Merge branch 'drm-tda998x-devel' of git://git.armlinux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 struct perf_event_context *ctx = event->ctx;
260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
266
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
276 if (!task) {
277 cpu_function_call(event->cpu, event_function, &efs);
278 return;
279 }
280
281 if (task == TASK_TOMBSTONE)
282 return;
283
284 again:
285 if (!task_function_call(task, event_function, &efs))
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task == TASK_TOMBSTONE) {
295 raw_spin_unlock_irq(&ctx->lock);
296 return;
297 }
298 if (ctx->is_active) {
299 raw_spin_unlock_irq(&ctx->lock);
300 goto again;
301 }
302 func(event, NULL, ctx, data);
303 raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 PERF_FLAG_FD_OUTPUT |\
308 PERF_FLAG_PID_CGROUP |\
309 PERF_FLAG_FD_CLOEXEC)
310
311 /*
312 * branch priv levels that need permission checks
313 */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 (PERF_SAMPLE_BRANCH_KERNEL |\
316 PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319 EVENT_FLEXIBLE = 0x1,
320 EVENT_PINNED = 0x2,
321 EVENT_TIME = 0x4,
322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326 * perf_sched_events : >0 events exist
327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328 */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349
350 /*
351 * perf event paranoia level:
352 * -1 - not paranoid at all
353 * 0 - disallow raw tracepoint access for unpriv
354 * 1 - disallow cpu events for unpriv
355 * 2 - disallow kernel profiling for unpriv
356 */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361
362 /*
363 * max perf event sample rate
364 */
365 #define DEFAULT_MAX_SAMPLE_RATE 100000
366 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
368
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
373
374 static int perf_sample_allowed_ns __read_mostly =
375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376
377 static void update_perf_cpu_limits(void)
378 {
379 u64 tmp = perf_sample_period_ns;
380
381 tmp *= sysctl_perf_cpu_time_max_percent;
382 tmp = div_u64(tmp, 100);
383 if (!tmp)
384 tmp = 1;
385
386 WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392 void __user *buffer, size_t *lenp,
393 loff_t *ppos)
394 {
395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396
397 if (ret || !write)
398 return ret;
399
400 /*
401 * If throttling is disabled don't allow the write:
402 */
403 if (sysctl_perf_cpu_time_max_percent == 100 ||
404 sysctl_perf_cpu_time_max_percent == 0)
405 return -EINVAL;
406
407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409 update_perf_cpu_limits();
410
411 return 0;
412 }
413
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417 void __user *buffer, size_t *lenp,
418 loff_t *ppos)
419 {
420 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421
422 if (ret || !write)
423 return ret;
424
425 if (sysctl_perf_cpu_time_max_percent == 100 ||
426 sysctl_perf_cpu_time_max_percent == 0) {
427 printk(KERN_WARNING
428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429 WRITE_ONCE(perf_sample_allowed_ns, 0);
430 } else {
431 update_perf_cpu_limits();
432 }
433
434 return 0;
435 }
436
437 /*
438 * perf samples are done in some very critical code paths (NMIs).
439 * If they take too much CPU time, the system can lock up and not
440 * get any real work done. This will drop the sample rate when
441 * we detect that events are taking too long.
442 */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445
446 static u64 __report_avg;
447 static u64 __report_allowed;
448
449 static void perf_duration_warn(struct irq_work *w)
450 {
451 printk_ratelimited(KERN_INFO
452 "perf: interrupt took too long (%lld > %lld), lowering "
453 "kernel.perf_event_max_sample_rate to %d\n",
454 __report_avg, __report_allowed,
455 sysctl_perf_event_sample_rate);
456 }
457
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463 u64 running_len;
464 u64 avg_len;
465 u32 max;
466
467 if (max_len == 0)
468 return;
469
470 /* Decay the counter by 1 average sample. */
471 running_len = __this_cpu_read(running_sample_length);
472 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473 running_len += sample_len_ns;
474 __this_cpu_write(running_sample_length, running_len);
475
476 /*
477 * Note: this will be biased artifically low until we have
478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479 * from having to maintain a count.
480 */
481 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482 if (avg_len <= max_len)
483 return;
484
485 __report_avg = avg_len;
486 __report_allowed = max_len;
487
488 /*
489 * Compute a throttle threshold 25% below the current duration.
490 */
491 avg_len += avg_len / 4;
492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493 if (avg_len < max)
494 max /= (u32)avg_len;
495 else
496 max = 1;
497
498 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499 WRITE_ONCE(max_samples_per_tick, max);
500
501 sysctl_perf_event_sample_rate = max * HZ;
502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503
504 if (!irq_work_queue(&perf_duration_work)) {
505 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506 "kernel.perf_event_max_sample_rate to %d\n",
507 __report_avg, __report_allowed,
508 sysctl_perf_event_sample_rate);
509 }
510 }
511
512 static atomic64_t perf_event_id;
513
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515 enum event_type_t event_type);
516
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518 enum event_type_t event_type,
519 struct task_struct *task);
520
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523
524 void __weak perf_event_print_debug(void) { }
525
526 extern __weak const char *perf_pmu_name(void)
527 {
528 return "pmu";
529 }
530
531 static inline u64 perf_clock(void)
532 {
533 return local_clock();
534 }
535
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538 return event->clock();
539 }
540
541 #ifdef CONFIG_CGROUP_PERF
542
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546 struct perf_event_context *ctx = event->ctx;
547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548
549 /* @event doesn't care about cgroup */
550 if (!event->cgrp)
551 return true;
552
553 /* wants specific cgroup scope but @cpuctx isn't associated with any */
554 if (!cpuctx->cgrp)
555 return false;
556
557 /*
558 * Cgroup scoping is recursive. An event enabled for a cgroup is
559 * also enabled for all its descendant cgroups. If @cpuctx's
560 * cgroup is a descendant of @event's (the test covers identity
561 * case), it's a match.
562 */
563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564 event->cgrp->css.cgroup);
565 }
566
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569 css_put(&event->cgrp->css);
570 event->cgrp = NULL;
571 }
572
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575 return event->cgrp != NULL;
576 }
577
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580 struct perf_cgroup_info *t;
581
582 t = per_cpu_ptr(event->cgrp->info, event->cpu);
583 return t->time;
584 }
585
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588 struct perf_cgroup_info *info;
589 u64 now;
590
591 now = perf_clock();
592
593 info = this_cpu_ptr(cgrp->info);
594
595 info->time += now - info->timestamp;
596 info->timestamp = now;
597 }
598
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602 if (cgrp_out)
603 __update_cgrp_time(cgrp_out);
604 }
605
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608 struct perf_cgroup *cgrp;
609
610 /*
611 * ensure we access cgroup data only when needed and
612 * when we know the cgroup is pinned (css_get)
613 */
614 if (!is_cgroup_event(event))
615 return;
616
617 cgrp = perf_cgroup_from_task(current, event->ctx);
618 /*
619 * Do not update time when cgroup is not active
620 */
621 if (cgrp == event->cgrp)
622 __update_cgrp_time(event->cgrp);
623 }
624
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627 struct perf_event_context *ctx)
628 {
629 struct perf_cgroup *cgrp;
630 struct perf_cgroup_info *info;
631
632 /*
633 * ctx->lock held by caller
634 * ensure we do not access cgroup data
635 * unless we have the cgroup pinned (css_get)
636 */
637 if (!task || !ctx->nr_cgroups)
638 return;
639
640 cgrp = perf_cgroup_from_task(task, ctx);
641 info = this_cpu_ptr(cgrp->info);
642 info->timestamp = ctx->timestamp;
643 }
644
645 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
647
648 /*
649 * reschedule events based on the cgroup constraint of task.
650 *
651 * mode SWOUT : schedule out everything
652 * mode SWIN : schedule in based on cgroup for next
653 */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656 struct perf_cpu_context *cpuctx;
657 struct pmu *pmu;
658 unsigned long flags;
659
660 /*
661 * disable interrupts to avoid geting nr_cgroup
662 * changes via __perf_event_disable(). Also
663 * avoids preemption.
664 */
665 local_irq_save(flags);
666
667 /*
668 * we reschedule only in the presence of cgroup
669 * constrained events.
670 */
671
672 list_for_each_entry_rcu(pmu, &pmus, entry) {
673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674 if (cpuctx->unique_pmu != pmu)
675 continue; /* ensure we process each cpuctx once */
676
677 /*
678 * perf_cgroup_events says at least one
679 * context on this CPU has cgroup events.
680 *
681 * ctx->nr_cgroups reports the number of cgroup
682 * events for a context.
683 */
684 if (cpuctx->ctx.nr_cgroups > 0) {
685 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686 perf_pmu_disable(cpuctx->ctx.pmu);
687
688 if (mode & PERF_CGROUP_SWOUT) {
689 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690 /*
691 * must not be done before ctxswout due
692 * to event_filter_match() in event_sched_out()
693 */
694 cpuctx->cgrp = NULL;
695 }
696
697 if (mode & PERF_CGROUP_SWIN) {
698 WARN_ON_ONCE(cpuctx->cgrp);
699 /*
700 * set cgrp before ctxsw in to allow
701 * event_filter_match() to not have to pass
702 * task around
703 * we pass the cpuctx->ctx to perf_cgroup_from_task()
704 * because cgorup events are only per-cpu
705 */
706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708 }
709 perf_pmu_enable(cpuctx->ctx.pmu);
710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711 }
712 }
713
714 local_irq_restore(flags);
715 }
716
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718 struct task_struct *next)
719 {
720 struct perf_cgroup *cgrp1;
721 struct perf_cgroup *cgrp2 = NULL;
722
723 rcu_read_lock();
724 /*
725 * we come here when we know perf_cgroup_events > 0
726 * we do not need to pass the ctx here because we know
727 * we are holding the rcu lock
728 */
729 cgrp1 = perf_cgroup_from_task(task, NULL);
730 cgrp2 = perf_cgroup_from_task(next, NULL);
731
732 /*
733 * only schedule out current cgroup events if we know
734 * that we are switching to a different cgroup. Otherwise,
735 * do no touch the cgroup events.
736 */
737 if (cgrp1 != cgrp2)
738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739
740 rcu_read_unlock();
741 }
742
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744 struct task_struct *task)
745 {
746 struct perf_cgroup *cgrp1;
747 struct perf_cgroup *cgrp2 = NULL;
748
749 rcu_read_lock();
750 /*
751 * we come here when we know perf_cgroup_events > 0
752 * we do not need to pass the ctx here because we know
753 * we are holding the rcu lock
754 */
755 cgrp1 = perf_cgroup_from_task(task, NULL);
756 cgrp2 = perf_cgroup_from_task(prev, NULL);
757
758 /*
759 * only need to schedule in cgroup events if we are changing
760 * cgroup during ctxsw. Cgroup events were not scheduled
761 * out of ctxsw out if that was not the case.
762 */
763 if (cgrp1 != cgrp2)
764 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765
766 rcu_read_unlock();
767 }
768
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770 struct perf_event_attr *attr,
771 struct perf_event *group_leader)
772 {
773 struct perf_cgroup *cgrp;
774 struct cgroup_subsys_state *css;
775 struct fd f = fdget(fd);
776 int ret = 0;
777
778 if (!f.file)
779 return -EBADF;
780
781 css = css_tryget_online_from_dir(f.file->f_path.dentry,
782 &perf_event_cgrp_subsys);
783 if (IS_ERR(css)) {
784 ret = PTR_ERR(css);
785 goto out;
786 }
787
788 cgrp = container_of(css, struct perf_cgroup, css);
789 event->cgrp = cgrp;
790
791 /*
792 * all events in a group must monitor
793 * the same cgroup because a task belongs
794 * to only one perf cgroup at a time
795 */
796 if (group_leader && group_leader->cgrp != cgrp) {
797 perf_detach_cgroup(event);
798 ret = -EINVAL;
799 }
800 out:
801 fdput(f);
802 return ret;
803 }
804
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808 struct perf_cgroup_info *t;
809 t = per_cpu_ptr(event->cgrp->info, event->cpu);
810 event->shadow_ctx_time = now - t->timestamp;
811 }
812
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816 /*
817 * when the current task's perf cgroup does not match
818 * the event's, we need to remember to call the
819 * perf_mark_enable() function the first time a task with
820 * a matching perf cgroup is scheduled in.
821 */
822 if (is_cgroup_event(event) && !perf_cgroup_match(event))
823 event->cgrp_defer_enabled = 1;
824 }
825
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828 struct perf_event_context *ctx)
829 {
830 struct perf_event *sub;
831 u64 tstamp = perf_event_time(event);
832
833 if (!event->cgrp_defer_enabled)
834 return;
835
836 event->cgrp_defer_enabled = 0;
837
838 event->tstamp_enabled = tstamp - event->total_time_enabled;
839 list_for_each_entry(sub, &event->sibling_list, group_entry) {
840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842 sub->cgrp_defer_enabled = 0;
843 }
844 }
845 }
846
847 /*
848 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
849 * cleared when last cgroup event is removed.
850 */
851 static inline void
852 list_update_cgroup_event(struct perf_event *event,
853 struct perf_event_context *ctx, bool add)
854 {
855 struct perf_cpu_context *cpuctx;
856
857 if (!is_cgroup_event(event))
858 return;
859
860 if (add && ctx->nr_cgroups++)
861 return;
862 else if (!add && --ctx->nr_cgroups)
863 return;
864 /*
865 * Because cgroup events are always per-cpu events,
866 * this will always be called from the right CPU.
867 */
868 cpuctx = __get_cpu_context(ctx);
869 cpuctx->cgrp = add ? event->cgrp : NULL;
870 }
871
872 #else /* !CONFIG_CGROUP_PERF */
873
874 static inline bool
875 perf_cgroup_match(struct perf_event *event)
876 {
877 return true;
878 }
879
880 static inline void perf_detach_cgroup(struct perf_event *event)
881 {}
882
883 static inline int is_cgroup_event(struct perf_event *event)
884 {
885 return 0;
886 }
887
888 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
889 {
890 return 0;
891 }
892
893 static inline void update_cgrp_time_from_event(struct perf_event *event)
894 {
895 }
896
897 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
898 {
899 }
900
901 static inline void perf_cgroup_sched_out(struct task_struct *task,
902 struct task_struct *next)
903 {
904 }
905
906 static inline void perf_cgroup_sched_in(struct task_struct *prev,
907 struct task_struct *task)
908 {
909 }
910
911 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
912 struct perf_event_attr *attr,
913 struct perf_event *group_leader)
914 {
915 return -EINVAL;
916 }
917
918 static inline void
919 perf_cgroup_set_timestamp(struct task_struct *task,
920 struct perf_event_context *ctx)
921 {
922 }
923
924 void
925 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
926 {
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 }
933
934 static inline u64 perf_cgroup_event_time(struct perf_event *event)
935 {
936 return 0;
937 }
938
939 static inline void
940 perf_cgroup_defer_enabled(struct perf_event *event)
941 {
942 }
943
944 static inline void
945 perf_cgroup_mark_enabled(struct perf_event *event,
946 struct perf_event_context *ctx)
947 {
948 }
949
950 static inline void
951 list_update_cgroup_event(struct perf_event *event,
952 struct perf_event_context *ctx, bool add)
953 {
954 }
955
956 #endif
957
958 /*
959 * set default to be dependent on timer tick just
960 * like original code
961 */
962 #define PERF_CPU_HRTIMER (1000 / HZ)
963 /*
964 * function must be called with interrupts disbled
965 */
966 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
967 {
968 struct perf_cpu_context *cpuctx;
969 int rotations = 0;
970
971 WARN_ON(!irqs_disabled());
972
973 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
974 rotations = perf_rotate_context(cpuctx);
975
976 raw_spin_lock(&cpuctx->hrtimer_lock);
977 if (rotations)
978 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
979 else
980 cpuctx->hrtimer_active = 0;
981 raw_spin_unlock(&cpuctx->hrtimer_lock);
982
983 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
984 }
985
986 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
987 {
988 struct hrtimer *timer = &cpuctx->hrtimer;
989 struct pmu *pmu = cpuctx->ctx.pmu;
990 u64 interval;
991
992 /* no multiplexing needed for SW PMU */
993 if (pmu->task_ctx_nr == perf_sw_context)
994 return;
995
996 /*
997 * check default is sane, if not set then force to
998 * default interval (1/tick)
999 */
1000 interval = pmu->hrtimer_interval_ms;
1001 if (interval < 1)
1002 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1003
1004 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1005
1006 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1007 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1008 timer->function = perf_mux_hrtimer_handler;
1009 }
1010
1011 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1012 {
1013 struct hrtimer *timer = &cpuctx->hrtimer;
1014 struct pmu *pmu = cpuctx->ctx.pmu;
1015 unsigned long flags;
1016
1017 /* not for SW PMU */
1018 if (pmu->task_ctx_nr == perf_sw_context)
1019 return 0;
1020
1021 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1022 if (!cpuctx->hrtimer_active) {
1023 cpuctx->hrtimer_active = 1;
1024 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1025 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1026 }
1027 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1028
1029 return 0;
1030 }
1031
1032 void perf_pmu_disable(struct pmu *pmu)
1033 {
1034 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1035 if (!(*count)++)
1036 pmu->pmu_disable(pmu);
1037 }
1038
1039 void perf_pmu_enable(struct pmu *pmu)
1040 {
1041 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1042 if (!--(*count))
1043 pmu->pmu_enable(pmu);
1044 }
1045
1046 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1047
1048 /*
1049 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1050 * perf_event_task_tick() are fully serialized because they're strictly cpu
1051 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1052 * disabled, while perf_event_task_tick is called from IRQ context.
1053 */
1054 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1055 {
1056 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1057
1058 WARN_ON(!irqs_disabled());
1059
1060 WARN_ON(!list_empty(&ctx->active_ctx_list));
1061
1062 list_add(&ctx->active_ctx_list, head);
1063 }
1064
1065 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1066 {
1067 WARN_ON(!irqs_disabled());
1068
1069 WARN_ON(list_empty(&ctx->active_ctx_list));
1070
1071 list_del_init(&ctx->active_ctx_list);
1072 }
1073
1074 static void get_ctx(struct perf_event_context *ctx)
1075 {
1076 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1077 }
1078
1079 static void free_ctx(struct rcu_head *head)
1080 {
1081 struct perf_event_context *ctx;
1082
1083 ctx = container_of(head, struct perf_event_context, rcu_head);
1084 kfree(ctx->task_ctx_data);
1085 kfree(ctx);
1086 }
1087
1088 static void put_ctx(struct perf_event_context *ctx)
1089 {
1090 if (atomic_dec_and_test(&ctx->refcount)) {
1091 if (ctx->parent_ctx)
1092 put_ctx(ctx->parent_ctx);
1093 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1094 put_task_struct(ctx->task);
1095 call_rcu(&ctx->rcu_head, free_ctx);
1096 }
1097 }
1098
1099 /*
1100 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1101 * perf_pmu_migrate_context() we need some magic.
1102 *
1103 * Those places that change perf_event::ctx will hold both
1104 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1105 *
1106 * Lock ordering is by mutex address. There are two other sites where
1107 * perf_event_context::mutex nests and those are:
1108 *
1109 * - perf_event_exit_task_context() [ child , 0 ]
1110 * perf_event_exit_event()
1111 * put_event() [ parent, 1 ]
1112 *
1113 * - perf_event_init_context() [ parent, 0 ]
1114 * inherit_task_group()
1115 * inherit_group()
1116 * inherit_event()
1117 * perf_event_alloc()
1118 * perf_init_event()
1119 * perf_try_init_event() [ child , 1 ]
1120 *
1121 * While it appears there is an obvious deadlock here -- the parent and child
1122 * nesting levels are inverted between the two. This is in fact safe because
1123 * life-time rules separate them. That is an exiting task cannot fork, and a
1124 * spawning task cannot (yet) exit.
1125 *
1126 * But remember that that these are parent<->child context relations, and
1127 * migration does not affect children, therefore these two orderings should not
1128 * interact.
1129 *
1130 * The change in perf_event::ctx does not affect children (as claimed above)
1131 * because the sys_perf_event_open() case will install a new event and break
1132 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1133 * concerned with cpuctx and that doesn't have children.
1134 *
1135 * The places that change perf_event::ctx will issue:
1136 *
1137 * perf_remove_from_context();
1138 * synchronize_rcu();
1139 * perf_install_in_context();
1140 *
1141 * to affect the change. The remove_from_context() + synchronize_rcu() should
1142 * quiesce the event, after which we can install it in the new location. This
1143 * means that only external vectors (perf_fops, prctl) can perturb the event
1144 * while in transit. Therefore all such accessors should also acquire
1145 * perf_event_context::mutex to serialize against this.
1146 *
1147 * However; because event->ctx can change while we're waiting to acquire
1148 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1149 * function.
1150 *
1151 * Lock order:
1152 * cred_guard_mutex
1153 * task_struct::perf_event_mutex
1154 * perf_event_context::mutex
1155 * perf_event::child_mutex;
1156 * perf_event_context::lock
1157 * perf_event::mmap_mutex
1158 * mmap_sem
1159 */
1160 static struct perf_event_context *
1161 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1162 {
1163 struct perf_event_context *ctx;
1164
1165 again:
1166 rcu_read_lock();
1167 ctx = ACCESS_ONCE(event->ctx);
1168 if (!atomic_inc_not_zero(&ctx->refcount)) {
1169 rcu_read_unlock();
1170 goto again;
1171 }
1172 rcu_read_unlock();
1173
1174 mutex_lock_nested(&ctx->mutex, nesting);
1175 if (event->ctx != ctx) {
1176 mutex_unlock(&ctx->mutex);
1177 put_ctx(ctx);
1178 goto again;
1179 }
1180
1181 return ctx;
1182 }
1183
1184 static inline struct perf_event_context *
1185 perf_event_ctx_lock(struct perf_event *event)
1186 {
1187 return perf_event_ctx_lock_nested(event, 0);
1188 }
1189
1190 static void perf_event_ctx_unlock(struct perf_event *event,
1191 struct perf_event_context *ctx)
1192 {
1193 mutex_unlock(&ctx->mutex);
1194 put_ctx(ctx);
1195 }
1196
1197 /*
1198 * This must be done under the ctx->lock, such as to serialize against
1199 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1200 * calling scheduler related locks and ctx->lock nests inside those.
1201 */
1202 static __must_check struct perf_event_context *
1203 unclone_ctx(struct perf_event_context *ctx)
1204 {
1205 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1206
1207 lockdep_assert_held(&ctx->lock);
1208
1209 if (parent_ctx)
1210 ctx->parent_ctx = NULL;
1211 ctx->generation++;
1212
1213 return parent_ctx;
1214 }
1215
1216 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1217 {
1218 /*
1219 * only top level events have the pid namespace they were created in
1220 */
1221 if (event->parent)
1222 event = event->parent;
1223
1224 return task_tgid_nr_ns(p, event->ns);
1225 }
1226
1227 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1228 {
1229 /*
1230 * only top level events have the pid namespace they were created in
1231 */
1232 if (event->parent)
1233 event = event->parent;
1234
1235 return task_pid_nr_ns(p, event->ns);
1236 }
1237
1238 /*
1239 * If we inherit events we want to return the parent event id
1240 * to userspace.
1241 */
1242 static u64 primary_event_id(struct perf_event *event)
1243 {
1244 u64 id = event->id;
1245
1246 if (event->parent)
1247 id = event->parent->id;
1248
1249 return id;
1250 }
1251
1252 /*
1253 * Get the perf_event_context for a task and lock it.
1254 *
1255 * This has to cope with with the fact that until it is locked,
1256 * the context could get moved to another task.
1257 */
1258 static struct perf_event_context *
1259 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1260 {
1261 struct perf_event_context *ctx;
1262
1263 retry:
1264 /*
1265 * One of the few rules of preemptible RCU is that one cannot do
1266 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1267 * part of the read side critical section was irqs-enabled -- see
1268 * rcu_read_unlock_special().
1269 *
1270 * Since ctx->lock nests under rq->lock we must ensure the entire read
1271 * side critical section has interrupts disabled.
1272 */
1273 local_irq_save(*flags);
1274 rcu_read_lock();
1275 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1276 if (ctx) {
1277 /*
1278 * If this context is a clone of another, it might
1279 * get swapped for another underneath us by
1280 * perf_event_task_sched_out, though the
1281 * rcu_read_lock() protects us from any context
1282 * getting freed. Lock the context and check if it
1283 * got swapped before we could get the lock, and retry
1284 * if so. If we locked the right context, then it
1285 * can't get swapped on us any more.
1286 */
1287 raw_spin_lock(&ctx->lock);
1288 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1289 raw_spin_unlock(&ctx->lock);
1290 rcu_read_unlock();
1291 local_irq_restore(*flags);
1292 goto retry;
1293 }
1294
1295 if (ctx->task == TASK_TOMBSTONE ||
1296 !atomic_inc_not_zero(&ctx->refcount)) {
1297 raw_spin_unlock(&ctx->lock);
1298 ctx = NULL;
1299 } else {
1300 WARN_ON_ONCE(ctx->task != task);
1301 }
1302 }
1303 rcu_read_unlock();
1304 if (!ctx)
1305 local_irq_restore(*flags);
1306 return ctx;
1307 }
1308
1309 /*
1310 * Get the context for a task and increment its pin_count so it
1311 * can't get swapped to another task. This also increments its
1312 * reference count so that the context can't get freed.
1313 */
1314 static struct perf_event_context *
1315 perf_pin_task_context(struct task_struct *task, int ctxn)
1316 {
1317 struct perf_event_context *ctx;
1318 unsigned long flags;
1319
1320 ctx = perf_lock_task_context(task, ctxn, &flags);
1321 if (ctx) {
1322 ++ctx->pin_count;
1323 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1324 }
1325 return ctx;
1326 }
1327
1328 static void perf_unpin_context(struct perf_event_context *ctx)
1329 {
1330 unsigned long flags;
1331
1332 raw_spin_lock_irqsave(&ctx->lock, flags);
1333 --ctx->pin_count;
1334 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1335 }
1336
1337 /*
1338 * Update the record of the current time in a context.
1339 */
1340 static void update_context_time(struct perf_event_context *ctx)
1341 {
1342 u64 now = perf_clock();
1343
1344 ctx->time += now - ctx->timestamp;
1345 ctx->timestamp = now;
1346 }
1347
1348 static u64 perf_event_time(struct perf_event *event)
1349 {
1350 struct perf_event_context *ctx = event->ctx;
1351
1352 if (is_cgroup_event(event))
1353 return perf_cgroup_event_time(event);
1354
1355 return ctx ? ctx->time : 0;
1356 }
1357
1358 /*
1359 * Update the total_time_enabled and total_time_running fields for a event.
1360 */
1361 static void update_event_times(struct perf_event *event)
1362 {
1363 struct perf_event_context *ctx = event->ctx;
1364 u64 run_end;
1365
1366 lockdep_assert_held(&ctx->lock);
1367
1368 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1369 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1370 return;
1371
1372 /*
1373 * in cgroup mode, time_enabled represents
1374 * the time the event was enabled AND active
1375 * tasks were in the monitored cgroup. This is
1376 * independent of the activity of the context as
1377 * there may be a mix of cgroup and non-cgroup events.
1378 *
1379 * That is why we treat cgroup events differently
1380 * here.
1381 */
1382 if (is_cgroup_event(event))
1383 run_end = perf_cgroup_event_time(event);
1384 else if (ctx->is_active)
1385 run_end = ctx->time;
1386 else
1387 run_end = event->tstamp_stopped;
1388
1389 event->total_time_enabled = run_end - event->tstamp_enabled;
1390
1391 if (event->state == PERF_EVENT_STATE_INACTIVE)
1392 run_end = event->tstamp_stopped;
1393 else
1394 run_end = perf_event_time(event);
1395
1396 event->total_time_running = run_end - event->tstamp_running;
1397
1398 }
1399
1400 /*
1401 * Update total_time_enabled and total_time_running for all events in a group.
1402 */
1403 static void update_group_times(struct perf_event *leader)
1404 {
1405 struct perf_event *event;
1406
1407 update_event_times(leader);
1408 list_for_each_entry(event, &leader->sibling_list, group_entry)
1409 update_event_times(event);
1410 }
1411
1412 static struct list_head *
1413 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1414 {
1415 if (event->attr.pinned)
1416 return &ctx->pinned_groups;
1417 else
1418 return &ctx->flexible_groups;
1419 }
1420
1421 /*
1422 * Add a event from the lists for its context.
1423 * Must be called with ctx->mutex and ctx->lock held.
1424 */
1425 static void
1426 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1427 {
1428
1429 lockdep_assert_held(&ctx->lock);
1430
1431 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1432 event->attach_state |= PERF_ATTACH_CONTEXT;
1433
1434 /*
1435 * If we're a stand alone event or group leader, we go to the context
1436 * list, group events are kept attached to the group so that
1437 * perf_group_detach can, at all times, locate all siblings.
1438 */
1439 if (event->group_leader == event) {
1440 struct list_head *list;
1441
1442 if (is_software_event(event))
1443 event->group_flags |= PERF_GROUP_SOFTWARE;
1444
1445 list = ctx_group_list(event, ctx);
1446 list_add_tail(&event->group_entry, list);
1447 }
1448
1449 list_update_cgroup_event(event, ctx, true);
1450
1451 list_add_rcu(&event->event_entry, &ctx->event_list);
1452 ctx->nr_events++;
1453 if (event->attr.inherit_stat)
1454 ctx->nr_stat++;
1455
1456 ctx->generation++;
1457 }
1458
1459 /*
1460 * Initialize event state based on the perf_event_attr::disabled.
1461 */
1462 static inline void perf_event__state_init(struct perf_event *event)
1463 {
1464 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1465 PERF_EVENT_STATE_INACTIVE;
1466 }
1467
1468 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1469 {
1470 int entry = sizeof(u64); /* value */
1471 int size = 0;
1472 int nr = 1;
1473
1474 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1475 size += sizeof(u64);
1476
1477 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1478 size += sizeof(u64);
1479
1480 if (event->attr.read_format & PERF_FORMAT_ID)
1481 entry += sizeof(u64);
1482
1483 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1484 nr += nr_siblings;
1485 size += sizeof(u64);
1486 }
1487
1488 size += entry * nr;
1489 event->read_size = size;
1490 }
1491
1492 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1493 {
1494 struct perf_sample_data *data;
1495 u16 size = 0;
1496
1497 if (sample_type & PERF_SAMPLE_IP)
1498 size += sizeof(data->ip);
1499
1500 if (sample_type & PERF_SAMPLE_ADDR)
1501 size += sizeof(data->addr);
1502
1503 if (sample_type & PERF_SAMPLE_PERIOD)
1504 size += sizeof(data->period);
1505
1506 if (sample_type & PERF_SAMPLE_WEIGHT)
1507 size += sizeof(data->weight);
1508
1509 if (sample_type & PERF_SAMPLE_READ)
1510 size += event->read_size;
1511
1512 if (sample_type & PERF_SAMPLE_DATA_SRC)
1513 size += sizeof(data->data_src.val);
1514
1515 if (sample_type & PERF_SAMPLE_TRANSACTION)
1516 size += sizeof(data->txn);
1517
1518 event->header_size = size;
1519 }
1520
1521 /*
1522 * Called at perf_event creation and when events are attached/detached from a
1523 * group.
1524 */
1525 static void perf_event__header_size(struct perf_event *event)
1526 {
1527 __perf_event_read_size(event,
1528 event->group_leader->nr_siblings);
1529 __perf_event_header_size(event, event->attr.sample_type);
1530 }
1531
1532 static void perf_event__id_header_size(struct perf_event *event)
1533 {
1534 struct perf_sample_data *data;
1535 u64 sample_type = event->attr.sample_type;
1536 u16 size = 0;
1537
1538 if (sample_type & PERF_SAMPLE_TID)
1539 size += sizeof(data->tid_entry);
1540
1541 if (sample_type & PERF_SAMPLE_TIME)
1542 size += sizeof(data->time);
1543
1544 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1545 size += sizeof(data->id);
1546
1547 if (sample_type & PERF_SAMPLE_ID)
1548 size += sizeof(data->id);
1549
1550 if (sample_type & PERF_SAMPLE_STREAM_ID)
1551 size += sizeof(data->stream_id);
1552
1553 if (sample_type & PERF_SAMPLE_CPU)
1554 size += sizeof(data->cpu_entry);
1555
1556 event->id_header_size = size;
1557 }
1558
1559 static bool perf_event_validate_size(struct perf_event *event)
1560 {
1561 /*
1562 * The values computed here will be over-written when we actually
1563 * attach the event.
1564 */
1565 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1566 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1567 perf_event__id_header_size(event);
1568
1569 /*
1570 * Sum the lot; should not exceed the 64k limit we have on records.
1571 * Conservative limit to allow for callchains and other variable fields.
1572 */
1573 if (event->read_size + event->header_size +
1574 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1575 return false;
1576
1577 return true;
1578 }
1579
1580 static void perf_group_attach(struct perf_event *event)
1581 {
1582 struct perf_event *group_leader = event->group_leader, *pos;
1583
1584 /*
1585 * We can have double attach due to group movement in perf_event_open.
1586 */
1587 if (event->attach_state & PERF_ATTACH_GROUP)
1588 return;
1589
1590 event->attach_state |= PERF_ATTACH_GROUP;
1591
1592 if (group_leader == event)
1593 return;
1594
1595 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1596
1597 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1598 !is_software_event(event))
1599 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1600
1601 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1602 group_leader->nr_siblings++;
1603
1604 perf_event__header_size(group_leader);
1605
1606 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1607 perf_event__header_size(pos);
1608 }
1609
1610 /*
1611 * Remove a event from the lists for its context.
1612 * Must be called with ctx->mutex and ctx->lock held.
1613 */
1614 static void
1615 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1616 {
1617 WARN_ON_ONCE(event->ctx != ctx);
1618 lockdep_assert_held(&ctx->lock);
1619
1620 /*
1621 * We can have double detach due to exit/hot-unplug + close.
1622 */
1623 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1624 return;
1625
1626 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1627
1628 list_update_cgroup_event(event, ctx, false);
1629
1630 ctx->nr_events--;
1631 if (event->attr.inherit_stat)
1632 ctx->nr_stat--;
1633
1634 list_del_rcu(&event->event_entry);
1635
1636 if (event->group_leader == event)
1637 list_del_init(&event->group_entry);
1638
1639 update_group_times(event);
1640
1641 /*
1642 * If event was in error state, then keep it
1643 * that way, otherwise bogus counts will be
1644 * returned on read(). The only way to get out
1645 * of error state is by explicit re-enabling
1646 * of the event
1647 */
1648 if (event->state > PERF_EVENT_STATE_OFF)
1649 event->state = PERF_EVENT_STATE_OFF;
1650
1651 ctx->generation++;
1652 }
1653
1654 static void perf_group_detach(struct perf_event *event)
1655 {
1656 struct perf_event *sibling, *tmp;
1657 struct list_head *list = NULL;
1658
1659 /*
1660 * We can have double detach due to exit/hot-unplug + close.
1661 */
1662 if (!(event->attach_state & PERF_ATTACH_GROUP))
1663 return;
1664
1665 event->attach_state &= ~PERF_ATTACH_GROUP;
1666
1667 /*
1668 * If this is a sibling, remove it from its group.
1669 */
1670 if (event->group_leader != event) {
1671 list_del_init(&event->group_entry);
1672 event->group_leader->nr_siblings--;
1673 goto out;
1674 }
1675
1676 if (!list_empty(&event->group_entry))
1677 list = &event->group_entry;
1678
1679 /*
1680 * If this was a group event with sibling events then
1681 * upgrade the siblings to singleton events by adding them
1682 * to whatever list we are on.
