Merge branch 'leds-fixes-for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45
46 #include "internal.h"
47
48 #include <asm/irq_regs.h>
49
50 static struct workqueue_struct *perf_wq;
51
52 struct remote_function_call {
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
57 };
58
59 static void remote_function(void *data)
60 {
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71 }
72
73 /**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 struct remote_function_call data = {
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100 }
101
102 /**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 struct remote_function_call data = {
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123 }
124
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 return event->owner == EVENT_OWNER_KERNEL;
130 }
131
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
136
137 /*
138 * branch priv levels that need permission checks
139 */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
144 enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149
150 /*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166
167 /*
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
173 */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178
179 /*
180 * max perf event sample rate
181 */
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
191 static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193
194 void update_perf_cpu_limits(void)
195 {
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
199 do_div(tmp, 100);
200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208 {
209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219 }
220
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226 {
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
233
234 return 0;
235 }
236
237 /*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 u64 avg_local_sample_len;
250 u64 local_samples_len;
251
252 local_samples_len = __this_cpu_read(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len, allowed_ns >> 1,
259 sysctl_perf_event_sample_rate);
260 }
261
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
269
270 if (allowed_ns == 0)
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __this_cpu_read(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __this_cpu_write(running_sample_length, local_samples_len);
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
286 if (avg_local_sample_len <= allowed_ns)
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
296 update_perf_cpu_limits();
297
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
304 }
305
306 static atomic64_t perf_event_id;
307
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317
318 void __weak perf_event_print_debug(void) { }
319
320 extern __weak const char *perf_pmu_name(void)
321 {
322 return "pmu";
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return local_clock();
328 }
329
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338 {
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342 }
343
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346 {
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351
352 #ifdef CONFIG_CGROUP_PERF
353
354 /*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358 struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361 };
362
363 struct perf_cgroup {
364 struct cgroup_subsys_state css;
365 struct perf_cgroup_info __percpu *info;
366 };
367
368 /*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 return container_of(task_css(task, perf_event_cgrp_id),
377 struct perf_cgroup, css);
378 }
379
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
402 }
403
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 css_put(&event->cgrp->css);
407 event->cgrp = NULL;
408 }
409
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 return event->cgrp != NULL;
413 }
414
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421 }
422
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434 }
435
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441 }
442
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 struct perf_cgroup *cgrp;
446
447 /*
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
450 */
451 if (!is_cgroup_event(event))
452 return;
453
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
460 }
461
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
465 {
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
479 info->timestamp = ctx->timestamp;
480 }
481
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485 /*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
514
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
536 WARN_ON_ONCE(cpuctx->cgrp);
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 }
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553 }
554
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
557 {
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608 {
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
611 struct fd f = fdget(fd);
612 int ret = 0;
613
614 if (!f.file)
615 return -EBADF;
616
617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 &perf_event_cgrp_subsys);
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
635 }
636 out:
637 fdput(f);
638 return ret;
639 }
640
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647 }
648
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660 }
661
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665 {
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 return true;
688 }
689
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 return 0;
696 }
697
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 return 0;
701 }
702
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
713 {
714 }
715
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
718 {
719 }
720
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724 {
725 return -EINVAL;
726 }
727
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
731 {
732 }
733
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 return 0;
747 }
748
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760
761 /*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767 * function must be called with interrupts disbled
768 */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790 }
791
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818 }
819
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
824 int timer;
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842 }
843
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
866 }
867
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
873 }
874
875 static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877 /*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
882 static void perf_pmu_rotate_start(struct pmu *pmu)
883 {
884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885 struct list_head *head = this_cpu_ptr(&rotation_list);
886
887 WARN_ON(!irqs_disabled());
888
889 if (list_empty(&cpuctx->rotation_list))
890 list_add(&cpuctx->rotation_list, head);
891 }
892
893 static void get_ctx(struct perf_event_context *ctx)
894 {
895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 }
897
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
903 if (ctx->task)
904 put_task_struct(ctx->task);
905 kfree_rcu(ctx, rcu_head);
906 }
907 }
908
909 /*
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
913 */
914 static __must_check struct perf_event_context *
915 unclone_ctx(struct perf_event_context *ctx)
916 {
917 struct perf_event_context *parent_ctx = ctx->parent_ctx;
918
919 lockdep_assert_held(&ctx->lock);
920
921 if (parent_ctx)
922 ctx->parent_ctx = NULL;
923 ctx->generation++;
924
925 return parent_ctx;
926 }
927
928 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929 {
930 /*
931 * only top level events have the pid namespace they were created in
932 */
933 if (event->parent)
934 event = event->parent;
935
936 return task_tgid_nr_ns(p, event->ns);
937 }
938
939 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940 {
941 /*
942 * only top level events have the pid namespace they were created in
943 */
944 if (event->parent)
945 event = event->parent;
946
947 return task_pid_nr_ns(p, event->ns);
948 }
949
950 /*
951 * If we inherit events we want to return the parent event id
952 * to userspace.
953 */
954 static u64 primary_event_id(struct perf_event *event)
955 {
956 u64 id = event->id;
957
958 if (event->parent)
959 id = event->parent->id;
960
961 return id;
962 }
963
964 /*
965 * Get the perf_event_context for a task and lock it.
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
968 */
969 static struct perf_event_context *
970 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971 {
972 struct perf_event_context *ctx;
973
974 retry:
975 /*
976 * One of the few rules of preemptible RCU is that one cannot do
977 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 * part of the read side critical section was preemptible -- see
979 * rcu_read_unlock_special().
980 *
981 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 * side critical section is non-preemptible.
983 */
984 preempt_disable();
985 rcu_read_lock();
986 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 if (ctx) {
988 /*
989 * If this context is a clone of another, it might
990 * get swapped for another underneath us by
991 * perf_event_task_sched_out, though the
992 * rcu_read_lock() protects us from any context
993 * getting freed. Lock the context and check if it
994 * got swapped before we could get the lock, and retry
995 * if so. If we locked the right context, then it
996 * can't get swapped on us any more.
997 */
998 raw_spin_lock_irqsave(&ctx->lock, *flags);
999 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 rcu_read_unlock();
1002 preempt_enable();
1003 goto retry;
1004 }
1005
1006 if (!atomic_inc_not_zero(&ctx->refcount)) {
1007 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 ctx = NULL;
1009 }
1010 }
1011 rcu_read_unlock();
1012 preempt_enable();
1013 return ctx;
1014 }
1015
1016 /*
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task. This also increments its
1019 * reference count so that the context can't get freed.
1020 */
1021 static struct perf_event_context *
1022 perf_pin_task_context(struct task_struct *task, int ctxn)
1023 {
1024 struct perf_event_context *ctx;
1025 unsigned long flags;
1026
1027 ctx = perf_lock_task_context(task, ctxn, &flags);
1028 if (ctx) {
1029 ++ctx->pin_count;
1030 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 }
1032 return ctx;
1033 }
1034
1035 static void perf_unpin_context(struct perf_event_context *ctx)
1036 {
1037 unsigned long flags;
1038
1039 raw_spin_lock_irqsave(&ctx->lock, flags);
1040 --ctx->pin_count;
1041 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 }
1043
1044 /*
1045 * Update the record of the current time in a context.
1046 */
1047 static void update_context_time(struct perf_event_context *ctx)
1048 {
1049 u64 now = perf_clock();
1050
1051 ctx->time += now - ctx->timestamp;
1052 ctx->timestamp = now;
1053 }
1054
1055 static u64 perf_event_time(struct perf_event *event)
1056 {
1057 struct perf_event_context *ctx = event->ctx;
1058
1059 if (is_cgroup_event(event))
1060 return perf_cgroup_event_time(event);
1061
1062 return ctx ? ctx->time : 0;
1063 }
1064
1065 /*
1066 * Update the total_time_enabled and total_time_running fields for a event.
1067 * The caller of this function needs to hold the ctx->lock.
1068 */
1069 static void update_event_times(struct perf_event *event)
1070 {
1071 struct perf_event_context *ctx = event->ctx;
1072 u64 run_end;
1073
1074 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 return;
1077 /*
1078 * in cgroup mode, time_enabled represents
1079 * the time the event was enabled AND active
1080 * tasks were in the monitored cgroup. This is
1081 * independent of the activity of the context as
1082 * there may be a mix of cgroup and non-cgroup events.
1083 *
1084 * That is why we treat cgroup events differently
1085 * here.
1086 */
1087 if (is_cgroup_event(event))
1088 run_end = perf_cgroup_event_time(event);
1089 else if (ctx->is_active)
1090 run_end = ctx->time;
1091 else
1092 run_end = event->tstamp_stopped;
1093
1094 event->total_time_enabled = run_end - event->tstamp_enabled;
1095
1096 if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 run_end = event->tstamp_stopped;
1098 else
1099 run_end = perf_event_time(event);
1100
1101 event->total_time_running = run_end - event->tstamp_running;
1102
1103 }
1104
1105 /*
1106 * Update total_time_enabled and total_time_running for all events in a group.
1107 */
1108 static void update_group_times(struct perf_event *leader)
1109 {
1110 struct perf_event *event;
1111
1112 update_event_times(leader);
1113 list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 update_event_times(event);
1115 }
1116
1117 static struct list_head *
1118 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119 {
1120 if (event->attr.pinned)
1121 return &ctx->pinned_groups;
1122 else
1123 return &ctx->flexible_groups;
1124 }
1125
1126 /*
1127 * Add a event from the lists for its context.
1128 * Must be called with ctx->mutex and ctx->lock held.
1129 */
1130 static void
1131 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132 {
1133 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 event->attach_state |= PERF_ATTACH_CONTEXT;
1135
1136 /*
1137 * If we're a stand alone event or group leader, we go to the context
1138 * list, group events are kept attached to the group so that
1139 * perf_group_detach can, at all times, locate all siblings.
1140 */
1141 if (event->group_leader == event) {
1142 struct list_head *list;
1143
1144 if (is_software_event(event))
1145 event->group_flags |= PERF_GROUP_SOFTWARE;
1146
1147 list = ctx_group_list(event, ctx);
1148 list_add_tail(&event->group_entry, list);
1149 }
1150
1151 if (is_cgroup_event(event))
1152 ctx->nr_cgroups++;
1153
1154 if (has_branch_stack(event))
1155 ctx->nr_branch_stack++;
1156
1157 list_add_rcu(&event->event_entry, &ctx->event_list);
1158 if (!ctx->nr_events)
1159 perf_pmu_rotate_start(ctx->pmu);
1160 ctx->nr_events++;
1161 if (event->attr.inherit_stat)
1162 ctx->nr_stat++;
1163
1164 ctx->generation++;
1165 }
1166
1167 /*
1168 * Initialize event state based on the perf_event_attr::disabled.
1169 */
1170 static inline void perf_event__state_init(struct perf_event *event)
1171 {
1172 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 PERF_EVENT_STATE_INACTIVE;
1174 }
1175
1176 /*
1177 * Called at perf_event creation and when events are attached/detached from a
1178 * group.
1179 */
1180 static void perf_event__read_size(struct perf_event *event)
1181 {
1182 int entry = sizeof(u64); /* value */
1183 int size = 0;
1184 int nr = 1;
1185
1186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 size += sizeof(u64);
1188
1189 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 size += sizeof(u64);
1191
1192 if (event->attr.read_format & PERF_FORMAT_ID)
1193 entry += sizeof(u64);
1194
1195 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 nr += event->group_leader->nr_siblings;
1197 size += sizeof(u64);
1198 }
1199
1200 size += entry * nr;
1201 event->read_size = size;
1202 }
1203
1204 static void perf_event__header_size(struct perf_event *event)
1205 {
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
1210 perf_event__read_size(event);
1211
1212 if (sample_type & PERF_SAMPLE_IP)
1213 size += sizeof(data->ip);
1214
1215 if (sample_type & PERF_SAMPLE_ADDR)
1216 size += sizeof(data->addr);
1217
1218 if (sample_type & PERF_SAMPLE_PERIOD)
1219 size += sizeof(data->period);
1220
1221 if (sample_type & PERF_SAMPLE_WEIGHT)
1222 size += sizeof(data->weight);
1223
1224 if (sample_type & PERF_SAMPLE_READ)
1225 size += event->read_size;
1226
1227 if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 size += sizeof(data->data_src.val);
1229
1230 if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 size += sizeof(data->txn);
1232
1233 event->header_size = size;
1234 }
1235
1236 static void perf_event__id_header_size(struct perf_event *event)
1237 {
1238 struct perf_sample_data *data;
1239 u64 sample_type = event->attr.sample_type;
1240 u16 size = 0;
1241
1242 if (sample_type & PERF_SAMPLE_TID)
1243 size += sizeof(data->tid_entry);
1244
1245 if (sample_type & PERF_SAMPLE_TIME)
1246 size += sizeof(data->time);
1247
1248 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 size += sizeof(data->id);
1250
1251 if (sample_type & PERF_SAMPLE_ID)
1252 size += sizeof(data->id);
1253
1254 if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 size += sizeof(data->stream_id);
1256
1257 if (sample_type & PERF_SAMPLE_CPU)
1258 size += sizeof(data->cpu_entry);
1259
1260 event->id_header_size = size;
1261 }
1262
1263 static void perf_group_attach(struct perf_event *event)
1264 {
1265 struct perf_event *group_leader = event->group_leader, *pos;
1266
1267 /*
1268 * We can have double attach due to group movement in perf_event_open.
1269 */
1270 if (event->attach_state & PERF_ATTACH_GROUP)
1271 return;
1272
1273 event->attach_state |= PERF_ATTACH_GROUP;
1274
1275 if (group_leader == event)
1276 return;
1277
1278 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279 !is_software_event(event))
1280 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281
1282 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283 group_leader->nr_siblings++;
1284
1285 perf_event__header_size(group_leader);
1286
1287 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288 perf_event__header_size(pos);
1289 }
1290
1291 /*
1292 * Remove a event from the lists for its context.
1293 * Must be called with ctx->mutex and ctx->lock held.
1294 */
1295 static void
1296 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297 {
1298 struct perf_cpu_context *cpuctx;
1299 /*
1300 * We can have double detach due to exit/hot-unplug + close.
1301 */
1302 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303 return;
1304
1305 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306
1307 if (is_cgroup_event(event)) {
1308 ctx->nr_cgroups--;
1309 cpuctx = __get_cpu_context(ctx);
1310 /*
1311 * if there are no more cgroup events
1312 * then cler cgrp to avoid stale pointer
1313 * in update_cgrp_time_from_cpuctx()
1314 */
1315 if (!ctx->nr_cgroups)
1316 cpuctx->cgrp = NULL;
1317 }
1318
1319 if (has_branch_stack(event))
1320 ctx->nr_branch_stack--;
1321
1322 ctx->nr_events--;
1323 if (event->attr.inherit_stat)
1324 ctx->nr_stat--;
1325
1326 list_del_rcu(&event->event_entry);
1327
1328 if (event->group_leader == event)
1329 list_del_init(&event->group_entry);
1330
1331 update_group_times(event);
1332
1333 /*
1334 * If event was in error state, then keep it
1335 * that way, otherwise bogus counts will be
1336 * returned on read(). The only way to get out
1337 * of error state is by explicit re-enabling
1338 * of the event
1339 */
1340 if (event->state > PERF_EVENT_STATE_OFF)
1341 event->state = PERF_EVENT_STATE_OFF;
1342
1343 ctx->generation++;
1344 }
1345
1346 static void perf_group_detach(struct perf_event *event)
1347 {
1348 struct perf_event *sibling, *tmp;
1349 struct list_head *list = NULL;
1350
1351 /*
1352 * We can have double detach due to exit/hot-unplug + close.
1353 */
1354 if (!(event->attach_state & PERF_ATTACH_GROUP))
1355 return;
1356
1357 event->attach_state &= ~PERF_ATTACH_GROUP;
1358
1359 /*
1360 * If this is a sibling, remove it from its group.
1361 */
1362 if (event->group_leader != event) {
1363 list_del_init(&event->group_entry);
1364 event->group_leader->nr_siblings--;
1365 goto out;
1366 }
1367
1368 if (!list_empty(&event->group_entry))
1369 list = &event->group_entry;
1370
1371 /*
1372 * If this was a group event with sibling events then
1373 * upgrade the siblings to singleton events by adding them
1374 * to whatever list we are on.
1375 */
1376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 if (list)
1378 list_move_tail(&sibling->group_entry, list);
1379 sibling->group_leader = sibling;
1380
1381 /* Inherit group flags from the previous leader */
1382 sibling->group_flags = event->group_flags;
1383 }
1384
1385 out:
1386 perf_event__header_size(event->group_leader);
1387
1388 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389 perf_event__header_size(tmp);
1390 }
1391
1392 /*
1393 * User event without the task.
1394 */
1395 static bool is_orphaned_event(struct perf_event *event)
1396 {
1397 return event && !is_kernel_event(event) && !event->owner;
1398 }
1399
1400 /*
1401 * Event has a parent but parent's task finished and it's
1402 * alive only because of children holding refference.
1403 */
1404 static bool is_orphaned_child(struct perf_event *event)
1405 {
1406 return is_orphaned_event(event->parent);
1407 }
1408
1409 static void orphans_remove_work(struct work_struct *work);
1410
1411 static void schedule_orphans_remove(struct perf_event_context *ctx)
1412 {
1413 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414 return;
1415
1416 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417 get_ctx(ctx);
1418 ctx->orphans_remove_sched = true;
1419 }
1420 }
1421
1422 static int __init perf_workqueue_init(void)
1423 {
1424 perf_wq = create_singlethread_workqueue("perf");
1425 WARN(!perf_wq, "failed to create perf workqueue\n");
1426 return perf_wq ? 0 : -1;
1427 }
1428
1429 core_initcall(perf_workqueue_init);
1430
1431 static inline int
1432 event_filter_match(struct perf_event *event)
1433 {
1434 return (event->cpu == -1 || event->cpu == smp_processor_id())
1435 && perf_cgroup_match(event);
1436 }
1437
1438 static void
1439 event_sched_out(struct perf_event *event,
1440 struct perf_cpu_context *cpuctx,
1441 struct perf_event_context *ctx)
1442 {
1443 u64 tstamp = perf_event_time(event);
1444 u64 delta;
1445 /*
1446 * An event which could not be activated because of
1447 * filter mismatch still needs to have its timings
1448 * maintained, otherwise bogus information is return
1449 * via read() for time_enabled, time_running:
1450 */
1451 if (event->state == PERF_EVENT_STATE_INACTIVE
1452 && !event_filter_match(event)) {
1453 delta = tstamp - event->tstamp_stopped;
1454 event->tstamp_running += delta;
1455 event->tstamp_stopped = tstamp;
1456 }
1457
1458 if (event->state != PERF_EVENT_STATE_ACTIVE)
1459 return;
1460
1461 perf_pmu_disable(event->pmu);
1462
1463 event->state = PERF_EVENT_STATE_INACTIVE;
1464 if (event->pending_disable) {
1465 event->pending_disable = 0;
1466 event->state = PERF_EVENT_STATE_OFF;
1467 }
1468 event->tstamp_stopped = tstamp;
1469 event->pmu->del(event, 0);
1470 event->oncpu = -1;
1471
1472 if (!is_software_event(event))
1473 cpuctx->active_oncpu--;
1474 ctx->nr_active--;
1475 if (event->attr.freq && event->attr.sample_freq)
1476 ctx->nr_freq--;
1477 if (event->attr.exclusive || !cpuctx->active_oncpu)
1478 cpuctx->exclusive = 0;
1479
1480 if (is_orphaned_child(event))
1481 schedule_orphans_remove(ctx);
1482
1483 perf_pmu_enable(event->pmu);
1484 }
1485
1486 static void
1487 group_sched_out(struct perf_event *group_event,
1488 struct perf_cpu_context *cpuctx,
1489 struct perf_event_context *ctx)
1490 {
1491 struct perf_event *event;
1492 int state = group_event->state;
1493
1494 event_sched_out(group_event, cpuctx, ctx);
1495
1496 /*
1497 * Schedule out siblings (if any):
1498 */
1499 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500 event_sched_out(event, cpuctx, ctx);
1501
1502 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 cpuctx->exclusive = 0;
1504 }
1505
1506 struct remove_event {
1507 struct perf_event *event;
1508 bool detach_group;
1509 };
1510
1511 /*
1512 * Cross CPU call to remove a performance event
1513 *
1514 * We disable the event on the hardware level first. After that we
1515 * remove it from the context list.
1516 */
1517 static int __perf_remove_from_context(void *info)
1518 {
1519 struct remove_event *re = info;
1520 struct perf_event *event = re->event;
1521 struct perf_event_context *ctx = event->ctx;
1522 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523
1524 raw_spin_lock(&ctx->lock);
1525 event_sched_out(event, cpuctx, ctx);
1526 if (re->detach_group)
1527 perf_group_detach(event);
1528 list_del_event(event, ctx);
1529 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530 ctx->is_active = 0;
1531 cpuctx->task_ctx = NULL;
1532 }
1533 raw_spin_unlock(&ctx->lock);
1534
1535 return 0;
1536 }
1537
1538
1539 /*
1540 * Remove the event from a task's (or a CPU's) list of events.
1541 *
1542 * CPU events are removed with a smp call. For task events we only
1543 * call when the task is on a CPU.
1544 *
1545 * If event->ctx is a cloned context, callers must make sure that
1546 * every task struct that event->ctx->task could possibly point to
1547 * remains valid. This is OK when called from perf_release since
1548 * that only calls us on the top-level context, which can't be a clone.
1549 * When called from perf_event_exit_task, it's OK because the
1550 * context has been detached from its task.
1551 */
1552 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553 {
1554 struct perf_event_context *ctx = event->ctx;
1555 struct task_struct *task = ctx->task;
1556 struct remove_event re = {
1557 .event = event,
1558 .detach_group = detach_group,
1559 };
1560
1561 lockdep_assert_held(&ctx->mutex);
1562
1563 if (!task) {
1564 /*
1565 * Per cpu events are removed via an smp call. The removal can
1566 * fail if the CPU is currently offline, but in that case we
1567 * already called __perf_remove_from_context from
1568 * perf_event_exit_cpu.
1569 */
1570 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1571 return;
1572 }
1573
1574 retry:
1575 if (!task_function_call(task, __perf_remove_from_context, &re))
1576 return;
1577
1578 raw_spin_lock_irq(&ctx->lock);
1579 /*
1580 * If we failed to find a running task, but find the context active now
1581 * that we've acquired the ctx->lock, retry.
1582 */
1583 if (ctx->is_active) {
1584 raw_spin_unlock_irq(&ctx->lock);
1585 /*
1586 * Reload the task pointer, it might have been changed by
1587 * a concurrent perf_event_context_sched_out().
1588 */
1589 task = ctx->task;
1590 goto retry;
1591 }
1592
1593 /*
1594 * Since the task isn't running, its safe to remove the event, us
1595 * holding the ctx->lock ensures the task won't get scheduled in.
1596 */
1597 if (detach_group)
1598 perf_group_detach(event);
1599 list_del_event(event, ctx);
1600 raw_spin_unlock_irq(&ctx->lock);
1601 }
1602
1603 /*
1604 * Cross CPU call to disable a performance event
1605 */
1606 int __perf_event_disable(void *info)
1607 {
1608 struct perf_event *event = info;
1609 struct perf_event_context *ctx = event->ctx;
1610 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1611
1612 /*
1613 * If this is a per-task event, need to check whether this
1614 * event's task is the current task on this cpu.
1615 *
1616 * Can trigger due to concurrent perf_event_context_sched_out()
1617 * flipping contexts around.
1618 */
1619 if (ctx->task && cpuctx->task_ctx != ctx)
1620 return -EINVAL;
1621
1622 raw_spin_lock(&ctx->lock);
1623
1624 /*
1625 * If the event is on, turn it off.
1626 * If it is in error state, leave it in error state.
1627 */
1628 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1629 update_context_time(ctx);
1630 update_cgrp_time_from_event(event);
1631 update_group_times(event);
1632 if (event == event->group_leader)
1633 group_sched_out(event, cpuctx, ctx);
1634 else
1635 event_sched_out(event, cpuctx, ctx);
1636 event->state = PERF_EVENT_STATE_OFF;
1637 }
1638
1639 raw_spin_unlock(&ctx->lock);
1640
1641 return 0;
1642 }
1643
1644 /*
1645 * Disable a event.
1646 *
1647 * If event->ctx is a cloned context, callers must make sure that
1648 * every task struct that event->ctx->task could possibly point to
1649 * remains valid. This condition is satisifed when called through
1650 * perf_event_for_each_child or perf_event_for_each because they
1651 * hold the top-level event's child_mutex, so any descendant that
1652 * goes to exit will block in sync_child_event.
1653 * When called from perf_pending_event it's OK because event->ctx
1654 * is the current context on this CPU and preemption is disabled,
1655 * hence we can't get into perf_event_task_sched_out for this context.
1656 */
1657 void perf_event_disable(struct perf_event *event)
1658 {
1659 struct perf_event_context *ctx = event->ctx;
1660 struct task_struct *task = ctx->task;
1661
1662 if (!task) {
1663 /*
1664 * Disable the event on the cpu that it's on
1665 */
1666 cpu_function_call(event->cpu, __perf_event_disable, event);
1667 return;
1668 }
1669
1670 retry:
1671 if (!task_function_call(task, __perf_event_disable, event))
1672 return;
1673
1674 raw_spin_lock_irq(&ctx->lock);
1675 /*
1676 * If the event is still active, we need to retry the cross-call.
1677 */
1678 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1679 raw_spin_unlock_irq(&ctx->lock);
1680 /*
1681 * Reload the task pointer, it might have been changed by
1682 * a concurrent perf_event_context_sched_out().
1683 */
1684 task = ctx->task;
1685 goto retry;
1686 }
1687
1688 /*
1689 * Since we have the lock this context can't be scheduled
1690 * in, so we can change the state safely.
1691 */
1692 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1693 update_group_times(event);
1694 event->state = PERF_EVENT_STATE_OFF;
1695 }
1696 raw_spin_unlock_irq(&ctx->lock);
1697 }
1698 EXPORT_SYMBOL_GPL(perf_event_disable);
1699
1700 static void perf_set_shadow_time(struct perf_event *event,
1701 struct perf_event_context *ctx,
1702 u64 tstamp)
1703 {
1704 /*
1705 * use the correct time source for the time snapshot
1706 *
1707 * We could get by without this by leveraging the
1708 * fact that to get to this function, the caller
1709 * has most likely already called update_context_time()
1710 * and update_cgrp_time_xx() and thus both timestamp
1711 * are identical (or very close). Given that tstamp is,
1712 * already adjusted for cgroup, we could say that:
1713 * tstamp - ctx->timestamp
1714 * is equivalent to
1715 * tstamp - cgrp->timestamp.
1716 *
1717 * Then, in perf_output_read(), the calculation would
1718 * work with no changes because:
1719 * - event is guaranteed scheduled in
1720 * - no scheduled out in between
1721 * - thus the timestamp would be the same
1722 *
1723 * But this is a bit hairy.
1724 *
1725 * So instead, we have an explicit cgroup call to remain
1726 * within the time time source all along. We believe it
1727 * is cleaner and simpler to understand.
