2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/ftrace_event.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
50 #include <asm/irq_regs.h>
52 static struct workqueue_struct
*perf_wq
;
54 struct remote_function_call
{
55 struct task_struct
*p
;
56 int (*func
)(void *info
);
61 static void remote_function(void *data
)
63 struct remote_function_call
*tfc
= data
;
64 struct task_struct
*p
= tfc
->p
;
68 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
72 tfc
->ret
= tfc
->func(tfc
->info
);
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
89 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
91 struct remote_function_call data
= {
95 .ret
= -ESRCH
, /* No such (running) process */
99 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
109 * Calls the function @func on the remote cpu.
111 * returns: @func return value or -ENXIO when the cpu is offline
113 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
115 struct remote_function_call data
= {
119 .ret
= -ENXIO
, /* No such CPU */
122 smp_call_function_single(cpu
, remote_function
, &data
, 1);
127 #define EVENT_OWNER_KERNEL ((void *) -1)
129 static bool is_kernel_event(struct perf_event
*event
)
131 return event
->owner
== EVENT_OWNER_KERNEL
;
134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 PERF_FLAG_FD_OUTPUT |\
136 PERF_FLAG_PID_CGROUP |\
137 PERF_FLAG_FD_CLOEXEC)
140 * branch priv levels that need permission checks
142 #define PERF_SAMPLE_BRANCH_PERM_PLM \
143 (PERF_SAMPLE_BRANCH_KERNEL |\
144 PERF_SAMPLE_BRANCH_HV)
147 EVENT_FLEXIBLE
= 0x1,
149 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
156 struct static_key_deferred perf_sched_events __read_mostly
;
157 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
158 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
160 static atomic_t nr_mmap_events __read_mostly
;
161 static atomic_t nr_comm_events __read_mostly
;
162 static atomic_t nr_task_events __read_mostly
;
163 static atomic_t nr_freq_events __read_mostly
;
165 static LIST_HEAD(pmus
);
166 static DEFINE_MUTEX(pmus_lock
);
167 static struct srcu_struct pmus_srcu
;
170 * perf event paranoia level:
171 * -1 - not paranoid at all
172 * 0 - disallow raw tracepoint access for unpriv
173 * 1 - disallow cpu events for unpriv
174 * 2 - disallow kernel profiling for unpriv
176 int sysctl_perf_event_paranoid __read_mostly
= 1;
178 /* Minimum for 512 kiB + 1 user control page */
179 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
182 * max perf event sample rate
184 #define DEFAULT_MAX_SAMPLE_RATE 100000
185 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
188 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
190 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
191 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
193 static int perf_sample_allowed_ns __read_mostly
=
194 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
196 void update_perf_cpu_limits(void)
198 u64 tmp
= perf_sample_period_ns
;
200 tmp
*= sysctl_perf_cpu_time_max_percent
;
202 ACCESS_ONCE(perf_sample_allowed_ns
) = tmp
;
205 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
207 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
208 void __user
*buffer
, size_t *lenp
,
211 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
216 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
217 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
218 update_perf_cpu_limits();
223 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
225 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
226 void __user
*buffer
, size_t *lenp
,
229 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
234 update_perf_cpu_limits();
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done. This will drop the sample rate when
243 * we detect that events are taking too long.
245 #define NR_ACCUMULATED_SAMPLES 128
246 static DEFINE_PER_CPU(u64
, running_sample_length
);
248 static void perf_duration_warn(struct irq_work
*w
)
250 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
251 u64 avg_local_sample_len
;
252 u64 local_samples_len
;
254 local_samples_len
= __this_cpu_read(running_sample_length
);
255 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
257 printk_ratelimited(KERN_WARNING
258 "perf interrupt took too long (%lld > %lld), lowering "
259 "kernel.perf_event_max_sample_rate to %d\n",
260 avg_local_sample_len
, allowed_ns
>> 1,
261 sysctl_perf_event_sample_rate
);
264 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
266 void perf_sample_event_took(u64 sample_len_ns
)
268 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
269 u64 avg_local_sample_len
;
270 u64 local_samples_len
;
275 /* decay the counter by 1 average sample */
276 local_samples_len
= __this_cpu_read(running_sample_length
);
277 local_samples_len
-= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
278 local_samples_len
+= sample_len_ns
;
279 __this_cpu_write(running_sample_length
, local_samples_len
);
282 * note: this will be biased artifically low until we have
283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
284 * from having to maintain a count.
286 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
288 if (avg_local_sample_len
<= allowed_ns
)
291 if (max_samples_per_tick
<= 1)
294 max_samples_per_tick
= DIV_ROUND_UP(max_samples_per_tick
, 2);
295 sysctl_perf_event_sample_rate
= max_samples_per_tick
* HZ
;
296 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
298 update_perf_cpu_limits();
300 if (!irq_work_queue(&perf_duration_work
)) {
301 early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 "kernel.perf_event_max_sample_rate to %d\n",
303 avg_local_sample_len
, allowed_ns
>> 1,
304 sysctl_perf_event_sample_rate
);
308 static atomic64_t perf_event_id
;
310 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
311 enum event_type_t event_type
);
313 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
314 enum event_type_t event_type
,
315 struct task_struct
*task
);
317 static void update_context_time(struct perf_event_context
*ctx
);
318 static u64
perf_event_time(struct perf_event
*event
);
320 void __weak
perf_event_print_debug(void) { }
322 extern __weak
const char *perf_pmu_name(void)
327 static inline u64
perf_clock(void)
329 return local_clock();
332 static inline u64
perf_event_clock(struct perf_event
*event
)
334 return event
->clock();
337 static inline struct perf_cpu_context
*
338 __get_cpu_context(struct perf_event_context
*ctx
)
340 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
343 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
344 struct perf_event_context
*ctx
)
346 raw_spin_lock(&cpuctx
->ctx
.lock
);
348 raw_spin_lock(&ctx
->lock
);
351 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
352 struct perf_event_context
*ctx
)
355 raw_spin_unlock(&ctx
->lock
);
356 raw_spin_unlock(&cpuctx
->ctx
.lock
);
359 #ifdef CONFIG_CGROUP_PERF
362 perf_cgroup_match(struct perf_event
*event
)
364 struct perf_event_context
*ctx
= event
->ctx
;
365 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
367 /* @event doesn't care about cgroup */
371 /* wants specific cgroup scope but @cpuctx isn't associated with any */
376 * Cgroup scoping is recursive. An event enabled for a cgroup is
377 * also enabled for all its descendant cgroups. If @cpuctx's
378 * cgroup is a descendant of @event's (the test covers identity
379 * case), it's a match.
381 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
382 event
->cgrp
->css
.cgroup
);
385 static inline void perf_detach_cgroup(struct perf_event
*event
)
387 css_put(&event
->cgrp
->css
);
391 static inline int is_cgroup_event(struct perf_event
*event
)
393 return event
->cgrp
!= NULL
;
396 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
398 struct perf_cgroup_info
*t
;
400 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
404 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
406 struct perf_cgroup_info
*info
;
411 info
= this_cpu_ptr(cgrp
->info
);
413 info
->time
+= now
- info
->timestamp
;
414 info
->timestamp
= now
;
417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
419 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
421 __update_cgrp_time(cgrp_out
);
424 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
426 struct perf_cgroup
*cgrp
;
429 * ensure we access cgroup data only when needed and
430 * when we know the cgroup is pinned (css_get)
432 if (!is_cgroup_event(event
))
435 cgrp
= perf_cgroup_from_task(current
);
437 * Do not update time when cgroup is not active
439 if (cgrp
== event
->cgrp
)
440 __update_cgrp_time(event
->cgrp
);
444 perf_cgroup_set_timestamp(struct task_struct
*task
,
445 struct perf_event_context
*ctx
)
447 struct perf_cgroup
*cgrp
;
448 struct perf_cgroup_info
*info
;
451 * ctx->lock held by caller
452 * ensure we do not access cgroup data
453 * unless we have the cgroup pinned (css_get)
455 if (!task
|| !ctx
->nr_cgroups
)
458 cgrp
= perf_cgroup_from_task(task
);
459 info
= this_cpu_ptr(cgrp
->info
);
460 info
->timestamp
= ctx
->timestamp
;
463 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
464 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
467 * reschedule events based on the cgroup constraint of task.
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
472 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
474 struct perf_cpu_context
*cpuctx
;
479 * disable interrupts to avoid geting nr_cgroup
480 * changes via __perf_event_disable(). Also
483 local_irq_save(flags
);
486 * we reschedule only in the presence of cgroup
487 * constrained events.
491 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
492 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
493 if (cpuctx
->unique_pmu
!= pmu
)
494 continue; /* ensure we process each cpuctx once */
497 * perf_cgroup_events says at least one
498 * context on this CPU has cgroup events.
500 * ctx->nr_cgroups reports the number of cgroup
501 * events for a context.
503 if (cpuctx
->ctx
.nr_cgroups
> 0) {
504 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
505 perf_pmu_disable(cpuctx
->ctx
.pmu
);
507 if (mode
& PERF_CGROUP_SWOUT
) {
508 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
510 * must not be done before ctxswout due
511 * to event_filter_match() in event_sched_out()
516 if (mode
& PERF_CGROUP_SWIN
) {
517 WARN_ON_ONCE(cpuctx
->cgrp
);
519 * set cgrp before ctxsw in to allow
520 * event_filter_match() to not have to pass
523 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
524 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
526 perf_pmu_enable(cpuctx
->ctx
.pmu
);
527 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
533 local_irq_restore(flags
);
536 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
537 struct task_struct
*next
)
539 struct perf_cgroup
*cgrp1
;
540 struct perf_cgroup
*cgrp2
= NULL
;
543 * we come here when we know perf_cgroup_events > 0
545 cgrp1
= perf_cgroup_from_task(task
);
548 * next is NULL when called from perf_event_enable_on_exec()
549 * that will systematically cause a cgroup_switch()
552 cgrp2
= perf_cgroup_from_task(next
);
555 * only schedule out current cgroup events if we know
556 * that we are switching to a different cgroup. Otherwise,
557 * do no touch the cgroup events.
560 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
563 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
564 struct task_struct
*task
)
566 struct perf_cgroup
*cgrp1
;
567 struct perf_cgroup
*cgrp2
= NULL
;
570 * we come here when we know perf_cgroup_events > 0
572 cgrp1
= perf_cgroup_from_task(task
);
574 /* prev can never be NULL */
575 cgrp2
= perf_cgroup_from_task(prev
);
578 * only need to schedule in cgroup events if we are changing
579 * cgroup during ctxsw. Cgroup events were not scheduled
580 * out of ctxsw out if that was not the case.
583 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
586 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
587 struct perf_event_attr
*attr
,
588 struct perf_event
*group_leader
)
590 struct perf_cgroup
*cgrp
;
591 struct cgroup_subsys_state
*css
;
592 struct fd f
= fdget(fd
);
598 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
599 &perf_event_cgrp_subsys
);
605 cgrp
= container_of(css
, struct perf_cgroup
, css
);
609 * all events in a group must monitor
610 * the same cgroup because a task belongs
611 * to only one perf cgroup at a time
613 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
614 perf_detach_cgroup(event
);
623 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
625 struct perf_cgroup_info
*t
;
626 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
627 event
->shadow_ctx_time
= now
- t
->timestamp
;
631 perf_cgroup_defer_enabled(struct perf_event
*event
)
634 * when the current task's perf cgroup does not match
635 * the event's, we need to remember to call the
636 * perf_mark_enable() function the first time a task with
637 * a matching perf cgroup is scheduled in.
639 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
640 event
->cgrp_defer_enabled
= 1;
644 perf_cgroup_mark_enabled(struct perf_event
*event
,
645 struct perf_event_context
*ctx
)
647 struct perf_event
*sub
;
648 u64 tstamp
= perf_event_time(event
);
650 if (!event
->cgrp_defer_enabled
)
653 event
->cgrp_defer_enabled
= 0;
655 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
656 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
657 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
658 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
659 sub
->cgrp_defer_enabled
= 0;
663 #else /* !CONFIG_CGROUP_PERF */
666 perf_cgroup_match(struct perf_event
*event
)
671 static inline void perf_detach_cgroup(struct perf_event
*event
)
674 static inline int is_cgroup_event(struct perf_event
*event
)
679 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
684 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
692 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
693 struct task_struct
*next
)
697 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
698 struct task_struct
*task
)
702 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
703 struct perf_event_attr
*attr
,
704 struct perf_event
*group_leader
)
710 perf_cgroup_set_timestamp(struct task_struct
*task
,
711 struct perf_event_context
*ctx
)
716 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
721 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
725 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
731 perf_cgroup_defer_enabled(struct perf_event
*event
)
736 perf_cgroup_mark_enabled(struct perf_event
*event
,
737 struct perf_event_context
*ctx
)
743 * set default to be dependent on timer tick just
746 #define PERF_CPU_HRTIMER (1000 / HZ)
748 * function must be called with interrupts disbled
750 static enum hrtimer_restart
perf_cpu_hrtimer_handler(struct hrtimer
*hr
)
752 struct perf_cpu_context
*cpuctx
;
753 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
756 WARN_ON(!irqs_disabled());
758 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
760 rotations
= perf_rotate_context(cpuctx
);
763 * arm timer if needed
766 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
767 ret
= HRTIMER_RESTART
;
773 /* CPU is going down */
774 void perf_cpu_hrtimer_cancel(int cpu
)
776 struct perf_cpu_context
*cpuctx
;
780 if (WARN_ON(cpu
!= smp_processor_id()))
783 local_irq_save(flags
);
787 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
788 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
790 if (pmu
->task_ctx_nr
== perf_sw_context
)
793 hrtimer_cancel(&cpuctx
->hrtimer
);
798 local_irq_restore(flags
);
801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
803 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
804 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
807 /* no multiplexing needed for SW PMU */
808 if (pmu
->task_ctx_nr
== perf_sw_context
)
812 * check default is sane, if not set then force to
813 * default interval (1/tick)
815 timer
= pmu
->hrtimer_interval_ms
;
817 timer
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
819 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
821 hrtimer_init(hr
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
822 hr
->function
= perf_cpu_hrtimer_handler
;
825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
827 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
828 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
831 if (pmu
->task_ctx_nr
== perf_sw_context
)
834 if (hrtimer_active(hr
))
837 if (!hrtimer_callback_running(hr
))
838 __hrtimer_start_range_ns(hr
, cpuctx
->hrtimer_interval
,
839 0, HRTIMER_MODE_REL_PINNED
, 0);
842 void perf_pmu_disable(struct pmu
*pmu
)
844 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
846 pmu
->pmu_disable(pmu
);
849 void perf_pmu_enable(struct pmu
*pmu
)
851 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
853 pmu
->pmu_enable(pmu
);
856 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
864 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
866 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
868 WARN_ON(!irqs_disabled());
870 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
872 list_add(&ctx
->active_ctx_list
, head
);
875 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
877 WARN_ON(!irqs_disabled());
879 WARN_ON(list_empty(&ctx
->active_ctx_list
));
881 list_del_init(&ctx
->active_ctx_list
);
884 static void get_ctx(struct perf_event_context
*ctx
)
886 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
889 static void free_ctx(struct rcu_head
*head
)
891 struct perf_event_context
*ctx
;
893 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
894 kfree(ctx
->task_ctx_data
);
898 static void put_ctx(struct perf_event_context
*ctx
)
900 if (atomic_dec_and_test(&ctx
->refcount
)) {
902 put_ctx(ctx
->parent_ctx
);
904 put_task_struct(ctx
->task
);
905 call_rcu(&ctx
->rcu_head
, free_ctx
);
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
916 * Lock ordering is by mutex address. There is one other site where
917 * perf_event_context::mutex nests and that is put_event(). But remember that
918 * that is a parent<->child context relation, and migration does not affect
919 * children, therefore these two orderings should not interact.
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
926 * The places that change perf_event::ctx will issue:
928 * perf_remove_from_context();
930 * perf_install_in_context();
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
950 static struct perf_event_context
*
951 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
953 struct perf_event_context
*ctx
;
957 ctx
= ACCESS_ONCE(event
->ctx
);
958 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
964 mutex_lock_nested(&ctx
->mutex
, nesting
);
965 if (event
->ctx
!= ctx
) {
966 mutex_unlock(&ctx
->mutex
);
974 static inline struct perf_event_context
*
975 perf_event_ctx_lock(struct perf_event
*event
)
977 return perf_event_ctx_lock_nested(event
, 0);
980 static void perf_event_ctx_unlock(struct perf_event
*event
,
981 struct perf_event_context
*ctx
)
983 mutex_unlock(&ctx
->mutex
);
988 * This must be done under the ctx->lock, such as to serialize against
989 * context_equiv(), therefore we cannot call put_ctx() since that might end up
990 * calling scheduler related locks and ctx->lock nests inside those.
992 static __must_check
struct perf_event_context
*
993 unclone_ctx(struct perf_event_context
*ctx
)
995 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
997 lockdep_assert_held(&ctx
->lock
);
1000 ctx
->parent_ctx
= NULL
;
1006 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1009 * only top level events have the pid namespace they were created in
1012 event
= event
->parent
;
1014 return task_tgid_nr_ns(p
, event
->ns
);
1017 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1020 * only top level events have the pid namespace they were created in
1023 event
= event
->parent
;
1025 return task_pid_nr_ns(p
, event
->ns
);
1029 * If we inherit events we want to return the parent event id
1032 static u64
primary_event_id(struct perf_event
*event
)
1037 id
= event
->parent
->id
;
1043 * Get the perf_event_context for a task and lock it.
1044 * This has to cope with with the fact that until it is locked,
1045 * the context could get moved to another task.
1047 static struct perf_event_context
*
1048 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1050 struct perf_event_context
*ctx
;
1054 * One of the few rules of preemptible RCU is that one cannot do
1055 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1056 * part of the read side critical section was preemptible -- see
1057 * rcu_read_unlock_special().
1059 * Since ctx->lock nests under rq->lock we must ensure the entire read
1060 * side critical section is non-preemptible.
1064 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1067 * If this context is a clone of another, it might
1068 * get swapped for another underneath us by
1069 * perf_event_task_sched_out, though the
1070 * rcu_read_lock() protects us from any context
1071 * getting freed. Lock the context and check if it
1072 * got swapped before we could get the lock, and retry
1073 * if so. If we locked the right context, then it
1074 * can't get swapped on us any more.
1076 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
1077 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1078 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1084 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1085 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1095 * Get the context for a task and increment its pin_count so it
1096 * can't get swapped to another task. This also increments its
1097 * reference count so that the context can't get freed.
1099 static struct perf_event_context
*
1100 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1102 struct perf_event_context
*ctx
;
1103 unsigned long flags
;
1105 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1108 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1113 static void perf_unpin_context(struct perf_event_context
*ctx
)
1115 unsigned long flags
;
1117 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1119 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1123 * Update the record of the current time in a context.
1125 static void update_context_time(struct perf_event_context
*ctx
)
1127 u64 now
= perf_clock();
1129 ctx
->time
+= now
- ctx
->timestamp
;
1130 ctx
->timestamp
= now
;
1133 static u64
perf_event_time(struct perf_event
*event
)
1135 struct perf_event_context
*ctx
= event
->ctx
;
1137 if (is_cgroup_event(event
))
1138 return perf_cgroup_event_time(event
);
1140 return ctx
? ctx
->time
: 0;
1144 * Update the total_time_enabled and total_time_running fields for a event.
1145 * The caller of this function needs to hold the ctx->lock.
1147 static void update_event_times(struct perf_event
*event
)
1149 struct perf_event_context
*ctx
= event
->ctx
;
1152 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1153 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1156 * in cgroup mode, time_enabled represents
1157 * the time the event was enabled AND active
1158 * tasks were in the monitored cgroup. This is
1159 * independent of the activity of the context as
1160 * there may be a mix of cgroup and non-cgroup events.
1162 * That is why we treat cgroup events differently
1165 if (is_cgroup_event(event
))
1166 run_end
= perf_cgroup_event_time(event
);
1167 else if (ctx
->is_active
)
1168 run_end
= ctx
->time
;
1170 run_end
= event
->tstamp_stopped
;
1172 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1174 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1175 run_end
= event
->tstamp_stopped
;
1177 run_end
= perf_event_time(event
);
1179 event
->total_time_running
= run_end
- event
->tstamp_running
;
1184 * Update total_time_enabled and total_time_running for all events in a group.
1186 static void update_group_times(struct perf_event
*leader
)
1188 struct perf_event
*event
;
1190 update_event_times(leader
);
1191 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1192 update_event_times(event
);
1195 static struct list_head
*
1196 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1198 if (event
->attr
.pinned
)
1199 return &ctx
->pinned_groups
;
1201 return &ctx
->flexible_groups
;
1205 * Add a event from the lists for its context.
1206 * Must be called with ctx->mutex and ctx->lock held.
1209 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1211 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1212 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1215 * If we're a stand alone event or group leader, we go to the context
1216 * list, group events are kept attached to the group so that
1217 * perf_group_detach can, at all times, locate all siblings.
1219 if (event
->group_leader
== event
) {
1220 struct list_head
*list
;
1222 if (is_software_event(event
))
1223 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1225 list
= ctx_group_list(event
, ctx
);
1226 list_add_tail(&event
->group_entry
, list
);
1229 if (is_cgroup_event(event
))
1232 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1234 if (event
->attr
.inherit_stat
)
1241 * Initialize event state based on the perf_event_attr::disabled.
1243 static inline void perf_event__state_init(struct perf_event
*event
)
1245 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1246 PERF_EVENT_STATE_INACTIVE
;
1250 * Called at perf_event creation and when events are attached/detached from a
1253 static void perf_event__read_size(struct perf_event
*event
)
1255 int entry
= sizeof(u64
); /* value */
1259 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1260 size
+= sizeof(u64
);
1262 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1263 size
+= sizeof(u64
);
1265 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1266 entry
+= sizeof(u64
);
1268 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1269 nr
+= event
->group_leader
->nr_siblings
;
1270 size
+= sizeof(u64
);
1274 event
->read_size
= size
;
1277 static void perf_event__header_size(struct perf_event
*event
)
1279 struct perf_sample_data
*data
;
1280 u64 sample_type
= event
->attr
.sample_type
;
1283 perf_event__read_size(event
);
1285 if (sample_type
& PERF_SAMPLE_IP
)
1286 size
+= sizeof(data
->ip
);
1288 if (sample_type
& PERF_SAMPLE_ADDR
)
1289 size
+= sizeof(data
->addr
);
1291 if (sample_type
& PERF_SAMPLE_PERIOD
)
1292 size
+= sizeof(data
->period
);
1294 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1295 size
+= sizeof(data
->weight
);
1297 if (sample_type
& PERF_SAMPLE_READ
)
1298 size
+= event
->read_size
;
1300 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1301 size
+= sizeof(data
->data_src
.val
);
1303 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1304 size
+= sizeof(data
->txn
);
1306 event
->header_size
= size
;
1309 static void perf_event__id_header_size(struct perf_event
*event
)
1311 struct perf_sample_data
*data
;
1312 u64 sample_type
= event
->attr
.sample_type
;
1315 if (sample_type
& PERF_SAMPLE_TID
)
1316 size
+= sizeof(data
->tid_entry
);
1318 if (sample_type
& PERF_SAMPLE_TIME
)
1319 size
+= sizeof(data
->time
);
1321 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1322 size
+= sizeof(data
->id
);
1324 if (sample_type
& PERF_SAMPLE_ID
)
1325 size
+= sizeof(data
->id
);
1327 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1328 size
+= sizeof(data
->stream_id
);
1330 if (sample_type
& PERF_SAMPLE_CPU
)
1331 size
+= sizeof(data
->cpu_entry
);
1333 event
->id_header_size
= size
;
1336 static void perf_group_attach(struct perf_event
*event
)
1338 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1341 * We can have double attach due to group movement in perf_event_open.
