Merge branches 'for-4.0/upstream-fixes', 'for-4.1/genius', 'for-4.1/huion-uclogic...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45
46 #include "internal.h"
47
48 #include <asm/irq_regs.h>
49
50 static struct workqueue_struct *perf_wq;
51
52 struct remote_function_call {
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
57 };
58
59 static void remote_function(void *data)
60 {
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71 }
72
73 /**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 struct remote_function_call data = {
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100 }
101
102 /**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 struct remote_function_call data = {
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123 }
124
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 return event->owner == EVENT_OWNER_KERNEL;
130 }
131
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
136
137 /*
138 * branch priv levels that need permission checks
139 */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
144 enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149
150 /*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166
167 /*
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
173 */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178
179 /*
180 * max perf event sample rate
181 */
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
191 static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193
194 void update_perf_cpu_limits(void)
195 {
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
199 do_div(tmp, 100);
200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208 {
209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219 }
220
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226 {
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
233
234 return 0;
235 }
236
237 /*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 u64 avg_local_sample_len;
250 u64 local_samples_len;
251
252 local_samples_len = __this_cpu_read(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len, allowed_ns >> 1,
259 sysctl_perf_event_sample_rate);
260 }
261
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
269
270 if (allowed_ns == 0)
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __this_cpu_read(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __this_cpu_write(running_sample_length, local_samples_len);
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
286 if (avg_local_sample_len <= allowed_ns)
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
296 update_perf_cpu_limits();
297
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
304 }
305
306 static atomic64_t perf_event_id;
307
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317
318 void __weak perf_event_print_debug(void) { }
319
320 extern __weak const char *perf_pmu_name(void)
321 {
322 return "pmu";
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return local_clock();
328 }
329
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338 {
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342 }
343
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346 {
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351
352 #ifdef CONFIG_CGROUP_PERF
353
354 /*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358 struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361 };
362
363 struct perf_cgroup {
364 struct cgroup_subsys_state css;
365 struct perf_cgroup_info __percpu *info;
366 };
367
368 /*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 return container_of(task_css(task, perf_event_cgrp_id),
377 struct perf_cgroup, css);
378 }
379
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
402 }
403
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 css_put(&event->cgrp->css);
407 event->cgrp = NULL;
408 }
409
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 return event->cgrp != NULL;
413 }
414
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421 }
422
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434 }
435
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441 }
442
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 struct perf_cgroup *cgrp;
446
447 /*
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
450 */
451 if (!is_cgroup_event(event))
452 return;
453
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
460 }
461
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
465 {
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
479 info->timestamp = ctx->timestamp;
480 }
481
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485 /*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
514
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
536 WARN_ON_ONCE(cpuctx->cgrp);
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 }
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553 }
554
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
557 {
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608 {
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
611 struct fd f = fdget(fd);
612 int ret = 0;
613
614 if (!f.file)
615 return -EBADF;
616
617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 &perf_event_cgrp_subsys);
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
635 }
636 out:
637 fdput(f);
638 return ret;
639 }
640
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647 }
648
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660 }
661
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665 {
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 return true;
688 }
689
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 return 0;
696 }
697
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 return 0;
701 }
702
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
713 {
714 }
715
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
718 {
719 }
720
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724 {
725 return -EINVAL;
726 }
727
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
731 {
732 }
733
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 return 0;
747 }
748
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760
761 /*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767 * function must be called with interrupts disbled
768 */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790 }
791
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818 }
819
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
824 int timer;
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842 }
843
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
866 }
867
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
873 }
874
875 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876
877 /*
878 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879 * perf_event_task_tick() are fully serialized because they're strictly cpu
880 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881 * disabled, while perf_event_task_tick is called from IRQ context.
882 */
883 static void perf_event_ctx_activate(struct perf_event_context *ctx)
884 {
885 struct list_head *head = this_cpu_ptr(&active_ctx_list);
886
887 WARN_ON(!irqs_disabled());
888
889 WARN_ON(!list_empty(&ctx->active_ctx_list));
890
891 list_add(&ctx->active_ctx_list, head);
892 }
893
894 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
895 {
896 WARN_ON(!irqs_disabled());
897
898 WARN_ON(list_empty(&ctx->active_ctx_list));
899
900 list_del_init(&ctx->active_ctx_list);
901 }
902
903 static void get_ctx(struct perf_event_context *ctx)
904 {
905 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 }
907
908 static void put_ctx(struct perf_event_context *ctx)
909 {
910 if (atomic_dec_and_test(&ctx->refcount)) {
911 if (ctx->parent_ctx)
912 put_ctx(ctx->parent_ctx);
913 if (ctx->task)
914 put_task_struct(ctx->task);
915 kfree_rcu(ctx, rcu_head);
916 }
917 }
918
919 /*
920 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
921 * perf_pmu_migrate_context() we need some magic.
922 *
923 * Those places that change perf_event::ctx will hold both
924 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
925 *
926 * Lock ordering is by mutex address. There is one other site where
927 * perf_event_context::mutex nests and that is put_event(). But remember that
928 * that is a parent<->child context relation, and migration does not affect
929 * children, therefore these two orderings should not interact.
930 *
931 * The change in perf_event::ctx does not affect children (as claimed above)
932 * because the sys_perf_event_open() case will install a new event and break
933 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
934 * concerned with cpuctx and that doesn't have children.
935 *
936 * The places that change perf_event::ctx will issue:
937 *
938 * perf_remove_from_context();
939 * synchronize_rcu();
940 * perf_install_in_context();
941 *
942 * to affect the change. The remove_from_context() + synchronize_rcu() should
943 * quiesce the event, after which we can install it in the new location. This
944 * means that only external vectors (perf_fops, prctl) can perturb the event
945 * while in transit. Therefore all such accessors should also acquire
946 * perf_event_context::mutex to serialize against this.
947 *
948 * However; because event->ctx can change while we're waiting to acquire
949 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
950 * function.
951 *
952 * Lock order:
953 * task_struct::perf_event_mutex
954 * perf_event_context::mutex
955 * perf_event_context::lock
956 * perf_event::child_mutex;
957 * perf_event::mmap_mutex
958 * mmap_sem
959 */
960 static struct perf_event_context *
961 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
962 {
963 struct perf_event_context *ctx;
964
965 again:
966 rcu_read_lock();
967 ctx = ACCESS_ONCE(event->ctx);
968 if (!atomic_inc_not_zero(&ctx->refcount)) {
969 rcu_read_unlock();
970 goto again;
971 }
972 rcu_read_unlock();
973
974 mutex_lock_nested(&ctx->mutex, nesting);
975 if (event->ctx != ctx) {
976 mutex_unlock(&ctx->mutex);
977 put_ctx(ctx);
978 goto again;
979 }
980
981 return ctx;
982 }
983
984 static inline struct perf_event_context *
985 perf_event_ctx_lock(struct perf_event *event)
986 {
987 return perf_event_ctx_lock_nested(event, 0);
988 }
989
990 static void perf_event_ctx_unlock(struct perf_event *event,
991 struct perf_event_context *ctx)
992 {
993 mutex_unlock(&ctx->mutex);
994 put_ctx(ctx);
995 }
996
997 /*
998 * This must be done under the ctx->lock, such as to serialize against
999 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1000 * calling scheduler related locks and ctx->lock nests inside those.
1001 */
1002 static __must_check struct perf_event_context *
1003 unclone_ctx(struct perf_event_context *ctx)
1004 {
1005 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1006
1007 lockdep_assert_held(&ctx->lock);
1008
1009 if (parent_ctx)
1010 ctx->parent_ctx = NULL;
1011 ctx->generation++;
1012
1013 return parent_ctx;
1014 }
1015
1016 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1017 {
1018 /*
1019 * only top level events have the pid namespace they were created in
1020 */
1021 if (event->parent)
1022 event = event->parent;
1023
1024 return task_tgid_nr_ns(p, event->ns);
1025 }
1026
1027 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1028 {
1029 /*
1030 * only top level events have the pid namespace they were created in
1031 */
1032 if (event->parent)
1033 event = event->parent;
1034
1035 return task_pid_nr_ns(p, event->ns);
1036 }
1037
1038 /*
1039 * If we inherit events we want to return the parent event id
1040 * to userspace.
1041 */
1042 static u64 primary_event_id(struct perf_event *event)
1043 {
1044 u64 id = event->id;
1045
1046 if (event->parent)
1047 id = event->parent->id;
1048
1049 return id;
1050 }
1051
1052 /*
1053 * Get the perf_event_context for a task and lock it.
1054 * This has to cope with with the fact that until it is locked,
1055 * the context could get moved to another task.
1056 */
1057 static struct perf_event_context *
1058 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1059 {
1060 struct perf_event_context *ctx;
1061
1062 retry:
1063 /*
1064 * One of the few rules of preemptible RCU is that one cannot do
1065 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1066 * part of the read side critical section was preemptible -- see
1067 * rcu_read_unlock_special().
1068 *
1069 * Since ctx->lock nests under rq->lock we must ensure the entire read
1070 * side critical section is non-preemptible.
1071 */
1072 preempt_disable();
1073 rcu_read_lock();
1074 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1075 if (ctx) {
1076 /*
1077 * If this context is a clone of another, it might
1078 * get swapped for another underneath us by
1079 * perf_event_task_sched_out, though the
1080 * rcu_read_lock() protects us from any context
1081 * getting freed. Lock the context and check if it
1082 * got swapped before we could get the lock, and retry
1083 * if so. If we locked the right context, then it
1084 * can't get swapped on us any more.
1085 */
1086 raw_spin_lock_irqsave(&ctx->lock, *flags);
1087 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1088 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1089 rcu_read_unlock();
1090 preempt_enable();
1091 goto retry;
1092 }
1093
1094 if (!atomic_inc_not_zero(&ctx->refcount)) {
1095 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1096 ctx = NULL;
1097 }
1098 }
1099 rcu_read_unlock();
1100 preempt_enable();
1101 return ctx;
1102 }
1103
1104 /*
1105 * Get the context for a task and increment its pin_count so it
1106 * can't get swapped to another task. This also increments its
1107 * reference count so that the context can't get freed.
1108 */
1109 static struct perf_event_context *
1110 perf_pin_task_context(struct task_struct *task, int ctxn)
1111 {
1112 struct perf_event_context *ctx;
1113 unsigned long flags;
1114
1115 ctx = perf_lock_task_context(task, ctxn, &flags);
1116 if (ctx) {
1117 ++ctx->pin_count;
1118 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1119 }
1120 return ctx;
1121 }
1122
1123 static void perf_unpin_context(struct perf_event_context *ctx)
1124 {
1125 unsigned long flags;
1126
1127 raw_spin_lock_irqsave(&ctx->lock, flags);
1128 --ctx->pin_count;
1129 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 }
1131
1132 /*
1133 * Update the record of the current time in a context.
1134 */
1135 static void update_context_time(struct perf_event_context *ctx)
1136 {
1137 u64 now = perf_clock();
1138
1139 ctx->time += now - ctx->timestamp;
1140 ctx->timestamp = now;
1141 }
1142
1143 static u64 perf_event_time(struct perf_event *event)
1144 {
1145 struct perf_event_context *ctx = event->ctx;
1146
1147 if (is_cgroup_event(event))
1148 return perf_cgroup_event_time(event);
1149
1150 return ctx ? ctx->time : 0;
1151 }
1152
1153 /*
1154 * Update the total_time_enabled and total_time_running fields for a event.
1155 * The caller of this function needs to hold the ctx->lock.
1156 */
1157 static void update_event_times(struct perf_event *event)
1158 {
1159 struct perf_event_context *ctx = event->ctx;
1160 u64 run_end;
1161
1162 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1163 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1164 return;
1165 /*
1166 * in cgroup mode, time_enabled represents
1167 * the time the event was enabled AND active
1168 * tasks were in the monitored cgroup. This is
1169 * independent of the activity of the context as
1170 * there may be a mix of cgroup and non-cgroup events.
1171 *
1172 * That is why we treat cgroup events differently
1173 * here.
1174 */
1175 if (is_cgroup_event(event))
1176 run_end = perf_cgroup_event_time(event);
1177 else if (ctx->is_active)
1178 run_end = ctx->time;
1179 else
1180 run_end = event->tstamp_stopped;
1181
1182 event->total_time_enabled = run_end - event->tstamp_enabled;
1183
1184 if (event->state == PERF_EVENT_STATE_INACTIVE)
1185 run_end = event->tstamp_stopped;
1186 else
1187 run_end = perf_event_time(event);
1188
1189 event->total_time_running = run_end - event->tstamp_running;
1190
1191 }
1192
1193 /*
1194 * Update total_time_enabled and total_time_running for all events in a group.
1195 */
1196 static void update_group_times(struct perf_event *leader)
1197 {
1198 struct perf_event *event;
1199
1200 update_event_times(leader);
1201 list_for_each_entry(event, &leader->sibling_list, group_entry)
1202 update_event_times(event);
1203 }
1204
1205 static struct list_head *
1206 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 if (event->attr.pinned)
1209 return &ctx->pinned_groups;
1210 else
1211 return &ctx->flexible_groups;
1212 }
1213
1214 /*
1215 * Add a event from the lists for its context.
1216 * Must be called with ctx->mutex and ctx->lock held.
1217 */
1218 static void
1219 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1220 {
1221 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1222 event->attach_state |= PERF_ATTACH_CONTEXT;
1223
1224 /*
1225 * If we're a stand alone event or group leader, we go to the context
1226 * list, group events are kept attached to the group so that
1227 * perf_group_detach can, at all times, locate all siblings.
1228 */
1229 if (event->group_leader == event) {
1230 struct list_head *list;
1231
1232 if (is_software_event(event))
1233 event->group_flags |= PERF_GROUP_SOFTWARE;
1234
1235 list = ctx_group_list(event, ctx);
1236 list_add_tail(&event->group_entry, list);
1237 }
1238
1239 if (is_cgroup_event(event))
1240 ctx->nr_cgroups++;
1241
1242 if (has_branch_stack(event))
1243 ctx->nr_branch_stack++;
1244
1245 list_add_rcu(&event->event_entry, &ctx->event_list);
1246 ctx->nr_events++;
1247 if (event->attr.inherit_stat)
1248 ctx->nr_stat++;
1249
1250 ctx->generation++;
1251 }
1252
1253 /*
1254 * Initialize event state based on the perf_event_attr::disabled.
1255 */
1256 static inline void perf_event__state_init(struct perf_event *event)
1257 {
1258 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1259 PERF_EVENT_STATE_INACTIVE;
1260 }
1261
1262 /*
1263 * Called at perf_event creation and when events are attached/detached from a
1264 * group.
1265 */
1266 static void perf_event__read_size(struct perf_event *event)
1267 {
1268 int entry = sizeof(u64); /* value */
1269 int size = 0;
1270 int nr = 1;
1271
1272 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1273 size += sizeof(u64);
1274
1275 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1276 size += sizeof(u64);
1277
1278 if (event->attr.read_format & PERF_FORMAT_ID)
1279 entry += sizeof(u64);
1280
1281 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1282 nr += event->group_leader->nr_siblings;
1283 size += sizeof(u64);
1284 }
1285
1286 size += entry * nr;
1287 event->read_size = size;
1288 }
1289
1290 static void perf_event__header_size(struct perf_event *event)
1291 {
1292 struct perf_sample_data *data;
1293 u64 sample_type = event->attr.sample_type;
1294 u16 size = 0;
1295
1296 perf_event__read_size(event);
1297
1298 if (sample_type & PERF_SAMPLE_IP)
1299 size += sizeof(data->ip);
1300
1301 if (sample_type & PERF_SAMPLE_ADDR)
1302 size += sizeof(data->addr);
1303
1304 if (sample_type & PERF_SAMPLE_PERIOD)
1305 size += sizeof(data->period);
1306
1307 if (sample_type & PERF_SAMPLE_WEIGHT)
1308 size += sizeof(data->weight);
1309
1310 if (sample_type & PERF_SAMPLE_READ)
1311 size += event->read_size;
1312
1313 if (sample_type & PERF_SAMPLE_DATA_SRC)
1314 size += sizeof(data->data_src.val);
1315
1316 if (sample_type & PERF_SAMPLE_TRANSACTION)
1317 size += sizeof(data->txn);
1318
1319 event->header_size = size;
1320 }
1321
1322 static void perf_event__id_header_size(struct perf_event *event)
1323 {
1324 struct perf_sample_data *data;
1325 u64 sample_type = event->attr.sample_type;
1326 u16 size = 0;
1327
1328 if (sample_type & PERF_SAMPLE_TID)
1329 size += sizeof(data->tid_entry);
1330
1331 if (sample_type & PERF_SAMPLE_TIME)
1332 size += sizeof(data->time);
1333
1334 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1335 size += sizeof(data->id);
1336
1337 if (sample_type & PERF_SAMPLE_ID)
1338 size += sizeof(data->id);
1339
1340 if (sample_type & PERF_SAMPLE_STREAM_ID)
1341 size += sizeof(data->stream_id);
1342
1343 if (sample_type & PERF_SAMPLE_CPU)
1344 size += sizeof(data->cpu_entry);
1345
1346 event->id_header_size = size;
1347 }
1348
1349 static void perf_group_attach(struct perf_event *event)
1350 {
1351 struct perf_event *group_leader = event->group_leader, *pos;
1352
1353 /*
1354 * We can have double attach due to group movement in perf_event_open.
1355 */
1356 if (event->attach_state & PERF_ATTACH_GROUP)
1357 return;
1358
1359 event->attach_state |= PERF_ATTACH_GROUP;
1360
1361 if (group_leader == event)
1362 return;
1363
1364 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1365
1366 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1367 !is_software_event(event))
1368 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1369
1370 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1371 group_leader->nr_siblings++;
1372
1373 perf_event__header_size(group_leader);
1374
1375 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1376 perf_event__header_size(pos);
1377 }
1378
1379 /*
1380 * Remove a event from the lists for its context.
1381 * Must be called with ctx->mutex and ctx->lock held.
1382 */
1383 static void
1384 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1385 {
1386 struct perf_cpu_context *cpuctx;
1387
1388 WARN_ON_ONCE(event->ctx != ctx);
1389 lockdep_assert_held(&ctx->lock);
1390
1391 /*
1392 * We can have double detach due to exit/hot-unplug + close.
1393 */
1394 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1395 return;
1396
1397 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1398
1399 if (is_cgroup_event(event)) {
1400 ctx->nr_cgroups--;
1401 cpuctx = __get_cpu_context(ctx);
1402 /*
1403 * if there are no more cgroup events
1404 * then cler cgrp to avoid stale pointer
1405 * in update_cgrp_time_from_cpuctx()
1406 */
1407 if (!ctx->nr_cgroups)
1408 cpuctx->cgrp = NULL;
1409 }
1410
1411 if (has_branch_stack(event))
1412 ctx->nr_branch_stack--;
1413
1414 ctx->nr_events--;
1415 if (event->attr.inherit_stat)
1416 ctx->nr_stat--;
1417
1418 list_del_rcu(&event->event_entry);
1419
1420 if (event->group_leader == event)
1421 list_del_init(&event->group_entry);
1422
1423 update_group_times(event);
1424
1425 /*
1426 * If event was in error state, then keep it
1427 * that way, otherwise bogus counts will be
1428 * returned on read(). The only way to get out
1429 * of error state is by explicit re-enabling
1430 * of the event
1431 */
1432 if (event->state > PERF_EVENT_STATE_OFF)
1433 event->state = PERF_EVENT_STATE_OFF;
1434
1435 ctx->generation++;
1436 }
1437
1438 static void perf_group_detach(struct perf_event *event)
1439 {
1440 struct perf_event *sibling, *tmp;
1441 struct list_head *list = NULL;
1442
1443 /*
1444 * We can have double detach due to exit/hot-unplug + close.
1445 */
1446 if (!(event->attach_state & PERF_ATTACH_GROUP))
1447 return;
1448
1449 event->attach_state &= ~PERF_ATTACH_GROUP;
1450
1451 /*
1452 * If this is a sibling, remove it from its group.
1453 */
1454 if (event->group_leader != event) {
1455 list_del_init(&event->group_entry);
1456 event->group_leader->nr_siblings--;
1457 goto out;
1458 }
1459
1460 if (!list_empty(&event->group_entry))
1461 list = &event->group_entry;
1462
1463 /*
1464 * If this was a group event with sibling events then
1465 * upgrade the siblings to singleton events by adding them
1466 * to whatever list we are on.
1467 */
1468 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1469 if (list)
1470 list_move_tail(&sibling->group_entry, list);
1471 sibling->group_leader = sibling;
1472
1473 /* Inherit group flags from the previous leader */
1474 sibling->group_flags = event->group_flags;
1475
1476 WARN_ON_ONCE(sibling->ctx != event->ctx);
1477 }
1478
1479 out:
1480 perf_event__header_size(event->group_leader);
1481
1482 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1483 perf_event__header_size(tmp);
1484 }
1485
1486 /*
1487 * User event without the task.
1488 */
1489 static bool is_orphaned_event(struct perf_event *event)
1490 {
1491 return event && !is_kernel_event(event) && !event->owner;
1492 }
1493
1494 /*
1495 * Event has a parent but parent's task finished and it's
1496 * alive only because of children holding refference.
1497 */
1498 static bool is_orphaned_child(struct perf_event *event)
1499 {
1500 return is_orphaned_event(event->parent);
1501 }
1502
1503 static void orphans_remove_work(struct work_struct *work);
1504
1505 static void schedule_orphans_remove(struct perf_event_context *ctx)
1506 {
1507 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1508 return;
1509
1510 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1511 get_ctx(ctx);
1512 ctx->orphans_remove_sched = true;
1513 }
1514 }
1515
1516 static int __init perf_workqueue_init(void)
1517 {
1518 perf_wq = create_singlethread_workqueue("perf");
1519 WARN(!perf_wq, "failed to create perf workqueue\n");
1520 return perf_wq ? 0 : -1;
1521 }
1522
1523 core_initcall(perf_workqueue_init);
1524
1525 static inline int
1526 event_filter_match(struct perf_event *event)
1527 {
1528 return (event->cpu == -1 || event->cpu == smp_processor_id())
1529 && perf_cgroup_match(event);
1530 }
1531
1532 static void
1533 event_sched_out(struct perf_event *event,
1534 struct perf_cpu_context *cpuctx,
1535 struct perf_event_context *ctx)
1536 {
1537 u64 tstamp = perf_event_time(event);
1538 u64 delta;
1539
1540 WARN_ON_ONCE(event->ctx != ctx);
1541 lockdep_assert_held(&ctx->lock);
1542
1543 /*
1544 * An event which could not be activated because of
1545 * filter mismatch still needs to have its timings
1546 * maintained, otherwise bogus information is return
1547 * via read() for time_enabled, time_running:
1548 */
1549 if (event->state == PERF_EVENT_STATE_INACTIVE
1550 && !event_filter_match(event)) {
1551 delta = tstamp - event->tstamp_stopped;
1552 event->tstamp_running += delta;
1553 event->tstamp_stopped = tstamp;
1554 }
1555
1556 if (event->state != PERF_EVENT_STATE_ACTIVE)
1557 return;
1558
1559 perf_pmu_disable(event->pmu);
1560
1561 event->state = PERF_EVENT_STATE_INACTIVE;
1562 if (event->pending_disable) {
1563 event->pending_disable = 0;
1564 event->state = PERF_EVENT_STATE_OFF;
1565 }
1566 event->tstamp_stopped = tstamp;
1567 event->pmu->del(event, 0);
1568 event->oncpu = -1;
1569
1570 if (!is_software_event(event))
1571 cpuctx->active_oncpu--;
1572 if (!--ctx->nr_active)
1573 perf_event_ctx_deactivate(ctx);
1574 if (event->attr.freq && event->attr.sample_freq)
1575 ctx->nr_freq--;
1576 if (event->attr.exclusive || !cpuctx->active_oncpu)
1577 cpuctx->exclusive = 0;
1578
1579 if (is_orphaned_child(event))
1580 schedule_orphans_remove(ctx);
1581
1582 perf_pmu_enable(event->pmu);
1583 }
1584
1585 static void
1586 group_sched_out(struct perf_event *group_event,
1587 struct perf_cpu_context *cpuctx,
1588 struct perf_event_context *ctx)
1589 {
1590 struct perf_event *event;
1591 int state = group_event->state;
1592
1593 event_sched_out(group_event, cpuctx, ctx);
1594
1595 /*
1596 * Schedule out siblings (if any):
1597 */
1598 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1599 event_sched_out(event, cpuctx, ctx);
1600
1601 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1602 cpuctx->exclusive = 0;
1603 }
1604
1605 struct remove_event {
1606 struct perf_event *event;
1607 bool detach_group;
1608 };
1609
1610 /*
1611 * Cross CPU call to remove a performance event
1612 *
1613 * We disable the event on the hardware level first. After that we
1614 * remove it from the context list.
1615 */
1616 static int __perf_remove_from_context(void *info)
1617 {
1618 struct remove_event *re = info;
1619 struct perf_event *event = re->event;
1620 struct perf_event_context *ctx = event->ctx;
1621 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1622
1623 raw_spin_lock(&ctx->lock);
1624 event_sched_out(event, cpuctx, ctx);
1625 if (re->detach_group)
1626 perf_group_detach(event);
1627 list_del_event(event, ctx);
1628 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1629 ctx->is_active = 0;
1630 cpuctx->task_ctx = NULL;
1631 }
1632 raw_spin_unlock(&ctx->lock);
1633
1634 return 0;
1635 }
1636
1637
1638 /*
1639 * Remove the event from a task's (or a CPU's) list of events.
1640 *
1641 * CPU events are removed with a smp call. For task events we only
1642 * call when the task is on a CPU.
1643 *
1644 * If event->ctx is a cloned context, callers must make sure that
1645 * every task struct that event->ctx->task could possibly point to
1646 * remains valid. This is OK when called from perf_release since
1647 * that only calls us on the top-level context, which can't be a clone.
1648 * When called from perf_event_exit_task, it's OK because the
1649 * context has been detached from its task.
1650 */
1651 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1652 {
1653 struct perf_event_context *ctx = event->ctx;
1654 struct task_struct *task = ctx->task;
1655 struct remove_event re = {
1656 .event = event,
1657 .detach_group = detach_group,
1658 };
1659
1660 lockdep_assert_held(&ctx->mutex);
1661
1662 if (!task) {
1663 /*
1664 * Per cpu events are removed via an smp call. The removal can
1665 * fail if the CPU is currently offline, but in that case we
1666 * already called __perf_remove_from_context from
1667 * perf_event_exit_cpu.
1668 */
1669 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1670 return;
1671 }
1672
1673 retry:
1674 if (!task_function_call(task, __perf_remove_from_context, &re))
1675 return;
1676
1677 raw_spin_lock_irq(&ctx->lock);
1678 /*
1679 * If we failed to find a running task, but find the context active now
1680 * that we've acquired the ctx->lock, retry.
1681 */
1682 if (ctx->is_active) {
1683 raw_spin_unlock_irq(&ctx->lock);
1684 /*
1685 * Reload the task pointer, it might have been changed by
1686 * a concurrent perf_event_context_sched_out().
1687 */
1688 task = ctx->task;
1689 goto retry;
1690 }
1691
1692 /*
1693 * Since the task isn't running, its safe to remove the event, us
1694 * holding the ctx->lock ensures the task won't get scheduled in.
1695 */
1696 if (detach_group)
1697 perf_group_detach(event);
1698 list_del_event(event, ctx);
1699 raw_spin_unlock_irq(&ctx->lock);
1700 }
1701
1702 /*
1703 * Cross CPU call to disable a performance event
1704 */
1705 int __perf_event_disable(void *info)
1706 {
1707 struct perf_event *event = info;
1708 struct perf_event_context *ctx = event->ctx;
1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710
1711 /*
1712 * If this is a per-task event, need to check whether this
1713 * event's task is the current task on this cpu.
1714 *
1715 * Can trigger due to concurrent perf_event_context_sched_out()
1716 * flipping contexts around.
1717 */
1718 if (ctx->task && cpuctx->task_ctx != ctx)
1719 return -EINVAL;
1720
1721 raw_spin_lock(&ctx->lock);
1722
1723 /*
1724 * If the event is on, turn it off.
1725 * If it is in error state, leave it in error state.
1726 */
1727 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1728 update_context_time(ctx);
1729 update_cgrp_time_from_event(event);
1730 update_group_times(event);
1731 if (event == event->group_leader)
1732 group_sched_out(event, cpuctx, ctx);
1733 else
1734 event_sched_out(event, cpuctx, ctx);
1735 event->state = PERF_EVENT_STATE_OFF;
1736 }
1737
1738 raw_spin_unlock(&ctx->lock);
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * Disable a event.