1728 */
1729 if (is_cgroup_event(event))
1730 perf_cgroup_set_shadow_time(event, tstamp);
1731 else
1732 event->shadow_ctx_time = tstamp - ctx->timestamp;
1733 }
1734
1735 #define MAX_INTERRUPTS (~0ULL)
1736
1737 static void perf_log_throttle(struct perf_event *event, int enable);
1738
1739 static int
1740 event_sched_in(struct perf_event *event,
1741 struct perf_cpu_context *cpuctx,
1742 struct perf_event_context *ctx)
1743 {
1744 u64 tstamp = perf_event_time(event);
1745 int ret = 0;
1746
1747 lockdep_assert_held(&ctx->lock);
1748
1749 if (event->state <= PERF_EVENT_STATE_OFF)
1750 return 0;
1751
1752 event->state = PERF_EVENT_STATE_ACTIVE;
1753 event->oncpu = smp_processor_id();
1754
1755 /*
1756 * Unthrottle events, since we scheduled we might have missed several
1757 * ticks already, also for a heavily scheduling task there is little
1758 * guarantee it'll get a tick in a timely manner.
1759 */
1760 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1761 perf_log_throttle(event, 1);
1762 event->hw.interrupts = 0;
1763 }
1764
1765 /*
1766 * The new state must be visible before we turn it on in the hardware:
1767 */
1768 smp_wmb();
1769
1770 perf_pmu_disable(event->pmu);
1771
1772 if (event->pmu->add(event, PERF_EF_START)) {
1773 event->state = PERF_EVENT_STATE_INACTIVE;
1774 event->oncpu = -1;
1775 ret = -EAGAIN;
1776 goto out;
1777 }
1778
1779 event->tstamp_running += tstamp - event->tstamp_stopped;
1780
1781 perf_set_shadow_time(event, ctx, tstamp);
1782
1783 if (!is_software_event(event))
1784 cpuctx->active_oncpu++;
1785 ctx->nr_active++;
1786 if (event->attr.freq && event->attr.sample_freq)
1787 ctx->nr_freq++;
1788
1789 if (event->attr.exclusive)
1790 cpuctx->exclusive = 1;
1791
1792 if (is_orphaned_child(event))
1793 schedule_orphans_remove(ctx);
1794
1795 out:
1796 perf_pmu_enable(event->pmu);
1797
1798 return ret;
1799 }
1800
1801 static int
1802 group_sched_in(struct perf_event *group_event,
1803 struct perf_cpu_context *cpuctx,
1804 struct perf_event_context *ctx)
1805 {
1806 struct perf_event *event, *partial_group = NULL;
1807 struct pmu *pmu = ctx->pmu;
1808 u64 now = ctx->time;
1809 bool simulate = false;
1810
1811 if (group_event->state == PERF_EVENT_STATE_OFF)
1812 return 0;
1813
1814 pmu->start_txn(pmu);
1815
1816 if (event_sched_in(group_event, cpuctx, ctx)) {
1817 pmu->cancel_txn(pmu);
1818 perf_cpu_hrtimer_restart(cpuctx);
1819 return -EAGAIN;
1820 }
1821
1822 /*
1823 * Schedule in siblings as one group (if any):
1824 */
1825 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1826 if (event_sched_in(event, cpuctx, ctx)) {
1827 partial_group = event;
1828 goto group_error;
1829 }
1830 }
1831
1832 if (!pmu->commit_txn(pmu))
1833 return 0;
1834
1835 group_error:
1836 /*
1837 * Groups can be scheduled in as one unit only, so undo any
1838 * partial group before returning:
1839 * The events up to the failed event are scheduled out normally,
1840 * tstamp_stopped will be updated.
1841 *
1842 * The failed events and the remaining siblings need to have
1843 * their timings updated as if they had gone thru event_sched_in()
1844 * and event_sched_out(). This is required to get consistent timings
1845 * across the group. This also takes care of the case where the group
1846 * could never be scheduled by ensuring tstamp_stopped is set to mark
1847 * the time the event was actually stopped, such that time delta
1848 * calculation in update_event_times() is correct.
1849 */
1850 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1851 if (event == partial_group)
1852 simulate = true;
1853
1854 if (simulate) {
1855 event->tstamp_running += now - event->tstamp_stopped;
1856 event->tstamp_stopped = now;
1857 } else {
1858 event_sched_out(event, cpuctx, ctx);
1859 }
1860 }
1861 event_sched_out(group_event, cpuctx, ctx);
1862
1863 pmu->cancel_txn(pmu);
1864
1865 perf_cpu_hrtimer_restart(cpuctx);
1866
1867 return -EAGAIN;
1868 }
1869
1870 /*
1871 * Work out whether we can put this event group on the CPU now.
1872 */
1873 static int group_can_go_on(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 int can_add_hw)
1876 {
1877 /*
1878 * Groups consisting entirely of software events can always go on.
1879 */
1880 if (event->group_flags & PERF_GROUP_SOFTWARE)
1881 return 1;
1882 /*
1883 * If an exclusive group is already on, no other hardware
1884 * events can go on.
1885 */
1886 if (cpuctx->exclusive)
1887 return 0;
1888 /*
1889 * If this group is exclusive and there are already
1890 * events on the CPU, it can't go on.
1891 */
1892 if (event->attr.exclusive && cpuctx->active_oncpu)
1893 return 0;
1894 /*
1895 * Otherwise, try to add it if all previous groups were able
1896 * to go on.
1897 */
1898 return can_add_hw;
1899 }
1900
1901 static void add_event_to_ctx(struct perf_event *event,
1902 struct perf_event_context *ctx)
1903 {
1904 u64 tstamp = perf_event_time(event);
1905
1906 list_add_event(event, ctx);
1907 perf_group_attach(event);
1908 event->tstamp_enabled = tstamp;
1909 event->tstamp_running = tstamp;
1910 event->tstamp_stopped = tstamp;
1911 }
1912
1913 static void task_ctx_sched_out(struct perf_event_context *ctx);
1914 static void
1915 ctx_sched_in(struct perf_event_context *ctx,
1916 struct perf_cpu_context *cpuctx,
1917 enum event_type_t event_type,
1918 struct task_struct *task);
1919
1920 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1921 struct perf_event_context *ctx,
1922 struct task_struct *task)
1923 {
1924 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1925 if (ctx)
1926 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1927 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1928 if (ctx)
1929 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1930 }
1931
1932 /*
1933 * Cross CPU call to install and enable a performance event
1934 *
1935 * Must be called with ctx->mutex held
1936 */
1937 static int __perf_install_in_context(void *info)
1938 {
1939 struct perf_event *event = info;
1940 struct perf_event_context *ctx = event->ctx;
1941 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1942 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1943 struct task_struct *task = current;
1944
1945 perf_ctx_lock(cpuctx, task_ctx);
1946 perf_pmu_disable(cpuctx->ctx.pmu);
1947
1948 /*
1949 * If there was an active task_ctx schedule it out.
1950 */
1951 if (task_ctx)
1952 task_ctx_sched_out(task_ctx);
1953
1954 /*
1955 * If the context we're installing events in is not the
1956 * active task_ctx, flip them.
1957 */
1958 if (ctx->task && task_ctx != ctx) {
1959 if (task_ctx)
1960 raw_spin_unlock(&task_ctx->lock);
1961 raw_spin_lock(&ctx->lock);
1962 task_ctx = ctx;
1963 }
1964
1965 if (task_ctx) {
1966 cpuctx->task_ctx = task_ctx;
1967 task = task_ctx->task;
1968 }
1969
1970 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1971
1972 update_context_time(ctx);
1973 /*
1974 * update cgrp time only if current cgrp
1975 * matches event->cgrp. Must be done before
1976 * calling add_event_to_ctx()
1977 */
1978 update_cgrp_time_from_event(event);
1979
1980 add_event_to_ctx(event, ctx);
1981
1982 /*
1983 * Schedule everything back in
1984 */
1985 perf_event_sched_in(cpuctx, task_ctx, task);
1986
1987 perf_pmu_enable(cpuctx->ctx.pmu);
1988 perf_ctx_unlock(cpuctx, task_ctx);
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * Attach a performance event to a context
1995 *
1996 * First we add the event to the list with the hardware enable bit
1997 * in event->hw_config cleared.
1998 *
1999 * If the event is attached to a task which is on a CPU we use a smp
2000 * call to enable it in the task context. The task might have been
2001 * scheduled away, but we check this in the smp call again.
2002 */
2003 static void
2004 perf_install_in_context(struct perf_event_context *ctx,
2005 struct perf_event *event,
2006 int cpu)
2007 {
2008 struct task_struct *task = ctx->task;
2009
2010 lockdep_assert_held(&ctx->mutex);
2011
2012 event->ctx = ctx;
2013 if (event->cpu != -1)
2014 event->cpu = cpu;
2015
2016 if (!task) {
2017 /*
2018 * Per cpu events are installed via an smp call and
2019 * the install is always successful.
2020 */
2021 cpu_function_call(cpu, __perf_install_in_context, event);
2022 return;
2023 }
2024
2025 retry:
2026 if (!task_function_call(task, __perf_install_in_context, event))
2027 return;
2028
2029 raw_spin_lock_irq(&ctx->lock);
2030 /*
2031 * If we failed to find a running task, but find the context active now
2032 * that we've acquired the ctx->lock, retry.
2033 */
2034 if (ctx->is_active) {
2035 raw_spin_unlock_irq(&ctx->lock);
2036 /*
2037 * Reload the task pointer, it might have been changed by
2038 * a concurrent perf_event_context_sched_out().
2039 */
2040 task = ctx->task;
2041 goto retry;
2042 }
2043
2044 /*
2045 * Since the task isn't running, its safe to add the event, us holding
2046 * the ctx->lock ensures the task won't get scheduled in.
2047 */
2048 add_event_to_ctx(event, ctx);
2049 raw_spin_unlock_irq(&ctx->lock);
2050 }
2051
2052 /*
2053 * Put a event into inactive state and update time fields.
2054 * Enabling the leader of a group effectively enables all
2055 * the group members that aren't explicitly disabled, so we
2056 * have to update their ->tstamp_enabled also.
2057 * Note: this works for group members as well as group leaders
2058 * since the non-leader members' sibling_lists will be empty.
2059 */
2060 static void __perf_event_mark_enabled(struct perf_event *event)
2061 {
2062 struct perf_event *sub;
2063 u64 tstamp = perf_event_time(event);
2064
2065 event->state = PERF_EVENT_STATE_INACTIVE;
2066 event->tstamp_enabled = tstamp - event->total_time_enabled;
2067 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2068 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2069 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2070 }
2071 }
2072
2073 /*
2074 * Cross CPU call to enable a performance event
2075 */
2076 static int __perf_event_enable(void *info)
2077 {
2078 struct perf_event *event = info;
2079 struct perf_event_context *ctx = event->ctx;
2080 struct perf_event *leader = event->group_leader;
2081 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2082 int err;
2083
2084 /*
2085 * There's a time window between 'ctx->is_active' check
2086 * in perf_event_enable function and this place having:
2087 * - IRQs on
2088 * - ctx->lock unlocked
2089 *
2090 * where the task could be killed and 'ctx' deactivated
2091 * by perf_event_exit_task.
2092 */
2093 if (!ctx->is_active)
2094 return -EINVAL;
2095
2096 raw_spin_lock(&ctx->lock);
2097 update_context_time(ctx);
2098
2099 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100 goto unlock;
2101
2102 /*
2103 * set current task's cgroup time reference point
2104 */
2105 perf_cgroup_set_timestamp(current, ctx);
2106
2107 __perf_event_mark_enabled(event);
2108
2109 if (!event_filter_match(event)) {
2110 if (is_cgroup_event(event))
2111 perf_cgroup_defer_enabled(event);
2112 goto unlock;
2113 }
2114
2115 /*
2116 * If the event is in a group and isn't the group leader,
2117 * then don't put it on unless the group is on.
2118 */
2119 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2120 goto unlock;
2121
2122 if (!group_can_go_on(event, cpuctx, 1)) {
2123 err = -EEXIST;
2124 } else {
2125 if (event == leader)
2126 err = group_sched_in(event, cpuctx, ctx);
2127 else
2128 err = event_sched_in(event, cpuctx, ctx);
2129 }
2130
2131 if (err) {
2132 /*
2133 * If this event can't go on and it's part of a
2134 * group, then the whole group has to come off.
2135 */
2136 if (leader != event) {
2137 group_sched_out(leader, cpuctx, ctx);
2138 perf_cpu_hrtimer_restart(cpuctx);
2139 }
2140 if (leader->attr.pinned) {
2141 update_group_times(leader);
2142 leader->state = PERF_EVENT_STATE_ERROR;
2143 }
2144 }
2145
2146 unlock:
2147 raw_spin_unlock(&ctx->lock);
2148
2149 return 0;
2150 }
2151
2152 /*
2153 * Enable a event.
2154 *
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid. This condition is satisfied when called through
2158 * perf_event_for_each_child or perf_event_for_each as described
2159 * for perf_event_disable.
2160 */
2161 void perf_event_enable(struct perf_event *event)
2162 {
2163 struct perf_event_context *ctx = event->ctx;
2164 struct task_struct *task = ctx->task;
2165
2166 if (!task) {
2167 /*
2168 * Enable the event on the cpu that it's on
2169 */
2170 cpu_function_call(event->cpu, __perf_event_enable, event);
2171 return;
2172 }
2173
2174 raw_spin_lock_irq(&ctx->lock);
2175 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2176 goto out;
2177
2178 /*
2179 * If the event is in error state, clear that first.
2180 * That way, if we see the event in error state below, we
2181 * know that it has gone back into error state, as distinct
2182 * from the task having been scheduled away before the
2183 * cross-call arrived.
2184 */
2185 if (event->state == PERF_EVENT_STATE_ERROR)
2186 event->state = PERF_EVENT_STATE_OFF;
2187
2188 retry:
2189 if (!ctx->is_active) {
2190 __perf_event_mark_enabled(event);
2191 goto out;
2192 }
2193
2194 raw_spin_unlock_irq(&ctx->lock);
2195
2196 if (!task_function_call(task, __perf_event_enable, event))
2197 return;
2198
2199 raw_spin_lock_irq(&ctx->lock);
2200
2201 /*
2202 * If the context is active and the event is still off,
2203 * we need to retry the cross-call.
2204 */
2205 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2206 /*
2207 * task could have been flipped by a concurrent
2208 * perf_event_context_sched_out()
2209 */
2210 task = ctx->task;
2211 goto retry;
2212 }
2213
2214 out:
2215 raw_spin_unlock_irq(&ctx->lock);
2216 }
2217 EXPORT_SYMBOL_GPL(perf_event_enable);
2218
2219 int perf_event_refresh(struct perf_event *event, int refresh)
2220 {
2221 /*
2222 * not supported on inherited events
2223 */
2224 if (event->attr.inherit || !is_sampling_event(event))
2225 return -EINVAL;
2226
2227 atomic_add(refresh, &event->event_limit);
2228 perf_event_enable(event);
2229
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(perf_event_refresh);
2233
2234 static void ctx_sched_out(struct perf_event_context *ctx,
2235 struct perf_cpu_context *cpuctx,
2236 enum event_type_t event_type)
2237 {
2238 struct perf_event *event;
2239 int is_active = ctx->is_active;
2240
2241 ctx->is_active &= ~event_type;
2242 if (likely(!ctx->nr_events))
2243 return;
2244
2245 update_context_time(ctx);
2246 update_cgrp_time_from_cpuctx(cpuctx);
2247 if (!ctx->nr_active)
2248 return;
2249
2250 perf_pmu_disable(ctx->pmu);
2251 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2252 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2253 group_sched_out(event, cpuctx, ctx);
2254 }
2255
2256 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2257 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2258 group_sched_out(event, cpuctx, ctx);
2259 }
2260 perf_pmu_enable(ctx->pmu);
2261 }
2262
2263 /*
2264 * Test whether two contexts are equivalent, i.e. whether they have both been
2265 * cloned from the same version of the same context.
2266 *
2267 * Equivalence is measured using a generation number in the context that is
2268 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2269 * and list_del_event().
2270 */
2271 static int context_equiv(struct perf_event_context *ctx1,
2272 struct perf_event_context *ctx2)
2273 {
2274 lockdep_assert_held(&ctx1->lock);
2275 lockdep_assert_held(&ctx2->lock);
2276
2277 /* Pinning disables the swap optimization */
2278 if (ctx1->pin_count || ctx2->pin_count)
2279 return 0;
2280
2281 /* If ctx1 is the parent of ctx2 */
2282 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2283 return 1;
2284
2285 /* If ctx2 is the parent of ctx1 */
2286 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2287 return 1;
2288
2289 /*
2290 * If ctx1 and ctx2 have the same parent; we flatten the parent
2291 * hierarchy, see perf_event_init_context().
2292 */
2293 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2294 ctx1->parent_gen == ctx2->parent_gen)
2295 return 1;
2296
2297 /* Unmatched */
2298 return 0;
2299 }
2300
2301 static void __perf_event_sync_stat(struct perf_event *event,
2302 struct perf_event *next_event)
2303 {
2304 u64 value;
2305
2306 if (!event->attr.inherit_stat)
2307 return;
2308
2309 /*
2310 * Update the event value, we cannot use perf_event_read()
2311 * because we're in the middle of a context switch and have IRQs
2312 * disabled, which upsets smp_call_function_single(), however
2313 * we know the event must be on the current CPU, therefore we
2314 * don't need to use it.
2315 */
2316 switch (event->state) {
2317 case PERF_EVENT_STATE_ACTIVE:
2318 event->pmu->read(event);
2319 /* fall-through */
2320
2321 case PERF_EVENT_STATE_INACTIVE:
2322 update_event_times(event);
2323 break;
2324
2325 default:
2326 break;
2327 }
2328
2329 /*
2330 * In order to keep per-task stats reliable we need to flip the event
2331 * values when we flip the contexts.
2332 */
2333 value = local64_read(&next_event->count);
2334 value = local64_xchg(&event->count, value);
2335 local64_set(&next_event->count, value);
2336
2337 swap(event->total_time_enabled, next_event->total_time_enabled);
2338 swap(event->total_time_running, next_event->total_time_running);
2339
2340 /*
2341 * Since we swizzled the values, update the user visible data too.
2342 */
2343 perf_event_update_userpage(event);
2344 perf_event_update_userpage(next_event);
2345 }
2346
2347 static void perf_event_sync_stat(struct perf_event_context *ctx,
2348 struct perf_event_context *next_ctx)
2349 {
2350 struct perf_event *event, *next_event;
2351
2352 if (!ctx->nr_stat)
2353 return;
2354
2355 update_context_time(ctx);
2356
2357 event = list_first_entry(&ctx->event_list,
2358 struct perf_event, event_entry);
2359
2360 next_event = list_first_entry(&next_ctx->event_list,
2361 struct perf_event, event_entry);
2362
2363 while (&event->event_entry != &ctx->event_list &&
2364 &next_event->event_entry != &next_ctx->event_list) {
2365
2366 __perf_event_sync_stat(event, next_event);
2367
2368 event = list_next_entry(event, event_entry);
2369 next_event = list_next_entry(next_event, event_entry);
2370 }
2371 }
2372
2373 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2374 struct task_struct *next)
2375 {
2376 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2377 struct perf_event_context *next_ctx;
2378 struct perf_event_context *parent, *next_parent;
2379 struct perf_cpu_context *cpuctx;
2380 int do_switch = 1;
2381
2382 if (likely(!ctx))
2383 return;
2384
2385 cpuctx = __get_cpu_context(ctx);
2386 if (!cpuctx->task_ctx)
2387 return;
2388
2389 rcu_read_lock();
2390 next_ctx = next->perf_event_ctxp[ctxn];
2391 if (!next_ctx)
2392 goto unlock;
2393
2394 parent = rcu_dereference(ctx->parent_ctx);
2395 next_parent = rcu_dereference(next_ctx->parent_ctx);
2396
2397 /* If neither context have a parent context; they cannot be clones. */
2398 if (!parent && !next_parent)
2399 goto unlock;
2400
2401 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2402 /*
2403 * Looks like the two contexts are clones, so we might be
2404 * able to optimize the context switch. We lock both
2405 * contexts and check that they are clones under the
2406 * lock (including re-checking that neither has been
2407 * uncloned in the meantime). It doesn't matter which
2408 * order we take the locks because no other cpu could
2409 * be trying to lock both of these tasks.
2410 */
2411 raw_spin_lock(&ctx->lock);
2412 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2413 if (context_equiv(ctx, next_ctx)) {
2414 /*
2415 * XXX do we need a memory barrier of sorts
2416 * wrt to rcu_dereference() of perf_event_ctxp
2417 */
2418 task->perf_event_ctxp[ctxn] = next_ctx;
2419 next->perf_event_ctxp[ctxn] = ctx;
2420 ctx->task = next;
2421 next_ctx->task = task;
2422 do_switch = 0;
2423
2424 perf_event_sync_stat(ctx, next_ctx);
2425 }
2426 raw_spin_unlock(&next_ctx->lock);
2427 raw_spin_unlock(&ctx->lock);
2428 }
2429 unlock:
2430 rcu_read_unlock();
2431
2432 if (do_switch) {
2433 raw_spin_lock(&ctx->lock);
2434 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2435 cpuctx->task_ctx = NULL;
2436 raw_spin_unlock(&ctx->lock);
2437 }
2438 }
2439
2440 #define for_each_task_context_nr(ctxn) \
2441 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2442
2443 /*
2444 * Called from scheduler to remove the events of the current task,
2445 * with interrupts disabled.
2446 *
2447 * We stop each event and update the event value in event->count.
2448 *
2449 * This does not protect us against NMI, but disable()
2450 * sets the disabled bit in the control field of event _before_
2451 * accessing the event control register. If a NMI hits, then it will
2452 * not restart the event.
2453 */
2454 void __perf_event_task_sched_out(struct task_struct *task,
2455 struct task_struct *next)
2456 {
2457 int ctxn;
2458
2459 for_each_task_context_nr(ctxn)
2460 perf_event_context_sched_out(task, ctxn, next);
2461
2462 /*
2463 * if cgroup events exist on this CPU, then we need
2464 * to check if we have to switch out PMU state.
2465 * cgroup event are system-wide mode only
2466 */
2467 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2468 perf_cgroup_sched_out(task, next);
2469 }
2470
2471 static void task_ctx_sched_out(struct perf_event_context *ctx)
2472 {
2473 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2474
2475 if (!cpuctx->task_ctx)
2476 return;
2477
2478 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2479 return;
2480
2481 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2482 cpuctx->task_ctx = NULL;
2483 }
2484
2485 /*
2486 * Called with IRQs disabled
2487 */
2488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2489 enum event_type_t event_type)
2490 {
2491 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2492 }
2493
2494 static void
2495 ctx_pinned_sched_in(struct perf_event_context *ctx,
2496 struct perf_cpu_context *cpuctx)
2497 {
2498 struct perf_event *event;
2499
2500 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2501 if (event->state <= PERF_EVENT_STATE_OFF)
2502 continue;
2503 if (!event_filter_match(event))
2504 continue;
2505
2506 /* may need to reset tstamp_enabled */
2507 if (is_cgroup_event(event))
2508 perf_cgroup_mark_enabled(event, ctx);
2509
2510 if (group_can_go_on(event, cpuctx, 1))
2511 group_sched_in(event, cpuctx, ctx);
2512
2513 /*
2514 * If this pinned group hasn't been scheduled,
2515 * put it in error state.
2516 */
2517 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2518 update_group_times(event);
2519 event->state = PERF_EVENT_STATE_ERROR;
2520 }
2521 }
2522 }
2523
2524 static void
2525 ctx_flexible_sched_in(struct perf_event_context *ctx,
2526 struct perf_cpu_context *cpuctx)
2527 {
2528 struct perf_event *event;
2529 int can_add_hw = 1;
2530
2531 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2532 /* Ignore events in OFF or ERROR state */
2533 if (event->state <= PERF_EVENT_STATE_OFF)
2534 continue;
2535 /*
2536 * Listen to the 'cpu' scheduling filter constraint
2537 * of events:
2538 */
2539 if (!event_filter_match(event))
2540 continue;
2541
2542 /* may need to reset tstamp_enabled */
2543 if (is_cgroup_event(event))
2544 perf_cgroup_mark_enabled(event, ctx);
2545
2546 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2547 if (group_sched_in(event, cpuctx, ctx))
2548 can_add_hw = 0;
2549 }
2550 }
2551 }
2552
2553 static void
2554 ctx_sched_in(struct perf_event_context *ctx,
2555 struct perf_cpu_context *cpuctx,
2556 enum event_type_t event_type,
2557 struct task_struct *task)
2558 {
2559 u64 now;
2560 int is_active = ctx->is_active;
2561
2562 ctx->is_active |= event_type;
2563 if (likely(!ctx->nr_events))
2564 return;
2565
2566 now = perf_clock();
2567 ctx->timestamp = now;
2568 perf_cgroup_set_timestamp(task, ctx);
2569 /*
2570 * First go through the list and put on any pinned groups
2571 * in order to give them the best chance of going on.
2572 */
2573 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2574 ctx_pinned_sched_in(ctx, cpuctx);
2575
2576 /* Then walk through the lower prio flexible groups */
2577 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2578 ctx_flexible_sched_in(ctx, cpuctx);
2579 }
2580
2581 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2582 enum event_type_t event_type,
2583 struct task_struct *task)
2584 {
2585 struct perf_event_context *ctx = &cpuctx->ctx;
2586
2587 ctx_sched_in(ctx, cpuctx, event_type, task);
2588 }
2589
2590 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2591 struct task_struct *task)
2592 {
2593 struct perf_cpu_context *cpuctx;
2594
2595 cpuctx = __get_cpu_context(ctx);
2596 if (cpuctx->task_ctx == ctx)
2597 return;
2598
2599 perf_ctx_lock(cpuctx, ctx);
2600 perf_pmu_disable(ctx->pmu);
2601 /*
2602 * We want to keep the following priority order:
2603 * cpu pinned (that don't need to move), task pinned,
2604 * cpu flexible, task flexible.
2605 */
2606 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2607
2608 if (ctx->nr_events)
2609 cpuctx->task_ctx = ctx;
2610
2611 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2612
2613 perf_pmu_enable(ctx->pmu);
2614 perf_ctx_unlock(cpuctx, ctx);
2615
2616 /*
2617 * Since these rotations are per-cpu, we need to ensure the
2618 * cpu-context we got scheduled on is actually rotating.
2619 */
2620 perf_pmu_rotate_start(ctx->pmu);
2621 }
2622
2623 /*
2624 * When sampling the branck stack in system-wide, it may be necessary
2625 * to flush the stack on context switch. This happens when the branch
2626 * stack does not tag its entries with the pid of the current task.
2627 * Otherwise it becomes impossible to associate a branch entry with a
2628 * task. This ambiguity is more likely to appear when the branch stack
2629 * supports priv level filtering and the user sets it to monitor only
2630 * at the user level (which could be a useful measurement in system-wide
2631 * mode). In that case, the risk is high of having a branch stack with
2632 * branch from multiple tasks. Flushing may mean dropping the existing
2633 * entries or stashing them somewhere in the PMU specific code layer.
2634 *
2635 * This function provides the context switch callback to the lower code
2636 * layer. It is invoked ONLY when there is at least one system-wide context
2637 * with at least one active event using taken branch sampling.