1343 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1346 event
->attach_state
|= PERF_ATTACH_GROUP
;
1348 if (group_leader
== event
)
1351 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1353 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1354 !is_software_event(event
))
1355 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1357 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1358 group_leader
->nr_siblings
++;
1360 perf_event__header_size(group_leader
);
1362 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1363 perf_event__header_size(pos
);
1367 * Remove a event from the lists for its context.
1368 * Must be called with ctx->mutex and ctx->lock held.
1371 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1373 struct perf_cpu_context
*cpuctx
;
1375 WARN_ON_ONCE(event
->ctx
!= ctx
);
1376 lockdep_assert_held(&ctx
->lock
);
1379 * We can have double detach due to exit/hot-unplug + close.
1381 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1384 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1386 if (is_cgroup_event(event
)) {
1388 cpuctx
= __get_cpu_context(ctx
);
1390 * if there are no more cgroup events
1391 * then cler cgrp to avoid stale pointer
1392 * in update_cgrp_time_from_cpuctx()
1394 if (!ctx
->nr_cgroups
)
1395 cpuctx
->cgrp
= NULL
;
1399 if (event
->attr
.inherit_stat
)
1402 list_del_rcu(&event
->event_entry
);
1404 if (event
->group_leader
== event
)
1405 list_del_init(&event
->group_entry
);
1407 update_group_times(event
);
1410 * If event was in error state, then keep it
1411 * that way, otherwise bogus counts will be
1412 * returned on read(). The only way to get out
1413 * of error state is by explicit re-enabling
1416 if (event
->state
> PERF_EVENT_STATE_OFF
)
1417 event
->state
= PERF_EVENT_STATE_OFF
;
1422 static void perf_group_detach(struct perf_event
*event
)
1424 struct perf_event
*sibling
, *tmp
;
1425 struct list_head
*list
= NULL
;
1428 * We can have double detach due to exit/hot-unplug + close.
1430 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1433 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1436 * If this is a sibling, remove it from its group.
1438 if (event
->group_leader
!= event
) {
1439 list_del_init(&event
->group_entry
);
1440 event
->group_leader
->nr_siblings
--;
1444 if (!list_empty(&event
->group_entry
))
1445 list
= &event
->group_entry
;
1448 * If this was a group event with sibling events then
1449 * upgrade the siblings to singleton events by adding them
1450 * to whatever list we are on.
1452 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1454 list_move_tail(&sibling
->group_entry
, list
);
1455 sibling
->group_leader
= sibling
;
1457 /* Inherit group flags from the previous leader */
1458 sibling
->group_flags
= event
->group_flags
;
1460 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1464 perf_event__header_size(event
->group_leader
);
1466 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1467 perf_event__header_size(tmp
);
1471 * User event without the task.
1473 static bool is_orphaned_event(struct perf_event
*event
)
1475 return event
&& !is_kernel_event(event
) && !event
->owner
;
1479 * Event has a parent but parent's task finished and it's
1480 * alive only because of children holding refference.
1482 static bool is_orphaned_child(struct perf_event
*event
)
1484 return is_orphaned_event(event
->parent
);
1487 static void orphans_remove_work(struct work_struct
*work
);
1489 static void schedule_orphans_remove(struct perf_event_context
*ctx
)
1491 if (!ctx
->task
|| ctx
->orphans_remove_sched
|| !perf_wq
)
1494 if (queue_delayed_work(perf_wq
, &ctx
->orphans_remove
, 1)) {
1496 ctx
->orphans_remove_sched
= true;
1500 static int __init
perf_workqueue_init(void)
1502 perf_wq
= create_singlethread_workqueue("perf");
1503 WARN(!perf_wq
, "failed to create perf workqueue\n");
1504 return perf_wq
? 0 : -1;
1507 core_initcall(perf_workqueue_init
);
1510 event_filter_match(struct perf_event
*event
)
1512 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1513 && perf_cgroup_match(event
);
1517 event_sched_out(struct perf_event
*event
,
1518 struct perf_cpu_context
*cpuctx
,
1519 struct perf_event_context
*ctx
)
1521 u64 tstamp
= perf_event_time(event
);
1524 WARN_ON_ONCE(event
->ctx
!= ctx
);
1525 lockdep_assert_held(&ctx
->lock
);
1528 * An event which could not be activated because of
1529 * filter mismatch still needs to have its timings
1530 * maintained, otherwise bogus information is return
1531 * via read() for time_enabled, time_running:
1533 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1534 && !event_filter_match(event
)) {
1535 delta
= tstamp
- event
->tstamp_stopped
;
1536 event
->tstamp_running
+= delta
;
1537 event
->tstamp_stopped
= tstamp
;
1540 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1543 perf_pmu_disable(event
->pmu
);
1545 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1546 if (event
->pending_disable
) {
1547 event
->pending_disable
= 0;
1548 event
->state
= PERF_EVENT_STATE_OFF
;
1550 event
->tstamp_stopped
= tstamp
;
1551 event
->pmu
->del(event
, 0);
1554 if (!is_software_event(event
))
1555 cpuctx
->active_oncpu
--;
1556 if (!--ctx
->nr_active
)
1557 perf_event_ctx_deactivate(ctx
);
1558 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1560 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1561 cpuctx
->exclusive
= 0;
1563 if (is_orphaned_child(event
))
1564 schedule_orphans_remove(ctx
);
1566 perf_pmu_enable(event
->pmu
);
1570 group_sched_out(struct perf_event
*group_event
,
1571 struct perf_cpu_context
*cpuctx
,
1572 struct perf_event_context
*ctx
)
1574 struct perf_event
*event
;
1575 int state
= group_event
->state
;
1577 event_sched_out(group_event
, cpuctx
, ctx
);
1580 * Schedule out siblings (if any):
1582 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1583 event_sched_out(event
, cpuctx
, ctx
);
1585 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1586 cpuctx
->exclusive
= 0;
1589 struct remove_event
{
1590 struct perf_event
*event
;
1595 * Cross CPU call to remove a performance event
1597 * We disable the event on the hardware level first. After that we
1598 * remove it from the context list.
1600 static int __perf_remove_from_context(void *info
)
1602 struct remove_event
*re
= info
;
1603 struct perf_event
*event
= re
->event
;
1604 struct perf_event_context
*ctx
= event
->ctx
;
1605 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1607 raw_spin_lock(&ctx
->lock
);
1608 event_sched_out(event
, cpuctx
, ctx
);
1609 if (re
->detach_group
)
1610 perf_group_detach(event
);
1611 list_del_event(event
, ctx
);
1612 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1614 cpuctx
->task_ctx
= NULL
;
1616 raw_spin_unlock(&ctx
->lock
);
1623 * Remove the event from a task's (or a CPU's) list of events.
1625 * CPU events are removed with a smp call. For task events we only
1626 * call when the task is on a CPU.
1628 * If event->ctx is a cloned context, callers must make sure that
1629 * every task struct that event->ctx->task could possibly point to
1630 * remains valid. This is OK when called from perf_release since
1631 * that only calls us on the top-level context, which can't be a clone.
1632 * When called from perf_event_exit_task, it's OK because the
1633 * context has been detached from its task.
1635 static void perf_remove_from_context(struct perf_event
*event
, bool detach_group
)
1637 struct perf_event_context
*ctx
= event
->ctx
;
1638 struct task_struct
*task
= ctx
->task
;
1639 struct remove_event re
= {
1641 .detach_group
= detach_group
,
1644 lockdep_assert_held(&ctx
->mutex
);
1648 * Per cpu events are removed via an smp call. The removal can
1649 * fail if the CPU is currently offline, but in that case we
1650 * already called __perf_remove_from_context from
1651 * perf_event_exit_cpu.
1653 cpu_function_call(event
->cpu
, __perf_remove_from_context
, &re
);
1658 if (!task_function_call(task
, __perf_remove_from_context
, &re
))
1661 raw_spin_lock_irq(&ctx
->lock
);
1663 * If we failed to find a running task, but find the context active now
1664 * that we've acquired the ctx->lock, retry.
1666 if (ctx
->is_active
) {
1667 raw_spin_unlock_irq(&ctx
->lock
);
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1677 * Since the task isn't running, its safe to remove the event, us
1678 * holding the ctx->lock ensures the task won't get scheduled in.
1681 perf_group_detach(event
);
1682 list_del_event(event
, ctx
);
1683 raw_spin_unlock_irq(&ctx
->lock
);
1687 * Cross CPU call to disable a performance event
1689 int __perf_event_disable(void *info
)
1691 struct perf_event
*event
= info
;
1692 struct perf_event_context
*ctx
= event
->ctx
;
1693 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1696 * If this is a per-task event, need to check whether this
1697 * event's task is the current task on this cpu.
1699 * Can trigger due to concurrent perf_event_context_sched_out()
1700 * flipping contexts around.
1702 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1705 raw_spin_lock(&ctx
->lock
);
1708 * If the event is on, turn it off.
1709 * If it is in error state, leave it in error state.
1711 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1712 update_context_time(ctx
);
1713 update_cgrp_time_from_event(event
);
1714 update_group_times(event
);
1715 if (event
== event
->group_leader
)
1716 group_sched_out(event
, cpuctx
, ctx
);
1718 event_sched_out(event
, cpuctx
, ctx
);
1719 event
->state
= PERF_EVENT_STATE_OFF
;
1722 raw_spin_unlock(&ctx
->lock
);
1730 * If event->ctx is a cloned context, callers must make sure that
1731 * every task struct that event->ctx->task could possibly point to
1732 * remains valid. This condition is satisifed when called through
1733 * perf_event_for_each_child or perf_event_for_each because they
1734 * hold the top-level event's child_mutex, so any descendant that
1735 * goes to exit will block in sync_child_event.
1736 * When called from perf_pending_event it's OK because event->ctx
1737 * is the current context on this CPU and preemption is disabled,
1738 * hence we can't get into perf_event_task_sched_out for this context.
1740 static void _perf_event_disable(struct perf_event
*event
)
1742 struct perf_event_context
*ctx
= event
->ctx
;
1743 struct task_struct
*task
= ctx
->task
;
1747 * Disable the event on the cpu that it's on
1749 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1754 if (!task_function_call(task
, __perf_event_disable
, event
))
1757 raw_spin_lock_irq(&ctx
->lock
);
1759 * If the event is still active, we need to retry the cross-call.
1761 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1762 raw_spin_unlock_irq(&ctx
->lock
);
1764 * Reload the task pointer, it might have been changed by
1765 * a concurrent perf_event_context_sched_out().
1772 * Since we have the lock this context can't be scheduled
1773 * in, so we can change the state safely.
1775 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1776 update_group_times(event
);
1777 event
->state
= PERF_EVENT_STATE_OFF
;
1779 raw_spin_unlock_irq(&ctx
->lock
);
1783 * Strictly speaking kernel users cannot create groups and therefore this
1784 * interface does not need the perf_event_ctx_lock() magic.
1786 void perf_event_disable(struct perf_event
*event
)
1788 struct perf_event_context
*ctx
;
1790 ctx
= perf_event_ctx_lock(event
);
1791 _perf_event_disable(event
);
1792 perf_event_ctx_unlock(event
, ctx
);
1794 EXPORT_SYMBOL_GPL(perf_event_disable
);
1796 static void perf_set_shadow_time(struct perf_event
*event
,
1797 struct perf_event_context
*ctx
,
1801 * use the correct time source for the time snapshot
1803 * We could get by without this by leveraging the
1804 * fact that to get to this function, the caller
1805 * has most likely already called update_context_time()
1806 * and update_cgrp_time_xx() and thus both timestamp
1807 * are identical (or very close). Given that tstamp is,
1808 * already adjusted for cgroup, we could say that:
1809 * tstamp - ctx->timestamp
1811 * tstamp - cgrp->timestamp.
1813 * Then, in perf_output_read(), the calculation would
1814 * work with no changes because:
1815 * - event is guaranteed scheduled in
1816 * - no scheduled out in between
1817 * - thus the timestamp would be the same
1819 * But this is a bit hairy.
1821 * So instead, we have an explicit cgroup call to remain
1822 * within the time time source all along. We believe it
1823 * is cleaner and simpler to understand.
1825 if (is_cgroup_event(event
))
1826 perf_cgroup_set_shadow_time(event
, tstamp
);
1828 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1831 #define MAX_INTERRUPTS (~0ULL)
1833 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1834 static void perf_log_itrace_start(struct perf_event
*event
);
1837 event_sched_in(struct perf_event
*event
,
1838 struct perf_cpu_context
*cpuctx
,
1839 struct perf_event_context
*ctx
)
1841 u64 tstamp
= perf_event_time(event
);
1844 lockdep_assert_held(&ctx
->lock
);
1846 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1849 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1850 event
->oncpu
= smp_processor_id();
1853 * Unthrottle events, since we scheduled we might have missed several
1854 * ticks already, also for a heavily scheduling task there is little
1855 * guarantee it'll get a tick in a timely manner.
1857 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1858 perf_log_throttle(event
, 1);
1859 event
->hw
.interrupts
= 0;
1863 * The new state must be visible before we turn it on in the hardware:
1867 perf_pmu_disable(event
->pmu
);
1869 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1871 perf_set_shadow_time(event
, ctx
, tstamp
);
1873 perf_log_itrace_start(event
);
1875 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1876 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1882 if (!is_software_event(event
))
1883 cpuctx
->active_oncpu
++;
1884 if (!ctx
->nr_active
++)
1885 perf_event_ctx_activate(ctx
);
1886 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1889 if (event
->attr
.exclusive
)
1890 cpuctx
->exclusive
= 1;
1892 if (is_orphaned_child(event
))
1893 schedule_orphans_remove(ctx
);
1896 perf_pmu_enable(event
->pmu
);
1902 group_sched_in(struct perf_event
*group_event
,
1903 struct perf_cpu_context
*cpuctx
,
1904 struct perf_event_context
*ctx
)
1906 struct perf_event
*event
, *partial_group
= NULL
;
1907 struct pmu
*pmu
= ctx
->pmu
;
1908 u64 now
= ctx
->time
;
1909 bool simulate
= false;
1911 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1914 pmu
->start_txn(pmu
);
1916 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1917 pmu
->cancel_txn(pmu
);
1918 perf_cpu_hrtimer_restart(cpuctx
);
1923 * Schedule in siblings as one group (if any):
1925 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1926 if (event_sched_in(event
, cpuctx
, ctx
)) {
1927 partial_group
= event
;
1932 if (!pmu
->commit_txn(pmu
))
1937 * Groups can be scheduled in as one unit only, so undo any
1938 * partial group before returning:
1939 * The events up to the failed event are scheduled out normally,
1940 * tstamp_stopped will be updated.
1942 * The failed events and the remaining siblings need to have
1943 * their timings updated as if they had gone thru event_sched_in()
1944 * and event_sched_out(). This is required to get consistent timings
1945 * across the group. This also takes care of the case where the group
1946 * could never be scheduled by ensuring tstamp_stopped is set to mark
1947 * the time the event was actually stopped, such that time delta
1948 * calculation in update_event_times() is correct.
1950 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1951 if (event
== partial_group
)
1955 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1956 event
->tstamp_stopped
= now
;
1958 event_sched_out(event
, cpuctx
, ctx
);
1961 event_sched_out(group_event
, cpuctx
, ctx
);
1963 pmu
->cancel_txn(pmu
);
1965 perf_cpu_hrtimer_restart(cpuctx
);
1971 * Work out whether we can put this event group on the CPU now.
1973 static int group_can_go_on(struct perf_event
*event
,
1974 struct perf_cpu_context
*cpuctx
,
1978 * Groups consisting entirely of software events can always go on.
1980 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1983 * If an exclusive group is already on, no other hardware
1986 if (cpuctx
->exclusive
)
1989 * If this group is exclusive and there are already
1990 * events on the CPU, it can't go on.
1992 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1995 * Otherwise, try to add it if all previous groups were able
2001 static void add_event_to_ctx(struct perf_event
*event
,
2002 struct perf_event_context
*ctx
)
2004 u64 tstamp
= perf_event_time(event
);
2006 list_add_event(event
, ctx
);
2007 perf_group_attach(event
);
2008 event
->tstamp_enabled
= tstamp
;
2009 event
->tstamp_running
= tstamp
;
2010 event
->tstamp_stopped
= tstamp
;
2013 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
2015 ctx_sched_in(struct perf_event_context
*ctx
,
2016 struct perf_cpu_context
*cpuctx
,
2017 enum event_type_t event_type
,
2018 struct task_struct
*task
);
2020 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2021 struct perf_event_context
*ctx
,
2022 struct task_struct
*task
)
2024 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2026 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2027 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2029 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2033 * Cross CPU call to install and enable a performance event
2035 * Must be called with ctx->mutex held
2037 static int __perf_install_in_context(void *info
)
2039 struct perf_event
*event
= info
;
2040 struct perf_event_context
*ctx
= event
->ctx
;
2041 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2042 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2043 struct task_struct
*task
= current
;
2045 perf_ctx_lock(cpuctx
, task_ctx
);
2046 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2049 * If there was an active task_ctx schedule it out.
2052 task_ctx_sched_out(task_ctx
);
2055 * If the context we're installing events in is not the
2056 * active task_ctx, flip them.
2058 if (ctx
->task
&& task_ctx
!= ctx
) {
2060 raw_spin_unlock(&task_ctx
->lock
);
2061 raw_spin_lock(&ctx
->lock
);
2066 cpuctx
->task_ctx
= task_ctx
;
2067 task
= task_ctx
->task
;
2070 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2072 update_context_time(ctx
);
2074 * update cgrp time only if current cgrp
2075 * matches event->cgrp. Must be done before
2076 * calling add_event_to_ctx()
2078 update_cgrp_time_from_event(event
);
2080 add_event_to_ctx(event
, ctx
);
2083 * Schedule everything back in
2085 perf_event_sched_in(cpuctx
, task_ctx
, task
);
2087 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2088 perf_ctx_unlock(cpuctx
, task_ctx
);
2094 * Attach a performance event to a context
2096 * First we add the event to the list with the hardware enable bit
2097 * in event->hw_config cleared.
2099 * If the event is attached to a task which is on a CPU we use a smp
2100 * call to enable it in the task context. The task might have been
2101 * scheduled away, but we check this in the smp call again.
2104 perf_install_in_context(struct perf_event_context
*ctx
,
2105 struct perf_event
*event
,
2108 struct task_struct
*task
= ctx
->task
;
2110 lockdep_assert_held(&ctx
->mutex
);
2113 if (event
->cpu
!= -1)
2118 * Per cpu events are installed via an smp call and
2119 * the install is always successful.
2121 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2126 if (!task_function_call(task
, __perf_install_in_context
, event
))
2129 raw_spin_lock_irq(&ctx
->lock
);
2131 * If we failed to find a running task, but find the context active now
2132 * that we've acquired the ctx->lock, retry.
2134 if (ctx
->is_active
) {
2135 raw_spin_unlock_irq(&ctx
->lock
);
2137 * Reload the task pointer, it might have been changed by
2138 * a concurrent perf_event_context_sched_out().
2145 * Since the task isn't running, its safe to add the event, us holding
2146 * the ctx->lock ensures the task won't get scheduled in.
2148 add_event_to_ctx(event
, ctx
);
2149 raw_spin_unlock_irq(&ctx
->lock
);
2153 * Put a event into inactive state and update time fields.
2154 * Enabling the leader of a group effectively enables all
2155 * the group members that aren't explicitly disabled, so we
2156 * have to update their ->tstamp_enabled also.
2157 * Note: this works for group members as well as group leaders
2158 * since the non-leader members' sibling_lists will be empty.
2160 static void __perf_event_mark_enabled(struct perf_event
*event
)
2162 struct perf_event
*sub
;
2163 u64 tstamp
= perf_event_time(event
);
2165 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2166 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2167 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2168 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2169 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2174 * Cross CPU call to enable a performance event
2176 static int __perf_event_enable(void *info
)
2178 struct perf_event
*event
= info
;
2179 struct perf_event_context
*ctx
= event
->ctx
;
2180 struct perf_event
*leader
= event
->group_leader
;
2181 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2185 * There's a time window between 'ctx->is_active' check
2186 * in perf_event_enable function and this place having:
2188 * - ctx->lock unlocked
2190 * where the task could be killed and 'ctx' deactivated
2191 * by perf_event_exit_task.
2193 if (!ctx
->is_active
)
2196 raw_spin_lock(&ctx
->lock
);
2197 update_context_time(ctx
);
2199 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2203 * set current task's cgroup time reference point
2205 perf_cgroup_set_timestamp(current
, ctx
);
2207 __perf_event_mark_enabled(event
);
2209 if (!event_filter_match(event
)) {
2210 if (is_cgroup_event(event
))
2211 perf_cgroup_defer_enabled(event
);
2216 * If the event is in a group and isn't the group leader,
2217 * then don't put it on unless the group is on.
2219 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
2222 if (!group_can_go_on(event
, cpuctx
, 1)) {
2225 if (event
== leader
)
2226 err
= group_sched_in(event
, cpuctx
, ctx
);
2228 err
= event_sched_in(event
, cpuctx
, ctx
);
2233 * If this event can't go on and it's part of a
2234 * group, then the whole group has to come off.
2236 if (leader
!= event
) {
2237 group_sched_out(leader
, cpuctx
, ctx
);
2238 perf_cpu_hrtimer_restart(cpuctx
);
2240 if (leader
->attr
.pinned
) {
2241 update_group_times(leader
);
2242 leader
->state
= PERF_EVENT_STATE_ERROR
;
2247 raw_spin_unlock(&ctx
->lock
);
2255 * If event->ctx is a cloned context, callers must make sure that
2256 * every task struct that event->ctx->task could possibly point to
2257 * remains valid. This condition is satisfied when called through
2258 * perf_event_for_each_child or perf_event_for_each as described
2259 * for perf_event_disable.
2261 static void _perf_event_enable(struct perf_event
*event
)
2263 struct perf_event_context
*ctx
= event
->ctx
;
2264 struct task_struct
*task
= ctx
->task
;
2268 * Enable the event on the cpu that it's on
2270 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
2274 raw_spin_lock_irq(&ctx
->lock
);
2275 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2279 * If the event is in error state, clear that first.
2280 * That way, if we see the event in error state below, we
2281 * know that it has gone back into error state, as distinct
2282 * from the task having been scheduled away before the
2283 * cross-call arrived.
2285 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2286 event
->state
= PERF_EVENT_STATE_OFF
;
2289 if (!ctx
->is_active
) {
2290 __perf_event_mark_enabled(event
);
2294 raw_spin_unlock_irq(&ctx
->lock
);
2296 if (!task_function_call(task
, __perf_event_enable
, event
))
2299 raw_spin_lock_irq(&ctx
->lock
);
2302 * If the context is active and the event is still off,
2303 * we need to retry the cross-call.