1745 *
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
1748 * remains valid. This condition is satisifed when called through
1749 * perf_event_for_each_child or perf_event_for_each because they
1750 * hold the top-level event's child_mutex, so any descendant that
1751 * goes to exit will block in sync_child_event.
1752 * When called from perf_pending_event it's OK because event->ctx
1753 * is the current context on this CPU and preemption is disabled,
1754 * hence we can't get into perf_event_task_sched_out for this context.
1755 */
1756 static void _perf_event_disable(struct perf_event *event)
1757 {
1758 struct perf_event_context *ctx = event->ctx;
1759 struct task_struct *task = ctx->task;
1760
1761 if (!task) {
1762 /*
1763 * Disable the event on the cpu that it's on
1764 */
1765 cpu_function_call(event->cpu, __perf_event_disable, event);
1766 return;
1767 }
1768
1769 retry:
1770 if (!task_function_call(task, __perf_event_disable, event))
1771 return;
1772
1773 raw_spin_lock_irq(&ctx->lock);
1774 /*
1775 * If the event is still active, we need to retry the cross-call.
1776 */
1777 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1778 raw_spin_unlock_irq(&ctx->lock);
1779 /*
1780 * Reload the task pointer, it might have been changed by
1781 * a concurrent perf_event_context_sched_out().
1782 */
1783 task = ctx->task;
1784 goto retry;
1785 }
1786
1787 /*
1788 * Since we have the lock this context can't be scheduled
1789 * in, so we can change the state safely.
1790 */
1791 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1792 update_group_times(event);
1793 event->state = PERF_EVENT_STATE_OFF;
1794 }
1795 raw_spin_unlock_irq(&ctx->lock);
1796 }
1797
1798 /*
1799 * Strictly speaking kernel users cannot create groups and therefore this
1800 * interface does not need the perf_event_ctx_lock() magic.
1801 */
1802 void perf_event_disable(struct perf_event *event)
1803 {
1804 struct perf_event_context *ctx;
1805
1806 ctx = perf_event_ctx_lock(event);
1807 _perf_event_disable(event);
1808 perf_event_ctx_unlock(event, ctx);
1809 }
1810 EXPORT_SYMBOL_GPL(perf_event_disable);
1811
1812 static void perf_set_shadow_time(struct perf_event *event,
1813 struct perf_event_context *ctx,
1814 u64 tstamp)
1815 {
1816 /*
1817 * use the correct time source for the time snapshot
1818 *
1819 * We could get by without this by leveraging the
1820 * fact that to get to this function, the caller
1821 * has most likely already called update_context_time()
1822 * and update_cgrp_time_xx() and thus both timestamp
1823 * are identical (or very close). Given that tstamp is,
1824 * already adjusted for cgroup, we could say that:
1825 * tstamp - ctx->timestamp
1826 * is equivalent to
1827 * tstamp - cgrp->timestamp.
1828 *
1829 * Then, in perf_output_read(), the calculation would
1830 * work with no changes because:
1831 * - event is guaranteed scheduled in
1832 * - no scheduled out in between
1833 * - thus the timestamp would be the same
1834 *
1835 * But this is a bit hairy.
1836 *
1837 * So instead, we have an explicit cgroup call to remain
1838 * within the time time source all along. We believe it
1839 * is cleaner and simpler to understand.
1840 */
1841 if (is_cgroup_event(event))
1842 perf_cgroup_set_shadow_time(event, tstamp);
1843 else
1844 event->shadow_ctx_time = tstamp - ctx->timestamp;
1845 }
1846
1847 #define MAX_INTERRUPTS (~0ULL)
1848
1849 static void perf_log_throttle(struct perf_event *event, int enable);
1850
1851 static int
1852 event_sched_in(struct perf_event *event,
1853 struct perf_cpu_context *cpuctx,
1854 struct perf_event_context *ctx)
1855 {
1856 u64 tstamp = perf_event_time(event);
1857 int ret = 0;
1858
1859 lockdep_assert_held(&ctx->lock);
1860
1861 if (event->state <= PERF_EVENT_STATE_OFF)
1862 return 0;
1863
1864 event->state = PERF_EVENT_STATE_ACTIVE;
1865 event->oncpu = smp_processor_id();
1866
1867 /*
1868 * Unthrottle events, since we scheduled we might have missed several
1869 * ticks already, also for a heavily scheduling task there is little
1870 * guarantee it'll get a tick in a timely manner.
1871 */
1872 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1873 perf_log_throttle(event, 1);
1874 event->hw.interrupts = 0;
1875 }
1876
1877 /*
1878 * The new state must be visible before we turn it on in the hardware:
1879 */
1880 smp_wmb();
1881
1882 perf_pmu_disable(event->pmu);
1883
1884 if (event->pmu->add(event, PERF_EF_START)) {
1885 event->state = PERF_EVENT_STATE_INACTIVE;
1886 event->oncpu = -1;
1887 ret = -EAGAIN;
1888 goto out;
1889 }
1890
1891 event->tstamp_running += tstamp - event->tstamp_stopped;
1892
1893 perf_set_shadow_time(event, ctx, tstamp);
1894
1895 if (!is_software_event(event))
1896 cpuctx->active_oncpu++;
1897 if (!ctx->nr_active++)
1898 perf_event_ctx_activate(ctx);
1899 if (event->attr.freq && event->attr.sample_freq)
1900 ctx->nr_freq++;
1901
1902 if (event->attr.exclusive)
1903 cpuctx->exclusive = 1;
1904
1905 if (is_orphaned_child(event))
1906 schedule_orphans_remove(ctx);
1907
1908 out:
1909 perf_pmu_enable(event->pmu);
1910
1911 return ret;
1912 }
1913
1914 static int
1915 group_sched_in(struct perf_event *group_event,
1916 struct perf_cpu_context *cpuctx,
1917 struct perf_event_context *ctx)
1918 {
1919 struct perf_event *event, *partial_group = NULL;
1920 struct pmu *pmu = ctx->pmu;
1921 u64 now = ctx->time;
1922 bool simulate = false;
1923
1924 if (group_event->state == PERF_EVENT_STATE_OFF)
1925 return 0;
1926
1927 pmu->start_txn(pmu);
1928
1929 if (event_sched_in(group_event, cpuctx, ctx)) {
1930 pmu->cancel_txn(pmu);
1931 perf_cpu_hrtimer_restart(cpuctx);
1932 return -EAGAIN;
1933 }
1934
1935 /*
1936 * Schedule in siblings as one group (if any):
1937 */
1938 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1939 if (event_sched_in(event, cpuctx, ctx)) {
1940 partial_group = event;
1941 goto group_error;
1942 }
1943 }
1944
1945 if (!pmu->commit_txn(pmu))
1946 return 0;
1947
1948 group_error:
1949 /*
1950 * Groups can be scheduled in as one unit only, so undo any
1951 * partial group before returning:
1952 * The events up to the failed event are scheduled out normally,
1953 * tstamp_stopped will be updated.
1954 *
1955 * The failed events and the remaining siblings need to have
1956 * their timings updated as if they had gone thru event_sched_in()
1957 * and event_sched_out(). This is required to get consistent timings
1958 * across the group. This also takes care of the case where the group
1959 * could never be scheduled by ensuring tstamp_stopped is set to mark
1960 * the time the event was actually stopped, such that time delta
1961 * calculation in update_event_times() is correct.
1962 */
1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 if (event == partial_group)
1965 simulate = true;
1966
1967 if (simulate) {
1968 event->tstamp_running += now - event->tstamp_stopped;
1969 event->tstamp_stopped = now;
1970 } else {
1971 event_sched_out(event, cpuctx, ctx);
1972 }
1973 }
1974 event_sched_out(group_event, cpuctx, ctx);
1975
1976 pmu->cancel_txn(pmu);
1977
1978 perf_cpu_hrtimer_restart(cpuctx);
1979
1980 return -EAGAIN;
1981 }
1982
1983 /*
1984 * Work out whether we can put this event group on the CPU now.
1985 */
1986 static int group_can_go_on(struct perf_event *event,
1987 struct perf_cpu_context *cpuctx,
1988 int can_add_hw)
1989 {
1990 /*
1991 * Groups consisting entirely of software events can always go on.
1992 */
1993 if (event->group_flags & PERF_GROUP_SOFTWARE)
1994 return 1;
1995 /*
1996 * If an exclusive group is already on, no other hardware
1997 * events can go on.
1998 */
1999 if (cpuctx->exclusive)
2000 return 0;
2001 /*
2002 * If this group is exclusive and there are already
2003 * events on the CPU, it can't go on.
2004 */
2005 if (event->attr.exclusive && cpuctx->active_oncpu)
2006 return 0;
2007 /*
2008 * Otherwise, try to add it if all previous groups were able
2009 * to go on.
2010 */
2011 return can_add_hw;
2012 }
2013
2014 static void add_event_to_ctx(struct perf_event *event,
2015 struct perf_event_context *ctx)
2016 {
2017 u64 tstamp = perf_event_time(event);
2018
2019 list_add_event(event, ctx);
2020 perf_group_attach(event);
2021 event->tstamp_enabled = tstamp;
2022 event->tstamp_running = tstamp;
2023 event->tstamp_stopped = tstamp;
2024 }
2025
2026 static void task_ctx_sched_out(struct perf_event_context *ctx);
2027 static void
2028 ctx_sched_in(struct perf_event_context *ctx,
2029 struct perf_cpu_context *cpuctx,
2030 enum event_type_t event_type,
2031 struct task_struct *task);
2032
2033 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2034 struct perf_event_context *ctx,
2035 struct task_struct *task)
2036 {
2037 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2038 if (ctx)
2039 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2040 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2041 if (ctx)
2042 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2043 }
2044
2045 /*
2046 * Cross CPU call to install and enable a performance event
2047 *
2048 * Must be called with ctx->mutex held
2049 */
2050 static int __perf_install_in_context(void *info)
2051 {
2052 struct perf_event *event = info;
2053 struct perf_event_context *ctx = event->ctx;
2054 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2056 struct task_struct *task = current;
2057
2058 perf_ctx_lock(cpuctx, task_ctx);
2059 perf_pmu_disable(cpuctx->ctx.pmu);
2060
2061 /*
2062 * If there was an active task_ctx schedule it out.
2063 */
2064 if (task_ctx)
2065 task_ctx_sched_out(task_ctx);
2066
2067 /*
2068 * If the context we're installing events in is not the
2069 * active task_ctx, flip them.
2070 */
2071 if (ctx->task && task_ctx != ctx) {
2072 if (task_ctx)
2073 raw_spin_unlock(&task_ctx->lock);
2074 raw_spin_lock(&ctx->lock);
2075 task_ctx = ctx;
2076 }
2077
2078 if (task_ctx) {
2079 cpuctx->task_ctx = task_ctx;
2080 task = task_ctx->task;
2081 }
2082
2083 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2084
2085 update_context_time(ctx);
2086 /*
2087 * update cgrp time only if current cgrp
2088 * matches event->cgrp. Must be done before
2089 * calling add_event_to_ctx()
2090 */
2091 update_cgrp_time_from_event(event);
2092
2093 add_event_to_ctx(event, ctx);
2094
2095 /*
2096 * Schedule everything back in
2097 */
2098 perf_event_sched_in(cpuctx, task_ctx, task);
2099
2100 perf_pmu_enable(cpuctx->ctx.pmu);
2101 perf_ctx_unlock(cpuctx, task_ctx);
2102
2103 return 0;
2104 }
2105
2106 /*
2107 * Attach a performance event to a context
2108 *
2109 * First we add the event to the list with the hardware enable bit
2110 * in event->hw_config cleared.
2111 *
2112 * If the event is attached to a task which is on a CPU we use a smp
2113 * call to enable it in the task context. The task might have been
2114 * scheduled away, but we check this in the smp call again.
2115 */
2116 static void
2117 perf_install_in_context(struct perf_event_context *ctx,
2118 struct perf_event *event,
2119 int cpu)
2120 {
2121 struct task_struct *task = ctx->task;
2122
2123 lockdep_assert_held(&ctx->mutex);
2124
2125 event->ctx = ctx;
2126 if (event->cpu != -1)
2127 event->cpu = cpu;
2128
2129 if (!task) {
2130 /*
2131 * Per cpu events are installed via an smp call and
2132 * the install is always successful.
2133 */
2134 cpu_function_call(cpu, __perf_install_in_context, event);
2135 return;
2136 }
2137
2138 retry:
2139 if (!task_function_call(task, __perf_install_in_context, event))
2140 return;
2141
2142 raw_spin_lock_irq(&ctx->lock);
2143 /*
2144 * If we failed to find a running task, but find the context active now
2145 * that we've acquired the ctx->lock, retry.
2146 */
2147 if (ctx->is_active) {
2148 raw_spin_unlock_irq(&ctx->lock);
2149 /*
2150 * Reload the task pointer, it might have been changed by
2151 * a concurrent perf_event_context_sched_out().
2152 */
2153 task = ctx->task;
2154 goto retry;
2155 }
2156
2157 /*
2158 * Since the task isn't running, its safe to add the event, us holding
2159 * the ctx->lock ensures the task won't get scheduled in.
2160 */
2161 add_event_to_ctx(event, ctx);
2162 raw_spin_unlock_irq(&ctx->lock);
2163 }
2164
2165 /*
2166 * Put a event into inactive state and update time fields.
2167 * Enabling the leader of a group effectively enables all
2168 * the group members that aren't explicitly disabled, so we
2169 * have to update their ->tstamp_enabled also.
2170 * Note: this works for group members as well as group leaders
2171 * since the non-leader members' sibling_lists will be empty.
2172 */
2173 static void __perf_event_mark_enabled(struct perf_event *event)
2174 {
2175 struct perf_event *sub;
2176 u64 tstamp = perf_event_time(event);
2177
2178 event->state = PERF_EVENT_STATE_INACTIVE;
2179 event->tstamp_enabled = tstamp - event->total_time_enabled;
2180 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2181 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2182 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2183 }
2184 }
2185
2186 /*
2187 * Cross CPU call to enable a performance event
2188 */
2189 static int __perf_event_enable(void *info)
2190 {
2191 struct perf_event *event = info;
2192 struct perf_event_context *ctx = event->ctx;
2193 struct perf_event *leader = event->group_leader;
2194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2195 int err;
2196
2197 /*
2198 * There's a time window between 'ctx->is_active' check
2199 * in perf_event_enable function and this place having:
2200 * - IRQs on
2201 * - ctx->lock unlocked
2202 *
2203 * where the task could be killed and 'ctx' deactivated
2204 * by perf_event_exit_task.
2205 */
2206 if (!ctx->is_active)
2207 return -EINVAL;
2208
2209 raw_spin_lock(&ctx->lock);
2210 update_context_time(ctx);
2211
2212 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2213 goto unlock;
2214
2215 /*
2216 * set current task's cgroup time reference point
2217 */
2218 perf_cgroup_set_timestamp(current, ctx);
2219
2220 __perf_event_mark_enabled(event);
2221
2222 if (!event_filter_match(event)) {
2223 if (is_cgroup_event(event))
2224 perf_cgroup_defer_enabled(event);
2225 goto unlock;
2226 }
2227
2228 /*
2229 * If the event is in a group and isn't the group leader,
2230 * then don't put it on unless the group is on.
2231 */
2232 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2233 goto unlock;
2234
2235 if (!group_can_go_on(event, cpuctx, 1)) {
2236 err = -EEXIST;
2237 } else {
2238 if (event == leader)
2239 err = group_sched_in(event, cpuctx, ctx);
2240 else
2241 err = event_sched_in(event, cpuctx, ctx);
2242 }
2243
2244 if (err) {
2245 /*
2246 * If this event can't go on and it's part of a
2247 * group, then the whole group has to come off.
2248 */
2249 if (leader != event) {
2250 group_sched_out(leader, cpuctx, ctx);
2251 perf_cpu_hrtimer_restart(cpuctx);
2252 }
2253 if (leader->attr.pinned) {
2254 update_group_times(leader);
2255 leader->state = PERF_EVENT_STATE_ERROR;
2256 }
2257 }
2258
2259 unlock:
2260 raw_spin_unlock(&ctx->lock);
2261
2262 return 0;
2263 }
2264
2265 /*
2266 * Enable a event.
2267 *
2268 * If event->ctx is a cloned context, callers must make sure that
2269 * every task struct that event->ctx->task could possibly point to
2270 * remains valid. This condition is satisfied when called through
2271 * perf_event_for_each_child or perf_event_for_each as described
2272 * for perf_event_disable.
2273 */
2274 static void _perf_event_enable(struct perf_event *event)
2275 {
2276 struct perf_event_context *ctx = event->ctx;
2277 struct task_struct *task = ctx->task;
2278
2279 if (!task) {
2280 /*
2281 * Enable the event on the cpu that it's on
2282 */
2283 cpu_function_call(event->cpu, __perf_event_enable, event);
2284 return;
2285 }
2286
2287 raw_spin_lock_irq(&ctx->lock);
2288 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2289 goto out;
2290
2291 /*
2292 * If the event is in error state, clear that first.
2293 * That way, if we see the event in error state below, we
2294 * know that it has gone back into error state, as distinct
2295 * from the task having been scheduled away before the
2296 * cross-call arrived.
2297 */
2298 if (event->state == PERF_EVENT_STATE_ERROR)
2299 event->state = PERF_EVENT_STATE_OFF;
2300
2301 retry:
2302 if (!ctx->is_active) {
2303 __perf_event_mark_enabled(event);
2304 goto out;
2305 }
2306
2307 raw_spin_unlock_irq(&ctx->lock);
2308
2309 if (!task_function_call(task, __perf_event_enable, event))
2310 return;
2311
2312 raw_spin_lock_irq(&ctx->lock);
2313
2314 /*
2315 * If the context is active and the event is still off,
2316 * we need to retry the cross-call.
2317 */
2318 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2319 /*
2320 * task could have been flipped by a concurrent
2321 * perf_event_context_sched_out()
2322 */
2323 task = ctx->task;
2324 goto retry;
2325 }
2326
2327 out:
2328 raw_spin_unlock_irq(&ctx->lock);
2329 }
2330
2331 /*
2332 * See perf_event_disable();
2333 */
2334 void perf_event_enable(struct perf_event *event)
2335 {
2336 struct perf_event_context *ctx;
2337
2338 ctx = perf_event_ctx_lock(event);
2339 _perf_event_enable(event);
2340 perf_event_ctx_unlock(event, ctx);
2341 }
2342 EXPORT_SYMBOL_GPL(perf_event_enable);
2343
2344 static int _perf_event_refresh(struct perf_event *event, int refresh)
2345 {
2346 /*
2347 * not supported on inherited events
2348 */
2349 if (event->attr.inherit || !is_sampling_event(event))
2350 return -EINVAL;
2351
2352 atomic_add(refresh, &event->event_limit);
2353 _perf_event_enable(event);
2354
2355 return 0;
2356 }
2357
2358 /*
2359 * See perf_event_disable()
2360 */
2361 int perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 struct perf_event_context *ctx;
2364 int ret;
2365
2366 ctx = perf_event_ctx_lock(event);
2367 ret = _perf_event_refresh(event, refresh);
2368 perf_event_ctx_unlock(event, ctx);
2369
2370 return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(perf_event_refresh);
2373
2374 static void ctx_sched_out(struct perf_event_context *ctx,
2375 struct perf_cpu_context *cpuctx,
2376 enum event_type_t event_type)
2377 {
2378 struct perf_event *event;
2379 int is_active = ctx->is_active;
2380
2381 ctx->is_active &= ~event_type;
2382 if (likely(!ctx->nr_events))
2383 return;
2384
2385 update_context_time(ctx);
2386 update_cgrp_time_from_cpuctx(cpuctx);
2387 if (!ctx->nr_active)
2388 return;
2389
2390 perf_pmu_disable(ctx->pmu);
2391 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2392 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2393 group_sched_out(event, cpuctx, ctx);
2394 }
2395
2396 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2397 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2398 group_sched_out(event, cpuctx, ctx);
2399 }
2400 perf_pmu_enable(ctx->pmu);
2401 }
2402
2403 /*
2404 * Test whether two contexts are equivalent, i.e. whether they have both been
2405 * cloned from the same version of the same context.
2406 *
2407 * Equivalence is measured using a generation number in the context that is
2408 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2409 * and list_del_event().
2410 */
2411 static int context_equiv(struct perf_event_context *ctx1,
2412 struct perf_event_context *ctx2)
2413 {
2414 lockdep_assert_held(&ctx1->lock);
2415 lockdep_assert_held(&ctx2->lock);
2416
2417 /* Pinning disables the swap optimization */
2418 if (ctx1->pin_count || ctx2->pin_count)
2419 return 0;
2420
2421 /* If ctx1 is the parent of ctx2 */
2422 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2423 return 1;
2424
2425 /* If ctx2 is the parent of ctx1 */
2426 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2427 return 1;
2428
2429 /*
2430 * If ctx1 and ctx2 have the same parent; we flatten the parent
2431 * hierarchy, see perf_event_init_context().
2432 */
2433 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2434 ctx1->parent_gen == ctx2->parent_gen)
2435 return 1;
2436
2437 /* Unmatched */
2438 return 0;
2439 }
2440
2441 static void __perf_event_sync_stat(struct perf_event *event,
2442 struct perf_event *next_event)
2443 {
2444 u64 value;
2445
2446 if (!event->attr.inherit_stat)
2447 return;
2448
2449 /*
2450 * Update the event value, we cannot use perf_event_read()
2451 * because we're in the middle of a context switch and have IRQs
2452 * disabled, which upsets smp_call_function_single(), however
2453 * we know the event must be on the current CPU, therefore we
2454 * don't need to use it.
2455 */
2456 switch (event->state) {
2457 case PERF_EVENT_STATE_ACTIVE:
2458 event->pmu->read(event);
2459 /* fall-through */
2460
2461 case PERF_EVENT_STATE_INACTIVE:
2462 update_event_times(event);
2463 break;
2464
2465 default:
2466 break;
2467 }
2468
2469 /*
2470 * In order to keep per-task stats reliable we need to flip the event
2471 * values when we flip the contexts.
2472 */
2473 value = local64_read(&next_event->count);
2474 value = local64_xchg(&event->count, value);
2475 local64_set(&next_event->count, value);
2476
2477 swap(event->total_time_enabled, next_event->total_time_enabled);
2478 swap(event->total_time_running, next_event->total_time_running);
2479
2480 /*
2481 * Since we swizzled the values, update the user visible data too.
2482 */
2483 perf_event_update_userpage(event);
2484 perf_event_update_userpage(next_event);
2485 }
2486
2487 static void perf_event_sync_stat(struct perf_event_context *ctx,
2488 struct perf_event_context *next_ctx)
2489 {
2490 struct perf_event *event, *next_event;
2491
2492 if (!ctx->nr_stat)
2493 return;
2494
2495 update_context_time(ctx);
2496
2497 event = list_first_entry(&ctx->event_list,
2498 struct perf_event, event_entry);
2499
2500 next_event = list_first_entry(&next_ctx->event_list,
2501 struct perf_event, event_entry);
2502
2503 while (&event->event_entry != &ctx->event_list &&
2504 &next_event->event_entry != &next_ctx->event_list) {
2505
2506 __perf_event_sync_stat(event, next_event);
2507
2508 event = list_next_entry(event, event_entry);
2509 next_event = list_next_entry(next_event, event_entry);
2510 }
2511 }
2512
2513 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2514 struct task_struct *next)
2515 {
2516 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2517 struct perf_event_context *next_ctx;
2518 struct perf_event_context *parent, *next_parent;
2519 struct perf_cpu_context *cpuctx;
2520 int do_switch = 1;
2521
2522 if (likely(!ctx))
2523 return;
2524
2525 cpuctx = __get_cpu_context(ctx);
2526 if (!cpuctx->task_ctx)
2527 return;
2528
2529 rcu_read_lock();
2530 next_ctx = next->perf_event_ctxp[ctxn];
2531 if (!next_ctx)
2532 goto unlock;
2533
2534 parent = rcu_dereference(ctx->parent_ctx);
2535 next_parent = rcu_dereference(next_ctx->parent_ctx);
2536
2537 /* If neither context have a parent context; they cannot be clones. */
2538 if (!parent && !next_parent)
2539 goto unlock;
2540
2541 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2542 /*
2543 * Looks like the two contexts are clones, so we might be
2544 * able to optimize the context switch. We lock both
2545 * contexts and check that they are clones under the
2546 * lock (including re-checking that neither has been
2547 * uncloned in the meantime). It doesn't matter which
2548 * order we take the locks because no other cpu could
2549 * be trying to lock both of these tasks.
2550 */
2551 raw_spin_lock(&ctx->lock);
2552 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2553 if (context_equiv(ctx, next_ctx)) {
2554 /*
2555 * XXX do we need a memory barrier of sorts
2556 * wrt to rcu_dereference() of perf_event_ctxp
2557 */
2558 task->perf_event_ctxp[ctxn] = next_ctx;
2559 next->perf_event_ctxp[ctxn] = ctx;
2560 ctx->task = next;
2561 next_ctx->task = task;
2562 do_switch = 0;
2563
2564 perf_event_sync_stat(ctx, next_ctx);
2565 }
2566 raw_spin_unlock(&next_ctx->lock);
2567 raw_spin_unlock(&ctx->lock);
2568 }
2569 unlock:
2570 rcu_read_unlock();
2571
2572 if (do_switch) {
2573 raw_spin_lock(&ctx->lock);
2574 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2575 cpuctx->task_ctx = NULL;
2576 raw_spin_unlock(&ctx->lock);
2577 }
2578 }
2579
2580 #define for_each_task_context_nr(ctxn) \
2581 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2582
2583 /*
2584 * Called from scheduler to remove the events of the current task,
2585 * with interrupts disabled.
2586 *
2587 * We stop each event and update the event value in event->count.
2588 *
2589 * This does not protect us against NMI, but disable()
2590 * sets the disabled bit in the control field of event _before_
2591 * accessing the event control register. If a NMI hits, then it will
2592 * not restart the event.
2593 */
2594 void __perf_event_task_sched_out(struct task_struct *task,
2595 struct task_struct *next)
2596 {
2597 int ctxn;
2598
2599 for_each_task_context_nr(ctxn)
2600 perf_event_context_sched_out(task, ctxn, next);
2601
2602 /*
2603 * if cgroup events exist on this CPU, then we need
2604 * to check if we have to switch out PMU state.
2605 * cgroup event are system-wide mode only
2606 */
2607 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2608 perf_cgroup_sched_out(task, next);
2609 }
2610
2611 static void task_ctx_sched_out(struct perf_event_context *ctx)
2612 {
2613 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2614
2615 if (!cpuctx->task_ctx)
2616 return;
2617
2618 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2619 return;
2620
2621 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2622 cpuctx->task_ctx = NULL;
2623 }
2624
2625 /*
2626 * Called with IRQs disabled
2627 */
2628 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2629 enum event_type_t event_type)
2630 {
2631 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2632 }
2633
2634 static void
2635 ctx_pinned_sched_in(struct perf_event_context *ctx,
2636 struct perf_cpu_context *cpuctx)
2637 {
2638 struct perf_event *event;
2639
2640 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2641 if (event->state <= PERF_EVENT_STATE_OFF)
2642 continue;
2643 if (!event_filter_match(event))
2644 continue;
2645
2646 /* may need to reset tstamp_enabled */
2647 if (is_cgroup_event(event))
2648 perf_cgroup_mark_enabled(event, ctx);
2649
2650 if (group_can_go_on(event, cpuctx, 1))
2651 group_sched_in(event, cpuctx, ctx);
2652
2653 /*
2654 * If this pinned group hasn't been scheduled,
2655 * put it in error state.
