2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
48 #include <asm/irq_regs.h>
50 static struct workqueue_struct
*perf_wq
;
52 struct remote_function_call
{
53 struct task_struct
*p
;
54 int (*func
)(void *info
);
59 static void remote_function(void *data
)
61 struct remote_function_call
*tfc
= data
;
62 struct task_struct
*p
= tfc
->p
;
66 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
70 tfc
->ret
= tfc
->func(tfc
->info
);
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
87 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
89 struct remote_function_call data
= {
93 .ret
= -ESRCH
, /* No such (running) process */
97 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
107 * Calls the function @func on the remote cpu.
109 * returns: @func return value or -ENXIO when the cpu is offline
111 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
113 struct remote_function_call data
= {
117 .ret
= -ENXIO
, /* No such CPU */
120 smp_call_function_single(cpu
, remote_function
, &data
, 1);
125 #define EVENT_OWNER_KERNEL ((void *) -1)
127 static bool is_kernel_event(struct perf_event
*event
)
129 return event
->owner
== EVENT_OWNER_KERNEL
;
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
138 * branch priv levels that need permission checks
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
145 EVENT_FLEXIBLE
= 0x1,
147 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
154 struct static_key_deferred perf_sched_events __read_mostly
;
155 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
156 static DEFINE_PER_CPU(atomic_t
, perf_branch_stack_events
);
158 static atomic_t nr_mmap_events __read_mostly
;
159 static atomic_t nr_comm_events __read_mostly
;
160 static atomic_t nr_task_events __read_mostly
;
161 static atomic_t nr_freq_events __read_mostly
;
163 static LIST_HEAD(pmus
);
164 static DEFINE_MUTEX(pmus_lock
);
165 static struct srcu_struct pmus_srcu
;
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
174 int sysctl_perf_event_paranoid __read_mostly
= 1;
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
180 * max perf event sample rate
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
186 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
188 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
189 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
191 static int perf_sample_allowed_ns __read_mostly
=
192 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
194 void update_perf_cpu_limits(void)
196 u64 tmp
= perf_sample_period_ns
;
198 tmp
*= sysctl_perf_cpu_time_max_percent
;
200 ACCESS_ONCE(perf_sample_allowed_ns
) = tmp
;
203 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
205 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
206 void __user
*buffer
, size_t *lenp
,
209 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
214 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
215 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
216 update_perf_cpu_limits();
221 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
223 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
224 void __user
*buffer
, size_t *lenp
,
227 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
232 update_perf_cpu_limits();
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64
, running_sample_length
);
246 static void perf_duration_warn(struct irq_work
*w
)
248 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
249 u64 avg_local_sample_len
;
250 u64 local_samples_len
;
252 local_samples_len
= __this_cpu_read(running_sample_length
);
253 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len
, allowed_ns
>> 1,
259 sysctl_perf_event_sample_rate
);
262 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
264 void perf_sample_event_took(u64 sample_len_ns
)
266 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
267 u64 avg_local_sample_len
;
268 u64 local_samples_len
;
273 /* decay the counter by 1 average sample */
274 local_samples_len
= __this_cpu_read(running_sample_length
);
275 local_samples_len
-= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
276 local_samples_len
+= sample_len_ns
;
277 __this_cpu_write(running_sample_length
, local_samples_len
);
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
284 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
286 if (avg_local_sample_len
<= allowed_ns
)
289 if (max_samples_per_tick
<= 1)
292 max_samples_per_tick
= DIV_ROUND_UP(max_samples_per_tick
, 2);
293 sysctl_perf_event_sample_rate
= max_samples_per_tick
* HZ
;
294 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
296 update_perf_cpu_limits();
298 if (!irq_work_queue(&perf_duration_work
)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len
, allowed_ns
>> 1,
302 sysctl_perf_event_sample_rate
);
306 static atomic64_t perf_event_id
;
308 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
309 enum event_type_t event_type
);
311 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
312 enum event_type_t event_type
,
313 struct task_struct
*task
);
315 static void update_context_time(struct perf_event_context
*ctx
);
316 static u64
perf_event_time(struct perf_event
*event
);
318 void __weak
perf_event_print_debug(void) { }
320 extern __weak
const char *perf_pmu_name(void)
325 static inline u64
perf_clock(void)
327 return local_clock();
330 static inline struct perf_cpu_context
*
331 __get_cpu_context(struct perf_event_context
*ctx
)
333 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
336 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
337 struct perf_event_context
*ctx
)
339 raw_spin_lock(&cpuctx
->ctx
.lock
);
341 raw_spin_lock(&ctx
->lock
);
344 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
345 struct perf_event_context
*ctx
)
348 raw_spin_unlock(&ctx
->lock
);
349 raw_spin_unlock(&cpuctx
->ctx
.lock
);
352 #ifdef CONFIG_CGROUP_PERF
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
358 struct perf_cgroup_info
{
364 struct cgroup_subsys_state css
;
365 struct perf_cgroup_info __percpu
*info
;
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
373 static inline struct perf_cgroup
*
374 perf_cgroup_from_task(struct task_struct
*task
)
376 return container_of(task_css(task
, perf_event_cgrp_id
),
377 struct perf_cgroup
, css
);
381 perf_cgroup_match(struct perf_event
*event
)
383 struct perf_event_context
*ctx
= event
->ctx
;
384 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
386 /* @event doesn't care about cgroup */
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
400 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
401 event
->cgrp
->css
.cgroup
);
404 static inline void perf_detach_cgroup(struct perf_event
*event
)
406 css_put(&event
->cgrp
->css
);
410 static inline int is_cgroup_event(struct perf_event
*event
)
412 return event
->cgrp
!= NULL
;
415 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
417 struct perf_cgroup_info
*t
;
419 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
423 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
425 struct perf_cgroup_info
*info
;
430 info
= this_cpu_ptr(cgrp
->info
);
432 info
->time
+= now
- info
->timestamp
;
433 info
->timestamp
= now
;
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
438 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
440 __update_cgrp_time(cgrp_out
);
443 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
445 struct perf_cgroup
*cgrp
;
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
451 if (!is_cgroup_event(event
))
454 cgrp
= perf_cgroup_from_task(current
);
456 * Do not update time when cgroup is not active
458 if (cgrp
== event
->cgrp
)
459 __update_cgrp_time(event
->cgrp
);
463 perf_cgroup_set_timestamp(struct task_struct
*task
,
464 struct perf_event_context
*ctx
)
466 struct perf_cgroup
*cgrp
;
467 struct perf_cgroup_info
*info
;
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
474 if (!task
|| !ctx
->nr_cgroups
)
477 cgrp
= perf_cgroup_from_task(task
);
478 info
= this_cpu_ptr(cgrp
->info
);
479 info
->timestamp
= ctx
->timestamp
;
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
486 * reschedule events based on the cgroup constraint of task.
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
491 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
493 struct perf_cpu_context
*cpuctx
;
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
502 local_irq_save(flags
);
505 * we reschedule only in the presence of cgroup
506 * constrained events.
510 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
511 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
512 if (cpuctx
->unique_pmu
!= pmu
)
513 continue; /* ensure we process each cpuctx once */
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
522 if (cpuctx
->ctx
.nr_cgroups
> 0) {
523 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
524 perf_pmu_disable(cpuctx
->ctx
.pmu
);
526 if (mode
& PERF_CGROUP_SWOUT
) {
527 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
535 if (mode
& PERF_CGROUP_SWIN
) {
536 WARN_ON_ONCE(cpuctx
->cgrp
);
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
542 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
543 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
545 perf_pmu_enable(cpuctx
->ctx
.pmu
);
546 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
552 local_irq_restore(flags
);
555 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
556 struct task_struct
*next
)
558 struct perf_cgroup
*cgrp1
;
559 struct perf_cgroup
*cgrp2
= NULL
;
562 * we come here when we know perf_cgroup_events > 0
564 cgrp1
= perf_cgroup_from_task(task
);
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
571 cgrp2
= perf_cgroup_from_task(next
);
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
579 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
582 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
583 struct task_struct
*task
)
585 struct perf_cgroup
*cgrp1
;
586 struct perf_cgroup
*cgrp2
= NULL
;
589 * we come here when we know perf_cgroup_events > 0
591 cgrp1
= perf_cgroup_from_task(task
);
593 /* prev can never be NULL */
594 cgrp2
= perf_cgroup_from_task(prev
);
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
602 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
605 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
606 struct perf_event_attr
*attr
,
607 struct perf_event
*group_leader
)
609 struct perf_cgroup
*cgrp
;
610 struct cgroup_subsys_state
*css
;
611 struct fd f
= fdget(fd
);
617 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
618 &perf_event_cgrp_subsys
);
624 cgrp
= container_of(css
, struct perf_cgroup
, css
);
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
632 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
633 perf_detach_cgroup(event
);
642 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
644 struct perf_cgroup_info
*t
;
645 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
646 event
->shadow_ctx_time
= now
- t
->timestamp
;
650 perf_cgroup_defer_enabled(struct perf_event
*event
)
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
658 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
659 event
->cgrp_defer_enabled
= 1;
663 perf_cgroup_mark_enabled(struct perf_event
*event
,
664 struct perf_event_context
*ctx
)
666 struct perf_event
*sub
;
667 u64 tstamp
= perf_event_time(event
);
669 if (!event
->cgrp_defer_enabled
)
672 event
->cgrp_defer_enabled
= 0;
674 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
675 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
676 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
677 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
678 sub
->cgrp_defer_enabled
= 0;
682 #else /* !CONFIG_CGROUP_PERF */
685 perf_cgroup_match(struct perf_event
*event
)
690 static inline void perf_detach_cgroup(struct perf_event
*event
)
693 static inline int is_cgroup_event(struct perf_event
*event
)
698 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
703 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
711 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
712 struct task_struct
*next
)
716 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
717 struct task_struct
*task
)
721 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
722 struct perf_event_attr
*attr
,
723 struct perf_event
*group_leader
)
729 perf_cgroup_set_timestamp(struct task_struct
*task
,
730 struct perf_event_context
*ctx
)
735 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
740 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
744 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
750 perf_cgroup_defer_enabled(struct perf_event
*event
)
755 perf_cgroup_mark_enabled(struct perf_event
*event
,
756 struct perf_event_context
*ctx
)
762 * set default to be dependent on timer tick just
765 #define PERF_CPU_HRTIMER (1000 / HZ)
767 * function must be called with interrupts disbled
769 static enum hrtimer_restart
perf_cpu_hrtimer_handler(struct hrtimer
*hr
)
771 struct perf_cpu_context
*cpuctx
;
772 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
775 WARN_ON(!irqs_disabled());
777 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
779 rotations
= perf_rotate_context(cpuctx
);
782 * arm timer if needed
785 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
786 ret
= HRTIMER_RESTART
;
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu
)
795 struct perf_cpu_context
*cpuctx
;
799 if (WARN_ON(cpu
!= smp_processor_id()))
802 local_irq_save(flags
);
806 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
807 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
809 if (pmu
->task_ctx_nr
== perf_sw_context
)
812 hrtimer_cancel(&cpuctx
->hrtimer
);
817 local_irq_restore(flags
);
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
822 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
823 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
826 /* no multiplexing needed for SW PMU */
827 if (pmu
->task_ctx_nr
== perf_sw_context
)
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
834 timer
= pmu
->hrtimer_interval_ms
;
836 timer
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
838 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
840 hrtimer_init(hr
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
841 hr
->function
= perf_cpu_hrtimer_handler
;
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
846 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
847 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
850 if (pmu
->task_ctx_nr
== perf_sw_context
)
853 if (hrtimer_active(hr
))
856 if (!hrtimer_callback_running(hr
))
857 __hrtimer_start_range_ns(hr
, cpuctx
->hrtimer_interval
,
858 0, HRTIMER_MODE_REL_PINNED
, 0);
861 void perf_pmu_disable(struct pmu
*pmu
)
863 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
865 pmu
->pmu_disable(pmu
);
868 void perf_pmu_enable(struct pmu
*pmu
)
870 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
872 pmu
->pmu_enable(pmu
);
875 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
878 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879 * perf_event_task_tick() are fully serialized because they're strictly cpu
880 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881 * disabled, while perf_event_task_tick is called from IRQ context.
883 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
885 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
887 WARN_ON(!irqs_disabled());
889 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
891 list_add(&ctx
->active_ctx_list
, head
);
894 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
896 WARN_ON(!irqs_disabled());
898 WARN_ON(list_empty(&ctx
->active_ctx_list
));
900 list_del_init(&ctx
->active_ctx_list
);
903 static void get_ctx(struct perf_event_context
*ctx
)
905 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
908 static void put_ctx(struct perf_event_context
*ctx
)
910 if (atomic_dec_and_test(&ctx
->refcount
)) {
912 put_ctx(ctx
->parent_ctx
);
914 put_task_struct(ctx
->task
);
915 kfree_rcu(ctx
, rcu_head
);
920 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
921 * perf_pmu_migrate_context() we need some magic.
923 * Those places that change perf_event::ctx will hold both
924 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
926 * Lock ordering is by mutex address. There is one other site where
927 * perf_event_context::mutex nests and that is put_event(). But remember that
928 * that is a parent<->child context relation, and migration does not affect
929 * children, therefore these two orderings should not interact.
931 * The change in perf_event::ctx does not affect children (as claimed above)
932 * because the sys_perf_event_open() case will install a new event and break
933 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
934 * concerned with cpuctx and that doesn't have children.
936 * The places that change perf_event::ctx will issue:
938 * perf_remove_from_context();
940 * perf_install_in_context();
942 * to affect the change. The remove_from_context() + synchronize_rcu() should
943 * quiesce the event, after which we can install it in the new location. This
944 * means that only external vectors (perf_fops, prctl) can perturb the event
945 * while in transit. Therefore all such accessors should also acquire
946 * perf_event_context::mutex to serialize against this.
948 * However; because event->ctx can change while we're waiting to acquire
949 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
953 * task_struct::perf_event_mutex
954 * perf_event_context::mutex
955 * perf_event_context::lock
956 * perf_event::child_mutex;
957 * perf_event::mmap_mutex
960 static struct perf_event_context
*
961 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
963 struct perf_event_context
*ctx
;
967 ctx
= ACCESS_ONCE(event
->ctx
);
968 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
974 mutex_lock_nested(&ctx
->mutex
, nesting
);
975 if (event
->ctx
!= ctx
) {
976 mutex_unlock(&ctx
->mutex
);
984 static inline struct perf_event_context
*
985 perf_event_ctx_lock(struct perf_event
*event
)
987 return perf_event_ctx_lock_nested(event
, 0);
990 static void perf_event_ctx_unlock(struct perf_event
*event
,
991 struct perf_event_context
*ctx
)
993 mutex_unlock(&ctx
->mutex
);
998 * This must be done under the ctx->lock, such as to serialize against
999 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1000 * calling scheduler related locks and ctx->lock nests inside those.
1002 static __must_check
struct perf_event_context
*
1003 unclone_ctx(struct perf_event_context
*ctx
)
1005 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1007 lockdep_assert_held(&ctx
->lock
);
1010 ctx
->parent_ctx
= NULL
;
1016 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1019 * only top level events have the pid namespace they were created in
1022 event
= event
->parent
;
1024 return task_tgid_nr_ns(p
, event
->ns
);
1027 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1030 * only top level events have the pid namespace they were created in
1033 event
= event
->parent
;
1035 return task_pid_nr_ns(p
, event
->ns
);
1039 * If we inherit events we want to return the parent event id
1042 static u64
primary_event_id(struct perf_event
*event
)
1047 id
= event
->parent
->id
;
1053 * Get the perf_event_context for a task and lock it.
1054 * This has to cope with with the fact that until it is locked,
1055 * the context could get moved to another task.
1057 static struct perf_event_context
*
1058 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1060 struct perf_event_context
*ctx
;
1064 * One of the few rules of preemptible RCU is that one cannot do
1065 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1066 * part of the read side critical section was preemptible -- see
1067 * rcu_read_unlock_special().
1069 * Since ctx->lock nests under rq->lock we must ensure the entire read
1070 * side critical section is non-preemptible.
1074 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1077 * If this context is a clone of another, it might
1078 * get swapped for another underneath us by
1079 * perf_event_task_sched_out, though the
1080 * rcu_read_lock() protects us from any context
1081 * getting freed. Lock the context and check if it
1082 * got swapped before we could get the lock, and retry
1083 * if so. If we locked the right context, then it
1084 * can't get swapped on us any more.
1086 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
1087 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1088 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1094 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1095 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1105 * Get the context for a task and increment its pin_count so it
1106 * can't get swapped to another task. This also increments its
1107 * reference count so that the context can't get freed.
1109 static struct perf_event_context
*
1110 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1112 struct perf_event_context
*ctx
;
1113 unsigned long flags
;
1115 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1118 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1123 static void perf_unpin_context(struct perf_event_context
*ctx
)
1125 unsigned long flags
;
1127 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1129 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1133 * Update the record of the current time in a context.
1135 static void update_context_time(struct perf_event_context
*ctx
)
1137 u64 now
= perf_clock();
1139 ctx
->time
+= now
- ctx
->timestamp
;
1140 ctx
->timestamp
= now
;
1143 static u64
perf_event_time(struct perf_event
*event
)
1145 struct perf_event_context
*ctx
= event
->ctx
;
1147 if (is_cgroup_event(event
))
1148 return perf_cgroup_event_time(event
);
1150 return ctx
? ctx
->time
: 0;
1154 * Update the total_time_enabled and total_time_running fields for a event.
1155 * The caller of this function needs to hold the ctx->lock.
1157 static void update_event_times(struct perf_event
*event
)
1159 struct perf_event_context
*ctx
= event
->ctx
;
1162 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1163 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1166 * in cgroup mode, time_enabled represents
1167 * the time the event was enabled AND active
1168 * tasks were in the monitored cgroup. This is
1169 * independent of the activity of the context as
1170 * there may be a mix of cgroup and non-cgroup events.
1172 * That is why we treat cgroup events differently
1175 if (is_cgroup_event(event
))
1176 run_end
= perf_cgroup_event_time(event
);
1177 else if (ctx
->is_active
)
1178 run_end
= ctx
->time
;
1180 run_end
= event
->tstamp_stopped
;
1182 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1184 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1185 run_end
= event
->tstamp_stopped
;
1187 run_end
= perf_event_time(event
);
1189 event
->total_time_running
= run_end
- event
->tstamp_running
;
1194 * Update total_time_enabled and total_time_running for all events in a group.
1196 static void update_group_times(struct perf_event
*leader
)
1198 struct perf_event
*event
;
1200 update_event_times(leader
);
1201 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1202 update_event_times(event
);
1205 static struct list_head
*
1206 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1208 if (event
->attr
.pinned
)
1209 return &ctx
->pinned_groups
;
1211 return &ctx
->flexible_groups
;
1215 * Add a event from the lists for its context.
1216 * Must be called with ctx->mutex and ctx->lock held.
1219 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1221 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1222 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1225 * If we're a stand alone event or group leader, we go to the context
1226 * list, group events are kept attached to the group so that
1227 * perf_group_detach can, at all times, locate all siblings.
1229 if (event
->group_leader
== event
) {
1230 struct list_head
*list
;
1232 if (is_software_event(event
))
1233 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1235 list
= ctx_group_list(event
, ctx
);
1236 list_add_tail(&event
->group_entry
, list
);
1239 if (is_cgroup_event(event
))
1242 if (has_branch_stack(event
))
1243 ctx
->nr_branch_stack
++;
1245 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1247 if (event
->attr
.inherit_stat
)
1254 * Initialize event state based on the perf_event_attr::disabled.
1256 static inline void perf_event__state_init(struct perf_event
*event
)
1258 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1259 PERF_EVENT_STATE_INACTIVE
;
1263 * Called at perf_event creation and when events are attached/detached from a
1266 static void perf_event__read_size(struct perf_event
*event
)
1268 int entry
= sizeof(u64
); /* value */
1272 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1273 size
+= sizeof(u64
);
1275 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1276 size
+= sizeof(u64
);
1278 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1279 entry
+= sizeof(u64
);
1281 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1282 nr
+= event
->group_leader
->nr_siblings
;
1283 size
+= sizeof(u64
);
1287 event
->read_size
= size
;
1290 static void perf_event__header_size(struct perf_event
*event
)
1292 struct perf_sample_data
*data
;
1293 u64 sample_type
= event
->attr
.sample_type
;
1296 perf_event__read_size(event
);
1298 if (sample_type
& PERF_SAMPLE_IP
)
1299 size
+= sizeof(data
->ip
);
1301 if (sample_type
& PERF_SAMPLE_ADDR
)
1302 size
+= sizeof(data
->addr
);
1304 if (sample_type
& PERF_SAMPLE_PERIOD
)
1305 size
+= sizeof(data
->period
);
1307 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1308 size
+= sizeof(data
->weight
);
1310 if (sample_type
& PERF_SAMPLE_READ
)
1311 size
+= event
->read_size
;
1313 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1314 size
+= sizeof(data
->data_src
.val
);
1316 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1317 size
+= sizeof(data
->txn
);
1319 event
->header_size
= size
;
1322 static void perf_event__id_header_size(struct perf_event
*event
)
1324 struct perf_sample_data
*data
;
1325 u64 sample_type
= event
->attr
.sample_type
;
1328 if (sample_type
& PERF_SAMPLE_TID
)
1329 size
+= sizeof(data
->tid_entry
);
1331 if (sample_type
& PERF_SAMPLE_TIME
)
1332 size
+= sizeof(data
->time
);
1334 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1335 size
+= sizeof(data
->id
);
1337 if (sample_type
& PERF_SAMPLE_ID
)
1338 size
+= sizeof(data
->id
);
1340 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1341 size
+= sizeof(data
->stream_id
);
1343 if (sample_type
& PERF_SAMPLE_CPU
)
1344 size
+= sizeof(data
->cpu_entry
);
1346 event
->id_header_size
= size
;
1349 static void perf_group_attach(struct perf_event
*event
)
1351 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1354 * We can have double attach due to group movement in perf_event_open.