2305 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
2307 * task could have been flipped by a concurrent
2308 * perf_event_context_sched_out()
2315 raw_spin_unlock_irq(&ctx
->lock
);
2319 * See perf_event_disable();
2321 void perf_event_enable(struct perf_event
*event
)
2323 struct perf_event_context
*ctx
;
2325 ctx
= perf_event_ctx_lock(event
);
2326 _perf_event_enable(event
);
2327 perf_event_ctx_unlock(event
, ctx
);
2329 EXPORT_SYMBOL_GPL(perf_event_enable
);
2331 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2334 * not supported on inherited events
2336 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2339 atomic_add(refresh
, &event
->event_limit
);
2340 _perf_event_enable(event
);
2346 * See perf_event_disable()
2348 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2350 struct perf_event_context
*ctx
;
2353 ctx
= perf_event_ctx_lock(event
);
2354 ret
= _perf_event_refresh(event
, refresh
);
2355 perf_event_ctx_unlock(event
, ctx
);
2359 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2361 static void ctx_sched_out(struct perf_event_context
*ctx
,
2362 struct perf_cpu_context
*cpuctx
,
2363 enum event_type_t event_type
)
2365 struct perf_event
*event
;
2366 int is_active
= ctx
->is_active
;
2368 ctx
->is_active
&= ~event_type
;
2369 if (likely(!ctx
->nr_events
))
2372 update_context_time(ctx
);
2373 update_cgrp_time_from_cpuctx(cpuctx
);
2374 if (!ctx
->nr_active
)
2377 perf_pmu_disable(ctx
->pmu
);
2378 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
2379 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2380 group_sched_out(event
, cpuctx
, ctx
);
2383 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
2384 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2385 group_sched_out(event
, cpuctx
, ctx
);
2387 perf_pmu_enable(ctx
->pmu
);
2391 * Test whether two contexts are equivalent, i.e. whether they have both been
2392 * cloned from the same version of the same context.
2394 * Equivalence is measured using a generation number in the context that is
2395 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2396 * and list_del_event().
2398 static int context_equiv(struct perf_event_context
*ctx1
,
2399 struct perf_event_context
*ctx2
)
2401 lockdep_assert_held(&ctx1
->lock
);
2402 lockdep_assert_held(&ctx2
->lock
);
2404 /* Pinning disables the swap optimization */
2405 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2408 /* If ctx1 is the parent of ctx2 */
2409 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2412 /* If ctx2 is the parent of ctx1 */
2413 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2417 * If ctx1 and ctx2 have the same parent; we flatten the parent
2418 * hierarchy, see perf_event_init_context().
2420 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2421 ctx1
->parent_gen
== ctx2
->parent_gen
)
2428 static void __perf_event_sync_stat(struct perf_event
*event
,
2429 struct perf_event
*next_event
)
2433 if (!event
->attr
.inherit_stat
)
2437 * Update the event value, we cannot use perf_event_read()
2438 * because we're in the middle of a context switch and have IRQs
2439 * disabled, which upsets smp_call_function_single(), however
2440 * we know the event must be on the current CPU, therefore we
2441 * don't need to use it.
2443 switch (event
->state
) {
2444 case PERF_EVENT_STATE_ACTIVE
:
2445 event
->pmu
->read(event
);
2448 case PERF_EVENT_STATE_INACTIVE
:
2449 update_event_times(event
);
2457 * In order to keep per-task stats reliable we need to flip the event
2458 * values when we flip the contexts.
2460 value
= local64_read(&next_event
->count
);
2461 value
= local64_xchg(&event
->count
, value
);
2462 local64_set(&next_event
->count
, value
);
2464 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2465 swap(event
->total_time_running
, next_event
->total_time_running
);
2468 * Since we swizzled the values, update the user visible data too.
2470 perf_event_update_userpage(event
);
2471 perf_event_update_userpage(next_event
);
2474 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2475 struct perf_event_context
*next_ctx
)
2477 struct perf_event
*event
, *next_event
;
2482 update_context_time(ctx
);
2484 event
= list_first_entry(&ctx
->event_list
,
2485 struct perf_event
, event_entry
);
2487 next_event
= list_first_entry(&next_ctx
->event_list
,
2488 struct perf_event
, event_entry
);
2490 while (&event
->event_entry
!= &ctx
->event_list
&&
2491 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2493 __perf_event_sync_stat(event
, next_event
);
2495 event
= list_next_entry(event
, event_entry
);
2496 next_event
= list_next_entry(next_event
, event_entry
);
2500 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2501 struct task_struct
*next
)
2503 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2504 struct perf_event_context
*next_ctx
;
2505 struct perf_event_context
*parent
, *next_parent
;
2506 struct perf_cpu_context
*cpuctx
;
2512 cpuctx
= __get_cpu_context(ctx
);
2513 if (!cpuctx
->task_ctx
)
2517 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2521 parent
= rcu_dereference(ctx
->parent_ctx
);
2522 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2524 /* If neither context have a parent context; they cannot be clones. */
2525 if (!parent
&& !next_parent
)
2528 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2530 * Looks like the two contexts are clones, so we might be
2531 * able to optimize the context switch. We lock both
2532 * contexts and check that they are clones under the
2533 * lock (including re-checking that neither has been
2534 * uncloned in the meantime). It doesn't matter which
2535 * order we take the locks because no other cpu could
2536 * be trying to lock both of these tasks.
2538 raw_spin_lock(&ctx
->lock
);
2539 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2540 if (context_equiv(ctx
, next_ctx
)) {
2542 * XXX do we need a memory barrier of sorts
2543 * wrt to rcu_dereference() of perf_event_ctxp
2545 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2546 next
->perf_event_ctxp
[ctxn
] = ctx
;
2548 next_ctx
->task
= task
;
2550 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2554 perf_event_sync_stat(ctx
, next_ctx
);
2556 raw_spin_unlock(&next_ctx
->lock
);
2557 raw_spin_unlock(&ctx
->lock
);
2563 raw_spin_lock(&ctx
->lock
);
2564 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2565 cpuctx
->task_ctx
= NULL
;
2566 raw_spin_unlock(&ctx
->lock
);
2570 void perf_sched_cb_dec(struct pmu
*pmu
)
2572 this_cpu_dec(perf_sched_cb_usages
);
2575 void perf_sched_cb_inc(struct pmu
*pmu
)
2577 this_cpu_inc(perf_sched_cb_usages
);
2581 * This function provides the context switch callback to the lower code
2582 * layer. It is invoked ONLY when the context switch callback is enabled.
2584 static void perf_pmu_sched_task(struct task_struct
*prev
,
2585 struct task_struct
*next
,
2588 struct perf_cpu_context
*cpuctx
;
2590 unsigned long flags
;
2595 local_irq_save(flags
);
2599 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2600 if (pmu
->sched_task
) {
2601 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2603 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2605 perf_pmu_disable(pmu
);
2607 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2609 perf_pmu_enable(pmu
);
2611 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2617 local_irq_restore(flags
);
2620 #define for_each_task_context_nr(ctxn) \
2621 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2624 * Called from scheduler to remove the events of the current task,
2625 * with interrupts disabled.
2627 * We stop each event and update the event value in event->count.
2629 * This does not protect us against NMI, but disable()
2630 * sets the disabled bit in the control field of event _before_
2631 * accessing the event control register. If a NMI hits, then it will
2632 * not restart the event.
2634 void __perf_event_task_sched_out(struct task_struct
*task
,
2635 struct task_struct
*next
)
2639 if (__this_cpu_read(perf_sched_cb_usages
))
2640 perf_pmu_sched_task(task
, next
, false);
2642 for_each_task_context_nr(ctxn
)
2643 perf_event_context_sched_out(task
, ctxn
, next
);
2646 * if cgroup events exist on this CPU, then we need
2647 * to check if we have to switch out PMU state.
2648 * cgroup event are system-wide mode only
2650 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2651 perf_cgroup_sched_out(task
, next
);
2654 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2656 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2658 if (!cpuctx
->task_ctx
)
2661 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2664 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2665 cpuctx
->task_ctx
= NULL
;
2669 * Called with IRQs disabled
2671 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2672 enum event_type_t event_type
)
2674 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2678 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2679 struct perf_cpu_context
*cpuctx
)
2681 struct perf_event
*event
;
2683 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2684 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2686 if (!event_filter_match(event
))
2689 /* may need to reset tstamp_enabled */
2690 if (is_cgroup_event(event
))
2691 perf_cgroup_mark_enabled(event
, ctx
);
2693 if (group_can_go_on(event
, cpuctx
, 1))
2694 group_sched_in(event
, cpuctx
, ctx
);
2697 * If this pinned group hasn't been scheduled,
2698 * put it in error state.
2700 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2701 update_group_times(event
);
2702 event
->state
= PERF_EVENT_STATE_ERROR
;
2708 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2709 struct perf_cpu_context
*cpuctx
)
2711 struct perf_event
*event
;
2714 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2715 /* Ignore events in OFF or ERROR state */
2716 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2719 * Listen to the 'cpu' scheduling filter constraint
2722 if (!event_filter_match(event
))
2725 /* may need to reset tstamp_enabled */
2726 if (is_cgroup_event(event
))
2727 perf_cgroup_mark_enabled(event
, ctx
);
2729 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2730 if (group_sched_in(event
, cpuctx
, ctx
))
2737 ctx_sched_in(struct perf_event_context
*ctx
,
2738 struct perf_cpu_context
*cpuctx
,
2739 enum event_type_t event_type
,
2740 struct task_struct
*task
)
2743 int is_active
= ctx
->is_active
;
2745 ctx
->is_active
|= event_type
;
2746 if (likely(!ctx
->nr_events
))
2750 ctx
->timestamp
= now
;
2751 perf_cgroup_set_timestamp(task
, ctx
);
2753 * First go through the list and put on any pinned groups
2754 * in order to give them the best chance of going on.
2756 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2757 ctx_pinned_sched_in(ctx
, cpuctx
);
2759 /* Then walk through the lower prio flexible groups */
2760 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2761 ctx_flexible_sched_in(ctx
, cpuctx
);
2764 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2765 enum event_type_t event_type
,
2766 struct task_struct
*task
)
2768 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2770 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2773 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2774 struct task_struct
*task
)
2776 struct perf_cpu_context
*cpuctx
;
2778 cpuctx
= __get_cpu_context(ctx
);
2779 if (cpuctx
->task_ctx
== ctx
)
2782 perf_ctx_lock(cpuctx
, ctx
);
2783 perf_pmu_disable(ctx
->pmu
);
2785 * We want to keep the following priority order:
2786 * cpu pinned (that don't need to move), task pinned,
2787 * cpu flexible, task flexible.
2789 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2792 cpuctx
->task_ctx
= ctx
;
2794 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2796 perf_pmu_enable(ctx
->pmu
);
2797 perf_ctx_unlock(cpuctx
, ctx
);
2801 * Called from scheduler to add the events of the current task
2802 * with interrupts disabled.
2804 * We restore the event value and then enable it.
2806 * This does not protect us against NMI, but enable()
2807 * sets the enabled bit in the control field of event _before_
2808 * accessing the event control register. If a NMI hits, then it will
2809 * keep the event running.
2811 void __perf_event_task_sched_in(struct task_struct
*prev
,
2812 struct task_struct
*task
)
2814 struct perf_event_context
*ctx
;
2817 for_each_task_context_nr(ctxn
) {
2818 ctx
= task
->perf_event_ctxp
[ctxn
];
2822 perf_event_context_sched_in(ctx
, task
);
2825 * if cgroup events exist on this CPU, then we need
2826 * to check if we have to switch in PMU state.
2827 * cgroup event are system-wide mode only
2829 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2830 perf_cgroup_sched_in(prev
, task
);
2832 if (__this_cpu_read(perf_sched_cb_usages
))
2833 perf_pmu_sched_task(prev
, task
, true);
2836 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2838 u64 frequency
= event
->attr
.sample_freq
;
2839 u64 sec
= NSEC_PER_SEC
;
2840 u64 divisor
, dividend
;
2842 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2844 count_fls
= fls64(count
);
2845 nsec_fls
= fls64(nsec
);
2846 frequency_fls
= fls64(frequency
);
2850 * We got @count in @nsec, with a target of sample_freq HZ
2851 * the target period becomes:
2854 * period = -------------------
2855 * @nsec * sample_freq
2860 * Reduce accuracy by one bit such that @a and @b converge
2861 * to a similar magnitude.
2863 #define REDUCE_FLS(a, b) \
2865 if (a##_fls > b##_fls) { \
2875 * Reduce accuracy until either term fits in a u64, then proceed with
2876 * the other, so that finally we can do a u64/u64 division.
2878 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2879 REDUCE_FLS(nsec
, frequency
);
2880 REDUCE_FLS(sec
, count
);
2883 if (count_fls
+ sec_fls
> 64) {
2884 divisor
= nsec
* frequency
;
2886 while (count_fls
+ sec_fls
> 64) {
2887 REDUCE_FLS(count
, sec
);
2891 dividend
= count
* sec
;
2893 dividend
= count
* sec
;
2895 while (nsec_fls
+ frequency_fls
> 64) {
2896 REDUCE_FLS(nsec
, frequency
);
2900 divisor
= nsec
* frequency
;
2906 return div64_u64(dividend
, divisor
);
2909 static DEFINE_PER_CPU(int, perf_throttled_count
);
2910 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2912 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2914 struct hw_perf_event
*hwc
= &event
->hw
;
2915 s64 period
, sample_period
;
2918 period
= perf_calculate_period(event
, nsec
, count
);
2920 delta
= (s64
)(period
- hwc
->sample_period
);
2921 delta
= (delta
+ 7) / 8; /* low pass filter */
2923 sample_period
= hwc
->sample_period
+ delta
;
2928 hwc
->sample_period
= sample_period
;
2930 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2932 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2934 local64_set(&hwc
->period_left
, 0);
2937 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2942 * combine freq adjustment with unthrottling to avoid two passes over the
2943 * events. At the same time, make sure, having freq events does not change
2944 * the rate of unthrottling as that would introduce bias.
2946 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2949 struct perf_event
*event
;
2950 struct hw_perf_event
*hwc
;
2951 u64 now
, period
= TICK_NSEC
;
2955 * only need to iterate over all events iff:
2956 * - context have events in frequency mode (needs freq adjust)
2957 * - there are events to unthrottle on this cpu
2959 if (!(ctx
->nr_freq
|| needs_unthr
))
2962 raw_spin_lock(&ctx
->lock
);
2963 perf_pmu_disable(ctx
->pmu
);
2965 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2966 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2969 if (!event_filter_match(event
))
2972 perf_pmu_disable(event
->pmu
);
2976 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
2977 hwc
->interrupts
= 0;
2978 perf_log_throttle(event
, 1);
2979 event
->pmu
->start(event
, 0);
2982 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2986 * stop the event and update event->count
2988 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2990 now
= local64_read(&event
->count
);
2991 delta
= now
- hwc
->freq_count_stamp
;
2992 hwc
->freq_count_stamp
= now
;
2996 * reload only if value has changed
2997 * we have stopped the event so tell that
2998 * to perf_adjust_period() to avoid stopping it
3002 perf_adjust_period(event
, period
, delta
, false);
3004 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3006 perf_pmu_enable(event
->pmu
);
3009 perf_pmu_enable(ctx
->pmu
);
3010 raw_spin_unlock(&ctx
->lock
);
3014 * Round-robin a context's events:
3016 static void rotate_ctx(struct perf_event_context
*ctx
)
3019 * Rotate the first entry last of non-pinned groups. Rotation might be
3020 * disabled by the inheritance code.
3022 if (!ctx
->rotate_disable
)
3023 list_rotate_left(&ctx
->flexible_groups
);
3026 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3028 struct perf_event_context
*ctx
= NULL
;
3031 if (cpuctx
->ctx
.nr_events
) {
3032 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3036 ctx
= cpuctx
->task_ctx
;
3037 if (ctx
&& ctx
->nr_events
) {
3038 if (ctx
->nr_events
!= ctx
->nr_active
)
3045 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3046 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3048 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3050 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3052 rotate_ctx(&cpuctx
->ctx
);
3056 perf_event_sched_in(cpuctx
, ctx
, current
);
3058 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3059 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3065 #ifdef CONFIG_NO_HZ_FULL
3066 bool perf_event_can_stop_tick(void)
3068 if (atomic_read(&nr_freq_events
) ||
3069 __this_cpu_read(perf_throttled_count
))
3076 void perf_event_task_tick(void)
3078 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3079 struct perf_event_context
*ctx
, *tmp
;
3082 WARN_ON(!irqs_disabled());
3084 __this_cpu_inc(perf_throttled_seq
);
3085 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3087 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3088 perf_adjust_freq_unthr_context(ctx
, throttled
);
3091 static int event_enable_on_exec(struct perf_event
*event
,
3092 struct perf_event_context
*ctx
)
3094 if (!event
->attr
.enable_on_exec
)
3097 event
->attr
.enable_on_exec
= 0;
3098 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3101 __perf_event_mark_enabled(event
);
3107 * Enable all of a task's events that have been marked enable-on-exec.
3108 * This expects task == current.
3110 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
3112 struct perf_event_context
*clone_ctx
= NULL
;
3113 struct perf_event
*event
;
3114 unsigned long flags
;
3118 local_irq_save(flags
);
3119 if (!ctx
|| !ctx
->nr_events
)
3123 * We must ctxsw out cgroup events to avoid conflict
3124 * when invoking perf_task_event_sched_in() later on
3125 * in this function. Otherwise we end up trying to
3126 * ctxswin cgroup events which are already scheduled
3129 perf_cgroup_sched_out(current
, NULL
);
3131 raw_spin_lock(&ctx
->lock
);
3132 task_ctx_sched_out(ctx
);
3134 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3135 ret
= event_enable_on_exec(event
, ctx
);
3141 * Unclone this context if we enabled any event.
3144 clone_ctx
= unclone_ctx(ctx
);
3146 raw_spin_unlock(&ctx
->lock
);
3149 * Also calls ctxswin for cgroup events, if any:
3151 perf_event_context_sched_in(ctx
, ctx
->task
);
3153 local_irq_restore(flags
);
3159 void perf_event_exec(void)
3161 struct perf_event_context
*ctx
;
3165 for_each_task_context_nr(ctxn
) {
3166 ctx
= current
->perf_event_ctxp
[ctxn
];
3170 perf_event_enable_on_exec(ctx
);
3176 * Cross CPU call to read the hardware event
3178 static void __perf_event_read(void *info
)
3180 struct perf_event
*event
= info
;
3181 struct perf_event_context
*ctx
= event
->ctx
;
3182 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3185 * If this is a task context, we need to check whether it is
3186 * the current task context of this cpu. If not it has been
3187 * scheduled out before the smp call arrived. In that case
3188 * event->count would have been updated to a recent sample
3189 * when the event was scheduled out.
3191 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3194 raw_spin_lock(&ctx
->lock
);
3195 if (ctx
->is_active
) {
3196 update_context_time(ctx
);
3197 update_cgrp_time_from_event(event
);
3199 update_event_times(event
);
3200 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3201 event
->pmu
->read(event
);
3202 raw_spin_unlock(&ctx
->lock
);
3205 static inline u64
perf_event_count(struct perf_event
*event
)
3207 if (event
->pmu
->count
)
3208 return event
->pmu
->count(event
);
3210 return __perf_event_count(event
);
3213 static u64
perf_event_read(struct perf_event
*event
)
3216 * If event is enabled and currently active on a CPU, update the
3217 * value in the event structure:
3219 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3220 smp_call_function_single(event
->oncpu
,
3221 __perf_event_read
, event
, 1);
3222 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3223 struct perf_event_context
*ctx
= event
->ctx
;
3224 unsigned long flags
;
3226 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3228 * may read while context is not active
3229 * (e.g., thread is blocked), in that case
3230 * we cannot update context time
3232 if (ctx
->is_active
) {
3233 update_context_time(ctx
);
3234 update_cgrp_time_from_event(event
);
3236 update_event_times(event
);
3237 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3240 return perf_event_count(event
);
3244 * Initialize the perf_event context in a task_struct:
3246 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3248 raw_spin_lock_init(&ctx
->lock
);
3249 mutex_init(&ctx
->mutex
);
3250 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3251 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3252 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3253 INIT_LIST_HEAD(&ctx
->event_list
);
3254 atomic_set(&ctx
->refcount
, 1);
3255 INIT_DELAYED_WORK(&ctx
->orphans_remove
, orphans_remove_work
);
3258 static struct perf_event_context
*
3259 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3261 struct perf_event_context
*ctx
;
3263 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3267 __perf_event_init_context(ctx
);
3270 get_task_struct(task
);
3277 static struct task_struct
*
3278 find_lively_task_by_vpid(pid_t vpid
)
3280 struct task_struct
*task
;
3287 task
= find_task_by_vpid(vpid
);
3289 get_task_struct(task
);
3293 return ERR_PTR(-ESRCH
);
3295 /* Reuse ptrace permission checks for now. */
3297 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
3302 put_task_struct(task
);
3303 return ERR_PTR(err
);
3308 * Returns a matching context with refcount and pincount.
3310 static struct perf_event_context
*
3311 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3312 struct perf_event
*event
)
3314 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3315 struct perf_cpu_context
*cpuctx
;
3316 void *task_ctx_data
= NULL
;
3317 unsigned long flags
;
3319 int cpu
= event
->cpu
;
3322 /* Must be root to operate on a CPU event: */
3323 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3324 return ERR_PTR(-EACCES
);
3327 * We could be clever and allow to attach a event to an
3328 * offline CPU and activate it when the CPU comes up, but
3331 if (!cpu_online(cpu
))
3332 return ERR_PTR(-ENODEV
);
3334 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3343 ctxn
= pmu
->task_ctx_nr
;
3347 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3348 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3349 if (!task_ctx_data
) {
3356 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3358 clone_ctx
= unclone_ctx(ctx
);
3361 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3362 ctx
->task_ctx_data
= task_ctx_data
;
3363 task_ctx_data
= NULL
;
3365 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3370 ctx
= alloc_perf_context(pmu
, task
);
3375 if (task_ctx_data
) {
3376 ctx
->task_ctx_data
= task_ctx_data
;
3377 task_ctx_data
= NULL
;
3381 mutex_lock(&task
->perf_event_mutex
);
3383 * If it has already passed perf_event_exit_task().
3384 * we must see PF_EXITING, it takes this mutex too.
3386 if (task
->flags
& PF_EXITING
)
3388 else if (task
->perf_event_ctxp
[ctxn
])
3393 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3395 mutex_unlock(&task
->perf_event_mutex
);
3397 if (unlikely(err
)) {
3406 kfree(task_ctx_data
);
3410 kfree(task_ctx_data
);
3411 return ERR_PTR(err
);
3414 static void perf_event_free_filter(struct perf_event
*event
);
3415 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3417 static void free_event_rcu(struct rcu_head
*head
)
3419 struct perf_event
*event
;
3421 event
= container_of(head
, struct perf_event
, rcu_head
);
3423 put_pid_ns(event
->ns
);
3424 perf_event_free_filter(event
);
3425 perf_event_free_bpf_prog(event
);
3429 static void ring_buffer_attach(struct perf_event
*event
,
3430 struct ring_buffer
*rb
);
3432 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3437 if (is_cgroup_event(event
))
3438 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3441 static void unaccount_event(struct perf_event
*event
)
3446 if (event
->attach_state
& PERF_ATTACH_TASK
)
3447 static_key_slow_dec_deferred(&perf_sched_events
);
3448 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3449 atomic_dec(&nr_mmap_events
);
3450 if (event
->attr
.comm
)
3451 atomic_dec(&nr_comm_events
);
3452 if (event
->attr
.task
)
3453 atomic_dec(&nr_task_events
);
3454 if (event
->attr
.freq
)
3455 atomic_dec(&nr_freq_events
);
3456 if (is_cgroup_event(event
))
3457 static_key_slow_dec_deferred(&perf_sched_events
);
3458 if (has_branch_stack(event
))
3459 static_key_slow_dec_deferred(&perf_sched_events
);
3461 unaccount_event_cpu(event
, event
->cpu
);
3465 * The following implement mutual exclusion of events on "exclusive" pmus
3466 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3467 * at a time, so we disallow creating events that might conflict, namely:
3469 * 1) cpu-wide events in the presence of per-task events,
3470 * 2) per-task events in the presence of cpu-wide events,
3471 * 3) two matching events on the same context.