2638 */
2639 static void perf_branch_stack_sched_in(struct task_struct *prev,
2640 struct task_struct *task)
2641 {
2642 struct perf_cpu_context *cpuctx;
2643 struct pmu *pmu;
2644 unsigned long flags;
2645
2646 /* no need to flush branch stack if not changing task */
2647 if (prev == task)
2648 return;
2649
2650 local_irq_save(flags);
2651
2652 rcu_read_lock();
2653
2654 list_for_each_entry_rcu(pmu, &pmus, entry) {
2655 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2656
2657 /*
2658 * check if the context has at least one
2659 * event using PERF_SAMPLE_BRANCH_STACK
2660 */
2661 if (cpuctx->ctx.nr_branch_stack > 0
2662 && pmu->flush_branch_stack) {
2663
2664 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2665
2666 perf_pmu_disable(pmu);
2667
2668 pmu->flush_branch_stack();
2669
2670 perf_pmu_enable(pmu);
2671
2672 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2673 }
2674 }
2675
2676 rcu_read_unlock();
2677
2678 local_irq_restore(flags);
2679 }
2680
2681 /*
2682 * Called from scheduler to add the events of the current task
2683 * with interrupts disabled.
2684 *
2685 * We restore the event value and then enable it.
2686 *
2687 * This does not protect us against NMI, but enable()
2688 * sets the enabled bit in the control field of event _before_
2689 * accessing the event control register. If a NMI hits, then it will
2690 * keep the event running.
2691 */
2692 void __perf_event_task_sched_in(struct task_struct *prev,
2693 struct task_struct *task)
2694 {
2695 struct perf_event_context *ctx;
2696 int ctxn;
2697
2698 for_each_task_context_nr(ctxn) {
2699 ctx = task->perf_event_ctxp[ctxn];
2700 if (likely(!ctx))
2701 continue;
2702
2703 perf_event_context_sched_in(ctx, task);
2704 }
2705 /*
2706 * if cgroup events exist on this CPU, then we need
2707 * to check if we have to switch in PMU state.
2708 * cgroup event are system-wide mode only
2709 */
2710 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2711 perf_cgroup_sched_in(prev, task);
2712
2713 /* check for system-wide branch_stack events */
2714 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2715 perf_branch_stack_sched_in(prev, task);
2716 }
2717
2718 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2719 {
2720 u64 frequency = event->attr.sample_freq;
2721 u64 sec = NSEC_PER_SEC;
2722 u64 divisor, dividend;
2723
2724 int count_fls, nsec_fls, frequency_fls, sec_fls;
2725
2726 count_fls = fls64(count);
2727 nsec_fls = fls64(nsec);
2728 frequency_fls = fls64(frequency);
2729 sec_fls = 30;
2730
2731 /*
2732 * We got @count in @nsec, with a target of sample_freq HZ
2733 * the target period becomes:
2734 *
2735 * @count * 10^9
2736 * period = -------------------
2737 * @nsec * sample_freq
2738 *
2739 */
2740
2741 /*
2742 * Reduce accuracy by one bit such that @a and @b converge
2743 * to a similar magnitude.
2744 */
2745 #define REDUCE_FLS(a, b) \
2746 do { \
2747 if (a##_fls > b##_fls) { \
2748 a >>= 1; \
2749 a##_fls--; \
2750 } else { \
2751 b >>= 1; \
2752 b##_fls--; \
2753 } \
2754 } while (0)
2755
2756 /*
2757 * Reduce accuracy until either term fits in a u64, then proceed with
2758 * the other, so that finally we can do a u64/u64 division.
2759 */
2760 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2761 REDUCE_FLS(nsec, frequency);
2762 REDUCE_FLS(sec, count);
2763 }
2764
2765 if (count_fls + sec_fls > 64) {
2766 divisor = nsec * frequency;
2767
2768 while (count_fls + sec_fls > 64) {
2769 REDUCE_FLS(count, sec);
2770 divisor >>= 1;
2771 }
2772
2773 dividend = count * sec;
2774 } else {
2775 dividend = count * sec;
2776
2777 while (nsec_fls + frequency_fls > 64) {
2778 REDUCE_FLS(nsec, frequency);
2779 dividend >>= 1;
2780 }
2781
2782 divisor = nsec * frequency;
2783 }
2784
2785 if (!divisor)
2786 return dividend;
2787
2788 return div64_u64(dividend, divisor);
2789 }
2790
2791 static DEFINE_PER_CPU(int, perf_throttled_count);
2792 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2793
2794 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2795 {
2796 struct hw_perf_event *hwc = &event->hw;
2797 s64 period, sample_period;
2798 s64 delta;
2799
2800 period = perf_calculate_period(event, nsec, count);
2801
2802 delta = (s64)(period - hwc->sample_period);
2803 delta = (delta + 7) / 8; /* low pass filter */
2804
2805 sample_period = hwc->sample_period + delta;
2806
2807 if (!sample_period)
2808 sample_period = 1;
2809
2810 hwc->sample_period = sample_period;
2811
2812 if (local64_read(&hwc->period_left) > 8*sample_period) {
2813 if (disable)
2814 event->pmu->stop(event, PERF_EF_UPDATE);
2815
2816 local64_set(&hwc->period_left, 0);
2817
2818 if (disable)
2819 event->pmu->start(event, PERF_EF_RELOAD);
2820 }
2821 }
2822
2823 /*
2824 * combine freq adjustment with unthrottling to avoid two passes over the
2825 * events. At the same time, make sure, having freq events does not change
2826 * the rate of unthrottling as that would introduce bias.
2827 */
2828 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2829 int needs_unthr)
2830 {
2831 struct perf_event *event;
2832 struct hw_perf_event *hwc;
2833 u64 now, period = TICK_NSEC;
2834 s64 delta;
2835
2836 /*
2837 * only need to iterate over all events iff:
2838 * - context have events in frequency mode (needs freq adjust)
2839 * - there are events to unthrottle on this cpu
2840 */
2841 if (!(ctx->nr_freq || needs_unthr))
2842 return;
2843
2844 raw_spin_lock(&ctx->lock);
2845 perf_pmu_disable(ctx->pmu);
2846
2847 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2848 if (event->state != PERF_EVENT_STATE_ACTIVE)
2849 continue;
2850
2851 if (!event_filter_match(event))
2852 continue;
2853
2854 perf_pmu_disable(event->pmu);
2855
2856 hwc = &event->hw;
2857
2858 if (hwc->interrupts == MAX_INTERRUPTS) {
2859 hwc->interrupts = 0;
2860 perf_log_throttle(event, 1);
2861 event->pmu->start(event, 0);
2862 }
2863
2864 if (!event->attr.freq || !event->attr.sample_freq)
2865 goto next;
2866
2867 /*
2868 * stop the event and update event->count
2869 */
2870 event->pmu->stop(event, PERF_EF_UPDATE);
2871
2872 now = local64_read(&event->count);
2873 delta = now - hwc->freq_count_stamp;
2874 hwc->freq_count_stamp = now;
2875
2876 /*
2877 * restart the event
2878 * reload only if value has changed
2879 * we have stopped the event so tell that
2880 * to perf_adjust_period() to avoid stopping it
2881 * twice.
2882 */
2883 if (delta > 0)
2884 perf_adjust_period(event, period, delta, false);
2885
2886 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2887 next:
2888 perf_pmu_enable(event->pmu);
2889 }
2890
2891 perf_pmu_enable(ctx->pmu);
2892 raw_spin_unlock(&ctx->lock);
2893 }
2894
2895 /*
2896 * Round-robin a context's events:
2897 */
2898 static void rotate_ctx(struct perf_event_context *ctx)
2899 {
2900 /*
2901 * Rotate the first entry last of non-pinned groups. Rotation might be
2902 * disabled by the inheritance code.
2903 */
2904 if (!ctx->rotate_disable)
2905 list_rotate_left(&ctx->flexible_groups);
2906 }
2907
2908 /*
2909 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2910 * because they're strictly cpu affine and rotate_start is called with IRQs
2911 * disabled, while rotate_context is called from IRQ context.
2912 */
2913 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2914 {
2915 struct perf_event_context *ctx = NULL;
2916 int rotate = 0, remove = 1;
2917
2918 if (cpuctx->ctx.nr_events) {
2919 remove = 0;
2920 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2921 rotate = 1;
2922 }
2923
2924 ctx = cpuctx->task_ctx;
2925 if (ctx && ctx->nr_events) {
2926 remove = 0;
2927 if (ctx->nr_events != ctx->nr_active)
2928 rotate = 1;
2929 }
2930
2931 if (!rotate)
2932 goto done;
2933
2934 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2935 perf_pmu_disable(cpuctx->ctx.pmu);
2936
2937 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2938 if (ctx)
2939 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2940
2941 rotate_ctx(&cpuctx->ctx);
2942 if (ctx)
2943 rotate_ctx(ctx);
2944
2945 perf_event_sched_in(cpuctx, ctx, current);
2946
2947 perf_pmu_enable(cpuctx->ctx.pmu);
2948 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2949 done:
2950 if (remove)
2951 list_del_init(&cpuctx->rotation_list);
2952
2953 return rotate;
2954 }
2955
2956 #ifdef CONFIG_NO_HZ_FULL
2957 bool perf_event_can_stop_tick(void)
2958 {
2959 if (atomic_read(&nr_freq_events) ||
2960 __this_cpu_read(perf_throttled_count))
2961 return false;
2962 else
2963 return true;
2964 }
2965 #endif
2966
2967 void perf_event_task_tick(void)
2968 {
2969 struct list_head *head = this_cpu_ptr(&rotation_list);
2970 struct perf_cpu_context *cpuctx, *tmp;
2971 struct perf_event_context *ctx;
2972 int throttled;
2973
2974 WARN_ON(!irqs_disabled());
2975
2976 __this_cpu_inc(perf_throttled_seq);
2977 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2978
2979 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2980 ctx = &cpuctx->ctx;
2981 perf_adjust_freq_unthr_context(ctx, throttled);
2982
2983 ctx = cpuctx->task_ctx;
2984 if (ctx)
2985 perf_adjust_freq_unthr_context(ctx, throttled);
2986 }
2987 }
2988
2989 static int event_enable_on_exec(struct perf_event *event,
2990 struct perf_event_context *ctx)
2991 {
2992 if (!event->attr.enable_on_exec)
2993 return 0;
2994
2995 event->attr.enable_on_exec = 0;
2996 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2997 return 0;
2998
2999 __perf_event_mark_enabled(event);
3000
3001 return 1;
3002 }
3003
3004 /*
3005 * Enable all of a task's events that have been marked enable-on-exec.
3006 * This expects task == current.
3007 */
3008 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3009 {
3010 struct perf_event_context *clone_ctx = NULL;
3011 struct perf_event *event;
3012 unsigned long flags;
3013 int enabled = 0;
3014 int ret;
3015
3016 local_irq_save(flags);
3017 if (!ctx || !ctx->nr_events)
3018 goto out;
3019
3020 /*
3021 * We must ctxsw out cgroup events to avoid conflict
3022 * when invoking perf_task_event_sched_in() later on
3023 * in this function. Otherwise we end up trying to
3024 * ctxswin cgroup events which are already scheduled
3025 * in.
3026 */
3027 perf_cgroup_sched_out(current, NULL);
3028
3029 raw_spin_lock(&ctx->lock);
3030 task_ctx_sched_out(ctx);
3031
3032 list_for_each_entry(event, &ctx->event_list, event_entry) {
3033 ret = event_enable_on_exec(event, ctx);
3034 if (ret)
3035 enabled = 1;
3036 }
3037
3038 /*
3039 * Unclone this context if we enabled any event.
3040 */
3041 if (enabled)
3042 clone_ctx = unclone_ctx(ctx);
3043
3044 raw_spin_unlock(&ctx->lock);
3045
3046 /*
3047 * Also calls ctxswin for cgroup events, if any:
3048 */
3049 perf_event_context_sched_in(ctx, ctx->task);
3050 out:
3051 local_irq_restore(flags);
3052
3053 if (clone_ctx)
3054 put_ctx(clone_ctx);
3055 }
3056
3057 void perf_event_exec(void)
3058 {
3059 struct perf_event_context *ctx;
3060 int ctxn;
3061
3062 rcu_read_lock();
3063 for_each_task_context_nr(ctxn) {
3064 ctx = current->perf_event_ctxp[ctxn];
3065 if (!ctx)
3066 continue;
3067
3068 perf_event_enable_on_exec(ctx);
3069 }
3070 rcu_read_unlock();
3071 }
3072
3073 /*
3074 * Cross CPU call to read the hardware event
3075 */
3076 static void __perf_event_read(void *info)
3077 {
3078 struct perf_event *event = info;
3079 struct perf_event_context *ctx = event->ctx;
3080 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3081
3082 /*
3083 * If this is a task context, we need to check whether it is
3084 * the current task context of this cpu. If not it has been
3085 * scheduled out before the smp call arrived. In that case
3086 * event->count would have been updated to a recent sample
3087 * when the event was scheduled out.
3088 */
3089 if (ctx->task && cpuctx->task_ctx != ctx)
3090 return;
3091
3092 raw_spin_lock(&ctx->lock);
3093 if (ctx->is_active) {
3094 update_context_time(ctx);
3095 update_cgrp_time_from_event(event);
3096 }
3097 update_event_times(event);
3098 if (event->state == PERF_EVENT_STATE_ACTIVE)
3099 event->pmu->read(event);
3100 raw_spin_unlock(&ctx->lock);
3101 }
3102
3103 static inline u64 perf_event_count(struct perf_event *event)
3104 {
3105 return local64_read(&event->count) + atomic64_read(&event->child_count);
3106 }
3107
3108 static u64 perf_event_read(struct perf_event *event)
3109 {
3110 /*
3111 * If event is enabled and currently active on a CPU, update the
3112 * value in the event structure:
3113 */
3114 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3115 smp_call_function_single(event->oncpu,
3116 __perf_event_read, event, 1);
3117 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3118 struct perf_event_context *ctx = event->ctx;
3119 unsigned long flags;
3120
3121 raw_spin_lock_irqsave(&ctx->lock, flags);
3122 /*
3123 * may read while context is not active
3124 * (e.g., thread is blocked), in that case
3125 * we cannot update context time
3126 */
3127 if (ctx->is_active) {
3128 update_context_time(ctx);
3129 update_cgrp_time_from_event(event);
3130 }
3131 update_event_times(event);
3132 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3133 }
3134
3135 return perf_event_count(event);
3136 }
3137
3138 /*
3139 * Initialize the perf_event context in a task_struct:
3140 */
3141 static void __perf_event_init_context(struct perf_event_context *ctx)
3142 {
3143 raw_spin_lock_init(&ctx->lock);
3144 mutex_init(&ctx->mutex);
3145 INIT_LIST_HEAD(&ctx->pinned_groups);
3146 INIT_LIST_HEAD(&ctx->flexible_groups);
3147 INIT_LIST_HEAD(&ctx->event_list);
3148 atomic_set(&ctx->refcount, 1);
3149 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3150 }
3151
3152 static struct perf_event_context *
3153 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3154 {
3155 struct perf_event_context *ctx;
3156
3157 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3158 if (!ctx)
3159 return NULL;
3160
3161 __perf_event_init_context(ctx);
3162 if (task) {
3163 ctx->task = task;
3164 get_task_struct(task);
3165 }
3166 ctx->pmu = pmu;
3167
3168 return ctx;
3169 }
3170
3171 static struct task_struct *
3172 find_lively_task_by_vpid(pid_t vpid)
3173 {
3174 struct task_struct *task;
3175 int err;
3176
3177 rcu_read_lock();
3178 if (!vpid)
3179 task = current;
3180 else
3181 task = find_task_by_vpid(vpid);
3182 if (task)
3183 get_task_struct(task);
3184 rcu_read_unlock();
3185
3186 if (!task)
3187 return ERR_PTR(-ESRCH);
3188
3189 /* Reuse ptrace permission checks for now. */
3190 err = -EACCES;
3191 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3192 goto errout;
3193
3194 return task;
3195 errout:
3196 put_task_struct(task);
3197 return ERR_PTR(err);
3198
3199 }
3200
3201 /*
3202 * Returns a matching context with refcount and pincount.
3203 */
3204 static struct perf_event_context *
3205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3206 {
3207 struct perf_event_context *ctx, *clone_ctx = NULL;
3208 struct perf_cpu_context *cpuctx;
3209 unsigned long flags;
3210 int ctxn, err;
3211
3212 if (!task) {
3213 /* Must be root to operate on a CPU event: */
3214 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3215 return ERR_PTR(-EACCES);
3216
3217 /*
3218 * We could be clever and allow to attach a event to an
3219 * offline CPU and activate it when the CPU comes up, but
3220 * that's for later.
3221 */
3222 if (!cpu_online(cpu))
3223 return ERR_PTR(-ENODEV);
3224
3225 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3226 ctx = &cpuctx->ctx;
3227 get_ctx(ctx);
3228 ++ctx->pin_count;
3229
3230 return ctx;
3231 }
3232
3233 err = -EINVAL;
3234 ctxn = pmu->task_ctx_nr;
3235 if (ctxn < 0)
3236 goto errout;
3237
3238 retry:
3239 ctx = perf_lock_task_context(task, ctxn, &flags);
3240 if (ctx) {
3241 clone_ctx = unclone_ctx(ctx);
3242 ++ctx->pin_count;
3243 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3244
3245 if (clone_ctx)
3246 put_ctx(clone_ctx);
3247 } else {
3248 ctx = alloc_perf_context(pmu, task);
3249 err = -ENOMEM;
3250 if (!ctx)
3251 goto errout;
3252
3253 err = 0;
3254 mutex_lock(&task->perf_event_mutex);
3255 /*
3256 * If it has already passed perf_event_exit_task().
3257 * we must see PF_EXITING, it takes this mutex too.
3258 */
3259 if (task->flags & PF_EXITING)
3260 err = -ESRCH;
3261 else if (task->perf_event_ctxp[ctxn])
3262 err = -EAGAIN;
3263 else {
3264 get_ctx(ctx);
3265 ++ctx->pin_count;
3266 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3267 }
3268 mutex_unlock(&task->perf_event_mutex);
3269
3270 if (unlikely(err)) {
3271 put_ctx(ctx);
3272
3273 if (err == -EAGAIN)
3274 goto retry;
3275 goto errout;
3276 }
3277 }
3278
3279 return ctx;
3280
3281 errout:
3282 return ERR_PTR(err);
3283 }
3284
3285 static void perf_event_free_filter(struct perf_event *event);
3286
3287 static void free_event_rcu(struct rcu_head *head)
3288 {
3289 struct perf_event *event;
3290
3291 event = container_of(head, struct perf_event, rcu_head);
3292 if (event->ns)
3293 put_pid_ns(event->ns);
3294 perf_event_free_filter(event);
3295 kfree(event);
3296 }
3297
3298 static void ring_buffer_put(struct ring_buffer *rb);
3299 static void ring_buffer_attach(struct perf_event *event,
3300 struct ring_buffer *rb);
3301
3302 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3303 {
3304 if (event->parent)
3305 return;
3306
3307 if (has_branch_stack(event)) {
3308 if (!(event->attach_state & PERF_ATTACH_TASK))
3309 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3310 }
3311 if (is_cgroup_event(event))
3312 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3313 }
3314
3315 static void unaccount_event(struct perf_event *event)
3316 {
3317 if (event->parent)
3318 return;
3319
3320 if (event->attach_state & PERF_ATTACH_TASK)
3321 static_key_slow_dec_deferred(&perf_sched_events);
3322 if (event->attr.mmap || event->attr.mmap_data)
3323 atomic_dec(&nr_mmap_events);
3324 if (event->attr.comm)
3325 atomic_dec(&nr_comm_events);
3326 if (event->attr.task)
3327 atomic_dec(&nr_task_events);
3328 if (event->attr.freq)
3329 atomic_dec(&nr_freq_events);
3330 if (is_cgroup_event(event))
3331 static_key_slow_dec_deferred(&perf_sched_events);
3332 if (has_branch_stack(event))
3333 static_key_slow_dec_deferred(&perf_sched_events);
3334
3335 unaccount_event_cpu(event, event->cpu);
3336 }
3337
3338 static void __free_event(struct perf_event *event)
3339 {
3340 if (!event->parent) {
3341 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3342 put_callchain_buffers();
3343 }
3344
3345 if (event->destroy)
3346 event->destroy(event);
3347
3348 if (event->ctx)
3349 put_ctx(event->ctx);
3350
3351 if (event->pmu)
3352 module_put(event->pmu->module);
3353
3354 call_rcu(&event->rcu_head, free_event_rcu);
3355 }
3356
3357 static void _free_event(struct perf_event *event)
3358 {
3359 irq_work_sync(&event->pending);
3360
3361 unaccount_event(event);
3362
3363 if (event->rb) {
3364 /*
3365 * Can happen when we close an event with re-directed output.
3366 *
3367 * Since we have a 0 refcount, perf_mmap_close() will skip
3368 * over us; possibly making our ring_buffer_put() the last.
3369 */
3370 mutex_lock(&event->mmap_mutex);
3371 ring_buffer_attach(event, NULL);
3372 mutex_unlock(&event->mmap_mutex);
3373 }
3374
3375 if (is_cgroup_event(event))
3376 perf_detach_cgroup(event);
3377
3378 __free_event(event);
3379 }
3380
3381 /*
3382 * Used to free events which have a known refcount of 1, such as in error paths
3383 * where the event isn't exposed yet and inherited events.
3384 */
3385 static void free_event(struct perf_event *event)
3386 {
3387 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3388 "unexpected event refcount: %ld; ptr=%p\n",
3389 atomic_long_read(&event->refcount), event)) {
3390 /* leak to avoid use-after-free */
3391 return;
3392 }
3393
3394 _free_event(event);
3395 }
3396
3397 /*
3398 * Remove user event from the owner task.
3399 */
3400 static void perf_remove_from_owner(struct perf_event *event)
3401 {
3402 struct task_struct *owner;
3403
3404 rcu_read_lock();
3405 owner = ACCESS_ONCE(event->owner);
3406 /*
3407 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3408 * !owner it means the list deletion is complete and we can indeed
3409 * free this event, otherwise we need to serialize on
3410 * owner->perf_event_mutex.
3411 */
3412 smp_read_barrier_depends();
3413 if (owner) {
3414 /*
3415 * Since delayed_put_task_struct() also drops the last
3416 * task reference we can safely take a new reference
3417 * while holding the rcu_read_lock().
3418 */
3419 get_task_struct(owner);
3420 }
3421 rcu_read_unlock();
3422
3423 if (owner) {
3424 mutex_lock(&owner->perf_event_mutex);
3425 /*
3426 * We have to re-check the event->owner field, if it is cleared
3427 * we raced with perf_event_exit_task(), acquiring the mutex
3428 * ensured they're done, and we can proceed with freeing the
3429 * event.
3430 */
3431 if (event->owner)
3432 list_del_init(&event->owner_entry);
3433 mutex_unlock(&owner->perf_event_mutex);
3434 put_task_struct(owner);
3435 }
3436 }
3437
3438 /*
3439 * Called when the last reference to the file is gone.
3440 */
3441 static void put_event(struct perf_event *event)
3442 {
3443 struct perf_event_context *ctx = event->ctx;
3444
3445 if (!atomic_long_dec_and_test(&event->refcount))
3446 return;
3447
3448 if (!is_kernel_event(event))
3449 perf_remove_from_owner(event);
3450
3451 WARN_ON_ONCE(ctx->parent_ctx);
3452 /*
3453 * There are two ways this annotation is useful:
3454 *
3455 * 1) there is a lock recursion from perf_event_exit_task
3456 * see the comment there.
3457 *
3458 * 2) there is a lock-inversion with mmap_sem through
3459 * perf_event_read_group(), which takes faults while
3460 * holding ctx->mutex, however this is called after
3461 * the last filedesc died, so there is no possibility
3462 * to trigger the AB-BA case.
3463 */
3464 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3465 perf_remove_from_context(event, true);
3466 mutex_unlock(&ctx->mutex);
3467
3468 _free_event(event);
3469 }
3470
3471 int perf_event_release_kernel(struct perf_event *event)
3472 {
3473 put_event(event);
3474 return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3477
3478 static int perf_release(struct inode *inode, struct file *file)
3479 {
3480 put_event(file->private_data);
3481 return 0;
3482 }
3483
3484 /*
3485 * Remove all orphanes events from the context.
3486 */
3487 static void orphans_remove_work(struct work_struct *work)
3488 {
3489 struct perf_event_context *ctx;
3490 struct perf_event *event, *tmp;
3491
3492 ctx = container_of(work, struct perf_event_context,
3493 orphans_remove.work);
3494
3495 mutex_lock(&ctx->mutex);
3496 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3497 struct perf_event *parent_event = event->parent;
3498
3499 if (!is_orphaned_child(event))
3500 continue;
3501
3502 perf_remove_from_context(event, true);
3503
3504 mutex_lock(&parent_event->child_mutex);
3505 list_del_init(&event->child_list);
3506 mutex_unlock(&parent_event->child_mutex);
3507
3508 free_event(event);
3509 put_event(parent_event);
3510 }
3511
3512 raw_spin_lock_irq(&ctx->lock);
3513 ctx->orphans_remove_sched = false;
3514 raw_spin_unlock_irq(&ctx->lock);
3515 mutex_unlock(&ctx->mutex);
3516
3517 put_ctx(ctx);
3518 }
3519
3520 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3521 {
3522 struct perf_event *child;
3523 u64 total = 0;
3524
3525 *enabled = 0;
3526 *running = 0;
3527
3528 mutex_lock(&event->child_mutex);
3529 total += perf_event_read(event);
3530 *enabled += event->total_time_enabled +
3531 atomic64_read(&event->child_total_time_enabled);
3532 *running += event->total_time_running +
3533 atomic64_read(&event->child_total_time_running);
3534
3535 list_for_each_entry(child, &event->child_list, child_list) {
3536 total += perf_event_read(child);
3537 *enabled += child->total_time_enabled;
3538 *running += child->total_time_running;
3539 }
3540 mutex_unlock(&event->child_mutex);
3541
3542 return total;
3543 }
3544 EXPORT_SYMBOL_GPL(perf_event_read_value);
3545
3546 static int perf_event_read_group(struct perf_event *event,
3547 u64 read_format, char __user *buf)
3548 {
3549 struct perf_event *leader = event->group_leader, *sub;
3550 int n = 0, size = 0, ret = -EFAULT;
3551 struct perf_event_context *ctx = leader->ctx;
3552 u64 values[5];
3553 u64 count, enabled, running;
3554
3555 mutex_lock(&ctx->mutex);
3556 count = perf_event_read_value(leader, &enabled, &running);
3557
3558 values[n++] = 1 + leader->nr_siblings;
3559 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3560 values[n++] = enabled;
3561 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3562 values[n++] = running;
3563 values[n++] = count;
3564 if (read_format & PERF_FORMAT_ID)
3565 values[n++] = primary_event_id(leader);
3566
3567 size = n * sizeof(u64);
3568
3569 if (copy_to_user(buf, values, size))
3570 goto unlock;
3571
3572 ret = size;
3573
3574 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3575 n = 0;
3576
3577 values[n++] = perf_event_read_value(sub, &enabled, &running);
3578 if (read_format & PERF_FORMAT_ID)
3579 values[n++] = primary_event_id(sub);
3580
3581 size = n * sizeof(u64);
3582
3583 if (copy_to_user(buf + ret, values, size)) {
3584 ret = -EFAULT;
3585 goto unlock;
3586 }
3587
3588 ret += size;
3589 }
3590 unlock:
3591 mutex_unlock(&ctx->mutex);
3592
3593 return ret;
3594 }
3595
3596 static int perf_event_read_one(struct perf_event *event,
3597 u64 read_format, char __user *buf)
3598 {
3599 u64 enabled, running;
3600 u64 values[4];
3601 int n = 0;
3602
3603 values[n++] = perf_event_read_value(event, &enabled, &running);
3604 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3605 values[n++] = enabled;
3606 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3607 values[n++] = running;
3608 if (read_format & PERF_FORMAT_ID)
3609 values[n++] = primary_event_id(event);
3610
3611 if (copy_to_user(buf, values, n * sizeof(u64)))
3612 return -EFAULT;
3613
3614 return n * sizeof(u64);
3615 }
3616
3617 static bool is_event_hup(struct perf_event *event)
3618 {
3619 bool no_children;
3620
3621 if (event->state != PERF_EVENT_STATE_EXIT)
3622 return false;
3623
3624 mutex_lock(&event->child_mutex);
3625 no_children = list_empty(&event->child_list);
3626 mutex_unlock(&event->child_mutex);
3627 return no_children;
3628 }
3629
3630 /*
3631 * Read the performance event - simple non blocking version for now
3632 */
3633 static ssize_t
3634 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3635 {
3636 u64 read_format = event->attr.read_format;
3637 int ret;
3638
3639 /*
3640 * Return end-of-file for a read on a event that is in
3641 * error state (i.e. because it was pinned but it couldn't be
3642 * scheduled on to the CPU at some point).