1356 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1359 event
->attach_state
|= PERF_ATTACH_GROUP
;
1361 if (group_leader
== event
)
1364 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1366 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1367 !is_software_event(event
))
1368 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1370 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1371 group_leader
->nr_siblings
++;
1373 perf_event__header_size(group_leader
);
1375 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1376 perf_event__header_size(pos
);
1380 * Remove a event from the lists for its context.
1381 * Must be called with ctx->mutex and ctx->lock held.
1384 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1386 struct perf_cpu_context
*cpuctx
;
1388 WARN_ON_ONCE(event
->ctx
!= ctx
);
1389 lockdep_assert_held(&ctx
->lock
);
1392 * We can have double detach due to exit/hot-unplug + close.
1394 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1397 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1399 if (is_cgroup_event(event
)) {
1401 cpuctx
= __get_cpu_context(ctx
);
1403 * if there are no more cgroup events
1404 * then cler cgrp to avoid stale pointer
1405 * in update_cgrp_time_from_cpuctx()
1407 if (!ctx
->nr_cgroups
)
1408 cpuctx
->cgrp
= NULL
;
1411 if (has_branch_stack(event
))
1412 ctx
->nr_branch_stack
--;
1415 if (event
->attr
.inherit_stat
)
1418 list_del_rcu(&event
->event_entry
);
1420 if (event
->group_leader
== event
)
1421 list_del_init(&event
->group_entry
);
1423 update_group_times(event
);
1426 * If event was in error state, then keep it
1427 * that way, otherwise bogus counts will be
1428 * returned on read(). The only way to get out
1429 * of error state is by explicit re-enabling
1432 if (event
->state
> PERF_EVENT_STATE_OFF
)
1433 event
->state
= PERF_EVENT_STATE_OFF
;
1438 static void perf_group_detach(struct perf_event
*event
)
1440 struct perf_event
*sibling
, *tmp
;
1441 struct list_head
*list
= NULL
;
1444 * We can have double detach due to exit/hot-unplug + close.
1446 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1449 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1452 * If this is a sibling, remove it from its group.
1454 if (event
->group_leader
!= event
) {
1455 list_del_init(&event
->group_entry
);
1456 event
->group_leader
->nr_siblings
--;
1460 if (!list_empty(&event
->group_entry
))
1461 list
= &event
->group_entry
;
1464 * If this was a group event with sibling events then
1465 * upgrade the siblings to singleton events by adding them
1466 * to whatever list we are on.
1468 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1470 list_move_tail(&sibling
->group_entry
, list
);
1471 sibling
->group_leader
= sibling
;
1473 /* Inherit group flags from the previous leader */
1474 sibling
->group_flags
= event
->group_flags
;
1476 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1480 perf_event__header_size(event
->group_leader
);
1482 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1483 perf_event__header_size(tmp
);
1487 * User event without the task.
1489 static bool is_orphaned_event(struct perf_event
*event
)
1491 return event
&& !is_kernel_event(event
) && !event
->owner
;
1495 * Event has a parent but parent's task finished and it's
1496 * alive only because of children holding refference.
1498 static bool is_orphaned_child(struct perf_event
*event
)
1500 return is_orphaned_event(event
->parent
);
1503 static void orphans_remove_work(struct work_struct
*work
);
1505 static void schedule_orphans_remove(struct perf_event_context
*ctx
)
1507 if (!ctx
->task
|| ctx
->orphans_remove_sched
|| !perf_wq
)
1510 if (queue_delayed_work(perf_wq
, &ctx
->orphans_remove
, 1)) {
1512 ctx
->orphans_remove_sched
= true;
1516 static int __init
perf_workqueue_init(void)
1518 perf_wq
= create_singlethread_workqueue("perf");
1519 WARN(!perf_wq
, "failed to create perf workqueue\n");
1520 return perf_wq
? 0 : -1;
1523 core_initcall(perf_workqueue_init
);
1526 event_filter_match(struct perf_event
*event
)
1528 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1529 && perf_cgroup_match(event
);
1533 event_sched_out(struct perf_event
*event
,
1534 struct perf_cpu_context
*cpuctx
,
1535 struct perf_event_context
*ctx
)
1537 u64 tstamp
= perf_event_time(event
);
1540 WARN_ON_ONCE(event
->ctx
!= ctx
);
1541 lockdep_assert_held(&ctx
->lock
);
1544 * An event which could not be activated because of
1545 * filter mismatch still needs to have its timings
1546 * maintained, otherwise bogus information is return
1547 * via read() for time_enabled, time_running:
1549 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1550 && !event_filter_match(event
)) {
1551 delta
= tstamp
- event
->tstamp_stopped
;
1552 event
->tstamp_running
+= delta
;
1553 event
->tstamp_stopped
= tstamp
;
1556 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1559 perf_pmu_disable(event
->pmu
);
1561 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1562 if (event
->pending_disable
) {
1563 event
->pending_disable
= 0;
1564 event
->state
= PERF_EVENT_STATE_OFF
;
1566 event
->tstamp_stopped
= tstamp
;
1567 event
->pmu
->del(event
, 0);
1570 if (!is_software_event(event
))
1571 cpuctx
->active_oncpu
--;
1572 if (!--ctx
->nr_active
)
1573 perf_event_ctx_deactivate(ctx
);
1574 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1576 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1577 cpuctx
->exclusive
= 0;
1579 if (is_orphaned_child(event
))
1580 schedule_orphans_remove(ctx
);
1582 perf_pmu_enable(event
->pmu
);
1586 group_sched_out(struct perf_event
*group_event
,
1587 struct perf_cpu_context
*cpuctx
,
1588 struct perf_event_context
*ctx
)
1590 struct perf_event
*event
;
1591 int state
= group_event
->state
;
1593 event_sched_out(group_event
, cpuctx
, ctx
);
1596 * Schedule out siblings (if any):
1598 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1599 event_sched_out(event
, cpuctx
, ctx
);
1601 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1602 cpuctx
->exclusive
= 0;
1605 struct remove_event
{
1606 struct perf_event
*event
;
1611 * Cross CPU call to remove a performance event
1613 * We disable the event on the hardware level first. After that we
1614 * remove it from the context list.
1616 static int __perf_remove_from_context(void *info
)
1618 struct remove_event
*re
= info
;
1619 struct perf_event
*event
= re
->event
;
1620 struct perf_event_context
*ctx
= event
->ctx
;
1621 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1623 raw_spin_lock(&ctx
->lock
);
1624 event_sched_out(event
, cpuctx
, ctx
);
1625 if (re
->detach_group
)
1626 perf_group_detach(event
);
1627 list_del_event(event
, ctx
);
1628 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1630 cpuctx
->task_ctx
= NULL
;
1632 raw_spin_unlock(&ctx
->lock
);
1639 * Remove the event from a task's (or a CPU's) list of events.
1641 * CPU events are removed with a smp call. For task events we only
1642 * call when the task is on a CPU.
1644 * If event->ctx is a cloned context, callers must make sure that
1645 * every task struct that event->ctx->task could possibly point to
1646 * remains valid. This is OK when called from perf_release since
1647 * that only calls us on the top-level context, which can't be a clone.
1648 * When called from perf_event_exit_task, it's OK because the
1649 * context has been detached from its task.
1651 static void perf_remove_from_context(struct perf_event
*event
, bool detach_group
)
1653 struct perf_event_context
*ctx
= event
->ctx
;
1654 struct task_struct
*task
= ctx
->task
;
1655 struct remove_event re
= {
1657 .detach_group
= detach_group
,
1660 lockdep_assert_held(&ctx
->mutex
);
1664 * Per cpu events are removed via an smp call. The removal can
1665 * fail if the CPU is currently offline, but in that case we
1666 * already called __perf_remove_from_context from
1667 * perf_event_exit_cpu.
1669 cpu_function_call(event
->cpu
, __perf_remove_from_context
, &re
);
1674 if (!task_function_call(task
, __perf_remove_from_context
, &re
))
1677 raw_spin_lock_irq(&ctx
->lock
);
1679 * If we failed to find a running task, but find the context active now
1680 * that we've acquired the ctx->lock, retry.
1682 if (ctx
->is_active
) {
1683 raw_spin_unlock_irq(&ctx
->lock
);
1685 * Reload the task pointer, it might have been changed by
1686 * a concurrent perf_event_context_sched_out().
1693 * Since the task isn't running, its safe to remove the event, us
1694 * holding the ctx->lock ensures the task won't get scheduled in.
1697 perf_group_detach(event
);
1698 list_del_event(event
, ctx
);
1699 raw_spin_unlock_irq(&ctx
->lock
);
1703 * Cross CPU call to disable a performance event
1705 int __perf_event_disable(void *info
)
1707 struct perf_event
*event
= info
;
1708 struct perf_event_context
*ctx
= event
->ctx
;
1709 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1712 * If this is a per-task event, need to check whether this
1713 * event's task is the current task on this cpu.
1715 * Can trigger due to concurrent perf_event_context_sched_out()
1716 * flipping contexts around.
1718 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1721 raw_spin_lock(&ctx
->lock
);
1724 * If the event is on, turn it off.
1725 * If it is in error state, leave it in error state.
1727 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1728 update_context_time(ctx
);
1729 update_cgrp_time_from_event(event
);
1730 update_group_times(event
);
1731 if (event
== event
->group_leader
)
1732 group_sched_out(event
, cpuctx
, ctx
);
1734 event_sched_out(event
, cpuctx
, ctx
);
1735 event
->state
= PERF_EVENT_STATE_OFF
;
1738 raw_spin_unlock(&ctx
->lock
);
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
1748 * remains valid. This condition is satisifed when called through
1749 * perf_event_for_each_child or perf_event_for_each because they
1750 * hold the top-level event's child_mutex, so any descendant that
1751 * goes to exit will block in sync_child_event.
1752 * When called from perf_pending_event it's OK because event->ctx
1753 * is the current context on this CPU and preemption is disabled,
1754 * hence we can't get into perf_event_task_sched_out for this context.
1756 static void _perf_event_disable(struct perf_event
*event
)
1758 struct perf_event_context
*ctx
= event
->ctx
;
1759 struct task_struct
*task
= ctx
->task
;
1763 * Disable the event on the cpu that it's on
1765 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1770 if (!task_function_call(task
, __perf_event_disable
, event
))
1773 raw_spin_lock_irq(&ctx
->lock
);
1775 * If the event is still active, we need to retry the cross-call.
1777 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1778 raw_spin_unlock_irq(&ctx
->lock
);
1780 * Reload the task pointer, it might have been changed by
1781 * a concurrent perf_event_context_sched_out().
1788 * Since we have the lock this context can't be scheduled
1789 * in, so we can change the state safely.
1791 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1792 update_group_times(event
);
1793 event
->state
= PERF_EVENT_STATE_OFF
;
1795 raw_spin_unlock_irq(&ctx
->lock
);
1799 * Strictly speaking kernel users cannot create groups and therefore this
1800 * interface does not need the perf_event_ctx_lock() magic.
1802 void perf_event_disable(struct perf_event
*event
)
1804 struct perf_event_context
*ctx
;
1806 ctx
= perf_event_ctx_lock(event
);
1807 _perf_event_disable(event
);
1808 perf_event_ctx_unlock(event
, ctx
);
1810 EXPORT_SYMBOL_GPL(perf_event_disable
);
1812 static void perf_set_shadow_time(struct perf_event
*event
,
1813 struct perf_event_context
*ctx
,
1817 * use the correct time source for the time snapshot
1819 * We could get by without this by leveraging the
1820 * fact that to get to this function, the caller
1821 * has most likely already called update_context_time()
1822 * and update_cgrp_time_xx() and thus both timestamp
1823 * are identical (or very close). Given that tstamp is,
1824 * already adjusted for cgroup, we could say that:
1825 * tstamp - ctx->timestamp
1827 * tstamp - cgrp->timestamp.
1829 * Then, in perf_output_read(), the calculation would
1830 * work with no changes because:
1831 * - event is guaranteed scheduled in
1832 * - no scheduled out in between
1833 * - thus the timestamp would be the same
1835 * But this is a bit hairy.
1837 * So instead, we have an explicit cgroup call to remain
1838 * within the time time source all along. We believe it
1839 * is cleaner and simpler to understand.
1841 if (is_cgroup_event(event
))
1842 perf_cgroup_set_shadow_time(event
, tstamp
);
1844 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1847 #define MAX_INTERRUPTS (~0ULL)
1849 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1852 event_sched_in(struct perf_event
*event
,
1853 struct perf_cpu_context
*cpuctx
,
1854 struct perf_event_context
*ctx
)
1856 u64 tstamp
= perf_event_time(event
);
1859 lockdep_assert_held(&ctx
->lock
);
1861 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1864 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1865 event
->oncpu
= smp_processor_id();
1868 * Unthrottle events, since we scheduled we might have missed several
1869 * ticks already, also for a heavily scheduling task there is little
1870 * guarantee it'll get a tick in a timely manner.
1872 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1873 perf_log_throttle(event
, 1);
1874 event
->hw
.interrupts
= 0;
1878 * The new state must be visible before we turn it on in the hardware:
1882 perf_pmu_disable(event
->pmu
);
1884 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1885 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1891 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1893 perf_set_shadow_time(event
, ctx
, tstamp
);
1895 if (!is_software_event(event
))
1896 cpuctx
->active_oncpu
++;
1897 if (!ctx
->nr_active
++)
1898 perf_event_ctx_activate(ctx
);
1899 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1902 if (event
->attr
.exclusive
)
1903 cpuctx
->exclusive
= 1;
1905 if (is_orphaned_child(event
))
1906 schedule_orphans_remove(ctx
);
1909 perf_pmu_enable(event
->pmu
);
1915 group_sched_in(struct perf_event
*group_event
,
1916 struct perf_cpu_context
*cpuctx
,
1917 struct perf_event_context
*ctx
)
1919 struct perf_event
*event
, *partial_group
= NULL
;
1920 struct pmu
*pmu
= ctx
->pmu
;
1921 u64 now
= ctx
->time
;
1922 bool simulate
= false;
1924 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1927 pmu
->start_txn(pmu
);
1929 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1930 pmu
->cancel_txn(pmu
);
1931 perf_cpu_hrtimer_restart(cpuctx
);
1936 * Schedule in siblings as one group (if any):
1938 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1939 if (event_sched_in(event
, cpuctx
, ctx
)) {
1940 partial_group
= event
;
1945 if (!pmu
->commit_txn(pmu
))
1950 * Groups can be scheduled in as one unit only, so undo any
1951 * partial group before returning:
1952 * The events up to the failed event are scheduled out normally,
1953 * tstamp_stopped will be updated.
1955 * The failed events and the remaining siblings need to have
1956 * their timings updated as if they had gone thru event_sched_in()
1957 * and event_sched_out(). This is required to get consistent timings
1958 * across the group. This also takes care of the case where the group
1959 * could never be scheduled by ensuring tstamp_stopped is set to mark
1960 * the time the event was actually stopped, such that time delta
1961 * calculation in update_event_times() is correct.
1963 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1964 if (event
== partial_group
)
1968 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1969 event
->tstamp_stopped
= now
;
1971 event_sched_out(event
, cpuctx
, ctx
);
1974 event_sched_out(group_event
, cpuctx
, ctx
);
1976 pmu
->cancel_txn(pmu
);
1978 perf_cpu_hrtimer_restart(cpuctx
);
1984 * Work out whether we can put this event group on the CPU now.
1986 static int group_can_go_on(struct perf_event
*event
,
1987 struct perf_cpu_context
*cpuctx
,
1991 * Groups consisting entirely of software events can always go on.
1993 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1996 * If an exclusive group is already on, no other hardware
1999 if (cpuctx
->exclusive
)
2002 * If this group is exclusive and there are already
2003 * events on the CPU, it can't go on.
2005 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2008 * Otherwise, try to add it if all previous groups were able
2014 static void add_event_to_ctx(struct perf_event
*event
,
2015 struct perf_event_context
*ctx
)
2017 u64 tstamp
= perf_event_time(event
);
2019 list_add_event(event
, ctx
);
2020 perf_group_attach(event
);
2021 event
->tstamp_enabled
= tstamp
;
2022 event
->tstamp_running
= tstamp
;
2023 event
->tstamp_stopped
= tstamp
;
2026 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
2028 ctx_sched_in(struct perf_event_context
*ctx
,
2029 struct perf_cpu_context
*cpuctx
,
2030 enum event_type_t event_type
,
2031 struct task_struct
*task
);
2033 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2034 struct perf_event_context
*ctx
,
2035 struct task_struct
*task
)
2037 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2039 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2040 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2042 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2046 * Cross CPU call to install and enable a performance event
2048 * Must be called with ctx->mutex held
2050 static int __perf_install_in_context(void *info
)
2052 struct perf_event
*event
= info
;
2053 struct perf_event_context
*ctx
= event
->ctx
;
2054 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2055 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2056 struct task_struct
*task
= current
;
2058 perf_ctx_lock(cpuctx
, task_ctx
);
2059 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2062 * If there was an active task_ctx schedule it out.
2065 task_ctx_sched_out(task_ctx
);
2068 * If the context we're installing events in is not the
2069 * active task_ctx, flip them.
2071 if (ctx
->task
&& task_ctx
!= ctx
) {
2073 raw_spin_unlock(&task_ctx
->lock
);
2074 raw_spin_lock(&ctx
->lock
);
2079 cpuctx
->task_ctx
= task_ctx
;
2080 task
= task_ctx
->task
;
2083 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2085 update_context_time(ctx
);
2087 * update cgrp time only if current cgrp
2088 * matches event->cgrp. Must be done before
2089 * calling add_event_to_ctx()
2091 update_cgrp_time_from_event(event
);
2093 add_event_to_ctx(event
, ctx
);
2096 * Schedule everything back in
2098 perf_event_sched_in(cpuctx
, task_ctx
, task
);
2100 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2101 perf_ctx_unlock(cpuctx
, task_ctx
);
2107 * Attach a performance event to a context
2109 * First we add the event to the list with the hardware enable bit
2110 * in event->hw_config cleared.
2112 * If the event is attached to a task which is on a CPU we use a smp
2113 * call to enable it in the task context. The task might have been
2114 * scheduled away, but we check this in the smp call again.
2117 perf_install_in_context(struct perf_event_context
*ctx
,
2118 struct perf_event
*event
,
2121 struct task_struct
*task
= ctx
->task
;
2123 lockdep_assert_held(&ctx
->mutex
);
2126 if (event
->cpu
!= -1)
2131 * Per cpu events are installed via an smp call and
2132 * the install is always successful.
2134 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2139 if (!task_function_call(task
, __perf_install_in_context
, event
))
2142 raw_spin_lock_irq(&ctx
->lock
);
2144 * If we failed to find a running task, but find the context active now
2145 * that we've acquired the ctx->lock, retry.
2147 if (ctx
->is_active
) {
2148 raw_spin_unlock_irq(&ctx
->lock
);
2150 * Reload the task pointer, it might have been changed by
2151 * a concurrent perf_event_context_sched_out().
2158 * Since the task isn't running, its safe to add the event, us holding
2159 * the ctx->lock ensures the task won't get scheduled in.
2161 add_event_to_ctx(event
, ctx
);
2162 raw_spin_unlock_irq(&ctx
->lock
);
2166 * Put a event into inactive state and update time fields.
2167 * Enabling the leader of a group effectively enables all
2168 * the group members that aren't explicitly disabled, so we
2169 * have to update their ->tstamp_enabled also.
2170 * Note: this works for group members as well as group leaders
2171 * since the non-leader members' sibling_lists will be empty.
2173 static void __perf_event_mark_enabled(struct perf_event
*event
)
2175 struct perf_event
*sub
;
2176 u64 tstamp
= perf_event_time(event
);
2178 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2179 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2180 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2181 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2182 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2187 * Cross CPU call to enable a performance event
2189 static int __perf_event_enable(void *info
)
2191 struct perf_event
*event
= info
;
2192 struct perf_event_context
*ctx
= event
->ctx
;
2193 struct perf_event
*leader
= event
->group_leader
;
2194 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2198 * There's a time window between 'ctx->is_active' check
2199 * in perf_event_enable function and this place having:
2201 * - ctx->lock unlocked
2203 * where the task could be killed and 'ctx' deactivated
2204 * by perf_event_exit_task.
2206 if (!ctx
->is_active
)
2209 raw_spin_lock(&ctx
->lock
);
2210 update_context_time(ctx
);
2212 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2216 * set current task's cgroup time reference point
2218 perf_cgroup_set_timestamp(current
, ctx
);
2220 __perf_event_mark_enabled(event
);
2222 if (!event_filter_match(event
)) {
2223 if (is_cgroup_event(event
))
2224 perf_cgroup_defer_enabled(event
);
2229 * If the event is in a group and isn't the group leader,
2230 * then don't put it on unless the group is on.
2232 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
2235 if (!group_can_go_on(event
, cpuctx
, 1)) {
2238 if (event
== leader
)
2239 err
= group_sched_in(event
, cpuctx
, ctx
);
2241 err
= event_sched_in(event
, cpuctx
, ctx
);
2246 * If this event can't go on and it's part of a
2247 * group, then the whole group has to come off.
2249 if (leader
!= event
) {
2250 group_sched_out(leader
, cpuctx
, ctx
);
2251 perf_cpu_hrtimer_restart(cpuctx
);
2253 if (leader
->attr
.pinned
) {
2254 update_group_times(leader
);
2255 leader
->state
= PERF_EVENT_STATE_ERROR
;
2260 raw_spin_unlock(&ctx
->lock
);
2268 * If event->ctx is a cloned context, callers must make sure that
2269 * every task struct that event->ctx->task could possibly point to
2270 * remains valid. This condition is satisfied when called through
2271 * perf_event_for_each_child or perf_event_for_each as described
2272 * for perf_event_disable.
2274 static void _perf_event_enable(struct perf_event
*event
)
2276 struct perf_event_context
*ctx
= event
->ctx
;
2277 struct task_struct
*task
= ctx
->task
;
2281 * Enable the event on the cpu that it's on
2283 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
2287 raw_spin_lock_irq(&ctx
->lock
);
2288 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2292 * If the event is in error state, clear that first.
2293 * That way, if we see the event in error state below, we
2294 * know that it has gone back into error state, as distinct
2295 * from the task having been scheduled away before the
2296 * cross-call arrived.