3473 * The former two cases are handled in the allocation path (perf_event_alloc(),
3474 * __free_event()), the latter -- before the first perf_install_in_context().
3476 static int exclusive_event_init(struct perf_event
*event
)
3478 struct pmu
*pmu
= event
->pmu
;
3480 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3484 * Prevent co-existence of per-task and cpu-wide events on the
3485 * same exclusive pmu.
3487 * Negative pmu::exclusive_cnt means there are cpu-wide
3488 * events on this "exclusive" pmu, positive means there are
3491 * Since this is called in perf_event_alloc() path, event::ctx
3492 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3493 * to mean "per-task event", because unlike other attach states it
3494 * never gets cleared.
3496 if (event
->attach_state
& PERF_ATTACH_TASK
) {
3497 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
3500 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
3507 static void exclusive_event_destroy(struct perf_event
*event
)
3509 struct pmu
*pmu
= event
->pmu
;
3511 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3514 /* see comment in exclusive_event_init() */
3515 if (event
->attach_state
& PERF_ATTACH_TASK
)
3516 atomic_dec(&pmu
->exclusive_cnt
);
3518 atomic_inc(&pmu
->exclusive_cnt
);
3521 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
3523 if ((e1
->pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) &&
3524 (e1
->cpu
== e2
->cpu
||
3531 /* Called under the same ctx::mutex as perf_install_in_context() */
3532 static bool exclusive_event_installable(struct perf_event
*event
,
3533 struct perf_event_context
*ctx
)
3535 struct perf_event
*iter_event
;
3536 struct pmu
*pmu
= event
->pmu
;
3538 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3541 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
3542 if (exclusive_event_match(iter_event
, event
))
3549 static void __free_event(struct perf_event
*event
)
3551 if (!event
->parent
) {
3552 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3553 put_callchain_buffers();
3557 event
->destroy(event
);
3560 put_ctx(event
->ctx
);
3563 exclusive_event_destroy(event
);
3564 module_put(event
->pmu
->module
);
3567 call_rcu(&event
->rcu_head
, free_event_rcu
);
3570 static void _free_event(struct perf_event
*event
)
3572 irq_work_sync(&event
->pending
);
3574 unaccount_event(event
);
3578 * Can happen when we close an event with re-directed output.
3580 * Since we have a 0 refcount, perf_mmap_close() will skip
3581 * over us; possibly making our ring_buffer_put() the last.
3583 mutex_lock(&event
->mmap_mutex
);
3584 ring_buffer_attach(event
, NULL
);
3585 mutex_unlock(&event
->mmap_mutex
);
3588 if (is_cgroup_event(event
))
3589 perf_detach_cgroup(event
);
3591 __free_event(event
);
3595 * Used to free events which have a known refcount of 1, such as in error paths
3596 * where the event isn't exposed yet and inherited events.
3598 static void free_event(struct perf_event
*event
)
3600 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
3601 "unexpected event refcount: %ld; ptr=%p\n",
3602 atomic_long_read(&event
->refcount
), event
)) {
3603 /* leak to avoid use-after-free */
3611 * Remove user event from the owner task.
3613 static void perf_remove_from_owner(struct perf_event
*event
)
3615 struct task_struct
*owner
;
3618 owner
= ACCESS_ONCE(event
->owner
);
3620 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3621 * !owner it means the list deletion is complete and we can indeed
3622 * free this event, otherwise we need to serialize on
3623 * owner->perf_event_mutex.
3625 smp_read_barrier_depends();
3628 * Since delayed_put_task_struct() also drops the last
3629 * task reference we can safely take a new reference
3630 * while holding the rcu_read_lock().
3632 get_task_struct(owner
);
3638 * If we're here through perf_event_exit_task() we're already
3639 * holding ctx->mutex which would be an inversion wrt. the
3640 * normal lock order.
3642 * However we can safely take this lock because its the child
3645 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
3648 * We have to re-check the event->owner field, if it is cleared
3649 * we raced with perf_event_exit_task(), acquiring the mutex
3650 * ensured they're done, and we can proceed with freeing the
3654 list_del_init(&event
->owner_entry
);
3655 mutex_unlock(&owner
->perf_event_mutex
);
3656 put_task_struct(owner
);
3661 * Called when the last reference to the file is gone.
3663 static void put_event(struct perf_event
*event
)
3665 struct perf_event_context
*ctx
;
3667 if (!atomic_long_dec_and_test(&event
->refcount
))
3670 if (!is_kernel_event(event
))
3671 perf_remove_from_owner(event
);
3674 * There are two ways this annotation is useful:
3676 * 1) there is a lock recursion from perf_event_exit_task
3677 * see the comment there.
3679 * 2) there is a lock-inversion with mmap_sem through
3680 * perf_event_read_group(), which takes faults while
3681 * holding ctx->mutex, however this is called after
3682 * the last filedesc died, so there is no possibility
3683 * to trigger the AB-BA case.
3685 ctx
= perf_event_ctx_lock_nested(event
, SINGLE_DEPTH_NESTING
);
3686 WARN_ON_ONCE(ctx
->parent_ctx
);
3687 perf_remove_from_context(event
, true);
3688 perf_event_ctx_unlock(event
, ctx
);
3693 int perf_event_release_kernel(struct perf_event
*event
)
3698 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3700 static int perf_release(struct inode
*inode
, struct file
*file
)
3702 put_event(file
->private_data
);
3707 * Remove all orphanes events from the context.
3709 static void orphans_remove_work(struct work_struct
*work
)
3711 struct perf_event_context
*ctx
;
3712 struct perf_event
*event
, *tmp
;
3714 ctx
= container_of(work
, struct perf_event_context
,
3715 orphans_remove
.work
);
3717 mutex_lock(&ctx
->mutex
);
3718 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
) {
3719 struct perf_event
*parent_event
= event
->parent
;
3721 if (!is_orphaned_child(event
))
3724 perf_remove_from_context(event
, true);
3726 mutex_lock(&parent_event
->child_mutex
);
3727 list_del_init(&event
->child_list
);
3728 mutex_unlock(&parent_event
->child_mutex
);
3731 put_event(parent_event
);
3734 raw_spin_lock_irq(&ctx
->lock
);
3735 ctx
->orphans_remove_sched
= false;
3736 raw_spin_unlock_irq(&ctx
->lock
);
3737 mutex_unlock(&ctx
->mutex
);
3742 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3744 struct perf_event
*child
;
3750 mutex_lock(&event
->child_mutex
);
3751 total
+= perf_event_read(event
);
3752 *enabled
+= event
->total_time_enabled
+
3753 atomic64_read(&event
->child_total_time_enabled
);
3754 *running
+= event
->total_time_running
+
3755 atomic64_read(&event
->child_total_time_running
);
3757 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3758 total
+= perf_event_read(child
);
3759 *enabled
+= child
->total_time_enabled
;
3760 *running
+= child
->total_time_running
;
3762 mutex_unlock(&event
->child_mutex
);
3766 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3768 static int perf_event_read_group(struct perf_event
*event
,
3769 u64 read_format
, char __user
*buf
)
3771 struct perf_event
*leader
= event
->group_leader
, *sub
;
3772 struct perf_event_context
*ctx
= leader
->ctx
;
3773 int n
= 0, size
= 0, ret
;
3774 u64 count
, enabled
, running
;
3777 lockdep_assert_held(&ctx
->mutex
);
3779 count
= perf_event_read_value(leader
, &enabled
, &running
);
3781 values
[n
++] = 1 + leader
->nr_siblings
;
3782 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3783 values
[n
++] = enabled
;
3784 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3785 values
[n
++] = running
;
3786 values
[n
++] = count
;
3787 if (read_format
& PERF_FORMAT_ID
)
3788 values
[n
++] = primary_event_id(leader
);
3790 size
= n
* sizeof(u64
);
3792 if (copy_to_user(buf
, values
, size
))
3797 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3800 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3801 if (read_format
& PERF_FORMAT_ID
)
3802 values
[n
++] = primary_event_id(sub
);
3804 size
= n
* sizeof(u64
);
3806 if (copy_to_user(buf
+ ret
, values
, size
)) {
3816 static int perf_event_read_one(struct perf_event
*event
,
3817 u64 read_format
, char __user
*buf
)
3819 u64 enabled
, running
;
3823 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3824 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3825 values
[n
++] = enabled
;
3826 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3827 values
[n
++] = running
;
3828 if (read_format
& PERF_FORMAT_ID
)
3829 values
[n
++] = primary_event_id(event
);
3831 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3834 return n
* sizeof(u64
);
3837 static bool is_event_hup(struct perf_event
*event
)
3841 if (event
->state
!= PERF_EVENT_STATE_EXIT
)
3844 mutex_lock(&event
->child_mutex
);
3845 no_children
= list_empty(&event
->child_list
);
3846 mutex_unlock(&event
->child_mutex
);
3851 * Read the performance event - simple non blocking version for now
3854 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3856 u64 read_format
= event
->attr
.read_format
;
3860 * Return end-of-file for a read on a event that is in
3861 * error state (i.e. because it was pinned but it couldn't be
3862 * scheduled on to the CPU at some point).
3864 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3867 if (count
< event
->read_size
)
3870 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3871 if (read_format
& PERF_FORMAT_GROUP
)
3872 ret
= perf_event_read_group(event
, read_format
, buf
);
3874 ret
= perf_event_read_one(event
, read_format
, buf
);
3880 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3882 struct perf_event
*event
= file
->private_data
;
3883 struct perf_event_context
*ctx
;
3886 ctx
= perf_event_ctx_lock(event
);
3887 ret
= perf_read_hw(event
, buf
, count
);
3888 perf_event_ctx_unlock(event
, ctx
);
3893 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3895 struct perf_event
*event
= file
->private_data
;
3896 struct ring_buffer
*rb
;
3897 unsigned int events
= POLLHUP
;
3899 poll_wait(file
, &event
->waitq
, wait
);
3901 if (is_event_hup(event
))
3905 * Pin the event->rb by taking event->mmap_mutex; otherwise
3906 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3908 mutex_lock(&event
->mmap_mutex
);
3911 events
= atomic_xchg(&rb
->poll
, 0);
3912 mutex_unlock(&event
->mmap_mutex
);
3916 static void _perf_event_reset(struct perf_event
*event
)
3918 (void)perf_event_read(event
);
3919 local64_set(&event
->count
, 0);
3920 perf_event_update_userpage(event
);
3924 * Holding the top-level event's child_mutex means that any
3925 * descendant process that has inherited this event will block
3926 * in sync_child_event if it goes to exit, thus satisfying the
3927 * task existence requirements of perf_event_enable/disable.
3929 static void perf_event_for_each_child(struct perf_event
*event
,
3930 void (*func
)(struct perf_event
*))
3932 struct perf_event
*child
;
3934 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3936 mutex_lock(&event
->child_mutex
);
3938 list_for_each_entry(child
, &event
->child_list
, child_list
)
3940 mutex_unlock(&event
->child_mutex
);
3943 static void perf_event_for_each(struct perf_event
*event
,
3944 void (*func
)(struct perf_event
*))
3946 struct perf_event_context
*ctx
= event
->ctx
;
3947 struct perf_event
*sibling
;
3949 lockdep_assert_held(&ctx
->mutex
);
3951 event
= event
->group_leader
;
3953 perf_event_for_each_child(event
, func
);
3954 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3955 perf_event_for_each_child(sibling
, func
);
3958 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3960 struct perf_event_context
*ctx
= event
->ctx
;
3961 int ret
= 0, active
;
3964 if (!is_sampling_event(event
))
3967 if (copy_from_user(&value
, arg
, sizeof(value
)))
3973 raw_spin_lock_irq(&ctx
->lock
);
3974 if (event
->attr
.freq
) {
3975 if (value
> sysctl_perf_event_sample_rate
) {
3980 event
->attr
.sample_freq
= value
;
3982 event
->attr
.sample_period
= value
;
3983 event
->hw
.sample_period
= value
;
3986 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
3988 perf_pmu_disable(ctx
->pmu
);
3989 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3992 local64_set(&event
->hw
.period_left
, 0);
3995 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3996 perf_pmu_enable(ctx
->pmu
);
4000 raw_spin_unlock_irq(&ctx
->lock
);
4005 static const struct file_operations perf_fops
;
4007 static inline int perf_fget_light(int fd
, struct fd
*p
)
4009 struct fd f
= fdget(fd
);
4013 if (f
.file
->f_op
!= &perf_fops
) {
4021 static int perf_event_set_output(struct perf_event
*event
,
4022 struct perf_event
*output_event
);
4023 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4024 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4026 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4028 void (*func
)(struct perf_event
*);
4032 case PERF_EVENT_IOC_ENABLE
:
4033 func
= _perf_event_enable
;
4035 case PERF_EVENT_IOC_DISABLE
:
4036 func
= _perf_event_disable
;
4038 case PERF_EVENT_IOC_RESET
:
4039 func
= _perf_event_reset
;
4042 case PERF_EVENT_IOC_REFRESH
:
4043 return _perf_event_refresh(event
, arg
);
4045 case PERF_EVENT_IOC_PERIOD
:
4046 return perf_event_period(event
, (u64 __user
*)arg
);
4048 case PERF_EVENT_IOC_ID
:
4050 u64 id
= primary_event_id(event
);
4052 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4057 case PERF_EVENT_IOC_SET_OUTPUT
:
4061 struct perf_event
*output_event
;
4063 ret
= perf_fget_light(arg
, &output
);
4066 output_event
= output
.file
->private_data
;
4067 ret
= perf_event_set_output(event
, output_event
);
4070 ret
= perf_event_set_output(event
, NULL
);
4075 case PERF_EVENT_IOC_SET_FILTER
:
4076 return perf_event_set_filter(event
, (void __user
*)arg
);
4078 case PERF_EVENT_IOC_SET_BPF
:
4079 return perf_event_set_bpf_prog(event
, arg
);
4085 if (flags
& PERF_IOC_FLAG_GROUP
)
4086 perf_event_for_each(event
, func
);
4088 perf_event_for_each_child(event
, func
);
4093 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4095 struct perf_event
*event
= file
->private_data
;
4096 struct perf_event_context
*ctx
;
4099 ctx
= perf_event_ctx_lock(event
);
4100 ret
= _perf_ioctl(event
, cmd
, arg
);
4101 perf_event_ctx_unlock(event
, ctx
);
4106 #ifdef CONFIG_COMPAT
4107 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4110 switch (_IOC_NR(cmd
)) {
4111 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4112 case _IOC_NR(PERF_EVENT_IOC_ID
):
4113 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4114 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4115 cmd
&= ~IOCSIZE_MASK
;
4116 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4120 return perf_ioctl(file
, cmd
, arg
);
4123 # define perf_compat_ioctl NULL
4126 int perf_event_task_enable(void)
4128 struct perf_event_context
*ctx
;
4129 struct perf_event
*event
;
4131 mutex_lock(¤t
->perf_event_mutex
);
4132 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4133 ctx
= perf_event_ctx_lock(event
);
4134 perf_event_for_each_child(event
, _perf_event_enable
);
4135 perf_event_ctx_unlock(event
, ctx
);
4137 mutex_unlock(¤t
->perf_event_mutex
);
4142 int perf_event_task_disable(void)
4144 struct perf_event_context
*ctx
;
4145 struct perf_event
*event
;
4147 mutex_lock(¤t
->perf_event_mutex
);
4148 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4149 ctx
= perf_event_ctx_lock(event
);
4150 perf_event_for_each_child(event
, _perf_event_disable
);
4151 perf_event_ctx_unlock(event
, ctx
);
4153 mutex_unlock(¤t
->perf_event_mutex
);
4158 static int perf_event_index(struct perf_event
*event
)
4160 if (event
->hw
.state
& PERF_HES_STOPPED
)
4163 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4166 return event
->pmu
->event_idx(event
);
4169 static void calc_timer_values(struct perf_event
*event
,
4176 *now
= perf_clock();
4177 ctx_time
= event
->shadow_ctx_time
+ *now
;
4178 *enabled
= ctx_time
- event
->tstamp_enabled
;
4179 *running
= ctx_time
- event
->tstamp_running
;
4182 static void perf_event_init_userpage(struct perf_event
*event
)
4184 struct perf_event_mmap_page
*userpg
;
4185 struct ring_buffer
*rb
;
4188 rb
= rcu_dereference(event
->rb
);
4192 userpg
= rb
->user_page
;
4194 /* Allow new userspace to detect that bit 0 is deprecated */
4195 userpg
->cap_bit0_is_deprecated
= 1;
4196 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4197 userpg
->data_offset
= PAGE_SIZE
;
4198 userpg
->data_size
= perf_data_size(rb
);
4204 void __weak
arch_perf_update_userpage(
4205 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4210 * Callers need to ensure there can be no nesting of this function, otherwise
4211 * the seqlock logic goes bad. We can not serialize this because the arch
4212 * code calls this from NMI context.
4214 void perf_event_update_userpage(struct perf_event
*event
)
4216 struct perf_event_mmap_page
*userpg
;
4217 struct ring_buffer
*rb
;
4218 u64 enabled
, running
, now
;
4221 rb
= rcu_dereference(event
->rb
);
4226 * compute total_time_enabled, total_time_running
4227 * based on snapshot values taken when the event
4228 * was last scheduled in.
4230 * we cannot simply called update_context_time()
4231 * because of locking issue as we can be called in
4234 calc_timer_values(event
, &now
, &enabled
, &running
);
4236 userpg
= rb
->user_page
;
4238 * Disable preemption so as to not let the corresponding user-space
4239 * spin too long if we get preempted.
4244 userpg
->index
= perf_event_index(event
);
4245 userpg
->offset
= perf_event_count(event
);
4247 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4249 userpg
->time_enabled
= enabled
+
4250 atomic64_read(&event
->child_total_time_enabled
);
4252 userpg
->time_running
= running
+
4253 atomic64_read(&event
->child_total_time_running
);
4255 arch_perf_update_userpage(event
, userpg
, now
);
4264 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4266 struct perf_event
*event
= vma
->vm_file
->private_data
;
4267 struct ring_buffer
*rb
;
4268 int ret
= VM_FAULT_SIGBUS
;
4270 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4271 if (vmf
->pgoff
== 0)
4277 rb
= rcu_dereference(event
->rb
);
4281 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4284 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4288 get_page(vmf
->page
);
4289 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4290 vmf
->page
->index
= vmf
->pgoff
;
4299 static void ring_buffer_attach(struct perf_event
*event
,
4300 struct ring_buffer
*rb
)
4302 struct ring_buffer
*old_rb
= NULL
;
4303 unsigned long flags
;
4307 * Should be impossible, we set this when removing
4308 * event->rb_entry and wait/clear when adding event->rb_entry.
4310 WARN_ON_ONCE(event
->rcu_pending
);
4313 event
->rcu_batches
= get_state_synchronize_rcu();
4314 event
->rcu_pending
= 1;
4316 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4317 list_del_rcu(&event
->rb_entry
);
4318 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4321 if (event
->rcu_pending
&& rb
) {
4322 cond_synchronize_rcu(event
->rcu_batches
);
4323 event
->rcu_pending
= 0;
4327 spin_lock_irqsave(&rb
->event_lock
, flags
);
4328 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4329 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4332 rcu_assign_pointer(event
->rb
, rb
);
4335 ring_buffer_put(old_rb
);
4337 * Since we detached before setting the new rb, so that we
4338 * could attach the new rb, we could have missed a wakeup.
4341 wake_up_all(&event
->waitq
);
4345 static void ring_buffer_wakeup(struct perf_event
*event
)
4347 struct ring_buffer
*rb
;
4350 rb
= rcu_dereference(event
->rb
);
4352 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4353 wake_up_all(&event
->waitq
);
4358 static void rb_free_rcu(struct rcu_head
*rcu_head
)
4360 struct ring_buffer
*rb
;
4362 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
4366 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4368 struct ring_buffer
*rb
;
4371 rb
= rcu_dereference(event
->rb
);
4373 if (!atomic_inc_not_zero(&rb
->refcount
))
4381 void ring_buffer_put(struct ring_buffer
*rb
)
4383 if (!atomic_dec_and_test(&rb
->refcount
))
4386 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4388 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4391 static void perf_mmap_open(struct vm_area_struct
*vma
)
4393 struct perf_event
*event
= vma
->vm_file
->private_data
;
4395 atomic_inc(&event
->mmap_count
);
4396 atomic_inc(&event
->rb
->mmap_count
);
4399 atomic_inc(&event
->rb
->aux_mmap_count
);
4401 if (event
->pmu
->event_mapped
)
4402 event
->pmu
->event_mapped(event
);
4406 * A buffer can be mmap()ed multiple times; either directly through the same
4407 * event, or through other events by use of perf_event_set_output().
4409 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4410 * the buffer here, where we still have a VM context. This means we need
4411 * to detach all events redirecting to us.
4413 static void perf_mmap_close(struct vm_area_struct
*vma
)
4415 struct perf_event
*event
= vma
->vm_file
->private_data
;
4417 struct ring_buffer
*rb
= ring_buffer_get(event
);
4418 struct user_struct
*mmap_user
= rb
->mmap_user
;
4419 int mmap_locked
= rb
->mmap_locked
;
4420 unsigned long size
= perf_data_size(rb
);
4422 if (event
->pmu
->event_unmapped
)
4423 event
->pmu
->event_unmapped(event
);
4426 * rb->aux_mmap_count will always drop before rb->mmap_count and
4427 * event->mmap_count, so it is ok to use event->mmap_mutex to
4428 * serialize with perf_mmap here.
4430 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
4431 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
4432 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
4433 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
4436 mutex_unlock(&event
->mmap_mutex
);
4439 atomic_dec(&rb
->mmap_count
);
4441 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
4444 ring_buffer_attach(event
, NULL
);
4445 mutex_unlock(&event
->mmap_mutex
);
4447 /* If there's still other mmap()s of this buffer, we're done. */
4448 if (atomic_read(&rb
->mmap_count
))
4452 * No other mmap()s, detach from all other events that might redirect
4453 * into the now unreachable buffer. Somewhat complicated by the
4454 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4458 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
4459 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
4461 * This event is en-route to free_event() which will
4462 * detach it and remove it from the list.
4468 mutex_lock(&event
->mmap_mutex
);
4470 * Check we didn't race with perf_event_set_output() which can
4471 * swizzle the rb from under us while we were waiting to
4472 * acquire mmap_mutex.
4474 * If we find a different rb; ignore this event, a next
4475 * iteration will no longer find it on the list. We have to
4476 * still restart the iteration to make sure we're not now
4477 * iterating the wrong list.
4479 if (event
->rb
== rb
)
4480 ring_buffer_attach(event
, NULL
);
4482 mutex_unlock(&event
->mmap_mutex
);
4486 * Restart the iteration; either we're on the wrong list or
4487 * destroyed its integrity by doing a deletion.
4494 * It could be there's still a few 0-ref events on the list; they'll
4495 * get cleaned up by free_event() -- they'll also still have their
4496 * ref on the rb and will free it whenever they are done with it.
4498 * Aside from that, this buffer is 'fully' detached and unmapped,
4499 * undo the VM accounting.