2656 */
2657 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2658 update_group_times(event);
2659 event->state = PERF_EVENT_STATE_ERROR;
2660 }
2661 }
2662 }
2663
2664 static void
2665 ctx_flexible_sched_in(struct perf_event_context *ctx,
2666 struct perf_cpu_context *cpuctx)
2667 {
2668 struct perf_event *event;
2669 int can_add_hw = 1;
2670
2671 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2672 /* Ignore events in OFF or ERROR state */
2673 if (event->state <= PERF_EVENT_STATE_OFF)
2674 continue;
2675 /*
2676 * Listen to the 'cpu' scheduling filter constraint
2677 * of events:
2678 */
2679 if (!event_filter_match(event))
2680 continue;
2681
2682 /* may need to reset tstamp_enabled */
2683 if (is_cgroup_event(event))
2684 perf_cgroup_mark_enabled(event, ctx);
2685
2686 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2687 if (group_sched_in(event, cpuctx, ctx))
2688 can_add_hw = 0;
2689 }
2690 }
2691 }
2692
2693 static void
2694 ctx_sched_in(struct perf_event_context *ctx,
2695 struct perf_cpu_context *cpuctx,
2696 enum event_type_t event_type,
2697 struct task_struct *task)
2698 {
2699 u64 now;
2700 int is_active = ctx->is_active;
2701
2702 ctx->is_active |= event_type;
2703 if (likely(!ctx->nr_events))
2704 return;
2705
2706 now = perf_clock();
2707 ctx->timestamp = now;
2708 perf_cgroup_set_timestamp(task, ctx);
2709 /*
2710 * First go through the list and put on any pinned groups
2711 * in order to give them the best chance of going on.
2712 */
2713 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2714 ctx_pinned_sched_in(ctx, cpuctx);
2715
2716 /* Then walk through the lower prio flexible groups */
2717 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2718 ctx_flexible_sched_in(ctx, cpuctx);
2719 }
2720
2721 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2722 enum event_type_t event_type,
2723 struct task_struct *task)
2724 {
2725 struct perf_event_context *ctx = &cpuctx->ctx;
2726
2727 ctx_sched_in(ctx, cpuctx, event_type, task);
2728 }
2729
2730 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2731 struct task_struct *task)
2732 {
2733 struct perf_cpu_context *cpuctx;
2734
2735 cpuctx = __get_cpu_context(ctx);
2736 if (cpuctx->task_ctx == ctx)
2737 return;
2738
2739 perf_ctx_lock(cpuctx, ctx);
2740 perf_pmu_disable(ctx->pmu);
2741 /*
2742 * We want to keep the following priority order:
2743 * cpu pinned (that don't need to move), task pinned,
2744 * cpu flexible, task flexible.
2745 */
2746 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747
2748 if (ctx->nr_events)
2749 cpuctx->task_ctx = ctx;
2750
2751 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2752
2753 perf_pmu_enable(ctx->pmu);
2754 perf_ctx_unlock(cpuctx, ctx);
2755 }
2756
2757 /*
2758 * When sampling the branck stack in system-wide, it may be necessary
2759 * to flush the stack on context switch. This happens when the branch
2760 * stack does not tag its entries with the pid of the current task.
2761 * Otherwise it becomes impossible to associate a branch entry with a
2762 * task. This ambiguity is more likely to appear when the branch stack
2763 * supports priv level filtering and the user sets it to monitor only
2764 * at the user level (which could be a useful measurement in system-wide
2765 * mode). In that case, the risk is high of having a branch stack with
2766 * branch from multiple tasks. Flushing may mean dropping the existing
2767 * entries or stashing them somewhere in the PMU specific code layer.
2768 *
2769 * This function provides the context switch callback to the lower code
2770 * layer. It is invoked ONLY when there is at least one system-wide context
2771 * with at least one active event using taken branch sampling.
2772 */
2773 static void perf_branch_stack_sched_in(struct task_struct *prev,
2774 struct task_struct *task)
2775 {
2776 struct perf_cpu_context *cpuctx;
2777 struct pmu *pmu;
2778 unsigned long flags;
2779
2780 /* no need to flush branch stack if not changing task */
2781 if (prev == task)
2782 return;
2783
2784 local_irq_save(flags);
2785
2786 rcu_read_lock();
2787
2788 list_for_each_entry_rcu(pmu, &pmus, entry) {
2789 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2790
2791 /*
2792 * check if the context has at least one
2793 * event using PERF_SAMPLE_BRANCH_STACK
2794 */
2795 if (cpuctx->ctx.nr_branch_stack > 0
2796 && pmu->flush_branch_stack) {
2797
2798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2799
2800 perf_pmu_disable(pmu);
2801
2802 pmu->flush_branch_stack();
2803
2804 perf_pmu_enable(pmu);
2805
2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 }
2808 }
2809
2810 rcu_read_unlock();
2811
2812 local_irq_restore(flags);
2813 }
2814
2815 /*
2816 * Called from scheduler to add the events of the current task
2817 * with interrupts disabled.
2818 *
2819 * We restore the event value and then enable it.
2820 *
2821 * This does not protect us against NMI, but enable()
2822 * sets the enabled bit in the control field of event _before_
2823 * accessing the event control register. If a NMI hits, then it will
2824 * keep the event running.
2825 */
2826 void __perf_event_task_sched_in(struct task_struct *prev,
2827 struct task_struct *task)
2828 {
2829 struct perf_event_context *ctx;
2830 int ctxn;
2831
2832 for_each_task_context_nr(ctxn) {
2833 ctx = task->perf_event_ctxp[ctxn];
2834 if (likely(!ctx))
2835 continue;
2836
2837 perf_event_context_sched_in(ctx, task);
2838 }
2839 /*
2840 * if cgroup events exist on this CPU, then we need
2841 * to check if we have to switch in PMU state.
2842 * cgroup event are system-wide mode only
2843 */
2844 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2845 perf_cgroup_sched_in(prev, task);
2846
2847 /* check for system-wide branch_stack events */
2848 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2849 perf_branch_stack_sched_in(prev, task);
2850 }
2851
2852 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2853 {
2854 u64 frequency = event->attr.sample_freq;
2855 u64 sec = NSEC_PER_SEC;
2856 u64 divisor, dividend;
2857
2858 int count_fls, nsec_fls, frequency_fls, sec_fls;
2859
2860 count_fls = fls64(count);
2861 nsec_fls = fls64(nsec);
2862 frequency_fls = fls64(frequency);
2863 sec_fls = 30;
2864
2865 /*
2866 * We got @count in @nsec, with a target of sample_freq HZ
2867 * the target period becomes:
2868 *
2869 * @count * 10^9
2870 * period = -------------------
2871 * @nsec * sample_freq
2872 *
2873 */
2874
2875 /*
2876 * Reduce accuracy by one bit such that @a and @b converge
2877 * to a similar magnitude.
2878 */
2879 #define REDUCE_FLS(a, b) \
2880 do { \
2881 if (a##_fls > b##_fls) { \
2882 a >>= 1; \
2883 a##_fls--; \
2884 } else { \
2885 b >>= 1; \
2886 b##_fls--; \
2887 } \
2888 } while (0)
2889
2890 /*
2891 * Reduce accuracy until either term fits in a u64, then proceed with
2892 * the other, so that finally we can do a u64/u64 division.
2893 */
2894 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2895 REDUCE_FLS(nsec, frequency);
2896 REDUCE_FLS(sec, count);
2897 }
2898
2899 if (count_fls + sec_fls > 64) {
2900 divisor = nsec * frequency;
2901
2902 while (count_fls + sec_fls > 64) {
2903 REDUCE_FLS(count, sec);
2904 divisor >>= 1;
2905 }
2906
2907 dividend = count * sec;
2908 } else {
2909 dividend = count * sec;
2910
2911 while (nsec_fls + frequency_fls > 64) {
2912 REDUCE_FLS(nsec, frequency);
2913 dividend >>= 1;
2914 }
2915
2916 divisor = nsec * frequency;
2917 }
2918
2919 if (!divisor)
2920 return dividend;
2921
2922 return div64_u64(dividend, divisor);
2923 }
2924
2925 static DEFINE_PER_CPU(int, perf_throttled_count);
2926 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2927
2928 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2929 {
2930 struct hw_perf_event *hwc = &event->hw;
2931 s64 period, sample_period;
2932 s64 delta;
2933
2934 period = perf_calculate_period(event, nsec, count);
2935
2936 delta = (s64)(period - hwc->sample_period);
2937 delta = (delta + 7) / 8; /* low pass filter */
2938
2939 sample_period = hwc->sample_period + delta;
2940
2941 if (!sample_period)
2942 sample_period = 1;
2943
2944 hwc->sample_period = sample_period;
2945
2946 if (local64_read(&hwc->period_left) > 8*sample_period) {
2947 if (disable)
2948 event->pmu->stop(event, PERF_EF_UPDATE);
2949
2950 local64_set(&hwc->period_left, 0);
2951
2952 if (disable)
2953 event->pmu->start(event, PERF_EF_RELOAD);
2954 }
2955 }
2956
2957 /*
2958 * combine freq adjustment with unthrottling to avoid two passes over the
2959 * events. At the same time, make sure, having freq events does not change
2960 * the rate of unthrottling as that would introduce bias.
2961 */
2962 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2963 int needs_unthr)
2964 {
2965 struct perf_event *event;
2966 struct hw_perf_event *hwc;
2967 u64 now, period = TICK_NSEC;
2968 s64 delta;
2969
2970 /*
2971 * only need to iterate over all events iff:
2972 * - context have events in frequency mode (needs freq adjust)
2973 * - there are events to unthrottle on this cpu
2974 */
2975 if (!(ctx->nr_freq || needs_unthr))
2976 return;
2977
2978 raw_spin_lock(&ctx->lock);
2979 perf_pmu_disable(ctx->pmu);
2980
2981 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982 if (event->state != PERF_EVENT_STATE_ACTIVE)
2983 continue;
2984
2985 if (!event_filter_match(event))
2986 continue;
2987
2988 perf_pmu_disable(event->pmu);
2989
2990 hwc = &event->hw;
2991
2992 if (hwc->interrupts == MAX_INTERRUPTS) {
2993 hwc->interrupts = 0;
2994 perf_log_throttle(event, 1);
2995 event->pmu->start(event, 0);
2996 }
2997
2998 if (!event->attr.freq || !event->attr.sample_freq)
2999 goto next;
3000
3001 /*
3002 * stop the event and update event->count
3003 */
3004 event->pmu->stop(event, PERF_EF_UPDATE);
3005
3006 now = local64_read(&event->count);
3007 delta = now - hwc->freq_count_stamp;
3008 hwc->freq_count_stamp = now;
3009
3010 /*
3011 * restart the event
3012 * reload only if value has changed
3013 * we have stopped the event so tell that
3014 * to perf_adjust_period() to avoid stopping it
3015 * twice.
3016 */
3017 if (delta > 0)
3018 perf_adjust_period(event, period, delta, false);
3019
3020 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3021 next:
3022 perf_pmu_enable(event->pmu);
3023 }
3024
3025 perf_pmu_enable(ctx->pmu);
3026 raw_spin_unlock(&ctx->lock);
3027 }
3028
3029 /*
3030 * Round-robin a context's events:
3031 */
3032 static void rotate_ctx(struct perf_event_context *ctx)
3033 {
3034 /*
3035 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 * disabled by the inheritance code.
3037 */
3038 if (!ctx->rotate_disable)
3039 list_rotate_left(&ctx->flexible_groups);
3040 }
3041
3042 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3043 {
3044 struct perf_event_context *ctx = NULL;
3045 int rotate = 0;
3046
3047 if (cpuctx->ctx.nr_events) {
3048 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3049 rotate = 1;
3050 }
3051
3052 ctx = cpuctx->task_ctx;
3053 if (ctx && ctx->nr_events) {
3054 if (ctx->nr_events != ctx->nr_active)
3055 rotate = 1;
3056 }
3057
3058 if (!rotate)
3059 goto done;
3060
3061 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3062 perf_pmu_disable(cpuctx->ctx.pmu);
3063
3064 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3065 if (ctx)
3066 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3067
3068 rotate_ctx(&cpuctx->ctx);
3069 if (ctx)
3070 rotate_ctx(ctx);
3071
3072 perf_event_sched_in(cpuctx, ctx, current);
3073
3074 perf_pmu_enable(cpuctx->ctx.pmu);
3075 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3076 done:
3077
3078 return rotate;
3079 }
3080
3081 #ifdef CONFIG_NO_HZ_FULL
3082 bool perf_event_can_stop_tick(void)
3083 {
3084 if (atomic_read(&nr_freq_events) ||
3085 __this_cpu_read(perf_throttled_count))
3086 return false;
3087 else
3088 return true;
3089 }
3090 #endif
3091
3092 void perf_event_task_tick(void)
3093 {
3094 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3095 struct perf_event_context *ctx, *tmp;
3096 int throttled;
3097
3098 WARN_ON(!irqs_disabled());
3099
3100 __this_cpu_inc(perf_throttled_seq);
3101 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3102
3103 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104 perf_adjust_freq_unthr_context(ctx, throttled);
3105 }
3106
3107 static int event_enable_on_exec(struct perf_event *event,
3108 struct perf_event_context *ctx)
3109 {
3110 if (!event->attr.enable_on_exec)
3111 return 0;
3112
3113 event->attr.enable_on_exec = 0;
3114 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3115 return 0;
3116
3117 __perf_event_mark_enabled(event);
3118
3119 return 1;
3120 }
3121
3122 /*
3123 * Enable all of a task's events that have been marked enable-on-exec.
3124 * This expects task == current.
3125 */
3126 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3127 {
3128 struct perf_event_context *clone_ctx = NULL;
3129 struct perf_event *event;
3130 unsigned long flags;
3131 int enabled = 0;
3132 int ret;
3133
3134 local_irq_save(flags);
3135 if (!ctx || !ctx->nr_events)
3136 goto out;
3137
3138 /*
3139 * We must ctxsw out cgroup events to avoid conflict
3140 * when invoking perf_task_event_sched_in() later on
3141 * in this function. Otherwise we end up trying to
3142 * ctxswin cgroup events which are already scheduled
3143 * in.
3144 */
3145 perf_cgroup_sched_out(current, NULL);
3146
3147 raw_spin_lock(&ctx->lock);
3148 task_ctx_sched_out(ctx);
3149
3150 list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 ret = event_enable_on_exec(event, ctx);
3152 if (ret)
3153 enabled = 1;
3154 }
3155
3156 /*
3157 * Unclone this context if we enabled any event.
3158 */
3159 if (enabled)
3160 clone_ctx = unclone_ctx(ctx);
3161
3162 raw_spin_unlock(&ctx->lock);
3163
3164 /*
3165 * Also calls ctxswin for cgroup events, if any:
3166 */
3167 perf_event_context_sched_in(ctx, ctx->task);
3168 out:
3169 local_irq_restore(flags);
3170
3171 if (clone_ctx)
3172 put_ctx(clone_ctx);
3173 }
3174
3175 void perf_event_exec(void)
3176 {
3177 struct perf_event_context *ctx;
3178 int ctxn;
3179
3180 rcu_read_lock();
3181 for_each_task_context_nr(ctxn) {
3182 ctx = current->perf_event_ctxp[ctxn];
3183 if (!ctx)
3184 continue;
3185
3186 perf_event_enable_on_exec(ctx);
3187 }
3188 rcu_read_unlock();
3189 }
3190
3191 /*
3192 * Cross CPU call to read the hardware event
3193 */
3194 static void __perf_event_read(void *info)
3195 {
3196 struct perf_event *event = info;
3197 struct perf_event_context *ctx = event->ctx;
3198 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3199
3200 /*
3201 * If this is a task context, we need to check whether it is
3202 * the current task context of this cpu. If not it has been
3203 * scheduled out before the smp call arrived. In that case
3204 * event->count would have been updated to a recent sample
3205 * when the event was scheduled out.
3206 */
3207 if (ctx->task && cpuctx->task_ctx != ctx)
3208 return;
3209
3210 raw_spin_lock(&ctx->lock);
3211 if (ctx->is_active) {
3212 update_context_time(ctx);
3213 update_cgrp_time_from_event(event);
3214 }
3215 update_event_times(event);
3216 if (event->state == PERF_EVENT_STATE_ACTIVE)
3217 event->pmu->read(event);
3218 raw_spin_unlock(&ctx->lock);
3219 }
3220
3221 static inline u64 perf_event_count(struct perf_event *event)
3222 {
3223 return local64_read(&event->count) + atomic64_read(&event->child_count);
3224 }
3225
3226 static u64 perf_event_read(struct perf_event *event)
3227 {
3228 /*
3229 * If event is enabled and currently active on a CPU, update the
3230 * value in the event structure:
3231 */
3232 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3233 smp_call_function_single(event->oncpu,
3234 __perf_event_read, event, 1);
3235 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3236 struct perf_event_context *ctx = event->ctx;
3237 unsigned long flags;
3238
3239 raw_spin_lock_irqsave(&ctx->lock, flags);
3240 /*
3241 * may read while context is not active
3242 * (e.g., thread is blocked), in that case
3243 * we cannot update context time
3244 */
3245 if (ctx->is_active) {
3246 update_context_time(ctx);
3247 update_cgrp_time_from_event(event);
3248 }
3249 update_event_times(event);
3250 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3251 }
3252
3253 return perf_event_count(event);
3254 }
3255
3256 /*
3257 * Initialize the perf_event context in a task_struct:
3258 */
3259 static void __perf_event_init_context(struct perf_event_context *ctx)
3260 {
3261 raw_spin_lock_init(&ctx->lock);
3262 mutex_init(&ctx->mutex);
3263 INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 INIT_LIST_HEAD(&ctx->pinned_groups);
3265 INIT_LIST_HEAD(&ctx->flexible_groups);
3266 INIT_LIST_HEAD(&ctx->event_list);
3267 atomic_set(&ctx->refcount, 1);
3268 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3269 }
3270
3271 static struct perf_event_context *
3272 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3273 {
3274 struct perf_event_context *ctx;
3275
3276 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3277 if (!ctx)
3278 return NULL;
3279
3280 __perf_event_init_context(ctx);
3281 if (task) {
3282 ctx->task = task;
3283 get_task_struct(task);
3284 }
3285 ctx->pmu = pmu;
3286
3287 return ctx;
3288 }
3289
3290 static struct task_struct *
3291 find_lively_task_by_vpid(pid_t vpid)
3292 {
3293 struct task_struct *task;
3294 int err;
3295
3296 rcu_read_lock();
3297 if (!vpid)
3298 task = current;
3299 else
3300 task = find_task_by_vpid(vpid);
3301 if (task)
3302 get_task_struct(task);
3303 rcu_read_unlock();
3304
3305 if (!task)
3306 return ERR_PTR(-ESRCH);
3307
3308 /* Reuse ptrace permission checks for now. */
3309 err = -EACCES;
3310 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3311 goto errout;
3312
3313 return task;
3314 errout:
3315 put_task_struct(task);
3316 return ERR_PTR(err);
3317
3318 }
3319
3320 /*
3321 * Returns a matching context with refcount and pincount.
3322 */
3323 static struct perf_event_context *
3324 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3325 {
3326 struct perf_event_context *ctx, *clone_ctx = NULL;
3327 struct perf_cpu_context *cpuctx;
3328 unsigned long flags;
3329 int ctxn, err;
3330
3331 if (!task) {
3332 /* Must be root to operate on a CPU event: */
3333 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3334 return ERR_PTR(-EACCES);
3335
3336 /*
3337 * We could be clever and allow to attach a event to an
3338 * offline CPU and activate it when the CPU comes up, but
3339 * that's for later.
3340 */
3341 if (!cpu_online(cpu))
3342 return ERR_PTR(-ENODEV);
3343
3344 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3345 ctx = &cpuctx->ctx;
3346 get_ctx(ctx);
3347 ++ctx->pin_count;
3348
3349 return ctx;
3350 }
3351
3352 err = -EINVAL;
3353 ctxn = pmu->task_ctx_nr;
3354 if (ctxn < 0)
3355 goto errout;
3356
3357 retry:
3358 ctx = perf_lock_task_context(task, ctxn, &flags);
3359 if (ctx) {
3360 clone_ctx = unclone_ctx(ctx);
3361 ++ctx->pin_count;
3362 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3363
3364 if (clone_ctx)
3365 put_ctx(clone_ctx);
3366 } else {
3367 ctx = alloc_perf_context(pmu, task);
3368 err = -ENOMEM;
3369 if (!ctx)
3370 goto errout;
3371
3372 err = 0;
3373 mutex_lock(&task->perf_event_mutex);
3374 /*
3375 * If it has already passed perf_event_exit_task().
3376 * we must see PF_EXITING, it takes this mutex too.
3377 */
3378 if (task->flags & PF_EXITING)
3379 err = -ESRCH;
3380 else if (task->perf_event_ctxp[ctxn])
3381 err = -EAGAIN;
3382 else {
3383 get_ctx(ctx);
3384 ++ctx->pin_count;
3385 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3386 }
3387 mutex_unlock(&task->perf_event_mutex);
3388
3389 if (unlikely(err)) {
3390 put_ctx(ctx);
3391
3392 if (err == -EAGAIN)
3393 goto retry;
3394 goto errout;
3395 }
3396 }
3397
3398 return ctx;
3399
3400 errout:
3401 return ERR_PTR(err);
3402 }
3403
3404 static void perf_event_free_filter(struct perf_event *event);
3405
3406 static void free_event_rcu(struct rcu_head *head)
3407 {
3408 struct perf_event *event;
3409
3410 event = container_of(head, struct perf_event, rcu_head);
3411 if (event->ns)
3412 put_pid_ns(event->ns);
3413 perf_event_free_filter(event);
3414 kfree(event);
3415 }
3416
3417 static void ring_buffer_put(struct ring_buffer *rb);
3418 static void ring_buffer_attach(struct perf_event *event,
3419 struct ring_buffer *rb);
3420
3421 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3422 {
3423 if (event->parent)
3424 return;
3425
3426 if (has_branch_stack(event)) {
3427 if (!(event->attach_state & PERF_ATTACH_TASK))
3428 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3429 }
3430 if (is_cgroup_event(event))
3431 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3432 }
3433
3434 static void unaccount_event(struct perf_event *event)
3435 {
3436 if (event->parent)
3437 return;
3438
3439 if (event->attach_state & PERF_ATTACH_TASK)
3440 static_key_slow_dec_deferred(&perf_sched_events);
3441 if (event->attr.mmap || event->attr.mmap_data)
3442 atomic_dec(&nr_mmap_events);
3443 if (event->attr.comm)
3444 atomic_dec(&nr_comm_events);
3445 if (event->attr.task)
3446 atomic_dec(&nr_task_events);
3447 if (event->attr.freq)
3448 atomic_dec(&nr_freq_events);
3449 if (is_cgroup_event(event))
3450 static_key_slow_dec_deferred(&perf_sched_events);
3451 if (has_branch_stack(event))
3452 static_key_slow_dec_deferred(&perf_sched_events);
3453
3454 unaccount_event_cpu(event, event->cpu);
3455 }
3456
3457 static void __free_event(struct perf_event *event)
3458 {
3459 if (!event->parent) {
3460 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3461 put_callchain_buffers();
3462 }
3463
3464 if (event->destroy)
3465 event->destroy(event);
3466
3467 if (event->ctx)
3468 put_ctx(event->ctx);
3469
3470 if (event->pmu)
3471 module_put(event->pmu->module);
3472
3473 call_rcu(&event->rcu_head, free_event_rcu);
3474 }
3475
3476 static void _free_event(struct perf_event *event)
3477 {
3478 irq_work_sync(&event->pending);
3479
3480 unaccount_event(event);
3481
3482 if (event->rb) {
3483 /*
3484 * Can happen when we close an event with re-directed output.
3485 *
3486 * Since we have a 0 refcount, perf_mmap_close() will skip
3487 * over us; possibly making our ring_buffer_put() the last.
3488 */
3489 mutex_lock(&event->mmap_mutex);
3490 ring_buffer_attach(event, NULL);
3491 mutex_unlock(&event->mmap_mutex);
3492 }
3493
3494 if (is_cgroup_event(event))
3495 perf_detach_cgroup(event);
3496
3497 __free_event(event);
3498 }
3499
3500 /*
3501 * Used to free events which have a known refcount of 1, such as in error paths
3502 * where the event isn't exposed yet and inherited events.
3503 */
3504 static void free_event(struct perf_event *event)
3505 {
3506 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3507 "unexpected event refcount: %ld; ptr=%p\n",
3508 atomic_long_read(&event->refcount), event)) {
3509 /* leak to avoid use-after-free */
3510 return;
3511 }
3512
3513 _free_event(event);
3514 }
3515
3516 /*
3517 * Remove user event from the owner task.
3518 */
3519 static void perf_remove_from_owner(struct perf_event *event)
3520 {
3521 struct task_struct *owner;
3522
3523 rcu_read_lock();
3524 owner = ACCESS_ONCE(event->owner);
3525 /*
3526 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3527 * !owner it means the list deletion is complete and we can indeed
3528 * free this event, otherwise we need to serialize on
3529 * owner->perf_event_mutex.
3530 */
3531 smp_read_barrier_depends();
3532 if (owner) {
3533 /*
3534 * Since delayed_put_task_struct() also drops the last
3535 * task reference we can safely take a new reference
3536 * while holding the rcu_read_lock().
3537 */
3538 get_task_struct(owner);
3539 }
3540 rcu_read_unlock();
3541
3542 if (owner) {
3543 /*
3544 * If we're here through perf_event_exit_task() we're already
3545 * holding ctx->mutex which would be an inversion wrt. the
3546 * normal lock order.
3547 *
3548 * However we can safely take this lock because its the child
3549 * ctx->mutex.
3550 */
3551 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3552
3553 /*
3554 * We have to re-check the event->owner field, if it is cleared
3555 * we raced with perf_event_exit_task(), acquiring the mutex
3556 * ensured they're done, and we can proceed with freeing the
3557 * event.
3558 */
3559 if (event->owner)
3560 list_del_init(&event->owner_entry);
3561 mutex_unlock(&owner->perf_event_mutex);
3562 put_task_struct(owner);
3563 }
3564 }
3565
3566 /*
3567 * Called when the last reference to the file is gone.
3568 */
3569 static void put_event(struct perf_event *event)
3570 {
3571 struct perf_event_context *ctx;
3572
3573 if (!atomic_long_dec_and_test(&event->refcount))
3574 return;
3575
3576 if (!is_kernel_event(event))
3577 perf_remove_from_owner(event);
3578
3579 /*
3580 * There are two ways this annotation is useful:
3581 *
3582 * 1) there is a lock recursion from perf_event_exit_task
3583 * see the comment there.
3584 *
3585 * 2) there is a lock-inversion with mmap_sem through
3586 * perf_event_read_group(), which takes faults while
3587 * holding ctx->mutex, however this is called after
3588 * the last filedesc died, so there is no possibility
3589 * to trigger the AB-BA case.
3590 */
3591 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3592 WARN_ON_ONCE(ctx->parent_ctx);
3593 perf_remove_from_context(event, true);
3594 mutex_unlock(&ctx->mutex);
3595
3596 _free_event(event);
3597 }
3598
3599 int perf_event_release_kernel(struct perf_event *event)
3600 {
3601 put_event(event);
3602 return 0;
3603 }
3604 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3605
3606 static int perf_release(struct inode *inode, struct file *file)
3607 {
3608 put_event(file->private_data);
3609 return 0;
3610 }
3611
3612 /*
3613 * Remove all orphanes events from the context.