3643 */
3644 if (event->state == PERF_EVENT_STATE_ERROR)
3645 return 0;
3646
3647 if (count < event->read_size)
3648 return -ENOSPC;
3649
3650 WARN_ON_ONCE(event->ctx->parent_ctx);
3651 if (read_format & PERF_FORMAT_GROUP)
3652 ret = perf_event_read_group(event, read_format, buf);
3653 else
3654 ret = perf_event_read_one(event, read_format, buf);
3655
3656 return ret;
3657 }
3658
3659 static ssize_t
3660 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3661 {
3662 struct perf_event *event = file->private_data;
3663
3664 return perf_read_hw(event, buf, count);
3665 }
3666
3667 static unsigned int perf_poll(struct file *file, poll_table *wait)
3668 {
3669 struct perf_event *event = file->private_data;
3670 struct ring_buffer *rb;
3671 unsigned int events = POLLHUP;
3672
3673 poll_wait(file, &event->waitq, wait);
3674
3675 if (is_event_hup(event))
3676 return events;
3677
3678 /*
3679 * Pin the event->rb by taking event->mmap_mutex; otherwise
3680 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3681 */
3682 mutex_lock(&event->mmap_mutex);
3683 rb = event->rb;
3684 if (rb)
3685 events = atomic_xchg(&rb->poll, 0);
3686 mutex_unlock(&event->mmap_mutex);
3687 return events;
3688 }
3689
3690 static void perf_event_reset(struct perf_event *event)
3691 {
3692 (void)perf_event_read(event);
3693 local64_set(&event->count, 0);
3694 perf_event_update_userpage(event);
3695 }
3696
3697 /*
3698 * Holding the top-level event's child_mutex means that any
3699 * descendant process that has inherited this event will block
3700 * in sync_child_event if it goes to exit, thus satisfying the
3701 * task existence requirements of perf_event_enable/disable.
3702 */
3703 static void perf_event_for_each_child(struct perf_event *event,
3704 void (*func)(struct perf_event *))
3705 {
3706 struct perf_event *child;
3707
3708 WARN_ON_ONCE(event->ctx->parent_ctx);
3709 mutex_lock(&event->child_mutex);
3710 func(event);
3711 list_for_each_entry(child, &event->child_list, child_list)
3712 func(child);
3713 mutex_unlock(&event->child_mutex);
3714 }
3715
3716 static void perf_event_for_each(struct perf_event *event,
3717 void (*func)(struct perf_event *))
3718 {
3719 struct perf_event_context *ctx = event->ctx;
3720 struct perf_event *sibling;
3721
3722 WARN_ON_ONCE(ctx->parent_ctx);
3723 mutex_lock(&ctx->mutex);
3724 event = event->group_leader;
3725
3726 perf_event_for_each_child(event, func);
3727 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3728 perf_event_for_each_child(sibling, func);
3729 mutex_unlock(&ctx->mutex);
3730 }
3731
3732 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3733 {
3734 struct perf_event_context *ctx = event->ctx;
3735 int ret = 0, active;
3736 u64 value;
3737
3738 if (!is_sampling_event(event))
3739 return -EINVAL;
3740
3741 if (copy_from_user(&value, arg, sizeof(value)))
3742 return -EFAULT;
3743
3744 if (!value)
3745 return -EINVAL;
3746
3747 raw_spin_lock_irq(&ctx->lock);
3748 if (event->attr.freq) {
3749 if (value > sysctl_perf_event_sample_rate) {
3750 ret = -EINVAL;
3751 goto unlock;
3752 }
3753
3754 event->attr.sample_freq = value;
3755 } else {
3756 event->attr.sample_period = value;
3757 event->hw.sample_period = value;
3758 }
3759
3760 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3761 if (active) {
3762 perf_pmu_disable(ctx->pmu);
3763 event->pmu->stop(event, PERF_EF_UPDATE);
3764 }
3765
3766 local64_set(&event->hw.period_left, 0);
3767
3768 if (active) {
3769 event->pmu->start(event, PERF_EF_RELOAD);
3770 perf_pmu_enable(ctx->pmu);
3771 }
3772
3773 unlock:
3774 raw_spin_unlock_irq(&ctx->lock);
3775
3776 return ret;
3777 }
3778
3779 static const struct file_operations perf_fops;
3780
3781 static inline int perf_fget_light(int fd, struct fd *p)
3782 {
3783 struct fd f = fdget(fd);
3784 if (!f.file)
3785 return -EBADF;
3786
3787 if (f.file->f_op != &perf_fops) {
3788 fdput(f);
3789 return -EBADF;
3790 }
3791 *p = f;
3792 return 0;
3793 }
3794
3795 static int perf_event_set_output(struct perf_event *event,
3796 struct perf_event *output_event);
3797 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3798
3799 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3800 {
3801 struct perf_event *event = file->private_data;
3802 void (*func)(struct perf_event *);
3803 u32 flags = arg;
3804
3805 switch (cmd) {
3806 case PERF_EVENT_IOC_ENABLE:
3807 func = perf_event_enable;
3808 break;
3809 case PERF_EVENT_IOC_DISABLE:
3810 func = perf_event_disable;
3811 break;
3812 case PERF_EVENT_IOC_RESET:
3813 func = perf_event_reset;
3814 break;
3815
3816 case PERF_EVENT_IOC_REFRESH:
3817 return perf_event_refresh(event, arg);
3818
3819 case PERF_EVENT_IOC_PERIOD:
3820 return perf_event_period(event, (u64 __user *)arg);
3821
3822 case PERF_EVENT_IOC_ID:
3823 {
3824 u64 id = primary_event_id(event);
3825
3826 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3827 return -EFAULT;
3828 return 0;
3829 }
3830
3831 case PERF_EVENT_IOC_SET_OUTPUT:
3832 {
3833 int ret;
3834 if (arg != -1) {
3835 struct perf_event *output_event;
3836 struct fd output;
3837 ret = perf_fget_light(arg, &output);
3838 if (ret)
3839 return ret;
3840 output_event = output.file->private_data;
3841 ret = perf_event_set_output(event, output_event);
3842 fdput(output);
3843 } else {
3844 ret = perf_event_set_output(event, NULL);
3845 }
3846 return ret;
3847 }
3848
3849 case PERF_EVENT_IOC_SET_FILTER:
3850 return perf_event_set_filter(event, (void __user *)arg);
3851
3852 default:
3853 return -ENOTTY;
3854 }
3855
3856 if (flags & PERF_IOC_FLAG_GROUP)
3857 perf_event_for_each(event, func);
3858 else
3859 perf_event_for_each_child(event, func);
3860
3861 return 0;
3862 }
3863
3864 #ifdef CONFIG_COMPAT
3865 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3866 unsigned long arg)
3867 {
3868 switch (_IOC_NR(cmd)) {
3869 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3870 case _IOC_NR(PERF_EVENT_IOC_ID):
3871 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3872 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3873 cmd &= ~IOCSIZE_MASK;
3874 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3875 }
3876 break;
3877 }
3878 return perf_ioctl(file, cmd, arg);
3879 }
3880 #else
3881 # define perf_compat_ioctl NULL
3882 #endif
3883
3884 int perf_event_task_enable(void)
3885 {
3886 struct perf_event *event;
3887
3888 mutex_lock(&current->perf_event_mutex);
3889 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3890 perf_event_for_each_child(event, perf_event_enable);
3891 mutex_unlock(&current->perf_event_mutex);
3892
3893 return 0;
3894 }
3895
3896 int perf_event_task_disable(void)
3897 {
3898 struct perf_event *event;
3899
3900 mutex_lock(&current->perf_event_mutex);
3901 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3902 perf_event_for_each_child(event, perf_event_disable);
3903 mutex_unlock(&current->perf_event_mutex);
3904
3905 return 0;
3906 }
3907
3908 static int perf_event_index(struct perf_event *event)
3909 {
3910 if (event->hw.state & PERF_HES_STOPPED)
3911 return 0;
3912
3913 if (event->state != PERF_EVENT_STATE_ACTIVE)
3914 return 0;
3915
3916 return event->pmu->event_idx(event);
3917 }
3918
3919 static void calc_timer_values(struct perf_event *event,
3920 u64 *now,
3921 u64 *enabled,
3922 u64 *running)
3923 {
3924 u64 ctx_time;
3925
3926 *now = perf_clock();
3927 ctx_time = event->shadow_ctx_time + *now;
3928 *enabled = ctx_time - event->tstamp_enabled;
3929 *running = ctx_time - event->tstamp_running;
3930 }
3931
3932 static void perf_event_init_userpage(struct perf_event *event)
3933 {
3934 struct perf_event_mmap_page *userpg;
3935 struct ring_buffer *rb;
3936
3937 rcu_read_lock();
3938 rb = rcu_dereference(event->rb);
3939 if (!rb)
3940 goto unlock;
3941
3942 userpg = rb->user_page;
3943
3944 /* Allow new userspace to detect that bit 0 is deprecated */
3945 userpg->cap_bit0_is_deprecated = 1;
3946 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3947
3948 unlock:
3949 rcu_read_unlock();
3950 }
3951
3952 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3953 {
3954 }
3955
3956 /*
3957 * Callers need to ensure there can be no nesting of this function, otherwise
3958 * the seqlock logic goes bad. We can not serialize this because the arch
3959 * code calls this from NMI context.
3960 */
3961 void perf_event_update_userpage(struct perf_event *event)
3962 {
3963 struct perf_event_mmap_page *userpg;
3964 struct ring_buffer *rb;
3965 u64 enabled, running, now;
3966
3967 rcu_read_lock();
3968 rb = rcu_dereference(event->rb);
3969 if (!rb)
3970 goto unlock;
3971
3972 /*
3973 * compute total_time_enabled, total_time_running
3974 * based on snapshot values taken when the event
3975 * was last scheduled in.
3976 *
3977 * we cannot simply called update_context_time()
3978 * because of locking issue as we can be called in
3979 * NMI context
3980 */
3981 calc_timer_values(event, &now, &enabled, &running);
3982
3983 userpg = rb->user_page;
3984 /*
3985 * Disable preemption so as to not let the corresponding user-space
3986 * spin too long if we get preempted.
3987 */
3988 preempt_disable();
3989 ++userpg->lock;
3990 barrier();
3991 userpg->index = perf_event_index(event);
3992 userpg->offset = perf_event_count(event);
3993 if (userpg->index)
3994 userpg->offset -= local64_read(&event->hw.prev_count);
3995
3996 userpg->time_enabled = enabled +
3997 atomic64_read(&event->child_total_time_enabled);
3998
3999 userpg->time_running = running +
4000 atomic64_read(&event->child_total_time_running);
4001
4002 arch_perf_update_userpage(userpg, now);
4003
4004 barrier();
4005 ++userpg->lock;
4006 preempt_enable();
4007 unlock:
4008 rcu_read_unlock();
4009 }
4010
4011 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4012 {
4013 struct perf_event *event = vma->vm_file->private_data;
4014 struct ring_buffer *rb;
4015 int ret = VM_FAULT_SIGBUS;
4016
4017 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4018 if (vmf->pgoff == 0)
4019 ret = 0;
4020 return ret;
4021 }
4022
4023 rcu_read_lock();
4024 rb = rcu_dereference(event->rb);
4025 if (!rb)
4026 goto unlock;
4027
4028 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4029 goto unlock;
4030
4031 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4032 if (!vmf->page)
4033 goto unlock;
4034
4035 get_page(vmf->page);
4036 vmf->page->mapping = vma->vm_file->f_mapping;
4037 vmf->page->index = vmf->pgoff;
4038
4039 ret = 0;
4040 unlock:
4041 rcu_read_unlock();
4042
4043 return ret;
4044 }
4045
4046 static void ring_buffer_attach(struct perf_event *event,
4047 struct ring_buffer *rb)
4048 {
4049 struct ring_buffer *old_rb = NULL;
4050 unsigned long flags;
4051
4052 if (event->rb) {
4053 /*
4054 * Should be impossible, we set this when removing
4055 * event->rb_entry and wait/clear when adding event->rb_entry.
4056 */
4057 WARN_ON_ONCE(event->rcu_pending);
4058
4059 old_rb = event->rb;
4060 event->rcu_batches = get_state_synchronize_rcu();
4061 event->rcu_pending = 1;
4062
4063 spin_lock_irqsave(&old_rb->event_lock, flags);
4064 list_del_rcu(&event->rb_entry);
4065 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4066 }
4067
4068 if (event->rcu_pending && rb) {
4069 cond_synchronize_rcu(event->rcu_batches);
4070 event->rcu_pending = 0;
4071 }
4072
4073 if (rb) {
4074 spin_lock_irqsave(&rb->event_lock, flags);
4075 list_add_rcu(&event->rb_entry, &rb->event_list);
4076 spin_unlock_irqrestore(&rb->event_lock, flags);
4077 }
4078
4079 rcu_assign_pointer(event->rb, rb);
4080
4081 if (old_rb) {
4082 ring_buffer_put(old_rb);
4083 /*
4084 * Since we detached before setting the new rb, so that we
4085 * could attach the new rb, we could have missed a wakeup.
4086 * Provide it now.
4087 */
4088 wake_up_all(&event->waitq);
4089 }
4090 }
4091
4092 static void ring_buffer_wakeup(struct perf_event *event)
4093 {
4094 struct ring_buffer *rb;
4095
4096 rcu_read_lock();
4097 rb = rcu_dereference(event->rb);
4098 if (rb) {
4099 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4100 wake_up_all(&event->waitq);
4101 }
4102 rcu_read_unlock();
4103 }
4104
4105 static void rb_free_rcu(struct rcu_head *rcu_head)
4106 {
4107 struct ring_buffer *rb;
4108
4109 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4110 rb_free(rb);
4111 }
4112
4113 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4114 {
4115 struct ring_buffer *rb;
4116
4117 rcu_read_lock();
4118 rb = rcu_dereference(event->rb);
4119 if (rb) {
4120 if (!atomic_inc_not_zero(&rb->refcount))
4121 rb = NULL;
4122 }
4123 rcu_read_unlock();
4124
4125 return rb;
4126 }
4127
4128 static void ring_buffer_put(struct ring_buffer *rb)
4129 {
4130 if (!atomic_dec_and_test(&rb->refcount))
4131 return;
4132
4133 WARN_ON_ONCE(!list_empty(&rb->event_list));
4134
4135 call_rcu(&rb->rcu_head, rb_free_rcu);
4136 }
4137
4138 static void perf_mmap_open(struct vm_area_struct *vma)
4139 {
4140 struct perf_event *event = vma->vm_file->private_data;
4141
4142 atomic_inc(&event->mmap_count);
4143 atomic_inc(&event->rb->mmap_count);
4144 }
4145
4146 /*
4147 * A buffer can be mmap()ed multiple times; either directly through the same
4148 * event, or through other events by use of perf_event_set_output().
4149 *
4150 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4151 * the buffer here, where we still have a VM context. This means we need
4152 * to detach all events redirecting to us.
4153 */
4154 static void perf_mmap_close(struct vm_area_struct *vma)
4155 {
4156 struct perf_event *event = vma->vm_file->private_data;
4157
4158 struct ring_buffer *rb = ring_buffer_get(event);
4159 struct user_struct *mmap_user = rb->mmap_user;
4160 int mmap_locked = rb->mmap_locked;
4161 unsigned long size = perf_data_size(rb);
4162
4163 atomic_dec(&rb->mmap_count);
4164
4165 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4166 goto out_put;
4167
4168 ring_buffer_attach(event, NULL);
4169 mutex_unlock(&event->mmap_mutex);
4170
4171 /* If there's still other mmap()s of this buffer, we're done. */
4172 if (atomic_read(&rb->mmap_count))
4173 goto out_put;
4174
4175 /*
4176 * No other mmap()s, detach from all other events that might redirect
4177 * into the now unreachable buffer. Somewhat complicated by the
4178 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4179 */
4180 again:
4181 rcu_read_lock();
4182 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4183 if (!atomic_long_inc_not_zero(&event->refcount)) {
4184 /*
4185 * This event is en-route to free_event() which will
4186 * detach it and remove it from the list.
4187 */
4188 continue;
4189 }
4190 rcu_read_unlock();
4191
4192 mutex_lock(&event->mmap_mutex);
4193 /*
4194 * Check we didn't race with perf_event_set_output() which can
4195 * swizzle the rb from under us while we were waiting to
4196 * acquire mmap_mutex.
4197 *
4198 * If we find a different rb; ignore this event, a next
4199 * iteration will no longer find it on the list. We have to
4200 * still restart the iteration to make sure we're not now
4201 * iterating the wrong list.
4202 */
4203 if (event->rb == rb)
4204 ring_buffer_attach(event, NULL);
4205
4206 mutex_unlock(&event->mmap_mutex);
4207 put_event(event);
4208
4209 /*
4210 * Restart the iteration; either we're on the wrong list or
4211 * destroyed its integrity by doing a deletion.
4212 */
4213 goto again;
4214 }
4215 rcu_read_unlock();
4216
4217 /*
4218 * It could be there's still a few 0-ref events on the list; they'll
4219 * get cleaned up by free_event() -- they'll also still have their
4220 * ref on the rb and will free it whenever they are done with it.
4221 *
4222 * Aside from that, this buffer is 'fully' detached and unmapped,
4223 * undo the VM accounting.
4224 */
4225
4226 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4227 vma->vm_mm->pinned_vm -= mmap_locked;
4228 free_uid(mmap_user);
4229
4230 out_put:
4231 ring_buffer_put(rb); /* could be last */
4232 }
4233
4234 static const struct vm_operations_struct perf_mmap_vmops = {
4235 .open = perf_mmap_open,
4236 .close = perf_mmap_close,
4237 .fault = perf_mmap_fault,
4238 .page_mkwrite = perf_mmap_fault,
4239 };
4240
4241 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4242 {
4243 struct perf_event *event = file->private_data;
4244 unsigned long user_locked, user_lock_limit;
4245 struct user_struct *user = current_user();
4246 unsigned long locked, lock_limit;
4247 struct ring_buffer *rb;
4248 unsigned long vma_size;
4249 unsigned long nr_pages;
4250 long user_extra, extra;
4251 int ret = 0, flags = 0;
4252
4253 /*
4254 * Don't allow mmap() of inherited per-task counters. This would
4255 * create a performance issue due to all children writing to the
4256 * same rb.
4257 */
4258 if (event->cpu == -1 && event->attr.inherit)
4259 return -EINVAL;
4260
4261 if (!(vma->vm_flags & VM_SHARED))
4262 return -EINVAL;
4263
4264 vma_size = vma->vm_end - vma->vm_start;
4265 nr_pages = (vma_size / PAGE_SIZE) - 1;
4266
4267 /*
4268 * If we have rb pages ensure they're a power-of-two number, so we
4269 * can do bitmasks instead of modulo.
4270 */
4271 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4272 return -EINVAL;
4273
4274 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4275 return -EINVAL;
4276
4277 if (vma->vm_pgoff != 0)
4278 return -EINVAL;
4279
4280 WARN_ON_ONCE(event->ctx->parent_ctx);
4281 again:
4282 mutex_lock(&event->mmap_mutex);
4283 if (event->rb) {
4284 if (event->rb->nr_pages != nr_pages) {
4285 ret = -EINVAL;
4286 goto unlock;
4287 }
4288
4289 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4290 /*
4291 * Raced against perf_mmap_close() through
4292 * perf_event_set_output(). Try again, hope for better
4293 * luck.
4294 */
4295 mutex_unlock(&event->mmap_mutex);
4296 goto again;
4297 }
4298
4299 goto unlock;
4300 }
4301
4302 user_extra = nr_pages + 1;
4303 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4304
4305 /*
4306 * Increase the limit linearly with more CPUs:
4307 */
4308 user_lock_limit *= num_online_cpus();
4309
4310 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4311
4312 extra = 0;
4313 if (user_locked > user_lock_limit)
4314 extra = user_locked - user_lock_limit;
4315
4316 lock_limit = rlimit(RLIMIT_MEMLOCK);
4317 lock_limit >>= PAGE_SHIFT;
4318 locked = vma->vm_mm->pinned_vm + extra;
4319
4320 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4321 !capable(CAP_IPC_LOCK)) {
4322 ret = -EPERM;
4323 goto unlock;
4324 }
4325
4326 WARN_ON(event->rb);
4327
4328 if (vma->vm_flags & VM_WRITE)
4329 flags |= RING_BUFFER_WRITABLE;
4330
4331 rb = rb_alloc(nr_pages,
4332 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4333 event->cpu, flags);
4334
4335 if (!rb) {
4336 ret = -ENOMEM;
4337 goto unlock;
4338 }
4339
4340 atomic_set(&rb->mmap_count, 1);
4341 rb->mmap_locked = extra;
4342 rb->mmap_user = get_current_user();
4343
4344 atomic_long_add(user_extra, &user->locked_vm);
4345 vma->vm_mm->pinned_vm += extra;
4346
4347 ring_buffer_attach(event, rb);
4348
4349 perf_event_init_userpage(event);
4350 perf_event_update_userpage(event);
4351
4352 unlock:
4353 if (!ret)
4354 atomic_inc(&event->mmap_count);
4355 mutex_unlock(&event->mmap_mutex);
4356
4357 /*
4358 * Since pinned accounting is per vm we cannot allow fork() to copy our
4359 * vma.
4360 */
4361 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4362 vma->vm_ops = &perf_mmap_vmops;
4363
4364 return ret;
4365 }
4366
4367 static int perf_fasync(int fd, struct file *filp, int on)
4368 {
4369 struct inode *inode = file_inode(filp);
4370 struct perf_event *event = filp->private_data;
4371 int retval;
4372
4373 mutex_lock(&inode->i_mutex);
4374 retval = fasync_helper(fd, filp, on, &event->fasync);
4375 mutex_unlock(&inode->i_mutex);
4376
4377 if (retval < 0)
4378 return retval;
4379
4380 return 0;
4381 }
4382
4383 static const struct file_operations perf_fops = {
4384 .llseek = no_llseek,
4385 .release = perf_release,
4386 .read = perf_read,
4387 .poll = perf_poll,
4388 .unlocked_ioctl = perf_ioctl,
4389 .compat_ioctl = perf_compat_ioctl,
4390 .mmap = perf_mmap,
4391 .fasync = perf_fasync,
4392 };
4393
4394 /*
4395 * Perf event wakeup
4396 *
4397 * If there's data, ensure we set the poll() state and publish everything
4398 * to user-space before waking everybody up.
4399 */
4400
4401 void perf_event_wakeup(struct perf_event *event)
4402 {
4403 ring_buffer_wakeup(event);
4404
4405 if (event->pending_kill) {
4406 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4407 event->pending_kill = 0;
4408 }
4409 }
4410
4411 static void perf_pending_event(struct irq_work *entry)
4412 {
4413 struct perf_event *event = container_of(entry,
4414 struct perf_event, pending);
4415
4416 if (event->pending_disable) {
4417 event->pending_disable = 0;
4418 __perf_event_disable(event);
4419 }
4420
4421 if (event->pending_wakeup) {
4422 event->pending_wakeup = 0;
4423 perf_event_wakeup(event);
4424 }
4425 }
4426
4427 /*
4428 * We assume there is only KVM supporting the callbacks.
4429 * Later on, we might change it to a list if there is
4430 * another virtualization implementation supporting the callbacks.
4431 */
4432 struct perf_guest_info_callbacks *perf_guest_cbs;
4433
4434 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4435 {
4436 perf_guest_cbs = cbs;
4437 return 0;
4438 }
4439 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4440
4441 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4442 {
4443 perf_guest_cbs = NULL;
4444 return 0;
4445 }
4446 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4447
4448 static void
4449 perf_output_sample_regs(struct perf_output_handle *handle,
4450 struct pt_regs *regs, u64 mask)
4451 {
4452 int bit;
4453
4454 for_each_set_bit(bit, (const unsigned long *) &mask,
4455 sizeof(mask) * BITS_PER_BYTE) {
4456 u64 val;
4457
4458 val = perf_reg_value(regs, bit);
4459 perf_output_put(handle, val);
4460 }
4461 }
4462
4463 static void perf_sample_regs_user(struct perf_regs *regs_user,
4464 struct pt_regs *regs,
4465 struct pt_regs *regs_user_copy)
4466 {
4467 if (user_mode(regs)) {
4468 regs_user->abi = perf_reg_abi(current);
4469 regs_user->regs = regs;
4470 } else if (current->mm) {
4471 perf_get_regs_user(regs_user, regs, regs_user_copy);
4472 } else {
4473 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4474 regs_user->regs = NULL;
4475 }
4476 }
4477
4478 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4479 struct pt_regs *regs)
4480 {
4481 regs_intr->regs = regs;
4482 regs_intr->abi = perf_reg_abi(current);
4483 }
4484
4485
4486 /*
4487 * Get remaining task size from user stack pointer.
4488 *
4489 * It'd be better to take stack vma map and limit this more
4490 * precisly, but there's no way to get it safely under interrupt,
4491 * so using TASK_SIZE as limit.
4492 */
4493 static u64 perf_ustack_task_size(struct pt_regs *regs)
4494 {
4495 unsigned long addr = perf_user_stack_pointer(regs);
4496
4497 if (!addr || addr >= TASK_SIZE)
4498 return 0;
4499
4500 return TASK_SIZE - addr;
4501 }
4502
4503 static u16
4504 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4505 struct pt_regs *regs)
4506 {
4507 u64 task_size;
4508
4509 /* No regs, no stack pointer, no dump. */
4510 if (!regs)
4511 return 0;
4512
4513 /*
4514 * Check if we fit in with the requested stack size into the:
4515 * - TASK_SIZE
4516 * If we don't, we limit the size to the TASK_SIZE.
4517 *
4518 * - remaining sample size
4519 * If we don't, we customize the stack size to
4520 * fit in to the remaining sample size.
4521 */
4522
4523 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4524 stack_size = min(stack_size, (u16) task_size);
4525
4526 /* Current header size plus static size and dynamic size. */
4527 header_size += 2 * sizeof(u64);
4528
4529 /* Do we fit in with the current stack dump size? */
4530 if ((u16) (header_size + stack_size) < header_size) {
4531 /*
4532 * If we overflow the maximum size for the sample,
4533 * we customize the stack dump size to fit in.