2298 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2299 event
->state
= PERF_EVENT_STATE_OFF
;
2302 if (!ctx
->is_active
) {
2303 __perf_event_mark_enabled(event
);
2307 raw_spin_unlock_irq(&ctx
->lock
);
2309 if (!task_function_call(task
, __perf_event_enable
, event
))
2312 raw_spin_lock_irq(&ctx
->lock
);
2315 * If the context is active and the event is still off,
2316 * we need to retry the cross-call.
2318 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
2320 * task could have been flipped by a concurrent
2321 * perf_event_context_sched_out()
2328 raw_spin_unlock_irq(&ctx
->lock
);
2332 * See perf_event_disable();
2334 void perf_event_enable(struct perf_event
*event
)
2336 struct perf_event_context
*ctx
;
2338 ctx
= perf_event_ctx_lock(event
);
2339 _perf_event_enable(event
);
2340 perf_event_ctx_unlock(event
, ctx
);
2342 EXPORT_SYMBOL_GPL(perf_event_enable
);
2344 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2347 * not supported on inherited events
2349 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2352 atomic_add(refresh
, &event
->event_limit
);
2353 _perf_event_enable(event
);
2359 * See perf_event_disable()
2361 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2363 struct perf_event_context
*ctx
;
2366 ctx
= perf_event_ctx_lock(event
);
2367 ret
= _perf_event_refresh(event
, refresh
);
2368 perf_event_ctx_unlock(event
, ctx
);
2372 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2374 static void ctx_sched_out(struct perf_event_context
*ctx
,
2375 struct perf_cpu_context
*cpuctx
,
2376 enum event_type_t event_type
)
2378 struct perf_event
*event
;
2379 int is_active
= ctx
->is_active
;
2381 ctx
->is_active
&= ~event_type
;
2382 if (likely(!ctx
->nr_events
))
2385 update_context_time(ctx
);
2386 update_cgrp_time_from_cpuctx(cpuctx
);
2387 if (!ctx
->nr_active
)
2390 perf_pmu_disable(ctx
->pmu
);
2391 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
2392 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2393 group_sched_out(event
, cpuctx
, ctx
);
2396 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
2397 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2398 group_sched_out(event
, cpuctx
, ctx
);
2400 perf_pmu_enable(ctx
->pmu
);
2404 * Test whether two contexts are equivalent, i.e. whether they have both been
2405 * cloned from the same version of the same context.
2407 * Equivalence is measured using a generation number in the context that is
2408 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2409 * and list_del_event().
2411 static int context_equiv(struct perf_event_context
*ctx1
,
2412 struct perf_event_context
*ctx2
)
2414 lockdep_assert_held(&ctx1
->lock
);
2415 lockdep_assert_held(&ctx2
->lock
);
2417 /* Pinning disables the swap optimization */
2418 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2421 /* If ctx1 is the parent of ctx2 */
2422 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2425 /* If ctx2 is the parent of ctx1 */
2426 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2430 * If ctx1 and ctx2 have the same parent; we flatten the parent
2431 * hierarchy, see perf_event_init_context().
2433 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2434 ctx1
->parent_gen
== ctx2
->parent_gen
)
2441 static void __perf_event_sync_stat(struct perf_event
*event
,
2442 struct perf_event
*next_event
)
2446 if (!event
->attr
.inherit_stat
)
2450 * Update the event value, we cannot use perf_event_read()
2451 * because we're in the middle of a context switch and have IRQs
2452 * disabled, which upsets smp_call_function_single(), however
2453 * we know the event must be on the current CPU, therefore we
2454 * don't need to use it.
2456 switch (event
->state
) {
2457 case PERF_EVENT_STATE_ACTIVE
:
2458 event
->pmu
->read(event
);
2461 case PERF_EVENT_STATE_INACTIVE
:
2462 update_event_times(event
);
2470 * In order to keep per-task stats reliable we need to flip the event
2471 * values when we flip the contexts.
2473 value
= local64_read(&next_event
->count
);
2474 value
= local64_xchg(&event
->count
, value
);
2475 local64_set(&next_event
->count
, value
);
2477 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2478 swap(event
->total_time_running
, next_event
->total_time_running
);
2481 * Since we swizzled the values, update the user visible data too.
2483 perf_event_update_userpage(event
);
2484 perf_event_update_userpage(next_event
);
2487 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2488 struct perf_event_context
*next_ctx
)
2490 struct perf_event
*event
, *next_event
;
2495 update_context_time(ctx
);
2497 event
= list_first_entry(&ctx
->event_list
,
2498 struct perf_event
, event_entry
);
2500 next_event
= list_first_entry(&next_ctx
->event_list
,
2501 struct perf_event
, event_entry
);
2503 while (&event
->event_entry
!= &ctx
->event_list
&&
2504 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2506 __perf_event_sync_stat(event
, next_event
);
2508 event
= list_next_entry(event
, event_entry
);
2509 next_event
= list_next_entry(next_event
, event_entry
);
2513 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2514 struct task_struct
*next
)
2516 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2517 struct perf_event_context
*next_ctx
;
2518 struct perf_event_context
*parent
, *next_parent
;
2519 struct perf_cpu_context
*cpuctx
;
2525 cpuctx
= __get_cpu_context(ctx
);
2526 if (!cpuctx
->task_ctx
)
2530 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2534 parent
= rcu_dereference(ctx
->parent_ctx
);
2535 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2537 /* If neither context have a parent context; they cannot be clones. */
2538 if (!parent
&& !next_parent
)
2541 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2543 * Looks like the two contexts are clones, so we might be
2544 * able to optimize the context switch. We lock both
2545 * contexts and check that they are clones under the
2546 * lock (including re-checking that neither has been
2547 * uncloned in the meantime). It doesn't matter which
2548 * order we take the locks because no other cpu could
2549 * be trying to lock both of these tasks.
2551 raw_spin_lock(&ctx
->lock
);
2552 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2553 if (context_equiv(ctx
, next_ctx
)) {
2555 * XXX do we need a memory barrier of sorts
2556 * wrt to rcu_dereference() of perf_event_ctxp
2558 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2559 next
->perf_event_ctxp
[ctxn
] = ctx
;
2561 next_ctx
->task
= task
;
2564 perf_event_sync_stat(ctx
, next_ctx
);
2566 raw_spin_unlock(&next_ctx
->lock
);
2567 raw_spin_unlock(&ctx
->lock
);
2573 raw_spin_lock(&ctx
->lock
);
2574 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2575 cpuctx
->task_ctx
= NULL
;
2576 raw_spin_unlock(&ctx
->lock
);
2580 #define for_each_task_context_nr(ctxn) \
2581 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2584 * Called from scheduler to remove the events of the current task,
2585 * with interrupts disabled.
2587 * We stop each event and update the event value in event->count.
2589 * This does not protect us against NMI, but disable()
2590 * sets the disabled bit in the control field of event _before_
2591 * accessing the event control register. If a NMI hits, then it will
2592 * not restart the event.
2594 void __perf_event_task_sched_out(struct task_struct
*task
,
2595 struct task_struct
*next
)
2599 for_each_task_context_nr(ctxn
)
2600 perf_event_context_sched_out(task
, ctxn
, next
);
2603 * if cgroup events exist on this CPU, then we need
2604 * to check if we have to switch out PMU state.
2605 * cgroup event are system-wide mode only
2607 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2608 perf_cgroup_sched_out(task
, next
);
2611 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2613 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2615 if (!cpuctx
->task_ctx
)
2618 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2621 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2622 cpuctx
->task_ctx
= NULL
;
2626 * Called with IRQs disabled
2628 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2629 enum event_type_t event_type
)
2631 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2635 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2636 struct perf_cpu_context
*cpuctx
)
2638 struct perf_event
*event
;
2640 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2641 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2643 if (!event_filter_match(event
))
2646 /* may need to reset tstamp_enabled */
2647 if (is_cgroup_event(event
))
2648 perf_cgroup_mark_enabled(event
, ctx
);
2650 if (group_can_go_on(event
, cpuctx
, 1))
2651 group_sched_in(event
, cpuctx
, ctx
);
2654 * If this pinned group hasn't been scheduled,
2655 * put it in error state.
2657 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2658 update_group_times(event
);
2659 event
->state
= PERF_EVENT_STATE_ERROR
;
2665 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2666 struct perf_cpu_context
*cpuctx
)
2668 struct perf_event
*event
;
2671 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2672 /* Ignore events in OFF or ERROR state */
2673 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2676 * Listen to the 'cpu' scheduling filter constraint
2679 if (!event_filter_match(event
))
2682 /* may need to reset tstamp_enabled */
2683 if (is_cgroup_event(event
))
2684 perf_cgroup_mark_enabled(event
, ctx
);
2686 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2687 if (group_sched_in(event
, cpuctx
, ctx
))
2694 ctx_sched_in(struct perf_event_context
*ctx
,
2695 struct perf_cpu_context
*cpuctx
,
2696 enum event_type_t event_type
,
2697 struct task_struct
*task
)
2700 int is_active
= ctx
->is_active
;
2702 ctx
->is_active
|= event_type
;
2703 if (likely(!ctx
->nr_events
))
2707 ctx
->timestamp
= now
;
2708 perf_cgroup_set_timestamp(task
, ctx
);
2710 * First go through the list and put on any pinned groups
2711 * in order to give them the best chance of going on.
2713 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2714 ctx_pinned_sched_in(ctx
, cpuctx
);
2716 /* Then walk through the lower prio flexible groups */
2717 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2718 ctx_flexible_sched_in(ctx
, cpuctx
);
2721 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2722 enum event_type_t event_type
,
2723 struct task_struct
*task
)
2725 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2727 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2730 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2731 struct task_struct
*task
)
2733 struct perf_cpu_context
*cpuctx
;
2735 cpuctx
= __get_cpu_context(ctx
);
2736 if (cpuctx
->task_ctx
== ctx
)
2739 perf_ctx_lock(cpuctx
, ctx
);
2740 perf_pmu_disable(ctx
->pmu
);
2742 * We want to keep the following priority order:
2743 * cpu pinned (that don't need to move), task pinned,
2744 * cpu flexible, task flexible.
2746 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2749 cpuctx
->task_ctx
= ctx
;
2751 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2753 perf_pmu_enable(ctx
->pmu
);
2754 perf_ctx_unlock(cpuctx
, ctx
);
2758 * When sampling the branck stack in system-wide, it may be necessary
2759 * to flush the stack on context switch. This happens when the branch
2760 * stack does not tag its entries with the pid of the current task.
2761 * Otherwise it becomes impossible to associate a branch entry with a
2762 * task. This ambiguity is more likely to appear when the branch stack
2763 * supports priv level filtering and the user sets it to monitor only
2764 * at the user level (which could be a useful measurement in system-wide
2765 * mode). In that case, the risk is high of having a branch stack with
2766 * branch from multiple tasks. Flushing may mean dropping the existing
2767 * entries or stashing them somewhere in the PMU specific code layer.
2769 * This function provides the context switch callback to the lower code
2770 * layer. It is invoked ONLY when there is at least one system-wide context
2771 * with at least one active event using taken branch sampling.
2773 static void perf_branch_stack_sched_in(struct task_struct
*prev
,
2774 struct task_struct
*task
)
2776 struct perf_cpu_context
*cpuctx
;
2778 unsigned long flags
;
2780 /* no need to flush branch stack if not changing task */
2784 local_irq_save(flags
);
2788 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2789 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2792 * check if the context has at least one
2793 * event using PERF_SAMPLE_BRANCH_STACK
2795 if (cpuctx
->ctx
.nr_branch_stack
> 0
2796 && pmu
->flush_branch_stack
) {
2798 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2800 perf_pmu_disable(pmu
);
2802 pmu
->flush_branch_stack();
2804 perf_pmu_enable(pmu
);
2806 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2812 local_irq_restore(flags
);
2816 * Called from scheduler to add the events of the current task
2817 * with interrupts disabled.
2819 * We restore the event value and then enable it.
2821 * This does not protect us against NMI, but enable()
2822 * sets the enabled bit in the control field of event _before_
2823 * accessing the event control register. If a NMI hits, then it will
2824 * keep the event running.
2826 void __perf_event_task_sched_in(struct task_struct
*prev
,
2827 struct task_struct
*task
)
2829 struct perf_event_context
*ctx
;
2832 for_each_task_context_nr(ctxn
) {
2833 ctx
= task
->perf_event_ctxp
[ctxn
];
2837 perf_event_context_sched_in(ctx
, task
);
2840 * if cgroup events exist on this CPU, then we need
2841 * to check if we have to switch in PMU state.
2842 * cgroup event are system-wide mode only
2844 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2845 perf_cgroup_sched_in(prev
, task
);
2847 /* check for system-wide branch_stack events */
2848 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events
)))
2849 perf_branch_stack_sched_in(prev
, task
);
2852 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2854 u64 frequency
= event
->attr
.sample_freq
;
2855 u64 sec
= NSEC_PER_SEC
;
2856 u64 divisor
, dividend
;
2858 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2860 count_fls
= fls64(count
);
2861 nsec_fls
= fls64(nsec
);
2862 frequency_fls
= fls64(frequency
);
2866 * We got @count in @nsec, with a target of sample_freq HZ
2867 * the target period becomes:
2870 * period = -------------------
2871 * @nsec * sample_freq
2876 * Reduce accuracy by one bit such that @a and @b converge
2877 * to a similar magnitude.
2879 #define REDUCE_FLS(a, b) \
2881 if (a##_fls > b##_fls) { \
2891 * Reduce accuracy until either term fits in a u64, then proceed with
2892 * the other, so that finally we can do a u64/u64 division.
2894 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2895 REDUCE_FLS(nsec
, frequency
);
2896 REDUCE_FLS(sec
, count
);
2899 if (count_fls
+ sec_fls
> 64) {
2900 divisor
= nsec
* frequency
;
2902 while (count_fls
+ sec_fls
> 64) {
2903 REDUCE_FLS(count
, sec
);
2907 dividend
= count
* sec
;
2909 dividend
= count
* sec
;
2911 while (nsec_fls
+ frequency_fls
> 64) {
2912 REDUCE_FLS(nsec
, frequency
);
2916 divisor
= nsec
* frequency
;
2922 return div64_u64(dividend
, divisor
);
2925 static DEFINE_PER_CPU(int, perf_throttled_count
);
2926 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2928 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2930 struct hw_perf_event
*hwc
= &event
->hw
;
2931 s64 period
, sample_period
;
2934 period
= perf_calculate_period(event
, nsec
, count
);
2936 delta
= (s64
)(period
- hwc
->sample_period
);
2937 delta
= (delta
+ 7) / 8; /* low pass filter */
2939 sample_period
= hwc
->sample_period
+ delta
;
2944 hwc
->sample_period
= sample_period
;
2946 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2948 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2950 local64_set(&hwc
->period_left
, 0);
2953 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2958 * combine freq adjustment with unthrottling to avoid two passes over the
2959 * events. At the same time, make sure, having freq events does not change
2960 * the rate of unthrottling as that would introduce bias.
2962 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2965 struct perf_event
*event
;
2966 struct hw_perf_event
*hwc
;
2967 u64 now
, period
= TICK_NSEC
;
2971 * only need to iterate over all events iff:
2972 * - context have events in frequency mode (needs freq adjust)
2973 * - there are events to unthrottle on this cpu
2975 if (!(ctx
->nr_freq
|| needs_unthr
))
2978 raw_spin_lock(&ctx
->lock
);
2979 perf_pmu_disable(ctx
->pmu
);
2981 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2982 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2985 if (!event_filter_match(event
))
2988 perf_pmu_disable(event
->pmu
);
2992 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
2993 hwc
->interrupts
= 0;
2994 perf_log_throttle(event
, 1);
2995 event
->pmu
->start(event
, 0);
2998 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3002 * stop the event and update event->count
3004 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3006 now
= local64_read(&event
->count
);
3007 delta
= now
- hwc
->freq_count_stamp
;
3008 hwc
->freq_count_stamp
= now
;
3012 * reload only if value has changed
3013 * we have stopped the event so tell that
3014 * to perf_adjust_period() to avoid stopping it
3018 perf_adjust_period(event
, period
, delta
, false);
3020 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3022 perf_pmu_enable(event
->pmu
);
3025 perf_pmu_enable(ctx
->pmu
);
3026 raw_spin_unlock(&ctx
->lock
);
3030 * Round-robin a context's events:
3032 static void rotate_ctx(struct perf_event_context
*ctx
)
3035 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 * disabled by the inheritance code.
3038 if (!ctx
->rotate_disable
)
3039 list_rotate_left(&ctx
->flexible_groups
);
3042 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3044 struct perf_event_context
*ctx
= NULL
;
3047 if (cpuctx
->ctx
.nr_events
) {
3048 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3052 ctx
= cpuctx
->task_ctx
;
3053 if (ctx
&& ctx
->nr_events
) {
3054 if (ctx
->nr_events
!= ctx
->nr_active
)
3061 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3062 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3064 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3066 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3068 rotate_ctx(&cpuctx
->ctx
);
3072 perf_event_sched_in(cpuctx
, ctx
, current
);
3074 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3075 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3081 #ifdef CONFIG_NO_HZ_FULL
3082 bool perf_event_can_stop_tick(void)
3084 if (atomic_read(&nr_freq_events
) ||
3085 __this_cpu_read(perf_throttled_count
))
3092 void perf_event_task_tick(void)
3094 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3095 struct perf_event_context
*ctx
, *tmp
;
3098 WARN_ON(!irqs_disabled());
3100 __this_cpu_inc(perf_throttled_seq
);
3101 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3103 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3104 perf_adjust_freq_unthr_context(ctx
, throttled
);
3107 static int event_enable_on_exec(struct perf_event
*event
,
3108 struct perf_event_context
*ctx
)
3110 if (!event
->attr
.enable_on_exec
)
3113 event
->attr
.enable_on_exec
= 0;
3114 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3117 __perf_event_mark_enabled(event
);
3123 * Enable all of a task's events that have been marked enable-on-exec.
3124 * This expects task == current.
3126 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
3128 struct perf_event_context
*clone_ctx
= NULL
;
3129 struct perf_event
*event
;
3130 unsigned long flags
;
3134 local_irq_save(flags
);
3135 if (!ctx
|| !ctx
->nr_events
)
3139 * We must ctxsw out cgroup events to avoid conflict
3140 * when invoking perf_task_event_sched_in() later on
3141 * in this function. Otherwise we end up trying to
3142 * ctxswin cgroup events which are already scheduled
3145 perf_cgroup_sched_out(current
, NULL
);
3147 raw_spin_lock(&ctx
->lock
);
3148 task_ctx_sched_out(ctx
);
3150 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3151 ret
= event_enable_on_exec(event
, ctx
);
3157 * Unclone this context if we enabled any event.
3160 clone_ctx
= unclone_ctx(ctx
);
3162 raw_spin_unlock(&ctx
->lock
);
3165 * Also calls ctxswin for cgroup events, if any:
3167 perf_event_context_sched_in(ctx
, ctx
->task
);
3169 local_irq_restore(flags
);
3175 void perf_event_exec(void)
3177 struct perf_event_context
*ctx
;
3181 for_each_task_context_nr(ctxn
) {
3182 ctx
= current
->perf_event_ctxp
[ctxn
];
3186 perf_event_enable_on_exec(ctx
);
3192 * Cross CPU call to read the hardware event
3194 static void __perf_event_read(void *info
)
3196 struct perf_event
*event
= info
;
3197 struct perf_event_context
*ctx
= event
->ctx
;
3198 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3201 * If this is a task context, we need to check whether it is
3202 * the current task context of this cpu. If not it has been
3203 * scheduled out before the smp call arrived. In that case
3204 * event->count would have been updated to a recent sample
3205 * when the event was scheduled out.
3207 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3210 raw_spin_lock(&ctx
->lock
);
3211 if (ctx
->is_active
) {
3212 update_context_time(ctx
);
3213 update_cgrp_time_from_event(event
);
3215 update_event_times(event
);
3216 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3217 event
->pmu
->read(event
);
3218 raw_spin_unlock(&ctx
->lock
);
3221 static inline u64
perf_event_count(struct perf_event
*event
)
3223 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
3226 static u64
perf_event_read(struct perf_event
*event
)
3229 * If event is enabled and currently active on a CPU, update the
3230 * value in the event structure:
3232 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3233 smp_call_function_single(event
->oncpu
,
3234 __perf_event_read
, event
, 1);
3235 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3236 struct perf_event_context
*ctx
= event
->ctx
;
3237 unsigned long flags
;
3239 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3241 * may read while context is not active
3242 * (e.g., thread is blocked), in that case
3243 * we cannot update context time
3245 if (ctx
->is_active
) {
3246 update_context_time(ctx
);
3247 update_cgrp_time_from_event(event
);
3249 update_event_times(event
);
3250 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3253 return perf_event_count(event
);
3257 * Initialize the perf_event context in a task_struct:
3259 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3261 raw_spin_lock_init(&ctx
->lock
);
3262 mutex_init(&ctx
->mutex
);
3263 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3264 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3265 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3266 INIT_LIST_HEAD(&ctx
->event_list
);
3267 atomic_set(&ctx
->refcount
, 1);
3268 INIT_DELAYED_WORK(&ctx
->orphans_remove
, orphans_remove_work
);
3271 static struct perf_event_context
*
3272 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3274 struct perf_event_context
*ctx
;
3276 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3280 __perf_event_init_context(ctx
);
3283 get_task_struct(task
);
3290 static struct task_struct
*
3291 find_lively_task_by_vpid(pid_t vpid
)
3293 struct task_struct
*task
;
3300 task
= find_task_by_vpid(vpid
);
3302 get_task_struct(task
);
3306 return ERR_PTR(-ESRCH
);
3308 /* Reuse ptrace permission checks for now. */
3310 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
3315 put_task_struct(task
);
3316 return ERR_PTR(err
);
3321 * Returns a matching context with refcount and pincount.