3614 */
3615 static void orphans_remove_work(struct work_struct *work)
3616 {
3617 struct perf_event_context *ctx;
3618 struct perf_event *event, *tmp;
3619
3620 ctx = container_of(work, struct perf_event_context,
3621 orphans_remove.work);
3622
3623 mutex_lock(&ctx->mutex);
3624 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3625 struct perf_event *parent_event = event->parent;
3626
3627 if (!is_orphaned_child(event))
3628 continue;
3629
3630 perf_remove_from_context(event, true);
3631
3632 mutex_lock(&parent_event->child_mutex);
3633 list_del_init(&event->child_list);
3634 mutex_unlock(&parent_event->child_mutex);
3635
3636 free_event(event);
3637 put_event(parent_event);
3638 }
3639
3640 raw_spin_lock_irq(&ctx->lock);
3641 ctx->orphans_remove_sched = false;
3642 raw_spin_unlock_irq(&ctx->lock);
3643 mutex_unlock(&ctx->mutex);
3644
3645 put_ctx(ctx);
3646 }
3647
3648 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3649 {
3650 struct perf_event *child;
3651 u64 total = 0;
3652
3653 *enabled = 0;
3654 *running = 0;
3655
3656 mutex_lock(&event->child_mutex);
3657 total += perf_event_read(event);
3658 *enabled += event->total_time_enabled +
3659 atomic64_read(&event->child_total_time_enabled);
3660 *running += event->total_time_running +
3661 atomic64_read(&event->child_total_time_running);
3662
3663 list_for_each_entry(child, &event->child_list, child_list) {
3664 total += perf_event_read(child);
3665 *enabled += child->total_time_enabled;
3666 *running += child->total_time_running;
3667 }
3668 mutex_unlock(&event->child_mutex);
3669
3670 return total;
3671 }
3672 EXPORT_SYMBOL_GPL(perf_event_read_value);
3673
3674 static int perf_event_read_group(struct perf_event *event,
3675 u64 read_format, char __user *buf)
3676 {
3677 struct perf_event *leader = event->group_leader, *sub;
3678 struct perf_event_context *ctx = leader->ctx;
3679 int n = 0, size = 0, ret;
3680 u64 count, enabled, running;
3681 u64 values[5];
3682
3683 lockdep_assert_held(&ctx->mutex);
3684
3685 count = perf_event_read_value(leader, &enabled, &running);
3686
3687 values[n++] = 1 + leader->nr_siblings;
3688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3689 values[n++] = enabled;
3690 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3691 values[n++] = running;
3692 values[n++] = count;
3693 if (read_format & PERF_FORMAT_ID)
3694 values[n++] = primary_event_id(leader);
3695
3696 size = n * sizeof(u64);
3697
3698 if (copy_to_user(buf, values, size))
3699 return -EFAULT;
3700
3701 ret = size;
3702
3703 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3704 n = 0;
3705
3706 values[n++] = perf_event_read_value(sub, &enabled, &running);
3707 if (read_format & PERF_FORMAT_ID)
3708 values[n++] = primary_event_id(sub);
3709
3710 size = n * sizeof(u64);
3711
3712 if (copy_to_user(buf + ret, values, size)) {
3713 return -EFAULT;
3714 }
3715
3716 ret += size;
3717 }
3718
3719 return ret;
3720 }
3721
3722 static int perf_event_read_one(struct perf_event *event,
3723 u64 read_format, char __user *buf)
3724 {
3725 u64 enabled, running;
3726 u64 values[4];
3727 int n = 0;
3728
3729 values[n++] = perf_event_read_value(event, &enabled, &running);
3730 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3731 values[n++] = enabled;
3732 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3733 values[n++] = running;
3734 if (read_format & PERF_FORMAT_ID)
3735 values[n++] = primary_event_id(event);
3736
3737 if (copy_to_user(buf, values, n * sizeof(u64)))
3738 return -EFAULT;
3739
3740 return n * sizeof(u64);
3741 }
3742
3743 static bool is_event_hup(struct perf_event *event)
3744 {
3745 bool no_children;
3746
3747 if (event->state != PERF_EVENT_STATE_EXIT)
3748 return false;
3749
3750 mutex_lock(&event->child_mutex);
3751 no_children = list_empty(&event->child_list);
3752 mutex_unlock(&event->child_mutex);
3753 return no_children;
3754 }
3755
3756 /*
3757 * Read the performance event - simple non blocking version for now
3758 */
3759 static ssize_t
3760 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3761 {
3762 u64 read_format = event->attr.read_format;
3763 int ret;
3764
3765 /*
3766 * Return end-of-file for a read on a event that is in
3767 * error state (i.e. because it was pinned but it couldn't be
3768 * scheduled on to the CPU at some point).
3769 */
3770 if (event->state == PERF_EVENT_STATE_ERROR)
3771 return 0;
3772
3773 if (count < event->read_size)
3774 return -ENOSPC;
3775
3776 WARN_ON_ONCE(event->ctx->parent_ctx);
3777 if (read_format & PERF_FORMAT_GROUP)
3778 ret = perf_event_read_group(event, read_format, buf);
3779 else
3780 ret = perf_event_read_one(event, read_format, buf);
3781
3782 return ret;
3783 }
3784
3785 static ssize_t
3786 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3787 {
3788 struct perf_event *event = file->private_data;
3789 struct perf_event_context *ctx;
3790 int ret;
3791
3792 ctx = perf_event_ctx_lock(event);
3793 ret = perf_read_hw(event, buf, count);
3794 perf_event_ctx_unlock(event, ctx);
3795
3796 return ret;
3797 }
3798
3799 static unsigned int perf_poll(struct file *file, poll_table *wait)
3800 {
3801 struct perf_event *event = file->private_data;
3802 struct ring_buffer *rb;
3803 unsigned int events = POLLHUP;
3804
3805 poll_wait(file, &event->waitq, wait);
3806
3807 if (is_event_hup(event))
3808 return events;
3809
3810 /*
3811 * Pin the event->rb by taking event->mmap_mutex; otherwise
3812 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3813 */
3814 mutex_lock(&event->mmap_mutex);
3815 rb = event->rb;
3816 if (rb)
3817 events = atomic_xchg(&rb->poll, 0);
3818 mutex_unlock(&event->mmap_mutex);
3819 return events;
3820 }
3821
3822 static void _perf_event_reset(struct perf_event *event)
3823 {
3824 (void)perf_event_read(event);
3825 local64_set(&event->count, 0);
3826 perf_event_update_userpage(event);
3827 }
3828
3829 /*
3830 * Holding the top-level event's child_mutex means that any
3831 * descendant process that has inherited this event will block
3832 * in sync_child_event if it goes to exit, thus satisfying the
3833 * task existence requirements of perf_event_enable/disable.
3834 */
3835 static void perf_event_for_each_child(struct perf_event *event,
3836 void (*func)(struct perf_event *))
3837 {
3838 struct perf_event *child;
3839
3840 WARN_ON_ONCE(event->ctx->parent_ctx);
3841
3842 mutex_lock(&event->child_mutex);
3843 func(event);
3844 list_for_each_entry(child, &event->child_list, child_list)
3845 func(child);
3846 mutex_unlock(&event->child_mutex);
3847 }
3848
3849 static void perf_event_for_each(struct perf_event *event,
3850 void (*func)(struct perf_event *))
3851 {
3852 struct perf_event_context *ctx = event->ctx;
3853 struct perf_event *sibling;
3854
3855 lockdep_assert_held(&ctx->mutex);
3856
3857 event = event->group_leader;
3858
3859 perf_event_for_each_child(event, func);
3860 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3861 perf_event_for_each_child(sibling, func);
3862 }
3863
3864 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3865 {
3866 struct perf_event_context *ctx = event->ctx;
3867 int ret = 0, active;
3868 u64 value;
3869
3870 if (!is_sampling_event(event))
3871 return -EINVAL;
3872
3873 if (copy_from_user(&value, arg, sizeof(value)))
3874 return -EFAULT;
3875
3876 if (!value)
3877 return -EINVAL;
3878
3879 raw_spin_lock_irq(&ctx->lock);
3880 if (event->attr.freq) {
3881 if (value > sysctl_perf_event_sample_rate) {
3882 ret = -EINVAL;
3883 goto unlock;
3884 }
3885
3886 event->attr.sample_freq = value;
3887 } else {
3888 event->attr.sample_period = value;
3889 event->hw.sample_period = value;
3890 }
3891
3892 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3893 if (active) {
3894 perf_pmu_disable(ctx->pmu);
3895 event->pmu->stop(event, PERF_EF_UPDATE);
3896 }
3897
3898 local64_set(&event->hw.period_left, 0);
3899
3900 if (active) {
3901 event->pmu->start(event, PERF_EF_RELOAD);
3902 perf_pmu_enable(ctx->pmu);
3903 }
3904
3905 unlock:
3906 raw_spin_unlock_irq(&ctx->lock);
3907
3908 return ret;
3909 }
3910
3911 static const struct file_operations perf_fops;
3912
3913 static inline int perf_fget_light(int fd, struct fd *p)
3914 {
3915 struct fd f = fdget(fd);
3916 if (!f.file)
3917 return -EBADF;
3918
3919 if (f.file->f_op != &perf_fops) {
3920 fdput(f);
3921 return -EBADF;
3922 }
3923 *p = f;
3924 return 0;
3925 }
3926
3927 static int perf_event_set_output(struct perf_event *event,
3928 struct perf_event *output_event);
3929 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3930
3931 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3932 {
3933 void (*func)(struct perf_event *);
3934 u32 flags = arg;
3935
3936 switch (cmd) {
3937 case PERF_EVENT_IOC_ENABLE:
3938 func = _perf_event_enable;
3939 break;
3940 case PERF_EVENT_IOC_DISABLE:
3941 func = _perf_event_disable;
3942 break;
3943 case PERF_EVENT_IOC_RESET:
3944 func = _perf_event_reset;
3945 break;
3946
3947 case PERF_EVENT_IOC_REFRESH:
3948 return _perf_event_refresh(event, arg);
3949
3950 case PERF_EVENT_IOC_PERIOD:
3951 return perf_event_period(event, (u64 __user *)arg);
3952
3953 case PERF_EVENT_IOC_ID:
3954 {
3955 u64 id = primary_event_id(event);
3956
3957 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3958 return -EFAULT;
3959 return 0;
3960 }
3961
3962 case PERF_EVENT_IOC_SET_OUTPUT:
3963 {
3964 int ret;
3965 if (arg != -1) {
3966 struct perf_event *output_event;
3967 struct fd output;
3968 ret = perf_fget_light(arg, &output);
3969 if (ret)
3970 return ret;
3971 output_event = output.file->private_data;
3972 ret = perf_event_set_output(event, output_event);
3973 fdput(output);
3974 } else {
3975 ret = perf_event_set_output(event, NULL);
3976 }
3977 return ret;
3978 }
3979
3980 case PERF_EVENT_IOC_SET_FILTER:
3981 return perf_event_set_filter(event, (void __user *)arg);
3982
3983 default:
3984 return -ENOTTY;
3985 }
3986
3987 if (flags & PERF_IOC_FLAG_GROUP)
3988 perf_event_for_each(event, func);
3989 else
3990 perf_event_for_each_child(event, func);
3991
3992 return 0;
3993 }
3994
3995 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3996 {
3997 struct perf_event *event = file->private_data;
3998 struct perf_event_context *ctx;
3999 long ret;
4000
4001 ctx = perf_event_ctx_lock(event);
4002 ret = _perf_ioctl(event, cmd, arg);
4003 perf_event_ctx_unlock(event, ctx);
4004
4005 return ret;
4006 }
4007
4008 #ifdef CONFIG_COMPAT
4009 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4010 unsigned long arg)
4011 {
4012 switch (_IOC_NR(cmd)) {
4013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4014 case _IOC_NR(PERF_EVENT_IOC_ID):
4015 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4016 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4017 cmd &= ~IOCSIZE_MASK;
4018 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4019 }
4020 break;
4021 }
4022 return perf_ioctl(file, cmd, arg);
4023 }
4024 #else
4025 # define perf_compat_ioctl NULL
4026 #endif
4027
4028 int perf_event_task_enable(void)
4029 {
4030 struct perf_event_context *ctx;
4031 struct perf_event *event;
4032
4033 mutex_lock(&current->perf_event_mutex);
4034 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4035 ctx = perf_event_ctx_lock(event);
4036 perf_event_for_each_child(event, _perf_event_enable);
4037 perf_event_ctx_unlock(event, ctx);
4038 }
4039 mutex_unlock(&current->perf_event_mutex);
4040
4041 return 0;
4042 }
4043
4044 int perf_event_task_disable(void)
4045 {
4046 struct perf_event_context *ctx;
4047 struct perf_event *event;
4048
4049 mutex_lock(&current->perf_event_mutex);
4050 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4051 ctx = perf_event_ctx_lock(event);
4052 perf_event_for_each_child(event, _perf_event_disable);
4053 perf_event_ctx_unlock(event, ctx);
4054 }
4055 mutex_unlock(&current->perf_event_mutex);
4056
4057 return 0;
4058 }
4059
4060 static int perf_event_index(struct perf_event *event)
4061 {
4062 if (event->hw.state & PERF_HES_STOPPED)
4063 return 0;
4064
4065 if (event->state != PERF_EVENT_STATE_ACTIVE)
4066 return 0;
4067
4068 return event->pmu->event_idx(event);
4069 }
4070
4071 static void calc_timer_values(struct perf_event *event,
4072 u64 *now,
4073 u64 *enabled,
4074 u64 *running)
4075 {
4076 u64 ctx_time;
4077
4078 *now = perf_clock();
4079 ctx_time = event->shadow_ctx_time + *now;
4080 *enabled = ctx_time - event->tstamp_enabled;
4081 *running = ctx_time - event->tstamp_running;
4082 }
4083
4084 static void perf_event_init_userpage(struct perf_event *event)
4085 {
4086 struct perf_event_mmap_page *userpg;
4087 struct ring_buffer *rb;
4088
4089 rcu_read_lock();
4090 rb = rcu_dereference(event->rb);
4091 if (!rb)
4092 goto unlock;
4093
4094 userpg = rb->user_page;
4095
4096 /* Allow new userspace to detect that bit 0 is deprecated */
4097 userpg->cap_bit0_is_deprecated = 1;
4098 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4099
4100 unlock:
4101 rcu_read_unlock();
4102 }
4103
4104 void __weak arch_perf_update_userpage(
4105 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4106 {
4107 }
4108
4109 /*
4110 * Callers need to ensure there can be no nesting of this function, otherwise
4111 * the seqlock logic goes bad. We can not serialize this because the arch
4112 * code calls this from NMI context.
4113 */
4114 void perf_event_update_userpage(struct perf_event *event)
4115 {
4116 struct perf_event_mmap_page *userpg;
4117 struct ring_buffer *rb;
4118 u64 enabled, running, now;
4119
4120 rcu_read_lock();
4121 rb = rcu_dereference(event->rb);
4122 if (!rb)
4123 goto unlock;
4124
4125 /*
4126 * compute total_time_enabled, total_time_running
4127 * based on snapshot values taken when the event
4128 * was last scheduled in.
4129 *
4130 * we cannot simply called update_context_time()
4131 * because of locking issue as we can be called in
4132 * NMI context
4133 */
4134 calc_timer_values(event, &now, &enabled, &running);
4135
4136 userpg = rb->user_page;
4137 /*
4138 * Disable preemption so as to not let the corresponding user-space
4139 * spin too long if we get preempted.
4140 */
4141 preempt_disable();
4142 ++userpg->lock;
4143 barrier();
4144 userpg->index = perf_event_index(event);
4145 userpg->offset = perf_event_count(event);
4146 if (userpg->index)
4147 userpg->offset -= local64_read(&event->hw.prev_count);
4148
4149 userpg->time_enabled = enabled +
4150 atomic64_read(&event->child_total_time_enabled);
4151
4152 userpg->time_running = running +
4153 atomic64_read(&event->child_total_time_running);
4154
4155 arch_perf_update_userpage(event, userpg, now);
4156
4157 barrier();
4158 ++userpg->lock;
4159 preempt_enable();
4160 unlock:
4161 rcu_read_unlock();
4162 }
4163
4164 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4165 {
4166 struct perf_event *event = vma->vm_file->private_data;
4167 struct ring_buffer *rb;
4168 int ret = VM_FAULT_SIGBUS;
4169
4170 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4171 if (vmf->pgoff == 0)
4172 ret = 0;
4173 return ret;
4174 }
4175
4176 rcu_read_lock();
4177 rb = rcu_dereference(event->rb);
4178 if (!rb)
4179 goto unlock;
4180
4181 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4182 goto unlock;
4183
4184 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4185 if (!vmf->page)
4186 goto unlock;
4187
4188 get_page(vmf->page);
4189 vmf->page->mapping = vma->vm_file->f_mapping;
4190 vmf->page->index = vmf->pgoff;
4191
4192 ret = 0;
4193 unlock:
4194 rcu_read_unlock();
4195
4196 return ret;
4197 }
4198
4199 static void ring_buffer_attach(struct perf_event *event,
4200 struct ring_buffer *rb)
4201 {
4202 struct ring_buffer *old_rb = NULL;
4203 unsigned long flags;
4204
4205 if (event->rb) {
4206 /*
4207 * Should be impossible, we set this when removing
4208 * event->rb_entry and wait/clear when adding event->rb_entry.
4209 */
4210 WARN_ON_ONCE(event->rcu_pending);
4211
4212 old_rb = event->rb;
4213 event->rcu_batches = get_state_synchronize_rcu();
4214 event->rcu_pending = 1;
4215
4216 spin_lock_irqsave(&old_rb->event_lock, flags);
4217 list_del_rcu(&event->rb_entry);
4218 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4219 }
4220
4221 if (event->rcu_pending && rb) {
4222 cond_synchronize_rcu(event->rcu_batches);
4223 event->rcu_pending = 0;
4224 }
4225
4226 if (rb) {
4227 spin_lock_irqsave(&rb->event_lock, flags);
4228 list_add_rcu(&event->rb_entry, &rb->event_list);
4229 spin_unlock_irqrestore(&rb->event_lock, flags);
4230 }
4231
4232 rcu_assign_pointer(event->rb, rb);
4233
4234 if (old_rb) {
4235 ring_buffer_put(old_rb);
4236 /*
4237 * Since we detached before setting the new rb, so that we
4238 * could attach the new rb, we could have missed a wakeup.
4239 * Provide it now.
4240 */
4241 wake_up_all(&event->waitq);
4242 }
4243 }
4244
4245 static void ring_buffer_wakeup(struct perf_event *event)
4246 {
4247 struct ring_buffer *rb;
4248
4249 rcu_read_lock();
4250 rb = rcu_dereference(event->rb);
4251 if (rb) {
4252 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4253 wake_up_all(&event->waitq);
4254 }
4255 rcu_read_unlock();
4256 }
4257
4258 static void rb_free_rcu(struct rcu_head *rcu_head)
4259 {
4260 struct ring_buffer *rb;
4261
4262 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4263 rb_free(rb);
4264 }
4265
4266 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4267 {
4268 struct ring_buffer *rb;
4269
4270 rcu_read_lock();
4271 rb = rcu_dereference(event->rb);
4272 if (rb) {
4273 if (!atomic_inc_not_zero(&rb->refcount))
4274 rb = NULL;
4275 }
4276 rcu_read_unlock();
4277
4278 return rb;
4279 }
4280
4281 static void ring_buffer_put(struct ring_buffer *rb)
4282 {
4283 if (!atomic_dec_and_test(&rb->refcount))
4284 return;
4285
4286 WARN_ON_ONCE(!list_empty(&rb->event_list));
4287
4288 call_rcu(&rb->rcu_head, rb_free_rcu);
4289 }
4290
4291 static void perf_mmap_open(struct vm_area_struct *vma)
4292 {
4293 struct perf_event *event = vma->vm_file->private_data;
4294
4295 atomic_inc(&event->mmap_count);
4296 atomic_inc(&event->rb->mmap_count);
4297
4298 if (event->pmu->event_mapped)
4299 event->pmu->event_mapped(event);
4300 }
4301
4302 /*
4303 * A buffer can be mmap()ed multiple times; either directly through the same
4304 * event, or through other events by use of perf_event_set_output().
4305 *
4306 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4307 * the buffer here, where we still have a VM context. This means we need
4308 * to detach all events redirecting to us.
4309 */
4310 static void perf_mmap_close(struct vm_area_struct *vma)
4311 {
4312 struct perf_event *event = vma->vm_file->private_data;
4313
4314 struct ring_buffer *rb = ring_buffer_get(event);
4315 struct user_struct *mmap_user = rb->mmap_user;
4316 int mmap_locked = rb->mmap_locked;
4317 unsigned long size = perf_data_size(rb);
4318
4319 if (event->pmu->event_unmapped)
4320 event->pmu->event_unmapped(event);
4321
4322 atomic_dec(&rb->mmap_count);
4323
4324 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4325 goto out_put;
4326
4327 ring_buffer_attach(event, NULL);
4328 mutex_unlock(&event->mmap_mutex);
4329
4330 /* If there's still other mmap()s of this buffer, we're done. */
4331 if (atomic_read(&rb->mmap_count))
4332 goto out_put;
4333
4334 /*
4335 * No other mmap()s, detach from all other events that might redirect
4336 * into the now unreachable buffer. Somewhat complicated by the
4337 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4338 */
4339 again:
4340 rcu_read_lock();
4341 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4342 if (!atomic_long_inc_not_zero(&event->refcount)) {
4343 /*
4344 * This event is en-route to free_event() which will
4345 * detach it and remove it from the list.
4346 */
4347 continue;
4348 }
4349 rcu_read_unlock();
4350
4351 mutex_lock(&event->mmap_mutex);
4352 /*
4353 * Check we didn't race with perf_event_set_output() which can
4354 * swizzle the rb from under us while we were waiting to
4355 * acquire mmap_mutex.
4356 *
4357 * If we find a different rb; ignore this event, a next
4358 * iteration will no longer find it on the list. We have to
4359 * still restart the iteration to make sure we're not now
4360 * iterating the wrong list.
4361 */
4362 if (event->rb == rb)
4363 ring_buffer_attach(event, NULL);
4364
4365 mutex_unlock(&event->mmap_mutex);
4366 put_event(event);
4367
4368 /*
4369 * Restart the iteration; either we're on the wrong list or
4370 * destroyed its integrity by doing a deletion.
4371 */
4372 goto again;
4373 }
4374 rcu_read_unlock();
4375
4376 /*
4377 * It could be there's still a few 0-ref events on the list; they'll
4378 * get cleaned up by free_event() -- they'll also still have their
4379 * ref on the rb and will free it whenever they are done with it.
4380 *
4381 * Aside from that, this buffer is 'fully' detached and unmapped,
4382 * undo the VM accounting.
4383 */
4384
4385 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4386 vma->vm_mm->pinned_vm -= mmap_locked;
4387 free_uid(mmap_user);
4388
4389 out_put:
4390 ring_buffer_put(rb); /* could be last */
4391 }
4392
4393 static const struct vm_operations_struct perf_mmap_vmops = {
4394 .open = perf_mmap_open,
4395 .close = perf_mmap_close,
4396 .fault = perf_mmap_fault,
4397 .page_mkwrite = perf_mmap_fault,
4398 };
4399
4400 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4401 {
4402 struct perf_event *event = file->private_data;
4403 unsigned long user_locked, user_lock_limit;
4404 struct user_struct *user = current_user();
4405 unsigned long locked, lock_limit;
4406 struct ring_buffer *rb;
4407 unsigned long vma_size;
4408 unsigned long nr_pages;
4409 long user_extra, extra;
4410 int ret = 0, flags = 0;
4411
4412 /*
4413 * Don't allow mmap() of inherited per-task counters. This would
4414 * create a performance issue due to all children writing to the
4415 * same rb.
4416 */
4417 if (event->cpu == -1 && event->attr.inherit)
4418 return -EINVAL;
4419
4420 if (!(vma->vm_flags & VM_SHARED))
4421 return -EINVAL;
4422
4423 vma_size = vma->vm_end - vma->vm_start;
4424 nr_pages = (vma_size / PAGE_SIZE) - 1;
4425
4426 /*
4427 * If we have rb pages ensure they're a power-of-two number, so we
4428 * can do bitmasks instead of modulo.
4429 */
4430 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4431 return -EINVAL;
4432
4433 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4434 return -EINVAL;
4435
4436 if (vma->vm_pgoff != 0)
4437 return -EINVAL;
4438
4439 WARN_ON_ONCE(event->ctx->parent_ctx);
4440 again:
4441 mutex_lock(&event->mmap_mutex);
4442 if (event->rb) {
4443 if (event->rb->nr_pages != nr_pages) {
4444 ret = -EINVAL;
4445 goto unlock;
4446 }
4447
4448 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4449 /*
4450 * Raced against perf_mmap_close() through
4451 * perf_event_set_output(). Try again, hope for better
4452 * luck.
4453 */
4454 mutex_unlock(&event->mmap_mutex);
4455 goto again;
4456 }
4457
4458 goto unlock;
4459 }
4460
4461 user_extra = nr_pages + 1;
4462 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4463
4464 /*
4465 * Increase the limit linearly with more CPUs:
4466 */
4467 user_lock_limit *= num_online_cpus();
4468
4469 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4470
4471 extra = 0;
4472 if (user_locked > user_lock_limit)
4473 extra = user_locked - user_lock_limit;
4474
4475 lock_limit = rlimit(RLIMIT_MEMLOCK);
4476 lock_limit >>= PAGE_SHIFT;
4477 locked = vma->vm_mm->pinned_vm + extra;
4478
4479 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4480 !capable(CAP_IPC_LOCK)) {
4481 ret = -EPERM;
4482 goto unlock;
4483 }
4484
4485 WARN_ON(event->rb);
4486
4487 if (vma->vm_flags & VM_WRITE)
4488 flags |= RING_BUFFER_WRITABLE;
4489
4490 rb = rb_alloc(nr_pages,
4491 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4492 event->cpu, flags);
4493
4494 if (!rb) {
4495 ret = -ENOMEM;
4496 goto unlock;
4497 }
4498
4499 atomic_set(&rb->mmap_count, 1);
4500 rb->mmap_locked = extra;
4501 rb->mmap_user = get_current_user();
4502
4503 atomic_long_add(user_extra, &user->locked_vm);
4504 vma->vm_mm->pinned_vm += extra;
4505
4506 ring_buffer_attach(event, rb);
4507
4508 perf_event_init_userpage(event);
4509 perf_event_update_userpage(event);
4510
4511 unlock:
4512 if (!ret)
4513 atomic_inc(&event->mmap_count);
4514 mutex_unlock(&event->mmap_mutex);
4515
4516 /*
4517 * Since pinned accounting is per vm we cannot allow fork() to copy our
4518 * vma.
4519 */
4520 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4521 vma->vm_ops = &perf_mmap_vmops;
4522
4523 if (event->pmu->event_mapped)
4524 event->pmu->event_mapped(event);
4525
4526 return ret;
4527 }
4528
4529 static int perf_fasync(int fd, struct file *filp, int on)
4530 {
4531 struct inode *inode = file_inode(filp);
4532 struct perf_event *event = filp->private_data;
4533 int retval;
4534
4535 mutex_lock(&inode->i_mutex);
4536 retval = fasync_helper(fd, filp, on, &event->fasync);
4537 mutex_unlock(&inode->i_mutex);
4538
4539 if (retval < 0)
4540 return retval;
4541
4542 return 0;
4543 }
4544
4545 static const struct file_operations perf_fops = {
4546 .llseek = no_llseek,
4547 .release = perf_release,
4548 .read = perf_read,
4549 .poll = perf_poll,
4550 .unlocked_ioctl = perf_ioctl,
4551 .compat_ioctl = perf_compat_ioctl,
4552 .mmap = perf_mmap,
4553 .fasync = perf_fasync,
4554 };
4555
4556 /*
4557 * Perf event wakeup
4558 *
4559 * If there's data, ensure we set the poll() state and publish everything
4560 * to user-space before waking everybody up.
4561 */
4562
4563 void perf_event_wakeup(struct perf_event *event)
4564 {
4565 ring_buffer_wakeup(event);
4566
4567 if (event->pending_kill) {
4568 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4569 event->pending_kill = 0;
4570 }
4571 }
4572
4573 static void perf_pending_event(struct irq_work *entry)
4574 {
4575 struct perf_event *event = container_of(entry,
4576 struct perf_event, pending);
4577
4578 if (event->pending_disable) {
4579 event->pending_disable = 0;
4580 __perf_event_disable(event);
4581 }
4582
4583 if (event->pending_wakeup) {
4584 event->pending_wakeup = 0;
4585 perf_event_wakeup(event);
4586 }
4587 }
4588
4589 /*
4590 * We assume there is only KVM supporting the callbacks.
4591 * Later on, we might change it to a list if there is
4592 * another virtualization implementation supporting the callbacks.
4593 */
4594 struct perf_guest_info_callbacks *perf_guest_cbs;
4595
4596 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4597 {
4598 perf_guest_cbs = cbs;
4599 return 0;
4600 }
4601 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4602
4603 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4604 {
4605 perf_guest_cbs = NULL;
4606 return 0;
4607 }
4608 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4609
4610 static void
4611 perf_output_sample_regs(struct perf_output_handle *handle,
4612 struct pt_regs *regs, u64 mask)
4613 {
4614 int bit;
4615
4616 for_each_set_bit(bit, (const unsigned long *) &mask,
4617 sizeof(mask) * BITS_PER_BYTE) {
4618 u64 val;
4619
4620 val = perf_reg_value(regs, bit);
4621 perf_output_put(handle, val);
4622 }
4623 }
4624
4625 static void perf_sample_regs_user(struct perf_regs *regs_user,
4626 struct pt_regs *regs,
4627 struct pt_regs *regs_user_copy)
4628 {
4629 if (user_mode(regs)) {
4630 regs_user->abi = perf_reg_abi(current);
4631 regs_user->regs = regs;
4632 } else if (current->mm) {
4633 perf_get_regs_user(regs_user, regs, regs_user_copy);
4634 } else {
4635 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4636 regs_user->regs = NULL;
4637 }
4638 }
4639
4640 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4641 struct pt_regs *regs)
4642 {
4643 regs_intr->regs = regs;
4644 regs_intr->abi = perf_reg_abi(current);
4645 }
4646
4647
4648 /*
4649 * Get remaining task size from user stack pointer.