4534 */
4535 stack_size = USHRT_MAX - header_size - sizeof(u64);
4536 stack_size = round_up(stack_size, sizeof(u64));
4537 }
4538
4539 return stack_size;
4540 }
4541
4542 static void
4543 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4544 struct pt_regs *regs)
4545 {
4546 /* Case of a kernel thread, nothing to dump */
4547 if (!regs) {
4548 u64 size = 0;
4549 perf_output_put(handle, size);
4550 } else {
4551 unsigned long sp;
4552 unsigned int rem;
4553 u64 dyn_size;
4554
4555 /*
4556 * We dump:
4557 * static size
4558 * - the size requested by user or the best one we can fit
4559 * in to the sample max size
4560 * data
4561 * - user stack dump data
4562 * dynamic size
4563 * - the actual dumped size
4564 */
4565
4566 /* Static size. */
4567 perf_output_put(handle, dump_size);
4568
4569 /* Data. */
4570 sp = perf_user_stack_pointer(regs);
4571 rem = __output_copy_user(handle, (void *) sp, dump_size);
4572 dyn_size = dump_size - rem;
4573
4574 perf_output_skip(handle, rem);
4575
4576 /* Dynamic size. */
4577 perf_output_put(handle, dyn_size);
4578 }
4579 }
4580
4581 static void __perf_event_header__init_id(struct perf_event_header *header,
4582 struct perf_sample_data *data,
4583 struct perf_event *event)
4584 {
4585 u64 sample_type = event->attr.sample_type;
4586
4587 data->type = sample_type;
4588 header->size += event->id_header_size;
4589
4590 if (sample_type & PERF_SAMPLE_TID) {
4591 /* namespace issues */
4592 data->tid_entry.pid = perf_event_pid(event, current);
4593 data->tid_entry.tid = perf_event_tid(event, current);
4594 }
4595
4596 if (sample_type & PERF_SAMPLE_TIME)
4597 data->time = perf_clock();
4598
4599 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4600 data->id = primary_event_id(event);
4601
4602 if (sample_type & PERF_SAMPLE_STREAM_ID)
4603 data->stream_id = event->id;
4604
4605 if (sample_type & PERF_SAMPLE_CPU) {
4606 data->cpu_entry.cpu = raw_smp_processor_id();
4607 data->cpu_entry.reserved = 0;
4608 }
4609 }
4610
4611 void perf_event_header__init_id(struct perf_event_header *header,
4612 struct perf_sample_data *data,
4613 struct perf_event *event)
4614 {
4615 if (event->attr.sample_id_all)
4616 __perf_event_header__init_id(header, data, event);
4617 }
4618
4619 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4620 struct perf_sample_data *data)
4621 {
4622 u64 sample_type = data->type;
4623
4624 if (sample_type & PERF_SAMPLE_TID)
4625 perf_output_put(handle, data->tid_entry);
4626
4627 if (sample_type & PERF_SAMPLE_TIME)
4628 perf_output_put(handle, data->time);
4629
4630 if (sample_type & PERF_SAMPLE_ID)
4631 perf_output_put(handle, data->id);
4632
4633 if (sample_type & PERF_SAMPLE_STREAM_ID)
4634 perf_output_put(handle, data->stream_id);
4635
4636 if (sample_type & PERF_SAMPLE_CPU)
4637 perf_output_put(handle, data->cpu_entry);
4638
4639 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4640 perf_output_put(handle, data->id);
4641 }
4642
4643 void perf_event__output_id_sample(struct perf_event *event,
4644 struct perf_output_handle *handle,
4645 struct perf_sample_data *sample)
4646 {
4647 if (event->attr.sample_id_all)
4648 __perf_event__output_id_sample(handle, sample);
4649 }
4650
4651 static void perf_output_read_one(struct perf_output_handle *handle,
4652 struct perf_event *event,
4653 u64 enabled, u64 running)
4654 {
4655 u64 read_format = event->attr.read_format;
4656 u64 values[4];
4657 int n = 0;
4658
4659 values[n++] = perf_event_count(event);
4660 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4661 values[n++] = enabled +
4662 atomic64_read(&event->child_total_time_enabled);
4663 }
4664 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4665 values[n++] = running +
4666 atomic64_read(&event->child_total_time_running);
4667 }
4668 if (read_format & PERF_FORMAT_ID)
4669 values[n++] = primary_event_id(event);
4670
4671 __output_copy(handle, values, n * sizeof(u64));
4672 }
4673
4674 /*
4675 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4676 */
4677 static void perf_output_read_group(struct perf_output_handle *handle,
4678 struct perf_event *event,
4679 u64 enabled, u64 running)
4680 {
4681 struct perf_event *leader = event->group_leader, *sub;
4682 u64 read_format = event->attr.read_format;
4683 u64 values[5];
4684 int n = 0;
4685
4686 values[n++] = 1 + leader->nr_siblings;
4687
4688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4689 values[n++] = enabled;
4690
4691 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4692 values[n++] = running;
4693
4694 if (leader != event)
4695 leader->pmu->read(leader);
4696
4697 values[n++] = perf_event_count(leader);
4698 if (read_format & PERF_FORMAT_ID)
4699 values[n++] = primary_event_id(leader);
4700
4701 __output_copy(handle, values, n * sizeof(u64));
4702
4703 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4704 n = 0;
4705
4706 if ((sub != event) &&
4707 (sub->state == PERF_EVENT_STATE_ACTIVE))
4708 sub->pmu->read(sub);
4709
4710 values[n++] = perf_event_count(sub);
4711 if (read_format & PERF_FORMAT_ID)
4712 values[n++] = primary_event_id(sub);
4713
4714 __output_copy(handle, values, n * sizeof(u64));
4715 }
4716 }
4717
4718 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4719 PERF_FORMAT_TOTAL_TIME_RUNNING)
4720
4721 static void perf_output_read(struct perf_output_handle *handle,
4722 struct perf_event *event)
4723 {
4724 u64 enabled = 0, running = 0, now;
4725 u64 read_format = event->attr.read_format;
4726
4727 /*
4728 * compute total_time_enabled, total_time_running
4729 * based on snapshot values taken when the event
4730 * was last scheduled in.
4731 *
4732 * we cannot simply called update_context_time()
4733 * because of locking issue as we are called in
4734 * NMI context
4735 */
4736 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4737 calc_timer_values(event, &now, &enabled, &running);
4738
4739 if (event->attr.read_format & PERF_FORMAT_GROUP)
4740 perf_output_read_group(handle, event, enabled, running);
4741 else
4742 perf_output_read_one(handle, event, enabled, running);
4743 }
4744
4745 void perf_output_sample(struct perf_output_handle *handle,
4746 struct perf_event_header *header,
4747 struct perf_sample_data *data,
4748 struct perf_event *event)
4749 {
4750 u64 sample_type = data->type;
4751
4752 perf_output_put(handle, *header);
4753
4754 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4755 perf_output_put(handle, data->id);
4756
4757 if (sample_type & PERF_SAMPLE_IP)
4758 perf_output_put(handle, data->ip);
4759
4760 if (sample_type & PERF_SAMPLE_TID)
4761 perf_output_put(handle, data->tid_entry);
4762
4763 if (sample_type & PERF_SAMPLE_TIME)
4764 perf_output_put(handle, data->time);
4765
4766 if (sample_type & PERF_SAMPLE_ADDR)
4767 perf_output_put(handle, data->addr);
4768
4769 if (sample_type & PERF_SAMPLE_ID)
4770 perf_output_put(handle, data->id);
4771
4772 if (sample_type & PERF_SAMPLE_STREAM_ID)
4773 perf_output_put(handle, data->stream_id);
4774
4775 if (sample_type & PERF_SAMPLE_CPU)
4776 perf_output_put(handle, data->cpu_entry);
4777
4778 if (sample_type & PERF_SAMPLE_PERIOD)
4779 perf_output_put(handle, data->period);
4780
4781 if (sample_type & PERF_SAMPLE_READ)
4782 perf_output_read(handle, event);
4783
4784 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4785 if (data->callchain) {
4786 int size = 1;
4787
4788 if (data->callchain)
4789 size += data->callchain->nr;
4790
4791 size *= sizeof(u64);
4792
4793 __output_copy(handle, data->callchain, size);
4794 } else {
4795 u64 nr = 0;
4796 perf_output_put(handle, nr);
4797 }
4798 }
4799
4800 if (sample_type & PERF_SAMPLE_RAW) {
4801 if (data->raw) {
4802 perf_output_put(handle, data->raw->size);
4803 __output_copy(handle, data->raw->data,
4804 data->raw->size);
4805 } else {
4806 struct {
4807 u32 size;
4808 u32 data;
4809 } raw = {
4810 .size = sizeof(u32),
4811 .data = 0,
4812 };
4813 perf_output_put(handle, raw);
4814 }
4815 }
4816
4817 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4818 if (data->br_stack) {
4819 size_t size;
4820
4821 size = data->br_stack->nr
4822 * sizeof(struct perf_branch_entry);
4823
4824 perf_output_put(handle, data->br_stack->nr);
4825 perf_output_copy(handle, data->br_stack->entries, size);
4826 } else {
4827 /*
4828 * we always store at least the value of nr
4829 */
4830 u64 nr = 0;
4831 perf_output_put(handle, nr);
4832 }
4833 }
4834
4835 if (sample_type & PERF_SAMPLE_REGS_USER) {
4836 u64 abi = data->regs_user.abi;
4837
4838 /*
4839 * If there are no regs to dump, notice it through
4840 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4841 */
4842 perf_output_put(handle, abi);
4843
4844 if (abi) {
4845 u64 mask = event->attr.sample_regs_user;
4846 perf_output_sample_regs(handle,
4847 data->regs_user.regs,
4848 mask);
4849 }
4850 }
4851
4852 if (sample_type & PERF_SAMPLE_STACK_USER) {
4853 perf_output_sample_ustack(handle,
4854 data->stack_user_size,
4855 data->regs_user.regs);
4856 }
4857
4858 if (sample_type & PERF_SAMPLE_WEIGHT)
4859 perf_output_put(handle, data->weight);
4860
4861 if (sample_type & PERF_SAMPLE_DATA_SRC)
4862 perf_output_put(handle, data->data_src.val);
4863
4864 if (sample_type & PERF_SAMPLE_TRANSACTION)
4865 perf_output_put(handle, data->txn);
4866
4867 if (sample_type & PERF_SAMPLE_REGS_INTR) {
4868 u64 abi = data->regs_intr.abi;
4869 /*
4870 * If there are no regs to dump, notice it through
4871 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4872 */
4873 perf_output_put(handle, abi);
4874
4875 if (abi) {
4876 u64 mask = event->attr.sample_regs_intr;
4877
4878 perf_output_sample_regs(handle,
4879 data->regs_intr.regs,
4880 mask);
4881 }
4882 }
4883
4884 if (!event->attr.watermark) {
4885 int wakeup_events = event->attr.wakeup_events;
4886
4887 if (wakeup_events) {
4888 struct ring_buffer *rb = handle->rb;
4889 int events = local_inc_return(&rb->events);
4890
4891 if (events >= wakeup_events) {
4892 local_sub(wakeup_events, &rb->events);
4893 local_inc(&rb->wakeup);
4894 }
4895 }
4896 }
4897 }
4898
4899 void perf_prepare_sample(struct perf_event_header *header,
4900 struct perf_sample_data *data,
4901 struct perf_event *event,
4902 struct pt_regs *regs)
4903 {
4904 u64 sample_type = event->attr.sample_type;
4905
4906 header->type = PERF_RECORD_SAMPLE;
4907 header->size = sizeof(*header) + event->header_size;
4908
4909 header->misc = 0;
4910 header->misc |= perf_misc_flags(regs);
4911
4912 __perf_event_header__init_id(header, data, event);
4913
4914 if (sample_type & PERF_SAMPLE_IP)
4915 data->ip = perf_instruction_pointer(regs);
4916
4917 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4918 int size = 1;
4919
4920 data->callchain = perf_callchain(event, regs);
4921
4922 if (data->callchain)
4923 size += data->callchain->nr;
4924
4925 header->size += size * sizeof(u64);
4926 }
4927
4928 if (sample_type & PERF_SAMPLE_RAW) {
4929 int size = sizeof(u32);
4930
4931 if (data->raw)
4932 size += data->raw->size;
4933 else
4934 size += sizeof(u32);
4935
4936 WARN_ON_ONCE(size & (sizeof(u64)-1));
4937 header->size += size;
4938 }
4939
4940 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4941 int size = sizeof(u64); /* nr */
4942 if (data->br_stack) {
4943 size += data->br_stack->nr
4944 * sizeof(struct perf_branch_entry);
4945 }
4946 header->size += size;
4947 }
4948
4949 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
4950 perf_sample_regs_user(&data->regs_user, regs,
4951 &data->regs_user_copy);
4952
4953 if (sample_type & PERF_SAMPLE_REGS_USER) {
4954 /* regs dump ABI info */
4955 int size = sizeof(u64);
4956
4957 if (data->regs_user.regs) {
4958 u64 mask = event->attr.sample_regs_user;
4959 size += hweight64(mask) * sizeof(u64);
4960 }
4961
4962 header->size += size;
4963 }
4964
4965 if (sample_type & PERF_SAMPLE_STACK_USER) {
4966 /*
4967 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4968 * processed as the last one or have additional check added
4969 * in case new sample type is added, because we could eat
4970 * up the rest of the sample size.
4971 */
4972 u16 stack_size = event->attr.sample_stack_user;
4973 u16 size = sizeof(u64);
4974
4975 stack_size = perf_sample_ustack_size(stack_size, header->size,
4976 data->regs_user.regs);
4977
4978 /*
4979 * If there is something to dump, add space for the dump
4980 * itself and for the field that tells the dynamic size,
4981 * which is how many have been actually dumped.
4982 */
4983 if (stack_size)
4984 size += sizeof(u64) + stack_size;
4985
4986 data->stack_user_size = stack_size;
4987 header->size += size;
4988 }
4989
4990 if (sample_type & PERF_SAMPLE_REGS_INTR) {
4991 /* regs dump ABI info */
4992 int size = sizeof(u64);
4993
4994 perf_sample_regs_intr(&data->regs_intr, regs);
4995
4996 if (data->regs_intr.regs) {
4997 u64 mask = event->attr.sample_regs_intr;
4998
4999 size += hweight64(mask) * sizeof(u64);
5000 }
5001
5002 header->size += size;
5003 }
5004 }
5005
5006 static void perf_event_output(struct perf_event *event,
5007 struct perf_sample_data *data,
5008 struct pt_regs *regs)
5009 {
5010 struct perf_output_handle handle;
5011 struct perf_event_header header;
5012
5013 /* protect the callchain buffers */
5014 rcu_read_lock();
5015
5016 perf_prepare_sample(&header, data, event, regs);
5017
5018 if (perf_output_begin(&handle, event, header.size))
5019 goto exit;
5020
5021 perf_output_sample(&handle, &header, data, event);
5022
5023 perf_output_end(&handle);
5024
5025 exit:
5026 rcu_read_unlock();
5027 }
5028
5029 /*
5030 * read event_id
5031 */
5032
5033 struct perf_read_event {
5034 struct perf_event_header header;
5035
5036 u32 pid;
5037 u32 tid;
5038 };
5039
5040 static void
5041 perf_event_read_event(struct perf_event *event,
5042 struct task_struct *task)
5043 {
5044 struct perf_output_handle handle;
5045 struct perf_sample_data sample;
5046 struct perf_read_event read_event = {
5047 .header = {
5048 .type = PERF_RECORD_READ,
5049 .misc = 0,
5050 .size = sizeof(read_event) + event->read_size,
5051 },
5052 .pid = perf_event_pid(event, task),
5053 .tid = perf_event_tid(event, task),
5054 };
5055 int ret;
5056
5057 perf_event_header__init_id(&read_event.header, &sample, event);
5058 ret = perf_output_begin(&handle, event, read_event.header.size);
5059 if (ret)
5060 return;
5061
5062 perf_output_put(&handle, read_event);
5063 perf_output_read(&handle, event);
5064 perf_event__output_id_sample(event, &handle, &sample);
5065
5066 perf_output_end(&handle);
5067 }
5068
5069 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5070
5071 static void
5072 perf_event_aux_ctx(struct perf_event_context *ctx,
5073 perf_event_aux_output_cb output,
5074 void *data)
5075 {
5076 struct perf_event *event;
5077
5078 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5079 if (event->state < PERF_EVENT_STATE_INACTIVE)
5080 continue;
5081 if (!event_filter_match(event))
5082 continue;
5083 output(event, data);
5084 }
5085 }
5086
5087 static void
5088 perf_event_aux(perf_event_aux_output_cb output, void *data,
5089 struct perf_event_context *task_ctx)
5090 {
5091 struct perf_cpu_context *cpuctx;
5092 struct perf_event_context *ctx;
5093 struct pmu *pmu;
5094 int ctxn;
5095
5096 rcu_read_lock();
5097 list_for_each_entry_rcu(pmu, &pmus, entry) {
5098 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5099 if (cpuctx->unique_pmu != pmu)
5100 goto next;
5101 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5102 if (task_ctx)
5103 goto next;
5104 ctxn = pmu->task_ctx_nr;
5105 if (ctxn < 0)
5106 goto next;
5107 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5108 if (ctx)
5109 perf_event_aux_ctx(ctx, output, data);
5110 next:
5111 put_cpu_ptr(pmu->pmu_cpu_context);
5112 }
5113
5114 if (task_ctx) {
5115 preempt_disable();
5116 perf_event_aux_ctx(task_ctx, output, data);
5117 preempt_enable();
5118 }
5119 rcu_read_unlock();
5120 }
5121
5122 /*
5123 * task tracking -- fork/exit
5124 *
5125 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5126 */
5127
5128 struct perf_task_event {
5129 struct task_struct *task;
5130 struct perf_event_context *task_ctx;
5131
5132 struct {
5133 struct perf_event_header header;
5134
5135 u32 pid;
5136 u32 ppid;
5137 u32 tid;
5138 u32 ptid;
5139 u64 time;
5140 } event_id;
5141 };
5142
5143 static int perf_event_task_match(struct perf_event *event)
5144 {
5145 return event->attr.comm || event->attr.mmap ||
5146 event->attr.mmap2 || event->attr.mmap_data ||
5147 event->attr.task;
5148 }
5149
5150 static void perf_event_task_output(struct perf_event *event,
5151 void *data)
5152 {
5153 struct perf_task_event *task_event = data;
5154 struct perf_output_handle handle;
5155 struct perf_sample_data sample;
5156 struct task_struct *task = task_event->task;
5157 int ret, size = task_event->event_id.header.size;
5158
5159 if (!perf_event_task_match(event))
5160 return;
5161
5162 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5163
5164 ret = perf_output_begin(&handle, event,
5165 task_event->event_id.header.size);
5166 if (ret)
5167 goto out;
5168
5169 task_event->event_id.pid = perf_event_pid(event, task);
5170 task_event->event_id.ppid = perf_event_pid(event, current);
5171
5172 task_event->event_id.tid = perf_event_tid(event, task);
5173 task_event->event_id.ptid = perf_event_tid(event, current);
5174
5175 perf_output_put(&handle, task_event->event_id);
5176
5177 perf_event__output_id_sample(event, &handle, &sample);
5178
5179 perf_output_end(&handle);
5180 out:
5181 task_event->event_id.header.size = size;
5182 }
5183
5184 static void perf_event_task(struct task_struct *task,
5185 struct perf_event_context *task_ctx,
5186 int new)
5187 {
5188 struct perf_task_event task_event;
5189
5190 if (!atomic_read(&nr_comm_events) &&
5191 !atomic_read(&nr_mmap_events) &&
5192 !atomic_read(&nr_task_events))
5193 return;
5194
5195 task_event = (struct perf_task_event){
5196 .task = task,
5197 .task_ctx = task_ctx,
5198 .event_id = {
5199 .header = {
5200 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5201 .misc = 0,
5202 .size = sizeof(task_event.event_id),
5203 },
5204 /* .pid */
5205 /* .ppid */
5206 /* .tid */
5207 /* .ptid */
5208 .time = perf_clock(),
5209 },
5210 };
5211
5212 perf_event_aux(perf_event_task_output,
5213 &task_event,
5214 task_ctx);
5215 }
5216
5217 void perf_event_fork(struct task_struct *task)
5218 {
5219 perf_event_task(task, NULL, 1);
5220 }
5221
5222 /*
5223 * comm tracking
5224 */
5225
5226 struct perf_comm_event {
5227 struct task_struct *task;
5228 char *comm;
5229 int comm_size;
5230
5231 struct {
5232 struct perf_event_header header;
5233
5234 u32 pid;
5235 u32 tid;
5236 } event_id;
5237 };
5238
5239 static int perf_event_comm_match(struct perf_event *event)
5240 {
5241 return event->attr.comm;
5242 }
5243
5244 static void perf_event_comm_output(struct perf_event *event,
5245 void *data)
5246 {
5247 struct perf_comm_event *comm_event = data;
5248 struct perf_output_handle handle;
5249 struct perf_sample_data sample;
5250 int size = comm_event->event_id.header.size;
5251 int ret;
5252
5253 if (!perf_event_comm_match(event))
5254 return;
5255
5256 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5257 ret = perf_output_begin(&handle, event,
5258 comm_event->event_id.header.size);
5259
5260 if (ret)
5261 goto out;
5262
5263 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5264 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5265
5266 perf_output_put(&handle, comm_event->event_id);
5267 __output_copy(&handle, comm_event->comm,
5268 comm_event->comm_size);
5269
5270 perf_event__output_id_sample(event, &handle, &sample);
5271
5272 perf_output_end(&handle);
5273 out:
5274 comm_event->event_id.header.size = size;
5275 }
5276
5277 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5278 {
5279 char comm[TASK_COMM_LEN];
5280 unsigned int size;
5281
5282 memset(comm, 0, sizeof(comm));
5283 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5284 size = ALIGN(strlen(comm)+1, sizeof(u64));
5285
5286 comm_event->comm = comm;
5287 comm_event->comm_size = size;
5288
5289 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5290
5291 perf_event_aux(perf_event_comm_output,
5292 comm_event,
5293 NULL);
5294 }
5295
5296 void perf_event_comm(struct task_struct *task, bool exec)
5297 {
5298 struct perf_comm_event comm_event;
5299
5300 if (!atomic_read(&nr_comm_events))
5301 return;
5302
5303 comm_event = (struct perf_comm_event){
5304 .task = task,
5305 /* .comm */
5306 /* .comm_size */
5307 .event_id = {
5308 .header = {
5309 .type = PERF_RECORD_COMM,
5310 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5311 /* .size */
5312 },
5313 /* .pid */
5314 /* .tid */
5315 },
5316 };
5317
5318 perf_event_comm_event(&comm_event);
5319 }
5320
5321 /*
5322 * mmap tracking
5323 */
5324
5325 struct perf_mmap_event {
5326 struct vm_area_struct *vma;
5327
5328 const char *file_name;
5329 int file_size;
5330 int maj, min;
5331 u64 ino;
5332 u64 ino_generation;
5333 u32 prot, flags;
5334
5335 struct {
5336 struct perf_event_header header;
5337
5338 u32 pid;
5339 u32 tid;
5340 u64 start;
5341 u64 len;
5342 u64 pgoff;
5343 } event_id;
5344 };
5345
5346 static int perf_event_mmap_match(struct perf_event *event,
5347 void *data)
5348 {
5349 struct perf_mmap_event *mmap_event = data;
5350 struct vm_area_struct *vma = mmap_event->vma;
5351 int executable = vma->vm_flags & VM_EXEC;
5352
5353 return (!executable && event->attr.mmap_data) ||
5354 (executable && (event->attr.mmap || event->attr.mmap2));
5355 }
5356
5357 static void perf_event_mmap_output(struct perf_event *event,
5358 void *data)
5359 {
5360 struct perf_mmap_event *mmap_event = data;
5361 struct perf_output_handle handle;
5362 struct perf_sample_data sample;
5363 int size = mmap_event->event_id.header.size;
5364 int ret;
5365
5366 if (!perf_event_mmap_match(event, data))
5367 return;
5368
5369 if (event->attr.mmap2) {
5370 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5371 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5372 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5373 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5374 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5375 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5376 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5377 }
5378
5379 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5380 ret = perf_output_begin(&handle, event,
5381 mmap_event->event_id.header.size);
5382 if (ret)
5383 goto out;
5384
5385 mmap_event->event_id.pid = perf_event_pid(event, current);
5386 mmap_event->event_id.tid = perf_event_tid(event, current);
5387
5388 perf_output_put(&handle, mmap_event->event_id);
5389
5390 if (event->attr.mmap2) {
5391 perf_output_put(&handle, mmap_event->maj);
5392 perf_output_put(&handle, mmap_event->min);
5393 perf_output_put(&handle, mmap_event->ino);
5394 perf_output_put(&handle, mmap_event->ino_generation);
5395 perf_output_put(&handle, mmap_event->prot);
5396 perf_output_put(&handle, mmap_event->flags);
5397 }
5398
5399 __output_copy(&handle, mmap_event->file_name,
5400 mmap_event->file_size);
5401
5402 perf_event__output_id_sample(event, &handle, &sample);
5403
5404 perf_output_end(&handle);
5405 out:
5406 mmap_event->event_id.header.size = size;
5407 }
5408
5409 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5410 {
5411 struct vm_area_struct *vma = mmap_event->vma;
5412 struct file *file = vma->vm_file;
5413 int maj = 0, min = 0;
5414 u64 ino = 0, gen = 0;
5415 u32 prot = 0, flags = 0;
5416 unsigned int size;
5417 char tmp[16];
5418 char *buf = NULL;
5419 char *name;
5420
5421 if (file) {
5422 struct inode *inode;
5423 dev_t dev;
5424
5425 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5426 if (!buf) {
5427 name = "//enomem";
5428 goto cpy_name;
5429 }
5430 /*
5431 * d_path() works from the end of the rb backwards, so we
5432 * need to add enough zero bytes after the string to handle
5433 * the 64bit alignment we do later.
5434 */
5435 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5436 if (IS_ERR(name)) {
5437 name = "//toolong";
5438 goto cpy_name;
5439 }
5440 inode = file_inode(vma->vm_file);
5441 dev = inode->i_sb->s_dev;
5442 ino = inode->i_ino;
5443 gen = inode->i_generation;
5444 maj = MAJOR(dev);
5445 min = MINOR(dev);
5446
5447 if (vma->vm_flags & VM_READ)
5448 prot |= PROT_READ;
5449 if (vma->vm_flags & VM_WRITE)
5450 prot |= PROT_WRITE;
5451 if (vma->vm_flags & VM_EXEC)
5452 prot |= PROT_EXEC;
5453
5454 if (vma->vm_flags & VM_MAYSHARE)
5455 flags = MAP_SHARED;
5456 else
5457 flags = MAP_PRIVATE;
5458
5459 if (vma->vm_flags & VM_DENYWRITE)
5460 flags |= MAP_DENYWRITE;
5461 if (vma->vm_flags & VM_MAYEXEC)
5462 flags |= MAP_EXECUTABLE;
5463 if (vma->vm_flags & VM_LOCKED)
5464 flags |= MAP_LOCKED;
5465 if (vma->vm_flags & VM_HUGETLB)
5466 flags |= MAP_HUGETLB;
5467
5468 goto got_name;
5469 } else {
5470 if (vma->vm_ops && vma->vm_ops->name) {
5471 name = (char *) vma->vm_ops->name(vma);
5472 if (name)
5473 goto cpy_name;
5474 }
5475
5476 name = (char *)arch_vma_name(vma);
5477 if (name)
5478 goto cpy_name;
5479
5480 if (vma->vm_start <= vma->vm_mm->start_brk &&
5481 vma->vm_end >= vma->vm_mm->brk) {
5482 name = "[heap]";
5483 goto cpy_name;
5484 }
5485 if (vma->vm_start <= vma->vm_mm->start_stack &&
5486 vma->vm_end >= vma->vm_mm->start_stack) {
5487 name = "[stack]";
5488 goto cpy_name;
5489 }
5490
5491 name = "//anon";
5492 goto cpy_name;
5493 }
5494
5495 cpy_name:
5496 strlcpy(tmp, name, sizeof(tmp));
5497 name = tmp;
5498 got_name:
5499 /*
5500 * Since our buffer works in 8 byte units we need to align our string
5501 * size to a multiple of 8. However, we must guarantee the tail end is
5502 * zero'd out to avoid leaking random bits to userspace.