1683 */
1684 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1685 if (list)
1686 list_move_tail(&sibling->group_entry, list);
1687 sibling->group_leader = sibling;
1688
1689 /* Inherit group flags from the previous leader */
1690 sibling->group_flags = event->group_flags;
1691
1692 WARN_ON_ONCE(sibling->ctx != event->ctx);
1693 }
1694
1695 out:
1696 perf_event__header_size(event->group_leader);
1697
1698 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1699 perf_event__header_size(tmp);
1700 }
1701
1702 static bool is_orphaned_event(struct perf_event *event)
1703 {
1704 return event->state == PERF_EVENT_STATE_DEAD;
1705 }
1706
1707 static inline int __pmu_filter_match(struct perf_event *event)
1708 {
1709 struct pmu *pmu = event->pmu;
1710 return pmu->filter_match ? pmu->filter_match(event) : 1;
1711 }
1712
1713 /*
1714 * Check whether we should attempt to schedule an event group based on
1715 * PMU-specific filtering. An event group can consist of HW and SW events,
1716 * potentially with a SW leader, so we must check all the filters, to
1717 * determine whether a group is schedulable:
1718 */
1719 static inline int pmu_filter_match(struct perf_event *event)
1720 {
1721 struct perf_event *child;
1722
1723 if (!__pmu_filter_match(event))
1724 return 0;
1725
1726 list_for_each_entry(child, &event->sibling_list, group_entry) {
1727 if (!__pmu_filter_match(child))
1728 return 0;
1729 }
1730
1731 return 1;
1732 }
1733
1734 static inline int
1735 event_filter_match(struct perf_event *event)
1736 {
1737 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1738 perf_cgroup_match(event) && pmu_filter_match(event);
1739 }
1740
1741 static void
1742 event_sched_out(struct perf_event *event,
1743 struct perf_cpu_context *cpuctx,
1744 struct perf_event_context *ctx)
1745 {
1746 u64 tstamp = perf_event_time(event);
1747 u64 delta;
1748
1749 WARN_ON_ONCE(event->ctx != ctx);
1750 lockdep_assert_held(&ctx->lock);
1751
1752 /*
1753 * An event which could not be activated because of
1754 * filter mismatch still needs to have its timings
1755 * maintained, otherwise bogus information is return
1756 * via read() for time_enabled, time_running:
1757 */
1758 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1759 !event_filter_match(event)) {
1760 delta = tstamp - event->tstamp_stopped;
1761 event->tstamp_running += delta;
1762 event->tstamp_stopped = tstamp;
1763 }
1764
1765 if (event->state != PERF_EVENT_STATE_ACTIVE)
1766 return;
1767
1768 perf_pmu_disable(event->pmu);
1769
1770 event->tstamp_stopped = tstamp;
1771 event->pmu->del(event, 0);
1772 event->oncpu = -1;
1773 event->state = PERF_EVENT_STATE_INACTIVE;
1774 if (event->pending_disable) {
1775 event->pending_disable = 0;
1776 event->state = PERF_EVENT_STATE_OFF;
1777 }
1778
1779 if (!is_software_event(event))
1780 cpuctx->active_oncpu--;
1781 if (!--ctx->nr_active)
1782 perf_event_ctx_deactivate(ctx);
1783 if (event->attr.freq && event->attr.sample_freq)
1784 ctx->nr_freq--;
1785 if (event->attr.exclusive || !cpuctx->active_oncpu)
1786 cpuctx->exclusive = 0;
1787
1788 perf_pmu_enable(event->pmu);
1789 }
1790
1791 static void
1792 group_sched_out(struct perf_event *group_event,
1793 struct perf_cpu_context *cpuctx,
1794 struct perf_event_context *ctx)
1795 {
1796 struct perf_event *event;
1797 int state = group_event->state;
1798
1799 event_sched_out(group_event, cpuctx, ctx);
1800
1801 /*
1802 * Schedule out siblings (if any):
1803 */
1804 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1805 event_sched_out(event, cpuctx, ctx);
1806
1807 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1808 cpuctx->exclusive = 0;
1809 }
1810
1811 #define DETACH_GROUP 0x01UL
1812
1813 /*
1814 * Cross CPU call to remove a performance event
1815 *
1816 * We disable the event on the hardware level first. After that we
1817 * remove it from the context list.
1818 */
1819 static void
1820 __perf_remove_from_context(struct perf_event *event,
1821 struct perf_cpu_context *cpuctx,
1822 struct perf_event_context *ctx,
1823 void *info)
1824 {
1825 unsigned long flags = (unsigned long)info;
1826
1827 event_sched_out(event, cpuctx, ctx);
1828 if (flags & DETACH_GROUP)
1829 perf_group_detach(event);
1830 list_del_event(event, ctx);
1831
1832 if (!ctx->nr_events && ctx->is_active) {
1833 ctx->is_active = 0;
1834 if (ctx->task) {
1835 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1836 cpuctx->task_ctx = NULL;
1837 }
1838 }
1839 }
1840
1841 /*
1842 * Remove the event from a task's (or a CPU's) list of events.
1843 *
1844 * If event->ctx is a cloned context, callers must make sure that
1845 * every task struct that event->ctx->task could possibly point to
1846 * remains valid. This is OK when called from perf_release since
1847 * that only calls us on the top-level context, which can't be a clone.
1848 * When called from perf_event_exit_task, it's OK because the
1849 * context has been detached from its task.
1850 */
1851 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1852 {
1853 lockdep_assert_held(&event->ctx->mutex);
1854
1855 event_function_call(event, __perf_remove_from_context, (void *)flags);
1856 }
1857
1858 /*
1859 * Cross CPU call to disable a performance event
1860 */
1861 static void __perf_event_disable(struct perf_event *event,
1862 struct perf_cpu_context *cpuctx,
1863 struct perf_event_context *ctx,
1864 void *info)
1865 {
1866 if (event->state < PERF_EVENT_STATE_INACTIVE)
1867 return;
1868
1869 update_context_time(ctx);
1870 update_cgrp_time_from_event(event);
1871 update_group_times(event);
1872 if (event == event->group_leader)
1873 group_sched_out(event, cpuctx, ctx);
1874 else
1875 event_sched_out(event, cpuctx, ctx);
1876 event->state = PERF_EVENT_STATE_OFF;
1877 }
1878
1879 /*
1880 * Disable a event.
1881 *
1882 * If event->ctx is a cloned context, callers must make sure that
1883 * every task struct that event->ctx->task could possibly point to
1884 * remains valid. This condition is satisifed when called through
1885 * perf_event_for_each_child or perf_event_for_each because they
1886 * hold the top-level event's child_mutex, so any descendant that
1887 * goes to exit will block in perf_event_exit_event().
1888 *
1889 * When called from perf_pending_event it's OK because event->ctx
1890 * is the current context on this CPU and preemption is disabled,
1891 * hence we can't get into perf_event_task_sched_out for this context.
1892 */
1893 static void _perf_event_disable(struct perf_event *event)
1894 {
1895 struct perf_event_context *ctx = event->ctx;
1896
1897 raw_spin_lock_irq(&ctx->lock);
1898 if (event->state <= PERF_EVENT_STATE_OFF) {
1899 raw_spin_unlock_irq(&ctx->lock);
1900 return;
1901 }
1902 raw_spin_unlock_irq(&ctx->lock);
1903
1904 event_function_call(event, __perf_event_disable, NULL);
1905 }
1906
1907 void perf_event_disable_local(struct perf_event *event)
1908 {
1909 event_function_local(event, __perf_event_disable, NULL);
1910 }
1911
1912 /*
1913 * Strictly speaking kernel users cannot create groups and therefore this
1914 * interface does not need the perf_event_ctx_lock() magic.
1915 */
1916 void perf_event_disable(struct perf_event *event)
1917 {
1918 struct perf_event_context *ctx;
1919
1920 ctx = perf_event_ctx_lock(event);
1921 _perf_event_disable(event);
1922 perf_event_ctx_unlock(event, ctx);
1923 }
1924 EXPORT_SYMBOL_GPL(perf_event_disable);
1925
1926 static void perf_set_shadow_time(struct perf_event *event,
1927 struct perf_event_context *ctx,
1928 u64 tstamp)
1929 {
1930 /*
1931 * use the correct time source for the time snapshot
1932 *
1933 * We could get by without this by leveraging the
1934 * fact that to get to this function, the caller
1935 * has most likely already called update_context_time()
1936 * and update_cgrp_time_xx() and thus both timestamp
1937 * are identical (or very close). Given that tstamp is,
1938 * already adjusted for cgroup, we could say that:
1939 * tstamp - ctx->timestamp
1940 * is equivalent to
1941 * tstamp - cgrp->timestamp.
1942 *
1943 * Then, in perf_output_read(), the calculation would
1944 * work with no changes because:
1945 * - event is guaranteed scheduled in
1946 * - no scheduled out in between
1947 * - thus the timestamp would be the same
1948 *
1949 * But this is a bit hairy.
1950 *
1951 * So instead, we have an explicit cgroup call to remain
1952 * within the time time source all along. We believe it
1953 * is cleaner and simpler to understand.
1954 */
1955 if (is_cgroup_event(event))
1956 perf_cgroup_set_shadow_time(event, tstamp);
1957 else
1958 event->shadow_ctx_time = tstamp - ctx->timestamp;
1959 }
1960
1961 #define MAX_INTERRUPTS (~0ULL)
1962
1963 static void perf_log_throttle(struct perf_event *event, int enable);
1964 static void perf_log_itrace_start(struct perf_event *event);
1965
1966 static int
1967 event_sched_in(struct perf_event *event,
1968 struct perf_cpu_context *cpuctx,
1969 struct perf_event_context *ctx)
1970 {
1971 u64 tstamp = perf_event_time(event);
1972 int ret = 0;
1973
1974 lockdep_assert_held(&ctx->lock);
1975
1976 if (event->state <= PERF_EVENT_STATE_OFF)
1977 return 0;
1978
1979 WRITE_ONCE(event->oncpu, smp_processor_id());
1980 /*
1981 * Order event::oncpu write to happen before the ACTIVE state
1982 * is visible.
1983 */
1984 smp_wmb();
1985 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1986
1987 /*
1988 * Unthrottle events, since we scheduled we might have missed several
1989 * ticks already, also for a heavily scheduling task there is little
1990 * guarantee it'll get a tick in a timely manner.
1991 */
1992 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1993 perf_log_throttle(event, 1);
1994 event->hw.interrupts = 0;
1995 }
1996
1997 /*
1998 * The new state must be visible before we turn it on in the hardware:
1999 */
2000 smp_wmb();
2001
2002 perf_pmu_disable(event->pmu);
2003
2004 perf_set_shadow_time(event, ctx, tstamp);
2005
2006 perf_log_itrace_start(event);
2007
2008 if (event->pmu->add(event, PERF_EF_START)) {
2009 event->state = PERF_EVENT_STATE_INACTIVE;
2010 event->oncpu = -1;
2011 ret = -EAGAIN;
2012 goto out;
2013 }
2014
2015 event->tstamp_running += tstamp - event->tstamp_stopped;
2016
2017 if (!is_software_event(event))
2018 cpuctx->active_oncpu++;
2019 if (!ctx->nr_active++)
2020 perf_event_ctx_activate(ctx);
2021 if (event->attr.freq && event->attr.sample_freq)
2022 ctx->nr_freq++;
2023
2024 if (event->attr.exclusive)
2025 cpuctx->exclusive = 1;
2026
2027 out:
2028 perf_pmu_enable(event->pmu);
2029
2030 return ret;
2031 }
2032
2033 static int
2034 group_sched_in(struct perf_event *group_event,
2035 struct perf_cpu_context *cpuctx,
2036 struct perf_event_context *ctx)
2037 {
2038 struct perf_event *event, *partial_group = NULL;
2039 struct pmu *pmu = ctx->pmu;
2040 u64 now = ctx->time;
2041 bool simulate = false;
2042
2043 if (group_event->state == PERF_EVENT_STATE_OFF)
2044 return 0;
2045
2046 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2047
2048 if (event_sched_in(group_event, cpuctx, ctx)) {
2049 pmu->cancel_txn(pmu);
2050 perf_mux_hrtimer_restart(cpuctx);
2051 return -EAGAIN;
2052 }
2053
2054 /*
2055 * Schedule in siblings as one group (if any):
2056 */
2057 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2058 if (event_sched_in(event, cpuctx, ctx)) {
2059 partial_group = event;
2060 goto group_error;
2061 }
2062 }
2063
2064 if (!pmu->commit_txn(pmu))
2065 return 0;
2066
2067 group_error:
2068 /*
2069 * Groups can be scheduled in as one unit only, so undo any
2070 * partial group before returning:
2071 * The events up to the failed event are scheduled out normally,
2072 * tstamp_stopped will be updated.
2073 *
2074 * The failed events and the remaining siblings need to have
2075 * their timings updated as if they had gone thru event_sched_in()
2076 * and event_sched_out(). This is required to get consistent timings
2077 * across the group. This also takes care of the case where the group
2078 * could never be scheduled by ensuring tstamp_stopped is set to mark
2079 * the time the event was actually stopped, such that time delta
2080 * calculation in update_event_times() is correct.
2081 */
2082 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2083 if (event == partial_group)
2084 simulate = true;
2085
2086 if (simulate) {
2087 event->tstamp_running += now - event->tstamp_stopped;
2088 event->tstamp_stopped = now;
2089 } else {
2090 event_sched_out(event, cpuctx, ctx);
2091 }
2092 }
2093 event_sched_out(group_event, cpuctx, ctx);
2094
2095 pmu->cancel_txn(pmu);
2096
2097 perf_mux_hrtimer_restart(cpuctx);
2098
2099 return -EAGAIN;
2100 }
2101
2102 /*
2103 * Work out whether we can put this event group on the CPU now.
2104 */
2105 static int group_can_go_on(struct perf_event *event,
2106 struct perf_cpu_context *cpuctx,
2107 int can_add_hw)
2108 {
2109 /*
2110 * Groups consisting entirely of software events can always go on.
2111 */
2112 if (event->group_flags & PERF_GROUP_SOFTWARE)
2113 return 1;
2114 /*
2115 * If an exclusive group is already on, no other hardware
2116 * events can go on.
2117 */
2118 if (cpuctx->exclusive)
2119 return 0;
2120 /*
2121 * If this group is exclusive and there are already
2122 * events on the CPU, it can't go on.
2123 */
2124 if (event->attr.exclusive && cpuctx->active_oncpu)
2125 return 0;
2126 /*
2127 * Otherwise, try to add it if all previous groups were able
2128 * to go on.
2129 */
2130 return can_add_hw;
2131 }
2132
2133 static void add_event_to_ctx(struct perf_event *event,
2134 struct perf_event_context *ctx)
2135 {
2136 u64 tstamp = perf_event_time(event);
2137
2138 list_add_event(event, ctx);
2139 perf_group_attach(event);
2140 event->tstamp_enabled = tstamp;
2141 event->tstamp_running = tstamp;
2142 event->tstamp_stopped = tstamp;
2143 }
2144
2145 static void ctx_sched_out(struct perf_event_context *ctx,
2146 struct perf_cpu_context *cpuctx,
2147 enum event_type_t event_type);
2148 static void
2149 ctx_sched_in(struct perf_event_context *ctx,
2150 struct perf_cpu_context *cpuctx,
2151 enum event_type_t event_type,
2152 struct task_struct *task);
2153
2154 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2155 struct perf_event_context *ctx)
2156 {
2157 if (!cpuctx->task_ctx)
2158 return;
2159
2160 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2161 return;
2162
2163 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2164 }
2165
2166 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2167 struct perf_event_context *ctx,
2168 struct task_struct *task)
2169 {
2170 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2171 if (ctx)
2172 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2173 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2174 if (ctx)
2175 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2176 }
2177
2178 static void ctx_resched(struct perf_cpu_context *cpuctx,
2179 struct perf_event_context *task_ctx)
2180 {
2181 perf_pmu_disable(cpuctx->ctx.pmu);
2182 if (task_ctx)
2183 task_ctx_sched_out(cpuctx, task_ctx);
2184 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2185 perf_event_sched_in(cpuctx, task_ctx, current);
2186 perf_pmu_enable(cpuctx->ctx.pmu);
2187 }
2188
2189 /*
2190 * Cross CPU call to install and enable a performance event
2191 *
2192 * Very similar to remote_function() + event_function() but cannot assume that
2193 * things like ctx->is_active and cpuctx->task_ctx are set.
2194 */
2195 static int __perf_install_in_context(void *info)
2196 {
2197 struct perf_event *event = info;
2198 struct perf_event_context *ctx = event->ctx;
2199 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2200 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2201 bool activate = true;
2202 int ret = 0;
2203
2204 raw_spin_lock(&cpuctx->ctx.lock);
2205 if (ctx->task) {
2206 raw_spin_lock(&ctx->lock);
2207 task_ctx = ctx;
2208
2209 /* If we're on the wrong CPU, try again */
2210 if (task_cpu(ctx->task) != smp_processor_id()) {
2211 ret = -ESRCH;
2212 goto unlock;
2213 }
2214
2215 /*
2216 * If we're on the right CPU, see if the task we target is
2217 * current, if not we don't have to activate the ctx, a future
2218 * context switch will do that for us.
2219 */
2220 if (ctx->task != current)
2221 activate = false;
2222 else
2223 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2224
2225 } else if (task_ctx) {
2226 raw_spin_lock(&task_ctx->lock);
2227 }
2228
2229 if (activate) {
2230 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2231 add_event_to_ctx(event, ctx);
2232 ctx_resched(cpuctx, task_ctx);
2233 } else {
2234 add_event_to_ctx(event, ctx);
2235 }
2236
2237 unlock:
2238 perf_ctx_unlock(cpuctx, task_ctx);
2239
2240 return ret;
2241 }
2242
2243 /*
2244 * Attach a performance event to a context.
2245 *
2246 * Very similar to event_function_call, see comment there.
2247 */
2248 static void
2249 perf_install_in_context(struct perf_event_context *ctx,
2250 struct perf_event *event,
2251 int cpu)
2252 {
2253 struct task_struct *task = READ_ONCE(ctx->task);
2254
2255 lockdep_assert_held(&ctx->mutex);
2256
2257 if (event->cpu != -1)
2258 event->cpu = cpu;
2259
2260 /*
2261 * Ensures that if we can observe event->ctx, both the event and ctx
2262 * will be 'complete'. See perf_iterate_sb_cpu().
2263 */
2264 smp_store_release(&event->ctx, ctx);
2265
2266 if (!task) {
2267 cpu_function_call(cpu, __perf_install_in_context, event);
2268 return;
2269 }
2270
2271 /*
2272 * Should not happen, we validate the ctx is still alive before calling.
2273 */
2274 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2275 return;
2276
2277 /*
2278 * Installing events is tricky because we cannot rely on ctx->is_active
2279 * to be set in case this is the nr_events 0 -> 1 transition.
2280 */
2281 again:
2282 /*
2283 * Cannot use task_function_call() because we need to run on the task's
2284 * CPU regardless of whether its current or not.
2285 */
2286 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2287 return;
2288
2289 raw_spin_lock_irq(&ctx->lock);
2290 task = ctx->task;
2291 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2292 /*
2293 * Cannot happen because we already checked above (which also
2294 * cannot happen), and we hold ctx->mutex, which serializes us
2295 * against perf_event_exit_task_context().
2296 */
2297 raw_spin_unlock_irq(&ctx->lock);
2298 return;
2299 }
2300 raw_spin_unlock_irq(&ctx->lock);
2301 /*
2302 * Since !ctx->is_active doesn't mean anything, we must IPI
2303 * unconditionally.
2304 */
2305 goto again;
2306 }
2307
2308 /*
2309 * Put a event into inactive state and update time fields.
2310 * Enabling the leader of a group effectively enables all
2311 * the group members that aren't explicitly disabled, so we
2312 * have to update their ->tstamp_enabled also.
2313 * Note: this works for group members as well as group leaders
2314 * since the non-leader members' sibling_lists will be empty.
2315 */
2316 static void __perf_event_mark_enabled(struct perf_event *event)
2317 {
2318 struct perf_event *sub;
2319 u64 tstamp = perf_event_time(event);
2320
2321 event->state = PERF_EVENT_STATE_INACTIVE;
2322 event->tstamp_enabled = tstamp - event->total_time_enabled;
2323 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2324 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2325 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2326 }
2327 }
2328
2329 /*
2330 * Cross CPU call to enable a performance event
2331 */
2332 static void __perf_event_enable(struct perf_event *event,
2333 struct perf_cpu_context *cpuctx,
2334 struct perf_event_context *ctx,
2335 void *info)
2336 {
2337 struct perf_event *leader = event->group_leader;
2338 struct perf_event_context *task_ctx;
2339
2340 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2341 event->state <= PERF_EVENT_STATE_ERROR)
2342 return;
2343
2344 if (ctx->is_active)
2345 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2346
2347 __perf_event_mark_enabled(event);
2348
2349 if (!ctx->is_active)
2350 return;
2351
2352 if (!event_filter_match(event)) {
2353 if (is_cgroup_event(event))
2354 perf_cgroup_defer_enabled(event);
2355 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2356 return;
2357 }
2358
2359 /*
2360 * If the event is in a group and isn't the group leader,
2361 * then don't put it on unless the group is on.
2362 */
2363 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2364 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2365 return;
2366 }
2367
2368 task_ctx = cpuctx->task_ctx;
2369 if (ctx->task)
2370 WARN_ON_ONCE(task_ctx != ctx);
2371
2372 ctx_resched(cpuctx, task_ctx);
2373 }
2374
2375 /*
2376 * Enable a event.
2377 *
2378 * If event->ctx is a cloned context, callers must make sure that
2379 * every task struct that event->ctx->task could possibly point to
2380 * remains valid. This condition is satisfied when called through
2381 * perf_event_for_each_child or perf_event_for_each as described
2382 * for perf_event_disable.
2383 */
2384 static void _perf_event_enable(struct perf_event *event)
2385 {
2386 struct perf_event_context *ctx = event->ctx;
2387
2388 raw_spin_lock_irq(&ctx->lock);
2389 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2390 event->state < PERF_EVENT_STATE_ERROR) {
2391 raw_spin_unlock_irq(&ctx->lock);
2392 return;
2393 }
2394
2395 /*
2396 * If the event is in error state, clear that first.
2397 *
2398 * That way, if we see the event in error state below, we know that it
2399 * has gone back into error state, as distinct from the task having
2400 * been scheduled away before the cross-call arrived.
2401 */
2402 if (event->state == PERF_EVENT_STATE_ERROR)
2403 event->state = PERF_EVENT_STATE_OFF;
2404 raw_spin_unlock_irq(&ctx->lock);
2405
2406 event_function_call(event, __perf_event_enable, NULL);
2407 }
2408
2409 /*
2410 * See perf_event_disable();
2411 */
2412 void perf_event_enable(struct perf_event *event)
2413 {
2414 struct perf_event_context *ctx;
2415
2416 ctx = perf_event_ctx_lock(event);
2417 _perf_event_enable(event);
2418 perf_event_ctx_unlock(event, ctx);
2419 }
2420 EXPORT_SYMBOL_GPL(perf_event_enable);
2421
2422 struct stop_event_data {
2423 struct perf_event *event;
2424 unsigned int restart;
2425 };
2426
2427 static int __perf_event_stop(void *info)
2428 {
2429 struct stop_event_data *sd = info;
2430 struct perf_event *event = sd->event;
2431
2432 /* if it's already INACTIVE, do nothing */
2433 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2434 return 0;
2435
2436 /* matches smp_wmb() in event_sched_in() */
2437 smp_rmb();
2438
2439 /*
2440 * There is a window with interrupts enabled before we get here,
2441 * so we need to check again lest we try to stop another CPU's event.
2442 */
2443 if (READ_ONCE(event->oncpu) != smp_processor_id())
2444 return -EAGAIN;
2445
2446 event->pmu->stop(event, PERF_EF_UPDATE);
2447
2448 /*
2449 * May race with the actual stop (through perf_pmu_output_stop()),
2450 * but it is only used for events with AUX ring buffer, and such
2451 * events will refuse to restart because of rb::aux_mmap_count==0,
2452 * see comments in perf_aux_output_begin().
2453 *
2454 * Since this is happening on a event-local CPU, no trace is lost
2455 * while restarting.
2456 */
2457 if (sd->restart)
2458 event->pmu->start(event, PERF_EF_START);
2459
2460 return 0;
2461 }
2462
2463 static int perf_event_restart(struct perf_event *event)
2464 {
2465 struct stop_event_data sd = {
2466 .event = event,
2467 .restart = 1,
2468 };
2469 int ret = 0;
2470
2471 do {
2472 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2473 return 0;
2474
2475 /* matches smp_wmb() in event_sched_in() */
2476 smp_rmb();
2477
2478 /*
2479 * We only want to restart ACTIVE events, so if the event goes
2480 * inactive here (event->oncpu==-1), there's nothing more to do;
2481 * fall through with ret==-ENXIO.
2482 */
2483 ret = cpu_function_call(READ_ONCE(event->oncpu),
2484 __perf_event_stop, &sd);
2485 } while (ret == -EAGAIN);
2486
2487 return ret;
2488 }
2489
2490 /*
2491 * In order to contain the amount of racy and tricky in the address filter
2492 * configuration management, it is a two part process:
2493 *
2494 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2495 * we update the addresses of corresponding vmas in
2496 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2497 * (p2) when an event is scheduled in (pmu::add), it calls
2498 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2499 * if the generation has changed since the previous call.
2500 *
2501 * If (p1) happens while the event is active, we restart it to force (p2).
2502 *
2503 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2504 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2505 * ioctl;
2506 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2507 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2508 * for reading;
2509 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2510 * of exec.
2511 */
2512 void perf_event_addr_filters_sync(struct perf_event *event)
2513 {
2514 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2515
2516 if (!has_addr_filter(event))
2517 return;
2518
2519 raw_spin_lock(&ifh->lock);
2520 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2521 event->pmu->addr_filters_sync(event);
2522 event->hw.addr_filters_gen = event->addr_filters_gen;
2523 }
2524 raw_spin_unlock(&ifh->lock);
2525 }
2526 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2527
2528 static int _perf_event_refresh(struct perf_event *event, int refresh)
2529 {
2530 /*
2531 * not supported on inherited events
2532 */
2533 if (event->attr.inherit || !is_sampling_event(event))
2534 return -EINVAL;
2535
2536 atomic_add(refresh, &event->event_limit);
2537 _perf_event_enable(event);
2538
2539 return 0;
2540 }
2541
2542 /*
2543 * See perf_event_disable()
2544 */
2545 int perf_event_refresh(struct perf_event *event, int refresh)
2546 {
2547 struct perf_event_context *ctx;
2548 int ret;
2549
2550 ctx = perf_event_ctx_lock(event);
2551 ret = _perf_event_refresh(event, refresh);
2552 perf_event_ctx_unlock(event, ctx);
2553
2554 return ret;
2555 }
2556 EXPORT_SYMBOL_GPL(perf_event_refresh);
2557
2558 static void ctx_sched_out(struct perf_event_context *ctx,
2559 struct perf_cpu_context *cpuctx,
2560 enum event_type_t event_type)
2561 {
2562 int is_active = ctx->is_active;
2563 struct perf_event *event;
2564
2565 lockdep_assert_held(&ctx->lock);
2566
2567 if (likely(!ctx->nr_events)) {
2568 /*
2569 * See __perf_remove_from_context().
2570 */
2571 WARN_ON_ONCE(ctx->is_active);
2572 if (ctx->task)
2573 WARN_ON_ONCE(cpuctx->task_ctx);
2574 return;
2575 }
2576
2577 ctx->is_active &= ~event_type;
2578 if (!(ctx->is_active & EVENT_ALL))
2579 ctx->is_active = 0;
2580
2581 if (ctx->task) {
2582 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2583 if (!ctx->is_active)
2584 cpuctx->task_ctx = NULL;
2585 }
2586
2587 /*
2588 * Always update time if it was set; not only when it changes.
2589 * Otherwise we can 'forget' to update time for any but the last
2590 * context we sched out. For example:
2591 *
2592 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2593 * ctx_sched_out(.event_type = EVENT_PINNED)
2594 *
2595 * would only update time for the pinned events.
2596 */
2597 if (is_active & EVENT_TIME) {
2598 /* update (and stop) ctx time */
2599 update_context_time(ctx);
2600 update_cgrp_time_from_cpuctx(cpuctx);
2601 }
2602
2603 is_active ^= ctx->is_active; /* changed bits */
2604
2605 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2606 return;
2607
2608 perf_pmu_disable(ctx->pmu);
2609 if (is_active & EVENT_PINNED) {
2610 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2611 group_sched_out(event, cpuctx, ctx);
2612 }
2613
2614 if (is_active & EVENT_FLEXIBLE) {
2615 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2616 group_sched_out(event, cpuctx, ctx);
2617 }
2618 perf_pmu_enable(ctx->pmu);
2619 }
2620
2621 /*
2622 * Test whether two contexts are equivalent, i.e. whether they have both been
2623 * cloned from the same version of the same context.
2624 *
2625 * Equivalence is measured using a generation number in the context that is
2626 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2627 * and list_del_event().
2628 */
2629 static int context_equiv(struct perf_event_context *ctx1,
2630 struct perf_event_context *ctx2)
2631 {
2632 lockdep_assert_held(&ctx1->lock);
2633 lockdep_assert_held(&ctx2->lock);
2634
2635 /* Pinning disables the swap optimization */
2636 if (ctx1->pin_count || ctx2->pin_count)
2637 return 0;
2638
2639 /* If ctx1 is the parent of ctx2 */
2640 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2641 return 1;
2642
2643 /* If ctx2 is the parent of ctx1 */
2644 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2645 return 1;
2646
2647 /*
2648 * If ctx1 and ctx2 have the same parent; we flatten the parent
2649 * hierarchy, see perf_event_init_context().
2650 */
2651 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2652 ctx1->parent_gen == ctx2->parent_gen)
2653 return 1;
2654
2655 /* Unmatched */
2656 return 0;
2657 }
2658
2659 static void __perf_event_sync_stat(struct perf_event *event,
2660 struct perf_event *next_event)
2661 {
2662 u64 value;
2663
2664 if (!event->attr.inherit_stat)
2665 return;
2666
2667 /*
2668 * Update the event value, we cannot use perf_event_read()
2669 * because we're in the middle of a context switch and have IRQs
2670 * disabled, which upsets smp_call_function_single(), however
2671 * we know the event must be on the current CPU, therefore we
2672 * don't need to use it.
2673 */
2674 switch (event->state) {
2675 case PERF_EVENT_STATE_ACTIVE:
2676 event->pmu->read(event);
2677 /* fall-through */
2678
2679 case PERF_EVENT_STATE_INACTIVE:
2680 update_event_times(event);
2681 break;
2682
2683 default:
2684 break;
2685 }
2686
2687 /*
2688 * In order to keep per-task stats reliable we need to flip the event
2689 * values when we flip the contexts.
2690 */
2691 value = local64_read(&next_event->count);
2692 value = local64_xchg(&event->count, value);
2693 local64_set(&next_event->count, value);
2694
2695 swap(event->total_time_enabled, next_event->total_time_enabled);
2696 swap(event->total_time_running, next_event->total_time_running);
2697
2698 /*
2699 * Since we swizzled the values, update the user visible data too.
2700 */
2701 perf_event_update_userpage(event);
2702 perf_event_update_userpage(next_event);
2703 }
2704
2705 static void perf_event_sync_stat(struct perf_event_context *ctx,
2706 struct perf_event_context *next_ctx)
2707 {
2708 struct perf_event *event, *next_event;
2709
2710 if (!ctx->nr_stat)
2711 return;
2712
2713 update_context_time(ctx);
2714
2715 event = list_first_entry(&ctx->event_list,
2716 struct perf_event, event_entry);
2717
2718 next_event = list_first_entry(&next_ctx->event_list,
2719 struct perf_event, event_entry);
2720
2721 while (&event->event_entry != &ctx->event_list &&
2722 &next_event->event_entry != &next_ctx->event_list) {
2723
2724 __perf_event_sync_stat(event, next_event);
2725
2726 event = list_next_entry(event, event_entry);
2727 next_event = list_next_entry(next_event, event_entry);
2728 }
2729 }
2730
2731 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2732 struct task_struct *next)
2733 {
2734 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2735 struct perf_event_context *next_ctx;
2736 struct perf_event_context *parent, *next_parent;
2737 struct perf_cpu_context *cpuctx;
2738 int do_switch = 1;
2739
2740 if (likely(!ctx))
2741 return;
2742
2743 cpuctx = __get_cpu_context(ctx);
2744 if (!cpuctx->task_ctx)
2745 return;
2746
2747 rcu_read_lock();
2748 next_ctx = next->perf_event_ctxp[ctxn];
2749 if (!next_ctx)
2750 goto unlock;
2751
2752 parent = rcu_dereference(ctx->parent_ctx);
2753 next_parent = rcu_dereference(next_ctx->parent_ctx);
2754
2755 /* If neither context have a parent context; they cannot be clones. */
2756 if (!parent && !next_parent)
2757 goto unlock;
2758
2759 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2760 /*
2761 * Looks like the two contexts are clones, so we might be
2762 * able to optimize the context switch. We lock both
2763 * contexts and check that they are clones under the
2764 * lock (including re-checking that neither has been
2765 * uncloned in the meantime). It doesn't matter which
2766 * order we take the locks because no other cpu could
2767 * be trying to lock both of these tasks.
2768 */
2769 raw_spin_lock(&ctx->lock);
2770 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2771 if (context_equiv(ctx, next_ctx)) {
2772 WRITE_ONCE(ctx->task, next);
2773 WRITE_ONCE(next_ctx->task, task);
2774
2775 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2776
2777 /*
2778 * RCU_INIT_POINTER here is safe because we've not
2779 * modified the ctx and the above modification of
2780 * ctx->task and ctx->task_ctx_data are immaterial
2781 * since those values are always verified under
2782 * ctx->lock which we're now holding.
2783 */
2784 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2785 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2786
2787 do_switch = 0;
2788
2789 perf_event_sync_stat(ctx, next_ctx);
2790 }
2791 raw_spin_unlock(&next_ctx->lock);
2792 raw_spin_unlock(&ctx->lock);
2793 }
2794 unlock:
2795 rcu_read_unlock();
2796
2797 if (do_switch) {
2798 raw_spin_lock(&ctx->lock);
2799 task_ctx_sched_out(cpuctx, ctx);
2800 raw_spin_unlock(&ctx->lock);
2801 }
2802 }
2803
2804 void perf_sched_cb_dec(struct pmu *pmu)
2805 {
2806 this_cpu_dec(perf_sched_cb_usages);
2807 }
2808
2809 void perf_sched_cb_inc(struct pmu *pmu)
2810 {
2811 this_cpu_inc(perf_sched_cb_usages);
2812 }
2813
2814 /*
2815 * This function provides the context switch callback to the lower code
2816 * layer. It is invoked ONLY when the context switch callback is enabled.
2817 */
2818 static void perf_pmu_sched_task(struct task_struct *prev,
2819 struct task_struct *next,
2820 bool sched_in)
2821 {
2822 struct perf_cpu_context *cpuctx;
2823 struct pmu *pmu;
2824 unsigned long flags;
2825
2826 if (prev == next)
2827 return;
2828
2829 local_irq_save(flags);
2830
2831 rcu_read_lock();
2832
2833 list_for_each_entry_rcu(pmu, &pmus, entry) {
2834 if (pmu->sched_task) {
2835 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2836
2837 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2838
2839 perf_pmu_disable(pmu);
2840
2841 pmu->sched_task(cpuctx->task_ctx, sched_in);
2842
2843 perf_pmu_enable(pmu);
2844
2845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2846 }
2847 }
2848
2849 rcu_read_unlock();
2850
2851 local_irq_restore(flags);
2852 }
2853
2854 static void perf_event_switch(struct task_struct *task,
2855 struct task_struct *next_prev, bool sched_in);
2856
2857 #define for_each_task_context_nr(ctxn) \
2858 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2859
2860 /*
2861 * Called from scheduler to remove the events of the current task,
2862 * with interrupts disabled.
2863 *
2864 * We stop each event and update the event value in event->count.
2865 *
2866 * This does not protect us against NMI, but disable()
2867 * sets the disabled bit in the control field of event _before_
2868 * accessing the event control register. If a NMI hits, then it will
2869 * not restart the event.
2870 */
2871 void __perf_event_task_sched_out(struct task_struct *task,
2872 struct task_struct *next)
2873 {
2874 int ctxn;
2875
2876 if (__this_cpu_read(perf_sched_cb_usages))
2877 perf_pmu_sched_task(task, next, false);
2878
2879 if (atomic_read(&nr_switch_events))
2880 perf_event_switch(task, next, false);
2881
2882 for_each_task_context_nr(ctxn)
2883 perf_event_context_sched_out(task, ctxn, next);
2884
2885 /*
2886 * if cgroup events exist on this CPU, then we need
2887 * to check if we have to switch out PMU state.
2888 * cgroup event are system-wide mode only
2889 */
2890 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2891 perf_cgroup_sched_out(task, next);
2892 }
2893
2894 /*
2895 * Called with IRQs disabled
2896 */
2897 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2898 enum event_type_t event_type)
2899 {
2900 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2901 }
2902
2903 static void
2904 ctx_pinned_sched_in(struct perf_event_context *ctx,
2905 struct perf_cpu_context *cpuctx)
2906 {
2907 struct perf_event *event;
2908
2909 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2910 if (event->state <= PERF_EVENT_STATE_OFF)
2911 continue;
2912 if (!event_filter_match(event))
2913 continue;
2914
2915 /* may need to reset tstamp_enabled */
2916 if (is_cgroup_event(event))
2917 perf_cgroup_mark_enabled(event, ctx);
2918
2919 if (group_can_go_on(event, cpuctx, 1))
2920 group_sched_in(event, cpuctx, ctx);
2921
2922 /*
2923 * If this pinned group hasn't been scheduled,
2924 * put it in error state.