4502 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4503 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4504 free_uid(mmap_user
);
4507 ring_buffer_put(rb
); /* could be last */
4510 static const struct vm_operations_struct perf_mmap_vmops
= {
4511 .open
= perf_mmap_open
,
4512 .close
= perf_mmap_close
, /* non mergable */
4513 .fault
= perf_mmap_fault
,
4514 .page_mkwrite
= perf_mmap_fault
,
4517 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4519 struct perf_event
*event
= file
->private_data
;
4520 unsigned long user_locked
, user_lock_limit
;
4521 struct user_struct
*user
= current_user();
4522 unsigned long locked
, lock_limit
;
4523 struct ring_buffer
*rb
= NULL
;
4524 unsigned long vma_size
;
4525 unsigned long nr_pages
;
4526 long user_extra
= 0, extra
= 0;
4527 int ret
= 0, flags
= 0;
4530 * Don't allow mmap() of inherited per-task counters. This would
4531 * create a performance issue due to all children writing to the
4534 if (event
->cpu
== -1 && event
->attr
.inherit
)
4537 if (!(vma
->vm_flags
& VM_SHARED
))
4540 vma_size
= vma
->vm_end
- vma
->vm_start
;
4542 if (vma
->vm_pgoff
== 0) {
4543 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4546 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4547 * mapped, all subsequent mappings should have the same size
4548 * and offset. Must be above the normal perf buffer.
4550 u64 aux_offset
, aux_size
;
4555 nr_pages
= vma_size
/ PAGE_SIZE
;
4557 mutex_lock(&event
->mmap_mutex
);
4564 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
4565 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
4567 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
4570 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
4573 /* already mapped with a different offset */
4574 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
4577 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
4580 /* already mapped with a different size */
4581 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
4584 if (!is_power_of_2(nr_pages
))
4587 if (!atomic_inc_not_zero(&rb
->mmap_count
))
4590 if (rb_has_aux(rb
)) {
4591 atomic_inc(&rb
->aux_mmap_count
);
4596 atomic_set(&rb
->aux_mmap_count
, 1);
4597 user_extra
= nr_pages
;
4603 * If we have rb pages ensure they're a power-of-two number, so we
4604 * can do bitmasks instead of modulo.
4606 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4609 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4612 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4614 mutex_lock(&event
->mmap_mutex
);
4616 if (event
->rb
->nr_pages
!= nr_pages
) {
4621 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4623 * Raced against perf_mmap_close() through
4624 * perf_event_set_output(). Try again, hope for better
4627 mutex_unlock(&event
->mmap_mutex
);
4634 user_extra
= nr_pages
+ 1;
4637 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4640 * Increase the limit linearly with more CPUs:
4642 user_lock_limit
*= num_online_cpus();
4644 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4646 if (user_locked
> user_lock_limit
)
4647 extra
= user_locked
- user_lock_limit
;
4649 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4650 lock_limit
>>= PAGE_SHIFT
;
4651 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4653 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4654 !capable(CAP_IPC_LOCK
)) {
4659 WARN_ON(!rb
&& event
->rb
);
4661 if (vma
->vm_flags
& VM_WRITE
)
4662 flags
|= RING_BUFFER_WRITABLE
;
4665 rb
= rb_alloc(nr_pages
,
4666 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4674 atomic_set(&rb
->mmap_count
, 1);
4675 rb
->mmap_user
= get_current_user();
4676 rb
->mmap_locked
= extra
;
4678 ring_buffer_attach(event
, rb
);
4680 perf_event_init_userpage(event
);
4681 perf_event_update_userpage(event
);
4683 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
4684 event
->attr
.aux_watermark
, flags
);
4686 rb
->aux_mmap_locked
= extra
;
4691 atomic_long_add(user_extra
, &user
->locked_vm
);
4692 vma
->vm_mm
->pinned_vm
+= extra
;
4694 atomic_inc(&event
->mmap_count
);
4696 atomic_dec(&rb
->mmap_count
);
4699 mutex_unlock(&event
->mmap_mutex
);
4702 * Since pinned accounting is per vm we cannot allow fork() to copy our
4705 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4706 vma
->vm_ops
= &perf_mmap_vmops
;
4708 if (event
->pmu
->event_mapped
)
4709 event
->pmu
->event_mapped(event
);
4714 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4716 struct inode
*inode
= file_inode(filp
);
4717 struct perf_event
*event
= filp
->private_data
;
4720 mutex_lock(&inode
->i_mutex
);
4721 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4722 mutex_unlock(&inode
->i_mutex
);
4730 static const struct file_operations perf_fops
= {
4731 .llseek
= no_llseek
,
4732 .release
= perf_release
,
4735 .unlocked_ioctl
= perf_ioctl
,
4736 .compat_ioctl
= perf_compat_ioctl
,
4738 .fasync
= perf_fasync
,
4744 * If there's data, ensure we set the poll() state and publish everything
4745 * to user-space before waking everybody up.
4748 void perf_event_wakeup(struct perf_event
*event
)
4750 ring_buffer_wakeup(event
);
4752 if (event
->pending_kill
) {
4753 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
4754 event
->pending_kill
= 0;
4758 static void perf_pending_event(struct irq_work
*entry
)
4760 struct perf_event
*event
= container_of(entry
,
4761 struct perf_event
, pending
);
4764 rctx
= perf_swevent_get_recursion_context();
4766 * If we 'fail' here, that's OK, it means recursion is already disabled
4767 * and we won't recurse 'further'.
4770 if (event
->pending_disable
) {
4771 event
->pending_disable
= 0;
4772 __perf_event_disable(event
);
4775 if (event
->pending_wakeup
) {
4776 event
->pending_wakeup
= 0;
4777 perf_event_wakeup(event
);
4781 perf_swevent_put_recursion_context(rctx
);
4785 * We assume there is only KVM supporting the callbacks.
4786 * Later on, we might change it to a list if there is
4787 * another virtualization implementation supporting the callbacks.
4789 struct perf_guest_info_callbacks
*perf_guest_cbs
;
4791 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4793 perf_guest_cbs
= cbs
;
4796 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
4798 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4800 perf_guest_cbs
= NULL
;
4803 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
4806 perf_output_sample_regs(struct perf_output_handle
*handle
,
4807 struct pt_regs
*regs
, u64 mask
)
4811 for_each_set_bit(bit
, (const unsigned long *) &mask
,
4812 sizeof(mask
) * BITS_PER_BYTE
) {
4815 val
= perf_reg_value(regs
, bit
);
4816 perf_output_put(handle
, val
);
4820 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
4821 struct pt_regs
*regs
,
4822 struct pt_regs
*regs_user_copy
)
4824 if (user_mode(regs
)) {
4825 regs_user
->abi
= perf_reg_abi(current
);
4826 regs_user
->regs
= regs
;
4827 } else if (current
->mm
) {
4828 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
4830 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
4831 regs_user
->regs
= NULL
;
4835 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
4836 struct pt_regs
*regs
)
4838 regs_intr
->regs
= regs
;
4839 regs_intr
->abi
= perf_reg_abi(current
);
4844 * Get remaining task size from user stack pointer.
4846 * It'd be better to take stack vma map and limit this more
4847 * precisly, but there's no way to get it safely under interrupt,
4848 * so using TASK_SIZE as limit.
4850 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
4852 unsigned long addr
= perf_user_stack_pointer(regs
);
4854 if (!addr
|| addr
>= TASK_SIZE
)
4857 return TASK_SIZE
- addr
;
4861 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
4862 struct pt_regs
*regs
)
4866 /* No regs, no stack pointer, no dump. */
4871 * Check if we fit in with the requested stack size into the:
4873 * If we don't, we limit the size to the TASK_SIZE.
4875 * - remaining sample size
4876 * If we don't, we customize the stack size to
4877 * fit in to the remaining sample size.
4880 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
4881 stack_size
= min(stack_size
, (u16
) task_size
);
4883 /* Current header size plus static size and dynamic size. */
4884 header_size
+= 2 * sizeof(u64
);
4886 /* Do we fit in with the current stack dump size? */
4887 if ((u16
) (header_size
+ stack_size
) < header_size
) {
4889 * If we overflow the maximum size for the sample,
4890 * we customize the stack dump size to fit in.
4892 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
4893 stack_size
= round_up(stack_size
, sizeof(u64
));
4900 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
4901 struct pt_regs
*regs
)
4903 /* Case of a kernel thread, nothing to dump */
4906 perf_output_put(handle
, size
);
4915 * - the size requested by user or the best one we can fit
4916 * in to the sample max size
4918 * - user stack dump data
4920 * - the actual dumped size
4924 perf_output_put(handle
, dump_size
);
4927 sp
= perf_user_stack_pointer(regs
);
4928 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
4929 dyn_size
= dump_size
- rem
;
4931 perf_output_skip(handle
, rem
);
4934 perf_output_put(handle
, dyn_size
);
4938 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4939 struct perf_sample_data
*data
,
4940 struct perf_event
*event
)
4942 u64 sample_type
= event
->attr
.sample_type
;
4944 data
->type
= sample_type
;
4945 header
->size
+= event
->id_header_size
;
4947 if (sample_type
& PERF_SAMPLE_TID
) {
4948 /* namespace issues */
4949 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4950 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4953 if (sample_type
& PERF_SAMPLE_TIME
)
4954 data
->time
= perf_event_clock(event
);
4956 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
4957 data
->id
= primary_event_id(event
);
4959 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4960 data
->stream_id
= event
->id
;
4962 if (sample_type
& PERF_SAMPLE_CPU
) {
4963 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4964 data
->cpu_entry
.reserved
= 0;
4968 void perf_event_header__init_id(struct perf_event_header
*header
,
4969 struct perf_sample_data
*data
,
4970 struct perf_event
*event
)
4972 if (event
->attr
.sample_id_all
)
4973 __perf_event_header__init_id(header
, data
, event
);
4976 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4977 struct perf_sample_data
*data
)
4979 u64 sample_type
= data
->type
;
4981 if (sample_type
& PERF_SAMPLE_TID
)
4982 perf_output_put(handle
, data
->tid_entry
);
4984 if (sample_type
& PERF_SAMPLE_TIME
)
4985 perf_output_put(handle
, data
->time
);
4987 if (sample_type
& PERF_SAMPLE_ID
)
4988 perf_output_put(handle
, data
->id
);
4990 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4991 perf_output_put(handle
, data
->stream_id
);
4993 if (sample_type
& PERF_SAMPLE_CPU
)
4994 perf_output_put(handle
, data
->cpu_entry
);
4996 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4997 perf_output_put(handle
, data
->id
);
5000 void perf_event__output_id_sample(struct perf_event
*event
,
5001 struct perf_output_handle
*handle
,
5002 struct perf_sample_data
*sample
)
5004 if (event
->attr
.sample_id_all
)
5005 __perf_event__output_id_sample(handle
, sample
);
5008 static void perf_output_read_one(struct perf_output_handle
*handle
,
5009 struct perf_event
*event
,
5010 u64 enabled
, u64 running
)
5012 u64 read_format
= event
->attr
.read_format
;
5016 values
[n
++] = perf_event_count(event
);
5017 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5018 values
[n
++] = enabled
+
5019 atomic64_read(&event
->child_total_time_enabled
);
5021 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5022 values
[n
++] = running
+
5023 atomic64_read(&event
->child_total_time_running
);
5025 if (read_format
& PERF_FORMAT_ID
)
5026 values
[n
++] = primary_event_id(event
);
5028 __output_copy(handle
, values
, n
* sizeof(u64
));
5032 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5034 static void perf_output_read_group(struct perf_output_handle
*handle
,
5035 struct perf_event
*event
,
5036 u64 enabled
, u64 running
)
5038 struct perf_event
*leader
= event
->group_leader
, *sub
;
5039 u64 read_format
= event
->attr
.read_format
;
5043 values
[n
++] = 1 + leader
->nr_siblings
;
5045 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5046 values
[n
++] = enabled
;
5048 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5049 values
[n
++] = running
;
5051 if (leader
!= event
)
5052 leader
->pmu
->read(leader
);
5054 values
[n
++] = perf_event_count(leader
);
5055 if (read_format
& PERF_FORMAT_ID
)
5056 values
[n
++] = primary_event_id(leader
);
5058 __output_copy(handle
, values
, n
* sizeof(u64
));
5060 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5063 if ((sub
!= event
) &&
5064 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5065 sub
->pmu
->read(sub
);
5067 values
[n
++] = perf_event_count(sub
);
5068 if (read_format
& PERF_FORMAT_ID
)
5069 values
[n
++] = primary_event_id(sub
);
5071 __output_copy(handle
, values
, n
* sizeof(u64
));
5075 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5076 PERF_FORMAT_TOTAL_TIME_RUNNING)
5078 static void perf_output_read(struct perf_output_handle
*handle
,
5079 struct perf_event
*event
)
5081 u64 enabled
= 0, running
= 0, now
;
5082 u64 read_format
= event
->attr
.read_format
;
5085 * compute total_time_enabled, total_time_running
5086 * based on snapshot values taken when the event
5087 * was last scheduled in.
5089 * we cannot simply called update_context_time()
5090 * because of locking issue as we are called in
5093 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5094 calc_timer_values(event
, &now
, &enabled
, &running
);
5096 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5097 perf_output_read_group(handle
, event
, enabled
, running
);
5099 perf_output_read_one(handle
, event
, enabled
, running
);
5102 void perf_output_sample(struct perf_output_handle
*handle
,
5103 struct perf_event_header
*header
,
5104 struct perf_sample_data
*data
,
5105 struct perf_event
*event
)
5107 u64 sample_type
= data
->type
;
5109 perf_output_put(handle
, *header
);
5111 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5112 perf_output_put(handle
, data
->id
);
5114 if (sample_type
& PERF_SAMPLE_IP
)
5115 perf_output_put(handle
, data
->ip
);
5117 if (sample_type
& PERF_SAMPLE_TID
)
5118 perf_output_put(handle
, data
->tid_entry
);
5120 if (sample_type
& PERF_SAMPLE_TIME
)
5121 perf_output_put(handle
, data
->time
);
5123 if (sample_type
& PERF_SAMPLE_ADDR
)
5124 perf_output_put(handle
, data
->addr
);
5126 if (sample_type
& PERF_SAMPLE_ID
)
5127 perf_output_put(handle
, data
->id
);
5129 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5130 perf_output_put(handle
, data
->stream_id
);
5132 if (sample_type
& PERF_SAMPLE_CPU
)
5133 perf_output_put(handle
, data
->cpu_entry
);
5135 if (sample_type
& PERF_SAMPLE_PERIOD
)
5136 perf_output_put(handle
, data
->period
);
5138 if (sample_type
& PERF_SAMPLE_READ
)
5139 perf_output_read(handle
, event
);
5141 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5142 if (data
->callchain
) {
5145 if (data
->callchain
)
5146 size
+= data
->callchain
->nr
;
5148 size
*= sizeof(u64
);
5150 __output_copy(handle
, data
->callchain
, size
);
5153 perf_output_put(handle
, nr
);
5157 if (sample_type
& PERF_SAMPLE_RAW
) {
5159 perf_output_put(handle
, data
->raw
->size
);
5160 __output_copy(handle
, data
->raw
->data
,
5167 .size
= sizeof(u32
),
5170 perf_output_put(handle
, raw
);
5174 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5175 if (data
->br_stack
) {
5178 size
= data
->br_stack
->nr
5179 * sizeof(struct perf_branch_entry
);
5181 perf_output_put(handle
, data
->br_stack
->nr
);
5182 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5185 * we always store at least the value of nr
5188 perf_output_put(handle
, nr
);
5192 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5193 u64 abi
= data
->regs_user
.abi
;
5196 * If there are no regs to dump, notice it through
5197 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5199 perf_output_put(handle
, abi
);
5202 u64 mask
= event
->attr
.sample_regs_user
;
5203 perf_output_sample_regs(handle
,
5204 data
->regs_user
.regs
,
5209 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5210 perf_output_sample_ustack(handle
,
5211 data
->stack_user_size
,
5212 data
->regs_user
.regs
);
5215 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5216 perf_output_put(handle
, data
->weight
);
5218 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5219 perf_output_put(handle
, data
->data_src
.val
);
5221 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5222 perf_output_put(handle
, data
->txn
);
5224 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5225 u64 abi
= data
->regs_intr
.abi
;
5227 * If there are no regs to dump, notice it through
5228 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5230 perf_output_put(handle
, abi
);
5233 u64 mask
= event
->attr
.sample_regs_intr
;
5235 perf_output_sample_regs(handle
,
5236 data
->regs_intr
.regs
,
5241 if (!event
->attr
.watermark
) {
5242 int wakeup_events
= event
->attr
.wakeup_events
;
5244 if (wakeup_events
) {
5245 struct ring_buffer
*rb
= handle
->rb
;
5246 int events
= local_inc_return(&rb
->events
);
5248 if (events
>= wakeup_events
) {
5249 local_sub(wakeup_events
, &rb
->events
);
5250 local_inc(&rb
->wakeup
);
5256 void perf_prepare_sample(struct perf_event_header
*header
,
5257 struct perf_sample_data
*data
,
5258 struct perf_event
*event
,
5259 struct pt_regs
*regs
)
5261 u64 sample_type
= event
->attr
.sample_type
;
5263 header
->type
= PERF_RECORD_SAMPLE
;
5264 header
->size
= sizeof(*header
) + event
->header_size
;
5267 header
->misc
|= perf_misc_flags(regs
);
5269 __perf_event_header__init_id(header
, data
, event
);
5271 if (sample_type
& PERF_SAMPLE_IP
)
5272 data
->ip
= perf_instruction_pointer(regs
);
5274 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5277 data
->callchain
= perf_callchain(event
, regs
);
5279 if (data
->callchain
)
5280 size
+= data
->callchain
->nr
;
5282 header
->size
+= size
* sizeof(u64
);
5285 if (sample_type
& PERF_SAMPLE_RAW
) {
5286 int size
= sizeof(u32
);
5289 size
+= data
->raw
->size
;
5291 size
+= sizeof(u32
);
5293 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
5294 header
->size
+= size
;
5297 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5298 int size
= sizeof(u64
); /* nr */
5299 if (data
->br_stack
) {
5300 size
+= data
->br_stack
->nr
5301 * sizeof(struct perf_branch_entry
);
5303 header
->size
+= size
;
5306 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5307 perf_sample_regs_user(&data
->regs_user
, regs
,
5308 &data
->regs_user_copy
);
5310 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5311 /* regs dump ABI info */
5312 int size
= sizeof(u64
);
5314 if (data
->regs_user
.regs
) {
5315 u64 mask
= event
->attr
.sample_regs_user
;
5316 size
+= hweight64(mask
) * sizeof(u64
);
5319 header
->size
+= size
;
5322 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5324 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5325 * processed as the last one or have additional check added
5326 * in case new sample type is added, because we could eat
5327 * up the rest of the sample size.
5329 u16 stack_size
= event
->attr
.sample_stack_user
;
5330 u16 size
= sizeof(u64
);
5332 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5333 data
->regs_user
.regs
);
5336 * If there is something to dump, add space for the dump
5337 * itself and for the field that tells the dynamic size,
5338 * which is how many have been actually dumped.
5341 size
+= sizeof(u64
) + stack_size
;
5343 data
->stack_user_size
= stack_size
;
5344 header
->size
+= size
;
5347 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5348 /* regs dump ABI info */
5349 int size
= sizeof(u64
);
5351 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5353 if (data
->regs_intr
.regs
) {
5354 u64 mask
= event
->attr
.sample_regs_intr
;
5356 size
+= hweight64(mask
) * sizeof(u64
);
5359 header
->size
+= size
;
5363 static void perf_event_output(struct perf_event
*event
,
5364 struct perf_sample_data
*data
,
5365 struct pt_regs
*regs
)
5367 struct perf_output_handle handle
;
5368 struct perf_event_header header
;
5370 /* protect the callchain buffers */
5373 perf_prepare_sample(&header
, data
, event
, regs
);
5375 if (perf_output_begin(&handle
, event
, header
.size
))
5378 perf_output_sample(&handle
, &header
, data
, event
);
5380 perf_output_end(&handle
);
5390 struct perf_read_event
{
5391 struct perf_event_header header
;
5398 perf_event_read_event(struct perf_event
*event
,
5399 struct task_struct
*task
)
5401 struct perf_output_handle handle
;
5402 struct perf_sample_data sample
;
5403 struct perf_read_event read_event
= {
5405 .type
= PERF_RECORD_READ
,
5407 .size
= sizeof(read_event
) + event
->read_size
,
5409 .pid
= perf_event_pid(event
, task
),
5410 .tid
= perf_event_tid(event
, task
),
5414 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
5415 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
5419 perf_output_put(&handle
, read_event
);
5420 perf_output_read(&handle
, event
);
5421 perf_event__output_id_sample(event
, &handle
, &sample
);
5423 perf_output_end(&handle
);
5426 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
5429 perf_event_aux_ctx(struct perf_event_context
*ctx
,
5430 perf_event_aux_output_cb output
,
5433 struct perf_event
*event
;
5435 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5436 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
5438 if (!event_filter_match(event
))
5440 output(event
, data
);
5445 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
5446 struct perf_event_context
*task_ctx
)
5448 struct perf_cpu_context
*cpuctx
;
5449 struct perf_event_context
*ctx
;
5454 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5455 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
5456 if (cpuctx
->unique_pmu
!= pmu
)
5458 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
5461 ctxn
= pmu
->task_ctx_nr
;
5464 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
5466 perf_event_aux_ctx(ctx
, output
, data
);
5468 put_cpu_ptr(pmu
->pmu_cpu_context
);
5473 perf_event_aux_ctx(task_ctx
, output
, data
);
5480 * task tracking -- fork/exit
5482 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5485 struct perf_task_event
{
5486 struct task_struct
*task
;
5487 struct perf_event_context
*task_ctx
;
5490 struct perf_event_header header
;
5500 static int perf_event_task_match(struct perf_event
*event
)
5502 return event
->attr
.comm
|| event
->attr
.mmap
||
5503 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
5507 static void perf_event_task_output(struct perf_event
*event
,
5510 struct perf_task_event
*task_event
= data
;
5511 struct perf_output_handle handle
;
5512 struct perf_sample_data sample
;
5513 struct task_struct
*task
= task_event
->task
;
5514 int ret
, size
= task_event
->event_id
.header
.size
;
5516 if (!perf_event_task_match(event
))
5519 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
5521 ret
= perf_output_begin(&handle
, event
,
5522 task_event
->event_id
.header
.size
);
5526 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
5527 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
5529 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
5530 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
5532 task_event
->event_id
.time
= perf_event_clock(event
);
5534 perf_output_put(&handle
, task_event
->event_id
);
5536 perf_event__output_id_sample(event
, &handle
, &sample
);
5538 perf_output_end(&handle
);
5540 task_event
->event_id
.header
.size
= size
;
5543 static void perf_event_task(struct task_struct
*task
,
5544 struct perf_event_context
*task_ctx
,
5547 struct perf_task_event task_event
;
5549 if (!atomic_read(&nr_comm_events
) &&
5550 !atomic_read(&nr_mmap_events
) &&
5551 !atomic_read(&nr_task_events
))
5554 task_event
= (struct perf_task_event
){
5556 .task_ctx
= task_ctx
,
5559 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
5561 .size
= sizeof(task_event
.event_id
),
5571 perf_event_aux(perf_event_task_output
,
5576 void perf_event_fork(struct task_struct
*task
)
5578 perf_event_task(task
, NULL
, 1);
5585 struct perf_comm_event
{
5586 struct task_struct
*task
;
5591 struct perf_event_header header
;
5598 static int perf_event_comm_match(struct perf_event
*event
)
5600 return event
->attr
.comm
;
5603 static void perf_event_comm_output(struct perf_event
*event
,
5606 struct perf_comm_event
*comm_event
= data
;
5607 struct perf_output_handle handle
;
5608 struct perf_sample_data sample
;
5609 int size
= comm_event
->event_id
.header
.size
;
5612 if (!perf_event_comm_match(event
))
5615 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
5616 ret
= perf_output_begin(&handle
, event
,
5617 comm_event
->event_id
.header
.size
);
5622 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5623 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5625 perf_output_put(&handle
, comm_event
->event_id
);
5626 __output_copy(&handle
, comm_event
->comm
,
5627 comm_event
->comm_size
);
5629 perf_event__output_id_sample(event
, &handle
, &sample
);
5631 perf_output_end(&handle
);
5633 comm_event
->event_id
.header
.size
= size
;
5636 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5638 char comm
[TASK_COMM_LEN
];
5641 memset(comm
, 0, sizeof(comm
));
5642 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5643 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5645 comm_event
->comm
= comm
;
5646 comm_event
->comm_size
= size
;
5648 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5650 perf_event_aux(perf_event_comm_output
,
5655 void perf_event_comm(struct task_struct
*task
, bool exec
)
5657 struct perf_comm_event comm_event
;
5659 if (!atomic_read(&nr_comm_events
))
5662 comm_event
= (struct perf_comm_event
){
5668 .type
= PERF_RECORD_COMM
,
5669 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
5677 perf_event_comm_event(&comm_event
);
5684 struct perf_mmap_event
{
5685 struct vm_area_struct
*vma
;
5687 const char *file_name
;
5695 struct perf_event_header header
;
5705 static int perf_event_mmap_match(struct perf_event
*event
,
5708 struct perf_mmap_event
*mmap_event
= data
;
5709 struct vm_area_struct
*vma
= mmap_event
->vma
;
5710 int executable
= vma
->vm_flags
& VM_EXEC
;
5712 return (!executable
&& event
->attr
.mmap_data
) ||
5713 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
5716 static void perf_event_mmap_output(struct perf_event
*event
,
5719 struct perf_mmap_event
*mmap_event
= data
;
5720 struct perf_output_handle handle
;
5721 struct perf_sample_data sample
;
5722 int size
= mmap_event
->event_id
.header
.size
;
5725 if (!perf_event_mmap_match(event
, data
))
5728 if (event
->attr
.mmap2
) {
5729 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
5730 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
5731 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
5732 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
5733 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
5734 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
5735 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
5738 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
5739 ret
= perf_output_begin(&handle
, event
,
5740 mmap_event
->event_id
.header
.size
);
5744 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
5745 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
5747 perf_output_put(&handle
, mmap_event
->event_id
);
5749 if (event
->attr
.mmap2
) {
5750 perf_output_put(&handle
, mmap_event
->maj
);
5751 perf_output_put(&handle
, mmap_event
->min
);
5752 perf_output_put(&handle
, mmap_event
->ino
);
5753 perf_output_put(&handle
, mmap_event
->ino_generation
);
5754 perf_output_put(&handle
, mmap_event
->prot
);
5755 perf_output_put(&handle
, mmap_event
->flags
);
5758 __output_copy(&handle
, mmap_event
->file_name
,
5759 mmap_event
->file_size
);
5761 perf_event__output_id_sample(event
, &handle
, &sample
);
5763 perf_output_end(&handle
);
5765 mmap_event
->event_id
.header
.size
= size
;
5768 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
5770 struct vm_area_struct
*vma
= mmap_event
->vma
;
5771 struct file
*file
= vma
->vm_file
;
5772 int maj
= 0, min
= 0;
5773 u64 ino
= 0, gen
= 0;
5774 u32 prot
= 0, flags
= 0;
5781 struct inode
*inode
;
5784 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5790 * d_path() works from the end of the rb backwards, so we
5791 * need to add enough zero bytes after the string to handle
5792 * the 64bit alignment we do later.
