\n", pmu_attr->event_str);
9221
9222 return 0;
9223 }
9224
9225 static int __init perf_event_sysfs_init(void)
9226 {
9227 struct pmu *pmu;
9228 int ret;
9229
9230 mutex_lock(&pmus_lock);
9231
9232 ret = bus_register(&pmu_bus);
9233 if (ret)
9234 goto unlock;
9235
9236 list_for_each_entry(pmu, &pmus, entry) {
9237 if (!pmu->name || pmu->type < 0)
9238 continue;
9239
9240 ret = pmu_dev_alloc(pmu);
9241 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9242 }
9243 pmu_bus_running = 1;
9244 ret = 0;
9245
9246 unlock:
9247 mutex_unlock(&pmus_lock);
9248
9249 return ret;
9250 }
9251 device_initcall(perf_event_sysfs_init);
9252
9253 #ifdef CONFIG_CGROUP_PERF
9254 static struct cgroup_subsys_state *
9255 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9256 {
9257 struct perf_cgroup *jc;
9258
9259 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9260 if (!jc)
9261 return ERR_PTR(-ENOMEM);
9262
9263 jc->info = alloc_percpu(struct perf_cgroup_info);
9264 if (!jc->info) {
9265 kfree(jc);
9266 return ERR_PTR(-ENOMEM);
9267 }
9268
9269 return &jc->css;
9270 }
9271
9272 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9273 {
9274 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9275
9276 free_percpu(jc->info);
9277 kfree(jc);
9278 }
9279
9280 static int __perf_cgroup_move(void *info)
9281 {
9282 struct task_struct *task = info;
9283 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9284 return 0;
9285 }
9286
9287 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9288 struct cgroup_taskset *tset)
9289 {
9290 struct task_struct *task;
9291
9292 cgroup_taskset_for_each(task, tset)
9293 task_function_call(task, __perf_cgroup_move, task);
9294 }
9295
9296 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9297 struct cgroup_subsys_state *old_css,
9298 struct task_struct *task)
9299 {
9300 /*
9301 * cgroup_exit() is called in the copy_process() failure path.
9302 * Ignore this case since the task hasn't ran yet, this avoids
9303 * trying to poke a half freed task state from generic code.
9304 */
9305 if (!(task->flags & PF_EXITING))
9306 return;
9307
9308 task_function_call(task, __perf_cgroup_move, task);
9309 }
9310
9311 struct cgroup_subsys perf_event_cgrp_subsys = {
9312 .css_alloc = perf_cgroup_css_alloc,
9313 .css_free = perf_cgroup_css_free,
9314 .exit = perf_cgroup_exit,
9315 .attach = perf_cgroup_attach,
9316 };
9317 #endif /* CONFIG_CGROUP_PERF */
This page took 0.22755 seconds and 5 git commands to generate.