5503 */
5504 size = strlen(name)+1;
5505 while (!IS_ALIGNED(size, sizeof(u64)))
5506 name[size++] = '\0';
5507
5508 mmap_event->file_name = name;
5509 mmap_event->file_size = size;
5510 mmap_event->maj = maj;
5511 mmap_event->min = min;
5512 mmap_event->ino = ino;
5513 mmap_event->ino_generation = gen;
5514 mmap_event->prot = prot;
5515 mmap_event->flags = flags;
5516
5517 if (!(vma->vm_flags & VM_EXEC))
5518 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5519
5520 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5521
5522 perf_event_aux(perf_event_mmap_output,
5523 mmap_event,
5524 NULL);
5525
5526 kfree(buf);
5527 }
5528
5529 void perf_event_mmap(struct vm_area_struct *vma)
5530 {
5531 struct perf_mmap_event mmap_event;
5532
5533 if (!atomic_read(&nr_mmap_events))
5534 return;
5535
5536 mmap_event = (struct perf_mmap_event){
5537 .vma = vma,
5538 /* .file_name */
5539 /* .file_size */
5540 .event_id = {
5541 .header = {
5542 .type = PERF_RECORD_MMAP,
5543 .misc = PERF_RECORD_MISC_USER,
5544 /* .size */
5545 },
5546 /* .pid */
5547 /* .tid */
5548 .start = vma->vm_start,
5549 .len = vma->vm_end - vma->vm_start,
5550 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5551 },
5552 /* .maj (attr_mmap2 only) */
5553 /* .min (attr_mmap2 only) */
5554 /* .ino (attr_mmap2 only) */
5555 /* .ino_generation (attr_mmap2 only) */
5556 /* .prot (attr_mmap2 only) */
5557 /* .flags (attr_mmap2 only) */
5558 };
5559
5560 perf_event_mmap_event(&mmap_event);
5561 }
5562
5563 /*
5564 * IRQ throttle logging
5565 */
5566
5567 static void perf_log_throttle(struct perf_event *event, int enable)
5568 {
5569 struct perf_output_handle handle;
5570 struct perf_sample_data sample;
5571 int ret;
5572
5573 struct {
5574 struct perf_event_header header;
5575 u64 time;
5576 u64 id;
5577 u64 stream_id;
5578 } throttle_event = {
5579 .header = {
5580 .type = PERF_RECORD_THROTTLE,
5581 .misc = 0,
5582 .size = sizeof(throttle_event),
5583 },
5584 .time = perf_clock(),
5585 .id = primary_event_id(event),
5586 .stream_id = event->id,
5587 };
5588
5589 if (enable)
5590 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5591
5592 perf_event_header__init_id(&throttle_event.header, &sample, event);
5593
5594 ret = perf_output_begin(&handle, event,
5595 throttle_event.header.size);
5596 if (ret)
5597 return;
5598
5599 perf_output_put(&handle, throttle_event);
5600 perf_event__output_id_sample(event, &handle, &sample);
5601 perf_output_end(&handle);
5602 }
5603
5604 /*
5605 * Generic event overflow handling, sampling.
5606 */
5607
5608 static int __perf_event_overflow(struct perf_event *event,
5609 int throttle, struct perf_sample_data *data,
5610 struct pt_regs *regs)
5611 {
5612 int events = atomic_read(&event->event_limit);
5613 struct hw_perf_event *hwc = &event->hw;
5614 u64 seq;
5615 int ret = 0;
5616
5617 /*
5618 * Non-sampling counters might still use the PMI to fold short
5619 * hardware counters, ignore those.
5620 */
5621 if (unlikely(!is_sampling_event(event)))
5622 return 0;
5623
5624 seq = __this_cpu_read(perf_throttled_seq);
5625 if (seq != hwc->interrupts_seq) {
5626 hwc->interrupts_seq = seq;
5627 hwc->interrupts = 1;
5628 } else {
5629 hwc->interrupts++;
5630 if (unlikely(throttle
5631 && hwc->interrupts >= max_samples_per_tick)) {
5632 __this_cpu_inc(perf_throttled_count);
5633 hwc->interrupts = MAX_INTERRUPTS;
5634 perf_log_throttle(event, 0);
5635 tick_nohz_full_kick();
5636 ret = 1;
5637 }
5638 }
5639
5640 if (event->attr.freq) {
5641 u64 now = perf_clock();
5642 s64 delta = now - hwc->freq_time_stamp;
5643
5644 hwc->freq_time_stamp = now;
5645
5646 if (delta > 0 && delta < 2*TICK_NSEC)
5647 perf_adjust_period(event, delta, hwc->last_period, true);
5648 }
5649
5650 /*
5651 * XXX event_limit might not quite work as expected on inherited
5652 * events
5653 */
5654
5655 event->pending_kill = POLL_IN;
5656 if (events && atomic_dec_and_test(&event->event_limit)) {
5657 ret = 1;
5658 event->pending_kill = POLL_HUP;
5659 event->pending_disable = 1;
5660 irq_work_queue(&event->pending);
5661 }
5662
5663 if (event->overflow_handler)
5664 event->overflow_handler(event, data, regs);
5665 else
5666 perf_event_output(event, data, regs);
5667
5668 if (event->fasync && event->pending_kill) {
5669 event->pending_wakeup = 1;
5670 irq_work_queue(&event->pending);
5671 }
5672
5673 return ret;
5674 }
5675
5676 int perf_event_overflow(struct perf_event *event,
5677 struct perf_sample_data *data,
5678 struct pt_regs *regs)
5679 {
5680 return __perf_event_overflow(event, 1, data, regs);
5681 }
5682
5683 /*
5684 * Generic software event infrastructure
5685 */
5686
5687 struct swevent_htable {
5688 struct swevent_hlist *swevent_hlist;
5689 struct mutex hlist_mutex;
5690 int hlist_refcount;
5691
5692 /* Recursion avoidance in each contexts */
5693 int recursion[PERF_NR_CONTEXTS];
5694
5695 /* Keeps track of cpu being initialized/exited */
5696 bool online;
5697 };
5698
5699 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5700
5701 /*
5702 * We directly increment event->count and keep a second value in
5703 * event->hw.period_left to count intervals. This period event
5704 * is kept in the range [-sample_period, 0] so that we can use the
5705 * sign as trigger.
5706 */
5707
5708 u64 perf_swevent_set_period(struct perf_event *event)
5709 {
5710 struct hw_perf_event *hwc = &event->hw;
5711 u64 period = hwc->last_period;
5712 u64 nr, offset;
5713 s64 old, val;
5714
5715 hwc->last_period = hwc->sample_period;
5716
5717 again:
5718 old = val = local64_read(&hwc->period_left);
5719 if (val < 0)
5720 return 0;
5721
5722 nr = div64_u64(period + val, period);
5723 offset = nr * period;
5724 val -= offset;
5725 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5726 goto again;
5727
5728 return nr;
5729 }
5730
5731 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5732 struct perf_sample_data *data,
5733 struct pt_regs *regs)
5734 {
5735 struct hw_perf_event *hwc = &event->hw;
5736 int throttle = 0;
5737
5738 if (!overflow)
5739 overflow = perf_swevent_set_period(event);
5740
5741 if (hwc->interrupts == MAX_INTERRUPTS)
5742 return;
5743
5744 for (; overflow; overflow--) {
5745 if (__perf_event_overflow(event, throttle,
5746 data, regs)) {
5747 /*
5748 * We inhibit the overflow from happening when
5749 * hwc->interrupts == MAX_INTERRUPTS.
5750 */
5751 break;
5752 }
5753 throttle = 1;
5754 }
5755 }
5756
5757 static void perf_swevent_event(struct perf_event *event, u64 nr,
5758 struct perf_sample_data *data,
5759 struct pt_regs *regs)
5760 {
5761 struct hw_perf_event *hwc = &event->hw;
5762
5763 local64_add(nr, &event->count);
5764
5765 if (!regs)
5766 return;
5767
5768 if (!is_sampling_event(event))
5769 return;
5770
5771 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5772 data->period = nr;
5773 return perf_swevent_overflow(event, 1, data, regs);
5774 } else
5775 data->period = event->hw.last_period;
5776
5777 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5778 return perf_swevent_overflow(event, 1, data, regs);
5779
5780 if (local64_add_negative(nr, &hwc->period_left))
5781 return;
5782
5783 perf_swevent_overflow(event, 0, data, regs);
5784 }
5785
5786 static int perf_exclude_event(struct perf_event *event,
5787 struct pt_regs *regs)
5788 {
5789 if (event->hw.state & PERF_HES_STOPPED)
5790 return 1;
5791
5792 if (regs) {
5793 if (event->attr.exclude_user && user_mode(regs))
5794 return 1;
5795
5796 if (event->attr.exclude_kernel && !user_mode(regs))
5797 return 1;
5798 }
5799
5800 return 0;
5801 }
5802
5803 static int perf_swevent_match(struct perf_event *event,
5804 enum perf_type_id type,
5805 u32 event_id,
5806 struct perf_sample_data *data,
5807 struct pt_regs *regs)
5808 {
5809 if (event->attr.type != type)
5810 return 0;
5811
5812 if (event->attr.config != event_id)
5813 return 0;
5814
5815 if (perf_exclude_event(event, regs))
5816 return 0;
5817
5818 return 1;
5819 }
5820
5821 static inline u64 swevent_hash(u64 type, u32 event_id)
5822 {
5823 u64 val = event_id | (type << 32);
5824
5825 return hash_64(val, SWEVENT_HLIST_BITS);
5826 }
5827
5828 static inline struct hlist_head *
5829 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5830 {
5831 u64 hash = swevent_hash(type, event_id);
5832
5833 return &hlist->heads[hash];
5834 }
5835
5836 /* For the read side: events when they trigger */
5837 static inline struct hlist_head *
5838 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5839 {
5840 struct swevent_hlist *hlist;
5841
5842 hlist = rcu_dereference(swhash->swevent_hlist);
5843 if (!hlist)
5844 return NULL;
5845
5846 return __find_swevent_head(hlist, type, event_id);
5847 }
5848
5849 /* For the event head insertion and removal in the hlist */
5850 static inline struct hlist_head *
5851 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5852 {
5853 struct swevent_hlist *hlist;
5854 u32 event_id = event->attr.config;
5855 u64 type = event->attr.type;
5856
5857 /*
5858 * Event scheduling is always serialized against hlist allocation
5859 * and release. Which makes the protected version suitable here.
5860 * The context lock guarantees that.
5861 */
5862 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5863 lockdep_is_held(&event->ctx->lock));
5864 if (!hlist)
5865 return NULL;
5866
5867 return __find_swevent_head(hlist, type, event_id);
5868 }
5869
5870 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5871 u64 nr,
5872 struct perf_sample_data *data,
5873 struct pt_regs *regs)
5874 {
5875 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5876 struct perf_event *event;
5877 struct hlist_head *head;
5878
5879 rcu_read_lock();
5880 head = find_swevent_head_rcu(swhash, type, event_id);
5881 if (!head)
5882 goto end;
5883
5884 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5885 if (perf_swevent_match(event, type, event_id, data, regs))
5886 perf_swevent_event(event, nr, data, regs);
5887 }
5888 end:
5889 rcu_read_unlock();
5890 }
5891
5892 int perf_swevent_get_recursion_context(void)
5893 {
5894 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5895
5896 return get_recursion_context(swhash->recursion);
5897 }
5898 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5899
5900 inline void perf_swevent_put_recursion_context(int rctx)
5901 {
5902 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5903
5904 put_recursion_context(swhash->recursion, rctx);
5905 }
5906
5907 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5908 {
5909 struct perf_sample_data data;
5910 int rctx;
5911
5912 preempt_disable_notrace();
5913 rctx = perf_swevent_get_recursion_context();
5914 if (rctx < 0)
5915 return;
5916
5917 perf_sample_data_init(&data, addr, 0);
5918
5919 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5920
5921 perf_swevent_put_recursion_context(rctx);
5922 preempt_enable_notrace();
5923 }
5924
5925 static void perf_swevent_read(struct perf_event *event)
5926 {
5927 }
5928
5929 static int perf_swevent_add(struct perf_event *event, int flags)
5930 {
5931 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5932 struct hw_perf_event *hwc = &event->hw;
5933 struct hlist_head *head;
5934
5935 if (is_sampling_event(event)) {
5936 hwc->last_period = hwc->sample_period;
5937 perf_swevent_set_period(event);
5938 }
5939
5940 hwc->state = !(flags & PERF_EF_START);
5941
5942 head = find_swevent_head(swhash, event);
5943 if (!head) {
5944 /*
5945 * We can race with cpu hotplug code. Do not
5946 * WARN if the cpu just got unplugged.
5947 */
5948 WARN_ON_ONCE(swhash->online);
5949 return -EINVAL;
5950 }
5951
5952 hlist_add_head_rcu(&event->hlist_entry, head);
5953
5954 return 0;
5955 }
5956
5957 static void perf_swevent_del(struct perf_event *event, int flags)
5958 {
5959 hlist_del_rcu(&event->hlist_entry);
5960 }
5961
5962 static void perf_swevent_start(struct perf_event *event, int flags)
5963 {
5964 event->hw.state = 0;
5965 }
5966
5967 static void perf_swevent_stop(struct perf_event *event, int flags)
5968 {
5969 event->hw.state = PERF_HES_STOPPED;
5970 }
5971
5972 /* Deref the hlist from the update side */
5973 static inline struct swevent_hlist *
5974 swevent_hlist_deref(struct swevent_htable *swhash)
5975 {
5976 return rcu_dereference_protected(swhash->swevent_hlist,
5977 lockdep_is_held(&swhash->hlist_mutex));
5978 }
5979
5980 static void swevent_hlist_release(struct swevent_htable *swhash)
5981 {
5982 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5983
5984 if (!hlist)
5985 return;
5986
5987 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5988 kfree_rcu(hlist, rcu_head);
5989 }
5990
5991 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5992 {
5993 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5994
5995 mutex_lock(&swhash->hlist_mutex);
5996
5997 if (!--swhash->hlist_refcount)
5998 swevent_hlist_release(swhash);
5999
6000 mutex_unlock(&swhash->hlist_mutex);
6001 }
6002
6003 static void swevent_hlist_put(struct perf_event *event)
6004 {
6005 int cpu;
6006
6007 for_each_possible_cpu(cpu)
6008 swevent_hlist_put_cpu(event, cpu);
6009 }
6010
6011 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6012 {
6013 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6014 int err = 0;
6015
6016 mutex_lock(&swhash->hlist_mutex);
6017
6018 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6019 struct swevent_hlist *hlist;
6020
6021 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6022 if (!hlist) {
6023 err = -ENOMEM;
6024 goto exit;
6025 }
6026 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6027 }
6028 swhash->hlist_refcount++;
6029 exit:
6030 mutex_unlock(&swhash->hlist_mutex);
6031
6032 return err;
6033 }
6034
6035 static int swevent_hlist_get(struct perf_event *event)
6036 {
6037 int err;
6038 int cpu, failed_cpu;
6039
6040 get_online_cpus();
6041 for_each_possible_cpu(cpu) {
6042 err = swevent_hlist_get_cpu(event, cpu);
6043 if (err) {
6044 failed_cpu = cpu;
6045 goto fail;
6046 }
6047 }
6048 put_online_cpus();
6049
6050 return 0;
6051 fail:
6052 for_each_possible_cpu(cpu) {
6053 if (cpu == failed_cpu)
6054 break;
6055 swevent_hlist_put_cpu(event, cpu);
6056 }
6057
6058 put_online_cpus();
6059 return err;
6060 }
6061
6062 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6063
6064 static void sw_perf_event_destroy(struct perf_event *event)
6065 {
6066 u64 event_id = event->attr.config;
6067
6068 WARN_ON(event->parent);
6069
6070 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6071 swevent_hlist_put(event);
6072 }
6073
6074 static int perf_swevent_init(struct perf_event *event)
6075 {
6076 u64 event_id = event->attr.config;
6077
6078 if (event->attr.type != PERF_TYPE_SOFTWARE)
6079 return -ENOENT;
6080
6081 /*
6082 * no branch sampling for software events
6083 */
6084 if (has_branch_stack(event))
6085 return -EOPNOTSUPP;
6086
6087 switch (event_id) {
6088 case PERF_COUNT_SW_CPU_CLOCK:
6089 case PERF_COUNT_SW_TASK_CLOCK:
6090 return -ENOENT;
6091
6092 default:
6093 break;
6094 }
6095
6096 if (event_id >= PERF_COUNT_SW_MAX)
6097 return -ENOENT;
6098
6099 if (!event->parent) {
6100 int err;
6101
6102 err = swevent_hlist_get(event);
6103 if (err)
6104 return err;
6105
6106 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6107 event->destroy = sw_perf_event_destroy;
6108 }
6109
6110 return 0;
6111 }
6112
6113 static struct pmu perf_swevent = {
6114 .task_ctx_nr = perf_sw_context,
6115
6116 .event_init = perf_swevent_init,
6117 .add = perf_swevent_add,
6118 .del = perf_swevent_del,
6119 .start = perf_swevent_start,
6120 .stop = perf_swevent_stop,
6121 .read = perf_swevent_read,
6122 };
6123
6124 #ifdef CONFIG_EVENT_TRACING
6125
6126 static int perf_tp_filter_match(struct perf_event *event,
6127 struct perf_sample_data *data)
6128 {
6129 void *record = data->raw->data;
6130
6131 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6132 return 1;
6133 return 0;
6134 }
6135
6136 static int perf_tp_event_match(struct perf_event *event,
6137 struct perf_sample_data *data,
6138 struct pt_regs *regs)
6139 {
6140 if (event->hw.state & PERF_HES_STOPPED)
6141 return 0;
6142 /*
6143 * All tracepoints are from kernel-space.
6144 */
6145 if (event->attr.exclude_kernel)
6146 return 0;
6147
6148 if (!perf_tp_filter_match(event, data))
6149 return 0;
6150
6151 return 1;
6152 }
6153
6154 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6155 struct pt_regs *regs, struct hlist_head *head, int rctx,
6156 struct task_struct *task)
6157 {
6158 struct perf_sample_data data;
6159 struct perf_event *event;
6160
6161 struct perf_raw_record raw = {
6162 .size = entry_size,
6163 .data = record,
6164 };
6165
6166 perf_sample_data_init(&data, addr, 0);
6167 data.raw = &raw;
6168
6169 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6170 if (perf_tp_event_match(event, &data, regs))
6171 perf_swevent_event(event, count, &data, regs);
6172 }
6173
6174 /*
6175 * If we got specified a target task, also iterate its context and
6176 * deliver this event there too.
6177 */
6178 if (task && task != current) {
6179 struct perf_event_context *ctx;
6180 struct trace_entry *entry = record;
6181
6182 rcu_read_lock();
6183 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6184 if (!ctx)
6185 goto unlock;
6186
6187 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6188 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6189 continue;
6190 if (event->attr.config != entry->type)
6191 continue;
6192 if (perf_tp_event_match(event, &data, regs))
6193 perf_swevent_event(event, count, &data, regs);
6194 }
6195 unlock:
6196 rcu_read_unlock();
6197 }
6198
6199 perf_swevent_put_recursion_context(rctx);
6200 }
6201 EXPORT_SYMBOL_GPL(perf_tp_event);
6202
6203 static void tp_perf_event_destroy(struct perf_event *event)
6204 {
6205 perf_trace_destroy(event);
6206 }
6207
6208 static int perf_tp_event_init(struct perf_event *event)
6209 {
6210 int err;
6211
6212 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6213 return -ENOENT;
6214
6215 /*
6216 * no branch sampling for tracepoint events
6217 */
6218 if (has_branch_stack(event))
6219 return -EOPNOTSUPP;
6220
6221 err = perf_trace_init(event);
6222 if (err)
6223 return err;
6224
6225 event->destroy = tp_perf_event_destroy;
6226
6227 return 0;
6228 }
6229
6230 static struct pmu perf_tracepoint = {
6231 .task_ctx_nr = perf_sw_context,
6232
6233 .event_init = perf_tp_event_init,
6234 .add = perf_trace_add,
6235 .del = perf_trace_del,
6236 .start = perf_swevent_start,
6237 .stop = perf_swevent_stop,
6238 .read = perf_swevent_read,
6239 };
6240
6241 static inline void perf_tp_register(void)
6242 {
6243 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6244 }
6245
6246 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6247 {
6248 char *filter_str;
6249 int ret;
6250
6251 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6252 return -EINVAL;
6253
6254 filter_str = strndup_user(arg, PAGE_SIZE);
6255 if (IS_ERR(filter_str))
6256 return PTR_ERR(filter_str);
6257
6258 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6259
6260 kfree(filter_str);
6261 return ret;
6262 }
6263
6264 static void perf_event_free_filter(struct perf_event *event)
6265 {
6266 ftrace_profile_free_filter(event);
6267 }
6268
6269 #else
6270
6271 static inline void perf_tp_register(void)
6272 {
6273 }
6274
6275 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6276 {
6277 return -ENOENT;
6278 }
6279
6280 static void perf_event_free_filter(struct perf_event *event)
6281 {
6282 }
6283
6284 #endif /* CONFIG_EVENT_TRACING */
6285
6286 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6287 void perf_bp_event(struct perf_event *bp, void *data)
6288 {
6289 struct perf_sample_data sample;
6290 struct pt_regs *regs = data;
6291
6292 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6293
6294 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6295 perf_swevent_event(bp, 1, &sample, regs);
6296 }
6297 #endif
6298
6299 /*
6300 * hrtimer based swevent callback
6301 */
6302
6303 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6304 {
6305 enum hrtimer_restart ret = HRTIMER_RESTART;
6306 struct perf_sample_data data;
6307 struct pt_regs *regs;
6308 struct perf_event *event;
6309 u64 period;
6310
6311 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6312
6313 if (event->state != PERF_EVENT_STATE_ACTIVE)
6314 return HRTIMER_NORESTART;
6315
6316 event->pmu->read(event);
6317
6318 perf_sample_data_init(&data, 0, event->hw.last_period);
6319 regs = get_irq_regs();
6320
6321 if (regs && !perf_exclude_event(event, regs)) {
6322 if (!(event->attr.exclude_idle && is_idle_task(current)))
6323 if (__perf_event_overflow(event, 1, &data, regs))
6324 ret = HRTIMER_NORESTART;
6325 }
6326
6327 period = max_t(u64, 10000, event->hw.sample_period);
6328 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6329
6330 return ret;
6331 }
6332
6333 static void perf_swevent_start_hrtimer(struct perf_event *event)
6334 {
6335 struct hw_perf_event *hwc = &event->hw;
6336 s64 period;
6337
6338 if (!is_sampling_event(event))
6339 return;
6340
6341 period = local64_read(&hwc->period_left);
6342 if (period) {
6343 if (period < 0)
6344 period = 10000;
6345
6346 local64_set(&hwc->period_left, 0);
6347 } else {
6348 period = max_t(u64, 10000, hwc->sample_period);
6349 }
6350 __hrtimer_start_range_ns(&hwc->hrtimer,
6351 ns_to_ktime(period), 0,
6352 HRTIMER_MODE_REL_PINNED, 0);
6353 }
6354
6355 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6356 {
6357 struct hw_perf_event *hwc = &event->hw;
6358
6359 if (is_sampling_event(event)) {
6360 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6361 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6362
6363 hrtimer_cancel(&hwc->hrtimer);
6364 }
6365 }
6366
6367 static void perf_swevent_init_hrtimer(struct perf_event *event)
6368 {
6369 struct hw_perf_event *hwc = &event->hw;
6370
6371 if (!is_sampling_event(event))
6372 return;
6373
6374 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6375 hwc->hrtimer.function = perf_swevent_hrtimer;
6376
6377 /*
6378 * Since hrtimers have a fixed rate, we can do a static freq->period
6379 * mapping and avoid the whole period adjust feedback stuff.
6380 */
6381 if (event->attr.freq) {
6382 long freq = event->attr.sample_freq;
6383
6384 event->attr.sample_period = NSEC_PER_SEC / freq;
6385 hwc->sample_period = event->attr.sample_period;
6386 local64_set(&hwc->period_left, hwc->sample_period);
6387 hwc->last_period = hwc->sample_period;
6388 event->attr.freq = 0;
6389 }
6390 }
6391
6392 /*
6393 * Software event: cpu wall time clock
6394 */
6395
6396 static void cpu_clock_event_update(struct perf_event *event)
6397 {
6398 s64 prev;
6399 u64 now;
6400
6401 now = local_clock();
6402 prev = local64_xchg(&event->hw.prev_count, now);
6403 local64_add(now - prev, &event->count);
6404 }
6405
6406 static void cpu_clock_event_start(struct perf_event *event, int flags)
6407 {
6408 local64_set(&event->hw.prev_count, local_clock());
6409 perf_swevent_start_hrtimer(event);
6410 }
6411
6412 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6413 {
6414 perf_swevent_cancel_hrtimer(event);
6415 cpu_clock_event_update(event);
6416 }
6417
6418 static int cpu_clock_event_add(struct perf_event *event, int flags)
6419 {
6420 if (flags & PERF_EF_START)
6421 cpu_clock_event_start(event, flags);
6422
6423 return 0;
6424 }
6425
6426 static void cpu_clock_event_del(struct perf_event *event, int flags)
6427 {
6428 cpu_clock_event_stop(event, flags);
6429 }
6430
6431 static void cpu_clock_event_read(struct perf_event *event)
6432 {
6433 cpu_clock_event_update(event);
6434 }
6435
6436 static int cpu_clock_event_init(struct perf_event *event)
6437 {
6438 if (event->attr.type != PERF_TYPE_SOFTWARE)
6439 return -ENOENT;
6440
6441 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6442 return -ENOENT;
6443
6444 /*
6445 * no branch sampling for software events
6446 */
6447 if (has_branch_stack(event))
6448 return -EOPNOTSUPP;
6449
6450 perf_swevent_init_hrtimer(event);
6451
6452 return 0;
6453 }
6454
6455 static struct pmu perf_cpu_clock = {
6456 .task_ctx_nr = perf_sw_context,
6457
6458 .event_init = cpu_clock_event_init,
6459 .add = cpu_clock_event_add,
6460 .del = cpu_clock_event_del,
6461 .start = cpu_clock_event_start,
6462 .stop = cpu_clock_event_stop,
6463 .read = cpu_clock_event_read,
6464 };
6465
6466 /*
6467 * Software event: task time clock
6468 */
6469
6470 static void task_clock_event_update(struct perf_event *event, u64 now)
6471 {
6472 u64 prev;
6473 s64 delta;
6474
6475 prev = local64_xchg(&event->hw.prev_count, now);
6476 delta = now - prev;
6477 local64_add(delta, &event->count);
6478 }
6479
6480 static void task_clock_event_start(struct perf_event *event, int flags)
6481 {
6482 local64_set(&event->hw.prev_count, event->ctx->time);
6483 perf_swevent_start_hrtimer(event);
6484 }
6485
6486 static void task_clock_event_stop(struct perf_event *event, int flags)
6487 {
6488 perf_swevent_cancel_hrtimer(event);
6489 task_clock_event_update(event, event->ctx->time);
6490 }
6491
6492 static int task_clock_event_add(struct perf_event *event, int flags)
6493 {
6494 if (flags & PERF_EF_START)
6495 task_clock_event_start(event, flags);
6496
6497 return 0;
6498 }
6499
6500 static void task_clock_event_del(struct perf_event *event, int flags)
6501 {
6502 task_clock_event_stop(event, PERF_EF_UPDATE);
6503 }
6504
6505 static void task_clock_event_read(struct perf_event *event)
6506 {
6507 u64 now = perf_clock();
6508 u64 delta = now - event->ctx->timestamp;
6509 u64 time = event->ctx->time + delta;
6510
6511 task_clock_event_update(event, time);
6512 }
6513
6514 static int task_clock_event_init(struct perf_event *event)
6515 {
6516 if (event->attr.type != PERF_TYPE_SOFTWARE)
6517 return -ENOENT;
6518
6519 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6520 return -ENOENT;
6521
6522 /*
6523 * no branch sampling for software events
6524 */
6525 if (has_branch_stack(event))
6526 return -EOPNOTSUPP;
6527
6528 perf_swevent_init_hrtimer(event);
6529
6530 return 0;
6531 }
6532
6533 static struct pmu perf_task_clock = {
6534 .task_ctx_nr = perf_sw_context,
6535
6536 .event_init = task_clock_event_init,
6537 .add = task_clock_event_add,
6538 .del = task_clock_event_del,
6539 .start = task_clock_event_start,
6540 .stop = task_clock_event_stop,
6541 .read = task_clock_event_read,
6542 };
6543
6544 static void perf_pmu_nop_void(struct pmu *pmu)
6545 {
6546 }
6547
6548 static int perf_pmu_nop_int(struct pmu *pmu)
6549 {
6550 return 0;
6551 }
6552
6553 static void perf_pmu_start_txn(struct pmu *pmu)
6554 {
6555 perf_pmu_disable(pmu);
6556 }
6557
6558 static int perf_pmu_commit_txn(struct pmu *pmu)
6559 {
6560 perf_pmu_enable(pmu);
6561 return 0;
6562 }
6563
6564 static void perf_pmu_cancel_txn(struct pmu *pmu)
6565 {
6566 perf_pmu_enable(pmu);
6567 }
6568
6569 static int perf_event_idx_default(struct perf_event *event)
6570 {
6571 return 0;
6572 }
6573
6574 /*
6575 * Ensures all contexts with the same task_ctx_nr have the same
6576 * pmu_cpu_context too.