5794 name
= d_path(&file
->f_path
, buf
, PATH_MAX
- sizeof(u64
));
5799 inode
= file_inode(vma
->vm_file
);
5800 dev
= inode
->i_sb
->s_dev
;
5802 gen
= inode
->i_generation
;
5806 if (vma
->vm_flags
& VM_READ
)
5808 if (vma
->vm_flags
& VM_WRITE
)
5810 if (vma
->vm_flags
& VM_EXEC
)
5813 if (vma
->vm_flags
& VM_MAYSHARE
)
5816 flags
= MAP_PRIVATE
;
5818 if (vma
->vm_flags
& VM_DENYWRITE
)
5819 flags
|= MAP_DENYWRITE
;
5820 if (vma
->vm_flags
& VM_MAYEXEC
)
5821 flags
|= MAP_EXECUTABLE
;
5822 if (vma
->vm_flags
& VM_LOCKED
)
5823 flags
|= MAP_LOCKED
;
5824 if (vma
->vm_flags
& VM_HUGETLB
)
5825 flags
|= MAP_HUGETLB
;
5829 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
5830 name
= (char *) vma
->vm_ops
->name(vma
);
5835 name
= (char *)arch_vma_name(vma
);
5839 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
5840 vma
->vm_end
>= vma
->vm_mm
->brk
) {
5844 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
5845 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
5855 strlcpy(tmp
, name
, sizeof(tmp
));
5859 * Since our buffer works in 8 byte units we need to align our string
5860 * size to a multiple of 8. However, we must guarantee the tail end is
5861 * zero'd out to avoid leaking random bits to userspace.
5863 size
= strlen(name
)+1;
5864 while (!IS_ALIGNED(size
, sizeof(u64
)))
5865 name
[size
++] = '\0';
5867 mmap_event
->file_name
= name
;
5868 mmap_event
->file_size
= size
;
5869 mmap_event
->maj
= maj
;
5870 mmap_event
->min
= min
;
5871 mmap_event
->ino
= ino
;
5872 mmap_event
->ino_generation
= gen
;
5873 mmap_event
->prot
= prot
;
5874 mmap_event
->flags
= flags
;
5876 if (!(vma
->vm_flags
& VM_EXEC
))
5877 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
5879 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
5881 perf_event_aux(perf_event_mmap_output
,
5888 void perf_event_mmap(struct vm_area_struct
*vma
)
5890 struct perf_mmap_event mmap_event
;
5892 if (!atomic_read(&nr_mmap_events
))
5895 mmap_event
= (struct perf_mmap_event
){
5901 .type
= PERF_RECORD_MMAP
,
5902 .misc
= PERF_RECORD_MISC_USER
,
5907 .start
= vma
->vm_start
,
5908 .len
= vma
->vm_end
- vma
->vm_start
,
5909 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
5911 /* .maj (attr_mmap2 only) */
5912 /* .min (attr_mmap2 only) */
5913 /* .ino (attr_mmap2 only) */
5914 /* .ino_generation (attr_mmap2 only) */
5915 /* .prot (attr_mmap2 only) */
5916 /* .flags (attr_mmap2 only) */
5919 perf_event_mmap_event(&mmap_event
);
5922 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
5923 unsigned long size
, u64 flags
)
5925 struct perf_output_handle handle
;
5926 struct perf_sample_data sample
;
5927 struct perf_aux_event
{
5928 struct perf_event_header header
;
5934 .type
= PERF_RECORD_AUX
,
5936 .size
= sizeof(rec
),
5944 perf_event_header__init_id(&rec
.header
, &sample
, event
);
5945 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
5950 perf_output_put(&handle
, rec
);
5951 perf_event__output_id_sample(event
, &handle
, &sample
);
5953 perf_output_end(&handle
);
5957 * IRQ throttle logging
5960 static void perf_log_throttle(struct perf_event
*event
, int enable
)
5962 struct perf_output_handle handle
;
5963 struct perf_sample_data sample
;
5967 struct perf_event_header header
;
5971 } throttle_event
= {
5973 .type
= PERF_RECORD_THROTTLE
,
5975 .size
= sizeof(throttle_event
),
5977 .time
= perf_event_clock(event
),
5978 .id
= primary_event_id(event
),
5979 .stream_id
= event
->id
,
5983 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
5985 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
5987 ret
= perf_output_begin(&handle
, event
,
5988 throttle_event
.header
.size
);
5992 perf_output_put(&handle
, throttle_event
);
5993 perf_event__output_id_sample(event
, &handle
, &sample
);
5994 perf_output_end(&handle
);
5997 static void perf_log_itrace_start(struct perf_event
*event
)
5999 struct perf_output_handle handle
;
6000 struct perf_sample_data sample
;
6001 struct perf_aux_event
{
6002 struct perf_event_header header
;
6009 event
= event
->parent
;
6011 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
6012 event
->hw
.itrace_started
)
6015 event
->hw
.itrace_started
= 1;
6017 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
6018 rec
.header
.misc
= 0;
6019 rec
.header
.size
= sizeof(rec
);
6020 rec
.pid
= perf_event_pid(event
, current
);
6021 rec
.tid
= perf_event_tid(event
, current
);
6023 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6024 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6029 perf_output_put(&handle
, rec
);
6030 perf_event__output_id_sample(event
, &handle
, &sample
);
6032 perf_output_end(&handle
);
6036 * Generic event overflow handling, sampling.
6039 static int __perf_event_overflow(struct perf_event
*event
,
6040 int throttle
, struct perf_sample_data
*data
,
6041 struct pt_regs
*regs
)
6043 int events
= atomic_read(&event
->event_limit
);
6044 struct hw_perf_event
*hwc
= &event
->hw
;
6049 * Non-sampling counters might still use the PMI to fold short
6050 * hardware counters, ignore those.
6052 if (unlikely(!is_sampling_event(event
)))
6055 seq
= __this_cpu_read(perf_throttled_seq
);
6056 if (seq
!= hwc
->interrupts_seq
) {
6057 hwc
->interrupts_seq
= seq
;
6058 hwc
->interrupts
= 1;
6061 if (unlikely(throttle
6062 && hwc
->interrupts
>= max_samples_per_tick
)) {
6063 __this_cpu_inc(perf_throttled_count
);
6064 hwc
->interrupts
= MAX_INTERRUPTS
;
6065 perf_log_throttle(event
, 0);
6066 tick_nohz_full_kick();
6071 if (event
->attr
.freq
) {
6072 u64 now
= perf_clock();
6073 s64 delta
= now
- hwc
->freq_time_stamp
;
6075 hwc
->freq_time_stamp
= now
;
6077 if (delta
> 0 && delta
< 2*TICK_NSEC
)
6078 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
6082 * XXX event_limit might not quite work as expected on inherited
6086 event
->pending_kill
= POLL_IN
;
6087 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
6089 event
->pending_kill
= POLL_HUP
;
6090 event
->pending_disable
= 1;
6091 irq_work_queue(&event
->pending
);
6094 if (event
->overflow_handler
)
6095 event
->overflow_handler(event
, data
, regs
);
6097 perf_event_output(event
, data
, regs
);
6099 if (event
->fasync
&& event
->pending_kill
) {
6100 event
->pending_wakeup
= 1;
6101 irq_work_queue(&event
->pending
);
6107 int perf_event_overflow(struct perf_event
*event
,
6108 struct perf_sample_data
*data
,
6109 struct pt_regs
*regs
)
6111 return __perf_event_overflow(event
, 1, data
, regs
);
6115 * Generic software event infrastructure
6118 struct swevent_htable
{
6119 struct swevent_hlist
*swevent_hlist
;
6120 struct mutex hlist_mutex
;
6123 /* Recursion avoidance in each contexts */
6124 int recursion
[PERF_NR_CONTEXTS
];
6126 /* Keeps track of cpu being initialized/exited */
6130 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
6133 * We directly increment event->count and keep a second value in
6134 * event->hw.period_left to count intervals. This period event
6135 * is kept in the range [-sample_period, 0] so that we can use the
6139 u64
perf_swevent_set_period(struct perf_event
*event
)
6141 struct hw_perf_event
*hwc
= &event
->hw
;
6142 u64 period
= hwc
->last_period
;
6146 hwc
->last_period
= hwc
->sample_period
;
6149 old
= val
= local64_read(&hwc
->period_left
);
6153 nr
= div64_u64(period
+ val
, period
);
6154 offset
= nr
* period
;
6156 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
6162 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
6163 struct perf_sample_data
*data
,
6164 struct pt_regs
*regs
)
6166 struct hw_perf_event
*hwc
= &event
->hw
;
6170 overflow
= perf_swevent_set_period(event
);
6172 if (hwc
->interrupts
== MAX_INTERRUPTS
)
6175 for (; overflow
; overflow
--) {
6176 if (__perf_event_overflow(event
, throttle
,
6179 * We inhibit the overflow from happening when
6180 * hwc->interrupts == MAX_INTERRUPTS.
6188 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
6189 struct perf_sample_data
*data
,
6190 struct pt_regs
*regs
)
6192 struct hw_perf_event
*hwc
= &event
->hw
;
6194 local64_add(nr
, &event
->count
);
6199 if (!is_sampling_event(event
))
6202 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
6204 return perf_swevent_overflow(event
, 1, data
, regs
);
6206 data
->period
= event
->hw
.last_period
;
6208 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
6209 return perf_swevent_overflow(event
, 1, data
, regs
);
6211 if (local64_add_negative(nr
, &hwc
->period_left
))
6214 perf_swevent_overflow(event
, 0, data
, regs
);
6217 static int perf_exclude_event(struct perf_event
*event
,
6218 struct pt_regs
*regs
)
6220 if (event
->hw
.state
& PERF_HES_STOPPED
)
6224 if (event
->attr
.exclude_user
&& user_mode(regs
))
6227 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
6234 static int perf_swevent_match(struct perf_event
*event
,
6235 enum perf_type_id type
,
6237 struct perf_sample_data
*data
,
6238 struct pt_regs
*regs
)
6240 if (event
->attr
.type
!= type
)
6243 if (event
->attr
.config
!= event_id
)
6246 if (perf_exclude_event(event
, regs
))
6252 static inline u64
swevent_hash(u64 type
, u32 event_id
)
6254 u64 val
= event_id
| (type
<< 32);
6256 return hash_64(val
, SWEVENT_HLIST_BITS
);
6259 static inline struct hlist_head
*
6260 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
6262 u64 hash
= swevent_hash(type
, event_id
);
6264 return &hlist
->heads
[hash
];
6267 /* For the read side: events when they trigger */
6268 static inline struct hlist_head
*
6269 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
6271 struct swevent_hlist
*hlist
;
6273 hlist
= rcu_dereference(swhash
->swevent_hlist
);
6277 return __find_swevent_head(hlist
, type
, event_id
);
6280 /* For the event head insertion and removal in the hlist */
6281 static inline struct hlist_head
*
6282 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
6284 struct swevent_hlist
*hlist
;
6285 u32 event_id
= event
->attr
.config
;
6286 u64 type
= event
->attr
.type
;
6289 * Event scheduling is always serialized against hlist allocation
6290 * and release. Which makes the protected version suitable here.
6291 * The context lock guarantees that.
6293 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
6294 lockdep_is_held(&event
->ctx
->lock
));
6298 return __find_swevent_head(hlist
, type
, event_id
);
6301 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
6303 struct perf_sample_data
*data
,
6304 struct pt_regs
*regs
)
6306 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6307 struct perf_event
*event
;
6308 struct hlist_head
*head
;
6311 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
6315 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6316 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
6317 perf_swevent_event(event
, nr
, data
, regs
);
6323 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
6325 int perf_swevent_get_recursion_context(void)
6327 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6329 return get_recursion_context(swhash
->recursion
);
6331 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
6333 inline void perf_swevent_put_recursion_context(int rctx
)
6335 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6337 put_recursion_context(swhash
->recursion
, rctx
);
6340 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6342 struct perf_sample_data data
;
6344 if (WARN_ON_ONCE(!regs
))
6347 perf_sample_data_init(&data
, addr
, 0);
6348 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
6351 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6355 preempt_disable_notrace();
6356 rctx
= perf_swevent_get_recursion_context();
6357 if (unlikely(rctx
< 0))
6360 ___perf_sw_event(event_id
, nr
, regs
, addr
);
6362 perf_swevent_put_recursion_context(rctx
);
6364 preempt_enable_notrace();
6367 static void perf_swevent_read(struct perf_event
*event
)
6371 static int perf_swevent_add(struct perf_event
*event
, int flags
)
6373 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6374 struct hw_perf_event
*hwc
= &event
->hw
;
6375 struct hlist_head
*head
;
6377 if (is_sampling_event(event
)) {
6378 hwc
->last_period
= hwc
->sample_period
;
6379 perf_swevent_set_period(event
);
6382 hwc
->state
= !(flags
& PERF_EF_START
);
6384 head
= find_swevent_head(swhash
, event
);
6387 * We can race with cpu hotplug code. Do not
6388 * WARN if the cpu just got unplugged.
6390 WARN_ON_ONCE(swhash
->online
);
6394 hlist_add_head_rcu(&event
->hlist_entry
, head
);
6395 perf_event_update_userpage(event
);
6400 static void perf_swevent_del(struct perf_event
*event
, int flags
)
6402 hlist_del_rcu(&event
->hlist_entry
);
6405 static void perf_swevent_start(struct perf_event
*event
, int flags
)
6407 event
->hw
.state
= 0;
6410 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
6412 event
->hw
.state
= PERF_HES_STOPPED
;
6415 /* Deref the hlist from the update side */
6416 static inline struct swevent_hlist
*
6417 swevent_hlist_deref(struct swevent_htable
*swhash
)
6419 return rcu_dereference_protected(swhash
->swevent_hlist
,
6420 lockdep_is_held(&swhash
->hlist_mutex
));
6423 static void swevent_hlist_release(struct swevent_htable
*swhash
)
6425 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
6430 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
6431 kfree_rcu(hlist
, rcu_head
);
6434 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
6436 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6438 mutex_lock(&swhash
->hlist_mutex
);
6440 if (!--swhash
->hlist_refcount
)
6441 swevent_hlist_release(swhash
);
6443 mutex_unlock(&swhash
->hlist_mutex
);
6446 static void swevent_hlist_put(struct perf_event
*event
)
6450 for_each_possible_cpu(cpu
)
6451 swevent_hlist_put_cpu(event
, cpu
);
6454 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
6456 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6459 mutex_lock(&swhash
->hlist_mutex
);
6461 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
6462 struct swevent_hlist
*hlist
;
6464 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
6469 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6471 swhash
->hlist_refcount
++;
6473 mutex_unlock(&swhash
->hlist_mutex
);
6478 static int swevent_hlist_get(struct perf_event
*event
)
6481 int cpu
, failed_cpu
;
6484 for_each_possible_cpu(cpu
) {
6485 err
= swevent_hlist_get_cpu(event
, cpu
);
6495 for_each_possible_cpu(cpu
) {
6496 if (cpu
== failed_cpu
)
6498 swevent_hlist_put_cpu(event
, cpu
);
6505 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
6507 static void sw_perf_event_destroy(struct perf_event
*event
)
6509 u64 event_id
= event
->attr
.config
;
6511 WARN_ON(event
->parent
);
6513 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
6514 swevent_hlist_put(event
);
6517 static int perf_swevent_init(struct perf_event
*event
)
6519 u64 event_id
= event
->attr
.config
;
6521 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6525 * no branch sampling for software events
6527 if (has_branch_stack(event
))
6531 case PERF_COUNT_SW_CPU_CLOCK
:
6532 case PERF_COUNT_SW_TASK_CLOCK
:
6539 if (event_id
>= PERF_COUNT_SW_MAX
)
6542 if (!event
->parent
) {
6545 err
= swevent_hlist_get(event
);
6549 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
6550 event
->destroy
= sw_perf_event_destroy
;
6556 static struct pmu perf_swevent
= {
6557 .task_ctx_nr
= perf_sw_context
,
6559 .capabilities
= PERF_PMU_CAP_NO_NMI
,
6561 .event_init
= perf_swevent_init
,
6562 .add
= perf_swevent_add
,
6563 .del
= perf_swevent_del
,
6564 .start
= perf_swevent_start
,
6565 .stop
= perf_swevent_stop
,
6566 .read
= perf_swevent_read
,
6569 #ifdef CONFIG_EVENT_TRACING
6571 static int perf_tp_filter_match(struct perf_event
*event
,
6572 struct perf_sample_data
*data
)
6574 void *record
= data
->raw
->data
;
6576 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
6581 static int perf_tp_event_match(struct perf_event
*event
,
6582 struct perf_sample_data
*data
,
6583 struct pt_regs
*regs
)
6585 if (event
->hw
.state
& PERF_HES_STOPPED
)
6588 * All tracepoints are from kernel-space.
6590 if (event
->attr
.exclude_kernel
)
6593 if (!perf_tp_filter_match(event
, data
))
6599 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
6600 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
6601 struct task_struct
*task
)
6603 struct perf_sample_data data
;
6604 struct perf_event
*event
;
6606 struct perf_raw_record raw
= {
6611 perf_sample_data_init(&data
, addr
, 0);
6614 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6615 if (perf_tp_event_match(event
, &data
, regs
))
6616 perf_swevent_event(event
, count
, &data
, regs
);
6620 * If we got specified a target task, also iterate its context and
6621 * deliver this event there too.
6623 if (task
&& task
!= current
) {
6624 struct perf_event_context
*ctx
;
6625 struct trace_entry
*entry
= record
;
6628 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
6632 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6633 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6635 if (event
->attr
.config
!= entry
->type
)
6637 if (perf_tp_event_match(event
, &data
, regs
))
6638 perf_swevent_event(event
, count
, &data
, regs
);
6644 perf_swevent_put_recursion_context(rctx
);
6646 EXPORT_SYMBOL_GPL(perf_tp_event
);
6648 static void tp_perf_event_destroy(struct perf_event
*event
)
6650 perf_trace_destroy(event
);
6653 static int perf_tp_event_init(struct perf_event
*event
)
6657 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6661 * no branch sampling for tracepoint events
6663 if (has_branch_stack(event
))
6666 err
= perf_trace_init(event
);
6670 event
->destroy
= tp_perf_event_destroy
;
6675 static struct pmu perf_tracepoint
= {
6676 .task_ctx_nr
= perf_sw_context
,
6678 .event_init
= perf_tp_event_init
,
6679 .add
= perf_trace_add
,
6680 .del
= perf_trace_del
,
6681 .start
= perf_swevent_start
,
6682 .stop
= perf_swevent_stop
,
6683 .read
= perf_swevent_read
,
6686 static inline void perf_tp_register(void)
6688 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
6691 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6696 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6699 filter_str
= strndup_user(arg
, PAGE_SIZE
);
6700 if (IS_ERR(filter_str
))
6701 return PTR_ERR(filter_str
);
6703 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
6709 static void perf_event_free_filter(struct perf_event
*event
)
6711 ftrace_profile_free_filter(event
);
6714 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
6716 struct bpf_prog
*prog
;
6718 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6721 if (event
->tp_event
->prog
)
6724 if (!(event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
))
6725 /* bpf programs can only be attached to kprobes */
6728 prog
= bpf_prog_get(prog_fd
);
6730 return PTR_ERR(prog
);
6732 if (prog
->aux
->prog_type
!= BPF_PROG_TYPE_KPROBE
) {
6733 /* valid fd, but invalid bpf program type */
6738 event
->tp_event
->prog
= prog
;
6743 static void perf_event_free_bpf_prog(struct perf_event
*event
)
6745 struct bpf_prog
*prog
;
6747 if (!event
->tp_event
)
6750 prog
= event
->tp_event
->prog
;
6752 event
->tp_event
->prog
= NULL
;
6759 static inline void perf_tp_register(void)
6763 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6768 static void perf_event_free_filter(struct perf_event
*event
)
6772 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
6777 static void perf_event_free_bpf_prog(struct perf_event
*event
)
6780 #endif /* CONFIG_EVENT_TRACING */
6782 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6783 void perf_bp_event(struct perf_event
*bp
, void *data
)
6785 struct perf_sample_data sample
;
6786 struct pt_regs
*regs
= data
;
6788 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
6790 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
6791 perf_swevent_event(bp
, 1, &sample
, regs
);
6796 * hrtimer based swevent callback
6799 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
6801 enum hrtimer_restart ret
= HRTIMER_RESTART
;
6802 struct perf_sample_data data
;
6803 struct pt_regs
*regs
;
6804 struct perf_event
*event
;
6807 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
6809 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
6810 return HRTIMER_NORESTART
;
6812 event
->pmu
->read(event
);
6814 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
6815 regs
= get_irq_regs();
6817 if (regs
&& !perf_exclude_event(event
, regs
)) {
6818 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
6819 if (__perf_event_overflow(event
, 1, &data
, regs
))
6820 ret
= HRTIMER_NORESTART
;
6823 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
6824 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
6829 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
6831 struct hw_perf_event
*hwc
= &event
->hw
;
6834 if (!is_sampling_event(event
))
6837 period
= local64_read(&hwc
->period_left
);
6842 local64_set(&hwc
->period_left
, 0);
6844 period
= max_t(u64
, 10000, hwc
->sample_period
);
6846 __hrtimer_start_range_ns(&hwc
->hrtimer
,
6847 ns_to_ktime(period
), 0,
6848 HRTIMER_MODE_REL_PINNED
, 0);
6851 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
6853 struct hw_perf_event
*hwc
= &event
->hw
;
6855 if (is_sampling_event(event
)) {
6856 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
6857 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
6859 hrtimer_cancel(&hwc
->hrtimer
);
6863 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
6865 struct hw_perf_event
*hwc
= &event
->hw
;
6867 if (!is_sampling_event(event
))
6870 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
6871 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
6874 * Since hrtimers have a fixed rate, we can do a static freq->period
6875 * mapping and avoid the whole period adjust feedback stuff.