2925 */
2926 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2927 update_group_times(event);
2928 event->state = PERF_EVENT_STATE_ERROR;
2929 }
2930 }
2931 }
2932
2933 static void
2934 ctx_flexible_sched_in(struct perf_event_context *ctx,
2935 struct perf_cpu_context *cpuctx)
2936 {
2937 struct perf_event *event;
2938 int can_add_hw = 1;
2939
2940 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2941 /* Ignore events in OFF or ERROR state */
2942 if (event->state <= PERF_EVENT_STATE_OFF)
2943 continue;
2944 /*
2945 * Listen to the 'cpu' scheduling filter constraint
2946 * of events:
2947 */
2948 if (!event_filter_match(event))
2949 continue;
2950
2951 /* may need to reset tstamp_enabled */
2952 if (is_cgroup_event(event))
2953 perf_cgroup_mark_enabled(event, ctx);
2954
2955 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2956 if (group_sched_in(event, cpuctx, ctx))
2957 can_add_hw = 0;
2958 }
2959 }
2960 }
2961
2962 static void
2963 ctx_sched_in(struct perf_event_context *ctx,
2964 struct perf_cpu_context *cpuctx,
2965 enum event_type_t event_type,
2966 struct task_struct *task)
2967 {
2968 int is_active = ctx->is_active;
2969 u64 now;
2970
2971 lockdep_assert_held(&ctx->lock);
2972
2973 if (likely(!ctx->nr_events))
2974 return;
2975
2976 ctx->is_active |= (event_type | EVENT_TIME);
2977 if (ctx->task) {
2978 if (!is_active)
2979 cpuctx->task_ctx = ctx;
2980 else
2981 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2982 }
2983
2984 is_active ^= ctx->is_active; /* changed bits */
2985
2986 if (is_active & EVENT_TIME) {
2987 /* start ctx time */
2988 now = perf_clock();
2989 ctx->timestamp = now;
2990 perf_cgroup_set_timestamp(task, ctx);
2991 }
2992
2993 /*
2994 * First go through the list and put on any pinned groups
2995 * in order to give them the best chance of going on.
2996 */
2997 if (is_active & EVENT_PINNED)
2998 ctx_pinned_sched_in(ctx, cpuctx);
2999
3000 /* Then walk through the lower prio flexible groups */
3001 if (is_active & EVENT_FLEXIBLE)
3002 ctx_flexible_sched_in(ctx, cpuctx);
3003 }
3004
3005 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3006 enum event_type_t event_type,
3007 struct task_struct *task)
3008 {
3009 struct perf_event_context *ctx = &cpuctx->ctx;
3010
3011 ctx_sched_in(ctx, cpuctx, event_type, task);
3012 }
3013
3014 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3015 struct task_struct *task)
3016 {
3017 struct perf_cpu_context *cpuctx;
3018
3019 cpuctx = __get_cpu_context(ctx);
3020 if (cpuctx->task_ctx == ctx)
3021 return;
3022
3023 perf_ctx_lock(cpuctx, ctx);
3024 perf_pmu_disable(ctx->pmu);
3025 /*
3026 * We want to keep the following priority order:
3027 * cpu pinned (that don't need to move), task pinned,
3028 * cpu flexible, task flexible.
3029 */
3030 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3031 perf_event_sched_in(cpuctx, ctx, task);
3032 perf_pmu_enable(ctx->pmu);
3033 perf_ctx_unlock(cpuctx, ctx);
3034 }
3035
3036 /*
3037 * Called from scheduler to add the events of the current task
3038 * with interrupts disabled.
3039 *
3040 * We restore the event value and then enable it.
3041 *
3042 * This does not protect us against NMI, but enable()
3043 * sets the enabled bit in the control field of event _before_
3044 * accessing the event control register. If a NMI hits, then it will
3045 * keep the event running.
3046 */
3047 void __perf_event_task_sched_in(struct task_struct *prev,
3048 struct task_struct *task)
3049 {
3050 struct perf_event_context *ctx;
3051 int ctxn;
3052
3053 /*
3054 * If cgroup events exist on this CPU, then we need to check if we have
3055 * to switch in PMU state; cgroup event are system-wide mode only.
3056 *
3057 * Since cgroup events are CPU events, we must schedule these in before
3058 * we schedule in the task events.
3059 */
3060 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3061 perf_cgroup_sched_in(prev, task);
3062
3063 for_each_task_context_nr(ctxn) {
3064 ctx = task->perf_event_ctxp[ctxn];
3065 if (likely(!ctx))
3066 continue;
3067
3068 perf_event_context_sched_in(ctx, task);
3069 }
3070
3071 if (atomic_read(&nr_switch_events))
3072 perf_event_switch(task, prev, true);
3073
3074 if (__this_cpu_read(perf_sched_cb_usages))
3075 perf_pmu_sched_task(prev, task, true);
3076 }
3077
3078 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3079 {
3080 u64 frequency = event->attr.sample_freq;
3081 u64 sec = NSEC_PER_SEC;
3082 u64 divisor, dividend;
3083
3084 int count_fls, nsec_fls, frequency_fls, sec_fls;
3085
3086 count_fls = fls64(count);
3087 nsec_fls = fls64(nsec);
3088 frequency_fls = fls64(frequency);
3089 sec_fls = 30;
3090
3091 /*
3092 * We got @count in @nsec, with a target of sample_freq HZ
3093 * the target period becomes:
3094 *
3095 * @count * 10^9
3096 * period = -------------------
3097 * @nsec * sample_freq
3098 *
3099 */
3100
3101 /*
3102 * Reduce accuracy by one bit such that @a and @b converge
3103 * to a similar magnitude.
3104 */
3105 #define REDUCE_FLS(a, b) \
3106 do { \
3107 if (a##_fls > b##_fls) { \
3108 a >>= 1; \
3109 a##_fls--; \
3110 } else { \
3111 b >>= 1; \
3112 b##_fls--; \
3113 } \
3114 } while (0)
3115
3116 /*
3117 * Reduce accuracy until either term fits in a u64, then proceed with
3118 * the other, so that finally we can do a u64/u64 division.
3119 */
3120 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3121 REDUCE_FLS(nsec, frequency);
3122 REDUCE_FLS(sec, count);
3123 }
3124
3125 if (count_fls + sec_fls > 64) {
3126 divisor = nsec * frequency;
3127
3128 while (count_fls + sec_fls > 64) {
3129 REDUCE_FLS(count, sec);
3130 divisor >>= 1;
3131 }
3132
3133 dividend = count * sec;
3134 } else {
3135 dividend = count * sec;
3136
3137 while (nsec_fls + frequency_fls > 64) {
3138 REDUCE_FLS(nsec, frequency);
3139 dividend >>= 1;
3140 }
3141
3142 divisor = nsec * frequency;
3143 }
3144
3145 if (!divisor)
3146 return dividend;
3147
3148 return div64_u64(dividend, divisor);
3149 }
3150
3151 static DEFINE_PER_CPU(int, perf_throttled_count);
3152 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3153
3154 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3155 {
3156 struct hw_perf_event *hwc = &event->hw;
3157 s64 period, sample_period;
3158 s64 delta;
3159
3160 period = perf_calculate_period(event, nsec, count);
3161
3162 delta = (s64)(period - hwc->sample_period);
3163 delta = (delta + 7) / 8; /* low pass filter */
3164
3165 sample_period = hwc->sample_period + delta;
3166
3167 if (!sample_period)
3168 sample_period = 1;
3169
3170 hwc->sample_period = sample_period;
3171
3172 if (local64_read(&hwc->period_left) > 8*sample_period) {
3173 if (disable)
3174 event->pmu->stop(event, PERF_EF_UPDATE);
3175
3176 local64_set(&hwc->period_left, 0);
3177
3178 if (disable)
3179 event->pmu->start(event, PERF_EF_RELOAD);
3180 }
3181 }
3182
3183 /*
3184 * combine freq adjustment with unthrottling to avoid two passes over the
3185 * events. At the same time, make sure, having freq events does not change
3186 * the rate of unthrottling as that would introduce bias.
3187 */
3188 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3189 int needs_unthr)
3190 {
3191 struct perf_event *event;
3192 struct hw_perf_event *hwc;
3193 u64 now, period = TICK_NSEC;
3194 s64 delta;
3195
3196 /*
3197 * only need to iterate over all events iff:
3198 * - context have events in frequency mode (needs freq adjust)
3199 * - there are events to unthrottle on this cpu
3200 */
3201 if (!(ctx->nr_freq || needs_unthr))
3202 return;
3203
3204 raw_spin_lock(&ctx->lock);
3205 perf_pmu_disable(ctx->pmu);
3206
3207 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3208 if (event->state != PERF_EVENT_STATE_ACTIVE)
3209 continue;
3210
3211 if (!event_filter_match(event))
3212 continue;
3213
3214 perf_pmu_disable(event->pmu);
3215
3216 hwc = &event->hw;
3217
3218 if (hwc->interrupts == MAX_INTERRUPTS) {
3219 hwc->interrupts = 0;
3220 perf_log_throttle(event, 1);
3221 event->pmu->start(event, 0);
3222 }
3223
3224 if (!event->attr.freq || !event->attr.sample_freq)
3225 goto next;
3226
3227 /*
3228 * stop the event and update event->count
3229 */
3230 event->pmu->stop(event, PERF_EF_UPDATE);
3231
3232 now = local64_read(&event->count);
3233 delta = now - hwc->freq_count_stamp;
3234 hwc->freq_count_stamp = now;
3235
3236 /*
3237 * restart the event
3238 * reload only if value has changed
3239 * we have stopped the event so tell that
3240 * to perf_adjust_period() to avoid stopping it
3241 * twice.
3242 */
3243 if (delta > 0)
3244 perf_adjust_period(event, period, delta, false);
3245
3246 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3247 next:
3248 perf_pmu_enable(event->pmu);
3249 }
3250
3251 perf_pmu_enable(ctx->pmu);
3252 raw_spin_unlock(&ctx->lock);
3253 }
3254
3255 /*
3256 * Round-robin a context's events:
3257 */
3258 static void rotate_ctx(struct perf_event_context *ctx)
3259 {
3260 /*
3261 * Rotate the first entry last of non-pinned groups. Rotation might be
3262 * disabled by the inheritance code.
3263 */
3264 if (!ctx->rotate_disable)
3265 list_rotate_left(&ctx->flexible_groups);
3266 }
3267
3268 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3269 {
3270 struct perf_event_context *ctx = NULL;
3271 int rotate = 0;
3272
3273 if (cpuctx->ctx.nr_events) {
3274 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3275 rotate = 1;
3276 }
3277
3278 ctx = cpuctx->task_ctx;
3279 if (ctx && ctx->nr_events) {
3280 if (ctx->nr_events != ctx->nr_active)
3281 rotate = 1;
3282 }
3283
3284 if (!rotate)
3285 goto done;
3286
3287 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3288 perf_pmu_disable(cpuctx->ctx.pmu);
3289
3290 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3291 if (ctx)
3292 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3293
3294 rotate_ctx(&cpuctx->ctx);
3295 if (ctx)
3296 rotate_ctx(ctx);
3297
3298 perf_event_sched_in(cpuctx, ctx, current);
3299
3300 perf_pmu_enable(cpuctx->ctx.pmu);
3301 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3302 done:
3303
3304 return rotate;
3305 }
3306
3307 void perf_event_task_tick(void)
3308 {
3309 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3310 struct perf_event_context *ctx, *tmp;
3311 int throttled;
3312
3313 WARN_ON(!irqs_disabled());
3314
3315 __this_cpu_inc(perf_throttled_seq);
3316 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3317 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3318
3319 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3320 perf_adjust_freq_unthr_context(ctx, throttled);
3321 }
3322
3323 static int event_enable_on_exec(struct perf_event *event,
3324 struct perf_event_context *ctx)
3325 {
3326 if (!event->attr.enable_on_exec)
3327 return 0;
3328
3329 event->attr.enable_on_exec = 0;
3330 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3331 return 0;
3332
3333 __perf_event_mark_enabled(event);
3334
3335 return 1;
3336 }
3337
3338 /*
3339 * Enable all of a task's events that have been marked enable-on-exec.
3340 * This expects task == current.
3341 */
3342 static void perf_event_enable_on_exec(int ctxn)
3343 {
3344 struct perf_event_context *ctx, *clone_ctx = NULL;
3345 struct perf_cpu_context *cpuctx;
3346 struct perf_event *event;
3347 unsigned long flags;
3348 int enabled = 0;
3349
3350 local_irq_save(flags);
3351 ctx = current->perf_event_ctxp[ctxn];
3352 if (!ctx || !ctx->nr_events)
3353 goto out;
3354
3355 cpuctx = __get_cpu_context(ctx);
3356 perf_ctx_lock(cpuctx, ctx);
3357 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3358 list_for_each_entry(event, &ctx->event_list, event_entry)
3359 enabled |= event_enable_on_exec(event, ctx);
3360
3361 /*
3362 * Unclone and reschedule this context if we enabled any event.
3363 */
3364 if (enabled) {
3365 clone_ctx = unclone_ctx(ctx);
3366 ctx_resched(cpuctx, ctx);
3367 }
3368 perf_ctx_unlock(cpuctx, ctx);
3369
3370 out:
3371 local_irq_restore(flags);
3372
3373 if (clone_ctx)
3374 put_ctx(clone_ctx);
3375 }
3376
3377 struct perf_read_data {
3378 struct perf_event *event;
3379 bool group;
3380 int ret;
3381 };
3382
3383 /*
3384 * Cross CPU call to read the hardware event
3385 */
3386 static void __perf_event_read(void *info)
3387 {
3388 struct perf_read_data *data = info;
3389 struct perf_event *sub, *event = data->event;
3390 struct perf_event_context *ctx = event->ctx;
3391 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3392 struct pmu *pmu = event->pmu;
3393
3394 /*
3395 * If this is a task context, we need to check whether it is
3396 * the current task context of this cpu. If not it has been
3397 * scheduled out before the smp call arrived. In that case
3398 * event->count would have been updated to a recent sample
3399 * when the event was scheduled out.
3400 */
3401 if (ctx->task && cpuctx->task_ctx != ctx)
3402 return;
3403
3404 raw_spin_lock(&ctx->lock);
3405 if (ctx->is_active) {
3406 update_context_time(ctx);
3407 update_cgrp_time_from_event(event);
3408 }
3409
3410 update_event_times(event);
3411 if (event->state != PERF_EVENT_STATE_ACTIVE)
3412 goto unlock;
3413
3414 if (!data->group) {
3415 pmu->read(event);
3416 data->ret = 0;
3417 goto unlock;
3418 }
3419
3420 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3421
3422 pmu->read(event);
3423
3424 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3425 update_event_times(sub);
3426 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3427 /*
3428 * Use sibling's PMU rather than @event's since
3429 * sibling could be on different (eg: software) PMU.
3430 */
3431 sub->pmu->read(sub);
3432 }
3433 }
3434
3435 data->ret = pmu->commit_txn(pmu);
3436
3437 unlock:
3438 raw_spin_unlock(&ctx->lock);
3439 }
3440
3441 static inline u64 perf_event_count(struct perf_event *event)
3442 {
3443 if (event->pmu->count)
3444 return event->pmu->count(event);
3445
3446 return __perf_event_count(event);
3447 }
3448
3449 /*
3450 * NMI-safe method to read a local event, that is an event that
3451 * is:
3452 * - either for the current task, or for this CPU
3453 * - does not have inherit set, for inherited task events
3454 * will not be local and we cannot read them atomically
3455 * - must not have a pmu::count method
3456 */
3457 u64 perf_event_read_local(struct perf_event *event)
3458 {
3459 unsigned long flags;
3460 u64 val;
3461
3462 /*
3463 * Disabling interrupts avoids all counter scheduling (context
3464 * switches, timer based rotation and IPIs).
3465 */
3466 local_irq_save(flags);
3467
3468 /* If this is a per-task event, it must be for current */
3469 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3470 event->hw.target != current);
3471
3472 /* If this is a per-CPU event, it must be for this CPU */
3473 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3474 event->cpu != smp_processor_id());
3475
3476 /*
3477 * It must not be an event with inherit set, we cannot read
3478 * all child counters from atomic context.
3479 */
3480 WARN_ON_ONCE(event->attr.inherit);
3481
3482 /*
3483 * It must not have a pmu::count method, those are not
3484 * NMI safe.
3485 */
3486 WARN_ON_ONCE(event->pmu->count);
3487
3488 /*
3489 * If the event is currently on this CPU, its either a per-task event,
3490 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3491 * oncpu == -1).
3492 */
3493 if (event->oncpu == smp_processor_id())
3494 event->pmu->read(event);
3495
3496 val = local64_read(&event->count);
3497 local_irq_restore(flags);
3498
3499 return val;
3500 }
3501
3502 static int perf_event_read(struct perf_event *event, bool group)
3503 {
3504 int ret = 0;
3505
3506 /*
3507 * If event is enabled and currently active on a CPU, update the
3508 * value in the event structure:
3509 */
3510 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3511 struct perf_read_data data = {
3512 .event = event,
3513 .group = group,
3514 .ret = 0,
3515 };
3516 smp_call_function_single(event->oncpu,
3517 __perf_event_read, &data, 1);
3518 ret = data.ret;
3519 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3520 struct perf_event_context *ctx = event->ctx;
3521 unsigned long flags;
3522
3523 raw_spin_lock_irqsave(&ctx->lock, flags);
3524 /*
3525 * may read while context is not active
3526 * (e.g., thread is blocked), in that case
3527 * we cannot update context time
3528 */
3529 if (ctx->is_active) {
3530 update_context_time(ctx);
3531 update_cgrp_time_from_event(event);
3532 }
3533 if (group)
3534 update_group_times(event);
3535 else
3536 update_event_times(event);
3537 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3538 }
3539
3540 return ret;
3541 }
3542
3543 /*
3544 * Initialize the perf_event context in a task_struct:
3545 */
3546 static void __perf_event_init_context(struct perf_event_context *ctx)
3547 {
3548 raw_spin_lock_init(&ctx->lock);
3549 mutex_init(&ctx->mutex);
3550 INIT_LIST_HEAD(&ctx->active_ctx_list);
3551 INIT_LIST_HEAD(&ctx->pinned_groups);
3552 INIT_LIST_HEAD(&ctx->flexible_groups);
3553 INIT_LIST_HEAD(&ctx->event_list);
3554 atomic_set(&ctx->refcount, 1);
3555 }
3556
3557 static struct perf_event_context *
3558 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3559 {
3560 struct perf_event_context *ctx;
3561
3562 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3563 if (!ctx)
3564 return NULL;
3565
3566 __perf_event_init_context(ctx);
3567 if (task) {
3568 ctx->task = task;
3569 get_task_struct(task);
3570 }
3571 ctx->pmu = pmu;
3572
3573 return ctx;
3574 }
3575
3576 static struct task_struct *
3577 find_lively_task_by_vpid(pid_t vpid)
3578 {
3579 struct task_struct *task;
3580
3581 rcu_read_lock();
3582 if (!vpid)
3583 task = current;
3584 else
3585 task = find_task_by_vpid(vpid);
3586 if (task)
3587 get_task_struct(task);
3588 rcu_read_unlock();
3589
3590 if (!task)
3591 return ERR_PTR(-ESRCH);
3592
3593 return task;
3594 }
3595
3596 /*
3597 * Returns a matching context with refcount and pincount.
3598 */
3599 static struct perf_event_context *
3600 find_get_context(struct pmu *pmu, struct task_struct *task,
3601 struct perf_event *event)
3602 {
3603 struct perf_event_context *ctx, *clone_ctx = NULL;
3604 struct perf_cpu_context *cpuctx;
3605 void *task_ctx_data = NULL;
3606 unsigned long flags;
3607 int ctxn, err;
3608 int cpu = event->cpu;
3609
3610 if (!task) {
3611 /* Must be root to operate on a CPU event: */
3612 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3613 return ERR_PTR(-EACCES);
3614
3615 /*
3616 * We could be clever and allow to attach a event to an
3617 * offline CPU and activate it when the CPU comes up, but
3618 * that's for later.
3619 */
3620 if (!cpu_online(cpu))
3621 return ERR_PTR(-ENODEV);
3622
3623 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3624 ctx = &cpuctx->ctx;
3625 get_ctx(ctx);
3626 ++ctx->pin_count;
3627
3628 return ctx;
3629 }
3630
3631 err = -EINVAL;
3632 ctxn = pmu->task_ctx_nr;
3633 if (ctxn < 0)
3634 goto errout;
3635
3636 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3637 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3638 if (!task_ctx_data) {
3639 err = -ENOMEM;
3640 goto errout;
3641 }
3642 }
3643
3644 retry:
3645 ctx = perf_lock_task_context(task, ctxn, &flags);
3646 if (ctx) {
3647 clone_ctx = unclone_ctx(ctx);
3648 ++ctx->pin_count;
3649
3650 if (task_ctx_data && !ctx->task_ctx_data) {
3651 ctx->task_ctx_data = task_ctx_data;
3652 task_ctx_data = NULL;
3653 }
3654 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3655
3656 if (clone_ctx)
3657 put_ctx(clone_ctx);
3658 } else {
3659 ctx = alloc_perf_context(pmu, task);
3660 err = -ENOMEM;
3661 if (!ctx)
3662 goto errout;
3663
3664 if (task_ctx_data) {
3665 ctx->task_ctx_data = task_ctx_data;
3666 task_ctx_data = NULL;
3667 }
3668
3669 err = 0;
3670 mutex_lock(&task->perf_event_mutex);
3671 /*
3672 * If it has already passed perf_event_exit_task().
3673 * we must see PF_EXITING, it takes this mutex too.
3674 */
3675 if (task->flags & PF_EXITING)
3676 err = -ESRCH;
3677 else if (task->perf_event_ctxp[ctxn])
3678 err = -EAGAIN;
3679 else {
3680 get_ctx(ctx);
3681 ++ctx->pin_count;
3682 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3683 }
3684 mutex_unlock(&task->perf_event_mutex);
3685
3686 if (unlikely(err)) {
3687 put_ctx(ctx);
3688
3689 if (err == -EAGAIN)
3690 goto retry;
3691 goto errout;
3692 }
3693 }
3694
3695 kfree(task_ctx_data);
3696 return ctx;
3697
3698 errout:
3699 kfree(task_ctx_data);
3700 return ERR_PTR(err);
3701 }
3702
3703 static void perf_event_free_filter(struct perf_event *event);
3704 static void perf_event_free_bpf_prog(struct perf_event *event);
3705
3706 static void free_event_rcu(struct rcu_head *head)
3707 {
3708 struct perf_event *event;
3709
3710 event = container_of(head, struct perf_event, rcu_head);
3711 if (event->ns)
3712 put_pid_ns(event->ns);
3713 perf_event_free_filter(event);
3714 kfree(event);
3715 }
3716
3717 static void ring_buffer_attach(struct perf_event *event,
3718 struct ring_buffer *rb);
3719
3720 static void detach_sb_event(struct perf_event *event)
3721 {
3722 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3723
3724 raw_spin_lock(&pel->lock);
3725 list_del_rcu(&event->sb_list);
3726 raw_spin_unlock(&pel->lock);
3727 }
3728
3729 static bool is_sb_event(struct perf_event *event)
3730 {
3731 struct perf_event_attr *attr = &event->attr;
3732
3733 if (event->parent)
3734 return false;
3735
3736 if (event->attach_state & PERF_ATTACH_TASK)
3737 return false;
3738
3739 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3740 attr->comm || attr->comm_exec ||
3741 attr->task ||
3742 attr->context_switch)
3743 return true;
3744 return false;
3745 }
3746
3747 static void unaccount_pmu_sb_event(struct perf_event *event)
3748 {
3749 if (is_sb_event(event))
3750 detach_sb_event(event);
3751 }
3752
3753 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3754 {
3755 if (event->parent)
3756 return;
3757
3758 if (is_cgroup_event(event))
3759 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3760 }
3761
3762 #ifdef CONFIG_NO_HZ_FULL
3763 static DEFINE_SPINLOCK(nr_freq_lock);
3764 #endif
3765
3766 static void unaccount_freq_event_nohz(void)
3767 {
3768 #ifdef CONFIG_NO_HZ_FULL
3769 spin_lock(&nr_freq_lock);
3770 if (atomic_dec_and_test(&nr_freq_events))
3771 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3772 spin_unlock(&nr_freq_lock);
3773 #endif
3774 }
3775
3776 static void unaccount_freq_event(void)
3777 {
3778 if (tick_nohz_full_enabled())
3779 unaccount_freq_event_nohz();
3780 else
3781 atomic_dec(&nr_freq_events);
3782 }
3783
3784 static void unaccount_event(struct perf_event *event)
3785 {
3786 bool dec = false;
3787
3788 if (event->parent)
3789 return;
3790
3791 if (event->attach_state & PERF_ATTACH_TASK)
3792 dec = true;
3793 if (event->attr.mmap || event->attr.mmap_data)
3794 atomic_dec(&nr_mmap_events);
3795 if (event->attr.comm)
3796 atomic_dec(&nr_comm_events);
3797 if (event->attr.task)
3798 atomic_dec(&nr_task_events);
3799 if (event->attr.freq)
3800 unaccount_freq_event();
3801 if (event->attr.context_switch) {
3802 dec = true;
3803 atomic_dec(&nr_switch_events);
3804 }
3805 if (is_cgroup_event(event))
3806 dec = true;
3807 if (has_branch_stack(event))
3808 dec = true;
3809
3810 if (dec) {
3811 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3812 schedule_delayed_work(&perf_sched_work, HZ);
3813 }
3814
3815 unaccount_event_cpu(event, event->cpu);
3816
3817 unaccount_pmu_sb_event(event);
3818 }
3819
3820 static void perf_sched_delayed(struct work_struct *work)
3821 {
3822 mutex_lock(&perf_sched_mutex);
3823 if (atomic_dec_and_test(&perf_sched_count))
3824 static_branch_disable(&perf_sched_events);
3825 mutex_unlock(&perf_sched_mutex);
3826 }
3827
3828 /*
3829 * The following implement mutual exclusion of events on "exclusive" pmus
3830 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3831 * at a time, so we disallow creating events that might conflict, namely:
3832 *
3833 * 1) cpu-wide events in the presence of per-task events,
3834 * 2) per-task events in the presence of cpu-wide events,
3835 * 3) two matching events on the same context.
3836 *
3837 * The former two cases are handled in the allocation path (perf_event_alloc(),
3838 * _free_event()), the latter -- before the first perf_install_in_context().
3839 */
3840 static int exclusive_event_init(struct perf_event *event)
3841 {
3842 struct pmu *pmu = event->pmu;
3843
3844 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3845 return 0;
3846
3847 /*
3848 * Prevent co-existence of per-task and cpu-wide events on the
3849 * same exclusive pmu.
3850 *
3851 * Negative pmu::exclusive_cnt means there are cpu-wide
3852 * events on this "exclusive" pmu, positive means there are
3853 * per-task events.
3854 *
3855 * Since this is called in perf_event_alloc() path, event::ctx
3856 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3857 * to mean "per-task event", because unlike other attach states it
3858 * never gets cleared.
3859 */
3860 if (event->attach_state & PERF_ATTACH_TASK) {
3861 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3862 return -EBUSY;
3863 } else {
3864 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3865 return -EBUSY;
3866 }
3867
3868 return 0;
3869 }
3870
3871 static void exclusive_event_destroy(struct perf_event *event)
3872 {
3873 struct pmu *pmu = event->pmu;
3874
3875 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3876 return;
3877
3878 /* see comment in exclusive_event_init() */
3879 if (event->attach_state & PERF_ATTACH_TASK)
3880 atomic_dec(&pmu->exclusive_cnt);
3881 else
3882 atomic_inc(&pmu->exclusive_cnt);
3883 }
3884
3885 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3886 {
3887 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3888 (e1->cpu == e2->cpu ||
3889 e1->cpu == -1 ||
3890 e2->cpu == -1))
3891 return true;
3892 return false;
3893 }
3894
3895 /* Called under the same ctx::mutex as perf_install_in_context() */
3896 static bool exclusive_event_installable(struct perf_event *event,
3897 struct perf_event_context *ctx)
3898 {
3899 struct perf_event *iter_event;
3900 struct pmu *pmu = event->pmu;
3901
3902 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3903 return true;
3904
3905 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3906 if (exclusive_event_match(iter_event, event))
3907 return false;
3908 }
3909
3910 return true;
3911 }
3912
3913 static void perf_addr_filters_splice(struct perf_event *event,
3914 struct list_head *head);
3915
3916 static void _free_event(struct perf_event *event)
3917 {
3918 irq_work_sync(&event->pending);
3919
3920 unaccount_event(event);
3921
3922 if (event->rb) {
3923 /*
3924 * Can happen when we close an event with re-directed output.
3925 *
3926 * Since we have a 0 refcount, perf_mmap_close() will skip
3927 * over us; possibly making our ring_buffer_put() the last.
3928 */
3929 mutex_lock(&event->mmap_mutex);
3930 ring_buffer_attach(event, NULL);
3931 mutex_unlock(&event->mmap_mutex);
3932 }
3933
3934 if (is_cgroup_event(event))
3935 perf_detach_cgroup(event);
3936
3937 if (!event->parent) {
3938 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3939 put_callchain_buffers();
3940 }
3941
3942 perf_event_free_bpf_prog(event);
3943 perf_addr_filters_splice(event, NULL);
3944 kfree(event->addr_filters_offs);
3945
3946 if (event->destroy)
3947 event->destroy(event);
3948
3949 if (event->ctx)
3950 put_ctx(event->ctx);
3951
3952 exclusive_event_destroy(event);
3953 module_put(event->pmu->module);
3954
3955 call_rcu(&event->rcu_head, free_event_rcu);
3956 }
3957
3958 /*
3959 * Used to free events which have a known refcount of 1, such as in error paths
3960 * where the event isn't exposed yet and inherited events.
3961 */
3962 static void free_event(struct perf_event *event)
3963 {
3964 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3965 "unexpected event refcount: %ld; ptr=%p\n",
3966 atomic_long_read(&event->refcount), event)) {
3967 /* leak to avoid use-after-free */
3968 return;
3969 }
3970
3971 _free_event(event);
3972 }
3973
3974 /*
3975 * Remove user event from the owner task.
3976 */
3977 static void perf_remove_from_owner(struct perf_event *event)
3978 {
3979 struct task_struct *owner;
3980
3981 rcu_read_lock();
3982 /*
3983 * Matches the smp_store_release() in perf_event_exit_task(). If we
3984 * observe !owner it means the list deletion is complete and we can
3985 * indeed free this event, otherwise we need to serialize on
3986 * owner->perf_event_mutex.
3987 */
3988 owner = lockless_dereference(event->owner);
3989 if (owner) {
3990 /*
3991 * Since delayed_put_task_struct() also drops the last
3992 * task reference we can safely take a new reference
3993 * while holding the rcu_read_lock().
3994 */
3995 get_task_struct(owner);
3996 }
3997 rcu_read_unlock();
3998
3999 if (owner) {
4000 /*
4001 * If we're here through perf_event_exit_task() we're already
4002 * holding ctx->mutex which would be an inversion wrt. the
4003 * normal lock order.
4004 *
4005 * However we can safely take this lock because its the child
4006 * ctx->mutex.
4007 */
4008 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4009
4010 /*
4011 * We have to re-check the event->owner field, if it is cleared
4012 * we raced with perf_event_exit_task(), acquiring the mutex
4013 * ensured they're done, and we can proceed with freeing the
4014 * event.
4015 */
4016 if (event->owner) {
4017 list_del_init(&event->owner_entry);
4018 smp_store_release(&event->owner, NULL);
4019 }
4020 mutex_unlock(&owner->perf_event_mutex);
4021 put_task_struct(owner);
4022 }
4023 }
4024
4025 static void put_event(struct perf_event *event)
4026 {
4027 if (!atomic_long_dec_and_test(&event->refcount))
4028 return;
4029
4030 _free_event(event);
4031 }
4032
4033 /*
4034 * Kill an event dead; while event:refcount will preserve the event
4035 * object, it will not preserve its functionality. Once the last 'user'
4036 * gives up the object, we'll destroy the thing.
4037 */
4038 int perf_event_release_kernel(struct perf_event *event)
4039 {
4040 struct perf_event_context *ctx = event->ctx;
4041 struct perf_event *child, *tmp;
4042
4043 /*
4044 * If we got here through err_file: fput(event_file); we will not have
4045 * attached to a context yet.
4046 */
4047 if (!ctx) {
4048 WARN_ON_ONCE(event->attach_state &
4049 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4050 goto no_ctx;
4051 }
4052
4053 if (!is_kernel_event(event))
4054 perf_remove_from_owner(event);
4055
4056 ctx = perf_event_ctx_lock(event);
4057 WARN_ON_ONCE(ctx->parent_ctx);
4058 perf_remove_from_context(event, DETACH_GROUP);
4059
4060 raw_spin_lock_irq(&ctx->lock);
4061 /*
4062 * Mark this even as STATE_DEAD, there is no external reference to it
4063 * anymore.
4064 *
4065 * Anybody acquiring event->child_mutex after the below loop _must_
4066 * also see this, most importantly inherit_event() which will avoid
4067 * placing more children on the list.
4068 *
4069 * Thus this guarantees that we will in fact observe and kill _ALL_
4070 * child events.
4071 */
4072 event->state = PERF_EVENT_STATE_DEAD;
4073 raw_spin_unlock_irq(&ctx->lock);
4074
4075 perf_event_ctx_unlock(event, ctx);
4076
4077 again:
4078 mutex_lock(&event->child_mutex);
4079 list_for_each_entry(child, &event->child_list, child_list) {
4080
4081 /*
4082 * Cannot change, child events are not migrated, see the
4083 * comment with perf_event_ctx_lock_nested().
4084 */
4085 ctx = lockless_dereference(child->ctx);
4086 /*
4087 * Since child_mutex nests inside ctx::mutex, we must jump
4088 * through hoops. We start by grabbing a reference on the ctx.
4089 *
4090 * Since the event cannot get freed while we hold the
4091 * child_mutex, the context must also exist and have a !0
4092 * reference count.
4093 */
4094 get_ctx(ctx);
4095
4096 /*
4097 * Now that we have a ctx ref, we can drop child_mutex, and
4098 * acquire ctx::mutex without fear of it going away. Then we
4099 * can re-acquire child_mutex.
4100 */
4101 mutex_unlock(&event->child_mutex);
4102 mutex_lock(&ctx->mutex);
4103 mutex_lock(&event->child_mutex);
4104
4105 /*
4106 * Now that we hold ctx::mutex and child_mutex, revalidate our
4107 * state, if child is still the first entry, it didn't get freed
4108 * and we can continue doing so.
4109 */
4110 tmp = list_first_entry_or_null(&event->child_list,
4111 struct perf_event, child_list);
4112 if (tmp == child) {
4113 perf_remove_from_context(child, DETACH_GROUP);
4114 list_del(&child->child_list);
4115 free_event(child);
4116 /*
4117 * This matches the refcount bump in inherit_event();
4118 * this can't be the last reference.
4119 */
4120 put_event(event);
4121 }
4122
4123 mutex_unlock(&event->child_mutex);
4124 mutex_unlock(&ctx->mutex);
4125 put_ctx(ctx);
4126 goto again;
4127 }
4128 mutex_unlock(&event->child_mutex);
4129
4130 no_ctx:
4131 put_event(event); /* Must be the 'last' reference */
4132 return 0;
4133 }
4134 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4135
4136 /*
4137 * Called when the last reference to the file is gone.