3323 static struct perf_event_context
*
3324 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
3326 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3327 struct perf_cpu_context
*cpuctx
;
3328 unsigned long flags
;
3332 /* Must be root to operate on a CPU event: */
3333 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3334 return ERR_PTR(-EACCES
);
3337 * We could be clever and allow to attach a event to an
3338 * offline CPU and activate it when the CPU comes up, but
3341 if (!cpu_online(cpu
))
3342 return ERR_PTR(-ENODEV
);
3344 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3353 ctxn
= pmu
->task_ctx_nr
;
3358 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3360 clone_ctx
= unclone_ctx(ctx
);
3362 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3367 ctx
= alloc_perf_context(pmu
, task
);
3373 mutex_lock(&task
->perf_event_mutex
);
3375 * If it has already passed perf_event_exit_task().
3376 * we must see PF_EXITING, it takes this mutex too.
3378 if (task
->flags
& PF_EXITING
)
3380 else if (task
->perf_event_ctxp
[ctxn
])
3385 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3387 mutex_unlock(&task
->perf_event_mutex
);
3389 if (unlikely(err
)) {
3401 return ERR_PTR(err
);
3404 static void perf_event_free_filter(struct perf_event
*event
);
3406 static void free_event_rcu(struct rcu_head
*head
)
3408 struct perf_event
*event
;
3410 event
= container_of(head
, struct perf_event
, rcu_head
);
3412 put_pid_ns(event
->ns
);
3413 perf_event_free_filter(event
);
3417 static void ring_buffer_put(struct ring_buffer
*rb
);
3418 static void ring_buffer_attach(struct perf_event
*event
,
3419 struct ring_buffer
*rb
);
3421 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3426 if (has_branch_stack(event
)) {
3427 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
3428 atomic_dec(&per_cpu(perf_branch_stack_events
, cpu
));
3430 if (is_cgroup_event(event
))
3431 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3434 static void unaccount_event(struct perf_event
*event
)
3439 if (event
->attach_state
& PERF_ATTACH_TASK
)
3440 static_key_slow_dec_deferred(&perf_sched_events
);
3441 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3442 atomic_dec(&nr_mmap_events
);
3443 if (event
->attr
.comm
)
3444 atomic_dec(&nr_comm_events
);
3445 if (event
->attr
.task
)
3446 atomic_dec(&nr_task_events
);
3447 if (event
->attr
.freq
)
3448 atomic_dec(&nr_freq_events
);
3449 if (is_cgroup_event(event
))
3450 static_key_slow_dec_deferred(&perf_sched_events
);
3451 if (has_branch_stack(event
))
3452 static_key_slow_dec_deferred(&perf_sched_events
);
3454 unaccount_event_cpu(event
, event
->cpu
);
3457 static void __free_event(struct perf_event
*event
)
3459 if (!event
->parent
) {
3460 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3461 put_callchain_buffers();
3465 event
->destroy(event
);
3468 put_ctx(event
->ctx
);
3471 module_put(event
->pmu
->module
);
3473 call_rcu(&event
->rcu_head
, free_event_rcu
);
3476 static void _free_event(struct perf_event
*event
)
3478 irq_work_sync(&event
->pending
);
3480 unaccount_event(event
);
3484 * Can happen when we close an event with re-directed output.
3486 * Since we have a 0 refcount, perf_mmap_close() will skip
3487 * over us; possibly making our ring_buffer_put() the last.
3489 mutex_lock(&event
->mmap_mutex
);
3490 ring_buffer_attach(event
, NULL
);
3491 mutex_unlock(&event
->mmap_mutex
);
3494 if (is_cgroup_event(event
))
3495 perf_detach_cgroup(event
);
3497 __free_event(event
);
3501 * Used to free events which have a known refcount of 1, such as in error paths
3502 * where the event isn't exposed yet and inherited events.
3504 static void free_event(struct perf_event
*event
)
3506 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
3507 "unexpected event refcount: %ld; ptr=%p\n",
3508 atomic_long_read(&event
->refcount
), event
)) {
3509 /* leak to avoid use-after-free */
3517 * Remove user event from the owner task.
3519 static void perf_remove_from_owner(struct perf_event
*event
)
3521 struct task_struct
*owner
;
3524 owner
= ACCESS_ONCE(event
->owner
);
3526 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3527 * !owner it means the list deletion is complete and we can indeed
3528 * free this event, otherwise we need to serialize on
3529 * owner->perf_event_mutex.
3531 smp_read_barrier_depends();
3534 * Since delayed_put_task_struct() also drops the last
3535 * task reference we can safely take a new reference
3536 * while holding the rcu_read_lock().
3538 get_task_struct(owner
);
3544 * If we're here through perf_event_exit_task() we're already
3545 * holding ctx->mutex which would be an inversion wrt. the
3546 * normal lock order.
3548 * However we can safely take this lock because its the child
3551 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
3554 * We have to re-check the event->owner field, if it is cleared
3555 * we raced with perf_event_exit_task(), acquiring the mutex
3556 * ensured they're done, and we can proceed with freeing the
3560 list_del_init(&event
->owner_entry
);
3561 mutex_unlock(&owner
->perf_event_mutex
);
3562 put_task_struct(owner
);
3567 * Called when the last reference to the file is gone.
3569 static void put_event(struct perf_event
*event
)
3571 struct perf_event_context
*ctx
;
3573 if (!atomic_long_dec_and_test(&event
->refcount
))
3576 if (!is_kernel_event(event
))
3577 perf_remove_from_owner(event
);
3580 * There are two ways this annotation is useful:
3582 * 1) there is a lock recursion from perf_event_exit_task
3583 * see the comment there.
3585 * 2) there is a lock-inversion with mmap_sem through
3586 * perf_event_read_group(), which takes faults while
3587 * holding ctx->mutex, however this is called after
3588 * the last filedesc died, so there is no possibility
3589 * to trigger the AB-BA case.
3591 ctx
= perf_event_ctx_lock_nested(event
, SINGLE_DEPTH_NESTING
);
3592 WARN_ON_ONCE(ctx
->parent_ctx
);
3593 perf_remove_from_context(event
, true);
3594 perf_event_ctx_unlock(event
, ctx
);
3599 int perf_event_release_kernel(struct perf_event
*event
)
3604 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3606 static int perf_release(struct inode
*inode
, struct file
*file
)
3608 put_event(file
->private_data
);
3613 * Remove all orphanes events from the context.
3615 static void orphans_remove_work(struct work_struct
*work
)
3617 struct perf_event_context
*ctx
;
3618 struct perf_event
*event
, *tmp
;
3620 ctx
= container_of(work
, struct perf_event_context
,
3621 orphans_remove
.work
);
3623 mutex_lock(&ctx
->mutex
);
3624 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
) {
3625 struct perf_event
*parent_event
= event
->parent
;
3627 if (!is_orphaned_child(event
))
3630 perf_remove_from_context(event
, true);
3632 mutex_lock(&parent_event
->child_mutex
);
3633 list_del_init(&event
->child_list
);
3634 mutex_unlock(&parent_event
->child_mutex
);
3637 put_event(parent_event
);
3640 raw_spin_lock_irq(&ctx
->lock
);
3641 ctx
->orphans_remove_sched
= false;
3642 raw_spin_unlock_irq(&ctx
->lock
);
3643 mutex_unlock(&ctx
->mutex
);
3648 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3650 struct perf_event
*child
;
3656 mutex_lock(&event
->child_mutex
);
3657 total
+= perf_event_read(event
);
3658 *enabled
+= event
->total_time_enabled
+
3659 atomic64_read(&event
->child_total_time_enabled
);
3660 *running
+= event
->total_time_running
+
3661 atomic64_read(&event
->child_total_time_running
);
3663 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3664 total
+= perf_event_read(child
);
3665 *enabled
+= child
->total_time_enabled
;
3666 *running
+= child
->total_time_running
;
3668 mutex_unlock(&event
->child_mutex
);
3672 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3674 static int perf_event_read_group(struct perf_event
*event
,
3675 u64 read_format
, char __user
*buf
)
3677 struct perf_event
*leader
= event
->group_leader
, *sub
;
3678 struct perf_event_context
*ctx
= leader
->ctx
;
3679 int n
= 0, size
= 0, ret
;
3680 u64 count
, enabled
, running
;
3683 lockdep_assert_held(&ctx
->mutex
);
3685 count
= perf_event_read_value(leader
, &enabled
, &running
);
3687 values
[n
++] = 1 + leader
->nr_siblings
;
3688 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3689 values
[n
++] = enabled
;
3690 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3691 values
[n
++] = running
;
3692 values
[n
++] = count
;
3693 if (read_format
& PERF_FORMAT_ID
)
3694 values
[n
++] = primary_event_id(leader
);
3696 size
= n
* sizeof(u64
);
3698 if (copy_to_user(buf
, values
, size
))
3703 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3706 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3707 if (read_format
& PERF_FORMAT_ID
)
3708 values
[n
++] = primary_event_id(sub
);
3710 size
= n
* sizeof(u64
);
3712 if (copy_to_user(buf
+ ret
, values
, size
)) {
3722 static int perf_event_read_one(struct perf_event
*event
,
3723 u64 read_format
, char __user
*buf
)
3725 u64 enabled
, running
;
3729 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3730 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3731 values
[n
++] = enabled
;
3732 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3733 values
[n
++] = running
;
3734 if (read_format
& PERF_FORMAT_ID
)
3735 values
[n
++] = primary_event_id(event
);
3737 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3740 return n
* sizeof(u64
);
3743 static bool is_event_hup(struct perf_event
*event
)
3747 if (event
->state
!= PERF_EVENT_STATE_EXIT
)
3750 mutex_lock(&event
->child_mutex
);
3751 no_children
= list_empty(&event
->child_list
);
3752 mutex_unlock(&event
->child_mutex
);
3757 * Read the performance event - simple non blocking version for now
3760 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3762 u64 read_format
= event
->attr
.read_format
;
3766 * Return end-of-file for a read on a event that is in
3767 * error state (i.e. because it was pinned but it couldn't be
3768 * scheduled on to the CPU at some point).
3770 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3773 if (count
< event
->read_size
)
3776 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3777 if (read_format
& PERF_FORMAT_GROUP
)
3778 ret
= perf_event_read_group(event
, read_format
, buf
);
3780 ret
= perf_event_read_one(event
, read_format
, buf
);
3786 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3788 struct perf_event
*event
= file
->private_data
;
3789 struct perf_event_context
*ctx
;
3792 ctx
= perf_event_ctx_lock(event
);
3793 ret
= perf_read_hw(event
, buf
, count
);
3794 perf_event_ctx_unlock(event
, ctx
);
3799 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3801 struct perf_event
*event
= file
->private_data
;
3802 struct ring_buffer
*rb
;
3803 unsigned int events
= POLLHUP
;
3805 poll_wait(file
, &event
->waitq
, wait
);
3807 if (is_event_hup(event
))
3811 * Pin the event->rb by taking event->mmap_mutex; otherwise
3812 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3814 mutex_lock(&event
->mmap_mutex
);
3817 events
= atomic_xchg(&rb
->poll
, 0);
3818 mutex_unlock(&event
->mmap_mutex
);
3822 static void _perf_event_reset(struct perf_event
*event
)
3824 (void)perf_event_read(event
);
3825 local64_set(&event
->count
, 0);
3826 perf_event_update_userpage(event
);
3830 * Holding the top-level event's child_mutex means that any
3831 * descendant process that has inherited this event will block
3832 * in sync_child_event if it goes to exit, thus satisfying the
3833 * task existence requirements of perf_event_enable/disable.
3835 static void perf_event_for_each_child(struct perf_event
*event
,
3836 void (*func
)(struct perf_event
*))
3838 struct perf_event
*child
;
3840 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3842 mutex_lock(&event
->child_mutex
);
3844 list_for_each_entry(child
, &event
->child_list
, child_list
)
3846 mutex_unlock(&event
->child_mutex
);
3849 static void perf_event_for_each(struct perf_event
*event
,
3850 void (*func
)(struct perf_event
*))
3852 struct perf_event_context
*ctx
= event
->ctx
;
3853 struct perf_event
*sibling
;
3855 lockdep_assert_held(&ctx
->mutex
);
3857 event
= event
->group_leader
;
3859 perf_event_for_each_child(event
, func
);
3860 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3861 perf_event_for_each_child(sibling
, func
);
3864 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3866 struct perf_event_context
*ctx
= event
->ctx
;
3867 int ret
= 0, active
;
3870 if (!is_sampling_event(event
))
3873 if (copy_from_user(&value
, arg
, sizeof(value
)))
3879 raw_spin_lock_irq(&ctx
->lock
);
3880 if (event
->attr
.freq
) {
3881 if (value
> sysctl_perf_event_sample_rate
) {
3886 event
->attr
.sample_freq
= value
;
3888 event
->attr
.sample_period
= value
;
3889 event
->hw
.sample_period
= value
;
3892 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
3894 perf_pmu_disable(ctx
->pmu
);
3895 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3898 local64_set(&event
->hw
.period_left
, 0);
3901 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3902 perf_pmu_enable(ctx
->pmu
);
3906 raw_spin_unlock_irq(&ctx
->lock
);
3911 static const struct file_operations perf_fops
;
3913 static inline int perf_fget_light(int fd
, struct fd
*p
)
3915 struct fd f
= fdget(fd
);
3919 if (f
.file
->f_op
!= &perf_fops
) {
3927 static int perf_event_set_output(struct perf_event
*event
,
3928 struct perf_event
*output_event
);
3929 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3931 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
3933 void (*func
)(struct perf_event
*);
3937 case PERF_EVENT_IOC_ENABLE
:
3938 func
= _perf_event_enable
;
3940 case PERF_EVENT_IOC_DISABLE
:
3941 func
= _perf_event_disable
;
3943 case PERF_EVENT_IOC_RESET
:
3944 func
= _perf_event_reset
;
3947 case PERF_EVENT_IOC_REFRESH
:
3948 return _perf_event_refresh(event
, arg
);
3950 case PERF_EVENT_IOC_PERIOD
:
3951 return perf_event_period(event
, (u64 __user
*)arg
);
3953 case PERF_EVENT_IOC_ID
:
3955 u64 id
= primary_event_id(event
);
3957 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
3962 case PERF_EVENT_IOC_SET_OUTPUT
:
3966 struct perf_event
*output_event
;
3968 ret
= perf_fget_light(arg
, &output
);
3971 output_event
= output
.file
->private_data
;
3972 ret
= perf_event_set_output(event
, output_event
);
3975 ret
= perf_event_set_output(event
, NULL
);
3980 case PERF_EVENT_IOC_SET_FILTER
:
3981 return perf_event_set_filter(event
, (void __user
*)arg
);
3987 if (flags
& PERF_IOC_FLAG_GROUP
)
3988 perf_event_for_each(event
, func
);
3990 perf_event_for_each_child(event
, func
);
3995 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3997 struct perf_event
*event
= file
->private_data
;
3998 struct perf_event_context
*ctx
;
4001 ctx
= perf_event_ctx_lock(event
);
4002 ret
= _perf_ioctl(event
, cmd
, arg
);
4003 perf_event_ctx_unlock(event
, ctx
);
4008 #ifdef CONFIG_COMPAT
4009 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4012 switch (_IOC_NR(cmd
)) {
4013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4014 case _IOC_NR(PERF_EVENT_IOC_ID
):
4015 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4016 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4017 cmd
&= ~IOCSIZE_MASK
;
4018 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4022 return perf_ioctl(file
, cmd
, arg
);
4025 # define perf_compat_ioctl NULL
4028 int perf_event_task_enable(void)
4030 struct perf_event_context
*ctx
;
4031 struct perf_event
*event
;
4033 mutex_lock(¤t
->perf_event_mutex
);
4034 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4035 ctx
= perf_event_ctx_lock(event
);
4036 perf_event_for_each_child(event
, _perf_event_enable
);
4037 perf_event_ctx_unlock(event
, ctx
);
4039 mutex_unlock(¤t
->perf_event_mutex
);
4044 int perf_event_task_disable(void)
4046 struct perf_event_context
*ctx
;
4047 struct perf_event
*event
;
4049 mutex_lock(¤t
->perf_event_mutex
);
4050 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4051 ctx
= perf_event_ctx_lock(event
);
4052 perf_event_for_each_child(event
, _perf_event_disable
);
4053 perf_event_ctx_unlock(event
, ctx
);
4055 mutex_unlock(¤t
->perf_event_mutex
);
4060 static int perf_event_index(struct perf_event
*event
)
4062 if (event
->hw
.state
& PERF_HES_STOPPED
)
4065 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4068 return event
->pmu
->event_idx(event
);
4071 static void calc_timer_values(struct perf_event
*event
,
4078 *now
= perf_clock();
4079 ctx_time
= event
->shadow_ctx_time
+ *now
;
4080 *enabled
= ctx_time
- event
->tstamp_enabled
;
4081 *running
= ctx_time
- event
->tstamp_running
;
4084 static void perf_event_init_userpage(struct perf_event
*event
)
4086 struct perf_event_mmap_page
*userpg
;
4087 struct ring_buffer
*rb
;
4090 rb
= rcu_dereference(event
->rb
);
4094 userpg
= rb
->user_page
;
4096 /* Allow new userspace to detect that bit 0 is deprecated */
4097 userpg
->cap_bit0_is_deprecated
= 1;
4098 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4104 void __weak
arch_perf_update_userpage(
4105 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4110 * Callers need to ensure there can be no nesting of this function, otherwise
4111 * the seqlock logic goes bad. We can not serialize this because the arch
4112 * code calls this from NMI context.
4114 void perf_event_update_userpage(struct perf_event
*event
)
4116 struct perf_event_mmap_page
*userpg
;
4117 struct ring_buffer
*rb
;
4118 u64 enabled
, running
, now
;
4121 rb
= rcu_dereference(event
->rb
);
4126 * compute total_time_enabled, total_time_running
4127 * based on snapshot values taken when the event
4128 * was last scheduled in.
4130 * we cannot simply called update_context_time()
4131 * because of locking issue as we can be called in
4134 calc_timer_values(event
, &now
, &enabled
, &running
);
4136 userpg
= rb
->user_page
;
4138 * Disable preemption so as to not let the corresponding user-space
4139 * spin too long if we get preempted.
4144 userpg
->index
= perf_event_index(event
);
4145 userpg
->offset
= perf_event_count(event
);
4147 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4149 userpg
->time_enabled
= enabled
+
4150 atomic64_read(&event
->child_total_time_enabled
);
4152 userpg
->time_running
= running
+
4153 atomic64_read(&event
->child_total_time_running
);
4155 arch_perf_update_userpage(event
, userpg
, now
);
4164 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4166 struct perf_event
*event
= vma
->vm_file
->private_data
;
4167 struct ring_buffer
*rb
;
4168 int ret
= VM_FAULT_SIGBUS
;
4170 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4171 if (vmf
->pgoff
== 0)
4177 rb
= rcu_dereference(event
->rb
);
4181 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4184 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4188 get_page(vmf
->page
);
4189 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4190 vmf
->page
->index
= vmf
->pgoff
;
4199 static void ring_buffer_attach(struct perf_event
*event
,
4200 struct ring_buffer
*rb
)
4202 struct ring_buffer
*old_rb
= NULL
;
4203 unsigned long flags
;
4207 * Should be impossible, we set this when removing
4208 * event->rb_entry and wait/clear when adding event->rb_entry.
4210 WARN_ON_ONCE(event
->rcu_pending
);
4213 event
->rcu_batches
= get_state_synchronize_rcu();
4214 event
->rcu_pending
= 1;
4216 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4217 list_del_rcu(&event
->rb_entry
);
4218 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4221 if (event
->rcu_pending
&& rb
) {
4222 cond_synchronize_rcu(event
->rcu_batches
);
4223 event
->rcu_pending
= 0;
4227 spin_lock_irqsave(&rb
->event_lock
, flags
);
4228 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4229 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4232 rcu_assign_pointer(event
->rb
, rb
);
4235 ring_buffer_put(old_rb
);
4237 * Since we detached before setting the new rb, so that we
4238 * could attach the new rb, we could have missed a wakeup.
4241 wake_up_all(&event
->waitq
);
4245 static void ring_buffer_wakeup(struct perf_event
*event
)
4247 struct ring_buffer
*rb
;
4250 rb
= rcu_dereference(event
->rb
);
4252 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4253 wake_up_all(&event
->waitq
);
4258 static void rb_free_rcu(struct rcu_head
*rcu_head
)
4260 struct ring_buffer
*rb
;
4262 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
4266 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4268 struct ring_buffer
*rb
;
4271 rb
= rcu_dereference(event
->rb
);
4273 if (!atomic_inc_not_zero(&rb
->refcount
))
4281 static void ring_buffer_put(struct ring_buffer
*rb
)
4283 if (!atomic_dec_and_test(&rb
->refcount
))
4286 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4288 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4291 static void perf_mmap_open(struct vm_area_struct
*vma
)
4293 struct perf_event
*event
= vma
->vm_file
->private_data
;
4295 atomic_inc(&event
->mmap_count
);
4296 atomic_inc(&event
->rb
->mmap_count
);
4298 if (event
->pmu
->event_mapped
)
4299 event
->pmu
->event_mapped(event
);
4303 * A buffer can be mmap()ed multiple times; either directly through the same
4304 * event, or through other events by use of perf_event_set_output().
4306 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4307 * the buffer here, where we still have a VM context. This means we need
4308 * to detach all events redirecting to us.
4310 static void perf_mmap_close(struct vm_area_struct
*vma
)
4312 struct perf_event
*event
= vma
->vm_file
->private_data
;
4314 struct ring_buffer
*rb
= ring_buffer_get(event
);
4315 struct user_struct
*mmap_user
= rb
->mmap_user
;
4316 int mmap_locked
= rb
->mmap_locked
;
4317 unsigned long size
= perf_data_size(rb
);
4319 if (event
->pmu
->event_unmapped
)
4320 event
->pmu
->event_unmapped(event
);
4322 atomic_dec(&rb
->mmap_count
);
4324 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
4327 ring_buffer_attach(event
, NULL
);
4328 mutex_unlock(&event
->mmap_mutex
);
4330 /* If there's still other mmap()s of this buffer, we're done. */
4331 if (atomic_read(&rb
->mmap_count
))
4335 * No other mmap()s, detach from all other events that might redirect
4336 * into the now unreachable buffer. Somewhat complicated by the
4337 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4341 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
4342 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
4344 * This event is en-route to free_event() which will
4345 * detach it and remove it from the list.