6877 if (event
->attr
.freq
) {
6878 long freq
= event
->attr
.sample_freq
;
6880 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
6881 hwc
->sample_period
= event
->attr
.sample_period
;
6882 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6883 hwc
->last_period
= hwc
->sample_period
;
6884 event
->attr
.freq
= 0;
6889 * Software event: cpu wall time clock
6892 static void cpu_clock_event_update(struct perf_event
*event
)
6897 now
= local_clock();
6898 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6899 local64_add(now
- prev
, &event
->count
);
6902 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
6904 local64_set(&event
->hw
.prev_count
, local_clock());
6905 perf_swevent_start_hrtimer(event
);
6908 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
6910 perf_swevent_cancel_hrtimer(event
);
6911 cpu_clock_event_update(event
);
6914 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
6916 if (flags
& PERF_EF_START
)
6917 cpu_clock_event_start(event
, flags
);
6918 perf_event_update_userpage(event
);
6923 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
6925 cpu_clock_event_stop(event
, flags
);
6928 static void cpu_clock_event_read(struct perf_event
*event
)
6930 cpu_clock_event_update(event
);
6933 static int cpu_clock_event_init(struct perf_event
*event
)
6935 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6938 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
6942 * no branch sampling for software events
6944 if (has_branch_stack(event
))
6947 perf_swevent_init_hrtimer(event
);
6952 static struct pmu perf_cpu_clock
= {
6953 .task_ctx_nr
= perf_sw_context
,
6955 .capabilities
= PERF_PMU_CAP_NO_NMI
,
6957 .event_init
= cpu_clock_event_init
,
6958 .add
= cpu_clock_event_add
,
6959 .del
= cpu_clock_event_del
,
6960 .start
= cpu_clock_event_start
,
6961 .stop
= cpu_clock_event_stop
,
6962 .read
= cpu_clock_event_read
,
6966 * Software event: task time clock
6969 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
6974 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6976 local64_add(delta
, &event
->count
);
6979 static void task_clock_event_start(struct perf_event
*event
, int flags
)
6981 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
6982 perf_swevent_start_hrtimer(event
);
6985 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
6987 perf_swevent_cancel_hrtimer(event
);
6988 task_clock_event_update(event
, event
->ctx
->time
);
6991 static int task_clock_event_add(struct perf_event
*event
, int flags
)
6993 if (flags
& PERF_EF_START
)
6994 task_clock_event_start(event
, flags
);
6995 perf_event_update_userpage(event
);
7000 static void task_clock_event_del(struct perf_event
*event
, int flags
)
7002 task_clock_event_stop(event
, PERF_EF_UPDATE
);
7005 static void task_clock_event_read(struct perf_event
*event
)
7007 u64 now
= perf_clock();
7008 u64 delta
= now
- event
->ctx
->timestamp
;
7009 u64 time
= event
->ctx
->time
+ delta
;
7011 task_clock_event_update(event
, time
);
7014 static int task_clock_event_init(struct perf_event
*event
)
7016 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7019 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
7023 * no branch sampling for software events
7025 if (has_branch_stack(event
))
7028 perf_swevent_init_hrtimer(event
);
7033 static struct pmu perf_task_clock
= {
7034 .task_ctx_nr
= perf_sw_context
,
7036 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7038 .event_init
= task_clock_event_init
,
7039 .add
= task_clock_event_add
,
7040 .del
= task_clock_event_del
,
7041 .start
= task_clock_event_start
,
7042 .stop
= task_clock_event_stop
,
7043 .read
= task_clock_event_read
,
7046 static void perf_pmu_nop_void(struct pmu
*pmu
)
7050 static int perf_pmu_nop_int(struct pmu
*pmu
)
7055 static void perf_pmu_start_txn(struct pmu
*pmu
)
7057 perf_pmu_disable(pmu
);
7060 static int perf_pmu_commit_txn(struct pmu
*pmu
)
7062 perf_pmu_enable(pmu
);
7066 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
7068 perf_pmu_enable(pmu
);
7071 static int perf_event_idx_default(struct perf_event
*event
)
7077 * Ensures all contexts with the same task_ctx_nr have the same
7078 * pmu_cpu_context too.
7080 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
7087 list_for_each_entry(pmu
, &pmus
, entry
) {
7088 if (pmu
->task_ctx_nr
== ctxn
)
7089 return pmu
->pmu_cpu_context
;
7095 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
7099 for_each_possible_cpu(cpu
) {
7100 struct perf_cpu_context
*cpuctx
;
7102 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7104 if (cpuctx
->unique_pmu
== old_pmu
)
7105 cpuctx
->unique_pmu
= pmu
;
7109 static void free_pmu_context(struct pmu
*pmu
)
7113 mutex_lock(&pmus_lock
);
7115 * Like a real lame refcount.
7117 list_for_each_entry(i
, &pmus
, entry
) {
7118 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
7119 update_pmu_context(i
, pmu
);
7124 free_percpu(pmu
->pmu_cpu_context
);
7126 mutex_unlock(&pmus_lock
);
7128 static struct idr pmu_idr
;
7131 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
7133 struct pmu
*pmu
= dev_get_drvdata(dev
);
7135 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
7137 static DEVICE_ATTR_RO(type
);
7140 perf_event_mux_interval_ms_show(struct device
*dev
,
7141 struct device_attribute
*attr
,
7144 struct pmu
*pmu
= dev_get_drvdata(dev
);
7146 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
7150 perf_event_mux_interval_ms_store(struct device
*dev
,
7151 struct device_attribute
*attr
,
7152 const char *buf
, size_t count
)
7154 struct pmu
*pmu
= dev_get_drvdata(dev
);
7155 int timer
, cpu
, ret
;
7157 ret
= kstrtoint(buf
, 0, &timer
);
7164 /* same value, noting to do */
7165 if (timer
== pmu
->hrtimer_interval_ms
)
7168 pmu
->hrtimer_interval_ms
= timer
;
7170 /* update all cpuctx for this PMU */
7171 for_each_possible_cpu(cpu
) {
7172 struct perf_cpu_context
*cpuctx
;
7173 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7174 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
7176 if (hrtimer_active(&cpuctx
->hrtimer
))
7177 hrtimer_forward_now(&cpuctx
->hrtimer
, cpuctx
->hrtimer_interval
);
7182 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
7184 static struct attribute
*pmu_dev_attrs
[] = {
7185 &dev_attr_type
.attr
,
7186 &dev_attr_perf_event_mux_interval_ms
.attr
,
7189 ATTRIBUTE_GROUPS(pmu_dev
);
7191 static int pmu_bus_running
;
7192 static struct bus_type pmu_bus
= {
7193 .name
= "event_source",
7194 .dev_groups
= pmu_dev_groups
,
7197 static void pmu_dev_release(struct device
*dev
)
7202 static int pmu_dev_alloc(struct pmu
*pmu
)
7206 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
7210 pmu
->dev
->groups
= pmu
->attr_groups
;
7211 device_initialize(pmu
->dev
);
7212 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
7216 dev_set_drvdata(pmu
->dev
, pmu
);
7217 pmu
->dev
->bus
= &pmu_bus
;
7218 pmu
->dev
->release
= pmu_dev_release
;
7219 ret
= device_add(pmu
->dev
);
7227 put_device(pmu
->dev
);
7231 static struct lock_class_key cpuctx_mutex
;
7232 static struct lock_class_key cpuctx_lock
;
7234 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
7238 mutex_lock(&pmus_lock
);
7240 pmu
->pmu_disable_count
= alloc_percpu(int);
7241 if (!pmu
->pmu_disable_count
)
7250 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
7258 if (pmu_bus_running
) {
7259 ret
= pmu_dev_alloc(pmu
);
7265 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
7266 if (pmu
->pmu_cpu_context
)
7267 goto got_cpu_context
;
7270 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
7271 if (!pmu
->pmu_cpu_context
)
7274 for_each_possible_cpu(cpu
) {
7275 struct perf_cpu_context
*cpuctx
;
7277 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7278 __perf_event_init_context(&cpuctx
->ctx
);
7279 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
7280 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
7281 cpuctx
->ctx
.pmu
= pmu
;
7283 __perf_cpu_hrtimer_init(cpuctx
, cpu
);
7285 cpuctx
->unique_pmu
= pmu
;
7289 if (!pmu
->start_txn
) {
7290 if (pmu
->pmu_enable
) {
7292 * If we have pmu_enable/pmu_disable calls, install
7293 * transaction stubs that use that to try and batch
7294 * hardware accesses.
7296 pmu
->start_txn
= perf_pmu_start_txn
;
7297 pmu
->commit_txn
= perf_pmu_commit_txn
;
7298 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
7300 pmu
->start_txn
= perf_pmu_nop_void
;
7301 pmu
->commit_txn
= perf_pmu_nop_int
;
7302 pmu
->cancel_txn
= perf_pmu_nop_void
;
7306 if (!pmu
->pmu_enable
) {
7307 pmu
->pmu_enable
= perf_pmu_nop_void
;
7308 pmu
->pmu_disable
= perf_pmu_nop_void
;
7311 if (!pmu
->event_idx
)
7312 pmu
->event_idx
= perf_event_idx_default
;
7314 list_add_rcu(&pmu
->entry
, &pmus
);
7315 atomic_set(&pmu
->exclusive_cnt
, 0);
7318 mutex_unlock(&pmus_lock
);
7323 device_del(pmu
->dev
);
7324 put_device(pmu
->dev
);
7327 if (pmu
->type
>= PERF_TYPE_MAX
)
7328 idr_remove(&pmu_idr
, pmu
->type
);
7331 free_percpu(pmu
->pmu_disable_count
);
7334 EXPORT_SYMBOL_GPL(perf_pmu_register
);
7336 void perf_pmu_unregister(struct pmu
*pmu
)
7338 mutex_lock(&pmus_lock
);
7339 list_del_rcu(&pmu
->entry
);
7340 mutex_unlock(&pmus_lock
);
7343 * We dereference the pmu list under both SRCU and regular RCU, so
7344 * synchronize against both of those.
7346 synchronize_srcu(&pmus_srcu
);
7349 free_percpu(pmu
->pmu_disable_count
);
7350 if (pmu
->type
>= PERF_TYPE_MAX
)
7351 idr_remove(&pmu_idr
, pmu
->type
);
7352 device_del(pmu
->dev
);
7353 put_device(pmu
->dev
);
7354 free_pmu_context(pmu
);
7356 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
7358 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
7360 struct perf_event_context
*ctx
= NULL
;
7363 if (!try_module_get(pmu
->module
))
7366 if (event
->group_leader
!= event
) {
7367 ctx
= perf_event_ctx_lock(event
->group_leader
);
7372 ret
= pmu
->event_init(event
);
7375 perf_event_ctx_unlock(event
->group_leader
, ctx
);
7378 module_put(pmu
->module
);
7383 struct pmu
*perf_init_event(struct perf_event
*event
)
7385 struct pmu
*pmu
= NULL
;
7389 idx
= srcu_read_lock(&pmus_srcu
);
7392 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
7395 ret
= perf_try_init_event(pmu
, event
);
7401 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7402 ret
= perf_try_init_event(pmu
, event
);
7406 if (ret
!= -ENOENT
) {
7411 pmu
= ERR_PTR(-ENOENT
);
7413 srcu_read_unlock(&pmus_srcu
, idx
);
7418 static void account_event_cpu(struct perf_event
*event
, int cpu
)
7423 if (is_cgroup_event(event
))
7424 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
7427 static void account_event(struct perf_event
*event
)
7432 if (event
->attach_state
& PERF_ATTACH_TASK
)
7433 static_key_slow_inc(&perf_sched_events
.key
);
7434 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
7435 atomic_inc(&nr_mmap_events
);
7436 if (event
->attr
.comm
)
7437 atomic_inc(&nr_comm_events
);
7438 if (event
->attr
.task
)
7439 atomic_inc(&nr_task_events
);
7440 if (event
->attr
.freq
) {
7441 if (atomic_inc_return(&nr_freq_events
) == 1)
7442 tick_nohz_full_kick_all();
7444 if (has_branch_stack(event
))
7445 static_key_slow_inc(&perf_sched_events
.key
);
7446 if (is_cgroup_event(event
))
7447 static_key_slow_inc(&perf_sched_events
.key
);
7449 account_event_cpu(event
, event
->cpu
);
7453 * Allocate and initialize a event structure
7455 static struct perf_event
*
7456 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
7457 struct task_struct
*task
,
7458 struct perf_event
*group_leader
,
7459 struct perf_event
*parent_event
,
7460 perf_overflow_handler_t overflow_handler
,
7461 void *context
, int cgroup_fd
)
7464 struct perf_event
*event
;
7465 struct hw_perf_event
*hwc
;
7468 if ((unsigned)cpu
>= nr_cpu_ids
) {
7469 if (!task
|| cpu
!= -1)
7470 return ERR_PTR(-EINVAL
);
7473 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
7475 return ERR_PTR(-ENOMEM
);
7478 * Single events are their own group leaders, with an
7479 * empty sibling list:
7482 group_leader
= event
;
7484 mutex_init(&event
->child_mutex
);
7485 INIT_LIST_HEAD(&event
->child_list
);
7487 INIT_LIST_HEAD(&event
->group_entry
);
7488 INIT_LIST_HEAD(&event
->event_entry
);
7489 INIT_LIST_HEAD(&event
->sibling_list
);
7490 INIT_LIST_HEAD(&event
->rb_entry
);
7491 INIT_LIST_HEAD(&event
->active_entry
);
7492 INIT_HLIST_NODE(&event
->hlist_entry
);
7495 init_waitqueue_head(&event
->waitq
);
7496 init_irq_work(&event
->pending
, perf_pending_event
);
7498 mutex_init(&event
->mmap_mutex
);
7500 atomic_long_set(&event
->refcount
, 1);
7502 event
->attr
= *attr
;
7503 event
->group_leader
= group_leader
;
7507 event
->parent
= parent_event
;
7509 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
7510 event
->id
= atomic64_inc_return(&perf_event_id
);
7512 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7515 event
->attach_state
= PERF_ATTACH_TASK
;
7517 * XXX pmu::event_init needs to know what task to account to
7518 * and we cannot use the ctx information because we need the
7519 * pmu before we get a ctx.
7521 event
->hw
.target
= task
;
7524 event
->clock
= &local_clock
;
7526 event
->clock
= parent_event
->clock
;
7528 if (!overflow_handler
&& parent_event
) {
7529 overflow_handler
= parent_event
->overflow_handler
;
7530 context
= parent_event
->overflow_handler_context
;
7533 event
->overflow_handler
= overflow_handler
;
7534 event
->overflow_handler_context
= context
;
7536 perf_event__state_init(event
);
7541 hwc
->sample_period
= attr
->sample_period
;
7542 if (attr
->freq
&& attr
->sample_freq
)
7543 hwc
->sample_period
= 1;
7544 hwc
->last_period
= hwc
->sample_period
;
7546 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7549 * we currently do not support PERF_FORMAT_GROUP on inherited events
7551 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
7554 if (!has_branch_stack(event
))
7555 event
->attr
.branch_sample_type
= 0;
7557 if (cgroup_fd
!= -1) {
7558 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
7563 pmu
= perf_init_event(event
);
7566 else if (IS_ERR(pmu
)) {
7571 err
= exclusive_event_init(event
);
7575 if (!event
->parent
) {
7576 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7577 err
= get_callchain_buffers();
7586 exclusive_event_destroy(event
);
7590 event
->destroy(event
);
7591 module_put(pmu
->module
);
7593 if (is_cgroup_event(event
))
7594 perf_detach_cgroup(event
);
7596 put_pid_ns(event
->ns
);
7599 return ERR_PTR(err
);
7602 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
7603 struct perf_event_attr
*attr
)
7608 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
7612 * zero the full structure, so that a short copy will be nice.
7614 memset(attr
, 0, sizeof(*attr
));
7616 ret
= get_user(size
, &uattr
->size
);
7620 if (size
> PAGE_SIZE
) /* silly large */
7623 if (!size
) /* abi compat */
7624 size
= PERF_ATTR_SIZE_VER0
;
7626 if (size
< PERF_ATTR_SIZE_VER0
)
7630 * If we're handed a bigger struct than we know of,
7631 * ensure all the unknown bits are 0 - i.e. new
7632 * user-space does not rely on any kernel feature
7633 * extensions we dont know about yet.
7635 if (size
> sizeof(*attr
)) {
7636 unsigned char __user
*addr
;
7637 unsigned char __user
*end
;
7640 addr
= (void __user
*)uattr
+ sizeof(*attr
);
7641 end
= (void __user
*)uattr
+ size
;
7643 for (; addr
< end
; addr
++) {
7644 ret
= get_user(val
, addr
);
7650 size
= sizeof(*attr
);
7653 ret
= copy_from_user(attr
, uattr
, size
);
7657 if (attr
->__reserved_1
)
7660 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
7663 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
7666 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7667 u64 mask
= attr
->branch_sample_type
;
7669 /* only using defined bits */
7670 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
7673 /* at least one branch bit must be set */
7674 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
7677 /* propagate priv level, when not set for branch */
7678 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
7680 /* exclude_kernel checked on syscall entry */
7681 if (!attr
->exclude_kernel
)
7682 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
7684 if (!attr
->exclude_user
)
7685 mask
|= PERF_SAMPLE_BRANCH_USER
;
7687 if (!attr
->exclude_hv
)
7688 mask
|= PERF_SAMPLE_BRANCH_HV
;
7690 * adjust user setting (for HW filter setup)
7692 attr
->branch_sample_type
= mask
;
7694 /* privileged levels capture (kernel, hv): check permissions */
7695 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
7696 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7700 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
7701 ret
= perf_reg_validate(attr
->sample_regs_user
);
7706 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
7707 if (!arch_perf_have_user_stack_dump())
7711 * We have __u32 type for the size, but so far
7712 * we can only use __u16 as maximum due to the
7713 * __u16 sample size limit.
7715 if (attr
->sample_stack_user
>= USHRT_MAX
)
7717 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
7721 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
7722 ret
= perf_reg_validate(attr
->sample_regs_intr
);
7727 put_user(sizeof(*attr
), &uattr
->size
);
7733 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
7735 struct ring_buffer
*rb
= NULL
;
7741 /* don't allow circular references */
7742 if (event
== output_event
)
7746 * Don't allow cross-cpu buffers
7748 if (output_event
->cpu
!= event
->cpu
)
7752 * If its not a per-cpu rb, it must be the same task.
7754 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
7758 * Mixing clocks in the same buffer is trouble you don't need.
7760 if (output_event
->clock
!= event
->clock
)
7764 * If both events generate aux data, they must be on the same PMU
7766 if (has_aux(event
) && has_aux(output_event
) &&
7767 event
->pmu
!= output_event
->pmu
)
7771 mutex_lock(&event
->mmap_mutex
);
7772 /* Can't redirect output if we've got an active mmap() */
7773 if (atomic_read(&event
->mmap_count
))
7777 /* get the rb we want to redirect to */
7778 rb
= ring_buffer_get(output_event
);
7783 ring_buffer_attach(event
, rb
);
7787 mutex_unlock(&event
->mmap_mutex
);
7793 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
7799 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
7802 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
7804 bool nmi_safe
= false;
7807 case CLOCK_MONOTONIC
:
7808 event
->clock
= &ktime_get_mono_fast_ns
;
7812 case CLOCK_MONOTONIC_RAW
:
7813 event
->clock
= &ktime_get_raw_fast_ns
;
7817 case CLOCK_REALTIME
:
7818 event
->clock
= &ktime_get_real_ns
;
7821 case CLOCK_BOOTTIME
:
7822 event
->clock
= &ktime_get_boot_ns
;
7826 event
->clock
= &ktime_get_tai_ns
;
7833 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
7840 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7842 * @attr_uptr: event_id type attributes for monitoring/sampling
7845 * @group_fd: group leader event fd
7847 SYSCALL_DEFINE5(perf_event_open
,
7848 struct perf_event_attr __user
*, attr_uptr
,
7849 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
7851 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
7852 struct perf_event
*event
, *sibling
;
7853 struct perf_event_attr attr
;
7854 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
7855 struct file
*event_file
= NULL
;
7856 struct fd group
= {NULL
, 0};
7857 struct task_struct
*task
= NULL
;
7862 int f_flags
= O_RDWR
;
7865 /* for future expandability... */
7866 if (flags
& ~PERF_FLAG_ALL
)
7869 err
= perf_copy_attr(attr_uptr
, &attr
);
7873 if (!attr
.exclude_kernel
) {
7874 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7879 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
7882 if (attr
.sample_period
& (1ULL << 63))
7887 * In cgroup mode, the pid argument is used to pass the fd
7888 * opened to the cgroup directory in cgroupfs. The cpu argument
7889 * designates the cpu on which to monitor threads from that
7892 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
7895 if (flags
& PERF_FLAG_FD_CLOEXEC
)
7896 f_flags
|= O_CLOEXEC
;
7898 event_fd
= get_unused_fd_flags(f_flags
);
7902 if (group_fd
!= -1) {
7903 err
= perf_fget_light(group_fd
, &group
);
7906 group_leader
= group
.file
->private_data
;
7907 if (flags
& PERF_FLAG_FD_OUTPUT
)
7908 output_event
= group_leader
;
7909 if (flags
& PERF_FLAG_FD_NO_GROUP
)
7910 group_leader
= NULL
;
7913 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
7914 task
= find_lively_task_by_vpid(pid
);
7916 err
= PTR_ERR(task
);
7921 if (task
&& group_leader
&&
7922 group_leader
->attr
.inherit
!= attr
.inherit
) {
7929 if (flags
& PERF_FLAG_PID_CGROUP
)
7932 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
7933 NULL
, NULL
, cgroup_fd
);
7934 if (IS_ERR(event
)) {
7935 err
= PTR_ERR(event
);
7939 if (is_sampling_event(event
)) {
7940 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
7946 account_event(event
);
7949 * Special case software events and allow them to be part of
7950 * any hardware group.
7954 if (attr
.use_clockid
) {
7955 err
= perf_event_set_clock(event
, attr
.clockid
);
7961 (is_software_event(event
) != is_software_event(group_leader
))) {
7962 if (is_software_event(event
)) {
7964 * If event and group_leader are not both a software
7965 * event, and event is, then group leader is not.