4138 */
4139 static int perf_release(struct inode *inode, struct file *file)
4140 {
4141 perf_event_release_kernel(file->private_data);
4142 return 0;
4143 }
4144
4145 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4146 {
4147 struct perf_event *child;
4148 u64 total = 0;
4149
4150 *enabled = 0;
4151 *running = 0;
4152
4153 mutex_lock(&event->child_mutex);
4154
4155 (void)perf_event_read(event, false);
4156 total += perf_event_count(event);
4157
4158 *enabled += event->total_time_enabled +
4159 atomic64_read(&event->child_total_time_enabled);
4160 *running += event->total_time_running +
4161 atomic64_read(&event->child_total_time_running);
4162
4163 list_for_each_entry(child, &event->child_list, child_list) {
4164 (void)perf_event_read(child, false);
4165 total += perf_event_count(child);
4166 *enabled += child->total_time_enabled;
4167 *running += child->total_time_running;
4168 }
4169 mutex_unlock(&event->child_mutex);
4170
4171 return total;
4172 }
4173 EXPORT_SYMBOL_GPL(perf_event_read_value);
4174
4175 static int __perf_read_group_add(struct perf_event *leader,
4176 u64 read_format, u64 *values)
4177 {
4178 struct perf_event *sub;
4179 int n = 1; /* skip @nr */
4180 int ret;
4181
4182 ret = perf_event_read(leader, true);
4183 if (ret)
4184 return ret;
4185
4186 /*
4187 * Since we co-schedule groups, {enabled,running} times of siblings
4188 * will be identical to those of the leader, so we only publish one
4189 * set.
4190 */
4191 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4192 values[n++] += leader->total_time_enabled +
4193 atomic64_read(&leader->child_total_time_enabled);
4194 }
4195
4196 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4197 values[n++] += leader->total_time_running +
4198 atomic64_read(&leader->child_total_time_running);
4199 }
4200
4201 /*
4202 * Write {count,id} tuples for every sibling.
4203 */
4204 values[n++] += perf_event_count(leader);
4205 if (read_format & PERF_FORMAT_ID)
4206 values[n++] = primary_event_id(leader);
4207
4208 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4209 values[n++] += perf_event_count(sub);
4210 if (read_format & PERF_FORMAT_ID)
4211 values[n++] = primary_event_id(sub);
4212 }
4213
4214 return 0;
4215 }
4216
4217 static int perf_read_group(struct perf_event *event,
4218 u64 read_format, char __user *buf)
4219 {
4220 struct perf_event *leader = event->group_leader, *child;
4221 struct perf_event_context *ctx = leader->ctx;
4222 int ret;
4223 u64 *values;
4224
4225 lockdep_assert_held(&ctx->mutex);
4226
4227 values = kzalloc(event->read_size, GFP_KERNEL);
4228 if (!values)
4229 return -ENOMEM;
4230
4231 values[0] = 1 + leader->nr_siblings;
4232
4233 /*
4234 * By locking the child_mutex of the leader we effectively
4235 * lock the child list of all siblings.. XXX explain how.
4236 */
4237 mutex_lock(&leader->child_mutex);
4238
4239 ret = __perf_read_group_add(leader, read_format, values);
4240 if (ret)
4241 goto unlock;
4242
4243 list_for_each_entry(child, &leader->child_list, child_list) {
4244 ret = __perf_read_group_add(child, read_format, values);
4245 if (ret)
4246 goto unlock;
4247 }
4248
4249 mutex_unlock(&leader->child_mutex);
4250
4251 ret = event->read_size;
4252 if (copy_to_user(buf, values, event->read_size))
4253 ret = -EFAULT;
4254 goto out;
4255
4256 unlock:
4257 mutex_unlock(&leader->child_mutex);
4258 out:
4259 kfree(values);
4260 return ret;
4261 }
4262
4263 static int perf_read_one(struct perf_event *event,
4264 u64 read_format, char __user *buf)
4265 {
4266 u64 enabled, running;
4267 u64 values[4];
4268 int n = 0;
4269
4270 values[n++] = perf_event_read_value(event, &enabled, &running);
4271 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4272 values[n++] = enabled;
4273 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4274 values[n++] = running;
4275 if (read_format & PERF_FORMAT_ID)
4276 values[n++] = primary_event_id(event);
4277
4278 if (copy_to_user(buf, values, n * sizeof(u64)))
4279 return -EFAULT;
4280
4281 return n * sizeof(u64);
4282 }
4283
4284 static bool is_event_hup(struct perf_event *event)
4285 {
4286 bool no_children;
4287
4288 if (event->state > PERF_EVENT_STATE_EXIT)
4289 return false;
4290
4291 mutex_lock(&event->child_mutex);
4292 no_children = list_empty(&event->child_list);
4293 mutex_unlock(&event->child_mutex);
4294 return no_children;
4295 }
4296
4297 /*
4298 * Read the performance event - simple non blocking version for now
4299 */
4300 static ssize_t
4301 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4302 {
4303 u64 read_format = event->attr.read_format;
4304 int ret;
4305
4306 /*
4307 * Return end-of-file for a read on a event that is in
4308 * error state (i.e. because it was pinned but it couldn't be
4309 * scheduled on to the CPU at some point).
4310 */
4311 if (event->state == PERF_EVENT_STATE_ERROR)
4312 return 0;
4313
4314 if (count < event->read_size)
4315 return -ENOSPC;
4316
4317 WARN_ON_ONCE(event->ctx->parent_ctx);
4318 if (read_format & PERF_FORMAT_GROUP)
4319 ret = perf_read_group(event, read_format, buf);
4320 else
4321 ret = perf_read_one(event, read_format, buf);
4322
4323 return ret;
4324 }
4325
4326 static ssize_t
4327 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4328 {
4329 struct perf_event *event = file->private_data;
4330 struct perf_event_context *ctx;
4331 int ret;
4332
4333 ctx = perf_event_ctx_lock(event);
4334 ret = __perf_read(event, buf, count);
4335 perf_event_ctx_unlock(event, ctx);
4336
4337 return ret;
4338 }
4339
4340 static unsigned int perf_poll(struct file *file, poll_table *wait)
4341 {
4342 struct perf_event *event = file->private_data;
4343 struct ring_buffer *rb;
4344 unsigned int events = POLLHUP;
4345
4346 poll_wait(file, &event->waitq, wait);
4347
4348 if (is_event_hup(event))
4349 return events;
4350
4351 /*
4352 * Pin the event->rb by taking event->mmap_mutex; otherwise
4353 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4354 */
4355 mutex_lock(&event->mmap_mutex);
4356 rb = event->rb;
4357 if (rb)
4358 events = atomic_xchg(&rb->poll, 0);
4359 mutex_unlock(&event->mmap_mutex);
4360 return events;
4361 }
4362
4363 static void _perf_event_reset(struct perf_event *event)
4364 {
4365 (void)perf_event_read(event, false);
4366 local64_set(&event->count, 0);
4367 perf_event_update_userpage(event);
4368 }
4369
4370 /*
4371 * Holding the top-level event's child_mutex means that any
4372 * descendant process that has inherited this event will block
4373 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4374 * task existence requirements of perf_event_enable/disable.
4375 */
4376 static void perf_event_for_each_child(struct perf_event *event,
4377 void (*func)(struct perf_event *))
4378 {
4379 struct perf_event *child;
4380
4381 WARN_ON_ONCE(event->ctx->parent_ctx);
4382
4383 mutex_lock(&event->child_mutex);
4384 func(event);
4385 list_for_each_entry(child, &event->child_list, child_list)
4386 func(child);
4387 mutex_unlock(&event->child_mutex);
4388 }
4389
4390 static void perf_event_for_each(struct perf_event *event,
4391 void (*func)(struct perf_event *))
4392 {
4393 struct perf_event_context *ctx = event->ctx;
4394 struct perf_event *sibling;
4395
4396 lockdep_assert_held(&ctx->mutex);
4397
4398 event = event->group_leader;
4399
4400 perf_event_for_each_child(event, func);
4401 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4402 perf_event_for_each_child(sibling, func);
4403 }
4404
4405 static void __perf_event_period(struct perf_event *event,
4406 struct perf_cpu_context *cpuctx,
4407 struct perf_event_context *ctx,
4408 void *info)
4409 {
4410 u64 value = *((u64 *)info);
4411 bool active;
4412
4413 if (event->attr.freq) {
4414 event->attr.sample_freq = value;
4415 } else {
4416 event->attr.sample_period = value;
4417 event->hw.sample_period = value;
4418 }
4419
4420 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4421 if (active) {
4422 perf_pmu_disable(ctx->pmu);
4423 /*
4424 * We could be throttled; unthrottle now to avoid the tick
4425 * trying to unthrottle while we already re-started the event.
4426 */
4427 if (event->hw.interrupts == MAX_INTERRUPTS) {
4428 event->hw.interrupts = 0;
4429 perf_log_throttle(event, 1);
4430 }
4431 event->pmu->stop(event, PERF_EF_UPDATE);
4432 }
4433
4434 local64_set(&event->hw.period_left, 0);
4435
4436 if (active) {
4437 event->pmu->start(event, PERF_EF_RELOAD);
4438 perf_pmu_enable(ctx->pmu);
4439 }
4440 }
4441
4442 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4443 {
4444 u64 value;
4445
4446 if (!is_sampling_event(event))
4447 return -EINVAL;
4448
4449 if (copy_from_user(&value, arg, sizeof(value)))
4450 return -EFAULT;
4451
4452 if (!value)
4453 return -EINVAL;
4454
4455 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4456 return -EINVAL;
4457
4458 event_function_call(event, __perf_event_period, &value);
4459
4460 return 0;
4461 }
4462
4463 static const struct file_operations perf_fops;
4464
4465 static inline int perf_fget_light(int fd, struct fd *p)
4466 {
4467 struct fd f = fdget(fd);
4468 if (!f.file)
4469 return -EBADF;
4470
4471 if (f.file->f_op != &perf_fops) {
4472 fdput(f);
4473 return -EBADF;
4474 }
4475 *p = f;
4476 return 0;
4477 }
4478
4479 static int perf_event_set_output(struct perf_event *event,
4480 struct perf_event *output_event);
4481 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4482 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4483
4484 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4485 {
4486 void (*func)(struct perf_event *);
4487 u32 flags = arg;
4488
4489 switch (cmd) {
4490 case PERF_EVENT_IOC_ENABLE:
4491 func = _perf_event_enable;
4492 break;
4493 case PERF_EVENT_IOC_DISABLE:
4494 func = _perf_event_disable;
4495 break;
4496 case PERF_EVENT_IOC_RESET:
4497 func = _perf_event_reset;
4498 break;
4499
4500 case PERF_EVENT_IOC_REFRESH:
4501 return _perf_event_refresh(event, arg);
4502
4503 case PERF_EVENT_IOC_PERIOD:
4504 return perf_event_period(event, (u64 __user *)arg);
4505
4506 case PERF_EVENT_IOC_ID:
4507 {
4508 u64 id = primary_event_id(event);
4509
4510 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4511 return -EFAULT;
4512 return 0;
4513 }
4514
4515 case PERF_EVENT_IOC_SET_OUTPUT:
4516 {
4517 int ret;
4518 if (arg != -1) {
4519 struct perf_event *output_event;
4520 struct fd output;
4521 ret = perf_fget_light(arg, &output);
4522 if (ret)
4523 return ret;
4524 output_event = output.file->private_data;
4525 ret = perf_event_set_output(event, output_event);
4526 fdput(output);
4527 } else {
4528 ret = perf_event_set_output(event, NULL);
4529 }
4530 return ret;
4531 }
4532
4533 case PERF_EVENT_IOC_SET_FILTER:
4534 return perf_event_set_filter(event, (void __user *)arg);
4535
4536 case PERF_EVENT_IOC_SET_BPF:
4537 return perf_event_set_bpf_prog(event, arg);
4538
4539 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4540 struct ring_buffer *rb;
4541
4542 rcu_read_lock();
4543 rb = rcu_dereference(event->rb);
4544 if (!rb || !rb->nr_pages) {
4545 rcu_read_unlock();
4546 return -EINVAL;
4547 }
4548 rb_toggle_paused(rb, !!arg);
4549 rcu_read_unlock();
4550 return 0;
4551 }
4552 default:
4553 return -ENOTTY;
4554 }
4555
4556 if (flags & PERF_IOC_FLAG_GROUP)
4557 perf_event_for_each(event, func);
4558 else
4559 perf_event_for_each_child(event, func);
4560
4561 return 0;
4562 }
4563
4564 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4565 {
4566 struct perf_event *event = file->private_data;
4567 struct perf_event_context *ctx;
4568 long ret;
4569
4570 ctx = perf_event_ctx_lock(event);
4571 ret = _perf_ioctl(event, cmd, arg);
4572 perf_event_ctx_unlock(event, ctx);
4573
4574 return ret;
4575 }
4576
4577 #ifdef CONFIG_COMPAT
4578 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4579 unsigned long arg)
4580 {
4581 switch (_IOC_NR(cmd)) {
4582 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4583 case _IOC_NR(PERF_EVENT_IOC_ID):
4584 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4585 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4586 cmd &= ~IOCSIZE_MASK;
4587 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4588 }
4589 break;
4590 }
4591 return perf_ioctl(file, cmd, arg);
4592 }
4593 #else
4594 # define perf_compat_ioctl NULL
4595 #endif
4596
4597 int perf_event_task_enable(void)
4598 {
4599 struct perf_event_context *ctx;
4600 struct perf_event *event;
4601
4602 mutex_lock(&current->perf_event_mutex);
4603 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4604 ctx = perf_event_ctx_lock(event);
4605 perf_event_for_each_child(event, _perf_event_enable);
4606 perf_event_ctx_unlock(event, ctx);
4607 }
4608 mutex_unlock(&current->perf_event_mutex);
4609
4610 return 0;
4611 }
4612
4613 int perf_event_task_disable(void)
4614 {
4615 struct perf_event_context *ctx;
4616 struct perf_event *event;
4617
4618 mutex_lock(&current->perf_event_mutex);
4619 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4620 ctx = perf_event_ctx_lock(event);
4621 perf_event_for_each_child(event, _perf_event_disable);
4622 perf_event_ctx_unlock(event, ctx);
4623 }
4624 mutex_unlock(&current->perf_event_mutex);
4625
4626 return 0;
4627 }
4628
4629 static int perf_event_index(struct perf_event *event)
4630 {
4631 if (event->hw.state & PERF_HES_STOPPED)
4632 return 0;
4633
4634 if (event->state != PERF_EVENT_STATE_ACTIVE)
4635 return 0;
4636
4637 return event->pmu->event_idx(event);
4638 }
4639
4640 static void calc_timer_values(struct perf_event *event,
4641 u64 *now,
4642 u64 *enabled,
4643 u64 *running)
4644 {
4645 u64 ctx_time;
4646
4647 *now = perf_clock();
4648 ctx_time = event->shadow_ctx_time + *now;
4649 *enabled = ctx_time - event->tstamp_enabled;
4650 *running = ctx_time - event->tstamp_running;
4651 }
4652
4653 static void perf_event_init_userpage(struct perf_event *event)
4654 {
4655 struct perf_event_mmap_page *userpg;
4656 struct ring_buffer *rb;
4657
4658 rcu_read_lock();
4659 rb = rcu_dereference(event->rb);
4660 if (!rb)
4661 goto unlock;
4662
4663 userpg = rb->user_page;
4664
4665 /* Allow new userspace to detect that bit 0 is deprecated */
4666 userpg->cap_bit0_is_deprecated = 1;
4667 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4668 userpg->data_offset = PAGE_SIZE;
4669 userpg->data_size = perf_data_size(rb);
4670
4671 unlock:
4672 rcu_read_unlock();
4673 }
4674
4675 void __weak arch_perf_update_userpage(
4676 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4677 {
4678 }
4679
4680 /*
4681 * Callers need to ensure there can be no nesting of this function, otherwise
4682 * the seqlock logic goes bad. We can not serialize this because the arch
4683 * code calls this from NMI context.
4684 */
4685 void perf_event_update_userpage(struct perf_event *event)
4686 {
4687 struct perf_event_mmap_page *userpg;
4688 struct ring_buffer *rb;
4689 u64 enabled, running, now;
4690
4691 rcu_read_lock();
4692 rb = rcu_dereference(event->rb);
4693 if (!rb)
4694 goto unlock;
4695
4696 /*
4697 * compute total_time_enabled, total_time_running
4698 * based on snapshot values taken when the event
4699 * was last scheduled in.
4700 *
4701 * we cannot simply called update_context_time()
4702 * because of locking issue as we can be called in
4703 * NMI context
4704 */
4705 calc_timer_values(event, &now, &enabled, &running);
4706
4707 userpg = rb->user_page;
4708 /*
4709 * Disable preemption so as to not let the corresponding user-space
4710 * spin too long if we get preempted.
4711 */
4712 preempt_disable();
4713 ++userpg->lock;
4714 barrier();
4715 userpg->index = perf_event_index(event);
4716 userpg->offset = perf_event_count(event);
4717 if (userpg->index)
4718 userpg->offset -= local64_read(&event->hw.prev_count);
4719
4720 userpg->time_enabled = enabled +
4721 atomic64_read(&event->child_total_time_enabled);
4722
4723 userpg->time_running = running +
4724 atomic64_read(&event->child_total_time_running);
4725
4726 arch_perf_update_userpage(event, userpg, now);
4727
4728 barrier();
4729 ++userpg->lock;
4730 preempt_enable();
4731 unlock:
4732 rcu_read_unlock();
4733 }
4734
4735 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4736 {
4737 struct perf_event *event = vma->vm_file->private_data;
4738 struct ring_buffer *rb;
4739 int ret = VM_FAULT_SIGBUS;
4740
4741 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4742 if (vmf->pgoff == 0)
4743 ret = 0;
4744 return ret;
4745 }
4746
4747 rcu_read_lock();
4748 rb = rcu_dereference(event->rb);
4749 if (!rb)
4750 goto unlock;
4751
4752 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4753 goto unlock;
4754
4755 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4756 if (!vmf->page)
4757 goto unlock;
4758
4759 get_page(vmf->page);
4760 vmf->page->mapping = vma->vm_file->f_mapping;
4761 vmf->page->index = vmf->pgoff;
4762
4763 ret = 0;
4764 unlock:
4765 rcu_read_unlock();
4766
4767 return ret;
4768 }
4769
4770 static void ring_buffer_attach(struct perf_event *event,
4771 struct ring_buffer *rb)
4772 {
4773 struct ring_buffer *old_rb = NULL;
4774 unsigned long flags;
4775
4776 if (event->rb) {
4777 /*
4778 * Should be impossible, we set this when removing
4779 * event->rb_entry and wait/clear when adding event->rb_entry.
4780 */
4781 WARN_ON_ONCE(event->rcu_pending);
4782
4783 old_rb = event->rb;
4784 spin_lock_irqsave(&old_rb->event_lock, flags);
4785 list_del_rcu(&event->rb_entry);
4786 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4787
4788 event->rcu_batches = get_state_synchronize_rcu();
4789 event->rcu_pending = 1;
4790 }
4791
4792 if (rb) {
4793 if (event->rcu_pending) {
4794 cond_synchronize_rcu(event->rcu_batches);
4795 event->rcu_pending = 0;
4796 }
4797
4798 spin_lock_irqsave(&rb->event_lock, flags);
4799 list_add_rcu(&event->rb_entry, &rb->event_list);
4800 spin_unlock_irqrestore(&rb->event_lock, flags);
4801 }
4802
4803 rcu_assign_pointer(event->rb, rb);
4804
4805 if (old_rb) {
4806 ring_buffer_put(old_rb);
4807 /*
4808 * Since we detached before setting the new rb, so that we
4809 * could attach the new rb, we could have missed a wakeup.
4810 * Provide it now.
4811 */
4812 wake_up_all(&event->waitq);
4813 }
4814 }
4815
4816 static void ring_buffer_wakeup(struct perf_event *event)
4817 {
4818 struct ring_buffer *rb;
4819
4820 rcu_read_lock();
4821 rb = rcu_dereference(event->rb);
4822 if (rb) {
4823 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4824 wake_up_all(&event->waitq);
4825 }
4826 rcu_read_unlock();
4827 }
4828
4829 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4830 {
4831 struct ring_buffer *rb;
4832
4833 rcu_read_lock();
4834 rb = rcu_dereference(event->rb);
4835 if (rb) {
4836 if (!atomic_inc_not_zero(&rb->refcount))
4837 rb = NULL;
4838 }
4839 rcu_read_unlock();
4840
4841 return rb;
4842 }
4843
4844 void ring_buffer_put(struct ring_buffer *rb)
4845 {
4846 if (!atomic_dec_and_test(&rb->refcount))
4847 return;
4848
4849 WARN_ON_ONCE(!list_empty(&rb->event_list));
4850
4851 call_rcu(&rb->rcu_head, rb_free_rcu);
4852 }
4853
4854 static void perf_mmap_open(struct vm_area_struct *vma)
4855 {
4856 struct perf_event *event = vma->vm_file->private_data;
4857
4858 atomic_inc(&event->mmap_count);
4859 atomic_inc(&event->rb->mmap_count);
4860
4861 if (vma->vm_pgoff)
4862 atomic_inc(&event->rb->aux_mmap_count);
4863
4864 if (event->pmu->event_mapped)
4865 event->pmu->event_mapped(event);
4866 }
4867
4868 static void perf_pmu_output_stop(struct perf_event *event);
4869
4870 /*
4871 * A buffer can be mmap()ed multiple times; either directly through the same
4872 * event, or through other events by use of perf_event_set_output().
4873 *
4874 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4875 * the buffer here, where we still have a VM context. This means we need
4876 * to detach all events redirecting to us.
4877 */
4878 static void perf_mmap_close(struct vm_area_struct *vma)
4879 {
4880 struct perf_event *event = vma->vm_file->private_data;
4881
4882 struct ring_buffer *rb = ring_buffer_get(event);
4883 struct user_struct *mmap_user = rb->mmap_user;
4884 int mmap_locked = rb->mmap_locked;
4885 unsigned long size = perf_data_size(rb);
4886
4887 if (event->pmu->event_unmapped)
4888 event->pmu->event_unmapped(event);
4889
4890 /*
4891 * rb->aux_mmap_count will always drop before rb->mmap_count and
4892 * event->mmap_count, so it is ok to use event->mmap_mutex to
4893 * serialize with perf_mmap here.
4894 */
4895 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4896 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4897 /*
4898 * Stop all AUX events that are writing to this buffer,
4899 * so that we can free its AUX pages and corresponding PMU
4900 * data. Note that after rb::aux_mmap_count dropped to zero,
4901 * they won't start any more (see perf_aux_output_begin()).
4902 */
4903 perf_pmu_output_stop(event);
4904
4905 /* now it's safe to free the pages */
4906 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4907 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4908
4909 /* this has to be the last one */
4910 rb_free_aux(rb);
4911 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4912
4913 mutex_unlock(&event->mmap_mutex);
4914 }
4915
4916 atomic_dec(&rb->mmap_count);
4917
4918 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4919 goto out_put;
4920
4921 ring_buffer_attach(event, NULL);
4922 mutex_unlock(&event->mmap_mutex);
4923
4924 /* If there's still other mmap()s of this buffer, we're done. */
4925 if (atomic_read(&rb->mmap_count))
4926 goto out_put;
4927
4928 /*
4929 * No other mmap()s, detach from all other events that might redirect
4930 * into the now unreachable buffer. Somewhat complicated by the
4931 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4932 */
4933 again:
4934 rcu_read_lock();
4935 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4936 if (!atomic_long_inc_not_zero(&event->refcount)) {
4937 /*
4938 * This event is en-route to free_event() which will
4939 * detach it and remove it from the list.
4940 */
4941 continue;
4942 }
4943 rcu_read_unlock();
4944
4945 mutex_lock(&event->mmap_mutex);
4946 /*
4947 * Check we didn't race with perf_event_set_output() which can
4948 * swizzle the rb from under us while we were waiting to
4949 * acquire mmap_mutex.
4950 *
4951 * If we find a different rb; ignore this event, a next
4952 * iteration will no longer find it on the list. We have to
4953 * still restart the iteration to make sure we're not now
4954 * iterating the wrong list.
4955 */
4956 if (event->rb == rb)
4957 ring_buffer_attach(event, NULL);
4958
4959 mutex_unlock(&event->mmap_mutex);
4960 put_event(event);
4961
4962 /*
4963 * Restart the iteration; either we're on the wrong list or
4964 * destroyed its integrity by doing a deletion.
4965 */
4966 goto again;
4967 }
4968 rcu_read_unlock();
4969
4970 /*
4971 * It could be there's still a few 0-ref events on the list; they'll
4972 * get cleaned up by free_event() -- they'll also still have their
4973 * ref on the rb and will free it whenever they are done with it.
4974 *
4975 * Aside from that, this buffer is 'fully' detached and unmapped,
4976 * undo the VM accounting.
4977 */
4978
4979 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4980 vma->vm_mm->pinned_vm -= mmap_locked;
4981 free_uid(mmap_user);
4982
4983 out_put:
4984 ring_buffer_put(rb); /* could be last */
4985 }
4986
4987 static const struct vm_operations_struct perf_mmap_vmops = {
4988 .open = perf_mmap_open,
4989 .close = perf_mmap_close, /* non mergable */
4990 .fault = perf_mmap_fault,
4991 .page_mkwrite = perf_mmap_fault,
4992 };
4993
4994 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4995 {
4996 struct perf_event *event = file->private_data;
4997 unsigned long user_locked, user_lock_limit;
4998 struct user_struct *user = current_user();
4999 unsigned long locked, lock_limit;
5000 struct ring_buffer *rb = NULL;
5001 unsigned long vma_size;
5002 unsigned long nr_pages;
5003 long user_extra = 0, extra = 0;
5004 int ret = 0, flags = 0;
5005
5006 /*
5007 * Don't allow mmap() of inherited per-task counters. This would
5008 * create a performance issue due to all children writing to the
5009 * same rb.
5010 */
5011 if (event->cpu == -1 && event->attr.inherit)
5012 return -EINVAL;
5013
5014 if (!(vma->vm_flags & VM_SHARED))
5015 return -EINVAL;
5016
5017 vma_size = vma->vm_end - vma->vm_start;
5018
5019 if (vma->vm_pgoff == 0) {
5020 nr_pages = (vma_size / PAGE_SIZE) - 1;
5021 } else {
5022 /*
5023 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5024 * mapped, all subsequent mappings should have the same size
5025 * and offset. Must be above the normal perf buffer.
5026 */
5027 u64 aux_offset, aux_size;
5028
5029 if (!event->rb)
5030 return -EINVAL;
5031
5032 nr_pages = vma_size / PAGE_SIZE;
5033
5034 mutex_lock(&event->mmap_mutex);
5035 ret = -EINVAL;
5036
5037 rb = event->rb;
5038 if (!rb)
5039 goto aux_unlock;
5040
5041 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5042 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5043
5044 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5045 goto aux_unlock;
5046
5047 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5048 goto aux_unlock;
5049
5050 /* already mapped with a different offset */
5051 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5052 goto aux_unlock;
5053
5054 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5055 goto aux_unlock;
5056
5057 /* already mapped with a different size */
5058 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5059 goto aux_unlock;
5060
5061 if (!is_power_of_2(nr_pages))
5062 goto aux_unlock;
5063
5064 if (!atomic_inc_not_zero(&rb->mmap_count))
5065 goto aux_unlock;
5066
5067 if (rb_has_aux(rb)) {
5068 atomic_inc(&rb->aux_mmap_count);
5069 ret = 0;
5070 goto unlock;
5071 }
5072
5073 atomic_set(&rb->aux_mmap_count, 1);
5074 user_extra = nr_pages;
5075
5076 goto accounting;
5077 }
5078
5079 /*
5080 * If we have rb pages ensure they're a power-of-two number, so we
5081 * can do bitmasks instead of modulo.
5082 */
5083 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5084 return -EINVAL;
5085
5086 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5087 return -EINVAL;
5088
5089 WARN_ON_ONCE(event->ctx->parent_ctx);
5090 again:
5091 mutex_lock(&event->mmap_mutex);
5092 if (event->rb) {
5093 if (event->rb->nr_pages != nr_pages) {
5094 ret = -EINVAL;
5095 goto unlock;
5096 }
5097
5098 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5099 /*
5100 * Raced against perf_mmap_close() through
5101 * perf_event_set_output(). Try again, hope for better
5102 * luck.
5103 */
5104 mutex_unlock(&event->mmap_mutex);
5105 goto again;
5106 }
5107
5108 goto unlock;
5109 }
5110
5111 user_extra = nr_pages + 1;
5112
5113 accounting:
5114 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5115
5116 /*
5117 * Increase the limit linearly with more CPUs:
5118 */
5119 user_lock_limit *= num_online_cpus();
5120
5121 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5122
5123 if (user_locked > user_lock_limit)
5124 extra = user_locked - user_lock_limit;
5125
5126 lock_limit = rlimit(RLIMIT_MEMLOCK);
5127 lock_limit >>= PAGE_SHIFT;
5128 locked = vma->vm_mm->pinned_vm + extra;
5129
5130 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5131 !capable(CAP_IPC_LOCK)) {
5132 ret = -EPERM;
5133 goto unlock;
5134 }
5135
5136 WARN_ON(!rb && event->rb);
5137
5138 if (vma->vm_flags & VM_WRITE)
5139 flags |= RING_BUFFER_WRITABLE;
5140
5141 if (!rb) {
5142 rb = rb_alloc(nr_pages,
5143 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5144 event->cpu, flags);
5145
5146 if (!rb) {
5147 ret = -ENOMEM;
5148 goto unlock;
5149 }
5150
5151 atomic_set(&rb->mmap_count, 1);
5152 rb->mmap_user = get_current_user();
5153 rb->mmap_locked = extra;
5154
5155 ring_buffer_attach(event, rb);
5156
5157 perf_event_init_userpage(event);
5158 perf_event_update_userpage(event);
5159 } else {
5160 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5161 event->attr.aux_watermark, flags);
5162 if (!ret)
5163 rb->aux_mmap_locked = extra;
5164 }
5165
5166 unlock:
5167 if (!ret) {
5168 atomic_long_add(user_extra, &user->locked_vm);
5169 vma->vm_mm->pinned_vm += extra;
5170
5171 atomic_inc(&event->mmap_count);
5172 } else if (rb) {
5173 atomic_dec(&rb->mmap_count);
5174 }
5175 aux_unlock:
5176 mutex_unlock(&event->mmap_mutex);
5177
5178 /*
5179 * Since pinned accounting is per vm we cannot allow fork() to copy our
5180 * vma.
5181 */
5182 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5183 vma->vm_ops = &perf_mmap_vmops;
5184
5185 if (event->pmu->event_mapped)
5186 event->pmu->event_mapped(event);
5187
5188 return ret;
5189 }
5190
5191 static int perf_fasync(int fd, struct file *filp, int on)
5192 {
5193 struct inode *inode = file_inode(filp);
5194 struct perf_event *event = filp->private_data;
5195 int retval;
5196
5197 inode_lock(inode);
5198 retval = fasync_helper(fd, filp, on, &event->fasync);
5199 inode_unlock(inode);
5200
5201 if (retval < 0)
5202 return retval;
5203
5204 return 0;
5205 }
5206
5207 static const struct file_operations perf_fops = {
5208 .llseek = no_llseek,
5209 .release = perf_release,
5210 .read = perf_read,
5211 .poll = perf_poll,
5212 .unlocked_ioctl = perf_ioctl,
5213 .compat_ioctl = perf_compat_ioctl,
5214 .mmap = perf_mmap,
5215 .fasync = perf_fasync,
5216 };
5217
5218 /*
5219 * Perf event wakeup
5220 *
5221 * If there's data, ensure we set the poll() state and publish everything
5222 * to user-space before waking everybody up.
5223 */
5224
5225 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5226 {
5227 /* only the parent has fasync state */
5228 if (event->parent)
5229 event = event->parent;
5230 return &event->fasync;
5231 }
5232
5233 void perf_event_wakeup(struct perf_event *event)
5234 {
5235 ring_buffer_wakeup(event);
5236
5237 if (event->pending_kill) {
5238 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5239 event->pending_kill = 0;
5240 }
5241 }
5242
5243 static void perf_pending_event(struct irq_work *entry)
5244 {
5245 struct perf_event *event = container_of(entry,
5246 struct perf_event, pending);
5247 int rctx;
5248
5249 rctx = perf_swevent_get_recursion_context();
5250 /*
5251 * If we 'fail' here, that's OK, it means recursion is already disabled
5252 * and we won't recurse 'further'.
5253 */
5254
5255 if (event->pending_disable) {
5256 event->pending_disable = 0;
5257 perf_event_disable_local(event);
5258 }
5259
5260 if (event->pending_wakeup) {
5261 event->pending_wakeup = 0;
5262 perf_event_wakeup(event);
5263 }
5264
5265 if (rctx >= 0)
5266 perf_swevent_put_recursion_context(rctx);
5267 }
5268
5269 /*
5270 * We assume there is only KVM supporting the callbacks.
5271 * Later on, we might change it to a list if there is
5272 * another virtualization implementation supporting the callbacks.
5273 */
5274 struct perf_guest_info_callbacks *perf_guest_cbs;
5275
5276 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5277 {
5278 perf_guest_cbs = cbs;
5279 return 0;
5280 }
5281 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5282
5283 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5284 {
5285 perf_guest_cbs = NULL;
5286 return 0;
5287 }
5288 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5289
5290 static void
5291 perf_output_sample_regs(struct perf_output_handle *handle,
5292 struct pt_regs *regs, u64 mask)
5293 {
5294 int bit;
5295
5296 for_each_set_bit(bit, (const unsigned long *) &mask,
5297 sizeof(mask) * BITS_PER_BYTE) {
5298 u64 val;
5299
5300 val = perf_reg_value(regs, bit);
5301 perf_output_put(handle, val);
5302 }
5303 }
5304
5305 static void perf_sample_regs_user(struct perf_regs *regs_user,
5306 struct pt_regs *regs,
5307 struct pt_regs *regs_user_copy)
5308 {
5309 if (user_mode(regs)) {
5310 regs_user->abi = perf_reg_abi(current);
5311 regs_user->regs = regs;
5312 } else if (current->mm) {
5313 perf_get_regs_user(regs_user, regs, regs_user_copy);
5314 } else {
5315 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5316 regs_user->regs = NULL;
5317 }
5318 }
5319
5320 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5321 struct pt_regs *regs)
5322 {
5323 regs_intr->regs = regs;
5324 regs_intr->abi = perf_reg_abi(current);
5325 }
5326
5327
5328 /*
5329 * Get remaining task size from user stack pointer.
5330 *
5331 * It'd be better to take stack vma map and limit this more
5332 * precisly, but there's no way to get it safely under interrupt,
5333 * so using TASK_SIZE as limit.
5334 */
5335 static u64 perf_ustack_task_size(struct pt_regs *regs)
5336 {
5337 unsigned long addr = perf_user_stack_pointer(regs);
5338
5339 if (!addr || addr >= TASK_SIZE)
5340 return 0;
5341
5342 return TASK_SIZE - addr;
5343 }
5344
5345 static u16
5346 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5347 struct pt_regs *regs)
5348 {
5349 u64 task_size;
5350
5351 /* No regs, no stack pointer, no dump. */
5352 if (!regs)
5353 return 0;
5354
5355 /*
5356 * Check if we fit in with the requested stack size into the:
5357 * - TASK_SIZE
5358 * If we don't, we limit the size to the TASK_SIZE.
5359 *
5360 * - remaining sample size
5361 * If we don't, we customize the stack size to
5362 * fit in to the remaining sample size.
5363 */
5364
5365 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5366 stack_size = min(stack_size, (u16) task_size);
5367
5368 /* Current header size plus static size and dynamic size. */
5369 header_size += 2 * sizeof(u64);
5370
5371 /* Do we fit in with the current stack dump size? */
5372 if ((u16) (header_size + stack_size) < header_size) {
5373 /*
5374 * If we overflow the maximum size for the sample,
5375 * we customize the stack dump size to fit in.