4351 mutex_lock(&event
->mmap_mutex
);
4353 * Check we didn't race with perf_event_set_output() which can
4354 * swizzle the rb from under us while we were waiting to
4355 * acquire mmap_mutex.
4357 * If we find a different rb; ignore this event, a next
4358 * iteration will no longer find it on the list. We have to
4359 * still restart the iteration to make sure we're not now
4360 * iterating the wrong list.
4362 if (event
->rb
== rb
)
4363 ring_buffer_attach(event
, NULL
);
4365 mutex_unlock(&event
->mmap_mutex
);
4369 * Restart the iteration; either we're on the wrong list or
4370 * destroyed its integrity by doing a deletion.
4377 * It could be there's still a few 0-ref events on the list; they'll
4378 * get cleaned up by free_event() -- they'll also still have their
4379 * ref on the rb and will free it whenever they are done with it.
4381 * Aside from that, this buffer is 'fully' detached and unmapped,
4382 * undo the VM accounting.
4385 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4386 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4387 free_uid(mmap_user
);
4390 ring_buffer_put(rb
); /* could be last */
4393 static const struct vm_operations_struct perf_mmap_vmops
= {
4394 .open
= perf_mmap_open
,
4395 .close
= perf_mmap_close
,
4396 .fault
= perf_mmap_fault
,
4397 .page_mkwrite
= perf_mmap_fault
,
4400 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4402 struct perf_event
*event
= file
->private_data
;
4403 unsigned long user_locked
, user_lock_limit
;
4404 struct user_struct
*user
= current_user();
4405 unsigned long locked
, lock_limit
;
4406 struct ring_buffer
*rb
;
4407 unsigned long vma_size
;
4408 unsigned long nr_pages
;
4409 long user_extra
, extra
;
4410 int ret
= 0, flags
= 0;
4413 * Don't allow mmap() of inherited per-task counters. This would
4414 * create a performance issue due to all children writing to the
4417 if (event
->cpu
== -1 && event
->attr
.inherit
)
4420 if (!(vma
->vm_flags
& VM_SHARED
))
4423 vma_size
= vma
->vm_end
- vma
->vm_start
;
4424 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4427 * If we have rb pages ensure they're a power-of-two number, so we
4428 * can do bitmasks instead of modulo.
4430 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4433 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4436 if (vma
->vm_pgoff
!= 0)
4439 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4441 mutex_lock(&event
->mmap_mutex
);
4443 if (event
->rb
->nr_pages
!= nr_pages
) {
4448 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4450 * Raced against perf_mmap_close() through
4451 * perf_event_set_output(). Try again, hope for better
4454 mutex_unlock(&event
->mmap_mutex
);
4461 user_extra
= nr_pages
+ 1;
4462 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4465 * Increase the limit linearly with more CPUs:
4467 user_lock_limit
*= num_online_cpus();
4469 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4472 if (user_locked
> user_lock_limit
)
4473 extra
= user_locked
- user_lock_limit
;
4475 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4476 lock_limit
>>= PAGE_SHIFT
;
4477 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4479 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4480 !capable(CAP_IPC_LOCK
)) {
4487 if (vma
->vm_flags
& VM_WRITE
)
4488 flags
|= RING_BUFFER_WRITABLE
;
4490 rb
= rb_alloc(nr_pages
,
4491 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4499 atomic_set(&rb
->mmap_count
, 1);
4500 rb
->mmap_locked
= extra
;
4501 rb
->mmap_user
= get_current_user();
4503 atomic_long_add(user_extra
, &user
->locked_vm
);
4504 vma
->vm_mm
->pinned_vm
+= extra
;
4506 ring_buffer_attach(event
, rb
);
4508 perf_event_init_userpage(event
);
4509 perf_event_update_userpage(event
);
4513 atomic_inc(&event
->mmap_count
);
4514 mutex_unlock(&event
->mmap_mutex
);
4517 * Since pinned accounting is per vm we cannot allow fork() to copy our
4520 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4521 vma
->vm_ops
= &perf_mmap_vmops
;
4523 if (event
->pmu
->event_mapped
)
4524 event
->pmu
->event_mapped(event
);
4529 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4531 struct inode
*inode
= file_inode(filp
);
4532 struct perf_event
*event
= filp
->private_data
;
4535 mutex_lock(&inode
->i_mutex
);
4536 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4537 mutex_unlock(&inode
->i_mutex
);
4545 static const struct file_operations perf_fops
= {
4546 .llseek
= no_llseek
,
4547 .release
= perf_release
,
4550 .unlocked_ioctl
= perf_ioctl
,
4551 .compat_ioctl
= perf_compat_ioctl
,
4553 .fasync
= perf_fasync
,
4559 * If there's data, ensure we set the poll() state and publish everything
4560 * to user-space before waking everybody up.
4563 void perf_event_wakeup(struct perf_event
*event
)
4565 ring_buffer_wakeup(event
);
4567 if (event
->pending_kill
) {
4568 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
4569 event
->pending_kill
= 0;
4573 static void perf_pending_event(struct irq_work
*entry
)
4575 struct perf_event
*event
= container_of(entry
,
4576 struct perf_event
, pending
);
4579 rctx
= perf_swevent_get_recursion_context();
4581 * If we 'fail' here, that's OK, it means recursion is already disabled
4582 * and we won't recurse 'further'.
4585 if (event
->pending_disable
) {
4586 event
->pending_disable
= 0;
4587 __perf_event_disable(event
);
4590 if (event
->pending_wakeup
) {
4591 event
->pending_wakeup
= 0;
4592 perf_event_wakeup(event
);
4596 perf_swevent_put_recursion_context(rctx
);
4600 * We assume there is only KVM supporting the callbacks.
4601 * Later on, we might change it to a list if there is
4602 * another virtualization implementation supporting the callbacks.
4604 struct perf_guest_info_callbacks
*perf_guest_cbs
;
4606 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4608 perf_guest_cbs
= cbs
;
4611 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
4613 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4615 perf_guest_cbs
= NULL
;
4618 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
4621 perf_output_sample_regs(struct perf_output_handle
*handle
,
4622 struct pt_regs
*regs
, u64 mask
)
4626 for_each_set_bit(bit
, (const unsigned long *) &mask
,
4627 sizeof(mask
) * BITS_PER_BYTE
) {
4630 val
= perf_reg_value(regs
, bit
);
4631 perf_output_put(handle
, val
);
4635 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
4636 struct pt_regs
*regs
,
4637 struct pt_regs
*regs_user_copy
)
4639 if (user_mode(regs
)) {
4640 regs_user
->abi
= perf_reg_abi(current
);
4641 regs_user
->regs
= regs
;
4642 } else if (current
->mm
) {
4643 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
4645 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
4646 regs_user
->regs
= NULL
;
4650 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
4651 struct pt_regs
*regs
)
4653 regs_intr
->regs
= regs
;
4654 regs_intr
->abi
= perf_reg_abi(current
);
4659 * Get remaining task size from user stack pointer.
4661 * It'd be better to take stack vma map and limit this more
4662 * precisly, but there's no way to get it safely under interrupt,
4663 * so using TASK_SIZE as limit.
4665 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
4667 unsigned long addr
= perf_user_stack_pointer(regs
);
4669 if (!addr
|| addr
>= TASK_SIZE
)
4672 return TASK_SIZE
- addr
;
4676 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
4677 struct pt_regs
*regs
)
4681 /* No regs, no stack pointer, no dump. */
4686 * Check if we fit in with the requested stack size into the:
4688 * If we don't, we limit the size to the TASK_SIZE.
4690 * - remaining sample size
4691 * If we don't, we customize the stack size to
4692 * fit in to the remaining sample size.
4695 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
4696 stack_size
= min(stack_size
, (u16
) task_size
);
4698 /* Current header size plus static size and dynamic size. */
4699 header_size
+= 2 * sizeof(u64
);
4701 /* Do we fit in with the current stack dump size? */
4702 if ((u16
) (header_size
+ stack_size
) < header_size
) {
4704 * If we overflow the maximum size for the sample,
4705 * we customize the stack dump size to fit in.
4707 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
4708 stack_size
= round_up(stack_size
, sizeof(u64
));
4715 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
4716 struct pt_regs
*regs
)
4718 /* Case of a kernel thread, nothing to dump */
4721 perf_output_put(handle
, size
);
4730 * - the size requested by user or the best one we can fit
4731 * in to the sample max size
4733 * - user stack dump data
4735 * - the actual dumped size
4739 perf_output_put(handle
, dump_size
);
4742 sp
= perf_user_stack_pointer(regs
);
4743 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
4744 dyn_size
= dump_size
- rem
;
4746 perf_output_skip(handle
, rem
);
4749 perf_output_put(handle
, dyn_size
);
4753 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4754 struct perf_sample_data
*data
,
4755 struct perf_event
*event
)
4757 u64 sample_type
= event
->attr
.sample_type
;
4759 data
->type
= sample_type
;
4760 header
->size
+= event
->id_header_size
;
4762 if (sample_type
& PERF_SAMPLE_TID
) {
4763 /* namespace issues */
4764 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4765 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4768 if (sample_type
& PERF_SAMPLE_TIME
)
4769 data
->time
= perf_clock();
4771 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
4772 data
->id
= primary_event_id(event
);
4774 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4775 data
->stream_id
= event
->id
;
4777 if (sample_type
& PERF_SAMPLE_CPU
) {
4778 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4779 data
->cpu_entry
.reserved
= 0;
4783 void perf_event_header__init_id(struct perf_event_header
*header
,
4784 struct perf_sample_data
*data
,
4785 struct perf_event
*event
)
4787 if (event
->attr
.sample_id_all
)
4788 __perf_event_header__init_id(header
, data
, event
);
4791 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4792 struct perf_sample_data
*data
)
4794 u64 sample_type
= data
->type
;
4796 if (sample_type
& PERF_SAMPLE_TID
)
4797 perf_output_put(handle
, data
->tid_entry
);
4799 if (sample_type
& PERF_SAMPLE_TIME
)
4800 perf_output_put(handle
, data
->time
);
4802 if (sample_type
& PERF_SAMPLE_ID
)
4803 perf_output_put(handle
, data
->id
);
4805 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4806 perf_output_put(handle
, data
->stream_id
);
4808 if (sample_type
& PERF_SAMPLE_CPU
)
4809 perf_output_put(handle
, data
->cpu_entry
);
4811 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4812 perf_output_put(handle
, data
->id
);
4815 void perf_event__output_id_sample(struct perf_event
*event
,
4816 struct perf_output_handle
*handle
,
4817 struct perf_sample_data
*sample
)
4819 if (event
->attr
.sample_id_all
)
4820 __perf_event__output_id_sample(handle
, sample
);
4823 static void perf_output_read_one(struct perf_output_handle
*handle
,
4824 struct perf_event
*event
,
4825 u64 enabled
, u64 running
)
4827 u64 read_format
= event
->attr
.read_format
;
4831 values
[n
++] = perf_event_count(event
);
4832 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4833 values
[n
++] = enabled
+
4834 atomic64_read(&event
->child_total_time_enabled
);
4836 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4837 values
[n
++] = running
+
4838 atomic64_read(&event
->child_total_time_running
);
4840 if (read_format
& PERF_FORMAT_ID
)
4841 values
[n
++] = primary_event_id(event
);
4843 __output_copy(handle
, values
, n
* sizeof(u64
));
4847 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4849 static void perf_output_read_group(struct perf_output_handle
*handle
,
4850 struct perf_event
*event
,
4851 u64 enabled
, u64 running
)
4853 struct perf_event
*leader
= event
->group_leader
, *sub
;
4854 u64 read_format
= event
->attr
.read_format
;
4858 values
[n
++] = 1 + leader
->nr_siblings
;
4860 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4861 values
[n
++] = enabled
;
4863 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4864 values
[n
++] = running
;
4866 if (leader
!= event
)
4867 leader
->pmu
->read(leader
);
4869 values
[n
++] = perf_event_count(leader
);
4870 if (read_format
& PERF_FORMAT_ID
)
4871 values
[n
++] = primary_event_id(leader
);
4873 __output_copy(handle
, values
, n
* sizeof(u64
));
4875 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4878 if ((sub
!= event
) &&
4879 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
4880 sub
->pmu
->read(sub
);
4882 values
[n
++] = perf_event_count(sub
);
4883 if (read_format
& PERF_FORMAT_ID
)
4884 values
[n
++] = primary_event_id(sub
);
4886 __output_copy(handle
, values
, n
* sizeof(u64
));
4890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4891 PERF_FORMAT_TOTAL_TIME_RUNNING)
4893 static void perf_output_read(struct perf_output_handle
*handle
,
4894 struct perf_event
*event
)
4896 u64 enabled
= 0, running
= 0, now
;
4897 u64 read_format
= event
->attr
.read_format
;
4900 * compute total_time_enabled, total_time_running
4901 * based on snapshot values taken when the event
4902 * was last scheduled in.
4904 * we cannot simply called update_context_time()
4905 * because of locking issue as we are called in
4908 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
4909 calc_timer_values(event
, &now
, &enabled
, &running
);
4911 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
4912 perf_output_read_group(handle
, event
, enabled
, running
);
4914 perf_output_read_one(handle
, event
, enabled
, running
);
4917 void perf_output_sample(struct perf_output_handle
*handle
,
4918 struct perf_event_header
*header
,
4919 struct perf_sample_data
*data
,
4920 struct perf_event
*event
)
4922 u64 sample_type
= data
->type
;
4924 perf_output_put(handle
, *header
);
4926 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4927 perf_output_put(handle
, data
->id
);
4929 if (sample_type
& PERF_SAMPLE_IP
)
4930 perf_output_put(handle
, data
->ip
);
4932 if (sample_type
& PERF_SAMPLE_TID
)
4933 perf_output_put(handle
, data
->tid_entry
);
4935 if (sample_type
& PERF_SAMPLE_TIME
)
4936 perf_output_put(handle
, data
->time
);
4938 if (sample_type
& PERF_SAMPLE_ADDR
)
4939 perf_output_put(handle
, data
->addr
);
4941 if (sample_type
& PERF_SAMPLE_ID
)
4942 perf_output_put(handle
, data
->id
);
4944 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4945 perf_output_put(handle
, data
->stream_id
);
4947 if (sample_type
& PERF_SAMPLE_CPU
)
4948 perf_output_put(handle
, data
->cpu_entry
);
4950 if (sample_type
& PERF_SAMPLE_PERIOD
)
4951 perf_output_put(handle
, data
->period
);
4953 if (sample_type
& PERF_SAMPLE_READ
)
4954 perf_output_read(handle
, event
);
4956 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4957 if (data
->callchain
) {
4960 if (data
->callchain
)
4961 size
+= data
->callchain
->nr
;
4963 size
*= sizeof(u64
);
4965 __output_copy(handle
, data
->callchain
, size
);
4968 perf_output_put(handle
, nr
);
4972 if (sample_type
& PERF_SAMPLE_RAW
) {
4974 perf_output_put(handle
, data
->raw
->size
);
4975 __output_copy(handle
, data
->raw
->data
,
4982 .size
= sizeof(u32
),
4985 perf_output_put(handle
, raw
);
4989 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4990 if (data
->br_stack
) {
4993 size
= data
->br_stack
->nr
4994 * sizeof(struct perf_branch_entry
);
4996 perf_output_put(handle
, data
->br_stack
->nr
);
4997 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5000 * we always store at least the value of nr
5003 perf_output_put(handle
, nr
);
5007 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5008 u64 abi
= data
->regs_user
.abi
;
5011 * If there are no regs to dump, notice it through
5012 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5014 perf_output_put(handle
, abi
);
5017 u64 mask
= event
->attr
.sample_regs_user
;
5018 perf_output_sample_regs(handle
,
5019 data
->regs_user
.regs
,
5024 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5025 perf_output_sample_ustack(handle
,
5026 data
->stack_user_size
,
5027 data
->regs_user
.regs
);
5030 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5031 perf_output_put(handle
, data
->weight
);
5033 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5034 perf_output_put(handle
, data
->data_src
.val
);
5036 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5037 perf_output_put(handle
, data
->txn
);
5039 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5040 u64 abi
= data
->regs_intr
.abi
;
5042 * If there are no regs to dump, notice it through
5043 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5045 perf_output_put(handle
, abi
);
5048 u64 mask
= event
->attr
.sample_regs_intr
;
5050 perf_output_sample_regs(handle
,
5051 data
->regs_intr
.regs
,
5056 if (!event
->attr
.watermark
) {
5057 int wakeup_events
= event
->attr
.wakeup_events
;
5059 if (wakeup_events
) {
5060 struct ring_buffer
*rb
= handle
->rb
;
5061 int events
= local_inc_return(&rb
->events
);
5063 if (events
>= wakeup_events
) {
5064 local_sub(wakeup_events
, &rb
->events
);
5065 local_inc(&rb
->wakeup
);
5071 void perf_prepare_sample(struct perf_event_header
*header
,
5072 struct perf_sample_data
*data
,
5073 struct perf_event
*event
,
5074 struct pt_regs
*regs
)
5076 u64 sample_type
= event
->attr
.sample_type
;
5078 header
->type
= PERF_RECORD_SAMPLE
;
5079 header
->size
= sizeof(*header
) + event
->header_size
;
5082 header
->misc
|= perf_misc_flags(regs
);
5084 __perf_event_header__init_id(header
, data
, event
);
5086 if (sample_type
& PERF_SAMPLE_IP
)
5087 data
->ip
= perf_instruction_pointer(regs
);
5089 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5092 data
->callchain
= perf_callchain(event
, regs
);
5094 if (data
->callchain
)
5095 size
+= data
->callchain
->nr
;
5097 header
->size
+= size
* sizeof(u64
);
5100 if (sample_type
& PERF_SAMPLE_RAW
) {
5101 int size
= sizeof(u32
);
5104 size
+= data
->raw
->size
;
5106 size
+= sizeof(u32
);
5108 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
5109 header
->size
+= size
;
5112 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5113 int size
= sizeof(u64
); /* nr */
5114 if (data
->br_stack
) {
5115 size
+= data
->br_stack
->nr
5116 * sizeof(struct perf_branch_entry
);
5118 header
->size
+= size
;
5121 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5122 perf_sample_regs_user(&data
->regs_user
, regs
,
5123 &data
->regs_user_copy
);
5125 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5126 /* regs dump ABI info */
5127 int size
= sizeof(u64
);
5129 if (data
->regs_user
.regs
) {
5130 u64 mask
= event
->attr
.sample_regs_user
;
5131 size
+= hweight64(mask
) * sizeof(u64
);
5134 header
->size
+= size
;
5137 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5139 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5140 * processed as the last one or have additional check added
5141 * in case new sample type is added, because we could eat
5142 * up the rest of the sample size.
5144 u16 stack_size
= event
->attr
.sample_stack_user
;
5145 u16 size
= sizeof(u64
);
5147 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5148 data
->regs_user
.regs
);
5151 * If there is something to dump, add space for the dump
5152 * itself and for the field that tells the dynamic size,
5153 * which is how many have been actually dumped.