4650 *
4651 * It'd be better to take stack vma map and limit this more
4652 * precisly, but there's no way to get it safely under interrupt,
4653 * so using TASK_SIZE as limit.
4654 */
4655 static u64 perf_ustack_task_size(struct pt_regs *regs)
4656 {
4657 unsigned long addr = perf_user_stack_pointer(regs);
4658
4659 if (!addr || addr >= TASK_SIZE)
4660 return 0;
4661
4662 return TASK_SIZE - addr;
4663 }
4664
4665 static u16
4666 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4667 struct pt_regs *regs)
4668 {
4669 u64 task_size;
4670
4671 /* No regs, no stack pointer, no dump. */
4672 if (!regs)
4673 return 0;
4674
4675 /*
4676 * Check if we fit in with the requested stack size into the:
4677 * - TASK_SIZE
4678 * If we don't, we limit the size to the TASK_SIZE.
4679 *
4680 * - remaining sample size
4681 * If we don't, we customize the stack size to
4682 * fit in to the remaining sample size.
4683 */
4684
4685 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4686 stack_size = min(stack_size, (u16) task_size);
4687
4688 /* Current header size plus static size and dynamic size. */
4689 header_size += 2 * sizeof(u64);
4690
4691 /* Do we fit in with the current stack dump size? */
4692 if ((u16) (header_size + stack_size) < header_size) {
4693 /*
4694 * If we overflow the maximum size for the sample,
4695 * we customize the stack dump size to fit in.
4696 */
4697 stack_size = USHRT_MAX - header_size - sizeof(u64);
4698 stack_size = round_up(stack_size, sizeof(u64));
4699 }
4700
4701 return stack_size;
4702 }
4703
4704 static void
4705 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4706 struct pt_regs *regs)
4707 {
4708 /* Case of a kernel thread, nothing to dump */
4709 if (!regs) {
4710 u64 size = 0;
4711 perf_output_put(handle, size);
4712 } else {
4713 unsigned long sp;
4714 unsigned int rem;
4715 u64 dyn_size;
4716
4717 /*
4718 * We dump:
4719 * static size
4720 * - the size requested by user or the best one we can fit
4721 * in to the sample max size
4722 * data
4723 * - user stack dump data
4724 * dynamic size
4725 * - the actual dumped size
4726 */
4727
4728 /* Static size. */
4729 perf_output_put(handle, dump_size);
4730
4731 /* Data. */
4732 sp = perf_user_stack_pointer(regs);
4733 rem = __output_copy_user(handle, (void *) sp, dump_size);
4734 dyn_size = dump_size - rem;
4735
4736 perf_output_skip(handle, rem);
4737
4738 /* Dynamic size. */
4739 perf_output_put(handle, dyn_size);
4740 }
4741 }
4742
4743 static void __perf_event_header__init_id(struct perf_event_header *header,
4744 struct perf_sample_data *data,
4745 struct perf_event *event)
4746 {
4747 u64 sample_type = event->attr.sample_type;
4748
4749 data->type = sample_type;
4750 header->size += event->id_header_size;
4751
4752 if (sample_type & PERF_SAMPLE_TID) {
4753 /* namespace issues */
4754 data->tid_entry.pid = perf_event_pid(event, current);
4755 data->tid_entry.tid = perf_event_tid(event, current);
4756 }
4757
4758 if (sample_type & PERF_SAMPLE_TIME)
4759 data->time = perf_clock();
4760
4761 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4762 data->id = primary_event_id(event);
4763
4764 if (sample_type & PERF_SAMPLE_STREAM_ID)
4765 data->stream_id = event->id;
4766
4767 if (sample_type & PERF_SAMPLE_CPU) {
4768 data->cpu_entry.cpu = raw_smp_processor_id();
4769 data->cpu_entry.reserved = 0;
4770 }
4771 }
4772
4773 void perf_event_header__init_id(struct perf_event_header *header,
4774 struct perf_sample_data *data,
4775 struct perf_event *event)
4776 {
4777 if (event->attr.sample_id_all)
4778 __perf_event_header__init_id(header, data, event);
4779 }
4780
4781 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4782 struct perf_sample_data *data)
4783 {
4784 u64 sample_type = data->type;
4785
4786 if (sample_type & PERF_SAMPLE_TID)
4787 perf_output_put(handle, data->tid_entry);
4788
4789 if (sample_type & PERF_SAMPLE_TIME)
4790 perf_output_put(handle, data->time);
4791
4792 if (sample_type & PERF_SAMPLE_ID)
4793 perf_output_put(handle, data->id);
4794
4795 if (sample_type & PERF_SAMPLE_STREAM_ID)
4796 perf_output_put(handle, data->stream_id);
4797
4798 if (sample_type & PERF_SAMPLE_CPU)
4799 perf_output_put(handle, data->cpu_entry);
4800
4801 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4802 perf_output_put(handle, data->id);
4803 }
4804
4805 void perf_event__output_id_sample(struct perf_event *event,
4806 struct perf_output_handle *handle,
4807 struct perf_sample_data *sample)
4808 {
4809 if (event->attr.sample_id_all)
4810 __perf_event__output_id_sample(handle, sample);
4811 }
4812
4813 static void perf_output_read_one(struct perf_output_handle *handle,
4814 struct perf_event *event,
4815 u64 enabled, u64 running)
4816 {
4817 u64 read_format = event->attr.read_format;
4818 u64 values[4];
4819 int n = 0;
4820
4821 values[n++] = perf_event_count(event);
4822 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4823 values[n++] = enabled +
4824 atomic64_read(&event->child_total_time_enabled);
4825 }
4826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4827 values[n++] = running +
4828 atomic64_read(&event->child_total_time_running);
4829 }
4830 if (read_format & PERF_FORMAT_ID)
4831 values[n++] = primary_event_id(event);
4832
4833 __output_copy(handle, values, n * sizeof(u64));
4834 }
4835
4836 /*
4837 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4838 */
4839 static void perf_output_read_group(struct perf_output_handle *handle,
4840 struct perf_event *event,
4841 u64 enabled, u64 running)
4842 {
4843 struct perf_event *leader = event->group_leader, *sub;
4844 u64 read_format = event->attr.read_format;
4845 u64 values[5];
4846 int n = 0;
4847
4848 values[n++] = 1 + leader->nr_siblings;
4849
4850 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4851 values[n++] = enabled;
4852
4853 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4854 values[n++] = running;
4855
4856 if (leader != event)
4857 leader->pmu->read(leader);
4858
4859 values[n++] = perf_event_count(leader);
4860 if (read_format & PERF_FORMAT_ID)
4861 values[n++] = primary_event_id(leader);
4862
4863 __output_copy(handle, values, n * sizeof(u64));
4864
4865 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4866 n = 0;
4867
4868 if ((sub != event) &&
4869 (sub->state == PERF_EVENT_STATE_ACTIVE))
4870 sub->pmu->read(sub);
4871
4872 values[n++] = perf_event_count(sub);
4873 if (read_format & PERF_FORMAT_ID)
4874 values[n++] = primary_event_id(sub);
4875
4876 __output_copy(handle, values, n * sizeof(u64));
4877 }
4878 }
4879
4880 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4881 PERF_FORMAT_TOTAL_TIME_RUNNING)
4882
4883 static void perf_output_read(struct perf_output_handle *handle,
4884 struct perf_event *event)
4885 {
4886 u64 enabled = 0, running = 0, now;
4887 u64 read_format = event->attr.read_format;
4888
4889 /*
4890 * compute total_time_enabled, total_time_running
4891 * based on snapshot values taken when the event
4892 * was last scheduled in.
4893 *
4894 * we cannot simply called update_context_time()
4895 * because of locking issue as we are called in
4896 * NMI context
4897 */
4898 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4899 calc_timer_values(event, &now, &enabled, &running);
4900
4901 if (event->attr.read_format & PERF_FORMAT_GROUP)
4902 perf_output_read_group(handle, event, enabled, running);
4903 else
4904 perf_output_read_one(handle, event, enabled, running);
4905 }
4906
4907 void perf_output_sample(struct perf_output_handle *handle,
4908 struct perf_event_header *header,
4909 struct perf_sample_data *data,
4910 struct perf_event *event)
4911 {
4912 u64 sample_type = data->type;
4913
4914 perf_output_put(handle, *header);
4915
4916 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4917 perf_output_put(handle, data->id);
4918
4919 if (sample_type & PERF_SAMPLE_IP)
4920 perf_output_put(handle, data->ip);
4921
4922 if (sample_type & PERF_SAMPLE_TID)
4923 perf_output_put(handle, data->tid_entry);
4924
4925 if (sample_type & PERF_SAMPLE_TIME)
4926 perf_output_put(handle, data->time);
4927
4928 if (sample_type & PERF_SAMPLE_ADDR)
4929 perf_output_put(handle, data->addr);
4930
4931 if (sample_type & PERF_SAMPLE_ID)
4932 perf_output_put(handle, data->id);
4933
4934 if (sample_type & PERF_SAMPLE_STREAM_ID)
4935 perf_output_put(handle, data->stream_id);
4936
4937 if (sample_type & PERF_SAMPLE_CPU)
4938 perf_output_put(handle, data->cpu_entry);
4939
4940 if (sample_type & PERF_SAMPLE_PERIOD)
4941 perf_output_put(handle, data->period);
4942
4943 if (sample_type & PERF_SAMPLE_READ)
4944 perf_output_read(handle, event);
4945
4946 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4947 if (data->callchain) {
4948 int size = 1;
4949
4950 if (data->callchain)
4951 size += data->callchain->nr;
4952
4953 size *= sizeof(u64);
4954
4955 __output_copy(handle, data->callchain, size);
4956 } else {
4957 u64 nr = 0;
4958 perf_output_put(handle, nr);
4959 }
4960 }
4961
4962 if (sample_type & PERF_SAMPLE_RAW) {
4963 if (data->raw) {
4964 perf_output_put(handle, data->raw->size);
4965 __output_copy(handle, data->raw->data,
4966 data->raw->size);
4967 } else {
4968 struct {
4969 u32 size;
4970 u32 data;
4971 } raw = {
4972 .size = sizeof(u32),
4973 .data = 0,
4974 };
4975 perf_output_put(handle, raw);
4976 }
4977 }
4978
4979 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4980 if (data->br_stack) {
4981 size_t size;
4982
4983 size = data->br_stack->nr
4984 * sizeof(struct perf_branch_entry);
4985
4986 perf_output_put(handle, data->br_stack->nr);
4987 perf_output_copy(handle, data->br_stack->entries, size);
4988 } else {
4989 /*
4990 * we always store at least the value of nr
4991 */
4992 u64 nr = 0;
4993 perf_output_put(handle, nr);
4994 }
4995 }
4996
4997 if (sample_type & PERF_SAMPLE_REGS_USER) {
4998 u64 abi = data->regs_user.abi;
4999
5000 /*
5001 * If there are no regs to dump, notice it through
5002 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5003 */
5004 perf_output_put(handle, abi);
5005
5006 if (abi) {
5007 u64 mask = event->attr.sample_regs_user;
5008 perf_output_sample_regs(handle,
5009 data->regs_user.regs,
5010 mask);
5011 }
5012 }
5013
5014 if (sample_type & PERF_SAMPLE_STACK_USER) {
5015 perf_output_sample_ustack(handle,
5016 data->stack_user_size,
5017 data->regs_user.regs);
5018 }
5019
5020 if (sample_type & PERF_SAMPLE_WEIGHT)
5021 perf_output_put(handle, data->weight);
5022
5023 if (sample_type & PERF_SAMPLE_DATA_SRC)
5024 perf_output_put(handle, data->data_src.val);
5025
5026 if (sample_type & PERF_SAMPLE_TRANSACTION)
5027 perf_output_put(handle, data->txn);
5028
5029 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5030 u64 abi = data->regs_intr.abi;
5031 /*
5032 * If there are no regs to dump, notice it through
5033 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5034 */
5035 perf_output_put(handle, abi);
5036
5037 if (abi) {
5038 u64 mask = event->attr.sample_regs_intr;
5039
5040 perf_output_sample_regs(handle,
5041 data->regs_intr.regs,
5042 mask);
5043 }
5044 }
5045
5046 if (!event->attr.watermark) {
5047 int wakeup_events = event->attr.wakeup_events;
5048
5049 if (wakeup_events) {
5050 struct ring_buffer *rb = handle->rb;
5051 int events = local_inc_return(&rb->events);
5052
5053 if (events >= wakeup_events) {
5054 local_sub(wakeup_events, &rb->events);
5055 local_inc(&rb->wakeup);
5056 }
5057 }
5058 }
5059 }
5060
5061 void perf_prepare_sample(struct perf_event_header *header,
5062 struct perf_sample_data *data,
5063 struct perf_event *event,
5064 struct pt_regs *regs)
5065 {
5066 u64 sample_type = event->attr.sample_type;
5067
5068 header->type = PERF_RECORD_SAMPLE;
5069 header->size = sizeof(*header) + event->header_size;
5070
5071 header->misc = 0;
5072 header->misc |= perf_misc_flags(regs);
5073
5074 __perf_event_header__init_id(header, data, event);
5075
5076 if (sample_type & PERF_SAMPLE_IP)
5077 data->ip = perf_instruction_pointer(regs);
5078
5079 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5080 int size = 1;
5081
5082 data->callchain = perf_callchain(event, regs);
5083
5084 if (data->callchain)
5085 size += data->callchain->nr;
5086
5087 header->size += size * sizeof(u64);
5088 }
5089
5090 if (sample_type & PERF_SAMPLE_RAW) {
5091 int size = sizeof(u32);
5092
5093 if (data->raw)
5094 size += data->raw->size;
5095 else
5096 size += sizeof(u32);
5097
5098 WARN_ON_ONCE(size & (sizeof(u64)-1));
5099 header->size += size;
5100 }
5101
5102 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5103 int size = sizeof(u64); /* nr */
5104 if (data->br_stack) {
5105 size += data->br_stack->nr
5106 * sizeof(struct perf_branch_entry);
5107 }
5108 header->size += size;
5109 }
5110
5111 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5112 perf_sample_regs_user(&data->regs_user, regs,
5113 &data->regs_user_copy);
5114
5115 if (sample_type & PERF_SAMPLE_REGS_USER) {
5116 /* regs dump ABI info */
5117 int size = sizeof(u64);
5118
5119 if (data->regs_user.regs) {
5120 u64 mask = event->attr.sample_regs_user;
5121 size += hweight64(mask) * sizeof(u64);
5122 }
5123
5124 header->size += size;
5125 }
5126
5127 if (sample_type & PERF_SAMPLE_STACK_USER) {
5128 /*
5129 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5130 * processed as the last one or have additional check added
5131 * in case new sample type is added, because we could eat
5132 * up the rest of the sample size.
5133 */
5134 u16 stack_size = event->attr.sample_stack_user;
5135 u16 size = sizeof(u64);
5136
5137 stack_size = perf_sample_ustack_size(stack_size, header->size,
5138 data->regs_user.regs);
5139
5140 /*
5141 * If there is something to dump, add space for the dump
5142 * itself and for the field that tells the dynamic size,
5143 * which is how many have been actually dumped.
5144 */
5145 if (stack_size)
5146 size += sizeof(u64) + stack_size;
5147
5148 data->stack_user_size = stack_size;
5149 header->size += size;
5150 }
5151
5152 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5153 /* regs dump ABI info */
5154 int size = sizeof(u64);
5155
5156 perf_sample_regs_intr(&data->regs_intr, regs);
5157
5158 if (data->regs_intr.regs) {
5159 u64 mask = event->attr.sample_regs_intr;
5160
5161 size += hweight64(mask) * sizeof(u64);
5162 }
5163
5164 header->size += size;
5165 }
5166 }
5167
5168 static void perf_event_output(struct perf_event *event,
5169 struct perf_sample_data *data,
5170 struct pt_regs *regs)
5171 {
5172 struct perf_output_handle handle;
5173 struct perf_event_header header;
5174
5175 /* protect the callchain buffers */
5176 rcu_read_lock();
5177
5178 perf_prepare_sample(&header, data, event, regs);
5179
5180 if (perf_output_begin(&handle, event, header.size))
5181 goto exit;
5182
5183 perf_output_sample(&handle, &header, data, event);
5184
5185 perf_output_end(&handle);
5186
5187 exit:
5188 rcu_read_unlock();
5189 }
5190
5191 /*
5192 * read event_id
5193 */
5194
5195 struct perf_read_event {
5196 struct perf_event_header header;
5197
5198 u32 pid;
5199 u32 tid;
5200 };
5201
5202 static void
5203 perf_event_read_event(struct perf_event *event,
5204 struct task_struct *task)
5205 {
5206 struct perf_output_handle handle;
5207 struct perf_sample_data sample;
5208 struct perf_read_event read_event = {
5209 .header = {
5210 .type = PERF_RECORD_READ,
5211 .misc = 0,
5212 .size = sizeof(read_event) + event->read_size,
5213 },
5214 .pid = perf_event_pid(event, task),
5215 .tid = perf_event_tid(event, task),
5216 };
5217 int ret;
5218
5219 perf_event_header__init_id(&read_event.header, &sample, event);
5220 ret = perf_output_begin(&handle, event, read_event.header.size);
5221 if (ret)
5222 return;
5223
5224 perf_output_put(&handle, read_event);
5225 perf_output_read(&handle, event);
5226 perf_event__output_id_sample(event, &handle, &sample);
5227
5228 perf_output_end(&handle);
5229 }
5230
5231 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5232
5233 static void
5234 perf_event_aux_ctx(struct perf_event_context *ctx,
5235 perf_event_aux_output_cb output,
5236 void *data)
5237 {
5238 struct perf_event *event;
5239
5240 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5241 if (event->state < PERF_EVENT_STATE_INACTIVE)
5242 continue;
5243 if (!event_filter_match(event))
5244 continue;
5245 output(event, data);
5246 }
5247 }
5248
5249 static void
5250 perf_event_aux(perf_event_aux_output_cb output, void *data,
5251 struct perf_event_context *task_ctx)
5252 {
5253 struct perf_cpu_context *cpuctx;
5254 struct perf_event_context *ctx;
5255 struct pmu *pmu;
5256 int ctxn;
5257
5258 rcu_read_lock();
5259 list_for_each_entry_rcu(pmu, &pmus, entry) {
5260 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5261 if (cpuctx->unique_pmu != pmu)
5262 goto next;
5263 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5264 if (task_ctx)
5265 goto next;
5266 ctxn = pmu->task_ctx_nr;
5267 if (ctxn < 0)
5268 goto next;
5269 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5270 if (ctx)
5271 perf_event_aux_ctx(ctx, output, data);
5272 next:
5273 put_cpu_ptr(pmu->pmu_cpu_context);
5274 }
5275
5276 if (task_ctx) {
5277 preempt_disable();
5278 perf_event_aux_ctx(task_ctx, output, data);
5279 preempt_enable();
5280 }
5281 rcu_read_unlock();
5282 }
5283
5284 /*
5285 * task tracking -- fork/exit
5286 *
5287 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5288 */
5289
5290 struct perf_task_event {
5291 struct task_struct *task;
5292 struct perf_event_context *task_ctx;
5293
5294 struct {
5295 struct perf_event_header header;
5296
5297 u32 pid;
5298 u32 ppid;
5299 u32 tid;
5300 u32 ptid;
5301 u64 time;
5302 } event_id;
5303 };
5304
5305 static int perf_event_task_match(struct perf_event *event)
5306 {
5307 return event->attr.comm || event->attr.mmap ||
5308 event->attr.mmap2 || event->attr.mmap_data ||
5309 event->attr.task;
5310 }
5311
5312 static void perf_event_task_output(struct perf_event *event,
5313 void *data)
5314 {
5315 struct perf_task_event *task_event = data;
5316 struct perf_output_handle handle;
5317 struct perf_sample_data sample;
5318 struct task_struct *task = task_event->task;
5319 int ret, size = task_event->event_id.header.size;
5320
5321 if (!perf_event_task_match(event))
5322 return;
5323
5324 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5325
5326 ret = perf_output_begin(&handle, event,
5327 task_event->event_id.header.size);
5328 if (ret)
5329 goto out;
5330
5331 task_event->event_id.pid = perf_event_pid(event, task);
5332 task_event->event_id.ppid = perf_event_pid(event, current);
5333
5334 task_event->event_id.tid = perf_event_tid(event, task);
5335 task_event->event_id.ptid = perf_event_tid(event, current);
5336
5337 perf_output_put(&handle, task_event->event_id);
5338
5339 perf_event__output_id_sample(event, &handle, &sample);
5340
5341 perf_output_end(&handle);
5342 out:
5343 task_event->event_id.header.size = size;
5344 }
5345
5346 static void perf_event_task(struct task_struct *task,
5347 struct perf_event_context *task_ctx,
5348 int new)
5349 {
5350 struct perf_task_event task_event;
5351
5352 if (!atomic_read(&nr_comm_events) &&
5353 !atomic_read(&nr_mmap_events) &&
5354 !atomic_read(&nr_task_events))
5355 return;
5356
5357 task_event = (struct perf_task_event){
5358 .task = task,
5359 .task_ctx = task_ctx,
5360 .event_id = {
5361 .header = {
5362 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5363 .misc = 0,
5364 .size = sizeof(task_event.event_id),
5365 },
5366 /* .pid */
5367 /* .ppid */
5368 /* .tid */
5369 /* .ptid */
5370 .time = perf_clock(),
5371 },
5372 };
5373
5374 perf_event_aux(perf_event_task_output,
5375 &task_event,
5376 task_ctx);
5377 }
5378
5379 void perf_event_fork(struct task_struct *task)
5380 {
5381 perf_event_task(task, NULL, 1);
5382 }
5383
5384 /*
5385 * comm tracking
5386 */
5387
5388 struct perf_comm_event {
5389 struct task_struct *task;
5390 char *comm;
5391 int comm_size;
5392
5393 struct {
5394 struct perf_event_header header;
5395
5396 u32 pid;
5397 u32 tid;
5398 } event_id;
5399 };
5400
5401 static int perf_event_comm_match(struct perf_event *event)
5402 {
5403 return event->attr.comm;
5404 }
5405
5406 static void perf_event_comm_output(struct perf_event *event,
5407 void *data)
5408 {
5409 struct perf_comm_event *comm_event = data;
5410 struct perf_output_handle handle;
5411 struct perf_sample_data sample;
5412 int size = comm_event->event_id.header.size;
5413 int ret;
5414
5415 if (!perf_event_comm_match(event))
5416 return;
5417
5418 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5419 ret = perf_output_begin(&handle, event,
5420 comm_event->event_id.header.size);
5421
5422 if (ret)
5423 goto out;
5424
5425 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5426 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5427
5428 perf_output_put(&handle, comm_event->event_id);
5429 __output_copy(&handle, comm_event->comm,
5430 comm_event->comm_size);
5431
5432 perf_event__output_id_sample(event, &handle, &sample);
5433
5434 perf_output_end(&handle);
5435 out:
5436 comm_event->event_id.header.size = size;
5437 }
5438
5439 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5440 {
5441 char comm[TASK_COMM_LEN];
5442 unsigned int size;
5443
5444 memset(comm, 0, sizeof(comm));
5445 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5446 size = ALIGN(strlen(comm)+1, sizeof(u64));
5447
5448 comm_event->comm = comm;
5449 comm_event->comm_size = size;
5450
5451 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5452
5453 perf_event_aux(perf_event_comm_output,
5454 comm_event,
5455 NULL);
5456 }
5457
5458 void perf_event_comm(struct task_struct *task, bool exec)
5459 {
5460 struct perf_comm_event comm_event;
5461
5462 if (!atomic_read(&nr_comm_events))
5463 return;
5464
5465 comm_event = (struct perf_comm_event){
5466 .task = task,
5467 /* .comm */
5468 /* .comm_size */
5469 .event_id = {
5470 .header = {
5471 .type = PERF_RECORD_COMM,
5472 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5473 /* .size */
5474 },
5475 /* .pid */
5476 /* .tid */
5477 },
5478 };
5479
5480 perf_event_comm_event(&comm_event);
5481 }
5482
5483 /*
5484 * mmap tracking
5485 */
5486
5487 struct perf_mmap_event {
5488 struct vm_area_struct *vma;
5489
5490 const char *file_name;
5491 int file_size;
5492 int maj, min;
5493 u64 ino;
5494 u64 ino_generation;
5495 u32 prot, flags;
5496
5497 struct {
5498 struct perf_event_header header;
5499
5500 u32 pid;
5501 u32 tid;
5502 u64 start;
5503 u64 len;
5504 u64 pgoff;
5505 } event_id;
5506 };
5507
5508 static int perf_event_mmap_match(struct perf_event *event,
5509 void *data)
5510 {
5511 struct perf_mmap_event *mmap_event = data;
5512 struct vm_area_struct *vma = mmap_event->vma;
5513 int executable = vma->vm_flags & VM_EXEC;
5514
5515 return (!executable && event->attr.mmap_data) ||
5516 (executable && (event->attr.mmap || event->attr.mmap2));
5517 }
5518
5519 static void perf_event_mmap_output(struct perf_event *event,
5520 void *data)
5521 {
5522 struct perf_mmap_event *mmap_event = data;
5523 struct perf_output_handle handle;
5524 struct perf_sample_data sample;
5525 int size = mmap_event->event_id.header.size;
5526 int ret;
5527
5528 if (!perf_event_mmap_match(event, data))
5529 return;
5530
5531 if (event->attr.mmap2) {
5532 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5533 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5534 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5535 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5536 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5537 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5538 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5539 }
5540
5541 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5542 ret = perf_output_begin(&handle, event,
5543 mmap_event->event_id.header.size);
5544 if (ret)
5545 goto out;
5546
5547 mmap_event->event_id.pid = perf_event_pid(event, current);
5548 mmap_event->event_id.tid = perf_event_tid(event, current);
5549
5550 perf_output_put(&handle, mmap_event->event_id);
5551
5552 if (event->attr.mmap2) {
5553 perf_output_put(&handle, mmap_event->maj);
5554 perf_output_put(&handle, mmap_event->min);
5555 perf_output_put(&handle, mmap_event->ino);
5556 perf_output_put(&handle, mmap_event->ino_generation);
5557 perf_output_put(&handle, mmap_event->prot);
5558 perf_output_put(&handle, mmap_event->flags);
5559 }
5560
5561 __output_copy(&handle, mmap_event->file_name,
5562 mmap_event->file_size);
5563
5564 perf_event__output_id_sample(event, &handle, &sample);
5565
5566 perf_output_end(&handle);
5567 out:
5568 mmap_event->event_id.header.size = size;
5569 }
5570
5571 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5572 {
5573 struct vm_area_struct *vma = mmap_event->vma;
5574 struct file *file = vma->vm_file;
5575 int maj = 0, min = 0;
5576 u64 ino = 0, gen = 0;
5577 u32 prot = 0, flags = 0;
5578 unsigned int size;
5579 char tmp[16];
5580 char *buf = NULL;
5581 char *name;
5582
5583 if (file) {
5584 struct inode *inode;
5585 dev_t dev;
5586
5587 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5588 if (!buf) {
5589 name = "//enomem";
5590 goto cpy_name;
5591 }
5592 /*
5593 * d_path() works from the end of the rb backwards, so we
5594 * need to add enough zero bytes after the string to handle
5595 * the 64bit alignment we do later.