5376 */
5377 stack_size = USHRT_MAX - header_size - sizeof(u64);
5378 stack_size = round_up(stack_size, sizeof(u64));
5379 }
5380
5381 return stack_size;
5382 }
5383
5384 static void
5385 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5386 struct pt_regs *regs)
5387 {
5388 /* Case of a kernel thread, nothing to dump */
5389 if (!regs) {
5390 u64 size = 0;
5391 perf_output_put(handle, size);
5392 } else {
5393 unsigned long sp;
5394 unsigned int rem;
5395 u64 dyn_size;
5396
5397 /*
5398 * We dump:
5399 * static size
5400 * - the size requested by user or the best one we can fit
5401 * in to the sample max size
5402 * data
5403 * - user stack dump data
5404 * dynamic size
5405 * - the actual dumped size
5406 */
5407
5408 /* Static size. */
5409 perf_output_put(handle, dump_size);
5410
5411 /* Data. */
5412 sp = perf_user_stack_pointer(regs);
5413 rem = __output_copy_user(handle, (void *) sp, dump_size);
5414 dyn_size = dump_size - rem;
5415
5416 perf_output_skip(handle, rem);
5417
5418 /* Dynamic size. */
5419 perf_output_put(handle, dyn_size);
5420 }
5421 }
5422
5423 static void __perf_event_header__init_id(struct perf_event_header *header,
5424 struct perf_sample_data *data,
5425 struct perf_event *event)
5426 {
5427 u64 sample_type = event->attr.sample_type;
5428
5429 data->type = sample_type;
5430 header->size += event->id_header_size;
5431
5432 if (sample_type & PERF_SAMPLE_TID) {
5433 /* namespace issues */
5434 data->tid_entry.pid = perf_event_pid(event, current);
5435 data->tid_entry.tid = perf_event_tid(event, current);
5436 }
5437
5438 if (sample_type & PERF_SAMPLE_TIME)
5439 data->time = perf_event_clock(event);
5440
5441 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5442 data->id = primary_event_id(event);
5443
5444 if (sample_type & PERF_SAMPLE_STREAM_ID)
5445 data->stream_id = event->id;
5446
5447 if (sample_type & PERF_SAMPLE_CPU) {
5448 data->cpu_entry.cpu = raw_smp_processor_id();
5449 data->cpu_entry.reserved = 0;
5450 }
5451 }
5452
5453 void perf_event_header__init_id(struct perf_event_header *header,
5454 struct perf_sample_data *data,
5455 struct perf_event *event)
5456 {
5457 if (event->attr.sample_id_all)
5458 __perf_event_header__init_id(header, data, event);
5459 }
5460
5461 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5462 struct perf_sample_data *data)
5463 {
5464 u64 sample_type = data->type;
5465
5466 if (sample_type & PERF_SAMPLE_TID)
5467 perf_output_put(handle, data->tid_entry);
5468
5469 if (sample_type & PERF_SAMPLE_TIME)
5470 perf_output_put(handle, data->time);
5471
5472 if (sample_type & PERF_SAMPLE_ID)
5473 perf_output_put(handle, data->id);
5474
5475 if (sample_type & PERF_SAMPLE_STREAM_ID)
5476 perf_output_put(handle, data->stream_id);
5477
5478 if (sample_type & PERF_SAMPLE_CPU)
5479 perf_output_put(handle, data->cpu_entry);
5480
5481 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5482 perf_output_put(handle, data->id);
5483 }
5484
5485 void perf_event__output_id_sample(struct perf_event *event,
5486 struct perf_output_handle *handle,
5487 struct perf_sample_data *sample)
5488 {
5489 if (event->attr.sample_id_all)
5490 __perf_event__output_id_sample(handle, sample);
5491 }
5492
5493 static void perf_output_read_one(struct perf_output_handle *handle,
5494 struct perf_event *event,
5495 u64 enabled, u64 running)
5496 {
5497 u64 read_format = event->attr.read_format;
5498 u64 values[4];
5499 int n = 0;
5500
5501 values[n++] = perf_event_count(event);
5502 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5503 values[n++] = enabled +
5504 atomic64_read(&event->child_total_time_enabled);
5505 }
5506 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5507 values[n++] = running +
5508 atomic64_read(&event->child_total_time_running);
5509 }
5510 if (read_format & PERF_FORMAT_ID)
5511 values[n++] = primary_event_id(event);
5512
5513 __output_copy(handle, values, n * sizeof(u64));
5514 }
5515
5516 /*
5517 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5518 */
5519 static void perf_output_read_group(struct perf_output_handle *handle,
5520 struct perf_event *event,
5521 u64 enabled, u64 running)
5522 {
5523 struct perf_event *leader = event->group_leader, *sub;
5524 u64 read_format = event->attr.read_format;
5525 u64 values[5];
5526 int n = 0;
5527
5528 values[n++] = 1 + leader->nr_siblings;
5529
5530 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5531 values[n++] = enabled;
5532
5533 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5534 values[n++] = running;
5535
5536 if (leader != event)
5537 leader->pmu->read(leader);
5538
5539 values[n++] = perf_event_count(leader);
5540 if (read_format & PERF_FORMAT_ID)
5541 values[n++] = primary_event_id(leader);
5542
5543 __output_copy(handle, values, n * sizeof(u64));
5544
5545 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5546 n = 0;
5547
5548 if ((sub != event) &&
5549 (sub->state == PERF_EVENT_STATE_ACTIVE))
5550 sub->pmu->read(sub);
5551
5552 values[n++] = perf_event_count(sub);
5553 if (read_format & PERF_FORMAT_ID)
5554 values[n++] = primary_event_id(sub);
5555
5556 __output_copy(handle, values, n * sizeof(u64));
5557 }
5558 }
5559
5560 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5561 PERF_FORMAT_TOTAL_TIME_RUNNING)
5562
5563 static void perf_output_read(struct perf_output_handle *handle,
5564 struct perf_event *event)
5565 {
5566 u64 enabled = 0, running = 0, now;
5567 u64 read_format = event->attr.read_format;
5568
5569 /*
5570 * compute total_time_enabled, total_time_running
5571 * based on snapshot values taken when the event
5572 * was last scheduled in.
5573 *
5574 * we cannot simply called update_context_time()
5575 * because of locking issue as we are called in
5576 * NMI context
5577 */
5578 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5579 calc_timer_values(event, &now, &enabled, &running);
5580
5581 if (event->attr.read_format & PERF_FORMAT_GROUP)
5582 perf_output_read_group(handle, event, enabled, running);
5583 else
5584 perf_output_read_one(handle, event, enabled, running);
5585 }
5586
5587 void perf_output_sample(struct perf_output_handle *handle,
5588 struct perf_event_header *header,
5589 struct perf_sample_data *data,
5590 struct perf_event *event)
5591 {
5592 u64 sample_type = data->type;
5593
5594 perf_output_put(handle, *header);
5595
5596 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5597 perf_output_put(handle, data->id);
5598
5599 if (sample_type & PERF_SAMPLE_IP)
5600 perf_output_put(handle, data->ip);
5601
5602 if (sample_type & PERF_SAMPLE_TID)
5603 perf_output_put(handle, data->tid_entry);
5604
5605 if (sample_type & PERF_SAMPLE_TIME)
5606 perf_output_put(handle, data->time);
5607
5608 if (sample_type & PERF_SAMPLE_ADDR)
5609 perf_output_put(handle, data->addr);
5610
5611 if (sample_type & PERF_SAMPLE_ID)
5612 perf_output_put(handle, data->id);
5613
5614 if (sample_type & PERF_SAMPLE_STREAM_ID)
5615 perf_output_put(handle, data->stream_id);
5616
5617 if (sample_type & PERF_SAMPLE_CPU)
5618 perf_output_put(handle, data->cpu_entry);
5619
5620 if (sample_type & PERF_SAMPLE_PERIOD)
5621 perf_output_put(handle, data->period);
5622
5623 if (sample_type & PERF_SAMPLE_READ)
5624 perf_output_read(handle, event);
5625
5626 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5627 if (data->callchain) {
5628 int size = 1;
5629
5630 if (data->callchain)
5631 size += data->callchain->nr;
5632
5633 size *= sizeof(u64);
5634
5635 __output_copy(handle, data->callchain, size);
5636 } else {
5637 u64 nr = 0;
5638 perf_output_put(handle, nr);
5639 }
5640 }
5641
5642 if (sample_type & PERF_SAMPLE_RAW) {
5643 struct perf_raw_record *raw = data->raw;
5644
5645 if (raw) {
5646 struct perf_raw_frag *frag = &raw->frag;
5647
5648 perf_output_put(handle, raw->size);
5649 do {
5650 if (frag->copy) {
5651 __output_custom(handle, frag->copy,
5652 frag->data, frag->size);
5653 } else {
5654 __output_copy(handle, frag->data,
5655 frag->size);
5656 }
5657 if (perf_raw_frag_last(frag))
5658 break;
5659 frag = frag->next;
5660 } while (1);
5661 if (frag->pad)
5662 __output_skip(handle, NULL, frag->pad);
5663 } else {
5664 struct {
5665 u32 size;
5666 u32 data;
5667 } raw = {
5668 .size = sizeof(u32),
5669 .data = 0,
5670 };
5671 perf_output_put(handle, raw);
5672 }
5673 }
5674
5675 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5676 if (data->br_stack) {
5677 size_t size;
5678
5679 size = data->br_stack->nr
5680 * sizeof(struct perf_branch_entry);
5681
5682 perf_output_put(handle, data->br_stack->nr);
5683 perf_output_copy(handle, data->br_stack->entries, size);
5684 } else {
5685 /*
5686 * we always store at least the value of nr
5687 */
5688 u64 nr = 0;
5689 perf_output_put(handle, nr);
5690 }
5691 }
5692
5693 if (sample_type & PERF_SAMPLE_REGS_USER) {
5694 u64 abi = data->regs_user.abi;
5695
5696 /*
5697 * If there are no regs to dump, notice it through
5698 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5699 */
5700 perf_output_put(handle, abi);
5701
5702 if (abi) {
5703 u64 mask = event->attr.sample_regs_user;
5704 perf_output_sample_regs(handle,
5705 data->regs_user.regs,
5706 mask);
5707 }
5708 }
5709
5710 if (sample_type & PERF_SAMPLE_STACK_USER) {
5711 perf_output_sample_ustack(handle,
5712 data->stack_user_size,
5713 data->regs_user.regs);
5714 }
5715
5716 if (sample_type & PERF_SAMPLE_WEIGHT)
5717 perf_output_put(handle, data->weight);
5718
5719 if (sample_type & PERF_SAMPLE_DATA_SRC)
5720 perf_output_put(handle, data->data_src.val);
5721
5722 if (sample_type & PERF_SAMPLE_TRANSACTION)
5723 perf_output_put(handle, data->txn);
5724
5725 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5726 u64 abi = data->regs_intr.abi;
5727 /*
5728 * If there are no regs to dump, notice it through
5729 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5730 */
5731 perf_output_put(handle, abi);
5732
5733 if (abi) {
5734 u64 mask = event->attr.sample_regs_intr;
5735
5736 perf_output_sample_regs(handle,
5737 data->regs_intr.regs,
5738 mask);
5739 }
5740 }
5741
5742 if (!event->attr.watermark) {
5743 int wakeup_events = event->attr.wakeup_events;
5744
5745 if (wakeup_events) {
5746 struct ring_buffer *rb = handle->rb;
5747 int events = local_inc_return(&rb->events);
5748
5749 if (events >= wakeup_events) {
5750 local_sub(wakeup_events, &rb->events);
5751 local_inc(&rb->wakeup);
5752 }
5753 }
5754 }
5755 }
5756
5757 void perf_prepare_sample(struct perf_event_header *header,
5758 struct perf_sample_data *data,
5759 struct perf_event *event,
5760 struct pt_regs *regs)
5761 {
5762 u64 sample_type = event->attr.sample_type;
5763
5764 header->type = PERF_RECORD_SAMPLE;
5765 header->size = sizeof(*header) + event->header_size;
5766
5767 header->misc = 0;
5768 header->misc |= perf_misc_flags(regs);
5769
5770 __perf_event_header__init_id(header, data, event);
5771
5772 if (sample_type & PERF_SAMPLE_IP)
5773 data->ip = perf_instruction_pointer(regs);
5774
5775 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5776 int size = 1;
5777
5778 data->callchain = perf_callchain(event, regs);
5779
5780 if (data->callchain)
5781 size += data->callchain->nr;
5782
5783 header->size += size * sizeof(u64);
5784 }
5785
5786 if (sample_type & PERF_SAMPLE_RAW) {
5787 struct perf_raw_record *raw = data->raw;
5788 int size;
5789
5790 if (raw) {
5791 struct perf_raw_frag *frag = &raw->frag;
5792 u32 sum = 0;
5793
5794 do {
5795 sum += frag->size;
5796 if (perf_raw_frag_last(frag))
5797 break;
5798 frag = frag->next;
5799 } while (1);
5800
5801 size = round_up(sum + sizeof(u32), sizeof(u64));
5802 raw->size = size - sizeof(u32);
5803 frag->pad = raw->size - sum;
5804 } else {
5805 size = sizeof(u64);
5806 }
5807
5808 header->size += size;
5809 }
5810
5811 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5812 int size = sizeof(u64); /* nr */
5813 if (data->br_stack) {
5814 size += data->br_stack->nr
5815 * sizeof(struct perf_branch_entry);
5816 }
5817 header->size += size;
5818 }
5819
5820 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5821 perf_sample_regs_user(&data->regs_user, regs,
5822 &data->regs_user_copy);
5823
5824 if (sample_type & PERF_SAMPLE_REGS_USER) {
5825 /* regs dump ABI info */
5826 int size = sizeof(u64);
5827
5828 if (data->regs_user.regs) {
5829 u64 mask = event->attr.sample_regs_user;
5830 size += hweight64(mask) * sizeof(u64);
5831 }
5832
5833 header->size += size;
5834 }
5835
5836 if (sample_type & PERF_SAMPLE_STACK_USER) {
5837 /*
5838 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5839 * processed as the last one or have additional check added
5840 * in case new sample type is added, because we could eat
5841 * up the rest of the sample size.
5842 */
5843 u16 stack_size = event->attr.sample_stack_user;
5844 u16 size = sizeof(u64);
5845
5846 stack_size = perf_sample_ustack_size(stack_size, header->size,
5847 data->regs_user.regs);
5848
5849 /*
5850 * If there is something to dump, add space for the dump
5851 * itself and for the field that tells the dynamic size,
5852 * which is how many have been actually dumped.
5853 */
5854 if (stack_size)
5855 size += sizeof(u64) + stack_size;
5856
5857 data->stack_user_size = stack_size;
5858 header->size += size;
5859 }
5860
5861 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5862 /* regs dump ABI info */
5863 int size = sizeof(u64);
5864
5865 perf_sample_regs_intr(&data->regs_intr, regs);
5866
5867 if (data->regs_intr.regs) {
5868 u64 mask = event->attr.sample_regs_intr;
5869
5870 size += hweight64(mask) * sizeof(u64);
5871 }
5872
5873 header->size += size;
5874 }
5875 }
5876
5877 static void __always_inline
5878 __perf_event_output(struct perf_event *event,
5879 struct perf_sample_data *data,
5880 struct pt_regs *regs,
5881 int (*output_begin)(struct perf_output_handle *,
5882 struct perf_event *,
5883 unsigned int))
5884 {
5885 struct perf_output_handle handle;
5886 struct perf_event_header header;
5887
5888 /* protect the callchain buffers */
5889 rcu_read_lock();
5890
5891 perf_prepare_sample(&header, data, event, regs);
5892
5893 if (output_begin(&handle, event, header.size))
5894 goto exit;
5895
5896 perf_output_sample(&handle, &header, data, event);
5897
5898 perf_output_end(&handle);
5899
5900 exit:
5901 rcu_read_unlock();
5902 }
5903
5904 void
5905 perf_event_output_forward(struct perf_event *event,
5906 struct perf_sample_data *data,
5907 struct pt_regs *regs)
5908 {
5909 __perf_event_output(event, data, regs, perf_output_begin_forward);
5910 }
5911
5912 void
5913 perf_event_output_backward(struct perf_event *event,
5914 struct perf_sample_data *data,
5915 struct pt_regs *regs)
5916 {
5917 __perf_event_output(event, data, regs, perf_output_begin_backward);
5918 }
5919
5920 void
5921 perf_event_output(struct perf_event *event,
5922 struct perf_sample_data *data,
5923 struct pt_regs *regs)
5924 {
5925 __perf_event_output(event, data, regs, perf_output_begin);
5926 }
5927
5928 /*
5929 * read event_id
5930 */
5931
5932 struct perf_read_event {
5933 struct perf_event_header header;
5934
5935 u32 pid;
5936 u32 tid;
5937 };
5938
5939 static void
5940 perf_event_read_event(struct perf_event *event,
5941 struct task_struct *task)
5942 {
5943 struct perf_output_handle handle;
5944 struct perf_sample_data sample;
5945 struct perf_read_event read_event = {
5946 .header = {
5947 .type = PERF_RECORD_READ,
5948 .misc = 0,
5949 .size = sizeof(read_event) + event->read_size,
5950 },
5951 .pid = perf_event_pid(event, task),
5952 .tid = perf_event_tid(event, task),
5953 };
5954 int ret;
5955
5956 perf_event_header__init_id(&read_event.header, &sample, event);
5957 ret = perf_output_begin(&handle, event, read_event.header.size);
5958 if (ret)
5959 return;
5960
5961 perf_output_put(&handle, read_event);
5962 perf_output_read(&handle, event);
5963 perf_event__output_id_sample(event, &handle, &sample);
5964
5965 perf_output_end(&handle);
5966 }
5967
5968 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5969
5970 static void
5971 perf_iterate_ctx(struct perf_event_context *ctx,
5972 perf_iterate_f output,
5973 void *data, bool all)
5974 {
5975 struct perf_event *event;
5976
5977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5978 if (!all) {
5979 if (event->state < PERF_EVENT_STATE_INACTIVE)
5980 continue;
5981 if (!event_filter_match(event))
5982 continue;
5983 }
5984
5985 output(event, data);
5986 }
5987 }
5988
5989 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5990 {
5991 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5992 struct perf_event *event;
5993
5994 list_for_each_entry_rcu(event, &pel->list, sb_list) {
5995 /*
5996 * Skip events that are not fully formed yet; ensure that
5997 * if we observe event->ctx, both event and ctx will be
5998 * complete enough. See perf_install_in_context().
5999 */
6000 if (!smp_load_acquire(&event->ctx))
6001 continue;
6002
6003 if (event->state < PERF_EVENT_STATE_INACTIVE)
6004 continue;
6005 if (!event_filter_match(event))
6006 continue;
6007 output(event, data);
6008 }
6009 }
6010
6011 /*
6012 * Iterate all events that need to receive side-band events.
6013 *
6014 * For new callers; ensure that account_pmu_sb_event() includes
6015 * your event, otherwise it might not get delivered.
6016 */
6017 static void
6018 perf_iterate_sb(perf_iterate_f output, void *data,
6019 struct perf_event_context *task_ctx)
6020 {
6021 struct perf_event_context *ctx;
6022 int ctxn;
6023
6024 rcu_read_lock();
6025 preempt_disable();
6026
6027 /*
6028 * If we have task_ctx != NULL we only notify the task context itself.
6029 * The task_ctx is set only for EXIT events before releasing task
6030 * context.
6031 */
6032 if (task_ctx) {
6033 perf_iterate_ctx(task_ctx, output, data, false);
6034 goto done;
6035 }
6036
6037 perf_iterate_sb_cpu(output, data);
6038
6039 for_each_task_context_nr(ctxn) {
6040 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6041 if (ctx)
6042 perf_iterate_ctx(ctx, output, data, false);
6043 }
6044 done:
6045 preempt_enable();
6046 rcu_read_unlock();
6047 }
6048
6049 /*
6050 * Clear all file-based filters at exec, they'll have to be
6051 * re-instated when/if these objects are mmapped again.
6052 */
6053 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6054 {
6055 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6056 struct perf_addr_filter *filter;
6057 unsigned int restart = 0, count = 0;
6058 unsigned long flags;
6059
6060 if (!has_addr_filter(event))
6061 return;
6062
6063 raw_spin_lock_irqsave(&ifh->lock, flags);
6064 list_for_each_entry(filter, &ifh->list, entry) {
6065 if (filter->inode) {
6066 event->addr_filters_offs[count] = 0;
6067 restart++;
6068 }
6069
6070 count++;
6071 }
6072
6073 if (restart)
6074 event->addr_filters_gen++;
6075 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6076
6077 if (restart)
6078 perf_event_restart(event);
6079 }
6080
6081 void perf_event_exec(void)
6082 {
6083 struct perf_event_context *ctx;
6084 int ctxn;
6085
6086 rcu_read_lock();
6087 for_each_task_context_nr(ctxn) {
6088 ctx = current->perf_event_ctxp[ctxn];
6089 if (!ctx)
6090 continue;
6091
6092 perf_event_enable_on_exec(ctxn);
6093
6094 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6095 true);
6096 }
6097 rcu_read_unlock();
6098 }
6099
6100 struct remote_output {
6101 struct ring_buffer *rb;
6102 int err;
6103 };
6104
6105 static void __perf_event_output_stop(struct perf_event *event, void *data)
6106 {
6107 struct perf_event *parent = event->parent;
6108 struct remote_output *ro = data;
6109 struct ring_buffer *rb = ro->rb;
6110 struct stop_event_data sd = {
6111 .event = event,
6112 };
6113
6114 if (!has_aux(event))
6115 return;
6116
6117 if (!parent)
6118 parent = event;
6119
6120 /*
6121 * In case of inheritance, it will be the parent that links to the
6122 * ring-buffer, but it will be the child that's actually using it:
6123 */
6124 if (rcu_dereference(parent->rb) == rb)
6125 ro->err = __perf_event_stop(&sd);
6126 }
6127
6128 static int __perf_pmu_output_stop(void *info)
6129 {
6130 struct perf_event *event = info;
6131 struct pmu *pmu = event->pmu;
6132 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6133 struct remote_output ro = {
6134 .rb = event->rb,
6135 };
6136
6137 rcu_read_lock();
6138 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6139 if (cpuctx->task_ctx)
6140 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6141 &ro, false);
6142 rcu_read_unlock();
6143
6144 return ro.err;
6145 }
6146
6147 static void perf_pmu_output_stop(struct perf_event *event)
6148 {
6149 struct perf_event *iter;
6150 int err, cpu;
6151
6152 restart:
6153 rcu_read_lock();
6154 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6155 /*
6156 * For per-CPU events, we need to make sure that neither they
6157 * nor their children are running; for cpu==-1 events it's
6158 * sufficient to stop the event itself if it's active, since
6159 * it can't have children.
6160 */
6161 cpu = iter->cpu;
6162 if (cpu == -1)
6163 cpu = READ_ONCE(iter->oncpu);
6164
6165 if (cpu == -1)
6166 continue;
6167
6168 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6169 if (err == -EAGAIN) {
6170 rcu_read_unlock();
6171 goto restart;
6172 }
6173 }
6174 rcu_read_unlock();
6175 }
6176
6177 /*
6178 * task tracking -- fork/exit
6179 *
6180 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6181 */
6182
6183 struct perf_task_event {
6184 struct task_struct *task;
6185 struct perf_event_context *task_ctx;
6186
6187 struct {
6188 struct perf_event_header header;
6189
6190 u32 pid;
6191 u32 ppid;
6192 u32 tid;
6193 u32 ptid;
6194 u64 time;
6195 } event_id;
6196 };
6197
6198 static int perf_event_task_match(struct perf_event *event)
6199 {
6200 return event->attr.comm || event->attr.mmap ||
6201 event->attr.mmap2 || event->attr.mmap_data ||
6202 event->attr.task;
6203 }
6204
6205 static void perf_event_task_output(struct perf_event *event,
6206 void *data)
6207 {
6208 struct perf_task_event *task_event = data;
6209 struct perf_output_handle handle;
6210 struct perf_sample_data sample;
6211 struct task_struct *task = task_event->task;
6212 int ret, size = task_event->event_id.header.size;
6213
6214 if (!perf_event_task_match(event))
6215 return;
6216
6217 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6218
6219 ret = perf_output_begin(&handle, event,
6220 task_event->event_id.header.size);
6221 if (ret)
6222 goto out;
6223
6224 task_event->event_id.pid = perf_event_pid(event, task);
6225 task_event->event_id.ppid = perf_event_pid(event, current);
6226
6227 task_event->event_id.tid = perf_event_tid(event, task);
6228 task_event->event_id.ptid = perf_event_tid(event, current);
6229
6230 task_event->event_id.time = perf_event_clock(event);
6231
6232 perf_output_put(&handle, task_event->event_id);
6233
6234 perf_event__output_id_sample(event, &handle, &sample);
6235
6236 perf_output_end(&handle);
6237 out:
6238 task_event->event_id.header.size = size;
6239 }
6240
6241 static void perf_event_task(struct task_struct *task,
6242 struct perf_event_context *task_ctx,
6243 int new)
6244 {
6245 struct perf_task_event task_event;
6246
6247 if (!atomic_read(&nr_comm_events) &&
6248 !atomic_read(&nr_mmap_events) &&
6249 !atomic_read(&nr_task_events))
6250 return;
6251
6252 task_event = (struct perf_task_event){
6253 .task = task,
6254 .task_ctx = task_ctx,
6255 .event_id = {
6256 .header = {
6257 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6258 .misc = 0,
6259 .size = sizeof(task_event.event_id),
6260 },
6261 /* .pid */
6262 /* .ppid */
6263 /* .tid */
6264 /* .ptid */
6265 /* .time */
6266 },
6267 };
6268
6269 perf_iterate_sb(perf_event_task_output,
6270 &task_event,
6271 task_ctx);
6272 }
6273
6274 void perf_event_fork(struct task_struct *task)
6275 {
6276 perf_event_task(task, NULL, 1);
6277 }
6278
6279 /*
6280 * comm tracking
6281 */
6282
6283 struct perf_comm_event {
6284 struct task_struct *task;
6285 char *comm;
6286 int comm_size;
6287
6288 struct {
6289 struct perf_event_header header;
6290
6291 u32 pid;
6292 u32 tid;
6293 } event_id;
6294 };
6295
6296 static int perf_event_comm_match(struct perf_event *event)
6297 {
6298 return event->attr.comm;
6299 }
6300
6301 static void perf_event_comm_output(struct perf_event *event,
6302 void *data)
6303 {
6304 struct perf_comm_event *comm_event = data;
6305 struct perf_output_handle handle;
6306 struct perf_sample_data sample;
6307 int size = comm_event->event_id.header.size;
6308 int ret;
6309
6310 if (!perf_event_comm_match(event))
6311 return;
6312
6313 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6314 ret = perf_output_begin(&handle, event,
6315 comm_event->event_id.header.size);
6316
6317 if (ret)
6318 goto out;
6319
6320 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6321 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6322
6323 perf_output_put(&handle, comm_event->event_id);
6324 __output_copy(&handle, comm_event->comm,
6325 comm_event->comm_size);
6326
6327 perf_event__output_id_sample(event, &handle, &sample);
6328
6329 perf_output_end(&handle);
6330 out:
6331 comm_event->event_id.header.size = size;
6332 }
6333
6334 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6335 {
6336 char comm[TASK_COMM_LEN];
6337 unsigned int size;
6338
6339 memset(comm, 0, sizeof(comm));
6340 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6341 size = ALIGN(strlen(comm)+1, sizeof(u64));
6342
6343 comm_event->comm = comm;
6344 comm_event->comm_size = size;
6345
6346 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6347
6348 perf_iterate_sb(perf_event_comm_output,
6349 comm_event,
6350 NULL);
6351 }
6352
6353 void perf_event_comm(struct task_struct *task, bool exec)
6354 {
6355 struct perf_comm_event comm_event;
6356
6357 if (!atomic_read(&nr_comm_events))
6358 return;
6359
6360 comm_event = (struct perf_comm_event){
6361 .task = task,
6362 /* .comm */
6363 /* .comm_size */
6364 .event_id = {
6365 .header = {
6366 .type = PERF_RECORD_COMM,
6367 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6368 /* .size */
6369 },
6370 /* .pid */
6371 /* .tid */
6372 },
6373 };
6374
6375 perf_event_comm_event(&comm_event);
6376 }
6377
6378 /*
6379 * mmap tracking
6380 */
6381
6382 struct perf_mmap_event {
6383 struct vm_area_struct *vma;
6384
6385 const char *file_name;
6386 int file_size;
6387 int maj, min;
6388 u64 ino;
6389 u64 ino_generation;
6390 u32 prot, flags;
6391
6392 struct {
6393 struct perf_event_header header;
6394
6395 u32 pid;
6396 u32 tid;
6397 u64 start;
6398 u64 len;
6399 u64 pgoff;
6400 } event_id;
6401 };
6402
6403 static int perf_event_mmap_match(struct perf_event *event,
6404 void *data)
6405 {
6406 struct perf_mmap_event *mmap_event = data;
6407 struct vm_area_struct *vma = mmap_event->vma;
6408 int executable = vma->vm_flags & VM_EXEC;
6409
6410 return (!executable && event->attr.mmap_data) ||
6411 (executable && (event->attr.mmap || event->attr.mmap2));
6412 }
6413
6414 static void perf_event_mmap_output(struct perf_event *event,
6415 void *data)
6416 {
6417 struct perf_mmap_event *mmap_event = data;
6418 struct perf_output_handle handle;
6419 struct perf_sample_data sample;
6420 int size = mmap_event->event_id.header.size;
6421 int ret;
6422
6423 if (!perf_event_mmap_match(event, data))
6424 return;
6425
6426 if (event->attr.mmap2) {
6427 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6428 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6429 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6430 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6431 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6432 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6433 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6434 }
6435
6436 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6437 ret = perf_output_begin(&handle, event,
6438 mmap_event->event_id.header.size);
6439 if (ret)
6440 goto out;
6441
6442 mmap_event->event_id.pid = perf_event_pid(event, current);
6443 mmap_event->event_id.tid = perf_event_tid(event, current);
6444
6445 perf_output_put(&handle, mmap_event->event_id);
6446
6447 if (event->attr.mmap2) {
6448 perf_output_put(&handle, mmap_event->maj);
6449 perf_output_put(&handle, mmap_event->min);
6450 perf_output_put(&handle, mmap_event->ino);
6451 perf_output_put(&handle, mmap_event->ino_generation);
6452 perf_output_put(&handle, mmap_event->prot);
6453 perf_output_put(&handle, mmap_event->flags);
6454 }
6455
6456 __output_copy(&handle, mmap_event->file_name,
6457 mmap_event->file_size);
6458
6459 perf_event__output_id_sample(event, &handle, &sample);
6460
6461 perf_output_end(&handle);
6462 out:
6463 mmap_event->event_id.header.size = size;
6464 }
6465
6466 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6467 {
6468 struct vm_area_struct *vma = mmap_event->vma;
6469 struct file *file = vma->vm_file;
6470 int maj = 0, min = 0;
6471 u64 ino = 0, gen = 0;
6472 u32 prot = 0, flags = 0;
6473 unsigned int size;
6474 char tmp[16];
6475 char *buf = NULL;
6476 char *name;
6477
6478 if (file) {
6479 struct inode *inode;
6480 dev_t dev;
6481
6482 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6483 if (!buf) {
6484 name = "//enomem";
6485 goto cpy_name;
6486 }
6487 /*
6488 * d_path() works from the end of the rb backwards, so we
6489 * need to add enough zero bytes after the string to handle
6490 * the 64bit alignment we do later.
6491 */
6492 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6493 if (IS_ERR(name)) {
6494 name = "//toolong";
6495 goto cpy_name;
6496 }
6497 inode = file_inode(vma->vm_file);
6498 dev = inode->i_sb->s_dev;
6499 ino = inode->i_ino;
6500 gen = inode->i_generation;
6501 maj = MAJOR(dev);
6502 min = MINOR(dev);
6503
6504 if (vma->vm_flags & VM_READ)
6505 prot |= PROT_READ;
6506 if (vma->vm_flags & VM_WRITE)
6507 prot |= PROT_WRITE;
6508 if (vma->vm_flags & VM_EXEC)
6509 prot |= PROT_EXEC;
6510
6511 if (vma->vm_flags & VM_MAYSHARE)
6512 flags = MAP_SHARED;
6513 else
6514 flags = MAP_PRIVATE;
6515
6516 if (vma->vm_flags & VM_DENYWRITE)
6517 flags |= MAP_DENYWRITE;
6518 if (vma->vm_flags & VM_MAYEXEC)
6519 flags |= MAP_EXECUTABLE;
6520 if (vma->vm_flags & VM_LOCKED)
6521 flags |= MAP_LOCKED;
6522 if (vma->vm_flags & VM_HUGETLB)
6523 flags |= MAP_HUGETLB;
6524
6525 goto got_name;
6526 } else {
6527 if (vma->vm_ops && vma->vm_ops->name) {
6528 name = (char *) vma->vm_ops->name(vma);
6529 if (name)
6530 goto cpy_name;
6531 }
6532
6533 name = (char *)arch_vma_name(vma);
6534 if (name)
6535 goto cpy_name;
6536
6537 if (vma->vm_start <= vma->vm_mm->start_brk &&
6538 vma->vm_end >= vma->vm_mm->brk) {
6539 name = "[heap]";
6540 goto cpy_name;
6541 }
6542 if (vma->vm_start <= vma->vm_mm->start_stack &&
6543 vma->vm_end >= vma->vm_mm->start_stack) {
6544 name = "[stack]";
6545 goto cpy_name;
6546 }
6547
6548 name = "//anon";
6549 goto cpy_name;
6550 }
6551
6552 cpy_name:
6553 strlcpy(tmp, name, sizeof(tmp));
6554 name = tmp;
6555 got_name:
6556 /*
6557 * Since our buffer works in 8 byte units we need to align our string
6558 * size to a multiple of 8. However, we must guarantee the tail end is
6559 * zero'd out to avoid leaking random bits to userspace.
6560 */
6561 size = strlen(name)+1;
6562 while (!IS_ALIGNED(size, sizeof(u64)))
6563 name[size++] = '\0';
6564
6565 mmap_event->file_name = name;
6566 mmap_event->file_size = size;
6567 mmap_event->maj = maj;
6568 mmap_event->min = min;
6569 mmap_event->ino = ino;
6570 mmap_event->ino_generation = gen;
6571 mmap_event->prot = prot;
6572 mmap_event->flags = flags;
6573
6574 if (!(vma->vm_flags & VM_EXEC))
6575 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6576
6577 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6578
6579 perf_iterate_sb(perf_event_mmap_output,
6580 mmap_event,
6581 NULL);
6582
6583 kfree(buf);
6584 }
6585
6586 /*
6587 * Whether this @filter depends on a dynamic object which is not loaded
6588 * yet or its load addresses are not known.
6589 */
6590 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6591 {
6592 return filter->filter && filter->inode;
6593 }
6594
6595 /*
6596 * Check whether inode and address range match filter criteria.