5156 size
+= sizeof(u64
) + stack_size
;
5158 data
->stack_user_size
= stack_size
;
5159 header
->size
+= size
;
5162 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5163 /* regs dump ABI info */
5164 int size
= sizeof(u64
);
5166 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5168 if (data
->regs_intr
.regs
) {
5169 u64 mask
= event
->attr
.sample_regs_intr
;
5171 size
+= hweight64(mask
) * sizeof(u64
);
5174 header
->size
+= size
;
5178 static void perf_event_output(struct perf_event
*event
,
5179 struct perf_sample_data
*data
,
5180 struct pt_regs
*regs
)
5182 struct perf_output_handle handle
;
5183 struct perf_event_header header
;
5185 /* protect the callchain buffers */
5188 perf_prepare_sample(&header
, data
, event
, regs
);
5190 if (perf_output_begin(&handle
, event
, header
.size
))
5193 perf_output_sample(&handle
, &header
, data
, event
);
5195 perf_output_end(&handle
);
5205 struct perf_read_event
{
5206 struct perf_event_header header
;
5213 perf_event_read_event(struct perf_event
*event
,
5214 struct task_struct
*task
)
5216 struct perf_output_handle handle
;
5217 struct perf_sample_data sample
;
5218 struct perf_read_event read_event
= {
5220 .type
= PERF_RECORD_READ
,
5222 .size
= sizeof(read_event
) + event
->read_size
,
5224 .pid
= perf_event_pid(event
, task
),
5225 .tid
= perf_event_tid(event
, task
),
5229 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
5230 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
5234 perf_output_put(&handle
, read_event
);
5235 perf_output_read(&handle
, event
);
5236 perf_event__output_id_sample(event
, &handle
, &sample
);
5238 perf_output_end(&handle
);
5241 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
5244 perf_event_aux_ctx(struct perf_event_context
*ctx
,
5245 perf_event_aux_output_cb output
,
5248 struct perf_event
*event
;
5250 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5251 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
5253 if (!event_filter_match(event
))
5255 output(event
, data
);
5260 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
5261 struct perf_event_context
*task_ctx
)
5263 struct perf_cpu_context
*cpuctx
;
5264 struct perf_event_context
*ctx
;
5269 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5270 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
5271 if (cpuctx
->unique_pmu
!= pmu
)
5273 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
5276 ctxn
= pmu
->task_ctx_nr
;
5279 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
5281 perf_event_aux_ctx(ctx
, output
, data
);
5283 put_cpu_ptr(pmu
->pmu_cpu_context
);
5288 perf_event_aux_ctx(task_ctx
, output
, data
);
5295 * task tracking -- fork/exit
5297 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5300 struct perf_task_event
{
5301 struct task_struct
*task
;
5302 struct perf_event_context
*task_ctx
;
5305 struct perf_event_header header
;
5315 static int perf_event_task_match(struct perf_event
*event
)
5317 return event
->attr
.comm
|| event
->attr
.mmap
||
5318 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
5322 static void perf_event_task_output(struct perf_event
*event
,
5325 struct perf_task_event
*task_event
= data
;
5326 struct perf_output_handle handle
;
5327 struct perf_sample_data sample
;
5328 struct task_struct
*task
= task_event
->task
;
5329 int ret
, size
= task_event
->event_id
.header
.size
;
5331 if (!perf_event_task_match(event
))
5334 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
5336 ret
= perf_output_begin(&handle
, event
,
5337 task_event
->event_id
.header
.size
);
5341 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
5342 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
5344 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
5345 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
5347 perf_output_put(&handle
, task_event
->event_id
);
5349 perf_event__output_id_sample(event
, &handle
, &sample
);
5351 perf_output_end(&handle
);
5353 task_event
->event_id
.header
.size
= size
;
5356 static void perf_event_task(struct task_struct
*task
,
5357 struct perf_event_context
*task_ctx
,
5360 struct perf_task_event task_event
;
5362 if (!atomic_read(&nr_comm_events
) &&
5363 !atomic_read(&nr_mmap_events
) &&
5364 !atomic_read(&nr_task_events
))
5367 task_event
= (struct perf_task_event
){
5369 .task_ctx
= task_ctx
,
5372 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
5374 .size
= sizeof(task_event
.event_id
),
5380 .time
= perf_clock(),
5384 perf_event_aux(perf_event_task_output
,
5389 void perf_event_fork(struct task_struct
*task
)
5391 perf_event_task(task
, NULL
, 1);
5398 struct perf_comm_event
{
5399 struct task_struct
*task
;
5404 struct perf_event_header header
;
5411 static int perf_event_comm_match(struct perf_event
*event
)
5413 return event
->attr
.comm
;
5416 static void perf_event_comm_output(struct perf_event
*event
,
5419 struct perf_comm_event
*comm_event
= data
;
5420 struct perf_output_handle handle
;
5421 struct perf_sample_data sample
;
5422 int size
= comm_event
->event_id
.header
.size
;
5425 if (!perf_event_comm_match(event
))
5428 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
5429 ret
= perf_output_begin(&handle
, event
,
5430 comm_event
->event_id
.header
.size
);
5435 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5436 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5438 perf_output_put(&handle
, comm_event
->event_id
);
5439 __output_copy(&handle
, comm_event
->comm
,
5440 comm_event
->comm_size
);
5442 perf_event__output_id_sample(event
, &handle
, &sample
);
5444 perf_output_end(&handle
);
5446 comm_event
->event_id
.header
.size
= size
;
5449 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5451 char comm
[TASK_COMM_LEN
];
5454 memset(comm
, 0, sizeof(comm
));
5455 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5456 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5458 comm_event
->comm
= comm
;
5459 comm_event
->comm_size
= size
;
5461 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5463 perf_event_aux(perf_event_comm_output
,
5468 void perf_event_comm(struct task_struct
*task
, bool exec
)
5470 struct perf_comm_event comm_event
;
5472 if (!atomic_read(&nr_comm_events
))
5475 comm_event
= (struct perf_comm_event
){
5481 .type
= PERF_RECORD_COMM
,
5482 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
5490 perf_event_comm_event(&comm_event
);
5497 struct perf_mmap_event
{
5498 struct vm_area_struct
*vma
;
5500 const char *file_name
;
5508 struct perf_event_header header
;
5518 static int perf_event_mmap_match(struct perf_event
*event
,
5521 struct perf_mmap_event
*mmap_event
= data
;
5522 struct vm_area_struct
*vma
= mmap_event
->vma
;
5523 int executable
= vma
->vm_flags
& VM_EXEC
;
5525 return (!executable
&& event
->attr
.mmap_data
) ||
5526 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
5529 static void perf_event_mmap_output(struct perf_event
*event
,
5532 struct perf_mmap_event
*mmap_event
= data
;
5533 struct perf_output_handle handle
;
5534 struct perf_sample_data sample
;
5535 int size
= mmap_event
->event_id
.header
.size
;
5538 if (!perf_event_mmap_match(event
, data
))
5541 if (event
->attr
.mmap2
) {
5542 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
5543 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
5544 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
5545 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
5546 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
5547 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
5548 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
5551 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
5552 ret
= perf_output_begin(&handle
, event
,
5553 mmap_event
->event_id
.header
.size
);
5557 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
5558 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
5560 perf_output_put(&handle
, mmap_event
->event_id
);
5562 if (event
->attr
.mmap2
) {
5563 perf_output_put(&handle
, mmap_event
->maj
);
5564 perf_output_put(&handle
, mmap_event
->min
);
5565 perf_output_put(&handle
, mmap_event
->ino
);
5566 perf_output_put(&handle
, mmap_event
->ino_generation
);
5567 perf_output_put(&handle
, mmap_event
->prot
);
5568 perf_output_put(&handle
, mmap_event
->flags
);
5571 __output_copy(&handle
, mmap_event
->file_name
,
5572 mmap_event
->file_size
);
5574 perf_event__output_id_sample(event
, &handle
, &sample
);
5576 perf_output_end(&handle
);
5578 mmap_event
->event_id
.header
.size
= size
;
5581 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
5583 struct vm_area_struct
*vma
= mmap_event
->vma
;
5584 struct file
*file
= vma
->vm_file
;
5585 int maj
= 0, min
= 0;
5586 u64 ino
= 0, gen
= 0;
5587 u32 prot
= 0, flags
= 0;
5594 struct inode
*inode
;
5597 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5603 * d_path() works from the end of the rb backwards, so we
5604 * need to add enough zero bytes after the string to handle
5605 * the 64bit alignment we do later.
5607 name
= d_path(&file
->f_path
, buf
, PATH_MAX
- sizeof(u64
));
5612 inode
= file_inode(vma
->vm_file
);
5613 dev
= inode
->i_sb
->s_dev
;
5615 gen
= inode
->i_generation
;
5619 if (vma
->vm_flags
& VM_READ
)
5621 if (vma
->vm_flags
& VM_WRITE
)
5623 if (vma
->vm_flags
& VM_EXEC
)
5626 if (vma
->vm_flags
& VM_MAYSHARE
)
5629 flags
= MAP_PRIVATE
;
5631 if (vma
->vm_flags
& VM_DENYWRITE
)
5632 flags
|= MAP_DENYWRITE
;
5633 if (vma
->vm_flags
& VM_MAYEXEC
)
5634 flags
|= MAP_EXECUTABLE
;
5635 if (vma
->vm_flags
& VM_LOCKED
)
5636 flags
|= MAP_LOCKED
;
5637 if (vma
->vm_flags
& VM_HUGETLB
)
5638 flags
|= MAP_HUGETLB
;
5642 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
5643 name
= (char *) vma
->vm_ops
->name(vma
);
5648 name
= (char *)arch_vma_name(vma
);
5652 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
5653 vma
->vm_end
>= vma
->vm_mm
->brk
) {
5657 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
5658 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
5668 strlcpy(tmp
, name
, sizeof(tmp
));
5672 * Since our buffer works in 8 byte units we need to align our string
5673 * size to a multiple of 8. However, we must guarantee the tail end is
5674 * zero'd out to avoid leaking random bits to userspace.
5676 size
= strlen(name
)+1;
5677 while (!IS_ALIGNED(size
, sizeof(u64
)))
5678 name
[size
++] = '\0';
5680 mmap_event
->file_name
= name
;
5681 mmap_event
->file_size
= size
;
5682 mmap_event
->maj
= maj
;
5683 mmap_event
->min
= min
;
5684 mmap_event
->ino
= ino
;
5685 mmap_event
->ino_generation
= gen
;
5686 mmap_event
->prot
= prot
;
5687 mmap_event
->flags
= flags
;
5689 if (!(vma
->vm_flags
& VM_EXEC
))
5690 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
5692 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
5694 perf_event_aux(perf_event_mmap_output
,
5701 void perf_event_mmap(struct vm_area_struct
*vma
)
5703 struct perf_mmap_event mmap_event
;
5705 if (!atomic_read(&nr_mmap_events
))
5708 mmap_event
= (struct perf_mmap_event
){
5714 .type
= PERF_RECORD_MMAP
,
5715 .misc
= PERF_RECORD_MISC_USER
,
5720 .start
= vma
->vm_start
,
5721 .len
= vma
->vm_end
- vma
->vm_start
,
5722 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
5724 /* .maj (attr_mmap2 only) */
5725 /* .min (attr_mmap2 only) */
5726 /* .ino (attr_mmap2 only) */
5727 /* .ino_generation (attr_mmap2 only) */
5728 /* .prot (attr_mmap2 only) */
5729 /* .flags (attr_mmap2 only) */
5732 perf_event_mmap_event(&mmap_event
);
5736 * IRQ throttle logging
5739 static void perf_log_throttle(struct perf_event
*event
, int enable
)
5741 struct perf_output_handle handle
;
5742 struct perf_sample_data sample
;
5746 struct perf_event_header header
;
5750 } throttle_event
= {
5752 .type
= PERF_RECORD_THROTTLE
,
5754 .size
= sizeof(throttle_event
),
5756 .time
= perf_clock(),
5757 .id
= primary_event_id(event
),
5758 .stream_id
= event
->id
,
5762 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
5764 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
5766 ret
= perf_output_begin(&handle
, event
,
5767 throttle_event
.header
.size
);
5771 perf_output_put(&handle
, throttle_event
);
5772 perf_event__output_id_sample(event
, &handle
, &sample
);
5773 perf_output_end(&handle
);
5777 * Generic event overflow handling, sampling.
5780 static int __perf_event_overflow(struct perf_event
*event
,
5781 int throttle
, struct perf_sample_data
*data
,
5782 struct pt_regs
*regs
)
5784 int events
= atomic_read(&event
->event_limit
);
5785 struct hw_perf_event
*hwc
= &event
->hw
;
5790 * Non-sampling counters might still use the PMI to fold short
5791 * hardware counters, ignore those.
5793 if (unlikely(!is_sampling_event(event
)))
5796 seq
= __this_cpu_read(perf_throttled_seq
);
5797 if (seq
!= hwc
->interrupts_seq
) {
5798 hwc
->interrupts_seq
= seq
;
5799 hwc
->interrupts
= 1;
5802 if (unlikely(throttle
5803 && hwc
->interrupts
>= max_samples_per_tick
)) {
5804 __this_cpu_inc(perf_throttled_count
);
5805 hwc
->interrupts
= MAX_INTERRUPTS
;
5806 perf_log_throttle(event
, 0);
5807 tick_nohz_full_kick();
5812 if (event
->attr
.freq
) {
5813 u64 now
= perf_clock();
5814 s64 delta
= now
- hwc
->freq_time_stamp
;
5816 hwc
->freq_time_stamp
= now
;
5818 if (delta
> 0 && delta
< 2*TICK_NSEC
)
5819 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
5823 * XXX event_limit might not quite work as expected on inherited
5827 event
->pending_kill
= POLL_IN
;
5828 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
5830 event
->pending_kill
= POLL_HUP
;
5831 event
->pending_disable
= 1;
5832 irq_work_queue(&event
->pending
);
5835 if (event
->overflow_handler
)
5836 event
->overflow_handler(event
, data
, regs
);
5838 perf_event_output(event
, data
, regs
);
5840 if (event
->fasync
&& event
->pending_kill
) {
5841 event
->pending_wakeup
= 1;
5842 irq_work_queue(&event
->pending
);
5848 int perf_event_overflow(struct perf_event
*event
,
5849 struct perf_sample_data
*data
,
5850 struct pt_regs
*regs
)
5852 return __perf_event_overflow(event
, 1, data
, regs
);
5856 * Generic software event infrastructure
5859 struct swevent_htable
{
5860 struct swevent_hlist
*swevent_hlist
;
5861 struct mutex hlist_mutex
;
5864 /* Recursion avoidance in each contexts */
5865 int recursion
[PERF_NR_CONTEXTS
];
5867 /* Keeps track of cpu being initialized/exited */
5871 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
5874 * We directly increment event->count and keep a second value in
5875 * event->hw.period_left to count intervals. This period event
5876 * is kept in the range [-sample_period, 0] so that we can use the
5880 u64
perf_swevent_set_period(struct perf_event
*event
)
5882 struct hw_perf_event
*hwc
= &event
->hw
;
5883 u64 period
= hwc
->last_period
;
5887 hwc
->last_period
= hwc
->sample_period
;
5890 old
= val
= local64_read(&hwc
->period_left
);
5894 nr
= div64_u64(period
+ val
, period
);
5895 offset
= nr
* period
;
5897 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
5903 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
5904 struct perf_sample_data
*data
,
5905 struct pt_regs
*regs
)
5907 struct hw_perf_event
*hwc
= &event
->hw
;
5911 overflow
= perf_swevent_set_period(event
);
5913 if (hwc
->interrupts
== MAX_INTERRUPTS
)
5916 for (; overflow
; overflow
--) {
5917 if (__perf_event_overflow(event
, throttle
,
5920 * We inhibit the overflow from happening when
5921 * hwc->interrupts == MAX_INTERRUPTS.
5929 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
5930 struct perf_sample_data
*data
,
5931 struct pt_regs
*regs
)
5933 struct hw_perf_event
*hwc
= &event
->hw
;
5935 local64_add(nr
, &event
->count
);
5940 if (!is_sampling_event(event
))
5943 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
5945 return perf_swevent_overflow(event
, 1, data
, regs
);
5947 data
->period
= event
->hw
.last_period
;
5949 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
5950 return perf_swevent_overflow(event
, 1, data
, regs
);
5952 if (local64_add_negative(nr
, &hwc
->period_left
))
5955 perf_swevent_overflow(event
, 0, data
, regs
);
5958 static int perf_exclude_event(struct perf_event
*event
,
5959 struct pt_regs
*regs
)
5961 if (event
->hw
.state
& PERF_HES_STOPPED
)
5965 if (event
->attr
.exclude_user
&& user_mode(regs
))
5968 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
5975 static int perf_swevent_match(struct perf_event
*event
,
5976 enum perf_type_id type
,
5978 struct perf_sample_data
*data
,
5979 struct pt_regs
*regs
)
5981 if (event
->attr
.type
!= type
)
5984 if (event
->attr
.config
!= event_id
)
5987 if (perf_exclude_event(event
, regs
))
5993 static inline u64
swevent_hash(u64 type
, u32 event_id
)
5995 u64 val
= event_id
| (type
<< 32);
5997 return hash_64(val
, SWEVENT_HLIST_BITS
);
6000 static inline struct hlist_head
*
6001 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
6003 u64 hash
= swevent_hash(type
, event_id
);
6005 return &hlist
->heads
[hash
];
6008 /* For the read side: events when they trigger */
6009 static inline struct hlist_head
*
6010 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
6012 struct swevent_hlist
*hlist
;
6014 hlist
= rcu_dereference(swhash
->swevent_hlist
);
6018 return __find_swevent_head(hlist
, type
, event_id
);
6021 /* For the event head insertion and removal in the hlist */
6022 static inline struct hlist_head
*
6023 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
6025 struct swevent_hlist
*hlist
;
6026 u32 event_id
= event
->attr
.config
;
6027 u64 type
= event
->attr
.type
;
6030 * Event scheduling is always serialized against hlist allocation
6031 * and release. Which makes the protected version suitable here.
6032 * The context lock guarantees that.
6034 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
6035 lockdep_is_held(&event
->ctx
->lock
));
6039 return __find_swevent_head(hlist
, type
, event_id
);
6042 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
6044 struct perf_sample_data
*data
,
6045 struct pt_regs
*regs
)
6047 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6048 struct perf_event
*event
;
6049 struct hlist_head
*head
;
6052 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
6056 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6057 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
6058 perf_swevent_event(event
, nr
, data
, regs
);
6064 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
6066 int perf_swevent_get_recursion_context(void)
6068 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6070 return get_recursion_context(swhash
->recursion
);
6072 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
6074 inline void perf_swevent_put_recursion_context(int rctx
)
6076 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6078 put_recursion_context(swhash
->recursion
, rctx
);
6081 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6083 struct perf_sample_data data
;
6085 if (WARN_ON_ONCE(!regs
))
6088 perf_sample_data_init(&data
, addr
, 0);
6089 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
6092 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6096 preempt_disable_notrace();
6097 rctx
= perf_swevent_get_recursion_context();
6098 if (unlikely(rctx
< 0))
6101 ___perf_sw_event(event_id
, nr
, regs
, addr
);
6103 perf_swevent_put_recursion_context(rctx
);
6105 preempt_enable_notrace();
6108 static void perf_swevent_read(struct perf_event
*event
)
6112 static int perf_swevent_add(struct perf_event
*event
, int flags
)
6114 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6115 struct hw_perf_event
*hwc
= &event
->hw
;
6116 struct hlist_head
*head
;
6118 if (is_sampling_event(event
)) {
6119 hwc
->last_period
= hwc
->sample_period
;
6120 perf_swevent_set_period(event
);
6123 hwc
->state
= !(flags
& PERF_EF_START
);
6125 head
= find_swevent_head(swhash
, event
);
6128 * We can race with cpu hotplug code. Do not
6129 * WARN if the cpu just got unplugged.
6131 WARN_ON_ONCE(swhash
->online
);
6135 hlist_add_head_rcu(&event
->hlist_entry
, head
);
6140 static void perf_swevent_del(struct perf_event
*event
, int flags
)
6142 hlist_del_rcu(&event
->hlist_entry
);
6145 static void perf_swevent_start(struct perf_event
*event
, int flags
)
6147 event
->hw
.state
= 0;
6150 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
6152 event
->hw
.state
= PERF_HES_STOPPED
;
6155 /* Deref the hlist from the update side */
6156 static inline struct swevent_hlist
*
6157 swevent_hlist_deref(struct swevent_htable
*swhash
)
6159 return rcu_dereference_protected(swhash
->swevent_hlist
,
6160 lockdep_is_held(&swhash
->hlist_mutex
));
6163 static void swevent_hlist_release(struct swevent_htable
*swhash
)
6165 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
6170 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
6171 kfree_rcu(hlist
, rcu_head
);
6174 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
6176 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6178 mutex_lock(&swhash
->hlist_mutex
);
6180 if (!--swhash
->hlist_refcount
)
6181 swevent_hlist_release(swhash
);
6183 mutex_unlock(&swhash
->hlist_mutex
);
6186 static void swevent_hlist_put(struct perf_event
*event
)
6190 for_each_possible_cpu(cpu
)
6191 swevent_hlist_put_cpu(event
, cpu
);
6194 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
6196 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6199 mutex_lock(&swhash
->hlist_mutex
);
6201 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
6202 struct swevent_hlist
*hlist
;
6204 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
6209 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6211 swhash
->hlist_refcount
++;
6213 mutex_unlock(&swhash
->hlist_mutex
);
6218 static int swevent_hlist_get(struct perf_event
*event
)
6221 int cpu
, failed_cpu
;
6224 for_each_possible_cpu(cpu
) {
6225 err
= swevent_hlist_get_cpu(event
, cpu
);
6235 for_each_possible_cpu(cpu
) {
6236 if (cpu
== failed_cpu
)
6238 swevent_hlist_put_cpu(event
, cpu
);
6245 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
6247 static void sw_perf_event_destroy(struct perf_event
*event
)
6249 u64 event_id
= event
->attr
.config
;
6251 WARN_ON(event
->parent
);
6253 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
6254 swevent_hlist_put(event
);
6257 static int perf_swevent_init(struct perf_event
*event
)
6259 u64 event_id
= event
->attr
.config
;
6261 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6265 * no branch sampling for software events
6267 if (has_branch_stack(event
))
6271 case PERF_COUNT_SW_CPU_CLOCK
:
6272 case PERF_COUNT_SW_TASK_CLOCK
:
6279 if (event_id
>= PERF_COUNT_SW_MAX
)
6282 if (!event
->parent
) {
6285 err
= swevent_hlist_get(event
);
6289 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
6290 event
->destroy
= sw_perf_event_destroy
;
6296 static struct pmu perf_swevent
= {
6297 .task_ctx_nr
= perf_sw_context
,
6299 .event_init
= perf_swevent_init
,
6300 .add
= perf_swevent_add
,
6301 .del
= perf_swevent_del
,
6302 .start
= perf_swevent_start
,
6303 .stop
= perf_swevent_stop
,
6304 .read
= perf_swevent_read
,
6307 #ifdef CONFIG_EVENT_TRACING
6309 static int perf_tp_filter_match(struct perf_event
*event
,
6310 struct perf_sample_data
*data
)
6312 void *record
= data
->raw
->data
;
6314 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
6319 static int perf_tp_event_match(struct perf_event
*event
,
6320 struct perf_sample_data
*data
,
6321 struct pt_regs
*regs
)
6323 if (event
->hw
.state
& PERF_HES_STOPPED
)
6326 * All tracepoints are from kernel-space.
6328 if (event
->attr
.exclude_kernel
)
6331 if (!perf_tp_filter_match(event
, data
))
6337 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
6338 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
6339 struct task_struct
*task
)
6341 struct perf_sample_data data
;
6342 struct perf_event
*event
;
6344 struct perf_raw_record raw
= {
6349 perf_sample_data_init(&data
, addr
, 0);
6352 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6353 if (perf_tp_event_match(event
, &data
, regs
))
6354 perf_swevent_event(event
, count
, &data
, regs
);
6358 * If we got specified a target task, also iterate its context and
6359 * deliver this event there too.