5596 */
5597 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5598 if (IS_ERR(name)) {
5599 name = "//toolong";
5600 goto cpy_name;
5601 }
5602 inode = file_inode(vma->vm_file);
5603 dev = inode->i_sb->s_dev;
5604 ino = inode->i_ino;
5605 gen = inode->i_generation;
5606 maj = MAJOR(dev);
5607 min = MINOR(dev);
5608
5609 if (vma->vm_flags & VM_READ)
5610 prot |= PROT_READ;
5611 if (vma->vm_flags & VM_WRITE)
5612 prot |= PROT_WRITE;
5613 if (vma->vm_flags & VM_EXEC)
5614 prot |= PROT_EXEC;
5615
5616 if (vma->vm_flags & VM_MAYSHARE)
5617 flags = MAP_SHARED;
5618 else
5619 flags = MAP_PRIVATE;
5620
5621 if (vma->vm_flags & VM_DENYWRITE)
5622 flags |= MAP_DENYWRITE;
5623 if (vma->vm_flags & VM_MAYEXEC)
5624 flags |= MAP_EXECUTABLE;
5625 if (vma->vm_flags & VM_LOCKED)
5626 flags |= MAP_LOCKED;
5627 if (vma->vm_flags & VM_HUGETLB)
5628 flags |= MAP_HUGETLB;
5629
5630 goto got_name;
5631 } else {
5632 if (vma->vm_ops && vma->vm_ops->name) {
5633 name = (char *) vma->vm_ops->name(vma);
5634 if (name)
5635 goto cpy_name;
5636 }
5637
5638 name = (char *)arch_vma_name(vma);
5639 if (name)
5640 goto cpy_name;
5641
5642 if (vma->vm_start <= vma->vm_mm->start_brk &&
5643 vma->vm_end >= vma->vm_mm->brk) {
5644 name = "[heap]";
5645 goto cpy_name;
5646 }
5647 if (vma->vm_start <= vma->vm_mm->start_stack &&
5648 vma->vm_end >= vma->vm_mm->start_stack) {
5649 name = "[stack]";
5650 goto cpy_name;
5651 }
5652
5653 name = "//anon";
5654 goto cpy_name;
5655 }
5656
5657 cpy_name:
5658 strlcpy(tmp, name, sizeof(tmp));
5659 name = tmp;
5660 got_name:
5661 /*
5662 * Since our buffer works in 8 byte units we need to align our string
5663 * size to a multiple of 8. However, we must guarantee the tail end is
5664 * zero'd out to avoid leaking random bits to userspace.
5665 */
5666 size = strlen(name)+1;
5667 while (!IS_ALIGNED(size, sizeof(u64)))
5668 name[size++] = '\0';
5669
5670 mmap_event->file_name = name;
5671 mmap_event->file_size = size;
5672 mmap_event->maj = maj;
5673 mmap_event->min = min;
5674 mmap_event->ino = ino;
5675 mmap_event->ino_generation = gen;
5676 mmap_event->prot = prot;
5677 mmap_event->flags = flags;
5678
5679 if (!(vma->vm_flags & VM_EXEC))
5680 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5681
5682 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5683
5684 perf_event_aux(perf_event_mmap_output,
5685 mmap_event,
5686 NULL);
5687
5688 kfree(buf);
5689 }
5690
5691 void perf_event_mmap(struct vm_area_struct *vma)
5692 {
5693 struct perf_mmap_event mmap_event;
5694
5695 if (!atomic_read(&nr_mmap_events))
5696 return;
5697
5698 mmap_event = (struct perf_mmap_event){
5699 .vma = vma,
5700 /* .file_name */
5701 /* .file_size */
5702 .event_id = {
5703 .header = {
5704 .type = PERF_RECORD_MMAP,
5705 .misc = PERF_RECORD_MISC_USER,
5706 /* .size */
5707 },
5708 /* .pid */
5709 /* .tid */
5710 .start = vma->vm_start,
5711 .len = vma->vm_end - vma->vm_start,
5712 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5713 },
5714 /* .maj (attr_mmap2 only) */
5715 /* .min (attr_mmap2 only) */
5716 /* .ino (attr_mmap2 only) */
5717 /* .ino_generation (attr_mmap2 only) */
5718 /* .prot (attr_mmap2 only) */
5719 /* .flags (attr_mmap2 only) */
5720 };
5721
5722 perf_event_mmap_event(&mmap_event);
5723 }
5724
5725 /*
5726 * IRQ throttle logging
5727 */
5728
5729 static void perf_log_throttle(struct perf_event *event, int enable)
5730 {
5731 struct perf_output_handle handle;
5732 struct perf_sample_data sample;
5733 int ret;
5734
5735 struct {
5736 struct perf_event_header header;
5737 u64 time;
5738 u64 id;
5739 u64 stream_id;
5740 } throttle_event = {
5741 .header = {
5742 .type = PERF_RECORD_THROTTLE,
5743 .misc = 0,
5744 .size = sizeof(throttle_event),
5745 },
5746 .time = perf_clock(),
5747 .id = primary_event_id(event),
5748 .stream_id = event->id,
5749 };
5750
5751 if (enable)
5752 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5753
5754 perf_event_header__init_id(&throttle_event.header, &sample, event);
5755
5756 ret = perf_output_begin(&handle, event,
5757 throttle_event.header.size);
5758 if (ret)
5759 return;
5760
5761 perf_output_put(&handle, throttle_event);
5762 perf_event__output_id_sample(event, &handle, &sample);
5763 perf_output_end(&handle);
5764 }
5765
5766 /*
5767 * Generic event overflow handling, sampling.
5768 */
5769
5770 static int __perf_event_overflow(struct perf_event *event,
5771 int throttle, struct perf_sample_data *data,
5772 struct pt_regs *regs)
5773 {
5774 int events = atomic_read(&event->event_limit);
5775 struct hw_perf_event *hwc = &event->hw;
5776 u64 seq;
5777 int ret = 0;
5778
5779 /*
5780 * Non-sampling counters might still use the PMI to fold short
5781 * hardware counters, ignore those.
5782 */
5783 if (unlikely(!is_sampling_event(event)))
5784 return 0;
5785
5786 seq = __this_cpu_read(perf_throttled_seq);
5787 if (seq != hwc->interrupts_seq) {
5788 hwc->interrupts_seq = seq;
5789 hwc->interrupts = 1;
5790 } else {
5791 hwc->interrupts++;
5792 if (unlikely(throttle
5793 && hwc->interrupts >= max_samples_per_tick)) {
5794 __this_cpu_inc(perf_throttled_count);
5795 hwc->interrupts = MAX_INTERRUPTS;
5796 perf_log_throttle(event, 0);
5797 tick_nohz_full_kick();
5798 ret = 1;
5799 }
5800 }
5801
5802 if (event->attr.freq) {
5803 u64 now = perf_clock();
5804 s64 delta = now - hwc->freq_time_stamp;
5805
5806 hwc->freq_time_stamp = now;
5807
5808 if (delta > 0 && delta < 2*TICK_NSEC)
5809 perf_adjust_period(event, delta, hwc->last_period, true);
5810 }
5811
5812 /*
5813 * XXX event_limit might not quite work as expected on inherited
5814 * events
5815 */
5816
5817 event->pending_kill = POLL_IN;
5818 if (events && atomic_dec_and_test(&event->event_limit)) {
5819 ret = 1;
5820 event->pending_kill = POLL_HUP;
5821 event->pending_disable = 1;
5822 irq_work_queue(&event->pending);
5823 }
5824
5825 if (event->overflow_handler)
5826 event->overflow_handler(event, data, regs);
5827 else
5828 perf_event_output(event, data, regs);
5829
5830 if (event->fasync && event->pending_kill) {
5831 event->pending_wakeup = 1;
5832 irq_work_queue(&event->pending);
5833 }
5834
5835 return ret;
5836 }
5837
5838 int perf_event_overflow(struct perf_event *event,
5839 struct perf_sample_data *data,
5840 struct pt_regs *regs)
5841 {
5842 return __perf_event_overflow(event, 1, data, regs);
5843 }
5844
5845 /*
5846 * Generic software event infrastructure
5847 */
5848
5849 struct swevent_htable {
5850 struct swevent_hlist *swevent_hlist;
5851 struct mutex hlist_mutex;
5852 int hlist_refcount;
5853
5854 /* Recursion avoidance in each contexts */
5855 int recursion[PERF_NR_CONTEXTS];
5856
5857 /* Keeps track of cpu being initialized/exited */
5858 bool online;
5859 };
5860
5861 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5862
5863 /*
5864 * We directly increment event->count and keep a second value in
5865 * event->hw.period_left to count intervals. This period event
5866 * is kept in the range [-sample_period, 0] so that we can use the
5867 * sign as trigger.
5868 */
5869
5870 u64 perf_swevent_set_period(struct perf_event *event)
5871 {
5872 struct hw_perf_event *hwc = &event->hw;
5873 u64 period = hwc->last_period;
5874 u64 nr, offset;
5875 s64 old, val;
5876
5877 hwc->last_period = hwc->sample_period;
5878
5879 again:
5880 old = val = local64_read(&hwc->period_left);
5881 if (val < 0)
5882 return 0;
5883
5884 nr = div64_u64(period + val, period);
5885 offset = nr * period;
5886 val -= offset;
5887 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5888 goto again;
5889
5890 return nr;
5891 }
5892
5893 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5894 struct perf_sample_data *data,
5895 struct pt_regs *regs)
5896 {
5897 struct hw_perf_event *hwc = &event->hw;
5898 int throttle = 0;
5899
5900 if (!overflow)
5901 overflow = perf_swevent_set_period(event);
5902
5903 if (hwc->interrupts == MAX_INTERRUPTS)
5904 return;
5905
5906 for (; overflow; overflow--) {
5907 if (__perf_event_overflow(event, throttle,
5908 data, regs)) {
5909 /*
5910 * We inhibit the overflow from happening when
5911 * hwc->interrupts == MAX_INTERRUPTS.
5912 */
5913 break;
5914 }
5915 throttle = 1;
5916 }
5917 }
5918
5919 static void perf_swevent_event(struct perf_event *event, u64 nr,
5920 struct perf_sample_data *data,
5921 struct pt_regs *regs)
5922 {
5923 struct hw_perf_event *hwc = &event->hw;
5924
5925 local64_add(nr, &event->count);
5926
5927 if (!regs)
5928 return;
5929
5930 if (!is_sampling_event(event))
5931 return;
5932
5933 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5934 data->period = nr;
5935 return perf_swevent_overflow(event, 1, data, regs);
5936 } else
5937 data->period = event->hw.last_period;
5938
5939 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5940 return perf_swevent_overflow(event, 1, data, regs);
5941
5942 if (local64_add_negative(nr, &hwc->period_left))
5943 return;
5944
5945 perf_swevent_overflow(event, 0, data, regs);
5946 }
5947
5948 static int perf_exclude_event(struct perf_event *event,
5949 struct pt_regs *regs)
5950 {
5951 if (event->hw.state & PERF_HES_STOPPED)
5952 return 1;
5953
5954 if (regs) {
5955 if (event->attr.exclude_user && user_mode(regs))
5956 return 1;
5957
5958 if (event->attr.exclude_kernel && !user_mode(regs))
5959 return 1;
5960 }
5961
5962 return 0;
5963 }
5964
5965 static int perf_swevent_match(struct perf_event *event,
5966 enum perf_type_id type,
5967 u32 event_id,
5968 struct perf_sample_data *data,
5969 struct pt_regs *regs)
5970 {
5971 if (event->attr.type != type)
5972 return 0;
5973
5974 if (event->attr.config != event_id)
5975 return 0;
5976
5977 if (perf_exclude_event(event, regs))
5978 return 0;
5979
5980 return 1;
5981 }
5982
5983 static inline u64 swevent_hash(u64 type, u32 event_id)
5984 {
5985 u64 val = event_id | (type << 32);
5986
5987 return hash_64(val, SWEVENT_HLIST_BITS);
5988 }
5989
5990 static inline struct hlist_head *
5991 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5992 {
5993 u64 hash = swevent_hash(type, event_id);
5994
5995 return &hlist->heads[hash];
5996 }
5997
5998 /* For the read side: events when they trigger */
5999 static inline struct hlist_head *
6000 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6001 {
6002 struct swevent_hlist *hlist;
6003
6004 hlist = rcu_dereference(swhash->swevent_hlist);
6005 if (!hlist)
6006 return NULL;
6007
6008 return __find_swevent_head(hlist, type, event_id);
6009 }
6010
6011 /* For the event head insertion and removal in the hlist */
6012 static inline struct hlist_head *
6013 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6014 {
6015 struct swevent_hlist *hlist;
6016 u32 event_id = event->attr.config;
6017 u64 type = event->attr.type;
6018
6019 /*
6020 * Event scheduling is always serialized against hlist allocation
6021 * and release. Which makes the protected version suitable here.
6022 * The context lock guarantees that.
6023 */
6024 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6025 lockdep_is_held(&event->ctx->lock));
6026 if (!hlist)
6027 return NULL;
6028
6029 return __find_swevent_head(hlist, type, event_id);
6030 }
6031
6032 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6033 u64 nr,
6034 struct perf_sample_data *data,
6035 struct pt_regs *regs)
6036 {
6037 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6038 struct perf_event *event;
6039 struct hlist_head *head;
6040
6041 rcu_read_lock();
6042 head = find_swevent_head_rcu(swhash, type, event_id);
6043 if (!head)
6044 goto end;
6045
6046 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6047 if (perf_swevent_match(event, type, event_id, data, regs))
6048 perf_swevent_event(event, nr, data, regs);
6049 }
6050 end:
6051 rcu_read_unlock();
6052 }
6053
6054 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6055
6056 int perf_swevent_get_recursion_context(void)
6057 {
6058 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6059
6060 return get_recursion_context(swhash->recursion);
6061 }
6062 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6063
6064 inline void perf_swevent_put_recursion_context(int rctx)
6065 {
6066 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6067
6068 put_recursion_context(swhash->recursion, rctx);
6069 }
6070
6071 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6072 {
6073 struct perf_sample_data data;
6074
6075 if (WARN_ON_ONCE(!regs))
6076 return;
6077
6078 perf_sample_data_init(&data, addr, 0);
6079 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6080 }
6081
6082 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6083 {
6084 int rctx;
6085
6086 preempt_disable_notrace();
6087 rctx = perf_swevent_get_recursion_context();
6088 if (unlikely(rctx < 0))
6089 goto fail;
6090
6091 ___perf_sw_event(event_id, nr, regs, addr);
6092
6093 perf_swevent_put_recursion_context(rctx);
6094 fail:
6095 preempt_enable_notrace();
6096 }
6097
6098 static void perf_swevent_read(struct perf_event *event)
6099 {
6100 }
6101
6102 static int perf_swevent_add(struct perf_event *event, int flags)
6103 {
6104 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6105 struct hw_perf_event *hwc = &event->hw;
6106 struct hlist_head *head;
6107
6108 if (is_sampling_event(event)) {
6109 hwc->last_period = hwc->sample_period;
6110 perf_swevent_set_period(event);
6111 }
6112
6113 hwc->state = !(flags & PERF_EF_START);
6114
6115 head = find_swevent_head(swhash, event);
6116 if (!head) {
6117 /*
6118 * We can race with cpu hotplug code. Do not
6119 * WARN if the cpu just got unplugged.
6120 */
6121 WARN_ON_ONCE(swhash->online);
6122 return -EINVAL;
6123 }
6124
6125 hlist_add_head_rcu(&event->hlist_entry, head);
6126
6127 return 0;
6128 }
6129
6130 static void perf_swevent_del(struct perf_event *event, int flags)
6131 {
6132 hlist_del_rcu(&event->hlist_entry);
6133 }
6134
6135 static void perf_swevent_start(struct perf_event *event, int flags)
6136 {
6137 event->hw.state = 0;
6138 }
6139
6140 static void perf_swevent_stop(struct perf_event *event, int flags)
6141 {
6142 event->hw.state = PERF_HES_STOPPED;
6143 }
6144
6145 /* Deref the hlist from the update side */
6146 static inline struct swevent_hlist *
6147 swevent_hlist_deref(struct swevent_htable *swhash)
6148 {
6149 return rcu_dereference_protected(swhash->swevent_hlist,
6150 lockdep_is_held(&swhash->hlist_mutex));
6151 }
6152
6153 static void swevent_hlist_release(struct swevent_htable *swhash)
6154 {
6155 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6156
6157 if (!hlist)
6158 return;
6159
6160 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6161 kfree_rcu(hlist, rcu_head);
6162 }
6163
6164 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6165 {
6166 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6167
6168 mutex_lock(&swhash->hlist_mutex);
6169
6170 if (!--swhash->hlist_refcount)
6171 swevent_hlist_release(swhash);
6172
6173 mutex_unlock(&swhash->hlist_mutex);
6174 }
6175
6176 static void swevent_hlist_put(struct perf_event *event)
6177 {
6178 int cpu;
6179
6180 for_each_possible_cpu(cpu)
6181 swevent_hlist_put_cpu(event, cpu);
6182 }
6183
6184 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6185 {
6186 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6187 int err = 0;
6188
6189 mutex_lock(&swhash->hlist_mutex);
6190
6191 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6192 struct swevent_hlist *hlist;
6193
6194 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6195 if (!hlist) {
6196 err = -ENOMEM;
6197 goto exit;
6198 }
6199 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6200 }
6201 swhash->hlist_refcount++;
6202 exit:
6203 mutex_unlock(&swhash->hlist_mutex);
6204
6205 return err;
6206 }
6207
6208 static int swevent_hlist_get(struct perf_event *event)
6209 {
6210 int err;
6211 int cpu, failed_cpu;
6212
6213 get_online_cpus();
6214 for_each_possible_cpu(cpu) {
6215 err = swevent_hlist_get_cpu(event, cpu);
6216 if (err) {
6217 failed_cpu = cpu;
6218 goto fail;
6219 }
6220 }
6221 put_online_cpus();
6222
6223 return 0;
6224 fail:
6225 for_each_possible_cpu(cpu) {
6226 if (cpu == failed_cpu)
6227 break;
6228 swevent_hlist_put_cpu(event, cpu);
6229 }
6230
6231 put_online_cpus();
6232 return err;
6233 }
6234
6235 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6236
6237 static void sw_perf_event_destroy(struct perf_event *event)
6238 {
6239 u64 event_id = event->attr.config;
6240
6241 WARN_ON(event->parent);
6242
6243 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6244 swevent_hlist_put(event);
6245 }
6246
6247 static int perf_swevent_init(struct perf_event *event)
6248 {
6249 u64 event_id = event->attr.config;
6250
6251 if (event->attr.type != PERF_TYPE_SOFTWARE)
6252 return -ENOENT;
6253
6254 /*
6255 * no branch sampling for software events
6256 */
6257 if (has_branch_stack(event))
6258 return -EOPNOTSUPP;
6259
6260 switch (event_id) {
6261 case PERF_COUNT_SW_CPU_CLOCK:
6262 case PERF_COUNT_SW_TASK_CLOCK:
6263 return -ENOENT;
6264
6265 default:
6266 break;
6267 }
6268
6269 if (event_id >= PERF_COUNT_SW_MAX)
6270 return -ENOENT;
6271
6272 if (!event->parent) {
6273 int err;
6274
6275 err = swevent_hlist_get(event);
6276 if (err)
6277 return err;
6278
6279 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6280 event->destroy = sw_perf_event_destroy;
6281 }
6282
6283 return 0;
6284 }
6285
6286 static struct pmu perf_swevent = {
6287 .task_ctx_nr = perf_sw_context,
6288
6289 .event_init = perf_swevent_init,
6290 .add = perf_swevent_add,
6291 .del = perf_swevent_del,
6292 .start = perf_swevent_start,
6293 .stop = perf_swevent_stop,
6294 .read = perf_swevent_read,
6295 };
6296
6297 #ifdef CONFIG_EVENT_TRACING
6298
6299 static int perf_tp_filter_match(struct perf_event *event,
6300 struct perf_sample_data *data)
6301 {
6302 void *record = data->raw->data;
6303
6304 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6305 return 1;
6306 return 0;
6307 }
6308
6309 static int perf_tp_event_match(struct perf_event *event,
6310 struct perf_sample_data *data,
6311 struct pt_regs *regs)
6312 {
6313 if (event->hw.state & PERF_HES_STOPPED)
6314 return 0;
6315 /*
6316 * All tracepoints are from kernel-space.
6317 */
6318 if (event->attr.exclude_kernel)
6319 return 0;
6320
6321 if (!perf_tp_filter_match(event, data))
6322 return 0;
6323
6324 return 1;
6325 }
6326
6327 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6328 struct pt_regs *regs, struct hlist_head *head, int rctx,
6329 struct task_struct *task)
6330 {
6331 struct perf_sample_data data;
6332 struct perf_event *event;
6333
6334 struct perf_raw_record raw = {
6335 .size = entry_size,
6336 .data = record,
6337 };
6338
6339 perf_sample_data_init(&data, addr, 0);
6340 data.raw = &raw;
6341
6342 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6343 if (perf_tp_event_match(event, &data, regs))
6344 perf_swevent_event(event, count, &data, regs);
6345 }
6346
6347 /*
6348 * If we got specified a target task, also iterate its context and
6349 * deliver this event there too.
6350 */
6351 if (task && task != current) {
6352 struct perf_event_context *ctx;
6353 struct trace_entry *entry = record;
6354
6355 rcu_read_lock();
6356 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6357 if (!ctx)
6358 goto unlock;
6359
6360 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6361 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6362 continue;
6363 if (event->attr.config != entry->type)
6364 continue;
6365 if (perf_tp_event_match(event, &data, regs))
6366 perf_swevent_event(event, count, &data, regs);
6367 }
6368 unlock:
6369 rcu_read_unlock();
6370 }
6371
6372 perf_swevent_put_recursion_context(rctx);
6373 }
6374 EXPORT_SYMBOL_GPL(perf_tp_event);
6375
6376 static void tp_perf_event_destroy(struct perf_event *event)
6377 {
6378 perf_trace_destroy(event);
6379 }
6380
6381 static int perf_tp_event_init(struct perf_event *event)
6382 {
6383 int err;
6384
6385 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6386 return -ENOENT;
6387
6388 /*
6389 * no branch sampling for tracepoint events
6390 */
6391 if (has_branch_stack(event))
6392 return -EOPNOTSUPP;
6393
6394 err = perf_trace_init(event);
6395 if (err)
6396 return err;
6397
6398 event->destroy = tp_perf_event_destroy;
6399
6400 return 0;
6401 }
6402
6403 static struct pmu perf_tracepoint = {
6404 .task_ctx_nr = perf_sw_context,
6405
6406 .event_init = perf_tp_event_init,
6407 .add = perf_trace_add,
6408 .del = perf_trace_del,
6409 .start = perf_swevent_start,
6410 .stop = perf_swevent_stop,
6411 .read = perf_swevent_read,
6412 };
6413
6414 static inline void perf_tp_register(void)
6415 {
6416 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6417 }
6418
6419 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6420 {
6421 char *filter_str;
6422 int ret;
6423
6424 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6425 return -EINVAL;
6426
6427 filter_str = strndup_user(arg, PAGE_SIZE);
6428 if (IS_ERR(filter_str))
6429 return PTR_ERR(filter_str);
6430
6431 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6432
6433 kfree(filter_str);
6434 return ret;
6435 }
6436
6437 static void perf_event_free_filter(struct perf_event *event)
6438 {
6439 ftrace_profile_free_filter(event);
6440 }
6441
6442 #else
6443
6444 static inline void perf_tp_register(void)
6445 {
6446 }
6447
6448 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6449 {
6450 return -ENOENT;
6451 }
6452
6453 static void perf_event_free_filter(struct perf_event *event)
6454 {
6455 }
6456
6457 #endif /* CONFIG_EVENT_TRACING */
6458
6459 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6460 void perf_bp_event(struct perf_event *bp, void *data)
6461 {
6462 struct perf_sample_data sample;
6463 struct pt_regs *regs = data;
6464
6465 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6466
6467 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6468 perf_swevent_event(bp, 1, &sample, regs);
6469 }
6470 #endif
6471
6472 /*
6473 * hrtimer based swevent callback
6474 */
6475
6476 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6477 {
6478 enum hrtimer_restart ret = HRTIMER_RESTART;
6479 struct perf_sample_data data;
6480 struct pt_regs *regs;
6481 struct perf_event *event;
6482 u64 period;
6483
6484 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6485
6486 if (event->state != PERF_EVENT_STATE_ACTIVE)
6487 return HRTIMER_NORESTART;
6488
6489 event->pmu->read(event);
6490
6491 perf_sample_data_init(&data, 0, event->hw.last_period);
6492 regs = get_irq_regs();
6493
6494 if (regs && !perf_exclude_event(event, regs)) {
6495 if (!(event->attr.exclude_idle && is_idle_task(current)))
6496 if (__perf_event_overflow(event, 1, &data, regs))
6497 ret = HRTIMER_NORESTART;
6498 }
6499
6500 period = max_t(u64, 10000, event->hw.sample_period);
6501 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6502
6503 return ret;
6504 }
6505
6506 static void perf_swevent_start_hrtimer(struct perf_event *event)
6507 {
6508 struct hw_perf_event *hwc = &event->hw;
6509 s64 period;
6510
6511 if (!is_sampling_event(event))
6512 return;
6513
6514 period = local64_read(&hwc->period_left);
6515 if (period) {
6516 if (period < 0)
6517 period = 10000;
6518
6519 local64_set(&hwc->period_left, 0);
6520 } else {
6521 period = max_t(u64, 10000, hwc->sample_period);
6522 }
6523 __hrtimer_start_range_ns(&hwc->hrtimer,
6524 ns_to_ktime(period), 0,
6525 HRTIMER_MODE_REL_PINNED, 0);
6526 }
6527
6528 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6529 {
6530 struct hw_perf_event *hwc = &event->hw;
6531
6532 if (is_sampling_event(event)) {
6533 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6534 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6535
6536 hrtimer_cancel(&hwc->hrtimer);
6537 }
6538 }
6539
6540 static void perf_swevent_init_hrtimer(struct perf_event *event)
6541 {
6542 struct hw_perf_event *hwc = &event->hw;
6543
6544 if (!is_sampling_event(event))
6545 return;
6546
6547 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6548 hwc->hrtimer.function = perf_swevent_hrtimer;
6549
6550 /*
6551 * Since hrtimers have a fixed rate, we can do a static freq->period
6552 * mapping and avoid the whole period adjust feedback stuff.
6553 */
6554 if (event->attr.freq) {
6555 long freq = event->attr.sample_freq;
6556
6557 event->attr.sample_period = NSEC_PER_SEC / freq;
6558 hwc->sample_period = event->attr.sample_period;
6559 local64_set(&hwc->period_left, hwc->sample_period);
6560 hwc->last_period = hwc->sample_period;
6561 event->attr.freq = 0;
6562 }
6563 }
6564
6565 /*
6566 * Software event: cpu wall time clock
6567 */
6568
6569 static void cpu_clock_event_update(struct perf_event *event)
6570 {
6571 s64 prev;
6572 u64 now;
6573
6574 now = local_clock();
6575 prev = local64_xchg(&event->hw.prev_count, now);
6576 local64_add(now - prev, &event->count);
6577 }
6578
6579 static void cpu_clock_event_start(struct perf_event *event, int flags)
6580 {
6581 local64_set(&event->hw.prev_count, local_clock());
6582 perf_swevent_start_hrtimer(event);
6583 }
6584
6585 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6586 {
6587 perf_swevent_cancel_hrtimer(event);
6588 cpu_clock_event_update(event);
6589 }
6590
6591 static int cpu_clock_event_add(struct perf_event *event, int flags)
6592 {
6593 if (flags & PERF_EF_START)
6594 cpu_clock_event_start(event, flags);
6595
6596 return 0;
6597 }
6598
6599 static void cpu_clock_event_del(struct perf_event *event, int flags)
6600 {
6601 cpu_clock_event_stop(event, flags);
6602 }
6603
6604 static void cpu_clock_event_read(struct perf_event *event)
6605 {
6606 cpu_clock_event_update(event);
6607 }
6608
6609 static int cpu_clock_event_init(struct perf_event *event)
6610 {
6611 if (event->attr.type != PERF_TYPE_SOFTWARE)
6612 return -ENOENT;
6613
6614 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6615 return -ENOENT;
6616
6617 /*
6618 * no branch sampling for software events
6619 */
6620 if (has_branch_stack(event))
6621 return -EOPNOTSUPP;
6622
6623 perf_swevent_init_hrtimer(event);
6624
6625 return 0;
6626 }
6627
6628 static struct pmu perf_cpu_clock = {
6629 .task_ctx_nr = perf_sw_context,
6630
6631 .event_init = cpu_clock_event_init,
6632 .add = cpu_clock_event_add,
6633 .del = cpu_clock_event_del,
6634 .start = cpu_clock_event_start,
6635 .stop = cpu_clock_event_stop,
6636 .read = cpu_clock_event_read,
6637 };
6638
6639 /*
6640 * Software event: task time clock
6641 */
6642
6643 static void task_clock_event_update(struct perf_event *event, u64 now)
6644 {
6645 u64 prev;
6646 s64 delta;
6647
6648 prev = local64_xchg(&event->hw.prev_count, now);
6649 delta = now - prev;
6650 local64_add(delta, &event->count);
6651 }
6652
6653 static void task_clock_event_start(struct perf_event *event, int flags)
6654 {
6655 local64_set(&event->hw.prev_count, event->ctx->time);
6656 perf_swevent_start_hrtimer(event);
6657 }
6658
6659 static void task_clock_event_stop(struct perf_event *event, int flags)
6660 {
6661 perf_swevent_cancel_hrtimer(event);
6662 task_clock_event_update(event, event->ctx->time);
6663 }
6664
6665 static int task_clock_event_add(struct perf_event *event, int flags)
6666 {
6667 if (flags & PERF_EF_START)
6668 task_clock_event_start(event, flags);
6669
6670 return 0;
6671 }
6672
6673 static void task_clock_event_del(struct perf_event *event, int flags)
6674 {
6675 task_clock_event_stop(event, PERF_EF_UPDATE);
6676 }
6677
6678 static void task_clock_event_read(struct perf_event *event)
6679 {
6680 u64 now = perf_clock();
6681 u64 delta = now - event->ctx->timestamp;
6682 u64 time = event->ctx->time + delta;
6683
6684 task_clock_event_update(event, time);
6685 }
6686
6687 static int task_clock_event_init(struct perf_event *event)
6688 {
6689 if (event->attr.type != PERF_TYPE_SOFTWARE)
6690 return -ENOENT;
6691
6692 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6693 return -ENOENT;
6694
6695 /*
6696 * no branch sampling for software events
6697 */
6698 if (has_branch_stack(event))
6699 return -EOPNOTSUPP;
6700
6701 perf_swevent_init_hrtimer(event);
6702
6703 return 0;
6704 }
6705
6706 static struct pmu perf_task_clock = {
6707 .task_ctx_nr = perf_sw_context,
6708
6709 .event_init = task_clock_event_init,
6710 .add = task_clock_event_add,
6711 .del = task_clock_event_del,
6712 .start = task_clock_event_start,
6713 .stop = task_clock_event_stop,
6714 .read = task_clock_event_read,
6715 };
6716
6717 static void perf_pmu_nop_void(struct pmu *pmu)
6718 {
6719 }
6720
6721 static int perf_pmu_nop_int(struct pmu *pmu)
6722 {
6723 return 0;
6724 }
6725
6726 static void perf_pmu_start_txn(struct pmu *pmu)
6727 {
6728 perf_pmu_disable(pmu);
6729 }
6730
6731 static int perf_pmu_commit_txn(struct pmu *pmu)
6732 {
6733 perf_pmu_enable(pmu);
6734 return 0;
6735 }
6736
6737 static void perf_pmu_cancel_txn(struct pmu *pmu)
6738 {
6739 perf_pmu_enable(pmu);
6740 }
6741
6742 static int perf_event_idx_default(struct perf_event *event)
6743 {
6744 return 0;
6745 }
6746
6747 /*
6748 * Ensures all contexts with the same task_ctx_nr have the same
6749 * pmu_cpu_context too.