6597 */
6598 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6599 struct file *file, unsigned long offset,
6600 unsigned long size)
6601 {
6602 if (filter->inode != file->f_inode)
6603 return false;
6604
6605 if (filter->offset > offset + size)
6606 return false;
6607
6608 if (filter->offset + filter->size < offset)
6609 return false;
6610
6611 return true;
6612 }
6613
6614 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6615 {
6616 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6617 struct vm_area_struct *vma = data;
6618 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6619 struct file *file = vma->vm_file;
6620 struct perf_addr_filter *filter;
6621 unsigned int restart = 0, count = 0;
6622
6623 if (!has_addr_filter(event))
6624 return;
6625
6626 if (!file)
6627 return;
6628
6629 raw_spin_lock_irqsave(&ifh->lock, flags);
6630 list_for_each_entry(filter, &ifh->list, entry) {
6631 if (perf_addr_filter_match(filter, file, off,
6632 vma->vm_end - vma->vm_start)) {
6633 event->addr_filters_offs[count] = vma->vm_start;
6634 restart++;
6635 }
6636
6637 count++;
6638 }
6639
6640 if (restart)
6641 event->addr_filters_gen++;
6642 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6643
6644 if (restart)
6645 perf_event_restart(event);
6646 }
6647
6648 /*
6649 * Adjust all task's events' filters to the new vma
6650 */
6651 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6652 {
6653 struct perf_event_context *ctx;
6654 int ctxn;
6655
6656 rcu_read_lock();
6657 for_each_task_context_nr(ctxn) {
6658 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6659 if (!ctx)
6660 continue;
6661
6662 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6663 }
6664 rcu_read_unlock();
6665 }
6666
6667 void perf_event_mmap(struct vm_area_struct *vma)
6668 {
6669 struct perf_mmap_event mmap_event;
6670
6671 if (!atomic_read(&nr_mmap_events))
6672 return;
6673
6674 mmap_event = (struct perf_mmap_event){
6675 .vma = vma,
6676 /* .file_name */
6677 /* .file_size */
6678 .event_id = {
6679 .header = {
6680 .type = PERF_RECORD_MMAP,
6681 .misc = PERF_RECORD_MISC_USER,
6682 /* .size */
6683 },
6684 /* .pid */
6685 /* .tid */
6686 .start = vma->vm_start,
6687 .len = vma->vm_end - vma->vm_start,
6688 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6689 },
6690 /* .maj (attr_mmap2 only) */
6691 /* .min (attr_mmap2 only) */
6692 /* .ino (attr_mmap2 only) */
6693 /* .ino_generation (attr_mmap2 only) */
6694 /* .prot (attr_mmap2 only) */
6695 /* .flags (attr_mmap2 only) */
6696 };
6697
6698 perf_addr_filters_adjust(vma);
6699 perf_event_mmap_event(&mmap_event);
6700 }
6701
6702 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6703 unsigned long size, u64 flags)
6704 {
6705 struct perf_output_handle handle;
6706 struct perf_sample_data sample;
6707 struct perf_aux_event {
6708 struct perf_event_header header;
6709 u64 offset;
6710 u64 size;
6711 u64 flags;
6712 } rec = {
6713 .header = {
6714 .type = PERF_RECORD_AUX,
6715 .misc = 0,
6716 .size = sizeof(rec),
6717 },
6718 .offset = head,
6719 .size = size,
6720 .flags = flags,
6721 };
6722 int ret;
6723
6724 perf_event_header__init_id(&rec.header, &sample, event);
6725 ret = perf_output_begin(&handle, event, rec.header.size);
6726
6727 if (ret)
6728 return;
6729
6730 perf_output_put(&handle, rec);
6731 perf_event__output_id_sample(event, &handle, &sample);
6732
6733 perf_output_end(&handle);
6734 }
6735
6736 /*
6737 * Lost/dropped samples logging
6738 */
6739 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6740 {
6741 struct perf_output_handle handle;
6742 struct perf_sample_data sample;
6743 int ret;
6744
6745 struct {
6746 struct perf_event_header header;
6747 u64 lost;
6748 } lost_samples_event = {
6749 .header = {
6750 .type = PERF_RECORD_LOST_SAMPLES,
6751 .misc = 0,
6752 .size = sizeof(lost_samples_event),
6753 },
6754 .lost = lost,
6755 };
6756
6757 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6758
6759 ret = perf_output_begin(&handle, event,
6760 lost_samples_event.header.size);
6761 if (ret)
6762 return;
6763
6764 perf_output_put(&handle, lost_samples_event);
6765 perf_event__output_id_sample(event, &handle, &sample);
6766 perf_output_end(&handle);
6767 }
6768
6769 /*
6770 * context_switch tracking
6771 */
6772
6773 struct perf_switch_event {
6774 struct task_struct *task;
6775 struct task_struct *next_prev;
6776
6777 struct {
6778 struct perf_event_header header;
6779 u32 next_prev_pid;
6780 u32 next_prev_tid;
6781 } event_id;
6782 };
6783
6784 static int perf_event_switch_match(struct perf_event *event)
6785 {
6786 return event->attr.context_switch;
6787 }
6788
6789 static void perf_event_switch_output(struct perf_event *event, void *data)
6790 {
6791 struct perf_switch_event *se = data;
6792 struct perf_output_handle handle;
6793 struct perf_sample_data sample;
6794 int ret;
6795
6796 if (!perf_event_switch_match(event))
6797 return;
6798
6799 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6800 if (event->ctx->task) {
6801 se->event_id.header.type = PERF_RECORD_SWITCH;
6802 se->event_id.header.size = sizeof(se->event_id.header);
6803 } else {
6804 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6805 se->event_id.header.size = sizeof(se->event_id);
6806 se->event_id.next_prev_pid =
6807 perf_event_pid(event, se->next_prev);
6808 se->event_id.next_prev_tid =
6809 perf_event_tid(event, se->next_prev);
6810 }
6811
6812 perf_event_header__init_id(&se->event_id.header, &sample, event);
6813
6814 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6815 if (ret)
6816 return;
6817
6818 if (event->ctx->task)
6819 perf_output_put(&handle, se->event_id.header);
6820 else
6821 perf_output_put(&handle, se->event_id);
6822
6823 perf_event__output_id_sample(event, &handle, &sample);
6824
6825 perf_output_end(&handle);
6826 }
6827
6828 static void perf_event_switch(struct task_struct *task,
6829 struct task_struct *next_prev, bool sched_in)
6830 {
6831 struct perf_switch_event switch_event;
6832
6833 /* N.B. caller checks nr_switch_events != 0 */
6834
6835 switch_event = (struct perf_switch_event){
6836 .task = task,
6837 .next_prev = next_prev,
6838 .event_id = {
6839 .header = {
6840 /* .type */
6841 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6842 /* .size */
6843 },
6844 /* .next_prev_pid */
6845 /* .next_prev_tid */
6846 },
6847 };
6848
6849 perf_iterate_sb(perf_event_switch_output,
6850 &switch_event,
6851 NULL);
6852 }
6853
6854 /*
6855 * IRQ throttle logging
6856 */
6857
6858 static void perf_log_throttle(struct perf_event *event, int enable)
6859 {
6860 struct perf_output_handle handle;
6861 struct perf_sample_data sample;
6862 int ret;
6863
6864 struct {
6865 struct perf_event_header header;
6866 u64 time;
6867 u64 id;
6868 u64 stream_id;
6869 } throttle_event = {
6870 .header = {
6871 .type = PERF_RECORD_THROTTLE,
6872 .misc = 0,
6873 .size = sizeof(throttle_event),
6874 },
6875 .time = perf_event_clock(event),
6876 .id = primary_event_id(event),
6877 .stream_id = event->id,
6878 };
6879
6880 if (enable)
6881 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6882
6883 perf_event_header__init_id(&throttle_event.header, &sample, event);
6884
6885 ret = perf_output_begin(&handle, event,
6886 throttle_event.header.size);
6887 if (ret)
6888 return;
6889
6890 perf_output_put(&handle, throttle_event);
6891 perf_event__output_id_sample(event, &handle, &sample);
6892 perf_output_end(&handle);
6893 }
6894
6895 static void perf_log_itrace_start(struct perf_event *event)
6896 {
6897 struct perf_output_handle handle;
6898 struct perf_sample_data sample;
6899 struct perf_aux_event {
6900 struct perf_event_header header;
6901 u32 pid;
6902 u32 tid;
6903 } rec;
6904 int ret;
6905
6906 if (event->parent)
6907 event = event->parent;
6908
6909 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6910 event->hw.itrace_started)
6911 return;
6912
6913 rec.header.type = PERF_RECORD_ITRACE_START;
6914 rec.header.misc = 0;
6915 rec.header.size = sizeof(rec);
6916 rec.pid = perf_event_pid(event, current);
6917 rec.tid = perf_event_tid(event, current);
6918
6919 perf_event_header__init_id(&rec.header, &sample, event);
6920 ret = perf_output_begin(&handle, event, rec.header.size);
6921
6922 if (ret)
6923 return;
6924
6925 perf_output_put(&handle, rec);
6926 perf_event__output_id_sample(event, &handle, &sample);
6927
6928 perf_output_end(&handle);
6929 }
6930
6931 /*
6932 * Generic event overflow handling, sampling.
6933 */
6934
6935 static int __perf_event_overflow(struct perf_event *event,
6936 int throttle, struct perf_sample_data *data,
6937 struct pt_regs *regs)
6938 {
6939 int events = atomic_read(&event->event_limit);
6940 struct hw_perf_event *hwc = &event->hw;
6941 u64 seq;
6942 int ret = 0;
6943
6944 /*
6945 * Non-sampling counters might still use the PMI to fold short
6946 * hardware counters, ignore those.
6947 */
6948 if (unlikely(!is_sampling_event(event)))
6949 return 0;
6950
6951 seq = __this_cpu_read(perf_throttled_seq);
6952 if (seq != hwc->interrupts_seq) {
6953 hwc->interrupts_seq = seq;
6954 hwc->interrupts = 1;
6955 } else {
6956 hwc->interrupts++;
6957 if (unlikely(throttle
6958 && hwc->interrupts >= max_samples_per_tick)) {
6959 __this_cpu_inc(perf_throttled_count);
6960 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6961 hwc->interrupts = MAX_INTERRUPTS;
6962 perf_log_throttle(event, 0);
6963 ret = 1;
6964 }
6965 }
6966
6967 if (event->attr.freq) {
6968 u64 now = perf_clock();
6969 s64 delta = now - hwc->freq_time_stamp;
6970
6971 hwc->freq_time_stamp = now;
6972
6973 if (delta > 0 && delta < 2*TICK_NSEC)
6974 perf_adjust_period(event, delta, hwc->last_period, true);
6975 }
6976
6977 /*
6978 * XXX event_limit might not quite work as expected on inherited
6979 * events
6980 */
6981
6982 event->pending_kill = POLL_IN;
6983 if (events && atomic_dec_and_test(&event->event_limit)) {
6984 ret = 1;
6985 event->pending_kill = POLL_HUP;
6986 event->pending_disable = 1;
6987 irq_work_queue(&event->pending);
6988 }
6989
6990 event->overflow_handler(event, data, regs);
6991
6992 if (*perf_event_fasync(event) && event->pending_kill) {
6993 event->pending_wakeup = 1;
6994 irq_work_queue(&event->pending);
6995 }
6996
6997 return ret;
6998 }
6999
7000 int perf_event_overflow(struct perf_event *event,
7001 struct perf_sample_data *data,
7002 struct pt_regs *regs)
7003 {
7004 return __perf_event_overflow(event, 1, data, regs);
7005 }
7006
7007 /*
7008 * Generic software event infrastructure
7009 */
7010
7011 struct swevent_htable {
7012 struct swevent_hlist *swevent_hlist;
7013 struct mutex hlist_mutex;
7014 int hlist_refcount;
7015
7016 /* Recursion avoidance in each contexts */
7017 int recursion[PERF_NR_CONTEXTS];
7018 };
7019
7020 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7021
7022 /*
7023 * We directly increment event->count and keep a second value in
7024 * event->hw.period_left to count intervals. This period event
7025 * is kept in the range [-sample_period, 0] so that we can use the
7026 * sign as trigger.
7027 */
7028
7029 u64 perf_swevent_set_period(struct perf_event *event)
7030 {
7031 struct hw_perf_event *hwc = &event->hw;
7032 u64 period = hwc->last_period;
7033 u64 nr, offset;
7034 s64 old, val;
7035
7036 hwc->last_period = hwc->sample_period;
7037
7038 again:
7039 old = val = local64_read(&hwc->period_left);
7040 if (val < 0)
7041 return 0;
7042
7043 nr = div64_u64(period + val, period);
7044 offset = nr * period;
7045 val -= offset;
7046 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7047 goto again;
7048
7049 return nr;
7050 }
7051
7052 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7053 struct perf_sample_data *data,
7054 struct pt_regs *regs)
7055 {
7056 struct hw_perf_event *hwc = &event->hw;
7057 int throttle = 0;
7058
7059 if (!overflow)
7060 overflow = perf_swevent_set_period(event);
7061
7062 if (hwc->interrupts == MAX_INTERRUPTS)
7063 return;
7064
7065 for (; overflow; overflow--) {
7066 if (__perf_event_overflow(event, throttle,
7067 data, regs)) {
7068 /*
7069 * We inhibit the overflow from happening when
7070 * hwc->interrupts == MAX_INTERRUPTS.
7071 */
7072 break;
7073 }
7074 throttle = 1;
7075 }
7076 }
7077
7078 static void perf_swevent_event(struct perf_event *event, u64 nr,
7079 struct perf_sample_data *data,
7080 struct pt_regs *regs)
7081 {
7082 struct hw_perf_event *hwc = &event->hw;
7083
7084 local64_add(nr, &event->count);
7085
7086 if (!regs)
7087 return;
7088
7089 if (!is_sampling_event(event))
7090 return;
7091
7092 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7093 data->period = nr;
7094 return perf_swevent_overflow(event, 1, data, regs);
7095 } else
7096 data->period = event->hw.last_period;
7097
7098 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7099 return perf_swevent_overflow(event, 1, data, regs);
7100
7101 if (local64_add_negative(nr, &hwc->period_left))
7102 return;
7103
7104 perf_swevent_overflow(event, 0, data, regs);
7105 }
7106
7107 static int perf_exclude_event(struct perf_event *event,
7108 struct pt_regs *regs)
7109 {
7110 if (event->hw.state & PERF_HES_STOPPED)
7111 return 1;
7112
7113 if (regs) {
7114 if (event->attr.exclude_user && user_mode(regs))
7115 return 1;
7116
7117 if (event->attr.exclude_kernel && !user_mode(regs))
7118 return 1;
7119 }
7120
7121 return 0;
7122 }
7123
7124 static int perf_swevent_match(struct perf_event *event,
7125 enum perf_type_id type,
7126 u32 event_id,
7127 struct perf_sample_data *data,
7128 struct pt_regs *regs)
7129 {
7130 if (event->attr.type != type)
7131 return 0;
7132
7133 if (event->attr.config != event_id)
7134 return 0;
7135
7136 if (perf_exclude_event(event, regs))
7137 return 0;
7138
7139 return 1;
7140 }
7141
7142 static inline u64 swevent_hash(u64 type, u32 event_id)
7143 {
7144 u64 val = event_id | (type << 32);
7145
7146 return hash_64(val, SWEVENT_HLIST_BITS);
7147 }
7148
7149 static inline struct hlist_head *
7150 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7151 {
7152 u64 hash = swevent_hash(type, event_id);
7153
7154 return &hlist->heads[hash];
7155 }
7156
7157 /* For the read side: events when they trigger */
7158 static inline struct hlist_head *
7159 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7160 {
7161 struct swevent_hlist *hlist;
7162
7163 hlist = rcu_dereference(swhash->swevent_hlist);
7164 if (!hlist)
7165 return NULL;
7166
7167 return __find_swevent_head(hlist, type, event_id);
7168 }
7169
7170 /* For the event head insertion and removal in the hlist */
7171 static inline struct hlist_head *
7172 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7173 {
7174 struct swevent_hlist *hlist;
7175 u32 event_id = event->attr.config;
7176 u64 type = event->attr.type;
7177
7178 /*
7179 * Event scheduling is always serialized against hlist allocation
7180 * and release. Which makes the protected version suitable here.
7181 * The context lock guarantees that.
7182 */
7183 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7184 lockdep_is_held(&event->ctx->lock));
7185 if (!hlist)
7186 return NULL;
7187
7188 return __find_swevent_head(hlist, type, event_id);
7189 }
7190
7191 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7192 u64 nr,
7193 struct perf_sample_data *data,
7194 struct pt_regs *regs)
7195 {
7196 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7197 struct perf_event *event;
7198 struct hlist_head *head;
7199
7200 rcu_read_lock();
7201 head = find_swevent_head_rcu(swhash, type, event_id);
7202 if (!head)
7203 goto end;
7204
7205 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7206 if (perf_swevent_match(event, type, event_id, data, regs))
7207 perf_swevent_event(event, nr, data, regs);
7208 }
7209 end:
7210 rcu_read_unlock();
7211 }
7212
7213 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7214
7215 int perf_swevent_get_recursion_context(void)
7216 {
7217 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7218
7219 return get_recursion_context(swhash->recursion);
7220 }
7221 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7222
7223 void perf_swevent_put_recursion_context(int rctx)
7224 {
7225 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7226
7227 put_recursion_context(swhash->recursion, rctx);
7228 }
7229
7230 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7231 {
7232 struct perf_sample_data data;
7233
7234 if (WARN_ON_ONCE(!regs))
7235 return;
7236
7237 perf_sample_data_init(&data, addr, 0);
7238 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7239 }
7240
7241 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7242 {
7243 int rctx;
7244
7245 preempt_disable_notrace();
7246 rctx = perf_swevent_get_recursion_context();
7247 if (unlikely(rctx < 0))
7248 goto fail;
7249
7250 ___perf_sw_event(event_id, nr, regs, addr);
7251
7252 perf_swevent_put_recursion_context(rctx);
7253 fail:
7254 preempt_enable_notrace();
7255 }
7256
7257 static void perf_swevent_read(struct perf_event *event)
7258 {
7259 }
7260
7261 static int perf_swevent_add(struct perf_event *event, int flags)
7262 {
7263 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7264 struct hw_perf_event *hwc = &event->hw;
7265 struct hlist_head *head;
7266
7267 if (is_sampling_event(event)) {
7268 hwc->last_period = hwc->sample_period;
7269 perf_swevent_set_period(event);
7270 }
7271
7272 hwc->state = !(flags & PERF_EF_START);
7273
7274 head = find_swevent_head(swhash, event);
7275 if (WARN_ON_ONCE(!head))
7276 return -EINVAL;
7277
7278 hlist_add_head_rcu(&event->hlist_entry, head);
7279 perf_event_update_userpage(event);
7280
7281 return 0;
7282 }
7283
7284 static void perf_swevent_del(struct perf_event *event, int flags)
7285 {
7286 hlist_del_rcu(&event->hlist_entry);
7287 }
7288
7289 static void perf_swevent_start(struct perf_event *event, int flags)
7290 {
7291 event->hw.state = 0;
7292 }
7293
7294 static void perf_swevent_stop(struct perf_event *event, int flags)
7295 {
7296 event->hw.state = PERF_HES_STOPPED;
7297 }
7298
7299 /* Deref the hlist from the update side */
7300 static inline struct swevent_hlist *
7301 swevent_hlist_deref(struct swevent_htable *swhash)
7302 {
7303 return rcu_dereference_protected(swhash->swevent_hlist,
7304 lockdep_is_held(&swhash->hlist_mutex));
7305 }
7306
7307 static void swevent_hlist_release(struct swevent_htable *swhash)
7308 {
7309 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7310
7311 if (!hlist)
7312 return;
7313
7314 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7315 kfree_rcu(hlist, rcu_head);
7316 }
7317
7318 static void swevent_hlist_put_cpu(int cpu)
7319 {
7320 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7321
7322 mutex_lock(&swhash->hlist_mutex);
7323
7324 if (!--swhash->hlist_refcount)
7325 swevent_hlist_release(swhash);
7326
7327 mutex_unlock(&swhash->hlist_mutex);
7328 }
7329
7330 static void swevent_hlist_put(void)
7331 {
7332 int cpu;
7333
7334 for_each_possible_cpu(cpu)
7335 swevent_hlist_put_cpu(cpu);
7336 }
7337
7338 static int swevent_hlist_get_cpu(int cpu)
7339 {
7340 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7341 int err = 0;
7342
7343 mutex_lock(&swhash->hlist_mutex);
7344 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7345 struct swevent_hlist *hlist;
7346
7347 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7348 if (!hlist) {
7349 err = -ENOMEM;
7350 goto exit;
7351 }
7352 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7353 }
7354 swhash->hlist_refcount++;
7355 exit:
7356 mutex_unlock(&swhash->hlist_mutex);
7357
7358 return err;
7359 }
7360
7361 static int swevent_hlist_get(void)
7362 {
7363 int err, cpu, failed_cpu;
7364
7365 get_online_cpus();
7366 for_each_possible_cpu(cpu) {
7367 err = swevent_hlist_get_cpu(cpu);
7368 if (err) {
7369 failed_cpu = cpu;
7370 goto fail;
7371 }
7372 }
7373 put_online_cpus();
7374
7375 return 0;
7376 fail:
7377 for_each_possible_cpu(cpu) {
7378 if (cpu == failed_cpu)
7379 break;
7380 swevent_hlist_put_cpu(cpu);
7381 }
7382
7383 put_online_cpus();
7384 return err;
7385 }
7386
7387 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7388
7389 static void sw_perf_event_destroy(struct perf_event *event)
7390 {
7391 u64 event_id = event->attr.config;
7392
7393 WARN_ON(event->parent);
7394
7395 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7396 swevent_hlist_put();
7397 }
7398
7399 static int perf_swevent_init(struct perf_event *event)
7400 {
7401 u64 event_id = event->attr.config;
7402
7403 if (event->attr.type != PERF_TYPE_SOFTWARE)
7404 return -ENOENT;
7405
7406 /*
7407 * no branch sampling for software events
7408 */
7409 if (has_branch_stack(event))
7410 return -EOPNOTSUPP;
7411
7412 switch (event_id) {
7413 case PERF_COUNT_SW_CPU_CLOCK:
7414 case PERF_COUNT_SW_TASK_CLOCK:
7415 return -ENOENT;
7416
7417 default:
7418 break;
7419 }
7420
7421 if (event_id >= PERF_COUNT_SW_MAX)
7422 return -ENOENT;
7423
7424 if (!event->parent) {
7425 int err;
7426
7427 err = swevent_hlist_get();
7428 if (err)
7429 return err;
7430
7431 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7432 event->destroy = sw_perf_event_destroy;
7433 }
7434
7435 return 0;
7436 }
7437
7438 static struct pmu perf_swevent = {
7439 .task_ctx_nr = perf_sw_context,
7440
7441 .capabilities = PERF_PMU_CAP_NO_NMI,
7442
7443 .event_init = perf_swevent_init,
7444 .add = perf_swevent_add,
7445 .del = perf_swevent_del,
7446 .start = perf_swevent_start,
7447 .stop = perf_swevent_stop,
7448 .read = perf_swevent_read,
7449 };
7450
7451 #ifdef CONFIG_EVENT_TRACING
7452
7453 static int perf_tp_filter_match(struct perf_event *event,
7454 struct perf_sample_data *data)
7455 {
7456 void *record = data->raw->frag.data;
7457
7458 /* only top level events have filters set */
7459 if (event->parent)
7460 event = event->parent;
7461
7462 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7463 return 1;
7464 return 0;
7465 }
7466
7467 static int perf_tp_event_match(struct perf_event *event,
7468 struct perf_sample_data *data,
7469 struct pt_regs *regs)
7470 {
7471 if (event->hw.state & PERF_HES_STOPPED)
7472 return 0;
7473 /*
7474 * All tracepoints are from kernel-space.
7475 */
7476 if (event->attr.exclude_kernel)
7477 return 0;
7478
7479 if (!perf_tp_filter_match(event, data))
7480 return 0;
7481
7482 return 1;
7483 }
7484
7485 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7486 struct trace_event_call *call, u64 count,
7487 struct pt_regs *regs, struct hlist_head *head,
7488 struct task_struct *task)
7489 {
7490 struct bpf_prog *prog = call->prog;
7491
7492 if (prog) {
7493 *(struct pt_regs **)raw_data = regs;
7494 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7495 perf_swevent_put_recursion_context(rctx);
7496 return;
7497 }
7498 }
7499 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7500 rctx, task);
7501 }
7502 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7503
7504 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7505 struct pt_regs *regs, struct hlist_head *head, int rctx,
7506 struct task_struct *task)
7507 {
7508 struct perf_sample_data data;
7509 struct perf_event *event;
7510
7511 struct perf_raw_record raw = {
7512 .frag = {
7513 .size = entry_size,
7514 .data = record,
7515 },
7516 };
7517
7518 perf_sample_data_init(&data, 0, 0);
7519 data.raw = &raw;
7520
7521 perf_trace_buf_update(record, event_type);
7522
7523 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7524 if (perf_tp_event_match(event, &data, regs))
7525 perf_swevent_event(event, count, &data, regs);
7526 }
7527
7528 /*
7529 * If we got specified a target task, also iterate its context and
7530 * deliver this event there too.
7531 */
7532 if (task && task != current) {
7533 struct perf_event_context *ctx;
7534 struct trace_entry *entry = record;
7535
7536 rcu_read_lock();
7537 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7538 if (!ctx)
7539 goto unlock;
7540
7541 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7542 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7543 continue;
7544 if (event->attr.config != entry->type)
7545 continue;
7546 if (perf_tp_event_match(event, &data, regs))
7547 perf_swevent_event(event, count, &data, regs);
7548 }
7549 unlock:
7550 rcu_read_unlock();
7551 }
7552
7553 perf_swevent_put_recursion_context(rctx);
7554 }
7555 EXPORT_SYMBOL_GPL(perf_tp_event);
7556
7557 static void tp_perf_event_destroy(struct perf_event *event)
7558 {
7559 perf_trace_destroy(event);
7560 }
7561
7562 static int perf_tp_event_init(struct perf_event *event)
7563 {
7564 int err;
7565
7566 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7567 return -ENOENT;
7568
7569 /*
7570 * no branch sampling for tracepoint events
7571 */
7572 if (has_branch_stack(event))
7573 return -EOPNOTSUPP;
7574
7575 err = perf_trace_init(event);
7576 if (err)
7577 return err;
7578
7579 event->destroy = tp_perf_event_destroy;
7580
7581 return 0;
7582 }
7583
7584 static struct pmu perf_tracepoint = {
7585 .task_ctx_nr = perf_sw_context,
7586
7587 .event_init = perf_tp_event_init,
7588 .add = perf_trace_add,
7589 .del = perf_trace_del,
7590 .start = perf_swevent_start,
7591 .stop = perf_swevent_stop,
7592 .read = perf_swevent_read,
7593 };
7594
7595 static inline void perf_tp_register(void)
7596 {
7597 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7598 }
7599
7600 static void perf_event_free_filter(struct perf_event *event)
7601 {
7602 ftrace_profile_free_filter(event);
7603 }
7604
7605 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7606 {
7607 bool is_kprobe, is_tracepoint;
7608 struct bpf_prog *prog;
7609
7610 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7611 return -EINVAL;
7612
7613 if (event->tp_event->prog)
7614 return -EEXIST;
7615
7616 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7617 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7618 if (!is_kprobe && !is_tracepoint)
7619 /* bpf programs can only be attached to u/kprobe or tracepoint */
7620 return -EINVAL;
7621
7622 prog = bpf_prog_get(prog_fd);
7623 if (IS_ERR(prog))
7624 return PTR_ERR(prog);
7625
7626 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7627 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7628 /* valid fd, but invalid bpf program type */
7629 bpf_prog_put(prog);
7630 return -EINVAL;
7631 }
7632
7633 if (is_tracepoint) {
7634 int off = trace_event_get_offsets(event->tp_event);
7635
7636 if (prog->aux->max_ctx_offset > off) {
7637 bpf_prog_put(prog);
7638 return -EACCES;
7639 }
7640 }
7641 event->tp_event->prog = prog;
7642
7643 return 0;
7644 }
7645
7646 static void perf_event_free_bpf_prog(struct perf_event *event)
7647 {
7648 struct bpf_prog *prog;
7649
7650 if (!event->tp_event)
7651 return;
7652
7653 prog = event->tp_event->prog;
7654 if (prog) {
7655 event->tp_event->prog = NULL;
7656 bpf_prog_put(prog);
7657 }
7658 }
7659
7660 #else
7661
7662 static inline void perf_tp_register(void)
7663 {
7664 }
7665
7666 static void perf_event_free_filter(struct perf_event *event)
7667 {
7668 }
7669
7670 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7671 {
7672 return -ENOENT;
7673 }
7674
7675 static void perf_event_free_bpf_prog(struct perf_event *event)
7676 {
7677 }
7678 #endif /* CONFIG_EVENT_TRACING */
7679
7680 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7681 void perf_bp_event(struct perf_event *bp, void *data)
7682 {
7683 struct perf_sample_data sample;
7684 struct pt_regs *regs = data;
7685
7686 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7687
7688 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7689 perf_swevent_event(bp, 1, &sample, regs);
7690 }
7691 #endif
7692
7693 /*
7694 * Allocate a new address filter
7695 */
7696 static struct perf_addr_filter *
7697 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7698 {
7699 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7700 struct perf_addr_filter *filter;
7701
7702 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7703 if (!filter)
7704 return NULL;
7705
7706 INIT_LIST_HEAD(&filter->entry);
7707 list_add_tail(&filter->entry, filters);
7708
7709 return filter;
7710 }
7711
7712 static void free_filters_list(struct list_head *filters)
7713 {
7714 struct perf_addr_filter *filter, *iter;
7715
7716 list_for_each_entry_safe(filter, iter, filters, entry) {
7717 if (filter->inode)
7718 iput(filter->inode);
7719 list_del(&filter->entry);
7720 kfree(filter);
7721 }
7722 }
7723
7724 /*
7725 * Free existing address filters and optionally install new ones
7726 */
7727 static void perf_addr_filters_splice(struct perf_event *event,
7728 struct list_head *head)
7729 {
7730 unsigned long flags;
7731 LIST_HEAD(list);
7732
7733 if (!has_addr_filter(event))
7734 return;
7735
7736 /* don't bother with children, they don't have their own filters */
7737 if (event->parent)
7738 return;
7739
7740 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7741
7742 list_splice_init(&event->addr_filters.list, &list);
7743 if (head)
7744 list_splice(head, &event->addr_filters.list);
7745
7746 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7747
7748 free_filters_list(&list);
7749 }
7750
7751 /*
7752 * Scan through mm's vmas and see if one of them matches the
7753 * @filter; if so, adjust filter's address range.
7754 * Called with mm::mmap_sem down for reading.
7755 */
7756 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7757 struct mm_struct *mm)
7758 {
7759 struct vm_area_struct *vma;
7760
7761 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7762 struct file *file = vma->vm_file;
7763 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7764 unsigned long vma_size = vma->vm_end - vma->vm_start;
7765
7766 if (!file)
7767 continue;
7768
7769 if (!perf_addr_filter_match(filter, file, off, vma_size))
7770 continue;
7771
7772 return vma->vm_start;
7773 }
7774
7775 return 0;
7776 }
7777
7778 /*
7779 * Update event's address range filters based on the
7780 * task's existing mappings, if any.
7781 */
7782 static void perf_event_addr_filters_apply(struct perf_event *event)
7783 {
7784 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7785 struct task_struct *task = READ_ONCE(event->ctx->task);
7786 struct perf_addr_filter *filter;
7787 struct mm_struct *mm = NULL;
7788 unsigned int count = 0;
7789 unsigned long flags;
7790
7791 /*
7792 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7793 * will stop on the parent's child_mutex that our caller is also holding
7794 */
7795 if (task == TASK_TOMBSTONE)
7796 return;
7797
7798 mm = get_task_mm(event->ctx->task);
7799 if (!mm)
7800 goto restart;
7801
7802 down_read(&mm->mmap_sem);
7803
7804 raw_spin_lock_irqsave(&ifh->lock, flags);
7805 list_for_each_entry(filter, &ifh->list, entry) {
7806 event->addr_filters_offs[count] = 0;
7807
7808 if (perf_addr_filter_needs_mmap(filter))
7809 event->addr_filters_offs[count] =
7810 perf_addr_filter_apply(filter, mm);
7811
7812 count++;
7813 }
7814
7815 event->addr_filters_gen++;
7816 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7817
7818 up_read(&mm->mmap_sem);
7819
7820 mmput(mm);
7821
7822 restart:
7823 perf_event_restart(event);
7824 }
7825
7826 /*
7827 * Address range filtering: limiting the data to certain
7828 * instruction address ranges. Filters are ioctl()ed to us from
7829 * userspace as ascii strings.
7830 *
7831 * Filter string format:
7832 *
7833 * ACTION RANGE_SPEC
7834 * where ACTION is one of the
7835 * * "filter": limit the trace to this region
7836 * * "start": start tracing from this address
7837 * * "stop": stop tracing at this address/region;
7838 * RANGE_SPEC is
7839 * * for kernel addresses: <start address>[/<size>]
7840 * * for object files: <start address>[/<size>]@</path/to/object/file>
7841 *
7842 * if <size> is not specified, the range is treated as a single address.
7843 */
7844 enum {
7845 IF_ACT_FILTER,
7846 IF_ACT_START,
7847 IF_ACT_STOP,
7848 IF_SRC_FILE,
7849 IF_SRC_KERNEL,
7850 IF_SRC_FILEADDR,
7851 IF_SRC_KERNELADDR,
7852 };
7853
7854 enum {
7855 IF_STATE_ACTION = 0,
7856 IF_STATE_SOURCE,
7857 IF_STATE_END,
7858 };
7859
7860 static const match_table_t if_tokens = {
7861 { IF_ACT_FILTER, "filter" },
7862 { IF_ACT_START, "start" },
7863 { IF_ACT_STOP, "stop" },
7864 { IF_SRC_FILE, "%u/%u@%s" },
7865 { IF_SRC_KERNEL, "%u/%u" },
7866 { IF_SRC_FILEADDR, "%u@%s" },
7867 { IF_SRC_KERNELADDR, "%u" },
7868 };
7869
7870 /*
7871 * Address filter string parser
7872 */
7873 static int
7874 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7875 struct list_head *filters)
7876 {
7877 struct perf_addr_filter *filter = NULL;
7878 char *start, *orig, *filename = NULL;
7879 struct path path;
7880 substring_t args[MAX_OPT_ARGS];
7881 int state = IF_STATE_ACTION, token;
7882 unsigned int kernel = 0;
7883 int ret = -EINVAL;
7884
7885 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7886 if (!fstr)
7887 return -ENOMEM;
7888
7889 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7890 ret = -EINVAL;
7891
7892 if (!*start)
7893 continue;
7894
7895 /* filter definition begins */
7896 if (state == IF_STATE_ACTION) {
7897 filter = perf_addr_filter_new(event, filters);
7898 if (!filter)
7899 goto fail;
7900 }
7901
7902 token = match_token(start, if_tokens, args);
7903 switch (token) {
7904 case IF_ACT_FILTER:
7905 case IF_ACT_START:
7906 filter->filter = 1;
7907
7908 case IF_ACT_STOP:
7909 if (state != IF_STATE_ACTION)
7910 goto fail;
7911
7912 state = IF_STATE_SOURCE;
7913 break;
7914
7915 case IF_SRC_KERNELADDR:
7916 case IF_SRC_KERNEL:
7917 kernel = 1;
7918
7919 case IF_SRC_FILEADDR:
7920 case IF_SRC_FILE:
7921 if (state != IF_STATE_SOURCE)
7922 goto fail;
7923
7924 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7925 filter->range = 1;
7926
7927 *args[0].to = 0;
7928 ret = kstrtoul(args[0].from, 0, &filter->offset);
7929 if (ret)
7930 goto fail;
7931
7932 if (filter->range) {
7933 *args[1].to = 0;
7934 ret = kstrtoul(args[1].from, 0, &filter->size);
7935 if (ret)
7936 goto fail;
7937 }
7938
7939 if (token == IF_SRC_FILE) {
7940 filename = match_strdup(&args[2]);
7941 if (!filename) {
7942 ret = -ENOMEM;
7943 goto fail;
7944 }
7945 }
7946
7947 state = IF_STATE_END;
7948 break;
7949
7950 default:
7951 goto fail;
7952 }
7953
7954 /*
7955 * Filter definition is fully parsed, validate and install it.
7956 * Make sure that it doesn't contradict itself or the event's
7957 * attribute.
7958 */
7959 if (state == IF_STATE_END) {
7960 if (kernel && event->attr.exclude_kernel)
7961 goto fail;
7962
7963 if (!kernel) {
7964 if (!filename)
7965 goto fail;
7966
7967 /* look up the path and grab its inode */
7968 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7969 if (ret)
7970 goto fail_free_name;
7971
7972 filter->inode = igrab(d_inode(path.dentry));
7973 path_put(&path);
7974 kfree(filename);
7975 filename = NULL;
7976
7977 ret = -EINVAL;
7978 if (!filter->inode ||
7979 !S_ISREG(filter->inode->i_mode))
7980 /* free_filters_list() will iput() */
7981 goto fail;
7982 }
7983
7984 /* ready to consume more filters */
7985 state = IF_STATE_ACTION;
7986 filter = NULL;
7987 }
7988 }
7989
7990 if (state != IF_STATE_ACTION)
7991 goto fail;
7992
7993 kfree(orig);
7994
7995 return 0;
7996
7997 fail_free_name:
7998 kfree(filename);
7999 fail:
8000 free_filters_list(filters);
8001 kfree(orig);
8002
8003 return ret;
8004 }
8005
8006 static int
8007 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8008 {
8009 LIST_HEAD(filters);
8010 int ret;
8011
8012 /*
8013 * Since this is called in perf_ioctl() path, we're already holding
8014 * ctx::mutex.
8015 */
8016 lockdep_assert_held(&event->ctx->mutex);
8017
8018 if (WARN_ON_ONCE(event->parent))
8019 return -EINVAL;
8020
8021 /*
8022 * For now, we only support filtering in per-task events; doing so
8023 * for CPU-wide events requires additional context switching trickery,
8024 * since same object code will be mapped at different virtual
8025 * addresses in different processes.