7967 * Allow the addition of software events to !software
7968 * groups, this is safe because software events never
7971 pmu
= group_leader
->pmu
;
7972 } else if (is_software_event(group_leader
) &&
7973 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
7975 * In case the group is a pure software group, and we
7976 * try to add a hardware event, move the whole group to
7977 * the hardware context.
7984 * Get the target context (task or percpu):
7986 ctx
= find_get_context(pmu
, task
, event
);
7992 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
7998 put_task_struct(task
);
8003 * Look up the group leader (we will attach this event to it):
8009 * Do not allow a recursive hierarchy (this new sibling
8010 * becoming part of another group-sibling):
8012 if (group_leader
->group_leader
!= group_leader
)
8015 /* All events in a group should have the same clock */
8016 if (group_leader
->clock
!= event
->clock
)
8020 * Do not allow to attach to a group in a different
8021 * task or CPU context:
8025 * Make sure we're both on the same task, or both
8028 if (group_leader
->ctx
->task
!= ctx
->task
)
8032 * Make sure we're both events for the same CPU;
8033 * grouping events for different CPUs is broken; since
8034 * you can never concurrently schedule them anyhow.
8036 if (group_leader
->cpu
!= event
->cpu
)
8039 if (group_leader
->ctx
!= ctx
)
8044 * Only a group leader can be exclusive or pinned
8046 if (attr
.exclusive
|| attr
.pinned
)
8051 err
= perf_event_set_output(event
, output_event
);
8056 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
8058 if (IS_ERR(event_file
)) {
8059 err
= PTR_ERR(event_file
);
8064 gctx
= group_leader
->ctx
;
8067 * See perf_event_ctx_lock() for comments on the details
8068 * of swizzling perf_event::ctx.
8070 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
8072 perf_remove_from_context(group_leader
, false);
8074 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
8076 perf_remove_from_context(sibling
, false);
8080 mutex_lock(&ctx
->mutex
);
8083 WARN_ON_ONCE(ctx
->parent_ctx
);
8087 * Wait for everybody to stop referencing the events through
8088 * the old lists, before installing it on new lists.
8093 * Install the group siblings before the group leader.
8095 * Because a group leader will try and install the entire group
8096 * (through the sibling list, which is still in-tact), we can
8097 * end up with siblings installed in the wrong context.
8099 * By installing siblings first we NO-OP because they're not
8100 * reachable through the group lists.
8102 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
8104 perf_event__state_init(sibling
);
8105 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
8110 * Removing from the context ends up with disabled
8111 * event. What we want here is event in the initial
8112 * startup state, ready to be add into new context.
8114 perf_event__state_init(group_leader
);
8115 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
8119 if (!exclusive_event_installable(event
, ctx
)) {
8121 mutex_unlock(&ctx
->mutex
);
8126 perf_install_in_context(ctx
, event
, event
->cpu
);
8127 perf_unpin_context(ctx
);
8130 mutex_unlock(&gctx
->mutex
);
8133 mutex_unlock(&ctx
->mutex
);
8137 event
->owner
= current
;
8139 mutex_lock(¤t
->perf_event_mutex
);
8140 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
8141 mutex_unlock(¤t
->perf_event_mutex
);
8144 * Precalculate sample_data sizes
8146 perf_event__header_size(event
);
8147 perf_event__id_header_size(event
);
8150 * Drop the reference on the group_event after placing the
8151 * new event on the sibling_list. This ensures destruction
8152 * of the group leader will find the pointer to itself in
8153 * perf_group_detach().
8156 fd_install(event_fd
, event_file
);
8160 perf_unpin_context(ctx
);
8168 put_task_struct(task
);
8172 put_unused_fd(event_fd
);
8177 * perf_event_create_kernel_counter
8179 * @attr: attributes of the counter to create
8180 * @cpu: cpu in which the counter is bound
8181 * @task: task to profile (NULL for percpu)
8184 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
8185 struct task_struct
*task
,
8186 perf_overflow_handler_t overflow_handler
,
8189 struct perf_event_context
*ctx
;
8190 struct perf_event
*event
;
8194 * Get the target context (task or percpu):
8197 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
8198 overflow_handler
, context
, -1);
8199 if (IS_ERR(event
)) {
8200 err
= PTR_ERR(event
);
8204 /* Mark owner so we could distinguish it from user events. */
8205 event
->owner
= EVENT_OWNER_KERNEL
;
8207 account_event(event
);
8209 ctx
= find_get_context(event
->pmu
, task
, event
);
8215 WARN_ON_ONCE(ctx
->parent_ctx
);
8216 mutex_lock(&ctx
->mutex
);
8217 if (!exclusive_event_installable(event
, ctx
)) {
8218 mutex_unlock(&ctx
->mutex
);
8219 perf_unpin_context(ctx
);
8225 perf_install_in_context(ctx
, event
, cpu
);
8226 perf_unpin_context(ctx
);
8227 mutex_unlock(&ctx
->mutex
);
8234 return ERR_PTR(err
);
8236 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
8238 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
8240 struct perf_event_context
*src_ctx
;
8241 struct perf_event_context
*dst_ctx
;
8242 struct perf_event
*event
, *tmp
;
8245 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
8246 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
8249 * See perf_event_ctx_lock() for comments on the details
8250 * of swizzling perf_event::ctx.
8252 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
8253 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
8255 perf_remove_from_context(event
, false);
8256 unaccount_event_cpu(event
, src_cpu
);
8258 list_add(&event
->migrate_entry
, &events
);
8262 * Wait for the events to quiesce before re-instating them.
8267 * Re-instate events in 2 passes.
8269 * Skip over group leaders and only install siblings on this first
8270 * pass, siblings will not get enabled without a leader, however a
8271 * leader will enable its siblings, even if those are still on the old
8274 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
8275 if (event
->group_leader
== event
)
8278 list_del(&event
->migrate_entry
);
8279 if (event
->state
>= PERF_EVENT_STATE_OFF
)
8280 event
->state
= PERF_EVENT_STATE_INACTIVE
;
8281 account_event_cpu(event
, dst_cpu
);
8282 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
8287 * Once all the siblings are setup properly, install the group leaders
8290 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
8291 list_del(&event
->migrate_entry
);
8292 if (event
->state
>= PERF_EVENT_STATE_OFF
)
8293 event
->state
= PERF_EVENT_STATE_INACTIVE
;
8294 account_event_cpu(event
, dst_cpu
);
8295 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
8298 mutex_unlock(&dst_ctx
->mutex
);
8299 mutex_unlock(&src_ctx
->mutex
);
8301 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
8303 static void sync_child_event(struct perf_event
*child_event
,
8304 struct task_struct
*child
)
8306 struct perf_event
*parent_event
= child_event
->parent
;
8309 if (child_event
->attr
.inherit_stat
)
8310 perf_event_read_event(child_event
, child
);
8312 child_val
= perf_event_count(child_event
);
8315 * Add back the child's count to the parent's count:
8317 atomic64_add(child_val
, &parent_event
->child_count
);
8318 atomic64_add(child_event
->total_time_enabled
,
8319 &parent_event
->child_total_time_enabled
);
8320 atomic64_add(child_event
->total_time_running
,
8321 &parent_event
->child_total_time_running
);
8324 * Remove this event from the parent's list
8326 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
8327 mutex_lock(&parent_event
->child_mutex
);
8328 list_del_init(&child_event
->child_list
);
8329 mutex_unlock(&parent_event
->child_mutex
);
8332 * Make sure user/parent get notified, that we just
8335 perf_event_wakeup(parent_event
);
8338 * Release the parent event, if this was the last
8341 put_event(parent_event
);
8345 __perf_event_exit_task(struct perf_event
*child_event
,
8346 struct perf_event_context
*child_ctx
,
8347 struct task_struct
*child
)
8350 * Do not destroy the 'original' grouping; because of the context
8351 * switch optimization the original events could've ended up in a
8352 * random child task.
8354 * If we were to destroy the original group, all group related
8355 * operations would cease to function properly after this random
8358 * Do destroy all inherited groups, we don't care about those
8359 * and being thorough is better.
8361 perf_remove_from_context(child_event
, !!child_event
->parent
);
8364 * It can happen that the parent exits first, and has events
8365 * that are still around due to the child reference. These
8366 * events need to be zapped.
8368 if (child_event
->parent
) {
8369 sync_child_event(child_event
, child
);
8370 free_event(child_event
);
8372 child_event
->state
= PERF_EVENT_STATE_EXIT
;
8373 perf_event_wakeup(child_event
);
8377 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
8379 struct perf_event
*child_event
, *next
;
8380 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
8381 unsigned long flags
;
8383 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
8384 perf_event_task(child
, NULL
, 0);
8388 local_irq_save(flags
);
8390 * We can't reschedule here because interrupts are disabled,
8391 * and either child is current or it is a task that can't be
8392 * scheduled, so we are now safe from rescheduling changing
8395 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
8398 * Take the context lock here so that if find_get_context is
8399 * reading child->perf_event_ctxp, we wait until it has
8400 * incremented the context's refcount before we do put_ctx below.
8402 raw_spin_lock(&child_ctx
->lock
);
8403 task_ctx_sched_out(child_ctx
);
8404 child
->perf_event_ctxp
[ctxn
] = NULL
;
8407 * If this context is a clone; unclone it so it can't get
8408 * swapped to another process while we're removing all
8409 * the events from it.
8411 clone_ctx
= unclone_ctx(child_ctx
);
8412 update_context_time(child_ctx
);
8413 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
8419 * Report the task dead after unscheduling the events so that we
8420 * won't get any samples after PERF_RECORD_EXIT. We can however still
8421 * get a few PERF_RECORD_READ events.
8423 perf_event_task(child
, child_ctx
, 0);
8426 * We can recurse on the same lock type through:
8428 * __perf_event_exit_task()
8429 * sync_child_event()
8431 * mutex_lock(&ctx->mutex)
8433 * But since its the parent context it won't be the same instance.
8435 mutex_lock(&child_ctx
->mutex
);
8437 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
8438 __perf_event_exit_task(child_event
, child_ctx
, child
);
8440 mutex_unlock(&child_ctx
->mutex
);
8446 * When a child task exits, feed back event values to parent events.
8448 void perf_event_exit_task(struct task_struct
*child
)
8450 struct perf_event
*event
, *tmp
;
8453 mutex_lock(&child
->perf_event_mutex
);
8454 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
8456 list_del_init(&event
->owner_entry
);
8459 * Ensure the list deletion is visible before we clear
8460 * the owner, closes a race against perf_release() where
8461 * we need to serialize on the owner->perf_event_mutex.
8464 event
->owner
= NULL
;
8466 mutex_unlock(&child
->perf_event_mutex
);
8468 for_each_task_context_nr(ctxn
)
8469 perf_event_exit_task_context(child
, ctxn
);
8472 static void perf_free_event(struct perf_event
*event
,
8473 struct perf_event_context
*ctx
)
8475 struct perf_event
*parent
= event
->parent
;
8477 if (WARN_ON_ONCE(!parent
))
8480 mutex_lock(&parent
->child_mutex
);
8481 list_del_init(&event
->child_list
);
8482 mutex_unlock(&parent
->child_mutex
);
8486 raw_spin_lock_irq(&ctx
->lock
);
8487 perf_group_detach(event
);
8488 list_del_event(event
, ctx
);
8489 raw_spin_unlock_irq(&ctx
->lock
);
8494 * Free an unexposed, unused context as created by inheritance by
8495 * perf_event_init_task below, used by fork() in case of fail.
8497 * Not all locks are strictly required, but take them anyway to be nice and
8498 * help out with the lockdep assertions.
8500 void perf_event_free_task(struct task_struct
*task
)
8502 struct perf_event_context
*ctx
;
8503 struct perf_event
*event
, *tmp
;
8506 for_each_task_context_nr(ctxn
) {
8507 ctx
= task
->perf_event_ctxp
[ctxn
];
8511 mutex_lock(&ctx
->mutex
);
8513 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
8515 perf_free_event(event
, ctx
);
8517 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
8519 perf_free_event(event
, ctx
);
8521 if (!list_empty(&ctx
->pinned_groups
) ||
8522 !list_empty(&ctx
->flexible_groups
))
8525 mutex_unlock(&ctx
->mutex
);
8531 void perf_event_delayed_put(struct task_struct
*task
)
8535 for_each_task_context_nr(ctxn
)
8536 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
8540 * inherit a event from parent task to child task:
8542 static struct perf_event
*
8543 inherit_event(struct perf_event
*parent_event
,
8544 struct task_struct
*parent
,
8545 struct perf_event_context
*parent_ctx
,
8546 struct task_struct
*child
,
8547 struct perf_event
*group_leader
,
8548 struct perf_event_context
*child_ctx
)
8550 enum perf_event_active_state parent_state
= parent_event
->state
;
8551 struct perf_event
*child_event
;
8552 unsigned long flags
;
8555 * Instead of creating recursive hierarchies of events,
8556 * we link inherited events back to the original parent,
8557 * which has a filp for sure, which we use as the reference
8560 if (parent_event
->parent
)
8561 parent_event
= parent_event
->parent
;
8563 child_event
= perf_event_alloc(&parent_event
->attr
,
8566 group_leader
, parent_event
,
8568 if (IS_ERR(child_event
))
8571 if (is_orphaned_event(parent_event
) ||
8572 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
8573 free_event(child_event
);
8580 * Make the child state follow the state of the parent event,
8581 * not its attr.disabled bit. We hold the parent's mutex,
8582 * so we won't race with perf_event_{en, dis}able_family.
8584 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
8585 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
8587 child_event
->state
= PERF_EVENT_STATE_OFF
;
8589 if (parent_event
->attr
.freq
) {
8590 u64 sample_period
= parent_event
->hw
.sample_period
;
8591 struct hw_perf_event
*hwc
= &child_event
->hw
;
8593 hwc
->sample_period
= sample_period
;
8594 hwc
->last_period
= sample_period
;
8596 local64_set(&hwc
->period_left
, sample_period
);
8599 child_event
->ctx
= child_ctx
;
8600 child_event
->overflow_handler
= parent_event
->overflow_handler
;
8601 child_event
->overflow_handler_context
8602 = parent_event
->overflow_handler_context
;
8605 * Precalculate sample_data sizes
8607 perf_event__header_size(child_event
);
8608 perf_event__id_header_size(child_event
);
8611 * Link it up in the child's context:
8613 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
8614 add_event_to_ctx(child_event
, child_ctx
);
8615 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
8618 * Link this into the parent event's child list
8620 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
8621 mutex_lock(&parent_event
->child_mutex
);
8622 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
8623 mutex_unlock(&parent_event
->child_mutex
);
8628 static int inherit_group(struct perf_event
*parent_event
,
8629 struct task_struct
*parent
,
8630 struct perf_event_context
*parent_ctx
,
8631 struct task_struct
*child
,
8632 struct perf_event_context
*child_ctx
)
8634 struct perf_event
*leader
;
8635 struct perf_event
*sub
;
8636 struct perf_event
*child_ctr
;
8638 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
8639 child
, NULL
, child_ctx
);
8641 return PTR_ERR(leader
);
8642 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
8643 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
8644 child
, leader
, child_ctx
);
8645 if (IS_ERR(child_ctr
))
8646 return PTR_ERR(child_ctr
);
8652 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
8653 struct perf_event_context
*parent_ctx
,
8654 struct task_struct
*child
, int ctxn
,
8658 struct perf_event_context
*child_ctx
;
8660 if (!event
->attr
.inherit
) {
8665 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8668 * This is executed from the parent task context, so
8669 * inherit events that have been marked for cloning.
8670 * First allocate and initialize a context for the
8674 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
8678 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
8681 ret
= inherit_group(event
, parent
, parent_ctx
,
8691 * Initialize the perf_event context in task_struct
8693 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
8695 struct perf_event_context
*child_ctx
, *parent_ctx
;
8696 struct perf_event_context
*cloned_ctx
;
8697 struct perf_event
*event
;
8698 struct task_struct
*parent
= current
;
8699 int inherited_all
= 1;
8700 unsigned long flags
;
8703 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
8707 * If the parent's context is a clone, pin it so it won't get
8710 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
8715 * No need to check if parent_ctx != NULL here; since we saw
8716 * it non-NULL earlier, the only reason for it to become NULL
8717 * is if we exit, and since we're currently in the middle of
8718 * a fork we can't be exiting at the same time.
8722 * Lock the parent list. No need to lock the child - not PID
8723 * hashed yet and not running, so nobody can access it.
8725 mutex_lock(&parent_ctx
->mutex
);
8728 * We dont have to disable NMIs - we are only looking at
8729 * the list, not manipulating it:
8731 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
8732 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8733 child
, ctxn
, &inherited_all
);
8739 * We can't hold ctx->lock when iterating the ->flexible_group list due
8740 * to allocations, but we need to prevent rotation because
8741 * rotate_ctx() will change the list from interrupt context.
8743 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8744 parent_ctx
->rotate_disable
= 1;
8745 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8747 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
8748 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8749 child
, ctxn
, &inherited_all
);
8754 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8755 parent_ctx
->rotate_disable
= 0;
8757 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8759 if (child_ctx
&& inherited_all
) {
8761 * Mark the child context as a clone of the parent
8762 * context, or of whatever the parent is a clone of.
8764 * Note that if the parent is a clone, the holding of
8765 * parent_ctx->lock avoids it from being uncloned.
8767 cloned_ctx
= parent_ctx
->parent_ctx
;
8769 child_ctx
->parent_ctx
= cloned_ctx
;
8770 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
8772 child_ctx
->parent_ctx
= parent_ctx
;
8773 child_ctx
->parent_gen
= parent_ctx
->generation
;
8775 get_ctx(child_ctx
->parent_ctx
);
8778 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8779 mutex_unlock(&parent_ctx
->mutex
);
8781 perf_unpin_context(parent_ctx
);
8782 put_ctx(parent_ctx
);
8788 * Initialize the perf_event context in task_struct
8790 int perf_event_init_task(struct task_struct
*child
)
8794 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
8795 mutex_init(&child
->perf_event_mutex
);
8796 INIT_LIST_HEAD(&child
->perf_event_list
);
8798 for_each_task_context_nr(ctxn
) {
8799 ret
= perf_event_init_context(child
, ctxn
);
8801 perf_event_free_task(child
);
8809 static void __init
perf_event_init_all_cpus(void)
8811 struct swevent_htable
*swhash
;
8814 for_each_possible_cpu(cpu
) {
8815 swhash
= &per_cpu(swevent_htable
, cpu
);
8816 mutex_init(&swhash
->hlist_mutex
);
8817 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
8821 static void perf_event_init_cpu(int cpu
)
8823 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8825 mutex_lock(&swhash
->hlist_mutex
);
8826 swhash
->online
= true;
8827 if (swhash
->hlist_refcount
> 0) {
8828 struct swevent_hlist
*hlist
;
8830 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
8832 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8834 mutex_unlock(&swhash
->hlist_mutex
);
8837 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8838 static void __perf_event_exit_context(void *__info
)
8840 struct remove_event re
= { .detach_group
= true };
8841 struct perf_event_context
*ctx
= __info
;
8844 list_for_each_entry_rcu(re
.event
, &ctx
->event_list
, event_entry
)
8845 __perf_remove_from_context(&re
);
8849 static void perf_event_exit_cpu_context(int cpu
)
8851 struct perf_event_context
*ctx
;
8855 idx
= srcu_read_lock(&pmus_srcu
);
8856 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8857 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
8859 mutex_lock(&ctx
->mutex
);
8860 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
8861 mutex_unlock(&ctx
->mutex
);
8863 srcu_read_unlock(&pmus_srcu
, idx
);
8866 static void perf_event_exit_cpu(int cpu
)
8868 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8870 perf_event_exit_cpu_context(cpu
);
8872 mutex_lock(&swhash
->hlist_mutex
);
8873 swhash
->online
= false;
8874 swevent_hlist_release(swhash
);
8875 mutex_unlock(&swhash
->hlist_mutex
);
8878 static inline void perf_event_exit_cpu(int cpu
) { }
8882 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
8886 for_each_online_cpu(cpu
)
8887 perf_event_exit_cpu(cpu
);
8893 * Run the perf reboot notifier at the very last possible moment so that
8894 * the generic watchdog code runs as long as possible.
8896 static struct notifier_block perf_reboot_notifier
= {
8897 .notifier_call
= perf_reboot
,
8898 .priority
= INT_MIN
,
8902 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
8904 unsigned int cpu
= (long)hcpu
;
8906 switch (action
& ~CPU_TASKS_FROZEN
) {
8908 case CPU_UP_PREPARE
:
8909 case CPU_DOWN_FAILED
:
8910 perf_event_init_cpu(cpu
);
8913 case CPU_UP_CANCELED
:
8914 case CPU_DOWN_PREPARE
:
8915 perf_event_exit_cpu(cpu
);
8924 void __init
perf_event_init(void)
8930 perf_event_init_all_cpus();
8931 init_srcu_struct(&pmus_srcu
);
8932 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
8933 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
8934 perf_pmu_register(&perf_task_clock
, NULL
, -1);
8936 perf_cpu_notifier(perf_cpu_notify
);
8937 register_reboot_notifier(&perf_reboot_notifier
);
8939 ret
= init_hw_breakpoint();
8940 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
8942 /* do not patch jump label more than once per second */
8943 jump_label_rate_limit(&perf_sched_events
, HZ
);
8946 * Build time assertion that we keep the data_head at the intended
8947 * location. IOW, validation we got the __reserved[] size right.
8949 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
8953 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
8956 struct perf_pmu_events_attr
*pmu_attr
=
8957 container_of(attr
, struct perf_pmu_events_attr
, attr
);
8959 if (pmu_attr
->event_str
)
8960 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
8965 static int __init
perf_event_sysfs_init(void)
8970 mutex_lock(&pmus_lock
);
8972 ret
= bus_register(&pmu_bus
);
8976 list_for_each_entry(pmu
, &pmus
, entry
) {
8977 if (!pmu
->name
|| pmu
->type
< 0)
8980 ret
= pmu_dev_alloc(pmu
);
8981 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
8983 pmu_bus_running
= 1;
8987 mutex_unlock(&pmus_lock
);
8991 device_initcall(perf_event_sysfs_init
);
8993 #ifdef CONFIG_CGROUP_PERF
8994 static struct cgroup_subsys_state
*
8995 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8997 struct perf_cgroup
*jc
;
8999 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
9001 return ERR_PTR(-ENOMEM
);
9003 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
9006 return ERR_PTR(-ENOMEM
);
9012 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
9014 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
9016 free_percpu(jc
->info
);
9020 static int __perf_cgroup_move(void *info
)
9022 struct task_struct
*task
= info
;
9023 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
9027 static void perf_cgroup_attach(struct cgroup_subsys_state
*css
,
9028 struct cgroup_taskset
*tset
)
9030 struct task_struct
*task
;
9032 cgroup_taskset_for_each(task
, tset
)
9033 task_function_call(task
, __perf_cgroup_move
, task
);
9036 static void perf_cgroup_exit(struct cgroup_subsys_state
*css
,
9037 struct cgroup_subsys_state
*old_css
,
9038 struct task_struct
*task
)
9041 * cgroup_exit() is called in the copy_process() failure path.
9042 * Ignore this case since the task hasn't ran yet, this avoids
9043 * trying to poke a half freed task state from generic code.
9045 if (!(task
->flags
& PF_EXITING
))
9048 task_function_call(task
, __perf_cgroup_move
, task
);
9051 struct cgroup_subsys perf_event_cgrp_subsys
= {
9052 .css_alloc
= perf_cgroup_css_alloc
,
9053 .css_free
= perf_cgroup_css_free
,
9054 .exit
= perf_cgroup_exit
,
9055 .attach
= perf_cgroup_attach
,
9057 #endif /* CONFIG_CGROUP_PERF */