6750 */
6751 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6752 {
6753 struct pmu *pmu;
6754
6755 if (ctxn < 0)
6756 return NULL;
6757
6758 list_for_each_entry(pmu, &pmus, entry) {
6759 if (pmu->task_ctx_nr == ctxn)
6760 return pmu->pmu_cpu_context;
6761 }
6762
6763 return NULL;
6764 }
6765
6766 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6767 {
6768 int cpu;
6769
6770 for_each_possible_cpu(cpu) {
6771 struct perf_cpu_context *cpuctx;
6772
6773 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6774
6775 if (cpuctx->unique_pmu == old_pmu)
6776 cpuctx->unique_pmu = pmu;
6777 }
6778 }
6779
6780 static void free_pmu_context(struct pmu *pmu)
6781 {
6782 struct pmu *i;
6783
6784 mutex_lock(&pmus_lock);
6785 /*
6786 * Like a real lame refcount.
6787 */
6788 list_for_each_entry(i, &pmus, entry) {
6789 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6790 update_pmu_context(i, pmu);
6791 goto out;
6792 }
6793 }
6794
6795 free_percpu(pmu->pmu_cpu_context);
6796 out:
6797 mutex_unlock(&pmus_lock);
6798 }
6799 static struct idr pmu_idr;
6800
6801 static ssize_t
6802 type_show(struct device *dev, struct device_attribute *attr, char *page)
6803 {
6804 struct pmu *pmu = dev_get_drvdata(dev);
6805
6806 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6807 }
6808 static DEVICE_ATTR_RO(type);
6809
6810 static ssize_t
6811 perf_event_mux_interval_ms_show(struct device *dev,
6812 struct device_attribute *attr,
6813 char *page)
6814 {
6815 struct pmu *pmu = dev_get_drvdata(dev);
6816
6817 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6818 }
6819
6820 static ssize_t
6821 perf_event_mux_interval_ms_store(struct device *dev,
6822 struct device_attribute *attr,
6823 const char *buf, size_t count)
6824 {
6825 struct pmu *pmu = dev_get_drvdata(dev);
6826 int timer, cpu, ret;
6827
6828 ret = kstrtoint(buf, 0, &timer);
6829 if (ret)
6830 return ret;
6831
6832 if (timer < 1)
6833 return -EINVAL;
6834
6835 /* same value, noting to do */
6836 if (timer == pmu->hrtimer_interval_ms)
6837 return count;
6838
6839 pmu->hrtimer_interval_ms = timer;
6840
6841 /* update all cpuctx for this PMU */
6842 for_each_possible_cpu(cpu) {
6843 struct perf_cpu_context *cpuctx;
6844 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6845 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6846
6847 if (hrtimer_active(&cpuctx->hrtimer))
6848 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6849 }
6850
6851 return count;
6852 }
6853 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6854
6855 static struct attribute *pmu_dev_attrs[] = {
6856 &dev_attr_type.attr,
6857 &dev_attr_perf_event_mux_interval_ms.attr,
6858 NULL,
6859 };
6860 ATTRIBUTE_GROUPS(pmu_dev);
6861
6862 static int pmu_bus_running;
6863 static struct bus_type pmu_bus = {
6864 .name = "event_source",
6865 .dev_groups = pmu_dev_groups,
6866 };
6867
6868 static void pmu_dev_release(struct device *dev)
6869 {
6870 kfree(dev);
6871 }
6872
6873 static int pmu_dev_alloc(struct pmu *pmu)
6874 {
6875 int ret = -ENOMEM;
6876
6877 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6878 if (!pmu->dev)
6879 goto out;
6880
6881 pmu->dev->groups = pmu->attr_groups;
6882 device_initialize(pmu->dev);
6883 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6884 if (ret)
6885 goto free_dev;
6886
6887 dev_set_drvdata(pmu->dev, pmu);
6888 pmu->dev->bus = &pmu_bus;
6889 pmu->dev->release = pmu_dev_release;
6890 ret = device_add(pmu->dev);
6891 if (ret)
6892 goto free_dev;
6893
6894 out:
6895 return ret;
6896
6897 free_dev:
6898 put_device(pmu->dev);
6899 goto out;
6900 }
6901
6902 static struct lock_class_key cpuctx_mutex;
6903 static struct lock_class_key cpuctx_lock;
6904
6905 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6906 {
6907 int cpu, ret;
6908
6909 mutex_lock(&pmus_lock);
6910 ret = -ENOMEM;
6911 pmu->pmu_disable_count = alloc_percpu(int);
6912 if (!pmu->pmu_disable_count)
6913 goto unlock;
6914
6915 pmu->type = -1;
6916 if (!name)
6917 goto skip_type;
6918 pmu->name = name;
6919
6920 if (type < 0) {
6921 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6922 if (type < 0) {
6923 ret = type;
6924 goto free_pdc;
6925 }
6926 }
6927 pmu->type = type;
6928
6929 if (pmu_bus_running) {
6930 ret = pmu_dev_alloc(pmu);
6931 if (ret)
6932 goto free_idr;
6933 }
6934
6935 skip_type:
6936 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6937 if (pmu->pmu_cpu_context)
6938 goto got_cpu_context;
6939
6940 ret = -ENOMEM;
6941 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6942 if (!pmu->pmu_cpu_context)
6943 goto free_dev;
6944
6945 for_each_possible_cpu(cpu) {
6946 struct perf_cpu_context *cpuctx;
6947
6948 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6949 __perf_event_init_context(&cpuctx->ctx);
6950 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6951 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6952 cpuctx->ctx.pmu = pmu;
6953
6954 __perf_cpu_hrtimer_init(cpuctx, cpu);
6955
6956 cpuctx->unique_pmu = pmu;
6957 }
6958
6959 got_cpu_context:
6960 if (!pmu->start_txn) {
6961 if (pmu->pmu_enable) {
6962 /*
6963 * If we have pmu_enable/pmu_disable calls, install
6964 * transaction stubs that use that to try and batch
6965 * hardware accesses.
6966 */
6967 pmu->start_txn = perf_pmu_start_txn;
6968 pmu->commit_txn = perf_pmu_commit_txn;
6969 pmu->cancel_txn = perf_pmu_cancel_txn;
6970 } else {
6971 pmu->start_txn = perf_pmu_nop_void;
6972 pmu->commit_txn = perf_pmu_nop_int;
6973 pmu->cancel_txn = perf_pmu_nop_void;
6974 }
6975 }
6976
6977 if (!pmu->pmu_enable) {
6978 pmu->pmu_enable = perf_pmu_nop_void;
6979 pmu->pmu_disable = perf_pmu_nop_void;
6980 }
6981
6982 if (!pmu->event_idx)
6983 pmu->event_idx = perf_event_idx_default;
6984
6985 list_add_rcu(&pmu->entry, &pmus);
6986 ret = 0;
6987 unlock:
6988 mutex_unlock(&pmus_lock);
6989
6990 return ret;
6991
6992 free_dev:
6993 device_del(pmu->dev);
6994 put_device(pmu->dev);
6995
6996 free_idr:
6997 if (pmu->type >= PERF_TYPE_MAX)
6998 idr_remove(&pmu_idr, pmu->type);
6999
7000 free_pdc:
7001 free_percpu(pmu->pmu_disable_count);
7002 goto unlock;
7003 }
7004 EXPORT_SYMBOL_GPL(perf_pmu_register);
7005
7006 void perf_pmu_unregister(struct pmu *pmu)
7007 {
7008 mutex_lock(&pmus_lock);
7009 list_del_rcu(&pmu->entry);
7010 mutex_unlock(&pmus_lock);
7011
7012 /*
7013 * We dereference the pmu list under both SRCU and regular RCU, so
7014 * synchronize against both of those.
7015 */
7016 synchronize_srcu(&pmus_srcu);
7017 synchronize_rcu();
7018
7019 free_percpu(pmu->pmu_disable_count);
7020 if (pmu->type >= PERF_TYPE_MAX)
7021 idr_remove(&pmu_idr, pmu->type);
7022 device_del(pmu->dev);
7023 put_device(pmu->dev);
7024 free_pmu_context(pmu);
7025 }
7026 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7027
7028 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7029 {
7030 int ret;
7031
7032 if (!try_module_get(pmu->module))
7033 return -ENODEV;
7034 event->pmu = pmu;
7035 ret = pmu->event_init(event);
7036 if (ret)
7037 module_put(pmu->module);
7038
7039 return ret;
7040 }
7041
7042 struct pmu *perf_init_event(struct perf_event *event)
7043 {
7044 struct pmu *pmu = NULL;
7045 int idx;
7046 int ret;
7047
7048 idx = srcu_read_lock(&pmus_srcu);
7049
7050 rcu_read_lock();
7051 pmu = idr_find(&pmu_idr, event->attr.type);
7052 rcu_read_unlock();
7053 if (pmu) {
7054 ret = perf_try_init_event(pmu, event);
7055 if (ret)
7056 pmu = ERR_PTR(ret);
7057 goto unlock;
7058 }
7059
7060 list_for_each_entry_rcu(pmu, &pmus, entry) {
7061 ret = perf_try_init_event(pmu, event);
7062 if (!ret)
7063 goto unlock;
7064
7065 if (ret != -ENOENT) {
7066 pmu = ERR_PTR(ret);
7067 goto unlock;
7068 }
7069 }
7070 pmu = ERR_PTR(-ENOENT);
7071 unlock:
7072 srcu_read_unlock(&pmus_srcu, idx);
7073
7074 return pmu;
7075 }
7076
7077 static void account_event_cpu(struct perf_event *event, int cpu)
7078 {
7079 if (event->parent)
7080 return;
7081
7082 if (has_branch_stack(event)) {
7083 if (!(event->attach_state & PERF_ATTACH_TASK))
7084 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
7085 }
7086 if (is_cgroup_event(event))
7087 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7088 }
7089
7090 static void account_event(struct perf_event *event)
7091 {
7092 if (event->parent)
7093 return;
7094
7095 if (event->attach_state & PERF_ATTACH_TASK)
7096 static_key_slow_inc(&perf_sched_events.key);
7097 if (event->attr.mmap || event->attr.mmap_data)
7098 atomic_inc(&nr_mmap_events);
7099 if (event->attr.comm)
7100 atomic_inc(&nr_comm_events);
7101 if (event->attr.task)
7102 atomic_inc(&nr_task_events);
7103 if (event->attr.freq) {
7104 if (atomic_inc_return(&nr_freq_events) == 1)
7105 tick_nohz_full_kick_all();
7106 }
7107 if (has_branch_stack(event))
7108 static_key_slow_inc(&perf_sched_events.key);
7109 if (is_cgroup_event(event))
7110 static_key_slow_inc(&perf_sched_events.key);
7111
7112 account_event_cpu(event, event->cpu);
7113 }
7114
7115 /*
7116 * Allocate and initialize a event structure
7117 */
7118 static struct perf_event *
7119 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7120 struct task_struct *task,
7121 struct perf_event *group_leader,
7122 struct perf_event *parent_event,
7123 perf_overflow_handler_t overflow_handler,
7124 void *context)
7125 {
7126 struct pmu *pmu;
7127 struct perf_event *event;
7128 struct hw_perf_event *hwc;
7129 long err = -EINVAL;
7130
7131 if ((unsigned)cpu >= nr_cpu_ids) {
7132 if (!task || cpu != -1)
7133 return ERR_PTR(-EINVAL);
7134 }
7135
7136 event = kzalloc(sizeof(*event), GFP_KERNEL);
7137 if (!event)
7138 return ERR_PTR(-ENOMEM);
7139
7140 /*
7141 * Single events are their own group leaders, with an
7142 * empty sibling list:
7143 */
7144 if (!group_leader)
7145 group_leader = event;
7146
7147 mutex_init(&event->child_mutex);
7148 INIT_LIST_HEAD(&event->child_list);
7149
7150 INIT_LIST_HEAD(&event->group_entry);
7151 INIT_LIST_HEAD(&event->event_entry);
7152 INIT_LIST_HEAD(&event->sibling_list);
7153 INIT_LIST_HEAD(&event->rb_entry);
7154 INIT_LIST_HEAD(&event->active_entry);
7155 INIT_HLIST_NODE(&event->hlist_entry);
7156
7157
7158 init_waitqueue_head(&event->waitq);
7159 init_irq_work(&event->pending, perf_pending_event);
7160
7161 mutex_init(&event->mmap_mutex);
7162
7163 atomic_long_set(&event->refcount, 1);
7164 event->cpu = cpu;
7165 event->attr = *attr;
7166 event->group_leader = group_leader;
7167 event->pmu = NULL;
7168 event->oncpu = -1;
7169
7170 event->parent = parent_event;
7171
7172 event->ns = get_pid_ns(task_active_pid_ns(current));
7173 event->id = atomic64_inc_return(&perf_event_id);
7174
7175 event->state = PERF_EVENT_STATE_INACTIVE;
7176
7177 if (task) {
7178 event->attach_state = PERF_ATTACH_TASK;
7179
7180 if (attr->type == PERF_TYPE_TRACEPOINT)
7181 event->hw.tp_target = task;
7182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7183 /*
7184 * hw_breakpoint is a bit difficult here..
7185 */
7186 else if (attr->type == PERF_TYPE_BREAKPOINT)
7187 event->hw.bp_target = task;
7188 #endif
7189 }
7190
7191 if (!overflow_handler && parent_event) {
7192 overflow_handler = parent_event->overflow_handler;
7193 context = parent_event->overflow_handler_context;
7194 }
7195
7196 event->overflow_handler = overflow_handler;
7197 event->overflow_handler_context = context;
7198
7199 perf_event__state_init(event);
7200
7201 pmu = NULL;
7202
7203 hwc = &event->hw;
7204 hwc->sample_period = attr->sample_period;
7205 if (attr->freq && attr->sample_freq)
7206 hwc->sample_period = 1;
7207 hwc->last_period = hwc->sample_period;
7208
7209 local64_set(&hwc->period_left, hwc->sample_period);
7210
7211 /*
7212 * we currently do not support PERF_FORMAT_GROUP on inherited events
7213 */
7214 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7215 goto err_ns;
7216
7217 pmu = perf_init_event(event);
7218 if (!pmu)
7219 goto err_ns;
7220 else if (IS_ERR(pmu)) {
7221 err = PTR_ERR(pmu);
7222 goto err_ns;
7223 }
7224
7225 if (!event->parent) {
7226 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7227 err = get_callchain_buffers();
7228 if (err)
7229 goto err_pmu;
7230 }
7231 }
7232
7233 return event;
7234
7235 err_pmu:
7236 if (event->destroy)
7237 event->destroy(event);
7238 module_put(pmu->module);
7239 err_ns:
7240 if (event->ns)
7241 put_pid_ns(event->ns);
7242 kfree(event);
7243
7244 return ERR_PTR(err);
7245 }
7246
7247 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7248 struct perf_event_attr *attr)
7249 {
7250 u32 size;
7251 int ret;
7252
7253 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7254 return -EFAULT;
7255
7256 /*
7257 * zero the full structure, so that a short copy will be nice.
7258 */
7259 memset(attr, 0, sizeof(*attr));
7260
7261 ret = get_user(size, &uattr->size);
7262 if (ret)
7263 return ret;
7264
7265 if (size > PAGE_SIZE) /* silly large */
7266 goto err_size;
7267
7268 if (!size) /* abi compat */
7269 size = PERF_ATTR_SIZE_VER0;
7270
7271 if (size < PERF_ATTR_SIZE_VER0)
7272 goto err_size;
7273
7274 /*
7275 * If we're handed a bigger struct than we know of,
7276 * ensure all the unknown bits are 0 - i.e. new
7277 * user-space does not rely on any kernel feature
7278 * extensions we dont know about yet.
7279 */
7280 if (size > sizeof(*attr)) {
7281 unsigned char __user *addr;
7282 unsigned char __user *end;
7283 unsigned char val;
7284
7285 addr = (void __user *)uattr + sizeof(*attr);
7286 end = (void __user *)uattr + size;
7287
7288 for (; addr < end; addr++) {
7289 ret = get_user(val, addr);
7290 if (ret)
7291 return ret;
7292 if (val)
7293 goto err_size;
7294 }
7295 size = sizeof(*attr);
7296 }
7297
7298 ret = copy_from_user(attr, uattr, size);
7299 if (ret)
7300 return -EFAULT;
7301
7302 if (attr->__reserved_1)
7303 return -EINVAL;
7304
7305 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7306 return -EINVAL;
7307
7308 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7309 return -EINVAL;
7310
7311 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7312 u64 mask = attr->branch_sample_type;
7313
7314 /* only using defined bits */
7315 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7316 return -EINVAL;
7317
7318 /* at least one branch bit must be set */
7319 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7320 return -EINVAL;
7321
7322 /* propagate priv level, when not set for branch */
7323 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7324
7325 /* exclude_kernel checked on syscall entry */
7326 if (!attr->exclude_kernel)
7327 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7328
7329 if (!attr->exclude_user)
7330 mask |= PERF_SAMPLE_BRANCH_USER;
7331
7332 if (!attr->exclude_hv)
7333 mask |= PERF_SAMPLE_BRANCH_HV;
7334 /*
7335 * adjust user setting (for HW filter setup)
7336 */
7337 attr->branch_sample_type = mask;
7338 }
7339 /* privileged levels capture (kernel, hv): check permissions */
7340 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7341 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7342 return -EACCES;
7343 }
7344
7345 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7346 ret = perf_reg_validate(attr->sample_regs_user);
7347 if (ret)
7348 return ret;
7349 }
7350
7351 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7352 if (!arch_perf_have_user_stack_dump())
7353 return -ENOSYS;
7354
7355 /*
7356 * We have __u32 type for the size, but so far
7357 * we can only use __u16 as maximum due to the
7358 * __u16 sample size limit.
7359 */
7360 if (attr->sample_stack_user >= USHRT_MAX)
7361 ret = -EINVAL;
7362 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7363 ret = -EINVAL;
7364 }
7365
7366 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7367 ret = perf_reg_validate(attr->sample_regs_intr);
7368 out:
7369 return ret;
7370
7371 err_size:
7372 put_user(sizeof(*attr), &uattr->size);
7373 ret = -E2BIG;
7374 goto out;
7375 }
7376
7377 static int
7378 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7379 {
7380 struct ring_buffer *rb = NULL;
7381 int ret = -EINVAL;
7382
7383 if (!output_event)
7384 goto set;
7385
7386 /* don't allow circular references */
7387 if (event == output_event)
7388 goto out;
7389
7390 /*
7391 * Don't allow cross-cpu buffers
7392 */
7393 if (output_event->cpu != event->cpu)
7394 goto out;
7395
7396 /*
7397 * If its not a per-cpu rb, it must be the same task.
7398 */
7399 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7400 goto out;
7401
7402 set:
7403 mutex_lock(&event->mmap_mutex);
7404 /* Can't redirect output if we've got an active mmap() */
7405 if (atomic_read(&event->mmap_count))
7406 goto unlock;
7407
7408 if (output_event) {
7409 /* get the rb we want to redirect to */
7410 rb = ring_buffer_get(output_event);
7411 if (!rb)
7412 goto unlock;
7413 }
7414
7415 ring_buffer_attach(event, rb);
7416
7417 ret = 0;
7418 unlock:
7419 mutex_unlock(&event->mmap_mutex);
7420
7421 out:
7422 return ret;
7423 }
7424
7425 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7426 {
7427 if (b < a)
7428 swap(a, b);
7429
7430 mutex_lock(a);
7431 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7432 }
7433
7434 /**
7435 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7436 *
7437 * @attr_uptr: event_id type attributes for monitoring/sampling
7438 * @pid: target pid
7439 * @cpu: target cpu
7440 * @group_fd: group leader event fd
7441 */
7442 SYSCALL_DEFINE5(perf_event_open,
7443 struct perf_event_attr __user *, attr_uptr,
7444 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7445 {
7446 struct perf_event *group_leader = NULL, *output_event = NULL;
7447 struct perf_event *event, *sibling;
7448 struct perf_event_attr attr;
7449 struct perf_event_context *ctx, *uninitialized_var(gctx);
7450 struct file *event_file = NULL;
7451 struct fd group = {NULL, 0};
7452 struct task_struct *task = NULL;
7453 struct pmu *pmu;
7454 int event_fd;
7455 int move_group = 0;
7456 int err;
7457 int f_flags = O_RDWR;
7458
7459 /* for future expandability... */
7460 if (flags & ~PERF_FLAG_ALL)
7461 return -EINVAL;
7462
7463 err = perf_copy_attr(attr_uptr, &attr);
7464 if (err)
7465 return err;
7466
7467 if (!attr.exclude_kernel) {
7468 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7469 return -EACCES;
7470 }
7471
7472 if (attr.freq) {
7473 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7474 return -EINVAL;
7475 } else {
7476 if (attr.sample_period & (1ULL << 63))
7477 return -EINVAL;
7478 }
7479
7480 /*
7481 * In cgroup mode, the pid argument is used to pass the fd
7482 * opened to the cgroup directory in cgroupfs. The cpu argument
7483 * designates the cpu on which to monitor threads from that
7484 * cgroup.
7485 */
7486 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7487 return -EINVAL;
7488
7489 if (flags & PERF_FLAG_FD_CLOEXEC)
7490 f_flags |= O_CLOEXEC;
7491
7492 event_fd = get_unused_fd_flags(f_flags);
7493 if (event_fd < 0)
7494 return event_fd;
7495
7496 if (group_fd != -1) {
7497 err = perf_fget_light(group_fd, &group);
7498 if (err)
7499 goto err_fd;
7500 group_leader = group.file->private_data;
7501 if (flags & PERF_FLAG_FD_OUTPUT)
7502 output_event = group_leader;
7503 if (flags & PERF_FLAG_FD_NO_GROUP)
7504 group_leader = NULL;
7505 }
7506
7507 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7508 task = find_lively_task_by_vpid(pid);
7509 if (IS_ERR(task)) {
7510 err = PTR_ERR(task);
7511 goto err_group_fd;
7512 }
7513 }
7514
7515 if (task && group_leader &&
7516 group_leader->attr.inherit != attr.inherit) {
7517 err = -EINVAL;
7518 goto err_task;
7519 }
7520
7521 get_online_cpus();
7522
7523 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7524 NULL, NULL);
7525 if (IS_ERR(event)) {
7526 err = PTR_ERR(event);
7527 goto err_cpus;
7528 }
7529
7530 if (flags & PERF_FLAG_PID_CGROUP) {
7531 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7532 if (err) {
7533 __free_event(event);
7534 goto err_cpus;
7535 }
7536 }
7537
7538 if (is_sampling_event(event)) {
7539 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7540 err = -ENOTSUPP;
7541 goto err_alloc;
7542 }
7543 }
7544
7545 account_event(event);
7546
7547 /*
7548 * Special case software events and allow them to be part of
7549 * any hardware group.
7550 */
7551 pmu = event->pmu;
7552
7553 if (group_leader &&
7554 (is_software_event(event) != is_software_event(group_leader))) {
7555 if (is_software_event(event)) {
7556 /*
7557 * If event and group_leader are not both a software
7558 * event, and event is, then group leader is not.
7559 *
7560 * Allow the addition of software events to !software
7561 * groups, this is safe because software events never
7562 * fail to schedule.
7563 */
7564 pmu = group_leader->pmu;
7565 } else if (is_software_event(group_leader) &&
7566 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7567 /*
7568 * In case the group is a pure software group, and we
7569 * try to add a hardware event, move the whole group to
7570 * the hardware context.
7571 */
7572 move_group = 1;
7573 }
7574 }
7575
7576 /*
7577 * Get the target context (task or percpu):
7578 */
7579 ctx = find_get_context(pmu, task, event->cpu);
7580 if (IS_ERR(ctx)) {
7581 err = PTR_ERR(ctx);
7582 goto err_alloc;
7583 }
7584
7585 if (task) {
7586 put_task_struct(task);
7587 task = NULL;
7588 }
7589
7590 /*
7591 * Look up the group leader (we will attach this event to it):
7592 */
7593 if (group_leader) {
7594 err = -EINVAL;
7595
7596 /*
7597 * Do not allow a recursive hierarchy (this new sibling
7598 * becoming part of another group-sibling):
7599 */
7600 if (group_leader->group_leader != group_leader)
7601 goto err_context;
7602 /*
7603 * Do not allow to attach to a group in a different
7604 * task or CPU context:
7605 */
7606 if (move_group) {
7607 /*
7608 * Make sure we're both on the same task, or both
7609 * per-cpu events.
7610 */
7611 if (group_leader->ctx->task != ctx->task)
7612 goto err_context;
7613
7614 /*
7615 * Make sure we're both events for the same CPU;
7616 * grouping events for different CPUs is broken; since
7617 * you can never concurrently schedule them anyhow.
7618 */
7619 if (group_leader->cpu != event->cpu)
7620 goto err_context;
7621 } else {
7622 if (group_leader->ctx != ctx)
7623 goto err_context;
7624 }
7625
7626 /*
7627 * Only a group leader can be exclusive or pinned
7628 */
7629 if (attr.exclusive || attr.pinned)
7630 goto err_context;
7631 }
7632
7633 if (output_event) {
7634 err = perf_event_set_output(event, output_event);
7635 if (err)
7636 goto err_context;
7637 }
7638
7639 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7640 f_flags);
7641 if (IS_ERR(event_file)) {
7642 err = PTR_ERR(event_file);
7643 goto err_context;
7644 }
7645
7646 if (move_group) {
7647 gctx = group_leader->ctx;
7648
7649 /*
7650 * See perf_event_ctx_lock() for comments on the details
7651 * of swizzling perf_event::ctx.
7652 */
7653 mutex_lock_double(&gctx->mutex, &ctx->mutex);
7654
7655 perf_remove_from_context(group_leader, false);
7656
7657 list_for_each_entry(sibling, &group_leader->sibling_list,
7658 group_entry) {
7659 perf_remove_from_context(sibling, false);
7660 put_ctx(gctx);
7661 }
7662 } else {
7663 mutex_lock(&ctx->mutex);
7664 }
7665
7666 WARN_ON_ONCE(ctx->parent_ctx);
7667
7668 if (move_group) {
7669 /*
7670 * Wait for everybody to stop referencing the events through
7671 * the old lists, before installing it on new lists.