8026 */
8027 if (!event->ctx->task)
8028 return -EOPNOTSUPP;
8029
8030 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8031 if (ret)
8032 return ret;
8033
8034 ret = event->pmu->addr_filters_validate(&filters);
8035 if (ret) {
8036 free_filters_list(&filters);
8037 return ret;
8038 }
8039
8040 /* remove existing filters, if any */
8041 perf_addr_filters_splice(event, &filters);
8042
8043 /* install new filters */
8044 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8045
8046 return ret;
8047 }
8048
8049 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8050 {
8051 char *filter_str;
8052 int ret = -EINVAL;
8053
8054 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8055 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8056 !has_addr_filter(event))
8057 return -EINVAL;
8058
8059 filter_str = strndup_user(arg, PAGE_SIZE);
8060 if (IS_ERR(filter_str))
8061 return PTR_ERR(filter_str);
8062
8063 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8064 event->attr.type == PERF_TYPE_TRACEPOINT)
8065 ret = ftrace_profile_set_filter(event, event->attr.config,
8066 filter_str);
8067 else if (has_addr_filter(event))
8068 ret = perf_event_set_addr_filter(event, filter_str);
8069
8070 kfree(filter_str);
8071 return ret;
8072 }
8073
8074 /*
8075 * hrtimer based swevent callback
8076 */
8077
8078 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8079 {
8080 enum hrtimer_restart ret = HRTIMER_RESTART;
8081 struct perf_sample_data data;
8082 struct pt_regs *regs;
8083 struct perf_event *event;
8084 u64 period;
8085
8086 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8087
8088 if (event->state != PERF_EVENT_STATE_ACTIVE)
8089 return HRTIMER_NORESTART;
8090
8091 event->pmu->read(event);
8092
8093 perf_sample_data_init(&data, 0, event->hw.last_period);
8094 regs = get_irq_regs();
8095
8096 if (regs && !perf_exclude_event(event, regs)) {
8097 if (!(event->attr.exclude_idle && is_idle_task(current)))
8098 if (__perf_event_overflow(event, 1, &data, regs))
8099 ret = HRTIMER_NORESTART;
8100 }
8101
8102 period = max_t(u64, 10000, event->hw.sample_period);
8103 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8104
8105 return ret;
8106 }
8107
8108 static void perf_swevent_start_hrtimer(struct perf_event *event)
8109 {
8110 struct hw_perf_event *hwc = &event->hw;
8111 s64 period;
8112
8113 if (!is_sampling_event(event))
8114 return;
8115
8116 period = local64_read(&hwc->period_left);
8117 if (period) {
8118 if (period < 0)
8119 period = 10000;
8120
8121 local64_set(&hwc->period_left, 0);
8122 } else {
8123 period = max_t(u64, 10000, hwc->sample_period);
8124 }
8125 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8126 HRTIMER_MODE_REL_PINNED);
8127 }
8128
8129 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8130 {
8131 struct hw_perf_event *hwc = &event->hw;
8132
8133 if (is_sampling_event(event)) {
8134 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8135 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8136
8137 hrtimer_cancel(&hwc->hrtimer);
8138 }
8139 }
8140
8141 static void perf_swevent_init_hrtimer(struct perf_event *event)
8142 {
8143 struct hw_perf_event *hwc = &event->hw;
8144
8145 if (!is_sampling_event(event))
8146 return;
8147
8148 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8149 hwc->hrtimer.function = perf_swevent_hrtimer;
8150
8151 /*
8152 * Since hrtimers have a fixed rate, we can do a static freq->period
8153 * mapping and avoid the whole period adjust feedback stuff.
8154 */
8155 if (event->attr.freq) {
8156 long freq = event->attr.sample_freq;
8157
8158 event->attr.sample_period = NSEC_PER_SEC / freq;
8159 hwc->sample_period = event->attr.sample_period;
8160 local64_set(&hwc->period_left, hwc->sample_period);
8161 hwc->last_period = hwc->sample_period;
8162 event->attr.freq = 0;
8163 }
8164 }
8165
8166 /*
8167 * Software event: cpu wall time clock
8168 */
8169
8170 static void cpu_clock_event_update(struct perf_event *event)
8171 {
8172 s64 prev;
8173 u64 now;
8174
8175 now = local_clock();
8176 prev = local64_xchg(&event->hw.prev_count, now);
8177 local64_add(now - prev, &event->count);
8178 }
8179
8180 static void cpu_clock_event_start(struct perf_event *event, int flags)
8181 {
8182 local64_set(&event->hw.prev_count, local_clock());
8183 perf_swevent_start_hrtimer(event);
8184 }
8185
8186 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8187 {
8188 perf_swevent_cancel_hrtimer(event);
8189 cpu_clock_event_update(event);
8190 }
8191
8192 static int cpu_clock_event_add(struct perf_event *event, int flags)
8193 {
8194 if (flags & PERF_EF_START)
8195 cpu_clock_event_start(event, flags);
8196 perf_event_update_userpage(event);
8197
8198 return 0;
8199 }
8200
8201 static void cpu_clock_event_del(struct perf_event *event, int flags)
8202 {
8203 cpu_clock_event_stop(event, flags);
8204 }
8205
8206 static void cpu_clock_event_read(struct perf_event *event)
8207 {
8208 cpu_clock_event_update(event);
8209 }
8210
8211 static int cpu_clock_event_init(struct perf_event *event)
8212 {
8213 if (event->attr.type != PERF_TYPE_SOFTWARE)
8214 return -ENOENT;
8215
8216 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8217 return -ENOENT;
8218
8219 /*
8220 * no branch sampling for software events
8221 */
8222 if (has_branch_stack(event))
8223 return -EOPNOTSUPP;
8224
8225 perf_swevent_init_hrtimer(event);
8226
8227 return 0;
8228 }
8229
8230 static struct pmu perf_cpu_clock = {
8231 .task_ctx_nr = perf_sw_context,
8232
8233 .capabilities = PERF_PMU_CAP_NO_NMI,
8234
8235 .event_init = cpu_clock_event_init,
8236 .add = cpu_clock_event_add,
8237 .del = cpu_clock_event_del,
8238 .start = cpu_clock_event_start,
8239 .stop = cpu_clock_event_stop,
8240 .read = cpu_clock_event_read,
8241 };
8242
8243 /*
8244 * Software event: task time clock
8245 */
8246
8247 static void task_clock_event_update(struct perf_event *event, u64 now)
8248 {
8249 u64 prev;
8250 s64 delta;
8251
8252 prev = local64_xchg(&event->hw.prev_count, now);
8253 delta = now - prev;
8254 local64_add(delta, &event->count);
8255 }
8256
8257 static void task_clock_event_start(struct perf_event *event, int flags)
8258 {
8259 local64_set(&event->hw.prev_count, event->ctx->time);
8260 perf_swevent_start_hrtimer(event);
8261 }
8262
8263 static void task_clock_event_stop(struct perf_event *event, int flags)
8264 {
8265 perf_swevent_cancel_hrtimer(event);
8266 task_clock_event_update(event, event->ctx->time);
8267 }
8268
8269 static int task_clock_event_add(struct perf_event *event, int flags)
8270 {
8271 if (flags & PERF_EF_START)
8272 task_clock_event_start(event, flags);
8273 perf_event_update_userpage(event);
8274
8275 return 0;
8276 }
8277
8278 static void task_clock_event_del(struct perf_event *event, int flags)
8279 {
8280 task_clock_event_stop(event, PERF_EF_UPDATE);
8281 }
8282
8283 static void task_clock_event_read(struct perf_event *event)
8284 {
8285 u64 now = perf_clock();
8286 u64 delta = now - event->ctx->timestamp;
8287 u64 time = event->ctx->time + delta;
8288
8289 task_clock_event_update(event, time);
8290 }
8291
8292 static int task_clock_event_init(struct perf_event *event)
8293 {
8294 if (event->attr.type != PERF_TYPE_SOFTWARE)
8295 return -ENOENT;
8296
8297 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8298 return -ENOENT;
8299
8300 /*
8301 * no branch sampling for software events
8302 */
8303 if (has_branch_stack(event))
8304 return -EOPNOTSUPP;
8305
8306 perf_swevent_init_hrtimer(event);
8307
8308 return 0;
8309 }
8310
8311 static struct pmu perf_task_clock = {
8312 .task_ctx_nr = perf_sw_context,
8313
8314 .capabilities = PERF_PMU_CAP_NO_NMI,
8315
8316 .event_init = task_clock_event_init,
8317 .add = task_clock_event_add,
8318 .del = task_clock_event_del,
8319 .start = task_clock_event_start,
8320 .stop = task_clock_event_stop,
8321 .read = task_clock_event_read,
8322 };
8323
8324 static void perf_pmu_nop_void(struct pmu *pmu)
8325 {
8326 }
8327
8328 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8329 {
8330 }
8331
8332 static int perf_pmu_nop_int(struct pmu *pmu)
8333 {
8334 return 0;
8335 }
8336
8337 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8338
8339 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8340 {
8341 __this_cpu_write(nop_txn_flags, flags);
8342
8343 if (flags & ~PERF_PMU_TXN_ADD)
8344 return;
8345
8346 perf_pmu_disable(pmu);
8347 }
8348
8349 static int perf_pmu_commit_txn(struct pmu *pmu)
8350 {
8351 unsigned int flags = __this_cpu_read(nop_txn_flags);
8352
8353 __this_cpu_write(nop_txn_flags, 0);
8354
8355 if (flags & ~PERF_PMU_TXN_ADD)
8356 return 0;
8357
8358 perf_pmu_enable(pmu);
8359 return 0;
8360 }
8361
8362 static void perf_pmu_cancel_txn(struct pmu *pmu)
8363 {
8364 unsigned int flags = __this_cpu_read(nop_txn_flags);
8365
8366 __this_cpu_write(nop_txn_flags, 0);
8367
8368 if (flags & ~PERF_PMU_TXN_ADD)
8369 return;
8370
8371 perf_pmu_enable(pmu);
8372 }
8373
8374 static int perf_event_idx_default(struct perf_event *event)
8375 {
8376 return 0;
8377 }
8378
8379 /*
8380 * Ensures all contexts with the same task_ctx_nr have the same
8381 * pmu_cpu_context too.
8382 */
8383 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8384 {
8385 struct pmu *pmu;
8386
8387 if (ctxn < 0)
8388 return NULL;
8389
8390 list_for_each_entry(pmu, &pmus, entry) {
8391 if (pmu->task_ctx_nr == ctxn)
8392 return pmu->pmu_cpu_context;
8393 }
8394
8395 return NULL;
8396 }
8397
8398 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8399 {
8400 int cpu;
8401
8402 for_each_possible_cpu(cpu) {
8403 struct perf_cpu_context *cpuctx;
8404
8405 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8406
8407 if (cpuctx->unique_pmu == old_pmu)
8408 cpuctx->unique_pmu = pmu;
8409 }
8410 }
8411
8412 static void free_pmu_context(struct pmu *pmu)
8413 {
8414 struct pmu *i;
8415
8416 mutex_lock(&pmus_lock);
8417 /*
8418 * Like a real lame refcount.
8419 */
8420 list_for_each_entry(i, &pmus, entry) {
8421 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8422 update_pmu_context(i, pmu);
8423 goto out;
8424 }
8425 }
8426
8427 free_percpu(pmu->pmu_cpu_context);
8428 out:
8429 mutex_unlock(&pmus_lock);
8430 }
8431
8432 /*
8433 * Let userspace know that this PMU supports address range filtering:
8434 */
8435 static ssize_t nr_addr_filters_show(struct device *dev,
8436 struct device_attribute *attr,
8437 char *page)
8438 {
8439 struct pmu *pmu = dev_get_drvdata(dev);
8440
8441 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8442 }
8443 DEVICE_ATTR_RO(nr_addr_filters);
8444
8445 static struct idr pmu_idr;
8446
8447 static ssize_t
8448 type_show(struct device *dev, struct device_attribute *attr, char *page)
8449 {
8450 struct pmu *pmu = dev_get_drvdata(dev);
8451
8452 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8453 }
8454 static DEVICE_ATTR_RO(type);
8455
8456 static ssize_t
8457 perf_event_mux_interval_ms_show(struct device *dev,
8458 struct device_attribute *attr,
8459 char *page)
8460 {
8461 struct pmu *pmu = dev_get_drvdata(dev);
8462
8463 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8464 }
8465
8466 static DEFINE_MUTEX(mux_interval_mutex);
8467
8468 static ssize_t
8469 perf_event_mux_interval_ms_store(struct device *dev,
8470 struct device_attribute *attr,
8471 const char *buf, size_t count)
8472 {
8473 struct pmu *pmu = dev_get_drvdata(dev);
8474 int timer, cpu, ret;
8475
8476 ret = kstrtoint(buf, 0, &timer);
8477 if (ret)
8478 return ret;
8479
8480 if (timer < 1)
8481 return -EINVAL;
8482
8483 /* same value, noting to do */
8484 if (timer == pmu->hrtimer_interval_ms)
8485 return count;
8486
8487 mutex_lock(&mux_interval_mutex);
8488 pmu->hrtimer_interval_ms = timer;
8489
8490 /* update all cpuctx for this PMU */
8491 get_online_cpus();
8492 for_each_online_cpu(cpu) {
8493 struct perf_cpu_context *cpuctx;
8494 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8495 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8496
8497 cpu_function_call(cpu,
8498 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8499 }
8500 put_online_cpus();
8501 mutex_unlock(&mux_interval_mutex);
8502
8503 return count;
8504 }
8505 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8506
8507 static struct attribute *pmu_dev_attrs[] = {
8508 &dev_attr_type.attr,
8509 &dev_attr_perf_event_mux_interval_ms.attr,
8510 NULL,
8511 };
8512 ATTRIBUTE_GROUPS(pmu_dev);
8513
8514 static int pmu_bus_running;
8515 static struct bus_type pmu_bus = {
8516 .name = "event_source",
8517 .dev_groups = pmu_dev_groups,
8518 };
8519
8520 static void pmu_dev_release(struct device *dev)
8521 {
8522 kfree(dev);
8523 }
8524
8525 static int pmu_dev_alloc(struct pmu *pmu)
8526 {
8527 int ret = -ENOMEM;
8528
8529 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8530 if (!pmu->dev)
8531 goto out;
8532
8533 pmu->dev->groups = pmu->attr_groups;
8534 device_initialize(pmu->dev);
8535 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8536 if (ret)
8537 goto free_dev;
8538
8539 dev_set_drvdata(pmu->dev, pmu);
8540 pmu->dev->bus = &pmu_bus;
8541 pmu->dev->release = pmu_dev_release;
8542 ret = device_add(pmu->dev);
8543 if (ret)
8544 goto free_dev;
8545
8546 /* For PMUs with address filters, throw in an extra attribute: */
8547 if (pmu->nr_addr_filters)
8548 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8549
8550 if (ret)
8551 goto del_dev;
8552
8553 out:
8554 return ret;
8555
8556 del_dev:
8557 device_del(pmu->dev);
8558
8559 free_dev:
8560 put_device(pmu->dev);
8561 goto out;
8562 }
8563
8564 static struct lock_class_key cpuctx_mutex;
8565 static struct lock_class_key cpuctx_lock;
8566
8567 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8568 {
8569 int cpu, ret;
8570
8571 mutex_lock(&pmus_lock);
8572 ret = -ENOMEM;
8573 pmu->pmu_disable_count = alloc_percpu(int);
8574 if (!pmu->pmu_disable_count)
8575 goto unlock;
8576
8577 pmu->type = -1;
8578 if (!name)
8579 goto skip_type;
8580 pmu->name = name;
8581
8582 if (type < 0) {
8583 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8584 if (type < 0) {
8585 ret = type;
8586 goto free_pdc;
8587 }
8588 }
8589 pmu->type = type;
8590
8591 if (pmu_bus_running) {
8592 ret = pmu_dev_alloc(pmu);
8593 if (ret)
8594 goto free_idr;
8595 }
8596
8597 skip_type:
8598 if (pmu->task_ctx_nr == perf_hw_context) {
8599 static int hw_context_taken = 0;
8600
8601 /*
8602 * Other than systems with heterogeneous CPUs, it never makes
8603 * sense for two PMUs to share perf_hw_context. PMUs which are
8604 * uncore must use perf_invalid_context.
8605 */
8606 if (WARN_ON_ONCE(hw_context_taken &&
8607 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8608 pmu->task_ctx_nr = perf_invalid_context;
8609
8610 hw_context_taken = 1;
8611 }
8612
8613 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8614 if (pmu->pmu_cpu_context)
8615 goto got_cpu_context;
8616
8617 ret = -ENOMEM;
8618 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8619 if (!pmu->pmu_cpu_context)
8620 goto free_dev;
8621
8622 for_each_possible_cpu(cpu) {
8623 struct perf_cpu_context *cpuctx;
8624
8625 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8626 __perf_event_init_context(&cpuctx->ctx);
8627 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8628 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8629 cpuctx->ctx.pmu = pmu;
8630
8631 __perf_mux_hrtimer_init(cpuctx, cpu);
8632
8633 cpuctx->unique_pmu = pmu;
8634 }
8635
8636 got_cpu_context:
8637 if (!pmu->start_txn) {
8638 if (pmu->pmu_enable) {
8639 /*
8640 * If we have pmu_enable/pmu_disable calls, install
8641 * transaction stubs that use that to try and batch
8642 * hardware accesses.
8643 */
8644 pmu->start_txn = perf_pmu_start_txn;
8645 pmu->commit_txn = perf_pmu_commit_txn;
8646 pmu->cancel_txn = perf_pmu_cancel_txn;
8647 } else {
8648 pmu->start_txn = perf_pmu_nop_txn;
8649 pmu->commit_txn = perf_pmu_nop_int;
8650 pmu->cancel_txn = perf_pmu_nop_void;
8651 }
8652 }
8653
8654 if (!pmu->pmu_enable) {
8655 pmu->pmu_enable = perf_pmu_nop_void;
8656 pmu->pmu_disable = perf_pmu_nop_void;
8657 }
8658
8659 if (!pmu->event_idx)
8660 pmu->event_idx = perf_event_idx_default;
8661
8662 list_add_rcu(&pmu->entry, &pmus);
8663 atomic_set(&pmu->exclusive_cnt, 0);
8664 ret = 0;
8665 unlock:
8666 mutex_unlock(&pmus_lock);
8667
8668 return ret;
8669
8670 free_dev:
8671 device_del(pmu->dev);
8672 put_device(pmu->dev);
8673
8674 free_idr:
8675 if (pmu->type >= PERF_TYPE_MAX)
8676 idr_remove(&pmu_idr, pmu->type);
8677
8678 free_pdc:
8679 free_percpu(pmu->pmu_disable_count);
8680 goto unlock;
8681 }
8682 EXPORT_SYMBOL_GPL(perf_pmu_register);
8683
8684 void perf_pmu_unregister(struct pmu *pmu)
8685 {
8686 mutex_lock(&pmus_lock);
8687 list_del_rcu(&pmu->entry);
8688 mutex_unlock(&pmus_lock);
8689
8690 /*
8691 * We dereference the pmu list under both SRCU and regular RCU, so
8692 * synchronize against both of those.
8693 */
8694 synchronize_srcu(&pmus_srcu);
8695 synchronize_rcu();
8696
8697 free_percpu(pmu->pmu_disable_count);
8698 if (pmu->type >= PERF_TYPE_MAX)
8699 idr_remove(&pmu_idr, pmu->type);
8700 if (pmu->nr_addr_filters)
8701 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8702 device_del(pmu->dev);
8703 put_device(pmu->dev);
8704 free_pmu_context(pmu);
8705 }
8706 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8707
8708 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8709 {
8710 struct perf_event_context *ctx = NULL;
8711 int ret;
8712
8713 if (!try_module_get(pmu->module))
8714 return -ENODEV;
8715
8716 if (event->group_leader != event) {
8717 /*
8718 * This ctx->mutex can nest when we're called through
8719 * inheritance. See the perf_event_ctx_lock_nested() comment.
8720 */
8721 ctx = perf_event_ctx_lock_nested(event->group_leader,
8722 SINGLE_DEPTH_NESTING);
8723 BUG_ON(!ctx);
8724 }
8725
8726 event->pmu = pmu;
8727 ret = pmu->event_init(event);
8728
8729 if (ctx)
8730 perf_event_ctx_unlock(event->group_leader, ctx);
8731
8732 if (ret)
8733 module_put(pmu->module);
8734
8735 return ret;
8736 }
8737
8738 static struct pmu *perf_init_event(struct perf_event *event)
8739 {
8740 struct pmu *pmu = NULL;
8741 int idx;
8742 int ret;
8743
8744 idx = srcu_read_lock(&pmus_srcu);
8745
8746 rcu_read_lock();
8747 pmu = idr_find(&pmu_idr, event->attr.type);
8748 rcu_read_unlock();
8749 if (pmu) {
8750 ret = perf_try_init_event(pmu, event);
8751 if (ret)
8752 pmu = ERR_PTR(ret);
8753 goto unlock;
8754 }
8755
8756 list_for_each_entry_rcu(pmu, &pmus, entry) {
8757 ret = perf_try_init_event(pmu, event);
8758 if (!ret)
8759 goto unlock;
8760
8761 if (ret != -ENOENT) {
8762 pmu = ERR_PTR(ret);
8763 goto unlock;
8764 }
8765 }
8766 pmu = ERR_PTR(-ENOENT);
8767 unlock:
8768 srcu_read_unlock(&pmus_srcu, idx);
8769
8770 return pmu;
8771 }
8772
8773 static void attach_sb_event(struct perf_event *event)
8774 {
8775 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8776
8777 raw_spin_lock(&pel->lock);
8778 list_add_rcu(&event->sb_list, &pel->list);
8779 raw_spin_unlock(&pel->lock);
8780 }
8781
8782 /*
8783 * We keep a list of all !task (and therefore per-cpu) events
8784 * that need to receive side-band records.
8785 *
8786 * This avoids having to scan all the various PMU per-cpu contexts
8787 * looking for them.
8788 */
8789 static void account_pmu_sb_event(struct perf_event *event)
8790 {
8791 if (is_sb_event(event))
8792 attach_sb_event(event);
8793 }
8794
8795 static void account_event_cpu(struct perf_event *event, int cpu)
8796 {
8797 if (event->parent)
8798 return;
8799
8800 if (is_cgroup_event(event))
8801 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8802 }
8803
8804 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8805 static void account_freq_event_nohz(void)
8806 {
8807 #ifdef CONFIG_NO_HZ_FULL
8808 /* Lock so we don't race with concurrent unaccount */
8809 spin_lock(&nr_freq_lock);
8810 if (atomic_inc_return(&nr_freq_events) == 1)
8811 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8812 spin_unlock(&nr_freq_lock);
8813 #endif
8814 }
8815
8816 static void account_freq_event(void)
8817 {
8818 if (tick_nohz_full_enabled())
8819 account_freq_event_nohz();
8820 else
8821 atomic_inc(&nr_freq_events);
8822 }
8823
8824
8825 static void account_event(struct perf_event *event)
8826 {
8827 bool inc = false;
8828
8829 if (event->parent)
8830 return;
8831
8832 if (event->attach_state & PERF_ATTACH_TASK)
8833 inc = true;
8834 if (event->attr.mmap || event->attr.mmap_data)
8835 atomic_inc(&nr_mmap_events);
8836 if (event->attr.comm)
8837 atomic_inc(&nr_comm_events);
8838 if (event->attr.task)
8839 atomic_inc(&nr_task_events);
8840 if (event->attr.freq)
8841 account_freq_event();
8842 if (event->attr.context_switch) {
8843 atomic_inc(&nr_switch_events);
8844 inc = true;
8845 }
8846 if (has_branch_stack(event))
8847 inc = true;
8848 if (is_cgroup_event(event))
8849 inc = true;
8850
8851 if (inc) {
8852 if (atomic_inc_not_zero(&perf_sched_count))
8853 goto enabled;
8854
8855 mutex_lock(&perf_sched_mutex);
8856 if (!atomic_read(&perf_sched_count)) {
8857 static_branch_enable(&perf_sched_events);
8858 /*
8859 * Guarantee that all CPUs observe they key change and
8860 * call the perf scheduling hooks before proceeding to
8861 * install events that need them.
8862 */
8863 synchronize_sched();
8864 }
8865 /*
8866 * Now that we have waited for the sync_sched(), allow further
8867 * increments to by-pass the mutex.
8868 */
8869 atomic_inc(&perf_sched_count);
8870 mutex_unlock(&perf_sched_mutex);
8871 }
8872 enabled:
8873
8874 account_event_cpu(event, event->cpu);
8875
8876 account_pmu_sb_event(event);
8877 }
8878
8879 /*
8880 * Allocate and initialize a event structure
8881 */
8882 static struct perf_event *
8883 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8884 struct task_struct *task,
8885 struct perf_event *group_leader,
8886 struct perf_event *parent_event,
8887 perf_overflow_handler_t overflow_handler,
8888 void *context, int cgroup_fd)
8889 {
8890 struct pmu *pmu;
8891 struct perf_event *event;
8892 struct hw_perf_event *hwc;
8893 long err = -EINVAL;
8894
8895 if ((unsigned)cpu >= nr_cpu_ids) {
8896 if (!task || cpu != -1)
8897 return ERR_PTR(-EINVAL);
8898 }
8899
8900 event = kzalloc(sizeof(*event), GFP_KERNEL);
8901 if (!event)
8902 return ERR_PTR(-ENOMEM);
8903
8904 /*
8905 * Single events are their own group leaders, with an
8906 * empty sibling list:
8907 */
8908 if (!group_leader)
8909 group_leader = event;
8910
8911 mutex_init(&event->child_mutex);
8912 INIT_LIST_HEAD(&event->child_list);
8913
8914 INIT_LIST_HEAD(&event->group_entry);
8915 INIT_LIST_HEAD(&event->event_entry);
8916 INIT_LIST_HEAD(&event->sibling_list);
8917 INIT_LIST_HEAD(&event->rb_entry);
8918 INIT_LIST_HEAD(&event->active_entry);
8919 INIT_LIST_HEAD(&event->addr_filters.list);
8920 INIT_HLIST_NODE(&event->hlist_entry);
8921
8922
8923 init_waitqueue_head(&event->waitq);
8924 init_irq_work(&event->pending, perf_pending_event);
8925
8926 mutex_init(&event->mmap_mutex);
8927 raw_spin_lock_init(&event->addr_filters.lock);
8928
8929 atomic_long_set(&event->refcount, 1);
8930 event->cpu = cpu;
8931 event->attr = *attr;
8932 event->group_leader = group_leader;
8933 event->pmu = NULL;
8934 event->oncpu = -1;
8935
8936 event->parent = parent_event;
8937
8938 event->ns = get_pid_ns(task_active_pid_ns(current));
8939 event->id = atomic64_inc_return(&perf_event_id);
8940
8941 event->state = PERF_EVENT_STATE_INACTIVE;
8942
8943 if (task) {
8944 event->attach_state = PERF_ATTACH_TASK;
8945 /*
8946 * XXX pmu::event_init needs to know what task to account to
8947 * and we cannot use the ctx information because we need the
8948 * pmu before we get a ctx.
8949 */
8950 event->hw.target = task;
8951 }
8952
8953 event->clock = &local_clock;
8954 if (parent_event)
8955 event->clock = parent_event->clock;
8956
8957 if (!overflow_handler && parent_event) {
8958 overflow_handler = parent_event->overflow_handler;
8959 context = parent_event->overflow_handler_context;
8960 }
8961
8962 if (overflow_handler) {
8963 event->overflow_handler = overflow_handler;
8964 event->overflow_handler_context = context;
8965 } else if (is_write_backward(event)){
8966 event->overflow_handler = perf_event_output_backward;
8967 event->overflow_handler_context = NULL;
8968 } else {
8969 event->overflow_handler = perf_event_output_forward;
8970 event->overflow_handler_context = NULL;
8971 }
8972
8973 perf_event__state_init(event);
8974
8975 pmu = NULL;
8976
8977 hwc = &event->hw;
8978 hwc->sample_period = attr->sample_period;
8979 if (attr->freq && attr->sample_freq)
8980 hwc->sample_period = 1;
8981 hwc->last_period = hwc->sample_period;
8982
8983 local64_set(&hwc->period_left, hwc->sample_period);
8984
8985 /*
8986 * we currently do not support PERF_FORMAT_GROUP on inherited events
8987 */
8988 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8989 goto err_ns;
8990
8991 if (!has_branch_stack(event))
8992 event->attr.branch_sample_type = 0;
8993
8994 if (cgroup_fd != -1) {
8995 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8996 if (err)
8997 goto err_ns;
8998 }
8999
9000 pmu = perf_init_event(event);
9001 if (!pmu)
9002 goto err_ns;
9003 else if (IS_ERR(pmu)) {
9004 err = PTR_ERR(pmu);
9005 goto err_ns;
9006 }
9007
9008 err = exclusive_event_init(event);
9009 if (err)
9010 goto err_pmu;
9011
9012 if (has_addr_filter(event)) {
9013 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9014 sizeof(unsigned long),
9015 GFP_KERNEL);
9016 if (!event->addr_filters_offs)
9017 goto err_per_task;
9018
9019 /* force hw sync on the address filters */
9020 event->addr_filters_gen = 1;
9021 }
9022
9023 if (!event->parent) {
9024 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9025 err = get_callchain_buffers(attr->sample_max_stack);
9026 if (err)
9027 goto err_addr_filters;
9028 }
9029 }
9030
9031 /* symmetric to unaccount_event() in _free_event() */
9032 account_event(event);
9033
9034 return event;
9035
9036 err_addr_filters:
9037 kfree(event->addr_filters_offs);
9038
9039 err_per_task:
9040 exclusive_event_destroy(event);
9041
9042 err_pmu:
9043 if (event->destroy)
9044 event->destroy(event);
9045 module_put(pmu->module);
9046 err_ns:
9047 if (is_cgroup_event(event))
9048 perf_detach_cgroup(event);
9049 if (event->ns)
9050 put_pid_ns(event->ns);
9051 kfree(event);
9052
9053 return ERR_PTR(err);
9054 }
9055
9056 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9057 struct perf_event_attr *attr)
9058 {
9059 u32 size;
9060 int ret;
9061
9062 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9063 return -EFAULT;
9064
9065 /*
9066 * zero the full structure, so that a short copy will be nice.
9067 */
9068 memset(attr, 0, sizeof(*attr));
9069
9070 ret = get_user(size, &uattr->size);
9071 if (ret)
9072 return ret;
9073
9074 if (size > PAGE_SIZE) /* silly large */
9075 goto err_size;
9076
9077 if (!size) /* abi compat */
9078 size = PERF_ATTR_SIZE_VER0;
9079
9080 if (size < PERF_ATTR_SIZE_VER0)
9081 goto err_size;
9082
9083 /*
9084 * If we're handed a bigger struct than we know of,
9085 * ensure all the unknown bits are 0 - i.e. new
9086 * user-space does not rely on any kernel feature
9087 * extensions we dont know about yet.
9088 */
9089 if (size > sizeof(*attr)) {
9090 unsigned char __user *addr;
9091 unsigned char __user *end;
9092 unsigned char val;
9093
9094 addr = (void __user *)uattr + sizeof(*attr);
9095 end = (void __user *)uattr + size;
9096
9097 for (; addr < end; addr++) {
9098 ret = get_user(val, addr);
9099 if (ret)
9100 return ret;
9101 if (val)
9102 goto err_size;
9103 }
9104 size = sizeof(*attr);
9105 }
9106
9107 ret = copy_from_user(attr, uattr, size);
9108 if (ret)
9109 return -EFAULT;
9110
9111 if (attr->__reserved_1)
9112 return -EINVAL;
9113
9114 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9115 return -EINVAL;
9116
9117 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9118 return -EINVAL;
9119
9120 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9121 u64 mask = attr->branch_sample_type;
9122
9123 /* only using defined bits */
9124 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9125 return -EINVAL;
9126
9127 /* at least one branch bit must be set */
9128 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9129 return -EINVAL;
9130
9131 /* propagate priv level, when not set for branch */
9132 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9133
9134 /* exclude_kernel checked on syscall entry */
9135 if (!attr->exclude_kernel)
9136 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9137
9138 if (!attr->exclude_user)
9139 mask |= PERF_SAMPLE_BRANCH_USER;
9140
9141 if (!attr->exclude_hv)
9142 mask |= PERF_SAMPLE_BRANCH_HV;
9143 /*
9144 * adjust user setting (for HW filter setup)
9145 */
9146 attr->branch_sample_type = mask;
9147 }
9148 /* privileged levels capture (kernel, hv): check permissions */
9149 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9150 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9151 return -EACCES;
9152 }
9153
9154 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9155 ret = perf_reg_validate(attr->sample_regs_user);
9156 if (ret)
9157 return ret;
9158 }
9159
9160 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9161 if (!arch_perf_have_user_stack_dump())
9162 return -ENOSYS;
9163
9164 /*
9165 * We have __u32 type for the size, but so far
9166 * we can only use __u16 as maximum due to the
9167 * __u16 sample size limit.
9168 */
9169 if (attr->sample_stack_user >= USHRT_MAX)
9170 ret = -EINVAL;
9171 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9172 ret = -EINVAL;
9173 }
9174
9175 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9176 ret = perf_reg_validate(attr->sample_regs_intr);
9177 out:
9178 return ret;
9179
9180 err_size:
9181 put_user(sizeof(*attr), &uattr->size);
9182 ret = -E2BIG;
9183 goto out;
9184 }
9185
9186 static int
9187 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9188 {
9189 struct ring_buffer *rb = NULL;
9190 int ret = -EINVAL;
9191
9192 if (!output_event)
9193 goto set;
9194
9195 /* don't allow circular references */
9196 if (event == output_event)
9197 goto out;
9198
9199 /*
9200 * Don't allow cross-cpu buffers
9201 */
9202 if (output_event->cpu != event->cpu)
9203 goto out;
9204
9205 /*
9206 * If its not a per-cpu rb, it must be the same task.
9207 */
9208 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9209 goto out;
9210
9211 /*
9212 * Mixing clocks in the same buffer is trouble you don't need.
9213 */
9214 if (output_event->clock != event->clock)
9215 goto out;
9216
9217 /*
9218 * Either writing ring buffer from beginning or from end.
9219 * Mixing is not allowed.
9220 */
9221 if (is_write_backward(output_event) != is_write_backward(event))
9222 goto out;
9223
9224 /*
9225 * If both events generate aux data, they must be on the same PMU
9226 */
9227 if (has_aux(event) && has_aux(output_event) &&
9228 event->pmu != output_event->pmu)
9229 goto out;
9230
9231 set:
9232 mutex_lock(&event->mmap_mutex);
9233 /* Can't redirect output if we've got an active mmap() */
9234 if (atomic_read(&event->mmap_count))
9235 goto unlock;
9236
9237 if (output_event) {
9238 /* get the rb we want to redirect to */
9239 rb = ring_buffer_get(output_event);
9240 if (!rb)
9241 goto unlock;
9242 }
9243
9244 ring_buffer_attach(event, rb);
9245
9246 ret = 0;
9247 unlock:
9248 mutex_unlock(&event->mmap_mutex);
9249
9250 out:
9251 return ret;
9252 }
9253
9254 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9255 {
9256 if (b < a)
9257 swap(a, b);
9258
9259 mutex_lock(a);
9260 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9261 }
9262
9263 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9264 {
9265 bool nmi_safe = false;
9266
9267 switch (clk_id) {
9268 case CLOCK_MONOTONIC:
9269 event->clock = &ktime_get_mono_fast_ns;
9270 nmi_safe = true;
9271 break;
9272
9273 case CLOCK_MONOTONIC_RAW:
9274 event->clock = &ktime_get_raw_fast_ns;
9275 nmi_safe = true;
9276 break;
9277
9278 case CLOCK_REALTIME:
9279 event->clock = &ktime_get_real_ns;
9280 break;
9281
9282 case CLOCK_BOOTTIME:
9283 event->clock = &ktime_get_boot_ns;
9284 break;
9285
9286 case CLOCK_TAI:
9287 event->clock = &ktime_get_tai_ns;
9288 break;
9289
9290 default:
9291 return -EINVAL;
9292 }
9293
9294 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9295 return -EINVAL;
9296
9297 return 0;
9298 }
9299
9300 /**
9301 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9302 *
9303 * @attr_uptr: event_id type attributes for monitoring/sampling
9304 * @pid: target pid
9305 * @cpu: target cpu
9306 * @group_fd: group leader event fd
9307 */
9308 SYSCALL_DEFINE5(perf_event_open,
9309 struct perf_event_attr __user *, attr_uptr,
9310 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9311 {
9312 struct perf_event *group_leader = NULL, *output_event = NULL;
9313 struct perf_event *event, *sibling;
9314 struct perf_event_attr attr;
9315 struct perf_event_context *ctx, *uninitialized_var(gctx);
9316 struct file *event_file = NULL;
9317 struct fd group = {NULL, 0};
9318 struct task_struct *task = NULL;
9319 struct pmu *pmu;
9320 int event_fd;
9321 int move_group = 0;
9322 int err;
9323 int f_flags = O_RDWR;
9324 int cgroup_fd = -1;
9325
9326 /* for future expandability... */
9327 if (flags & ~PERF_FLAG_ALL)
9328 return -EINVAL;
9329
9330 err = perf_copy_attr(attr_uptr, &attr);
9331 if (err)
9332 return err;
9333
9334 if (!attr.exclude_kernel) {
9335 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9336 return -EACCES;
9337 }
9338
9339 if (attr.freq) {
9340 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9341 return -EINVAL;
9342 } else {
9343 if (attr.sample_period & (1ULL << 63))
9344 return -EINVAL;
9345 }
9346
9347 if (!attr.sample_max_stack)
9348 attr.sample_max_stack = sysctl_perf_event_max_stack;
9349
9350 /*
9351 * In cgroup mode, the pid argument is used to pass the fd
9352 * opened to the cgroup directory in cgroupfs. The cpu argument
9353 * designates the cpu on which to monitor threads from that
9354 * cgroup.