6361 if (task
&& task
!= current
) {
6362 struct perf_event_context
*ctx
;
6363 struct trace_entry
*entry
= record
;
6366 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
6370 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6371 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6373 if (event
->attr
.config
!= entry
->type
)
6375 if (perf_tp_event_match(event
, &data
, regs
))
6376 perf_swevent_event(event
, count
, &data
, regs
);
6382 perf_swevent_put_recursion_context(rctx
);
6384 EXPORT_SYMBOL_GPL(perf_tp_event
);
6386 static void tp_perf_event_destroy(struct perf_event
*event
)
6388 perf_trace_destroy(event
);
6391 static int perf_tp_event_init(struct perf_event
*event
)
6395 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6399 * no branch sampling for tracepoint events
6401 if (has_branch_stack(event
))
6404 err
= perf_trace_init(event
);
6408 event
->destroy
= tp_perf_event_destroy
;
6413 static struct pmu perf_tracepoint
= {
6414 .task_ctx_nr
= perf_sw_context
,
6416 .event_init
= perf_tp_event_init
,
6417 .add
= perf_trace_add
,
6418 .del
= perf_trace_del
,
6419 .start
= perf_swevent_start
,
6420 .stop
= perf_swevent_stop
,
6421 .read
= perf_swevent_read
,
6424 static inline void perf_tp_register(void)
6426 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
6429 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6434 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6437 filter_str
= strndup_user(arg
, PAGE_SIZE
);
6438 if (IS_ERR(filter_str
))
6439 return PTR_ERR(filter_str
);
6441 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
6447 static void perf_event_free_filter(struct perf_event
*event
)
6449 ftrace_profile_free_filter(event
);
6454 static inline void perf_tp_register(void)
6458 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6463 static void perf_event_free_filter(struct perf_event
*event
)
6467 #endif /* CONFIG_EVENT_TRACING */
6469 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6470 void perf_bp_event(struct perf_event
*bp
, void *data
)
6472 struct perf_sample_data sample
;
6473 struct pt_regs
*regs
= data
;
6475 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
6477 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
6478 perf_swevent_event(bp
, 1, &sample
, regs
);
6483 * hrtimer based swevent callback
6486 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
6488 enum hrtimer_restart ret
= HRTIMER_RESTART
;
6489 struct perf_sample_data data
;
6490 struct pt_regs
*regs
;
6491 struct perf_event
*event
;
6494 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
6496 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
6497 return HRTIMER_NORESTART
;
6499 event
->pmu
->read(event
);
6501 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
6502 regs
= get_irq_regs();
6504 if (regs
&& !perf_exclude_event(event
, regs
)) {
6505 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
6506 if (__perf_event_overflow(event
, 1, &data
, regs
))
6507 ret
= HRTIMER_NORESTART
;
6510 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
6511 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
6516 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
6518 struct hw_perf_event
*hwc
= &event
->hw
;
6521 if (!is_sampling_event(event
))
6524 period
= local64_read(&hwc
->period_left
);
6529 local64_set(&hwc
->period_left
, 0);
6531 period
= max_t(u64
, 10000, hwc
->sample_period
);
6533 __hrtimer_start_range_ns(&hwc
->hrtimer
,
6534 ns_to_ktime(period
), 0,
6535 HRTIMER_MODE_REL_PINNED
, 0);
6538 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
6540 struct hw_perf_event
*hwc
= &event
->hw
;
6542 if (is_sampling_event(event
)) {
6543 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
6544 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
6546 hrtimer_cancel(&hwc
->hrtimer
);
6550 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
6552 struct hw_perf_event
*hwc
= &event
->hw
;
6554 if (!is_sampling_event(event
))
6557 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
6558 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
6561 * Since hrtimers have a fixed rate, we can do a static freq->period
6562 * mapping and avoid the whole period adjust feedback stuff.
6564 if (event
->attr
.freq
) {
6565 long freq
= event
->attr
.sample_freq
;
6567 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
6568 hwc
->sample_period
= event
->attr
.sample_period
;
6569 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6570 hwc
->last_period
= hwc
->sample_period
;
6571 event
->attr
.freq
= 0;
6576 * Software event: cpu wall time clock
6579 static void cpu_clock_event_update(struct perf_event
*event
)
6584 now
= local_clock();
6585 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6586 local64_add(now
- prev
, &event
->count
);
6589 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
6591 local64_set(&event
->hw
.prev_count
, local_clock());
6592 perf_swevent_start_hrtimer(event
);
6595 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
6597 perf_swevent_cancel_hrtimer(event
);
6598 cpu_clock_event_update(event
);
6601 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
6603 if (flags
& PERF_EF_START
)
6604 cpu_clock_event_start(event
, flags
);
6609 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
6611 cpu_clock_event_stop(event
, flags
);
6614 static void cpu_clock_event_read(struct perf_event
*event
)
6616 cpu_clock_event_update(event
);
6619 static int cpu_clock_event_init(struct perf_event
*event
)
6621 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6624 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
6628 * no branch sampling for software events
6630 if (has_branch_stack(event
))
6633 perf_swevent_init_hrtimer(event
);
6638 static struct pmu perf_cpu_clock
= {
6639 .task_ctx_nr
= perf_sw_context
,
6641 .event_init
= cpu_clock_event_init
,
6642 .add
= cpu_clock_event_add
,
6643 .del
= cpu_clock_event_del
,
6644 .start
= cpu_clock_event_start
,
6645 .stop
= cpu_clock_event_stop
,
6646 .read
= cpu_clock_event_read
,
6650 * Software event: task time clock
6653 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
6658 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6660 local64_add(delta
, &event
->count
);
6663 static void task_clock_event_start(struct perf_event
*event
, int flags
)
6665 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
6666 perf_swevent_start_hrtimer(event
);
6669 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
6671 perf_swevent_cancel_hrtimer(event
);
6672 task_clock_event_update(event
, event
->ctx
->time
);
6675 static int task_clock_event_add(struct perf_event
*event
, int flags
)
6677 if (flags
& PERF_EF_START
)
6678 task_clock_event_start(event
, flags
);
6683 static void task_clock_event_del(struct perf_event
*event
, int flags
)
6685 task_clock_event_stop(event
, PERF_EF_UPDATE
);
6688 static void task_clock_event_read(struct perf_event
*event
)
6690 u64 now
= perf_clock();
6691 u64 delta
= now
- event
->ctx
->timestamp
;
6692 u64 time
= event
->ctx
->time
+ delta
;
6694 task_clock_event_update(event
, time
);
6697 static int task_clock_event_init(struct perf_event
*event
)
6699 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6702 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
6706 * no branch sampling for software events
6708 if (has_branch_stack(event
))
6711 perf_swevent_init_hrtimer(event
);
6716 static struct pmu perf_task_clock
= {
6717 .task_ctx_nr
= perf_sw_context
,
6719 .event_init
= task_clock_event_init
,
6720 .add
= task_clock_event_add
,
6721 .del
= task_clock_event_del
,
6722 .start
= task_clock_event_start
,
6723 .stop
= task_clock_event_stop
,
6724 .read
= task_clock_event_read
,
6727 static void perf_pmu_nop_void(struct pmu
*pmu
)
6731 static int perf_pmu_nop_int(struct pmu
*pmu
)
6736 static void perf_pmu_start_txn(struct pmu
*pmu
)
6738 perf_pmu_disable(pmu
);
6741 static int perf_pmu_commit_txn(struct pmu
*pmu
)
6743 perf_pmu_enable(pmu
);
6747 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
6749 perf_pmu_enable(pmu
);
6752 static int perf_event_idx_default(struct perf_event
*event
)
6758 * Ensures all contexts with the same task_ctx_nr have the same
6759 * pmu_cpu_context too.
6761 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
6768 list_for_each_entry(pmu
, &pmus
, entry
) {
6769 if (pmu
->task_ctx_nr
== ctxn
)
6770 return pmu
->pmu_cpu_context
;
6776 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
6780 for_each_possible_cpu(cpu
) {
6781 struct perf_cpu_context
*cpuctx
;
6783 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6785 if (cpuctx
->unique_pmu
== old_pmu
)
6786 cpuctx
->unique_pmu
= pmu
;
6790 static void free_pmu_context(struct pmu
*pmu
)
6794 mutex_lock(&pmus_lock
);
6796 * Like a real lame refcount.
6798 list_for_each_entry(i
, &pmus
, entry
) {
6799 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
6800 update_pmu_context(i
, pmu
);
6805 free_percpu(pmu
->pmu_cpu_context
);
6807 mutex_unlock(&pmus_lock
);
6809 static struct idr pmu_idr
;
6812 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
6814 struct pmu
*pmu
= dev_get_drvdata(dev
);
6816 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
6818 static DEVICE_ATTR_RO(type
);
6821 perf_event_mux_interval_ms_show(struct device
*dev
,
6822 struct device_attribute
*attr
,
6825 struct pmu
*pmu
= dev_get_drvdata(dev
);
6827 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
6831 perf_event_mux_interval_ms_store(struct device
*dev
,
6832 struct device_attribute
*attr
,
6833 const char *buf
, size_t count
)
6835 struct pmu
*pmu
= dev_get_drvdata(dev
);
6836 int timer
, cpu
, ret
;
6838 ret
= kstrtoint(buf
, 0, &timer
);
6845 /* same value, noting to do */
6846 if (timer
== pmu
->hrtimer_interval_ms
)
6849 pmu
->hrtimer_interval_ms
= timer
;
6851 /* update all cpuctx for this PMU */
6852 for_each_possible_cpu(cpu
) {
6853 struct perf_cpu_context
*cpuctx
;
6854 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6855 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
6857 if (hrtimer_active(&cpuctx
->hrtimer
))
6858 hrtimer_forward_now(&cpuctx
->hrtimer
, cpuctx
->hrtimer_interval
);
6863 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
6865 static struct attribute
*pmu_dev_attrs
[] = {
6866 &dev_attr_type
.attr
,
6867 &dev_attr_perf_event_mux_interval_ms
.attr
,
6870 ATTRIBUTE_GROUPS(pmu_dev
);
6872 static int pmu_bus_running
;
6873 static struct bus_type pmu_bus
= {
6874 .name
= "event_source",
6875 .dev_groups
= pmu_dev_groups
,
6878 static void pmu_dev_release(struct device
*dev
)
6883 static int pmu_dev_alloc(struct pmu
*pmu
)
6887 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
6891 pmu
->dev
->groups
= pmu
->attr_groups
;
6892 device_initialize(pmu
->dev
);
6893 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
6897 dev_set_drvdata(pmu
->dev
, pmu
);
6898 pmu
->dev
->bus
= &pmu_bus
;
6899 pmu
->dev
->release
= pmu_dev_release
;
6900 ret
= device_add(pmu
->dev
);
6908 put_device(pmu
->dev
);
6912 static struct lock_class_key cpuctx_mutex
;
6913 static struct lock_class_key cpuctx_lock
;
6915 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
6919 mutex_lock(&pmus_lock
);
6921 pmu
->pmu_disable_count
= alloc_percpu(int);
6922 if (!pmu
->pmu_disable_count
)
6931 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
6939 if (pmu_bus_running
) {
6940 ret
= pmu_dev_alloc(pmu
);
6946 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
6947 if (pmu
->pmu_cpu_context
)
6948 goto got_cpu_context
;
6951 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
6952 if (!pmu
->pmu_cpu_context
)
6955 for_each_possible_cpu(cpu
) {
6956 struct perf_cpu_context
*cpuctx
;
6958 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6959 __perf_event_init_context(&cpuctx
->ctx
);
6960 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
6961 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
6962 cpuctx
->ctx
.pmu
= pmu
;
6964 __perf_cpu_hrtimer_init(cpuctx
, cpu
);
6966 cpuctx
->unique_pmu
= pmu
;
6970 if (!pmu
->start_txn
) {
6971 if (pmu
->pmu_enable
) {
6973 * If we have pmu_enable/pmu_disable calls, install
6974 * transaction stubs that use that to try and batch
6975 * hardware accesses.
6977 pmu
->start_txn
= perf_pmu_start_txn
;
6978 pmu
->commit_txn
= perf_pmu_commit_txn
;
6979 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
6981 pmu
->start_txn
= perf_pmu_nop_void
;
6982 pmu
->commit_txn
= perf_pmu_nop_int
;
6983 pmu
->cancel_txn
= perf_pmu_nop_void
;
6987 if (!pmu
->pmu_enable
) {
6988 pmu
->pmu_enable
= perf_pmu_nop_void
;
6989 pmu
->pmu_disable
= perf_pmu_nop_void
;
6992 if (!pmu
->event_idx
)
6993 pmu
->event_idx
= perf_event_idx_default
;
6995 list_add_rcu(&pmu
->entry
, &pmus
);
6998 mutex_unlock(&pmus_lock
);
7003 device_del(pmu
->dev
);
7004 put_device(pmu
->dev
);
7007 if (pmu
->type
>= PERF_TYPE_MAX
)
7008 idr_remove(&pmu_idr
, pmu
->type
);
7011 free_percpu(pmu
->pmu_disable_count
);
7014 EXPORT_SYMBOL_GPL(perf_pmu_register
);
7016 void perf_pmu_unregister(struct pmu
*pmu
)
7018 mutex_lock(&pmus_lock
);
7019 list_del_rcu(&pmu
->entry
);
7020 mutex_unlock(&pmus_lock
);
7023 * We dereference the pmu list under both SRCU and regular RCU, so
7024 * synchronize against both of those.
7026 synchronize_srcu(&pmus_srcu
);
7029 free_percpu(pmu
->pmu_disable_count
);
7030 if (pmu
->type
>= PERF_TYPE_MAX
)
7031 idr_remove(&pmu_idr
, pmu
->type
);
7032 device_del(pmu
->dev
);
7033 put_device(pmu
->dev
);
7034 free_pmu_context(pmu
);
7036 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
7038 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
7042 if (!try_module_get(pmu
->module
))
7045 ret
= pmu
->event_init(event
);
7047 module_put(pmu
->module
);
7052 struct pmu
*perf_init_event(struct perf_event
*event
)
7054 struct pmu
*pmu
= NULL
;
7058 idx
= srcu_read_lock(&pmus_srcu
);
7061 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
7064 ret
= perf_try_init_event(pmu
, event
);
7070 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7071 ret
= perf_try_init_event(pmu
, event
);
7075 if (ret
!= -ENOENT
) {
7080 pmu
= ERR_PTR(-ENOENT
);
7082 srcu_read_unlock(&pmus_srcu
, idx
);
7087 static void account_event_cpu(struct perf_event
*event
, int cpu
)
7092 if (has_branch_stack(event
)) {
7093 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
7094 atomic_inc(&per_cpu(perf_branch_stack_events
, cpu
));
7096 if (is_cgroup_event(event
))
7097 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
7100 static void account_event(struct perf_event
*event
)
7105 if (event
->attach_state
& PERF_ATTACH_TASK
)
7106 static_key_slow_inc(&perf_sched_events
.key
);
7107 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
7108 atomic_inc(&nr_mmap_events
);
7109 if (event
->attr
.comm
)
7110 atomic_inc(&nr_comm_events
);
7111 if (event
->attr
.task
)
7112 atomic_inc(&nr_task_events
);
7113 if (event
->attr
.freq
) {
7114 if (atomic_inc_return(&nr_freq_events
) == 1)
7115 tick_nohz_full_kick_all();
7117 if (has_branch_stack(event
))
7118 static_key_slow_inc(&perf_sched_events
.key
);
7119 if (is_cgroup_event(event
))
7120 static_key_slow_inc(&perf_sched_events
.key
);
7122 account_event_cpu(event
, event
->cpu
);
7126 * Allocate and initialize a event structure
7128 static struct perf_event
*
7129 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
7130 struct task_struct
*task
,
7131 struct perf_event
*group_leader
,
7132 struct perf_event
*parent_event
,
7133 perf_overflow_handler_t overflow_handler
,
7137 struct perf_event
*event
;
7138 struct hw_perf_event
*hwc
;
7141 if ((unsigned)cpu
>= nr_cpu_ids
) {
7142 if (!task
|| cpu
!= -1)
7143 return ERR_PTR(-EINVAL
);
7146 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
7148 return ERR_PTR(-ENOMEM
);
7151 * Single events are their own group leaders, with an
7152 * empty sibling list:
7155 group_leader
= event
;
7157 mutex_init(&event
->child_mutex
);
7158 INIT_LIST_HEAD(&event
->child_list
);
7160 INIT_LIST_HEAD(&event
->group_entry
);
7161 INIT_LIST_HEAD(&event
->event_entry
);
7162 INIT_LIST_HEAD(&event
->sibling_list
);
7163 INIT_LIST_HEAD(&event
->rb_entry
);
7164 INIT_LIST_HEAD(&event
->active_entry
);
7165 INIT_HLIST_NODE(&event
->hlist_entry
);
7168 init_waitqueue_head(&event
->waitq
);
7169 init_irq_work(&event
->pending
, perf_pending_event
);
7171 mutex_init(&event
->mmap_mutex
);
7173 atomic_long_set(&event
->refcount
, 1);
7175 event
->attr
= *attr
;
7176 event
->group_leader
= group_leader
;
7180 event
->parent
= parent_event
;
7182 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
7183 event
->id
= atomic64_inc_return(&perf_event_id
);
7185 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7188 event
->attach_state
= PERF_ATTACH_TASK
;
7190 if (attr
->type
== PERF_TYPE_TRACEPOINT
)
7191 event
->hw
.tp_target
= task
;
7192 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7194 * hw_breakpoint is a bit difficult here..
7196 else if (attr
->type
== PERF_TYPE_BREAKPOINT
)
7197 event
->hw
.bp_target
= task
;
7201 if (!overflow_handler
&& parent_event
) {
7202 overflow_handler
= parent_event
->overflow_handler
;
7203 context
= parent_event
->overflow_handler_context
;
7206 event
->overflow_handler
= overflow_handler
;
7207 event
->overflow_handler_context
= context
;
7209 perf_event__state_init(event
);
7214 hwc
->sample_period
= attr
->sample_period
;
7215 if (attr
->freq
&& attr
->sample_freq
)
7216 hwc
->sample_period
= 1;
7217 hwc
->last_period
= hwc
->sample_period
;
7219 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7222 * we currently do not support PERF_FORMAT_GROUP on inherited events
7224 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
7227 pmu
= perf_init_event(event
);
7230 else if (IS_ERR(pmu
)) {
7235 if (!event
->parent
) {
7236 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7237 err
= get_callchain_buffers();
7247 event
->destroy(event
);
7248 module_put(pmu
->module
);
7251 put_pid_ns(event
->ns
);
7254 return ERR_PTR(err
);
7257 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
7258 struct perf_event_attr
*attr
)
7263 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
7267 * zero the full structure, so that a short copy will be nice.
7269 memset(attr
, 0, sizeof(*attr
));
7271 ret
= get_user(size
, &uattr
->size
);
7275 if (size
> PAGE_SIZE
) /* silly large */
7278 if (!size
) /* abi compat */
7279 size
= PERF_ATTR_SIZE_VER0
;
7281 if (size
< PERF_ATTR_SIZE_VER0
)
7285 * If we're handed a bigger struct than we know of,
7286 * ensure all the unknown bits are 0 - i.e. new
7287 * user-space does not rely on any kernel feature
7288 * extensions we dont know about yet.
7290 if (size
> sizeof(*attr
)) {
7291 unsigned char __user
*addr
;
7292 unsigned char __user
*end
;
7295 addr
= (void __user
*)uattr
+ sizeof(*attr
);
7296 end
= (void __user
*)uattr
+ size
;
7298 for (; addr
< end
; addr
++) {
7299 ret
= get_user(val
, addr
);
7305 size
= sizeof(*attr
);
7308 ret
= copy_from_user(attr
, uattr
, size
);
7312 if (attr
->__reserved_1
)
7315 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
7318 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
7321 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7322 u64 mask
= attr
->branch_sample_type
;
7324 /* only using defined bits */
7325 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
7328 /* at least one branch bit must be set */
7329 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
7332 /* propagate priv level, when not set for branch */
7333 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
7335 /* exclude_kernel checked on syscall entry */
7336 if (!attr
->exclude_kernel
)
7337 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
7339 if (!attr
->exclude_user
)
7340 mask
|= PERF_SAMPLE_BRANCH_USER
;
7342 if (!attr
->exclude_hv
)
7343 mask
|= PERF_SAMPLE_BRANCH_HV
;
7345 * adjust user setting (for HW filter setup)
7347 attr
->branch_sample_type
= mask
;
7349 /* privileged levels capture (kernel, hv): check permissions */
7350 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
7351 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7355 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
7356 ret
= perf_reg_validate(attr
->sample_regs_user
);
7361 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
7362 if (!arch_perf_have_user_stack_dump())
7366 * We have __u32 type for the size, but so far
7367 * we can only use __u16 as maximum due to the
7368 * __u16 sample size limit.
7370 if (attr
->sample_stack_user
>= USHRT_MAX
)
7372 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
7376 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
7377 ret
= perf_reg_validate(attr
->sample_regs_intr
);
7382 put_user(sizeof(*attr
), &uattr
->size
);
7388 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
7390 struct ring_buffer
*rb
= NULL
;
7396 /* don't allow circular references */
7397 if (event
== output_event
)
7401 * Don't allow cross-cpu buffers
7403 if (output_event
->cpu
!= event
->cpu
)
7407 * If its not a per-cpu rb, it must be the same task.
7409 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
7413 mutex_lock(&event
->mmap_mutex
);
7414 /* Can't redirect output if we've got an active mmap() */
7415 if (atomic_read(&event
->mmap_count
))
7419 /* get the rb we want to redirect to */
7420 rb
= ring_buffer_get(output_event
);
7425 ring_buffer_attach(event
, rb
);
7429 mutex_unlock(&event
->mmap_mutex
);
7435 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
7441 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
7445 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7447 * @attr_uptr: event_id type attributes for monitoring/sampling
7450 * @group_fd: group leader event fd
7452 SYSCALL_DEFINE5(perf_event_open
,
7453 struct perf_event_attr __user
*, attr_uptr
,
7454 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
7456 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
7457 struct perf_event
*event
, *sibling
;
7458 struct perf_event_attr attr
;
7459 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
7460 struct file
*event_file
= NULL
;
7461 struct fd group
= {NULL
, 0};
7462 struct task_struct
*task
= NULL
;
7467 int f_flags
= O_RDWR
;
7469 /* for future expandability... */
7470 if (flags
& ~PERF_FLAG_ALL
)
7473 err
= perf_copy_attr(attr_uptr
, &attr
);
7477 if (!attr
.exclude_kernel
) {
7478 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7483 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
7486 if (attr
.sample_period
& (1ULL << 63))
7491 * In cgroup mode, the pid argument is used to pass the fd
7492 * opened to the cgroup directory in cgroupfs. The cpu argument
7493 * designates the cpu on which to monitor threads from that
7496 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
7499 if (flags
& PERF_FLAG_FD_CLOEXEC
)
7500 f_flags
|= O_CLOEXEC
;
7502 event_fd
= get_unused_fd_flags(f_flags
);
7506 if (group_fd
!= -1) {
7507 err
= perf_fget_light(group_fd
, &group
);
7510 group_leader
= group
.file
->private_data
;
7511 if (flags
& PERF_FLAG_FD_OUTPUT
)
7512 output_event
= group_leader
;
7513 if (flags
& PERF_FLAG_FD_NO_GROUP
)
7514 group_leader
= NULL
;
7517 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
7518 task
= find_lively_task_by_vpid(pid
);
7520 err
= PTR_ERR(task
);
7525 if (task
&& group_leader
&&
7526 group_leader
->attr
.inherit
!= attr
.inherit
) {
7533 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
7535 if (IS_ERR(event
)) {
7536 err
= PTR_ERR(event
);
7540 if (flags
& PERF_FLAG_PID_CGROUP
) {
7541 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
7543 __free_event(event
);
7548 if (is_sampling_event(event
)) {
7549 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
7555 account_event(event
);
7558 * Special case software events and allow them to be part of
7559 * any hardware group.