7672 */
7673 synchronize_rcu();
7674
7675 /*
7676 * Install the group siblings before the group leader.
7677 *
7678 * Because a group leader will try and install the entire group
7679 * (through the sibling list, which is still in-tact), we can
7680 * end up with siblings installed in the wrong context.
7681 *
7682 * By installing siblings first we NO-OP because they're not
7683 * reachable through the group lists.
7684 */
7685 list_for_each_entry(sibling, &group_leader->sibling_list,
7686 group_entry) {
7687 perf_event__state_init(sibling);
7688 perf_install_in_context(ctx, sibling, sibling->cpu);
7689 get_ctx(ctx);
7690 }
7691
7692 /*
7693 * Removing from the context ends up with disabled
7694 * event. What we want here is event in the initial
7695 * startup state, ready to be add into new context.
7696 */
7697 perf_event__state_init(group_leader);
7698 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7699 get_ctx(ctx);
7700 }
7701
7702 perf_install_in_context(ctx, event, event->cpu);
7703 perf_unpin_context(ctx);
7704
7705 if (move_group) {
7706 mutex_unlock(&gctx->mutex);
7707 put_ctx(gctx);
7708 }
7709 mutex_unlock(&ctx->mutex);
7710
7711 put_online_cpus();
7712
7713 event->owner = current;
7714
7715 mutex_lock(&current->perf_event_mutex);
7716 list_add_tail(&event->owner_entry, &current->perf_event_list);
7717 mutex_unlock(&current->perf_event_mutex);
7718
7719 /*
7720 * Precalculate sample_data sizes
7721 */
7722 perf_event__header_size(event);
7723 perf_event__id_header_size(event);
7724
7725 /*
7726 * Drop the reference on the group_event after placing the
7727 * new event on the sibling_list. This ensures destruction
7728 * of the group leader will find the pointer to itself in
7729 * perf_group_detach().
7730 */
7731 fdput(group);
7732 fd_install(event_fd, event_file);
7733 return event_fd;
7734
7735 err_context:
7736 perf_unpin_context(ctx);
7737 put_ctx(ctx);
7738 err_alloc:
7739 free_event(event);
7740 err_cpus:
7741 put_online_cpus();
7742 err_task:
7743 if (task)
7744 put_task_struct(task);
7745 err_group_fd:
7746 fdput(group);
7747 err_fd:
7748 put_unused_fd(event_fd);
7749 return err;
7750 }
7751
7752 /**
7753 * perf_event_create_kernel_counter
7754 *
7755 * @attr: attributes of the counter to create
7756 * @cpu: cpu in which the counter is bound
7757 * @task: task to profile (NULL for percpu)
7758 */
7759 struct perf_event *
7760 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7761 struct task_struct *task,
7762 perf_overflow_handler_t overflow_handler,
7763 void *context)
7764 {
7765 struct perf_event_context *ctx;
7766 struct perf_event *event;
7767 int err;
7768
7769 /*
7770 * Get the target context (task or percpu):
7771 */
7772
7773 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7774 overflow_handler, context);
7775 if (IS_ERR(event)) {
7776 err = PTR_ERR(event);
7777 goto err;
7778 }
7779
7780 /* Mark owner so we could distinguish it from user events. */
7781 event->owner = EVENT_OWNER_KERNEL;
7782
7783 account_event(event);
7784
7785 ctx = find_get_context(event->pmu, task, cpu);
7786 if (IS_ERR(ctx)) {
7787 err = PTR_ERR(ctx);
7788 goto err_free;
7789 }
7790
7791 WARN_ON_ONCE(ctx->parent_ctx);
7792 mutex_lock(&ctx->mutex);
7793 perf_install_in_context(ctx, event, cpu);
7794 perf_unpin_context(ctx);
7795 mutex_unlock(&ctx->mutex);
7796
7797 return event;
7798
7799 err_free:
7800 free_event(event);
7801 err:
7802 return ERR_PTR(err);
7803 }
7804 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7805
7806 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7807 {
7808 struct perf_event_context *src_ctx;
7809 struct perf_event_context *dst_ctx;
7810 struct perf_event *event, *tmp;
7811 LIST_HEAD(events);
7812
7813 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7814 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7815
7816 /*
7817 * See perf_event_ctx_lock() for comments on the details
7818 * of swizzling perf_event::ctx.
7819 */
7820 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7821 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7822 event_entry) {
7823 perf_remove_from_context(event, false);
7824 unaccount_event_cpu(event, src_cpu);
7825 put_ctx(src_ctx);
7826 list_add(&event->migrate_entry, &events);
7827 }
7828
7829 /*
7830 * Wait for the events to quiesce before re-instating them.
7831 */
7832 synchronize_rcu();
7833
7834 /*
7835 * Re-instate events in 2 passes.
7836 *
7837 * Skip over group leaders and only install siblings on this first
7838 * pass, siblings will not get enabled without a leader, however a
7839 * leader will enable its siblings, even if those are still on the old
7840 * context.
7841 */
7842 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7843 if (event->group_leader == event)
7844 continue;
7845
7846 list_del(&event->migrate_entry);
7847 if (event->state >= PERF_EVENT_STATE_OFF)
7848 event->state = PERF_EVENT_STATE_INACTIVE;
7849 account_event_cpu(event, dst_cpu);
7850 perf_install_in_context(dst_ctx, event, dst_cpu);
7851 get_ctx(dst_ctx);
7852 }
7853
7854 /*
7855 * Once all the siblings are setup properly, install the group leaders
7856 * to make it go.
7857 */
7858 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7859 list_del(&event->migrate_entry);
7860 if (event->state >= PERF_EVENT_STATE_OFF)
7861 event->state = PERF_EVENT_STATE_INACTIVE;
7862 account_event_cpu(event, dst_cpu);
7863 perf_install_in_context(dst_ctx, event, dst_cpu);
7864 get_ctx(dst_ctx);
7865 }
7866 mutex_unlock(&dst_ctx->mutex);
7867 mutex_unlock(&src_ctx->mutex);
7868 }
7869 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7870
7871 static void sync_child_event(struct perf_event *child_event,
7872 struct task_struct *child)
7873 {
7874 struct perf_event *parent_event = child_event->parent;
7875 u64 child_val;
7876
7877 if (child_event->attr.inherit_stat)
7878 perf_event_read_event(child_event, child);
7879
7880 child_val = perf_event_count(child_event);
7881
7882 /*
7883 * Add back the child's count to the parent's count:
7884 */
7885 atomic64_add(child_val, &parent_event->child_count);
7886 atomic64_add(child_event->total_time_enabled,
7887 &parent_event->child_total_time_enabled);
7888 atomic64_add(child_event->total_time_running,
7889 &parent_event->child_total_time_running);
7890
7891 /*
7892 * Remove this event from the parent's list
7893 */
7894 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7895 mutex_lock(&parent_event->child_mutex);
7896 list_del_init(&child_event->child_list);
7897 mutex_unlock(&parent_event->child_mutex);
7898
7899 /*
7900 * Make sure user/parent get notified, that we just
7901 * lost one event.
7902 */
7903 perf_event_wakeup(parent_event);
7904
7905 /*
7906 * Release the parent event, if this was the last
7907 * reference to it.
7908 */
7909 put_event(parent_event);
7910 }
7911
7912 static void
7913 __perf_event_exit_task(struct perf_event *child_event,
7914 struct perf_event_context *child_ctx,
7915 struct task_struct *child)
7916 {
7917 /*
7918 * Do not destroy the 'original' grouping; because of the context
7919 * switch optimization the original events could've ended up in a
7920 * random child task.
7921 *
7922 * If we were to destroy the original group, all group related
7923 * operations would cease to function properly after this random
7924 * child dies.
7925 *
7926 * Do destroy all inherited groups, we don't care about those
7927 * and being thorough is better.
7928 */
7929 perf_remove_from_context(child_event, !!child_event->parent);
7930
7931 /*
7932 * It can happen that the parent exits first, and has events
7933 * that are still around due to the child reference. These
7934 * events need to be zapped.
7935 */
7936 if (child_event->parent) {
7937 sync_child_event(child_event, child);
7938 free_event(child_event);
7939 } else {
7940 child_event->state = PERF_EVENT_STATE_EXIT;
7941 perf_event_wakeup(child_event);
7942 }
7943 }
7944
7945 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7946 {
7947 struct perf_event *child_event, *next;
7948 struct perf_event_context *child_ctx, *clone_ctx = NULL;
7949 unsigned long flags;
7950
7951 if (likely(!child->perf_event_ctxp[ctxn])) {
7952 perf_event_task(child, NULL, 0);
7953 return;
7954 }
7955
7956 local_irq_save(flags);
7957 /*
7958 * We can't reschedule here because interrupts are disabled,
7959 * and either child is current or it is a task that can't be
7960 * scheduled, so we are now safe from rescheduling changing
7961 * our context.
7962 */
7963 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7964
7965 /*
7966 * Take the context lock here so that if find_get_context is
7967 * reading child->perf_event_ctxp, we wait until it has
7968 * incremented the context's refcount before we do put_ctx below.
7969 */
7970 raw_spin_lock(&child_ctx->lock);
7971 task_ctx_sched_out(child_ctx);
7972 child->perf_event_ctxp[ctxn] = NULL;
7973
7974 /*
7975 * If this context is a clone; unclone it so it can't get
7976 * swapped to another process while we're removing all
7977 * the events from it.
7978 */
7979 clone_ctx = unclone_ctx(child_ctx);
7980 update_context_time(child_ctx);
7981 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7982
7983 if (clone_ctx)
7984 put_ctx(clone_ctx);
7985
7986 /*
7987 * Report the task dead after unscheduling the events so that we
7988 * won't get any samples after PERF_RECORD_EXIT. We can however still
7989 * get a few PERF_RECORD_READ events.
7990 */
7991 perf_event_task(child, child_ctx, 0);
7992
7993 /*
7994 * We can recurse on the same lock type through:
7995 *
7996 * __perf_event_exit_task()
7997 * sync_child_event()
7998 * put_event()
7999 * mutex_lock(&ctx->mutex)
8000 *
8001 * But since its the parent context it won't be the same instance.
8002 */
8003 mutex_lock(&child_ctx->mutex);
8004
8005 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8006 __perf_event_exit_task(child_event, child_ctx, child);
8007
8008 mutex_unlock(&child_ctx->mutex);
8009
8010 put_ctx(child_ctx);
8011 }
8012
8013 /*
8014 * When a child task exits, feed back event values to parent events.
8015 */
8016 void perf_event_exit_task(struct task_struct *child)
8017 {
8018 struct perf_event *event, *tmp;
8019 int ctxn;
8020
8021 mutex_lock(&child->perf_event_mutex);
8022 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8023 owner_entry) {
8024 list_del_init(&event->owner_entry);
8025
8026 /*
8027 * Ensure the list deletion is visible before we clear
8028 * the owner, closes a race against perf_release() where
8029 * we need to serialize on the owner->perf_event_mutex.
8030 */
8031 smp_wmb();
8032 event->owner = NULL;
8033 }
8034 mutex_unlock(&child->perf_event_mutex);
8035
8036 for_each_task_context_nr(ctxn)
8037 perf_event_exit_task_context(child, ctxn);
8038 }
8039
8040 static void perf_free_event(struct perf_event *event,
8041 struct perf_event_context *ctx)
8042 {
8043 struct perf_event *parent = event->parent;
8044
8045 if (WARN_ON_ONCE(!parent))
8046 return;
8047
8048 mutex_lock(&parent->child_mutex);
8049 list_del_init(&event->child_list);
8050 mutex_unlock(&parent->child_mutex);
8051
8052 put_event(parent);
8053
8054 raw_spin_lock_irq(&ctx->lock);
8055 perf_group_detach(event);
8056 list_del_event(event, ctx);
8057 raw_spin_unlock_irq(&ctx->lock);
8058 free_event(event);
8059 }
8060
8061 /*
8062 * Free an unexposed, unused context as created by inheritance by
8063 * perf_event_init_task below, used by fork() in case of fail.
8064 *
8065 * Not all locks are strictly required, but take them anyway to be nice and
8066 * help out with the lockdep assertions.
8067 */
8068 void perf_event_free_task(struct task_struct *task)
8069 {
8070 struct perf_event_context *ctx;
8071 struct perf_event *event, *tmp;
8072 int ctxn;
8073
8074 for_each_task_context_nr(ctxn) {
8075 ctx = task->perf_event_ctxp[ctxn];
8076 if (!ctx)
8077 continue;
8078
8079 mutex_lock(&ctx->mutex);
8080 again:
8081 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8082 group_entry)
8083 perf_free_event(event, ctx);
8084
8085 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8086 group_entry)
8087 perf_free_event(event, ctx);
8088
8089 if (!list_empty(&ctx->pinned_groups) ||
8090 !list_empty(&ctx->flexible_groups))
8091 goto again;
8092
8093 mutex_unlock(&ctx->mutex);
8094
8095 put_ctx(ctx);
8096 }
8097 }
8098
8099 void perf_event_delayed_put(struct task_struct *task)
8100 {
8101 int ctxn;
8102
8103 for_each_task_context_nr(ctxn)
8104 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8105 }
8106
8107 /*
8108 * inherit a event from parent task to child task:
8109 */
8110 static struct perf_event *
8111 inherit_event(struct perf_event *parent_event,
8112 struct task_struct *parent,
8113 struct perf_event_context *parent_ctx,
8114 struct task_struct *child,
8115 struct perf_event *group_leader,
8116 struct perf_event_context *child_ctx)
8117 {
8118 enum perf_event_active_state parent_state = parent_event->state;
8119 struct perf_event *child_event;
8120 unsigned long flags;
8121
8122 /*
8123 * Instead of creating recursive hierarchies of events,
8124 * we link inherited events back to the original parent,
8125 * which has a filp for sure, which we use as the reference
8126 * count:
8127 */
8128 if (parent_event->parent)
8129 parent_event = parent_event->parent;
8130
8131 child_event = perf_event_alloc(&parent_event->attr,
8132 parent_event->cpu,
8133 child,
8134 group_leader, parent_event,
8135 NULL, NULL);
8136 if (IS_ERR(child_event))
8137 return child_event;
8138
8139 if (is_orphaned_event(parent_event) ||
8140 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8141 free_event(child_event);
8142 return NULL;
8143 }
8144
8145 get_ctx(child_ctx);
8146
8147 /*
8148 * Make the child state follow the state of the parent event,
8149 * not its attr.disabled bit. We hold the parent's mutex,
8150 * so we won't race with perf_event_{en, dis}able_family.
8151 */
8152 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8153 child_event->state = PERF_EVENT_STATE_INACTIVE;
8154 else
8155 child_event->state = PERF_EVENT_STATE_OFF;
8156
8157 if (parent_event->attr.freq) {
8158 u64 sample_period = parent_event->hw.sample_period;
8159 struct hw_perf_event *hwc = &child_event->hw;
8160
8161 hwc->sample_period = sample_period;
8162 hwc->last_period = sample_period;
8163
8164 local64_set(&hwc->period_left, sample_period);
8165 }
8166
8167 child_event->ctx = child_ctx;
8168 child_event->overflow_handler = parent_event->overflow_handler;
8169 child_event->overflow_handler_context
8170 = parent_event->overflow_handler_context;
8171
8172 /*
8173 * Precalculate sample_data sizes
8174 */
8175 perf_event__header_size(child_event);
8176 perf_event__id_header_size(child_event);
8177
8178 /*
8179 * Link it up in the child's context:
8180 */
8181 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8182 add_event_to_ctx(child_event, child_ctx);
8183 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8184
8185 /*
8186 * Link this into the parent event's child list
8187 */
8188 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8189 mutex_lock(&parent_event->child_mutex);
8190 list_add_tail(&child_event->child_list, &parent_event->child_list);
8191 mutex_unlock(&parent_event->child_mutex);
8192
8193 return child_event;
8194 }
8195
8196 static int inherit_group(struct perf_event *parent_event,
8197 struct task_struct *parent,
8198 struct perf_event_context *parent_ctx,
8199 struct task_struct *child,
8200 struct perf_event_context *child_ctx)
8201 {
8202 struct perf_event *leader;
8203 struct perf_event *sub;
8204 struct perf_event *child_ctr;
8205
8206 leader = inherit_event(parent_event, parent, parent_ctx,
8207 child, NULL, child_ctx);
8208 if (IS_ERR(leader))
8209 return PTR_ERR(leader);
8210 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8211 child_ctr = inherit_event(sub, parent, parent_ctx,
8212 child, leader, child_ctx);
8213 if (IS_ERR(child_ctr))
8214 return PTR_ERR(child_ctr);
8215 }
8216 return 0;
8217 }
8218
8219 static int
8220 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8221 struct perf_event_context *parent_ctx,
8222 struct task_struct *child, int ctxn,
8223 int *inherited_all)
8224 {
8225 int ret;
8226 struct perf_event_context *child_ctx;
8227
8228 if (!event->attr.inherit) {
8229 *inherited_all = 0;
8230 return 0;
8231 }
8232
8233 child_ctx = child->perf_event_ctxp[ctxn];
8234 if (!child_ctx) {
8235 /*
8236 * This is executed from the parent task context, so
8237 * inherit events that have been marked for cloning.
8238 * First allocate and initialize a context for the
8239 * child.
8240 */
8241
8242 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8243 if (!child_ctx)
8244 return -ENOMEM;
8245
8246 child->perf_event_ctxp[ctxn] = child_ctx;
8247 }
8248
8249 ret = inherit_group(event, parent, parent_ctx,
8250 child, child_ctx);
8251
8252 if (ret)
8253 *inherited_all = 0;
8254
8255 return ret;
8256 }
8257
8258 /*
8259 * Initialize the perf_event context in task_struct
8260 */
8261 static int perf_event_init_context(struct task_struct *child, int ctxn)
8262 {
8263 struct perf_event_context *child_ctx, *parent_ctx;
8264 struct perf_event_context *cloned_ctx;
8265 struct perf_event *event;
8266 struct task_struct *parent = current;
8267 int inherited_all = 1;
8268 unsigned long flags;
8269 int ret = 0;
8270
8271 if (likely(!parent->perf_event_ctxp[ctxn]))
8272 return 0;
8273
8274 /*
8275 * If the parent's context is a clone, pin it so it won't get
8276 * swapped under us.
8277 */
8278 parent_ctx = perf_pin_task_context(parent, ctxn);
8279 if (!parent_ctx)
8280 return 0;
8281
8282 /*
8283 * No need to check if parent_ctx != NULL here; since we saw
8284 * it non-NULL earlier, the only reason for it to become NULL
8285 * is if we exit, and since we're currently in the middle of
8286 * a fork we can't be exiting at the same time.
8287 */
8288
8289 /*
8290 * Lock the parent list. No need to lock the child - not PID
8291 * hashed yet and not running, so nobody can access it.
8292 */
8293 mutex_lock(&parent_ctx->mutex);
8294
8295 /*
8296 * We dont have to disable NMIs - we are only looking at
8297 * the list, not manipulating it:
8298 */
8299 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8300 ret = inherit_task_group(event, parent, parent_ctx,
8301 child, ctxn, &inherited_all);
8302 if (ret)
8303 break;
8304 }
8305
8306 /*
8307 * We can't hold ctx->lock when iterating the ->flexible_group list due
8308 * to allocations, but we need to prevent rotation because
8309 * rotate_ctx() will change the list from interrupt context.
8310 */
8311 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8312 parent_ctx->rotate_disable = 1;
8313 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8314
8315 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8316 ret = inherit_task_group(event, parent, parent_ctx,
8317 child, ctxn, &inherited_all);
8318 if (ret)
8319 break;
8320 }
8321
8322 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8323 parent_ctx->rotate_disable = 0;
8324
8325 child_ctx = child->perf_event_ctxp[ctxn];
8326
8327 if (child_ctx && inherited_all) {
8328 /*
8329 * Mark the child context as a clone of the parent
8330 * context, or of whatever the parent is a clone of.
8331 *
8332 * Note that if the parent is a clone, the holding of
8333 * parent_ctx->lock avoids it from being uncloned.
8334 */
8335 cloned_ctx = parent_ctx->parent_ctx;
8336 if (cloned_ctx) {
8337 child_ctx->parent_ctx = cloned_ctx;
8338 child_ctx->parent_gen = parent_ctx->parent_gen;
8339 } else {
8340 child_ctx->parent_ctx = parent_ctx;
8341 child_ctx->parent_gen = parent_ctx->generation;
8342 }
8343 get_ctx(child_ctx->parent_ctx);
8344 }
8345
8346 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8347 mutex_unlock(&parent_ctx->mutex);
8348
8349 perf_unpin_context(parent_ctx);
8350 put_ctx(parent_ctx);
8351
8352 return ret;
8353 }
8354
8355 /*
8356 * Initialize the perf_event context in task_struct
8357 */
8358 int perf_event_init_task(struct task_struct *child)
8359 {
8360 int ctxn, ret;
8361
8362 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8363 mutex_init(&child->perf_event_mutex);
8364 INIT_LIST_HEAD(&child->perf_event_list);
8365
8366 for_each_task_context_nr(ctxn) {
8367 ret = perf_event_init_context(child, ctxn);
8368 if (ret) {
8369 perf_event_free_task(child);
8370 return ret;
8371 }
8372 }
8373
8374 return 0;
8375 }
8376
8377 static void __init perf_event_init_all_cpus(void)
8378 {
8379 struct swevent_htable *swhash;
8380 int cpu;
8381
8382 for_each_possible_cpu(cpu) {
8383 swhash = &per_cpu(swevent_htable, cpu);
8384 mutex_init(&swhash->hlist_mutex);
8385 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8386 }
8387 }
8388
8389 static void perf_event_init_cpu(int cpu)
8390 {
8391 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8392
8393 mutex_lock(&swhash->hlist_mutex);
8394 swhash->online = true;
8395 if (swhash->hlist_refcount > 0) {
8396 struct swevent_hlist *hlist;
8397
8398 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8399 WARN_ON(!hlist);
8400 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8401 }
8402 mutex_unlock(&swhash->hlist_mutex);
8403 }
8404
8405 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8406 static void __perf_event_exit_context(void *__info)
8407 {
8408 struct remove_event re = { .detach_group = true };
8409 struct perf_event_context *ctx = __info;
8410
8411 rcu_read_lock();
8412 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8413 __perf_remove_from_context(&re);
8414 rcu_read_unlock();
8415 }
8416
8417 static void perf_event_exit_cpu_context(int cpu)
8418 {
8419 struct perf_event_context *ctx;
8420 struct pmu *pmu;
8421 int idx;
8422
8423 idx = srcu_read_lock(&pmus_srcu);
8424 list_for_each_entry_rcu(pmu, &pmus, entry) {
8425 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8426
8427 mutex_lock(&ctx->mutex);
8428 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8429 mutex_unlock(&ctx->mutex);
8430 }
8431 srcu_read_unlock(&pmus_srcu, idx);
8432 }
8433
8434 static void perf_event_exit_cpu(int cpu)
8435 {
8436 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8437
8438 perf_event_exit_cpu_context(cpu);
8439
8440 mutex_lock(&swhash->hlist_mutex);
8441 swhash->online = false;
8442 swevent_hlist_release(swhash);
8443 mutex_unlock(&swhash->hlist_mutex);
8444 }
8445 #else
8446 static inline void perf_event_exit_cpu(int cpu) { }
8447 #endif
8448
8449 static int
8450 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8451 {
8452 int cpu;
8453
8454 for_each_online_cpu(cpu)
8455 perf_event_exit_cpu(cpu);
8456
8457 return NOTIFY_OK;
8458 }
8459
8460 /*
8461 * Run the perf reboot notifier at the very last possible moment so that
8462 * the generic watchdog code runs as long as possible.
8463 */
8464 static struct notifier_block perf_reboot_notifier = {
8465 .notifier_call = perf_reboot,
8466 .priority = INT_MIN,
8467 };
8468
8469 static int
8470 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8471 {
8472 unsigned int cpu = (long)hcpu;
8473
8474 switch (action & ~CPU_TASKS_FROZEN) {
8475
8476 case CPU_UP_PREPARE:
8477 case CPU_DOWN_FAILED:
8478 perf_event_init_cpu(cpu);
8479 break;
8480
8481 case CPU_UP_CANCELED:
8482 case CPU_DOWN_PREPARE:
8483 perf_event_exit_cpu(cpu);
8484 break;
8485 default:
8486 break;
8487 }
8488
8489 return NOTIFY_OK;
8490 }
8491
8492 void __init perf_event_init(void)
8493 {
8494 int ret;
8495
8496 idr_init(&pmu_idr);
8497
8498 perf_event_init_all_cpus();
8499 init_srcu_struct(&pmus_srcu);
8500 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8501 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8502 perf_pmu_register(&perf_task_clock, NULL, -1);
8503 perf_tp_register();
8504 perf_cpu_notifier(perf_cpu_notify);
8505 register_reboot_notifier(&perf_reboot_notifier);
8506
8507 ret = init_hw_breakpoint();
8508 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8509
8510 /* do not patch jump label more than once per second */
8511 jump_label_rate_limit(&perf_sched_events, HZ);
8512
8513 /*
8514 * Build time assertion that we keep the data_head at the intended
8515 * location. IOW, validation we got the __reserved[] size right.
8516 */
8517 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8518 != 1024);
8519 }
8520
8521 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8522 char *page)
8523 {
8524 struct perf_pmu_events_attr *pmu_attr =
8525 container_of(attr, struct perf_pmu_events_attr, attr);
8526
8527 if (pmu_attr->event_str)
8528 return sprintf(page, "%s\n", pmu_attr->event_str);
8529
8530 return 0;
8531 }
8532
8533 static int __init perf_event_sysfs_init(void)
8534 {
8535 struct pmu *pmu;
8536 int ret;
8537
8538 mutex_lock(&pmus_lock);
8539
8540 ret = bus_register(&pmu_bus);
8541 if (ret)
8542 goto unlock;
8543
8544 list_for_each_entry(pmu, &pmus, entry) {
8545 if (!pmu->name || pmu->type < 0)
8546 continue;
8547
8548 ret = pmu_dev_alloc(pmu);
8549 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8550 }
8551 pmu_bus_running = 1;
8552 ret = 0;
8553
8554 unlock:
8555 mutex_unlock(&pmus_lock);
8556
8557 return ret;
8558 }
8559 device_initcall(perf_event_sysfs_init);
8560
8561 #ifdef CONFIG_CGROUP_PERF
8562 static struct cgroup_subsys_state *
8563 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8564 {
8565 struct perf_cgroup *jc;
8566
8567 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8568 if (!jc)
8569 return ERR_PTR(-ENOMEM);
8570
8571 jc->info = alloc_percpu(struct perf_cgroup_info);
8572 if (!jc->info) {
8573 kfree(jc);
8574 return ERR_PTR(-ENOMEM);
8575 }
8576
8577 return &jc->css;
8578 }
8579
8580 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8581 {
8582 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8583
8584 free_percpu(jc->info);
8585 kfree(jc);
8586 }
8587
8588 static int __perf_cgroup_move(void *info)
8589 {
8590 struct task_struct *task = info;
8591 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8592 return 0;
8593 }
8594
8595 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8596 struct cgroup_taskset *tset)
8597 {
8598 struct task_struct *task;
8599
8600 cgroup_taskset_for_each(task, tset)
8601 task_function_call(task, __perf_cgroup_move, task);
8602 }
8603
8604 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8605 struct cgroup_subsys_state *old_css,
8606 struct task_struct *task)
8607 {
8608 /*
8609 * cgroup_exit() is called in the copy_process() failure path.
8610 * Ignore this case since the task hasn't ran yet, this avoids
8611 * trying to poke a half freed task state from generic code.
8612 */
8613 if (!(task->flags & PF_EXITING))
8614 return;
8615
8616 task_function_call(task, __perf_cgroup_move, task);
8617 }
8618
8619 struct cgroup_subsys perf_event_cgrp_subsys = {
8620 .css_alloc = perf_cgroup_css_alloc,
8621 .css_free = perf_cgroup_css_free,
8622 .exit = perf_cgroup_exit,
8623 .attach = perf_cgroup_attach,
8624 };
8625 #endif /* CONFIG_CGROUP_PERF */
This page took 0.332606 seconds and 6 git commands to generate.