9355 */
9356 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9357 return -EINVAL;
9358
9359 if (flags & PERF_FLAG_FD_CLOEXEC)
9360 f_flags |= O_CLOEXEC;
9361
9362 event_fd = get_unused_fd_flags(f_flags);
9363 if (event_fd < 0)
9364 return event_fd;
9365
9366 if (group_fd != -1) {
9367 err = perf_fget_light(group_fd, &group);
9368 if (err)
9369 goto err_fd;
9370 group_leader = group.file->private_data;
9371 if (flags & PERF_FLAG_FD_OUTPUT)
9372 output_event = group_leader;
9373 if (flags & PERF_FLAG_FD_NO_GROUP)
9374 group_leader = NULL;
9375 }
9376
9377 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9378 task = find_lively_task_by_vpid(pid);
9379 if (IS_ERR(task)) {
9380 err = PTR_ERR(task);
9381 goto err_group_fd;
9382 }
9383 }
9384
9385 if (task && group_leader &&
9386 group_leader->attr.inherit != attr.inherit) {
9387 err = -EINVAL;
9388 goto err_task;
9389 }
9390
9391 get_online_cpus();
9392
9393 if (task) {
9394 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9395 if (err)
9396 goto err_cpus;
9397
9398 /*
9399 * Reuse ptrace permission checks for now.
9400 *
9401 * We must hold cred_guard_mutex across this and any potential
9402 * perf_install_in_context() call for this new event to
9403 * serialize against exec() altering our credentials (and the
9404 * perf_event_exit_task() that could imply).
9405 */
9406 err = -EACCES;
9407 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9408 goto err_cred;
9409 }
9410
9411 if (flags & PERF_FLAG_PID_CGROUP)
9412 cgroup_fd = pid;
9413
9414 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9415 NULL, NULL, cgroup_fd);
9416 if (IS_ERR(event)) {
9417 err = PTR_ERR(event);
9418 goto err_cred;
9419 }
9420
9421 if (is_sampling_event(event)) {
9422 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9423 err = -EOPNOTSUPP;
9424 goto err_alloc;
9425 }
9426 }
9427
9428 /*
9429 * Special case software events and allow them to be part of
9430 * any hardware group.
9431 */
9432 pmu = event->pmu;
9433
9434 if (attr.use_clockid) {
9435 err = perf_event_set_clock(event, attr.clockid);
9436 if (err)
9437 goto err_alloc;
9438 }
9439
9440 if (group_leader &&
9441 (is_software_event(event) != is_software_event(group_leader))) {
9442 if (is_software_event(event)) {
9443 /*
9444 * If event and group_leader are not both a software
9445 * event, and event is, then group leader is not.
9446 *
9447 * Allow the addition of software events to !software
9448 * groups, this is safe because software events never
9449 * fail to schedule.
9450 */
9451 pmu = group_leader->pmu;
9452 } else if (is_software_event(group_leader) &&
9453 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9454 /*
9455 * In case the group is a pure software group, and we
9456 * try to add a hardware event, move the whole group to
9457 * the hardware context.
9458 */
9459 move_group = 1;
9460 }
9461 }
9462
9463 /*
9464 * Get the target context (task or percpu):
9465 */
9466 ctx = find_get_context(pmu, task, event);
9467 if (IS_ERR(ctx)) {
9468 err = PTR_ERR(ctx);
9469 goto err_alloc;
9470 }
9471
9472 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9473 err = -EBUSY;
9474 goto err_context;
9475 }
9476
9477 /*
9478 * Look up the group leader (we will attach this event to it):
9479 */
9480 if (group_leader) {
9481 err = -EINVAL;
9482
9483 /*
9484 * Do not allow a recursive hierarchy (this new sibling
9485 * becoming part of another group-sibling):
9486 */
9487 if (group_leader->group_leader != group_leader)
9488 goto err_context;
9489
9490 /* All events in a group should have the same clock */
9491 if (group_leader->clock != event->clock)
9492 goto err_context;
9493
9494 /*
9495 * Do not allow to attach to a group in a different
9496 * task or CPU context:
9497 */
9498 if (move_group) {
9499 /*
9500 * Make sure we're both on the same task, or both
9501 * per-cpu events.
9502 */
9503 if (group_leader->ctx->task != ctx->task)
9504 goto err_context;
9505
9506 /*
9507 * Make sure we're both events for the same CPU;
9508 * grouping events for different CPUs is broken; since
9509 * you can never concurrently schedule them anyhow.
9510 */
9511 if (group_leader->cpu != event->cpu)
9512 goto err_context;
9513 } else {
9514 if (group_leader->ctx != ctx)
9515 goto err_context;
9516 }
9517
9518 /*
9519 * Only a group leader can be exclusive or pinned
9520 */
9521 if (attr.exclusive || attr.pinned)
9522 goto err_context;
9523 }
9524
9525 if (output_event) {
9526 err = perf_event_set_output(event, output_event);
9527 if (err)
9528 goto err_context;
9529 }
9530
9531 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9532 f_flags);
9533 if (IS_ERR(event_file)) {
9534 err = PTR_ERR(event_file);
9535 event_file = NULL;
9536 goto err_context;
9537 }
9538
9539 if (move_group) {
9540 gctx = group_leader->ctx;
9541 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9542 if (gctx->task == TASK_TOMBSTONE) {
9543 err = -ESRCH;
9544 goto err_locked;
9545 }
9546 } else {
9547 mutex_lock(&ctx->mutex);
9548 }
9549
9550 if (ctx->task == TASK_TOMBSTONE) {
9551 err = -ESRCH;
9552 goto err_locked;
9553 }
9554
9555 if (!perf_event_validate_size(event)) {
9556 err = -E2BIG;
9557 goto err_locked;
9558 }
9559
9560 /*
9561 * Must be under the same ctx::mutex as perf_install_in_context(),
9562 * because we need to serialize with concurrent event creation.
9563 */
9564 if (!exclusive_event_installable(event, ctx)) {
9565 /* exclusive and group stuff are assumed mutually exclusive */
9566 WARN_ON_ONCE(move_group);
9567
9568 err = -EBUSY;
9569 goto err_locked;
9570 }
9571
9572 WARN_ON_ONCE(ctx->parent_ctx);
9573
9574 /*
9575 * This is the point on no return; we cannot fail hereafter. This is
9576 * where we start modifying current state.
9577 */
9578
9579 if (move_group) {
9580 /*
9581 * See perf_event_ctx_lock() for comments on the details
9582 * of swizzling perf_event::ctx.
9583 */
9584 perf_remove_from_context(group_leader, 0);
9585
9586 list_for_each_entry(sibling, &group_leader->sibling_list,
9587 group_entry) {
9588 perf_remove_from_context(sibling, 0);
9589 put_ctx(gctx);
9590 }
9591
9592 /*
9593 * Wait for everybody to stop referencing the events through
9594 * the old lists, before installing it on new lists.
9595 */
9596 synchronize_rcu();
9597
9598 /*
9599 * Install the group siblings before the group leader.
9600 *
9601 * Because a group leader will try and install the entire group
9602 * (through the sibling list, which is still in-tact), we can
9603 * end up with siblings installed in the wrong context.
9604 *
9605 * By installing siblings first we NO-OP because they're not
9606 * reachable through the group lists.
9607 */
9608 list_for_each_entry(sibling, &group_leader->sibling_list,
9609 group_entry) {
9610 perf_event__state_init(sibling);
9611 perf_install_in_context(ctx, sibling, sibling->cpu);
9612 get_ctx(ctx);
9613 }
9614
9615 /*
9616 * Removing from the context ends up with disabled
9617 * event. What we want here is event in the initial
9618 * startup state, ready to be add into new context.
9619 */
9620 perf_event__state_init(group_leader);
9621 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9622 get_ctx(ctx);
9623
9624 /*
9625 * Now that all events are installed in @ctx, nothing
9626 * references @gctx anymore, so drop the last reference we have
9627 * on it.
9628 */
9629 put_ctx(gctx);
9630 }
9631
9632 /*
9633 * Precalculate sample_data sizes; do while holding ctx::mutex such
9634 * that we're serialized against further additions and before
9635 * perf_install_in_context() which is the point the event is active and
9636 * can use these values.
9637 */
9638 perf_event__header_size(event);
9639 perf_event__id_header_size(event);
9640
9641 event->owner = current;
9642
9643 perf_install_in_context(ctx, event, event->cpu);
9644 perf_unpin_context(ctx);
9645
9646 if (move_group)
9647 mutex_unlock(&gctx->mutex);
9648 mutex_unlock(&ctx->mutex);
9649
9650 if (task) {
9651 mutex_unlock(&task->signal->cred_guard_mutex);
9652 put_task_struct(task);
9653 }
9654
9655 put_online_cpus();
9656
9657 mutex_lock(&current->perf_event_mutex);
9658 list_add_tail(&event->owner_entry, &current->perf_event_list);
9659 mutex_unlock(&current->perf_event_mutex);
9660
9661 /*
9662 * Drop the reference on the group_event after placing the
9663 * new event on the sibling_list. This ensures destruction
9664 * of the group leader will find the pointer to itself in
9665 * perf_group_detach().
9666 */
9667 fdput(group);
9668 fd_install(event_fd, event_file);
9669 return event_fd;
9670
9671 err_locked:
9672 if (move_group)
9673 mutex_unlock(&gctx->mutex);
9674 mutex_unlock(&ctx->mutex);
9675 /* err_file: */
9676 fput(event_file);
9677 err_context:
9678 perf_unpin_context(ctx);
9679 put_ctx(ctx);
9680 err_alloc:
9681 /*
9682 * If event_file is set, the fput() above will have called ->release()
9683 * and that will take care of freeing the event.
9684 */
9685 if (!event_file)
9686 free_event(event);
9687 err_cred:
9688 if (task)
9689 mutex_unlock(&task->signal->cred_guard_mutex);
9690 err_cpus:
9691 put_online_cpus();
9692 err_task:
9693 if (task)
9694 put_task_struct(task);
9695 err_group_fd:
9696 fdput(group);
9697 err_fd:
9698 put_unused_fd(event_fd);
9699 return err;
9700 }
9701
9702 /**
9703 * perf_event_create_kernel_counter
9704 *
9705 * @attr: attributes of the counter to create
9706 * @cpu: cpu in which the counter is bound
9707 * @task: task to profile (NULL for percpu)
9708 */
9709 struct perf_event *
9710 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9711 struct task_struct *task,
9712 perf_overflow_handler_t overflow_handler,
9713 void *context)
9714 {
9715 struct perf_event_context *ctx;
9716 struct perf_event *event;
9717 int err;
9718
9719 /*
9720 * Get the target context (task or percpu):
9721 */
9722
9723 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9724 overflow_handler, context, -1);
9725 if (IS_ERR(event)) {
9726 err = PTR_ERR(event);
9727 goto err;
9728 }
9729
9730 /* Mark owner so we could distinguish it from user events. */
9731 event->owner = TASK_TOMBSTONE;
9732
9733 ctx = find_get_context(event->pmu, task, event);
9734 if (IS_ERR(ctx)) {
9735 err = PTR_ERR(ctx);
9736 goto err_free;
9737 }
9738
9739 WARN_ON_ONCE(ctx->parent_ctx);
9740 mutex_lock(&ctx->mutex);
9741 if (ctx->task == TASK_TOMBSTONE) {
9742 err = -ESRCH;
9743 goto err_unlock;
9744 }
9745
9746 if (!exclusive_event_installable(event, ctx)) {
9747 err = -EBUSY;
9748 goto err_unlock;
9749 }
9750
9751 perf_install_in_context(ctx, event, cpu);
9752 perf_unpin_context(ctx);
9753 mutex_unlock(&ctx->mutex);
9754
9755 return event;
9756
9757 err_unlock:
9758 mutex_unlock(&ctx->mutex);
9759 perf_unpin_context(ctx);
9760 put_ctx(ctx);
9761 err_free:
9762 free_event(event);
9763 err:
9764 return ERR_PTR(err);
9765 }
9766 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9767
9768 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9769 {
9770 struct perf_event_context *src_ctx;
9771 struct perf_event_context *dst_ctx;
9772 struct perf_event *event, *tmp;
9773 LIST_HEAD(events);
9774
9775 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9776 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9777
9778 /*
9779 * See perf_event_ctx_lock() for comments on the details
9780 * of swizzling perf_event::ctx.
9781 */
9782 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9783 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9784 event_entry) {
9785 perf_remove_from_context(event, 0);
9786 unaccount_event_cpu(event, src_cpu);
9787 put_ctx(src_ctx);
9788 list_add(&event->migrate_entry, &events);
9789 }
9790
9791 /*
9792 * Wait for the events to quiesce before re-instating them.
9793 */
9794 synchronize_rcu();
9795
9796 /*
9797 * Re-instate events in 2 passes.
9798 *
9799 * Skip over group leaders and only install siblings on this first
9800 * pass, siblings will not get enabled without a leader, however a
9801 * leader will enable its siblings, even if those are still on the old
9802 * context.
9803 */
9804 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9805 if (event->group_leader == event)
9806 continue;
9807
9808 list_del(&event->migrate_entry);
9809 if (event->state >= PERF_EVENT_STATE_OFF)
9810 event->state = PERF_EVENT_STATE_INACTIVE;
9811 account_event_cpu(event, dst_cpu);
9812 perf_install_in_context(dst_ctx, event, dst_cpu);
9813 get_ctx(dst_ctx);
9814 }
9815
9816 /*
9817 * Once all the siblings are setup properly, install the group leaders
9818 * to make it go.
9819 */
9820 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9821 list_del(&event->migrate_entry);
9822 if (event->state >= PERF_EVENT_STATE_OFF)
9823 event->state = PERF_EVENT_STATE_INACTIVE;
9824 account_event_cpu(event, dst_cpu);
9825 perf_install_in_context(dst_ctx, event, dst_cpu);
9826 get_ctx(dst_ctx);
9827 }
9828 mutex_unlock(&dst_ctx->mutex);
9829 mutex_unlock(&src_ctx->mutex);
9830 }
9831 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9832
9833 static void sync_child_event(struct perf_event *child_event,
9834 struct task_struct *child)
9835 {
9836 struct perf_event *parent_event = child_event->parent;
9837 u64 child_val;
9838
9839 if (child_event->attr.inherit_stat)
9840 perf_event_read_event(child_event, child);
9841
9842 child_val = perf_event_count(child_event);
9843
9844 /*
9845 * Add back the child's count to the parent's count:
9846 */
9847 atomic64_add(child_val, &parent_event->child_count);
9848 atomic64_add(child_event->total_time_enabled,
9849 &parent_event->child_total_time_enabled);
9850 atomic64_add(child_event->total_time_running,
9851 &parent_event->child_total_time_running);
9852 }
9853
9854 static void
9855 perf_event_exit_event(struct perf_event *child_event,
9856 struct perf_event_context *child_ctx,
9857 struct task_struct *child)
9858 {
9859 struct perf_event *parent_event = child_event->parent;
9860
9861 /*
9862 * Do not destroy the 'original' grouping; because of the context
9863 * switch optimization the original events could've ended up in a
9864 * random child task.
9865 *
9866 * If we were to destroy the original group, all group related
9867 * operations would cease to function properly after this random
9868 * child dies.
9869 *
9870 * Do destroy all inherited groups, we don't care about those
9871 * and being thorough is better.
9872 */
9873 raw_spin_lock_irq(&child_ctx->lock);
9874 WARN_ON_ONCE(child_ctx->is_active);
9875
9876 if (parent_event)
9877 perf_group_detach(child_event);
9878 list_del_event(child_event, child_ctx);
9879 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9880 raw_spin_unlock_irq(&child_ctx->lock);
9881
9882 /*
9883 * Parent events are governed by their filedesc, retain them.
9884 */
9885 if (!parent_event) {
9886 perf_event_wakeup(child_event);
9887 return;
9888 }
9889 /*
9890 * Child events can be cleaned up.
9891 */
9892
9893 sync_child_event(child_event, child);
9894
9895 /*
9896 * Remove this event from the parent's list
9897 */
9898 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9899 mutex_lock(&parent_event->child_mutex);
9900 list_del_init(&child_event->child_list);
9901 mutex_unlock(&parent_event->child_mutex);
9902
9903 /*
9904 * Kick perf_poll() for is_event_hup().
9905 */
9906 perf_event_wakeup(parent_event);
9907 free_event(child_event);
9908 put_event(parent_event);
9909 }
9910
9911 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9912 {
9913 struct perf_event_context *child_ctx, *clone_ctx = NULL;
9914 struct perf_event *child_event, *next;
9915
9916 WARN_ON_ONCE(child != current);
9917
9918 child_ctx = perf_pin_task_context(child, ctxn);
9919 if (!child_ctx)
9920 return;
9921
9922 /*
9923 * In order to reduce the amount of tricky in ctx tear-down, we hold
9924 * ctx::mutex over the entire thing. This serializes against almost
9925 * everything that wants to access the ctx.
9926 *
9927 * The exception is sys_perf_event_open() /
9928 * perf_event_create_kernel_count() which does find_get_context()
9929 * without ctx::mutex (it cannot because of the move_group double mutex
9930 * lock thing). See the comments in perf_install_in_context().
9931 */
9932 mutex_lock(&child_ctx->mutex);
9933
9934 /*
9935 * In a single ctx::lock section, de-schedule the events and detach the
9936 * context from the task such that we cannot ever get it scheduled back
9937 * in.
9938 */
9939 raw_spin_lock_irq(&child_ctx->lock);
9940 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9941
9942 /*
9943 * Now that the context is inactive, destroy the task <-> ctx relation
9944 * and mark the context dead.
9945 */
9946 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9947 put_ctx(child_ctx); /* cannot be last */
9948 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9949 put_task_struct(current); /* cannot be last */
9950
9951 clone_ctx = unclone_ctx(child_ctx);
9952 raw_spin_unlock_irq(&child_ctx->lock);
9953
9954 if (clone_ctx)
9955 put_ctx(clone_ctx);
9956
9957 /*
9958 * Report the task dead after unscheduling the events so that we
9959 * won't get any samples after PERF_RECORD_EXIT. We can however still
9960 * get a few PERF_RECORD_READ events.
9961 */
9962 perf_event_task(child, child_ctx, 0);
9963
9964 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9965 perf_event_exit_event(child_event, child_ctx, child);
9966
9967 mutex_unlock(&child_ctx->mutex);
9968
9969 put_ctx(child_ctx);
9970 }
9971
9972 /*
9973 * When a child task exits, feed back event values to parent events.
9974 *
9975 * Can be called with cred_guard_mutex held when called from
9976 * install_exec_creds().
9977 */
9978 void perf_event_exit_task(struct task_struct *child)
9979 {
9980 struct perf_event *event, *tmp;
9981 int ctxn;
9982
9983 mutex_lock(&child->perf_event_mutex);
9984 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9985 owner_entry) {
9986 list_del_init(&event->owner_entry);
9987
9988 /*
9989 * Ensure the list deletion is visible before we clear
9990 * the owner, closes a race against perf_release() where
9991 * we need to serialize on the owner->perf_event_mutex.
9992 */
9993 smp_store_release(&event->owner, NULL);
9994 }
9995 mutex_unlock(&child->perf_event_mutex);
9996
9997 for_each_task_context_nr(ctxn)
9998 perf_event_exit_task_context(child, ctxn);
9999
10000 /*
10001 * The perf_event_exit_task_context calls perf_event_task
10002 * with child's task_ctx, which generates EXIT events for
10003 * child contexts and sets child->perf_event_ctxp[] to NULL.
10004 * At this point we need to send EXIT events to cpu contexts.
10005 */
10006 perf_event_task(child, NULL, 0);
10007 }
10008
10009 static void perf_free_event(struct perf_event *event,
10010 struct perf_event_context *ctx)
10011 {
10012 struct perf_event *parent = event->parent;
10013
10014 if (WARN_ON_ONCE(!parent))
10015 return;
10016
10017 mutex_lock(&parent->child_mutex);
10018 list_del_init(&event->child_list);
10019 mutex_unlock(&parent->child_mutex);
10020
10021 put_event(parent);
10022
10023 raw_spin_lock_irq(&ctx->lock);
10024 perf_group_detach(event);
10025 list_del_event(event, ctx);
10026 raw_spin_unlock_irq(&ctx->lock);
10027 free_event(event);
10028 }
10029
10030 /*
10031 * Free an unexposed, unused context as created by inheritance by
10032 * perf_event_init_task below, used by fork() in case of fail.
10033 *
10034 * Not all locks are strictly required, but take them anyway to be nice and
10035 * help out with the lockdep assertions.
10036 */
10037 void perf_event_free_task(struct task_struct *task)
10038 {
10039 struct perf_event_context *ctx;
10040 struct perf_event *event, *tmp;
10041 int ctxn;
10042
10043 for_each_task_context_nr(ctxn) {
10044 ctx = task->perf_event_ctxp[ctxn];
10045 if (!ctx)
10046 continue;
10047
10048 mutex_lock(&ctx->mutex);
10049 again:
10050 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10051 group_entry)
10052 perf_free_event(event, ctx);
10053
10054 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10055 group_entry)
10056 perf_free_event(event, ctx);
10057
10058 if (!list_empty(&ctx->pinned_groups) ||
10059 !list_empty(&ctx->flexible_groups))
10060 goto again;
10061
10062 mutex_unlock(&ctx->mutex);
10063
10064 put_ctx(ctx);
10065 }
10066 }
10067
10068 void perf_event_delayed_put(struct task_struct *task)
10069 {
10070 int ctxn;
10071
10072 for_each_task_context_nr(ctxn)
10073 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10074 }
10075
10076 struct file *perf_event_get(unsigned int fd)
10077 {
10078 struct file *file;
10079
10080 file = fget_raw(fd);
10081 if (!file)
10082 return ERR_PTR(-EBADF);
10083
10084 if (file->f_op != &perf_fops) {
10085 fput(file);
10086 return ERR_PTR(-EBADF);
10087 }
10088
10089 return file;
10090 }
10091
10092 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10093 {
10094 if (!event)
10095 return ERR_PTR(-EINVAL);
10096
10097 return &event->attr;
10098 }
10099
10100 /*
10101 * inherit a event from parent task to child task:
10102 */
10103 static struct perf_event *
10104 inherit_event(struct perf_event *parent_event,
10105 struct task_struct *parent,
10106 struct perf_event_context *parent_ctx,
10107 struct task_struct *child,
10108 struct perf_event *group_leader,
10109 struct perf_event_context *child_ctx)
10110 {
10111 enum perf_event_active_state parent_state = parent_event->state;
10112 struct perf_event *child_event;
10113 unsigned long flags;
10114
10115 /*
10116 * Instead of creating recursive hierarchies of events,
10117 * we link inherited events back to the original parent,
10118 * which has a filp for sure, which we use as the reference
10119 * count:
10120 */
10121 if (parent_event->parent)
10122 parent_event = parent_event->parent;
10123
10124 child_event = perf_event_alloc(&parent_event->attr,
10125 parent_event->cpu,
10126 child,
10127 group_leader, parent_event,
10128 NULL, NULL, -1);
10129 if (IS_ERR(child_event))
10130 return child_event;
10131
10132 /*
10133 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10134 * must be under the same lock in order to serialize against
10135 * perf_event_release_kernel(), such that either we must observe
10136 * is_orphaned_event() or they will observe us on the child_list.
10137 */
10138 mutex_lock(&parent_event->child_mutex);
10139 if (is_orphaned_event(parent_event) ||
10140 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10141 mutex_unlock(&parent_event->child_mutex);
10142 free_event(child_event);
10143 return NULL;
10144 }
10145
10146 get_ctx(child_ctx);
10147
10148 /*
10149 * Make the child state follow the state of the parent event,
10150 * not its attr.disabled bit. We hold the parent's mutex,
10151 * so we won't race with perf_event_{en, dis}able_family.
10152 */
10153 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10154 child_event->state = PERF_EVENT_STATE_INACTIVE;
10155 else
10156 child_event->state = PERF_EVENT_STATE_OFF;
10157
10158 if (parent_event->attr.freq) {
10159 u64 sample_period = parent_event->hw.sample_period;
10160 struct hw_perf_event *hwc = &child_event->hw;
10161
10162 hwc->sample_period = sample_period;
10163 hwc->last_period = sample_period;
10164
10165 local64_set(&hwc->period_left, sample_period);
10166 }
10167
10168 child_event->ctx = child_ctx;
10169 child_event->overflow_handler = parent_event->overflow_handler;
10170 child_event->overflow_handler_context
10171 = parent_event->overflow_handler_context;
10172
10173 /*
10174 * Precalculate sample_data sizes
10175 */
10176 perf_event__header_size(child_event);
10177 perf_event__id_header_size(child_event);
10178
10179 /*
10180 * Link it up in the child's context:
10181 */
10182 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10183 add_event_to_ctx(child_event, child_ctx);
10184 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10185
10186 /*
10187 * Link this into the parent event's child list
10188 */
10189 list_add_tail(&child_event->child_list, &parent_event->child_list);
10190 mutex_unlock(&parent_event->child_mutex);
10191
10192 return child_event;
10193 }
10194
10195 static int inherit_group(struct perf_event *parent_event,
10196 struct task_struct *parent,
10197 struct perf_event_context *parent_ctx,
10198 struct task_struct *child,
10199 struct perf_event_context *child_ctx)
10200 {
10201 struct perf_event *leader;
10202 struct perf_event *sub;
10203 struct perf_event *child_ctr;
10204
10205 leader = inherit_event(parent_event, parent, parent_ctx,
10206 child, NULL, child_ctx);
10207 if (IS_ERR(leader))
10208 return PTR_ERR(leader);
10209 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10210 child_ctr = inherit_event(sub, parent, parent_ctx,
10211 child, leader, child_ctx);
10212 if (IS_ERR(child_ctr))
10213 return PTR_ERR(child_ctr);
10214 }
10215 return 0;
10216 }
10217
10218 static int
10219 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10220 struct perf_event_context *parent_ctx,
10221 struct task_struct *child, int ctxn,
10222 int *inherited_all)
10223 {
10224 int ret;
10225 struct perf_event_context *child_ctx;
10226
10227 if (!event->attr.inherit) {
10228 *inherited_all = 0;
10229 return 0;
10230 }
10231
10232 child_ctx = child->perf_event_ctxp[ctxn];
10233 if (!child_ctx) {
10234 /*
10235 * This is executed from the parent task context, so
10236 * inherit events that have been marked for cloning.
10237 * First allocate and initialize a context for the
10238 * child.
10239 */
10240
10241 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10242 if (!child_ctx)
10243 return -ENOMEM;
10244
10245 child->perf_event_ctxp[ctxn] = child_ctx;
10246 }
10247
10248 ret = inherit_group(event, parent, parent_ctx,
10249 child, child_ctx);
10250
10251 if (ret)
10252 *inherited_all = 0;
10253
10254 return ret;
10255 }
10256
10257 /*
10258 * Initialize the perf_event context in task_struct
10259 */
10260 static int perf_event_init_context(struct task_struct *child, int ctxn)
10261 {
10262 struct perf_event_context *child_ctx, *parent_ctx;
10263 struct perf_event_context *cloned_ctx;
10264 struct perf_event *event;
10265 struct task_struct *parent = current;
10266 int inherited_all = 1;
10267 unsigned long flags;
10268 int ret = 0;
10269
10270 if (likely(!parent->perf_event_ctxp[ctxn]))
10271 return 0;
10272
10273 /*
10274 * If the parent's context is a clone, pin it so it won't get
10275 * swapped under us.
10276 */
10277 parent_ctx = perf_pin_task_context(parent, ctxn);
10278 if (!parent_ctx)
10279 return 0;
10280
10281 /*
10282 * No need to check if parent_ctx != NULL here; since we saw
10283 * it non-NULL earlier, the only reason for it to become NULL
10284 * is if we exit, and since we're currently in the middle of
10285 * a fork we can't be exiting at the same time.
10286 */
10287
10288 /*
10289 * Lock the parent list. No need to lock the child - not PID
10290 * hashed yet and not running, so nobody can access it.
10291 */
10292 mutex_lock(&parent_ctx->mutex);
10293
10294 /*
10295 * We dont have to disable NMIs - we are only looking at
10296 * the list, not manipulating it:
10297 */
10298 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10299 ret = inherit_task_group(event, parent, parent_ctx,
10300 child, ctxn, &inherited_all);
10301 if (ret)
10302 break;
10303 }
10304
10305 /*
10306 * We can't hold ctx->lock when iterating the ->flexible_group list due
10307 * to allocations, but we need to prevent rotation because
10308 * rotate_ctx() will change the list from interrupt context.
10309 */
10310 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10311 parent_ctx->rotate_disable = 1;
10312 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10313
10314 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10315 ret = inherit_task_group(event, parent, parent_ctx,
10316 child, ctxn, &inherited_all);
10317 if (ret)
10318 break;
10319 }
10320
10321 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10322 parent_ctx->rotate_disable = 0;
10323
10324 child_ctx = child->perf_event_ctxp[ctxn];
10325
10326 if (child_ctx && inherited_all) {
10327 /*
10328 * Mark the child context as a clone of the parent
10329 * context, or of whatever the parent is a clone of.
10330 *
10331 * Note that if the parent is a clone, the holding of
10332 * parent_ctx->lock avoids it from being uncloned.
10333 */
10334 cloned_ctx = parent_ctx->parent_ctx;
10335 if (cloned_ctx) {
10336 child_ctx->parent_ctx = cloned_ctx;
10337 child_ctx->parent_gen = parent_ctx->parent_gen;
10338 } else {
10339 child_ctx->parent_ctx = parent_ctx;
10340 child_ctx->parent_gen = parent_ctx->generation;
10341 }
10342 get_ctx(child_ctx->parent_ctx);
10343 }
10344
10345 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10346 mutex_unlock(&parent_ctx->mutex);
10347
10348 perf_unpin_context(parent_ctx);
10349 put_ctx(parent_ctx);
10350
10351 return ret;
10352 }
10353
10354 /*
10355 * Initialize the perf_event context in task_struct
10356 */
10357 int perf_event_init_task(struct task_struct *child)
10358 {
10359 int ctxn, ret;
10360
10361 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10362 mutex_init(&child->perf_event_mutex);
10363 INIT_LIST_HEAD(&child->perf_event_list);
10364
10365 for_each_task_context_nr(ctxn) {
10366 ret = perf_event_init_context(child, ctxn);
10367 if (ret) {
10368 perf_event_free_task(child);
10369 return ret;
10370 }
10371 }
10372
10373 return 0;
10374 }
10375
10376 static void __init perf_event_init_all_cpus(void)
10377 {
10378 struct swevent_htable *swhash;
10379 int cpu;
10380
10381 for_each_possible_cpu(cpu) {
10382 swhash = &per_cpu(swevent_htable, cpu);
10383 mutex_init(&swhash->hlist_mutex);
10384 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10385
10386 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10387 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10388 }
10389 }
10390
10391 int perf_event_init_cpu(unsigned int cpu)
10392 {
10393 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10394
10395 mutex_lock(&swhash->hlist_mutex);
10396 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10397 struct swevent_hlist *hlist;
10398
10399 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10400 WARN_ON(!hlist);
10401 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10402 }
10403 mutex_unlock(&swhash->hlist_mutex);
10404 return 0;
10405 }
10406
10407 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10408 static void __perf_event_exit_context(void *__info)
10409 {
10410 struct perf_event_context *ctx = __info;
10411 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10412 struct perf_event *event;
10413
10414 raw_spin_lock(&ctx->lock);
10415 list_for_each_entry(event, &ctx->event_list, event_entry)
10416 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10417 raw_spin_unlock(&ctx->lock);
10418 }
10419
10420 static void perf_event_exit_cpu_context(int cpu)
10421 {
10422 struct perf_event_context *ctx;
10423 struct pmu *pmu;
10424 int idx;
10425
10426 idx = srcu_read_lock(&pmus_srcu);
10427 list_for_each_entry_rcu(pmu, &pmus, entry) {
10428 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10429
10430 mutex_lock(&ctx->mutex);
10431 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10432 mutex_unlock(&ctx->mutex);
10433 }
10434 srcu_read_unlock(&pmus_srcu, idx);
10435 }
10436 #else
10437
10438 static void perf_event_exit_cpu_context(int cpu) { }
10439
10440 #endif
10441
10442 int perf_event_exit_cpu(unsigned int cpu)
10443 {
10444 perf_event_exit_cpu_context(cpu);
10445 return 0;
10446 }
10447
10448 static int
10449 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10450 {
10451 int cpu;
10452
10453 for_each_online_cpu(cpu)
10454 perf_event_exit_cpu(cpu);
10455
10456 return NOTIFY_OK;
10457 }
10458
10459 /*
10460 * Run the perf reboot notifier at the very last possible moment so that
10461 * the generic watchdog code runs as long as possible.
10462 */
10463 static struct notifier_block perf_reboot_notifier = {
10464 .notifier_call = perf_reboot,
10465 .priority = INT_MIN,
10466 };
10467
10468 void __init perf_event_init(void)
10469 {
10470 int ret;
10471
10472 idr_init(&pmu_idr);
10473
10474 perf_event_init_all_cpus();
10475 init_srcu_struct(&pmus_srcu);
10476 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10477 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10478 perf_pmu_register(&perf_task_clock, NULL, -1);
10479 perf_tp_register();
10480 perf_event_init_cpu(smp_processor_id());
10481 register_reboot_notifier(&perf_reboot_notifier);
10482
10483 ret = init_hw_breakpoint();
10484 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10485
10486 /*
10487 * Build time assertion that we keep the data_head at the intended
10488 * location. IOW, validation we got the __reserved[] size right.
10489 */
10490 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10491 != 1024);
10492 }
10493
10494 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10495 char *page)
10496 {
10497 struct perf_pmu_events_attr *pmu_attr =
10498 container_of(attr, struct perf_pmu_events_attr, attr);
10499
10500 if (pmu_attr->event_str)
10501 return sprintf(page, "%s\n", pmu_attr->event_str);
10502
10503 return 0;
10504 }
10505 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10506
10507 static int __init perf_event_sysfs_init(void)
10508 {
10509 struct pmu *pmu;
10510 int ret;
10511
10512 mutex_lock(&pmus_lock);
10513
10514 ret = bus_register(&pmu_bus);
10515 if (ret)
10516 goto unlock;
10517
10518 list_for_each_entry(pmu, &pmus, entry) {
10519 if (!pmu->name || pmu->type < 0)
10520 continue;
10521
10522 ret = pmu_dev_alloc(pmu);
10523 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10524 }
10525 pmu_bus_running = 1;
10526 ret = 0;
10527
10528 unlock:
10529 mutex_unlock(&pmus_lock);
10530
10531 return ret;
10532 }
10533 device_initcall(perf_event_sysfs_init);
10534
10535 #ifdef CONFIG_CGROUP_PERF
10536 static struct cgroup_subsys_state *
10537 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10538 {
10539 struct perf_cgroup *jc;
10540
10541 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10542 if (!jc)
10543 return ERR_PTR(-ENOMEM);
10544
10545 jc->info = alloc_percpu(struct perf_cgroup_info);
10546 if (!jc->info) {
10547 kfree(jc);
10548 return ERR_PTR(-ENOMEM);
10549 }
10550
10551 return &jc->css;
10552 }
10553
10554 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10555 {
10556 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10557
10558 free_percpu(jc->info);
10559 kfree(jc);
10560 }
10561
10562 static int __perf_cgroup_move(void *info)
10563 {
10564 struct task_struct *task = info;
10565 rcu_read_lock();
10566 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10567 rcu_read_unlock();
10568 return 0;
10569 }
10570
10571 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10572 {
10573 struct task_struct *task;
10574 struct cgroup_subsys_state *css;
10575
10576 cgroup_taskset_for_each(task, css, tset)
10577 task_function_call(task, __perf_cgroup_move, task);
10578 }
10579
10580 struct cgroup_subsys perf_event_cgrp_subsys = {
10581 .css_alloc = perf_cgroup_css_alloc,
10582 .css_free = perf_cgroup_css_free,
10583 .attach = perf_cgroup_attach,
10584 };
10585 #endif /* CONFIG_CGROUP_PERF */
This page took 0.238074 seconds and 6 git commands to generate.