6577 */
6578 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6579 {
6580 struct pmu *pmu;
6581
6582 if (ctxn < 0)
6583 return NULL;
6584
6585 list_for_each_entry(pmu, &pmus, entry) {
6586 if (pmu->task_ctx_nr == ctxn)
6587 return pmu->pmu_cpu_context;
6588 }
6589
6590 return NULL;
6591 }
6592
6593 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6594 {
6595 int cpu;
6596
6597 for_each_possible_cpu(cpu) {
6598 struct perf_cpu_context *cpuctx;
6599
6600 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6601
6602 if (cpuctx->unique_pmu == old_pmu)
6603 cpuctx->unique_pmu = pmu;
6604 }
6605 }
6606
6607 static void free_pmu_context(struct pmu *pmu)
6608 {
6609 struct pmu *i;
6610
6611 mutex_lock(&pmus_lock);
6612 /*
6613 * Like a real lame refcount.
6614 */
6615 list_for_each_entry(i, &pmus, entry) {
6616 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6617 update_pmu_context(i, pmu);
6618 goto out;
6619 }
6620 }
6621
6622 free_percpu(pmu->pmu_cpu_context);
6623 out:
6624 mutex_unlock(&pmus_lock);
6625 }
6626 static struct idr pmu_idr;
6627
6628 static ssize_t
6629 type_show(struct device *dev, struct device_attribute *attr, char *page)
6630 {
6631 struct pmu *pmu = dev_get_drvdata(dev);
6632
6633 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6634 }
6635 static DEVICE_ATTR_RO(type);
6636
6637 static ssize_t
6638 perf_event_mux_interval_ms_show(struct device *dev,
6639 struct device_attribute *attr,
6640 char *page)
6641 {
6642 struct pmu *pmu = dev_get_drvdata(dev);
6643
6644 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6645 }
6646
6647 static ssize_t
6648 perf_event_mux_interval_ms_store(struct device *dev,
6649 struct device_attribute *attr,
6650 const char *buf, size_t count)
6651 {
6652 struct pmu *pmu = dev_get_drvdata(dev);
6653 int timer, cpu, ret;
6654
6655 ret = kstrtoint(buf, 0, &timer);
6656 if (ret)
6657 return ret;
6658
6659 if (timer < 1)
6660 return -EINVAL;
6661
6662 /* same value, noting to do */
6663 if (timer == pmu->hrtimer_interval_ms)
6664 return count;
6665
6666 pmu->hrtimer_interval_ms = timer;
6667
6668 /* update all cpuctx for this PMU */
6669 for_each_possible_cpu(cpu) {
6670 struct perf_cpu_context *cpuctx;
6671 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6672 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6673
6674 if (hrtimer_active(&cpuctx->hrtimer))
6675 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6676 }
6677
6678 return count;
6679 }
6680 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6681
6682 static struct attribute *pmu_dev_attrs[] = {
6683 &dev_attr_type.attr,
6684 &dev_attr_perf_event_mux_interval_ms.attr,
6685 NULL,
6686 };
6687 ATTRIBUTE_GROUPS(pmu_dev);
6688
6689 static int pmu_bus_running;
6690 static struct bus_type pmu_bus = {
6691 .name = "event_source",
6692 .dev_groups = pmu_dev_groups,
6693 };
6694
6695 static void pmu_dev_release(struct device *dev)
6696 {
6697 kfree(dev);
6698 }
6699
6700 static int pmu_dev_alloc(struct pmu *pmu)
6701 {
6702 int ret = -ENOMEM;
6703
6704 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6705 if (!pmu->dev)
6706 goto out;
6707
6708 pmu->dev->groups = pmu->attr_groups;
6709 device_initialize(pmu->dev);
6710 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6711 if (ret)
6712 goto free_dev;
6713
6714 dev_set_drvdata(pmu->dev, pmu);
6715 pmu->dev->bus = &pmu_bus;
6716 pmu->dev->release = pmu_dev_release;
6717 ret = device_add(pmu->dev);
6718 if (ret)
6719 goto free_dev;
6720
6721 out:
6722 return ret;
6723
6724 free_dev:
6725 put_device(pmu->dev);
6726 goto out;
6727 }
6728
6729 static struct lock_class_key cpuctx_mutex;
6730 static struct lock_class_key cpuctx_lock;
6731
6732 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6733 {
6734 int cpu, ret;
6735
6736 mutex_lock(&pmus_lock);
6737 ret = -ENOMEM;
6738 pmu->pmu_disable_count = alloc_percpu(int);
6739 if (!pmu->pmu_disable_count)
6740 goto unlock;
6741
6742 pmu->type = -1;
6743 if (!name)
6744 goto skip_type;
6745 pmu->name = name;
6746
6747 if (type < 0) {
6748 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6749 if (type < 0) {
6750 ret = type;
6751 goto free_pdc;
6752 }
6753 }
6754 pmu->type = type;
6755
6756 if (pmu_bus_running) {
6757 ret = pmu_dev_alloc(pmu);
6758 if (ret)
6759 goto free_idr;
6760 }
6761
6762 skip_type:
6763 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6764 if (pmu->pmu_cpu_context)
6765 goto got_cpu_context;
6766
6767 ret = -ENOMEM;
6768 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6769 if (!pmu->pmu_cpu_context)
6770 goto free_dev;
6771
6772 for_each_possible_cpu(cpu) {
6773 struct perf_cpu_context *cpuctx;
6774
6775 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6776 __perf_event_init_context(&cpuctx->ctx);
6777 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6778 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6779 cpuctx->ctx.type = cpu_context;
6780 cpuctx->ctx.pmu = pmu;
6781
6782 __perf_cpu_hrtimer_init(cpuctx, cpu);
6783
6784 INIT_LIST_HEAD(&cpuctx->rotation_list);
6785 cpuctx->unique_pmu = pmu;
6786 }
6787
6788 got_cpu_context:
6789 if (!pmu->start_txn) {
6790 if (pmu->pmu_enable) {
6791 /*
6792 * If we have pmu_enable/pmu_disable calls, install
6793 * transaction stubs that use that to try and batch
6794 * hardware accesses.
6795 */
6796 pmu->start_txn = perf_pmu_start_txn;
6797 pmu->commit_txn = perf_pmu_commit_txn;
6798 pmu->cancel_txn = perf_pmu_cancel_txn;
6799 } else {
6800 pmu->start_txn = perf_pmu_nop_void;
6801 pmu->commit_txn = perf_pmu_nop_int;
6802 pmu->cancel_txn = perf_pmu_nop_void;
6803 }
6804 }
6805
6806 if (!pmu->pmu_enable) {
6807 pmu->pmu_enable = perf_pmu_nop_void;
6808 pmu->pmu_disable = perf_pmu_nop_void;
6809 }
6810
6811 if (!pmu->event_idx)
6812 pmu->event_idx = perf_event_idx_default;
6813
6814 list_add_rcu(&pmu->entry, &pmus);
6815 ret = 0;
6816 unlock:
6817 mutex_unlock(&pmus_lock);
6818
6819 return ret;
6820
6821 free_dev:
6822 device_del(pmu->dev);
6823 put_device(pmu->dev);
6824
6825 free_idr:
6826 if (pmu->type >= PERF_TYPE_MAX)
6827 idr_remove(&pmu_idr, pmu->type);
6828
6829 free_pdc:
6830 free_percpu(pmu->pmu_disable_count);
6831 goto unlock;
6832 }
6833 EXPORT_SYMBOL_GPL(perf_pmu_register);
6834
6835 void perf_pmu_unregister(struct pmu *pmu)
6836 {
6837 mutex_lock(&pmus_lock);
6838 list_del_rcu(&pmu->entry);
6839 mutex_unlock(&pmus_lock);
6840
6841 /*
6842 * We dereference the pmu list under both SRCU and regular RCU, so
6843 * synchronize against both of those.
6844 */
6845 synchronize_srcu(&pmus_srcu);
6846 synchronize_rcu();
6847
6848 free_percpu(pmu->pmu_disable_count);
6849 if (pmu->type >= PERF_TYPE_MAX)
6850 idr_remove(&pmu_idr, pmu->type);
6851 device_del(pmu->dev);
6852 put_device(pmu->dev);
6853 free_pmu_context(pmu);
6854 }
6855 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6856
6857 struct pmu *perf_init_event(struct perf_event *event)
6858 {
6859 struct pmu *pmu = NULL;
6860 int idx;
6861 int ret;
6862
6863 idx = srcu_read_lock(&pmus_srcu);
6864
6865 rcu_read_lock();
6866 pmu = idr_find(&pmu_idr, event->attr.type);
6867 rcu_read_unlock();
6868 if (pmu) {
6869 if (!try_module_get(pmu->module)) {
6870 pmu = ERR_PTR(-ENODEV);
6871 goto unlock;
6872 }
6873 event->pmu = pmu;
6874 ret = pmu->event_init(event);
6875 if (ret)
6876 pmu = ERR_PTR(ret);
6877 goto unlock;
6878 }
6879
6880 list_for_each_entry_rcu(pmu, &pmus, entry) {
6881 if (!try_module_get(pmu->module)) {
6882 pmu = ERR_PTR(-ENODEV);
6883 goto unlock;
6884 }
6885 event->pmu = pmu;
6886 ret = pmu->event_init(event);
6887 if (!ret)
6888 goto unlock;
6889
6890 if (ret != -ENOENT) {
6891 pmu = ERR_PTR(ret);
6892 goto unlock;
6893 }
6894 }
6895 pmu = ERR_PTR(-ENOENT);
6896 unlock:
6897 srcu_read_unlock(&pmus_srcu, idx);
6898
6899 return pmu;
6900 }
6901
6902 static void account_event_cpu(struct perf_event *event, int cpu)
6903 {
6904 if (event->parent)
6905 return;
6906
6907 if (has_branch_stack(event)) {
6908 if (!(event->attach_state & PERF_ATTACH_TASK))
6909 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6910 }
6911 if (is_cgroup_event(event))
6912 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6913 }
6914
6915 static void account_event(struct perf_event *event)
6916 {
6917 if (event->parent)
6918 return;
6919
6920 if (event->attach_state & PERF_ATTACH_TASK)
6921 static_key_slow_inc(&perf_sched_events.key);
6922 if (event->attr.mmap || event->attr.mmap_data)
6923 atomic_inc(&nr_mmap_events);
6924 if (event->attr.comm)
6925 atomic_inc(&nr_comm_events);
6926 if (event->attr.task)
6927 atomic_inc(&nr_task_events);
6928 if (event->attr.freq) {
6929 if (atomic_inc_return(&nr_freq_events) == 1)
6930 tick_nohz_full_kick_all();
6931 }
6932 if (has_branch_stack(event))
6933 static_key_slow_inc(&perf_sched_events.key);
6934 if (is_cgroup_event(event))
6935 static_key_slow_inc(&perf_sched_events.key);
6936
6937 account_event_cpu(event, event->cpu);
6938 }
6939
6940 /*
6941 * Allocate and initialize a event structure
6942 */
6943 static struct perf_event *
6944 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6945 struct task_struct *task,
6946 struct perf_event *group_leader,
6947 struct perf_event *parent_event,
6948 perf_overflow_handler_t overflow_handler,
6949 void *context)
6950 {
6951 struct pmu *pmu;
6952 struct perf_event *event;
6953 struct hw_perf_event *hwc;
6954 long err = -EINVAL;
6955
6956 if ((unsigned)cpu >= nr_cpu_ids) {
6957 if (!task || cpu != -1)
6958 return ERR_PTR(-EINVAL);
6959 }
6960
6961 event = kzalloc(sizeof(*event), GFP_KERNEL);
6962 if (!event)
6963 return ERR_PTR(-ENOMEM);
6964
6965 /*
6966 * Single events are their own group leaders, with an
6967 * empty sibling list:
6968 */
6969 if (!group_leader)
6970 group_leader = event;
6971
6972 mutex_init(&event->child_mutex);
6973 INIT_LIST_HEAD(&event->child_list);
6974
6975 INIT_LIST_HEAD(&event->group_entry);
6976 INIT_LIST_HEAD(&event->event_entry);
6977 INIT_LIST_HEAD(&event->sibling_list);
6978 INIT_LIST_HEAD(&event->rb_entry);
6979 INIT_LIST_HEAD(&event->active_entry);
6980 INIT_HLIST_NODE(&event->hlist_entry);
6981
6982
6983 init_waitqueue_head(&event->waitq);
6984 init_irq_work(&event->pending, perf_pending_event);
6985
6986 mutex_init(&event->mmap_mutex);
6987
6988 atomic_long_set(&event->refcount, 1);
6989 event->cpu = cpu;
6990 event->attr = *attr;
6991 event->group_leader = group_leader;
6992 event->pmu = NULL;
6993 event->oncpu = -1;
6994
6995 event->parent = parent_event;
6996
6997 event->ns = get_pid_ns(task_active_pid_ns(current));
6998 event->id = atomic64_inc_return(&perf_event_id);
6999
7000 event->state = PERF_EVENT_STATE_INACTIVE;
7001
7002 if (task) {
7003 event->attach_state = PERF_ATTACH_TASK;
7004
7005 if (attr->type == PERF_TYPE_TRACEPOINT)
7006 event->hw.tp_target = task;
7007 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7008 /*
7009 * hw_breakpoint is a bit difficult here..
7010 */
7011 else if (attr->type == PERF_TYPE_BREAKPOINT)
7012 event->hw.bp_target = task;
7013 #endif
7014 }
7015
7016 if (!overflow_handler && parent_event) {
7017 overflow_handler = parent_event->overflow_handler;
7018 context = parent_event->overflow_handler_context;
7019 }
7020
7021 event->overflow_handler = overflow_handler;
7022 event->overflow_handler_context = context;
7023
7024 perf_event__state_init(event);
7025
7026 pmu = NULL;
7027
7028 hwc = &event->hw;
7029 hwc->sample_period = attr->sample_period;
7030 if (attr->freq && attr->sample_freq)
7031 hwc->sample_period = 1;
7032 hwc->last_period = hwc->sample_period;
7033
7034 local64_set(&hwc->period_left, hwc->sample_period);
7035
7036 /*
7037 * we currently do not support PERF_FORMAT_GROUP on inherited events
7038 */
7039 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7040 goto err_ns;
7041
7042 pmu = perf_init_event(event);
7043 if (!pmu)
7044 goto err_ns;
7045 else if (IS_ERR(pmu)) {
7046 err = PTR_ERR(pmu);
7047 goto err_ns;
7048 }
7049
7050 if (!event->parent) {
7051 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7052 err = get_callchain_buffers();
7053 if (err)
7054 goto err_pmu;
7055 }
7056 }
7057
7058 return event;
7059
7060 err_pmu:
7061 if (event->destroy)
7062 event->destroy(event);
7063 module_put(pmu->module);
7064 err_ns:
7065 if (event->ns)
7066 put_pid_ns(event->ns);
7067 kfree(event);
7068
7069 return ERR_PTR(err);
7070 }
7071
7072 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7073 struct perf_event_attr *attr)
7074 {
7075 u32 size;
7076 int ret;
7077
7078 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7079 return -EFAULT;
7080
7081 /*
7082 * zero the full structure, so that a short copy will be nice.
7083 */
7084 memset(attr, 0, sizeof(*attr));
7085
7086 ret = get_user(size, &uattr->size);
7087 if (ret)
7088 return ret;
7089
7090 if (size > PAGE_SIZE) /* silly large */
7091 goto err_size;
7092
7093 if (!size) /* abi compat */
7094 size = PERF_ATTR_SIZE_VER0;
7095
7096 if (size < PERF_ATTR_SIZE_VER0)
7097 goto err_size;
7098
7099 /*
7100 * If we're handed a bigger struct than we know of,
7101 * ensure all the unknown bits are 0 - i.e. new
7102 * user-space does not rely on any kernel feature
7103 * extensions we dont know about yet.
7104 */
7105 if (size > sizeof(*attr)) {
7106 unsigned char __user *addr;
7107 unsigned char __user *end;
7108 unsigned char val;
7109
7110 addr = (void __user *)uattr + sizeof(*attr);
7111 end = (void __user *)uattr + size;
7112
7113 for (; addr < end; addr++) {
7114 ret = get_user(val, addr);
7115 if (ret)
7116 return ret;
7117 if (val)
7118 goto err_size;
7119 }
7120 size = sizeof(*attr);
7121 }
7122
7123 ret = copy_from_user(attr, uattr, size);
7124 if (ret)
7125 return -EFAULT;
7126
7127 if (attr->__reserved_1)
7128 return -EINVAL;
7129
7130 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7131 return -EINVAL;
7132
7133 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7134 return -EINVAL;
7135
7136 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7137 u64 mask = attr->branch_sample_type;
7138
7139 /* only using defined bits */
7140 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7141 return -EINVAL;
7142
7143 /* at least one branch bit must be set */
7144 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7145 return -EINVAL;
7146
7147 /* propagate priv level, when not set for branch */
7148 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7149
7150 /* exclude_kernel checked on syscall entry */
7151 if (!attr->exclude_kernel)
7152 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7153
7154 if (!attr->exclude_user)
7155 mask |= PERF_SAMPLE_BRANCH_USER;
7156
7157 if (!attr->exclude_hv)
7158 mask |= PERF_SAMPLE_BRANCH_HV;
7159 /*
7160 * adjust user setting (for HW filter setup)
7161 */
7162 attr->branch_sample_type = mask;
7163 }
7164 /* privileged levels capture (kernel, hv): check permissions */
7165 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7166 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7167 return -EACCES;
7168 }
7169
7170 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7171 ret = perf_reg_validate(attr->sample_regs_user);
7172 if (ret)
7173 return ret;
7174 }
7175
7176 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7177 if (!arch_perf_have_user_stack_dump())
7178 return -ENOSYS;
7179
7180 /*
7181 * We have __u32 type for the size, but so far
7182 * we can only use __u16 as maximum due to the
7183 * __u16 sample size limit.
7184 */
7185 if (attr->sample_stack_user >= USHRT_MAX)
7186 ret = -EINVAL;
7187 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7188 ret = -EINVAL;
7189 }
7190
7191 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7192 ret = perf_reg_validate(attr->sample_regs_intr);
7193 out:
7194 return ret;
7195
7196 err_size:
7197 put_user(sizeof(*attr), &uattr->size);
7198 ret = -E2BIG;
7199 goto out;
7200 }
7201
7202 static int
7203 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7204 {
7205 struct ring_buffer *rb = NULL;
7206 int ret = -EINVAL;
7207
7208 if (!output_event)
7209 goto set;
7210
7211 /* don't allow circular references */
7212 if (event == output_event)
7213 goto out;
7214
7215 /*
7216 * Don't allow cross-cpu buffers
7217 */
7218 if (output_event->cpu != event->cpu)
7219 goto out;
7220
7221 /*
7222 * If its not a per-cpu rb, it must be the same task.
7223 */
7224 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7225 goto out;
7226
7227 set:
7228 mutex_lock(&event->mmap_mutex);
7229 /* Can't redirect output if we've got an active mmap() */
7230 if (atomic_read(&event->mmap_count))
7231 goto unlock;
7232
7233 if (output_event) {
7234 /* get the rb we want to redirect to */
7235 rb = ring_buffer_get(output_event);
7236 if (!rb)
7237 goto unlock;
7238 }
7239
7240 ring_buffer_attach(event, rb);
7241
7242 ret = 0;
7243 unlock:
7244 mutex_unlock(&event->mmap_mutex);
7245
7246 out:
7247 return ret;
7248 }
7249
7250 /**
7251 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7252 *
7253 * @attr_uptr: event_id type attributes for monitoring/sampling
7254 * @pid: target pid
7255 * @cpu: target cpu
7256 * @group_fd: group leader event fd
7257 */
7258 SYSCALL_DEFINE5(perf_event_open,
7259 struct perf_event_attr __user *, attr_uptr,
7260 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7261 {
7262 struct perf_event *group_leader = NULL, *output_event = NULL;
7263 struct perf_event *event, *sibling;
7264 struct perf_event_attr attr;
7265 struct perf_event_context *ctx;
7266 struct file *event_file = NULL;
7267 struct fd group = {NULL, 0};
7268 struct task_struct *task = NULL;
7269 struct pmu *pmu;
7270 int event_fd;
7271 int move_group = 0;
7272 int err;
7273 int f_flags = O_RDWR;
7274
7275 /* for future expandability... */
7276 if (flags & ~PERF_FLAG_ALL)
7277 return -EINVAL;
7278
7279 err = perf_copy_attr(attr_uptr, &attr);
7280 if (err)
7281 return err;
7282
7283 if (!attr.exclude_kernel) {
7284 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7285 return -EACCES;
7286 }
7287
7288 if (attr.freq) {
7289 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7290 return -EINVAL;
7291 } else {
7292 if (attr.sample_period & (1ULL << 63))
7293 return -EINVAL;
7294 }
7295
7296 /*
7297 * In cgroup mode, the pid argument is used to pass the fd
7298 * opened to the cgroup directory in cgroupfs. The cpu argument
7299 * designates the cpu on which to monitor threads from that
7300 * cgroup.
7301 */
7302 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7303 return -EINVAL;
7304
7305 if (flags & PERF_FLAG_FD_CLOEXEC)
7306 f_flags |= O_CLOEXEC;
7307
7308 event_fd = get_unused_fd_flags(f_flags);
7309 if (event_fd < 0)
7310 return event_fd;
7311
7312 if (group_fd != -1) {
7313 err = perf_fget_light(group_fd, &group);
7314 if (err)
7315 goto err_fd;
7316 group_leader = group.file->private_data;
7317 if (flags & PERF_FLAG_FD_OUTPUT)
7318 output_event = group_leader;
7319 if (flags & PERF_FLAG_FD_NO_GROUP)
7320 group_leader = NULL;
7321 }
7322
7323 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7324 task = find_lively_task_by_vpid(pid);
7325 if (IS_ERR(task)) {
7326 err = PTR_ERR(task);
7327 goto err_group_fd;
7328 }
7329 }
7330
7331 if (task && group_leader &&
7332 group_leader->attr.inherit != attr.inherit) {
7333 err = -EINVAL;
7334 goto err_task;
7335 }
7336
7337 get_online_cpus();
7338
7339 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7340 NULL, NULL);
7341 if (IS_ERR(event)) {
7342 err = PTR_ERR(event);
7343 goto err_cpus;
7344 }
7345
7346 if (flags & PERF_FLAG_PID_CGROUP) {
7347 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7348 if (err) {
7349 __free_event(event);
7350 goto err_cpus;
7351 }
7352 }
7353
7354 if (is_sampling_event(event)) {
7355 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7356 err = -ENOTSUPP;
7357 goto err_alloc;
7358 }
7359 }
7360
7361 account_event(event);
7362
7363 /*
7364 * Special case software events and allow them to be part of
7365 * any hardware group.
7366 */
7367 pmu = event->pmu;
7368
7369 if (group_leader &&
7370 (is_software_event(event) != is_software_event(group_leader))) {
7371 if (is_software_event(event)) {
7372 /*
7373 * If event and group_leader are not both a software
7374 * event, and event is, then group leader is not.
7375 *
7376 * Allow the addition of software events to !software
7377 * groups, this is safe because software events never
7378 * fail to schedule.
7379 */
7380 pmu = group_leader->pmu;
7381 } else if (is_software_event(group_leader) &&
7382 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7383 /*
7384 * In case the group is a pure software group, and we
7385 * try to add a hardware event, move the whole group to
7386 * the hardware context.
7387 */
7388 move_group = 1;
7389 }
7390 }
7391
7392 /*
7393 * Get the target context (task or percpu):
7394 */
7395 ctx = find_get_context(pmu, task, event->cpu);
7396 if (IS_ERR(ctx)) {
7397 err = PTR_ERR(ctx);
7398 goto err_alloc;
7399 }
7400
7401 if (task) {
7402 put_task_struct(task);
7403 task = NULL;
7404 }
7405
7406 /*
7407 * Look up the group leader (we will attach this event to it):
7408 */
7409 if (group_leader) {
7410 err = -EINVAL;
7411
7412 /*
7413 * Do not allow a recursive hierarchy (this new sibling
7414 * becoming part of another group-sibling):
7415 */
7416 if (group_leader->group_leader != group_leader)
7417 goto err_context;
7418 /*
7419 * Do not allow to attach to a group in a different
7420 * task or CPU context:
7421 */
7422 if (move_group) {
7423 if (group_leader->ctx->type != ctx->type)
7424 goto err_context;
7425 } else {
7426 if (group_leader->ctx != ctx)
7427 goto err_context;
7428 }
7429
7430 /*
7431 * Only a group leader can be exclusive or pinned
7432 */
7433 if (attr.exclusive || attr.pinned)
7434 goto err_context;
7435 }
7436
7437 if (output_event) {
7438 err = perf_event_set_output(event, output_event);
7439 if (err)
7440 goto err_context;
7441 }
7442
7443 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7444 f_flags);
7445 if (IS_ERR(event_file)) {
7446 err = PTR_ERR(event_file);
7447 goto err_context;
7448 }
7449
7450 if (move_group) {
7451 struct perf_event_context *gctx = group_leader->ctx;
7452
7453 mutex_lock(&gctx->mutex);
7454 perf_remove_from_context(group_leader, false);
7455
7456 /*
7457 * Removing from the context ends up with disabled
7458 * event. What we want here is event in the initial
7459 * startup state, ready to be add into new context.
7460 */
7461 perf_event__state_init(group_leader);
7462 list_for_each_entry(sibling, &group_leader->sibling_list,
7463 group_entry) {
7464 perf_remove_from_context(sibling, false);
7465 perf_event__state_init(sibling);
7466 put_ctx(gctx);
7467 }
7468 mutex_unlock(&gctx->mutex);
7469 put_ctx(gctx);
7470 }
7471
7472 WARN_ON_ONCE(ctx->parent_ctx);
7473 mutex_lock(&ctx->mutex);
7474
7475 if (move_group) {
7476 synchronize_rcu();
7477 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7478 get_ctx(ctx);
7479 list_for_each_entry(sibling, &group_leader->sibling_list,
7480 group_entry) {
7481 perf_install_in_context(ctx, sibling, sibling->cpu);
7482 get_ctx(ctx);
7483 }
7484 }
7485
7486 perf_install_in_context(ctx, event, event->cpu);
7487 perf_unpin_context(ctx);
7488 mutex_unlock(&ctx->mutex);
7489
7490 put_online_cpus();
7491
7492 event->owner = current;
7493
7494 mutex_lock(&current->perf_event_mutex);
7495 list_add_tail(&event->owner_entry, &current->perf_event_list);
7496 mutex_unlock(&current->perf_event_mutex);
7497
7498 /*
7499 * Precalculate sample_data sizes
7500 */
7501 perf_event__header_size(event);
7502 perf_event__id_header_size(event);
7503
7504 /*
7505 * Drop the reference on the group_event after placing the
7506 * new event on the sibling_list. This ensures destruction
7507 * of the group leader will find the pointer to itself in
7508 * perf_group_detach().
7509 */
7510 fdput(group);
7511 fd_install(event_fd, event_file);
7512 return event_fd;
7513
7514 err_context:
7515 perf_unpin_context(ctx);
7516 put_ctx(ctx);
7517 err_alloc:
7518 free_event(event);
7519 err_cpus:
7520 put_online_cpus();
7521 err_task:
7522 if (task)
7523 put_task_struct(task);
7524 err_group_fd:
7525 fdput(group);
7526 err_fd:
7527 put_unused_fd(event_fd);
7528 return err;
7529 }
7530
7531 /**
7532 * perf_event_create_kernel_counter
7533 *
7534 * @attr: attributes of the counter to create
7535 * @cpu: cpu in which the counter is bound
7536 * @task: task to profile (NULL for percpu)
7537 */
7538 struct perf_event *
7539 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7540 struct task_struct *task,
7541 perf_overflow_handler_t overflow_handler,
7542 void *context)
7543 {
7544 struct perf_event_context *ctx;
7545 struct perf_event *event;
7546 int err;
7547
7548 /*
7549 * Get the target context (task or percpu):
7550 */
7551
7552 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7553 overflow_handler, context);
7554 if (IS_ERR(event)) {
7555 err = PTR_ERR(event);
7556 goto err;
7557 }
7558
7559 /* Mark owner so we could distinguish it from user events. */
7560 event->owner = EVENT_OWNER_KERNEL;
7561
7562 account_event(event);
7563
7564 ctx = find_get_context(event->pmu, task, cpu);
7565 if (IS_ERR(ctx)) {
7566 err = PTR_ERR(ctx);
7567 goto err_free;
7568 }
7569
7570 WARN_ON_ONCE(ctx->parent_ctx);
7571 mutex_lock(&ctx->mutex);
7572 perf_install_in_context(ctx, event, cpu);
7573 perf_unpin_context(ctx);
7574 mutex_unlock(&ctx->mutex);
7575
7576 return event;
7577
7578 err_free:
7579 free_event(event);
7580 err:
7581 return ERR_PTR(err);
7582 }
7583 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7584
7585 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7586 {
7587 struct perf_event_context *src_ctx;
7588 struct perf_event_context *dst_ctx;
7589 struct perf_event *event, *tmp;
7590 LIST_HEAD(events);
7591
7592 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7593 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7594
7595 mutex_lock(&src_ctx->mutex);
7596 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7597 event_entry) {
7598 perf_remove_from_context(event, false);
7599 unaccount_event_cpu(event, src_cpu);
7600 put_ctx(src_ctx);
7601 list_add(&event->migrate_entry, &events);
7602 }
7603 mutex_unlock(&src_ctx->mutex);
7604
7605 synchronize_rcu();
7606
7607 mutex_lock(&dst_ctx->mutex);
7608 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7609 list_del(&event->migrate_entry);
7610 if (event->state >= PERF_EVENT_STATE_OFF)
7611 event->state = PERF_EVENT_STATE_INACTIVE;
7612 account_event_cpu(event, dst_cpu);
7613 perf_install_in_context(dst_ctx, event, dst_cpu);
7614 get_ctx(dst_ctx);
7615 }
7616 mutex_unlock(&dst_ctx->mutex);
7617 }
7618 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7619
7620 static void sync_child_event(struct perf_event *child_event,
7621 struct task_struct *child)
7622 {
7623 struct perf_event *parent_event = child_event->parent;
7624 u64 child_val;
7625
7626 if (child_event->attr.inherit_stat)
7627 perf_event_read_event(child_event, child);
7628
7629 child_val = perf_event_count(child_event);
7630
7631 /*
7632 * Add back the child's count to the parent's count:
7633 */
7634 atomic64_add(child_val, &parent_event->child_count);
7635 atomic64_add(child_event->total_time_enabled,
7636 &parent_event->child_total_time_enabled);
7637 atomic64_add(child_event->total_time_running,
7638 &parent_event->child_total_time_running);
7639
7640 /*
7641 * Remove this event from the parent's list
7642 */
7643 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7644 mutex_lock(&parent_event->child_mutex);
7645 list_del_init(&child_event->child_list);
7646 mutex_unlock(&parent_event->child_mutex);
7647
7648 /*
7649 * Make sure user/parent get notified, that we just
7650 * lost one event.
7651 */
7652 perf_event_wakeup(parent_event);
7653
7654 /*
7655 * Release the parent event, if this was the last
7656 * reference to it.
7657 */
7658 put_event(parent_event);
7659 }
7660
7661 static void
7662 __perf_event_exit_task(struct perf_event *child_event,
7663 struct perf_event_context *child_ctx,
7664 struct task_struct *child)
7665 {
7666 /*
7667 * Do not destroy the 'original' grouping; because of the context
7668 * switch optimization the original events could've ended up in a
7669 * random child task.
7670 *
7671 * If we were to destroy the original group, all group related
7672 * operations would cease to function properly after this random
7673 * child dies.
7674 *
7675 * Do destroy all inherited groups, we don't care about those
7676 * and being thorough is better.
7677 */
7678 perf_remove_from_context(child_event, !!child_event->parent);
7679
7680 /*
7681 * It can happen that the parent exits first, and has events
7682 * that are still around due to the child reference. These
7683 * events need to be zapped.
7684 */
7685 if (child_event->parent) {
7686 sync_child_event(child_event, child);
7687 free_event(child_event);
7688 } else {
7689 child_event->state = PERF_EVENT_STATE_EXIT;
7690 perf_event_wakeup(child_event);
7691 }
7692 }
7693
7694 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7695 {
7696 struct perf_event *child_event, *next;
7697 struct perf_event_context *child_ctx, *clone_ctx = NULL;
7698 unsigned long flags;
7699
7700 if (likely(!child->perf_event_ctxp[ctxn])) {
7701 perf_event_task(child, NULL, 0);
7702 return;
7703 }
7704
7705 local_irq_save(flags);
7706 /*
7707 * We can't reschedule here because interrupts are disabled,
7708 * and either child is current or it is a task that can't be
7709 * scheduled, so we are now safe from rescheduling changing
7710 * our context.
7711 */
7712 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7713
7714 /*
7715 * Take the context lock here so that if find_get_context is
7716 * reading child->perf_event_ctxp, we wait until it has
7717 * incremented the context's refcount before we do put_ctx below.
7718 */
7719 raw_spin_lock(&child_ctx->lock);
7720 task_ctx_sched_out(child_ctx);
7721 child->perf_event_ctxp[ctxn] = NULL;
7722
7723 /*
7724 * If this context is a clone; unclone it so it can't get
7725 * swapped to another process while we're removing all
7726 * the events from it.
7727 */
7728 clone_ctx = unclone_ctx(child_ctx);
7729 update_context_time(child_ctx);
7730 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7731
7732 if (clone_ctx)
7733 put_ctx(clone_ctx);
7734
7735 /*
7736 * Report the task dead after unscheduling the events so that we
7737 * won't get any samples after PERF_RECORD_EXIT. We can however still
7738 * get a few PERF_RECORD_READ events.
7739 */
7740 perf_event_task(child, child_ctx, 0);
7741
7742 /*
7743 * We can recurse on the same lock type through:
7744 *
7745 * __perf_event_exit_task()
7746 * sync_child_event()
7747 * put_event()
7748 * mutex_lock(&ctx->mutex)
7749 *
7750 * But since its the parent context it won't be the same instance.
7751 */
7752 mutex_lock(&child_ctx->mutex);
7753
7754 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7755 __perf_event_exit_task(child_event, child_ctx, child);
7756
7757 mutex_unlock(&child_ctx->mutex);
7758
7759 put_ctx(child_ctx);
7760 }
7761
7762 /*
7763 * When a child task exits, feed back event values to parent events.
7764 */
7765 void perf_event_exit_task(struct task_struct *child)
7766 {
7767 struct perf_event *event, *tmp;
7768 int ctxn;
7769
7770 mutex_lock(&child->perf_event_mutex);
7771 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7772 owner_entry) {
7773 list_del_init(&event->owner_entry);
7774
7775 /*
7776 * Ensure the list deletion is visible before we clear
7777 * the owner, closes a race against perf_release() where
7778 * we need to serialize on the owner->perf_event_mutex.
7779 */
7780 smp_wmb();
7781 event->owner = NULL;
7782 }
7783 mutex_unlock(&child->perf_event_mutex);
7784
7785 for_each_task_context_nr(ctxn)
7786 perf_event_exit_task_context(child, ctxn);
7787 }
7788
7789 static void perf_free_event(struct perf_event *event,
7790 struct perf_event_context *ctx)
7791 {
7792 struct perf_event *parent = event->parent;
7793
7794 if (WARN_ON_ONCE(!parent))
7795 return;
7796
7797 mutex_lock(&parent->child_mutex);
7798 list_del_init(&event->child_list);
7799 mutex_unlock(&parent->child_mutex);
7800
7801 put_event(parent);
7802
7803 perf_group_detach(event);
7804 list_del_event(event, ctx);
7805 free_event(event);
7806 }
7807
7808 /*
7809 * free an unexposed, unused context as created by inheritance by
7810 * perf_event_init_task below, used by fork() in case of fail.
7811 */
7812 void perf_event_free_task(struct task_struct *task)
7813 {
7814 struct perf_event_context *ctx;
7815 struct perf_event *event, *tmp;
7816 int ctxn;
7817
7818 for_each_task_context_nr(ctxn) {
7819 ctx = task->perf_event_ctxp[ctxn];
7820 if (!ctx)
7821 continue;
7822
7823 mutex_lock(&ctx->mutex);
7824 again:
7825 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7826 group_entry)
7827 perf_free_event(event, ctx);
7828
7829 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7830 group_entry)
7831 perf_free_event(event, ctx);
7832
7833 if (!list_empty(&ctx->pinned_groups) ||
7834 !list_empty(&ctx->flexible_groups))
7835 goto again;
7836
7837 mutex_unlock(&ctx->mutex);
7838
7839 put_ctx(ctx);
7840 }
7841 }
7842
7843 void perf_event_delayed_put(struct task_struct *task)
7844 {
7845 int ctxn;
7846
7847 for_each_task_context_nr(ctxn)
7848 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7849 }
7850
7851 /*
7852 * inherit a event from parent task to child task:
7853 */
7854 static struct perf_event *
7855 inherit_event(struct perf_event *parent_event,
7856 struct task_struct *parent,
7857 struct perf_event_context *parent_ctx,
7858 struct task_struct *child,
7859 struct perf_event *group_leader,
7860 struct perf_event_context *child_ctx)
7861 {
7862 enum perf_event_active_state parent_state = parent_event->state;
7863 struct perf_event *child_event;
7864 unsigned long flags;
7865
7866 /*
7867 * Instead of creating recursive hierarchies of events,
7868 * we link inherited events back to the original parent,
7869 * which has a filp for sure, which we use as the reference
7870 * count:
7871 */
7872 if (parent_event->parent)
7873 parent_event = parent_event->parent;
7874
7875 child_event = perf_event_alloc(&parent_event->attr,
7876 parent_event->cpu,
7877 child,
7878 group_leader, parent_event,
7879 NULL, NULL);
7880 if (IS_ERR(child_event))
7881 return child_event;
7882
7883 if (is_orphaned_event(parent_event) ||
7884 !atomic_long_inc_not_zero(&parent_event->refcount)) {
7885 free_event(child_event);
7886 return NULL;
7887 }
7888
7889 get_ctx(child_ctx);
7890
7891 /*
7892 * Make the child state follow the state of the parent event,
7893 * not its attr.disabled bit. We hold the parent's mutex,
7894 * so we won't race with perf_event_{en, dis}able_family.
7895 */
7896 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7897 child_event->state = PERF_EVENT_STATE_INACTIVE;
7898 else
7899 child_event->state = PERF_EVENT_STATE_OFF;
7900
7901 if (parent_event->attr.freq) {
7902 u64 sample_period = parent_event->hw.sample_period;
7903 struct hw_perf_event *hwc = &child_event->hw;
7904
7905 hwc->sample_period = sample_period;
7906 hwc->last_period = sample_period;
7907
7908 local64_set(&hwc->period_left, sample_period);
7909 }
7910
7911 child_event->ctx = child_ctx;
7912 child_event->overflow_handler = parent_event->overflow_handler;
7913 child_event->overflow_handler_context
7914 = parent_event->overflow_handler_context;
7915
7916 /*
7917 * Precalculate sample_data sizes
7918 */
7919 perf_event__header_size(child_event);
7920 perf_event__id_header_size(child_event);
7921
7922 /*
7923 * Link it up in the child's context:
7924 */
7925 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7926 add_event_to_ctx(child_event, child_ctx);
7927 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7928
7929 /*
7930 * Link this into the parent event's child list
7931 */
7932 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7933 mutex_lock(&parent_event->child_mutex);
7934 list_add_tail(&child_event->child_list, &parent_event->child_list);
7935 mutex_unlock(&parent_event->child_mutex);
7936
7937 return child_event;
7938 }
7939
7940 static int inherit_group(struct perf_event *parent_event,
7941 struct task_struct *parent,
7942 struct perf_event_context *parent_ctx,
7943 struct task_struct *child,
7944 struct perf_event_context *child_ctx)
7945 {
7946 struct perf_event *leader;
7947 struct perf_event *sub;
7948 struct perf_event *child_ctr;
7949
7950 leader = inherit_event(parent_event, parent, parent_ctx,
7951 child, NULL, child_ctx);
7952 if (IS_ERR(leader))
7953 return PTR_ERR(leader);
7954 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7955 child_ctr = inherit_event(sub, parent, parent_ctx,
7956 child, leader, child_ctx);
7957 if (IS_ERR(child_ctr))
7958 return PTR_ERR(child_ctr);
7959 }
7960 return 0;
7961 }
7962
7963 static int
7964 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7965 struct perf_event_context *parent_ctx,
7966 struct task_struct *child, int ctxn,
7967 int *inherited_all)
7968 {
7969 int ret;
7970 struct perf_event_context *child_ctx;
7971
7972 if (!event->attr.inherit) {
7973 *inherited_all = 0;
7974 return 0;
7975 }
7976
7977 child_ctx = child->perf_event_ctxp[ctxn];
7978 if (!child_ctx) {
7979 /*
7980 * This is executed from the parent task context, so
7981 * inherit events that have been marked for cloning.
7982 * First allocate and initialize a context for the
7983 * child.
7984 */
7985
7986 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7987 if (!child_ctx)
7988 return -ENOMEM;
7989
7990 child->perf_event_ctxp[ctxn] = child_ctx;
7991 }
7992
7993 ret = inherit_group(event, parent, parent_ctx,
7994 child, child_ctx);
7995
7996 if (ret)
7997 *inherited_all = 0;
7998
7999 return ret;
8000 }
8001
8002 /*
8003 * Initialize the perf_event context in task_struct
8004 */
8005 static int perf_event_init_context(struct task_struct *child, int ctxn)
8006 {
8007 struct perf_event_context *child_ctx, *parent_ctx;
8008 struct perf_event_context *cloned_ctx;
8009 struct perf_event *event;
8010 struct task_struct *parent = current;
8011 int inherited_all = 1;
8012 unsigned long flags;
8013 int ret = 0;
8014
8015 if (likely(!parent->perf_event_ctxp[ctxn]))
8016 return 0;
8017
8018 /*
8019 * If the parent's context is a clone, pin it so it won't get
8020 * swapped under us.
8021 */
8022 parent_ctx = perf_pin_task_context(parent, ctxn);
8023 if (!parent_ctx)
8024 return 0;
8025
8026 /*
8027 * No need to check if parent_ctx != NULL here; since we saw
8028 * it non-NULL earlier, the only reason for it to become NULL
8029 * is if we exit, and since we're currently in the middle of
8030 * a fork we can't be exiting at the same time.
8031 */
8032
8033 /*
8034 * Lock the parent list. No need to lock the child - not PID
8035 * hashed yet and not running, so nobody can access it.
8036 */
8037 mutex_lock(&parent_ctx->mutex);
8038
8039 /*
8040 * We dont have to disable NMIs - we are only looking at
8041 * the list, not manipulating it:
8042 */
8043 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8044 ret = inherit_task_group(event, parent, parent_ctx,
8045 child, ctxn, &inherited_all);
8046 if (ret)
8047 break;
8048 }
8049
8050 /*
8051 * We can't hold ctx->lock when iterating the ->flexible_group list due
8052 * to allocations, but we need to prevent rotation because
8053 * rotate_ctx() will change the list from interrupt context.
8054 */
8055 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8056 parent_ctx->rotate_disable = 1;
8057 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8058
8059 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8060 ret = inherit_task_group(event, parent, parent_ctx,
8061 child, ctxn, &inherited_all);
8062 if (ret)
8063 break;
8064 }
8065
8066 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8067 parent_ctx->rotate_disable = 0;
8068
8069 child_ctx = child->perf_event_ctxp[ctxn];
8070
8071 if (child_ctx && inherited_all) {
8072 /*
8073 * Mark the child context as a clone of the parent
8074 * context, or of whatever the parent is a clone of.
8075 *
8076 * Note that if the parent is a clone, the holding of
8077 * parent_ctx->lock avoids it from being uncloned.
8078 */
8079 cloned_ctx = parent_ctx->parent_ctx;
8080 if (cloned_ctx) {
8081 child_ctx->parent_ctx = cloned_ctx;
8082 child_ctx->parent_gen = parent_ctx->parent_gen;
8083 } else {
8084 child_ctx->parent_ctx = parent_ctx;
8085 child_ctx->parent_gen = parent_ctx->generation;
8086 }
8087 get_ctx(child_ctx->parent_ctx);
8088 }
8089
8090 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8091 mutex_unlock(&parent_ctx->mutex);
8092
8093 perf_unpin_context(parent_ctx);
8094 put_ctx(parent_ctx);
8095
8096 return ret;
8097 }
8098
8099 /*
8100 * Initialize the perf_event context in task_struct
8101 */
8102 int perf_event_init_task(struct task_struct *child)
8103 {
8104 int ctxn, ret;
8105
8106 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8107 mutex_init(&child->perf_event_mutex);
8108 INIT_LIST_HEAD(&child->perf_event_list);
8109
8110 for_each_task_context_nr(ctxn) {
8111 ret = perf_event_init_context(child, ctxn);
8112 if (ret) {
8113 perf_event_free_task(child);
8114 return ret;
8115 }
8116 }
8117
8118 return 0;
8119 }
8120
8121 static void __init perf_event_init_all_cpus(void)
8122 {
8123 struct swevent_htable *swhash;
8124 int cpu;
8125
8126 for_each_possible_cpu(cpu) {
8127 swhash = &per_cpu(swevent_htable, cpu);
8128 mutex_init(&swhash->hlist_mutex);
8129 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8130 }
8131 }
8132
8133 static void perf_event_init_cpu(int cpu)
8134 {
8135 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8136
8137 mutex_lock(&swhash->hlist_mutex);
8138 swhash->online = true;
8139 if (swhash->hlist_refcount > 0) {
8140 struct swevent_hlist *hlist;
8141
8142 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8143 WARN_ON(!hlist);
8144 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8145 }
8146 mutex_unlock(&swhash->hlist_mutex);
8147 }
8148
8149 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8150 static void perf_pmu_rotate_stop(struct pmu *pmu)
8151 {
8152 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8153
8154 WARN_ON(!irqs_disabled());
8155
8156 list_del_init(&cpuctx->rotation_list);
8157 }
8158
8159 static void __perf_event_exit_context(void *__info)
8160 {
8161 struct remove_event re = { .detach_group = true };
8162 struct perf_event_context *ctx = __info;
8163
8164 perf_pmu_rotate_stop(ctx->pmu);
8165
8166 rcu_read_lock();
8167 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8168 __perf_remove_from_context(&re);
8169 rcu_read_unlock();
8170 }
8171
8172 static void perf_event_exit_cpu_context(int cpu)
8173 {
8174 struct perf_event_context *ctx;
8175 struct pmu *pmu;
8176 int idx;
8177
8178 idx = srcu_read_lock(&pmus_srcu);
8179 list_for_each_entry_rcu(pmu, &pmus, entry) {
8180 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8181
8182 mutex_lock(&ctx->mutex);
8183 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8184 mutex_unlock(&ctx->mutex);
8185 }
8186 srcu_read_unlock(&pmus_srcu, idx);
8187 }
8188
8189 static void perf_event_exit_cpu(int cpu)
8190 {
8191 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8192
8193 perf_event_exit_cpu_context(cpu);
8194
8195 mutex_lock(&swhash->hlist_mutex);
8196 swhash->online = false;
8197 swevent_hlist_release(swhash);
8198 mutex_unlock(&swhash->hlist_mutex);
8199 }
8200 #else
8201 static inline void perf_event_exit_cpu(int cpu) { }
8202 #endif
8203
8204 static int
8205 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8206 {
8207 int cpu;
8208
8209 for_each_online_cpu(cpu)
8210 perf_event_exit_cpu(cpu);
8211
8212 return NOTIFY_OK;
8213 }
8214
8215 /*
8216 * Run the perf reboot notifier at the very last possible moment so that
8217 * the generic watchdog code runs as long as possible.
8218 */
8219 static struct notifier_block perf_reboot_notifier = {
8220 .notifier_call = perf_reboot,
8221 .priority = INT_MIN,
8222 };
8223
8224 static int
8225 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8226 {
8227 unsigned int cpu = (long)hcpu;
8228
8229 switch (action & ~CPU_TASKS_FROZEN) {
8230
8231 case CPU_UP_PREPARE:
8232 case CPU_DOWN_FAILED:
8233 perf_event_init_cpu(cpu);
8234 break;
8235
8236 case CPU_UP_CANCELED:
8237 case CPU_DOWN_PREPARE:
8238 perf_event_exit_cpu(cpu);
8239 break;
8240 default:
8241 break;
8242 }
8243
8244 return NOTIFY_OK;
8245 }
8246
8247 void __init perf_event_init(void)
8248 {
8249 int ret;
8250
8251 idr_init(&pmu_idr);
8252
8253 perf_event_init_all_cpus();
8254 init_srcu_struct(&pmus_srcu);
8255 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8256 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8257 perf_pmu_register(&perf_task_clock, NULL, -1);
8258 perf_tp_register();
8259 perf_cpu_notifier(perf_cpu_notify);
8260 register_reboot_notifier(&perf_reboot_notifier);
8261
8262 ret = init_hw_breakpoint();
8263 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8264
8265 /* do not patch jump label more than once per second */
8266 jump_label_rate_limit(&perf_sched_events, HZ);
8267
8268 /*
8269 * Build time assertion that we keep the data_head at the intended
8270 * location. IOW, validation we got the __reserved[] size right.
8271 */
8272 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8273 != 1024);
8274 }
8275
8276 static int __init perf_event_sysfs_init(void)
8277 {
8278 struct pmu *pmu;
8279 int ret;
8280
8281 mutex_lock(&pmus_lock);
8282
8283 ret = bus_register(&pmu_bus);
8284 if (ret)
8285 goto unlock;
8286
8287 list_for_each_entry(pmu, &pmus, entry) {
8288 if (!pmu->name || pmu->type < 0)
8289 continue;
8290
8291 ret = pmu_dev_alloc(pmu);
8292 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8293 }
8294 pmu_bus_running = 1;
8295 ret = 0;
8296
8297 unlock:
8298 mutex_unlock(&pmus_lock);
8299
8300 return ret;
8301 }
8302 device_initcall(perf_event_sysfs_init);
8303
8304 #ifdef CONFIG_CGROUP_PERF
8305 static struct cgroup_subsys_state *
8306 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8307 {
8308 struct perf_cgroup *jc;
8309
8310 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8311 if (!jc)
8312 return ERR_PTR(-ENOMEM);
8313
8314 jc->info = alloc_percpu(struct perf_cgroup_info);
8315 if (!jc->info) {
8316 kfree(jc);
8317 return ERR_PTR(-ENOMEM);
8318 }
8319
8320 return &jc->css;
8321 }
8322
8323 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8324 {
8325 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8326
8327 free_percpu(jc->info);
8328 kfree(jc);
8329 }
8330
8331 static int __perf_cgroup_move(void *info)
8332 {
8333 struct task_struct *task = info;
8334 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8335 return 0;
8336 }
8337
8338 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8339 struct cgroup_taskset *tset)
8340 {
8341 struct task_struct *task;
8342
8343 cgroup_taskset_for_each(task, tset)
8344 task_function_call(task, __perf_cgroup_move, task);
8345 }
8346
8347 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8348 struct cgroup_subsys_state *old_css,
8349 struct task_struct *task)
8350 {
8351 /*
8352 * cgroup_exit() is called in the copy_process() failure path.
8353 * Ignore this case since the task hasn't ran yet, this avoids
8354 * trying to poke a half freed task state from generic code.
8355 */
8356 if (!(task->flags & PF_EXITING))
8357 return;
8358
8359 task_function_call(task, __perf_cgroup_move, task);
8360 }
8361
8362 struct cgroup_subsys perf_event_cgrp_subsys = {
8363 .css_alloc = perf_cgroup_css_alloc,
8364 .css_free = perf_cgroup_css_free,
8365 .exit = perf_cgroup_exit,
8366 .attach = perf_cgroup_attach,
8367 };
8368 #endif /* CONFIG_CGROUP_PERF */
This page took 0.19888 seconds and 6 git commands to generate.