7564 (is_software_event(event
) != is_software_event(group_leader
))) {
7565 if (is_software_event(event
)) {
7567 * If event and group_leader are not both a software
7568 * event, and event is, then group leader is not.
7570 * Allow the addition of software events to !software
7571 * groups, this is safe because software events never
7574 pmu
= group_leader
->pmu
;
7575 } else if (is_software_event(group_leader
) &&
7576 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
7578 * In case the group is a pure software group, and we
7579 * try to add a hardware event, move the whole group to
7580 * the hardware context.
7587 * Get the target context (task or percpu):
7589 ctx
= find_get_context(pmu
, task
, event
->cpu
);
7596 put_task_struct(task
);
7601 * Look up the group leader (we will attach this event to it):
7607 * Do not allow a recursive hierarchy (this new sibling
7608 * becoming part of another group-sibling):
7610 if (group_leader
->group_leader
!= group_leader
)
7613 * Do not allow to attach to a group in a different
7614 * task or CPU context:
7618 * Make sure we're both on the same task, or both
7621 if (group_leader
->ctx
->task
!= ctx
->task
)
7625 * Make sure we're both events for the same CPU;
7626 * grouping events for different CPUs is broken; since
7627 * you can never concurrently schedule them anyhow.
7629 if (group_leader
->cpu
!= event
->cpu
)
7632 if (group_leader
->ctx
!= ctx
)
7637 * Only a group leader can be exclusive or pinned
7639 if (attr
.exclusive
|| attr
.pinned
)
7644 err
= perf_event_set_output(event
, output_event
);
7649 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
7651 if (IS_ERR(event_file
)) {
7652 err
= PTR_ERR(event_file
);
7657 gctx
= group_leader
->ctx
;
7660 * See perf_event_ctx_lock() for comments on the details
7661 * of swizzling perf_event::ctx.
7663 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
7665 perf_remove_from_context(group_leader
, false);
7667 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7669 perf_remove_from_context(sibling
, false);
7673 mutex_lock(&ctx
->mutex
);
7676 WARN_ON_ONCE(ctx
->parent_ctx
);
7680 * Wait for everybody to stop referencing the events through
7681 * the old lists, before installing it on new lists.
7686 * Install the group siblings before the group leader.
7688 * Because a group leader will try and install the entire group
7689 * (through the sibling list, which is still in-tact), we can
7690 * end up with siblings installed in the wrong context.
7692 * By installing siblings first we NO-OP because they're not
7693 * reachable through the group lists.
7695 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7697 perf_event__state_init(sibling
);
7698 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
7703 * Removing from the context ends up with disabled
7704 * event. What we want here is event in the initial
7705 * startup state, ready to be add into new context.
7707 perf_event__state_init(group_leader
);
7708 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
7712 perf_install_in_context(ctx
, event
, event
->cpu
);
7713 perf_unpin_context(ctx
);
7716 mutex_unlock(&gctx
->mutex
);
7719 mutex_unlock(&ctx
->mutex
);
7723 event
->owner
= current
;
7725 mutex_lock(¤t
->perf_event_mutex
);
7726 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
7727 mutex_unlock(¤t
->perf_event_mutex
);
7730 * Precalculate sample_data sizes
7732 perf_event__header_size(event
);
7733 perf_event__id_header_size(event
);
7736 * Drop the reference on the group_event after placing the
7737 * new event on the sibling_list. This ensures destruction
7738 * of the group leader will find the pointer to itself in
7739 * perf_group_detach().
7742 fd_install(event_fd
, event_file
);
7746 perf_unpin_context(ctx
);
7754 put_task_struct(task
);
7758 put_unused_fd(event_fd
);
7763 * perf_event_create_kernel_counter
7765 * @attr: attributes of the counter to create
7766 * @cpu: cpu in which the counter is bound
7767 * @task: task to profile (NULL for percpu)
7770 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
7771 struct task_struct
*task
,
7772 perf_overflow_handler_t overflow_handler
,
7775 struct perf_event_context
*ctx
;
7776 struct perf_event
*event
;
7780 * Get the target context (task or percpu):
7783 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
7784 overflow_handler
, context
);
7785 if (IS_ERR(event
)) {
7786 err
= PTR_ERR(event
);
7790 /* Mark owner so we could distinguish it from user events. */
7791 event
->owner
= EVENT_OWNER_KERNEL
;
7793 account_event(event
);
7795 ctx
= find_get_context(event
->pmu
, task
, cpu
);
7801 WARN_ON_ONCE(ctx
->parent_ctx
);
7802 mutex_lock(&ctx
->mutex
);
7803 perf_install_in_context(ctx
, event
, cpu
);
7804 perf_unpin_context(ctx
);
7805 mutex_unlock(&ctx
->mutex
);
7812 return ERR_PTR(err
);
7814 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
7816 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
7818 struct perf_event_context
*src_ctx
;
7819 struct perf_event_context
*dst_ctx
;
7820 struct perf_event
*event
, *tmp
;
7823 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
7824 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
7827 * See perf_event_ctx_lock() for comments on the details
7828 * of swizzling perf_event::ctx.
7830 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
7831 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
7833 perf_remove_from_context(event
, false);
7834 unaccount_event_cpu(event
, src_cpu
);
7836 list_add(&event
->migrate_entry
, &events
);
7840 * Wait for the events to quiesce before re-instating them.
7845 * Re-instate events in 2 passes.
7847 * Skip over group leaders and only install siblings on this first
7848 * pass, siblings will not get enabled without a leader, however a
7849 * leader will enable its siblings, even if those are still on the old
7852 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
7853 if (event
->group_leader
== event
)
7856 list_del(&event
->migrate_entry
);
7857 if (event
->state
>= PERF_EVENT_STATE_OFF
)
7858 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7859 account_event_cpu(event
, dst_cpu
);
7860 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
7865 * Once all the siblings are setup properly, install the group leaders
7868 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
7869 list_del(&event
->migrate_entry
);
7870 if (event
->state
>= PERF_EVENT_STATE_OFF
)
7871 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7872 account_event_cpu(event
, dst_cpu
);
7873 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
7876 mutex_unlock(&dst_ctx
->mutex
);
7877 mutex_unlock(&src_ctx
->mutex
);
7879 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
7881 static void sync_child_event(struct perf_event
*child_event
,
7882 struct task_struct
*child
)
7884 struct perf_event
*parent_event
= child_event
->parent
;
7887 if (child_event
->attr
.inherit_stat
)
7888 perf_event_read_event(child_event
, child
);
7890 child_val
= perf_event_count(child_event
);
7893 * Add back the child's count to the parent's count:
7895 atomic64_add(child_val
, &parent_event
->child_count
);
7896 atomic64_add(child_event
->total_time_enabled
,
7897 &parent_event
->child_total_time_enabled
);
7898 atomic64_add(child_event
->total_time_running
,
7899 &parent_event
->child_total_time_running
);
7902 * Remove this event from the parent's list
7904 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7905 mutex_lock(&parent_event
->child_mutex
);
7906 list_del_init(&child_event
->child_list
);
7907 mutex_unlock(&parent_event
->child_mutex
);
7910 * Make sure user/parent get notified, that we just
7913 perf_event_wakeup(parent_event
);
7916 * Release the parent event, if this was the last
7919 put_event(parent_event
);
7923 __perf_event_exit_task(struct perf_event
*child_event
,
7924 struct perf_event_context
*child_ctx
,
7925 struct task_struct
*child
)
7928 * Do not destroy the 'original' grouping; because of the context
7929 * switch optimization the original events could've ended up in a
7930 * random child task.
7932 * If we were to destroy the original group, all group related
7933 * operations would cease to function properly after this random
7936 * Do destroy all inherited groups, we don't care about those
7937 * and being thorough is better.
7939 perf_remove_from_context(child_event
, !!child_event
->parent
);
7942 * It can happen that the parent exits first, and has events
7943 * that are still around due to the child reference. These
7944 * events need to be zapped.
7946 if (child_event
->parent
) {
7947 sync_child_event(child_event
, child
);
7948 free_event(child_event
);
7950 child_event
->state
= PERF_EVENT_STATE_EXIT
;
7951 perf_event_wakeup(child_event
);
7955 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
7957 struct perf_event
*child_event
, *next
;
7958 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
7959 unsigned long flags
;
7961 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
7962 perf_event_task(child
, NULL
, 0);
7966 local_irq_save(flags
);
7968 * We can't reschedule here because interrupts are disabled,
7969 * and either child is current or it is a task that can't be
7970 * scheduled, so we are now safe from rescheduling changing
7973 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
7976 * Take the context lock here so that if find_get_context is
7977 * reading child->perf_event_ctxp, we wait until it has
7978 * incremented the context's refcount before we do put_ctx below.
7980 raw_spin_lock(&child_ctx
->lock
);
7981 task_ctx_sched_out(child_ctx
);
7982 child
->perf_event_ctxp
[ctxn
] = NULL
;
7985 * If this context is a clone; unclone it so it can't get
7986 * swapped to another process while we're removing all
7987 * the events from it.
7989 clone_ctx
= unclone_ctx(child_ctx
);
7990 update_context_time(child_ctx
);
7991 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7997 * Report the task dead after unscheduling the events so that we
7998 * won't get any samples after PERF_RECORD_EXIT. We can however still
7999 * get a few PERF_RECORD_READ events.
8001 perf_event_task(child
, child_ctx
, 0);
8004 * We can recurse on the same lock type through:
8006 * __perf_event_exit_task()
8007 * sync_child_event()
8009 * mutex_lock(&ctx->mutex)
8011 * But since its the parent context it won't be the same instance.
8013 mutex_lock(&child_ctx
->mutex
);
8015 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
8016 __perf_event_exit_task(child_event
, child_ctx
, child
);
8018 mutex_unlock(&child_ctx
->mutex
);
8024 * When a child task exits, feed back event values to parent events.
8026 void perf_event_exit_task(struct task_struct
*child
)
8028 struct perf_event
*event
, *tmp
;
8031 mutex_lock(&child
->perf_event_mutex
);
8032 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
8034 list_del_init(&event
->owner_entry
);
8037 * Ensure the list deletion is visible before we clear
8038 * the owner, closes a race against perf_release() where
8039 * we need to serialize on the owner->perf_event_mutex.
8042 event
->owner
= NULL
;
8044 mutex_unlock(&child
->perf_event_mutex
);
8046 for_each_task_context_nr(ctxn
)
8047 perf_event_exit_task_context(child
, ctxn
);
8050 static void perf_free_event(struct perf_event
*event
,
8051 struct perf_event_context
*ctx
)
8053 struct perf_event
*parent
= event
->parent
;
8055 if (WARN_ON_ONCE(!parent
))
8058 mutex_lock(&parent
->child_mutex
);
8059 list_del_init(&event
->child_list
);
8060 mutex_unlock(&parent
->child_mutex
);
8064 raw_spin_lock_irq(&ctx
->lock
);
8065 perf_group_detach(event
);
8066 list_del_event(event
, ctx
);
8067 raw_spin_unlock_irq(&ctx
->lock
);
8072 * Free an unexposed, unused context as created by inheritance by
8073 * perf_event_init_task below, used by fork() in case of fail.
8075 * Not all locks are strictly required, but take them anyway to be nice and
8076 * help out with the lockdep assertions.
8078 void perf_event_free_task(struct task_struct
*task
)
8080 struct perf_event_context
*ctx
;
8081 struct perf_event
*event
, *tmp
;
8084 for_each_task_context_nr(ctxn
) {
8085 ctx
= task
->perf_event_ctxp
[ctxn
];
8089 mutex_lock(&ctx
->mutex
);
8091 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
8093 perf_free_event(event
, ctx
);
8095 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
8097 perf_free_event(event
, ctx
);
8099 if (!list_empty(&ctx
->pinned_groups
) ||
8100 !list_empty(&ctx
->flexible_groups
))
8103 mutex_unlock(&ctx
->mutex
);
8109 void perf_event_delayed_put(struct task_struct
*task
)
8113 for_each_task_context_nr(ctxn
)
8114 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
8118 * inherit a event from parent task to child task:
8120 static struct perf_event
*
8121 inherit_event(struct perf_event
*parent_event
,
8122 struct task_struct
*parent
,
8123 struct perf_event_context
*parent_ctx
,
8124 struct task_struct
*child
,
8125 struct perf_event
*group_leader
,
8126 struct perf_event_context
*child_ctx
)
8128 enum perf_event_active_state parent_state
= parent_event
->state
;
8129 struct perf_event
*child_event
;
8130 unsigned long flags
;
8133 * Instead of creating recursive hierarchies of events,
8134 * we link inherited events back to the original parent,
8135 * which has a filp for sure, which we use as the reference
8138 if (parent_event
->parent
)
8139 parent_event
= parent_event
->parent
;
8141 child_event
= perf_event_alloc(&parent_event
->attr
,
8144 group_leader
, parent_event
,
8146 if (IS_ERR(child_event
))
8149 if (is_orphaned_event(parent_event
) ||
8150 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
8151 free_event(child_event
);
8158 * Make the child state follow the state of the parent event,
8159 * not its attr.disabled bit. We hold the parent's mutex,
8160 * so we won't race with perf_event_{en, dis}able_family.
8162 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
8163 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
8165 child_event
->state
= PERF_EVENT_STATE_OFF
;
8167 if (parent_event
->attr
.freq
) {
8168 u64 sample_period
= parent_event
->hw
.sample_period
;
8169 struct hw_perf_event
*hwc
= &child_event
->hw
;
8171 hwc
->sample_period
= sample_period
;
8172 hwc
->last_period
= sample_period
;
8174 local64_set(&hwc
->period_left
, sample_period
);
8177 child_event
->ctx
= child_ctx
;
8178 child_event
->overflow_handler
= parent_event
->overflow_handler
;
8179 child_event
->overflow_handler_context
8180 = parent_event
->overflow_handler_context
;
8183 * Precalculate sample_data sizes
8185 perf_event__header_size(child_event
);
8186 perf_event__id_header_size(child_event
);
8189 * Link it up in the child's context:
8191 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
8192 add_event_to_ctx(child_event
, child_ctx
);
8193 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
8196 * Link this into the parent event's child list
8198 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
8199 mutex_lock(&parent_event
->child_mutex
);
8200 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
8201 mutex_unlock(&parent_event
->child_mutex
);
8206 static int inherit_group(struct perf_event
*parent_event
,
8207 struct task_struct
*parent
,
8208 struct perf_event_context
*parent_ctx
,
8209 struct task_struct
*child
,
8210 struct perf_event_context
*child_ctx
)
8212 struct perf_event
*leader
;
8213 struct perf_event
*sub
;
8214 struct perf_event
*child_ctr
;
8216 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
8217 child
, NULL
, child_ctx
);
8219 return PTR_ERR(leader
);
8220 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
8221 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
8222 child
, leader
, child_ctx
);
8223 if (IS_ERR(child_ctr
))
8224 return PTR_ERR(child_ctr
);
8230 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
8231 struct perf_event_context
*parent_ctx
,
8232 struct task_struct
*child
, int ctxn
,
8236 struct perf_event_context
*child_ctx
;
8238 if (!event
->attr
.inherit
) {
8243 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8246 * This is executed from the parent task context, so
8247 * inherit events that have been marked for cloning.
8248 * First allocate and initialize a context for the
8252 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
8256 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
8259 ret
= inherit_group(event
, parent
, parent_ctx
,
8269 * Initialize the perf_event context in task_struct
8271 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
8273 struct perf_event_context
*child_ctx
, *parent_ctx
;
8274 struct perf_event_context
*cloned_ctx
;
8275 struct perf_event
*event
;
8276 struct task_struct
*parent
= current
;
8277 int inherited_all
= 1;
8278 unsigned long flags
;
8281 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
8285 * If the parent's context is a clone, pin it so it won't get
8288 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
8293 * No need to check if parent_ctx != NULL here; since we saw
8294 * it non-NULL earlier, the only reason for it to become NULL
8295 * is if we exit, and since we're currently in the middle of
8296 * a fork we can't be exiting at the same time.
8300 * Lock the parent list. No need to lock the child - not PID
8301 * hashed yet and not running, so nobody can access it.
8303 mutex_lock(&parent_ctx
->mutex
);
8306 * We dont have to disable NMIs - we are only looking at
8307 * the list, not manipulating it:
8309 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
8310 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8311 child
, ctxn
, &inherited_all
);
8317 * We can't hold ctx->lock when iterating the ->flexible_group list due
8318 * to allocations, but we need to prevent rotation because
8319 * rotate_ctx() will change the list from interrupt context.
8321 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8322 parent_ctx
->rotate_disable
= 1;
8323 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8325 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
8326 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8327 child
, ctxn
, &inherited_all
);
8332 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8333 parent_ctx
->rotate_disable
= 0;
8335 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8337 if (child_ctx
&& inherited_all
) {
8339 * Mark the child context as a clone of the parent
8340 * context, or of whatever the parent is a clone of.
8342 * Note that if the parent is a clone, the holding of
8343 * parent_ctx->lock avoids it from being uncloned.
8345 cloned_ctx
= parent_ctx
->parent_ctx
;
8347 child_ctx
->parent_ctx
= cloned_ctx
;
8348 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
8350 child_ctx
->parent_ctx
= parent_ctx
;
8351 child_ctx
->parent_gen
= parent_ctx
->generation
;
8353 get_ctx(child_ctx
->parent_ctx
);
8356 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8357 mutex_unlock(&parent_ctx
->mutex
);
8359 perf_unpin_context(parent_ctx
);
8360 put_ctx(parent_ctx
);
8366 * Initialize the perf_event context in task_struct
8368 int perf_event_init_task(struct task_struct
*child
)
8372 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
8373 mutex_init(&child
->perf_event_mutex
);
8374 INIT_LIST_HEAD(&child
->perf_event_list
);
8376 for_each_task_context_nr(ctxn
) {
8377 ret
= perf_event_init_context(child
, ctxn
);
8379 perf_event_free_task(child
);
8387 static void __init
perf_event_init_all_cpus(void)
8389 struct swevent_htable
*swhash
;
8392 for_each_possible_cpu(cpu
) {
8393 swhash
= &per_cpu(swevent_htable
, cpu
);
8394 mutex_init(&swhash
->hlist_mutex
);
8395 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
8399 static void perf_event_init_cpu(int cpu
)
8401 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8403 mutex_lock(&swhash
->hlist_mutex
);
8404 swhash
->online
= true;
8405 if (swhash
->hlist_refcount
> 0) {
8406 struct swevent_hlist
*hlist
;
8408 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
8410 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8412 mutex_unlock(&swhash
->hlist_mutex
);
8415 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8416 static void __perf_event_exit_context(void *__info
)
8418 struct remove_event re
= { .detach_group
= true };
8419 struct perf_event_context
*ctx
= __info
;
8422 list_for_each_entry_rcu(re
.event
, &ctx
->event_list
, event_entry
)
8423 __perf_remove_from_context(&re
);
8427 static void perf_event_exit_cpu_context(int cpu
)
8429 struct perf_event_context
*ctx
;
8433 idx
= srcu_read_lock(&pmus_srcu
);
8434 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8435 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
8437 mutex_lock(&ctx
->mutex
);
8438 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
8439 mutex_unlock(&ctx
->mutex
);
8441 srcu_read_unlock(&pmus_srcu
, idx
);
8444 static void perf_event_exit_cpu(int cpu
)
8446 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8448 perf_event_exit_cpu_context(cpu
);
8450 mutex_lock(&swhash
->hlist_mutex
);
8451 swhash
->online
= false;
8452 swevent_hlist_release(swhash
);
8453 mutex_unlock(&swhash
->hlist_mutex
);
8456 static inline void perf_event_exit_cpu(int cpu
) { }
8460 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
8464 for_each_online_cpu(cpu
)
8465 perf_event_exit_cpu(cpu
);
8471 * Run the perf reboot notifier at the very last possible moment so that
8472 * the generic watchdog code runs as long as possible.
8474 static struct notifier_block perf_reboot_notifier
= {
8475 .notifier_call
= perf_reboot
,
8476 .priority
= INT_MIN
,
8480 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
8482 unsigned int cpu
= (long)hcpu
;
8484 switch (action
& ~CPU_TASKS_FROZEN
) {
8486 case CPU_UP_PREPARE
:
8487 case CPU_DOWN_FAILED
:
8488 perf_event_init_cpu(cpu
);
8491 case CPU_UP_CANCELED
:
8492 case CPU_DOWN_PREPARE
:
8493 perf_event_exit_cpu(cpu
);
8502 void __init
perf_event_init(void)
8508 perf_event_init_all_cpus();
8509 init_srcu_struct(&pmus_srcu
);
8510 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
8511 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
8512 perf_pmu_register(&perf_task_clock
, NULL
, -1);
8514 perf_cpu_notifier(perf_cpu_notify
);
8515 register_reboot_notifier(&perf_reboot_notifier
);
8517 ret
= init_hw_breakpoint();
8518 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
8520 /* do not patch jump label more than once per second */
8521 jump_label_rate_limit(&perf_sched_events
, HZ
);
8524 * Build time assertion that we keep the data_head at the intended
8525 * location. IOW, validation we got the __reserved[] size right.
8527 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
8531 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
8534 struct perf_pmu_events_attr
*pmu_attr
=
8535 container_of(attr
, struct perf_pmu_events_attr
, attr
);
8537 if (pmu_attr
->event_str
)
8538 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
8543 static int __init
perf_event_sysfs_init(void)
8548 mutex_lock(&pmus_lock
);
8550 ret
= bus_register(&pmu_bus
);
8554 list_for_each_entry(pmu
, &pmus
, entry
) {
8555 if (!pmu
->name
|| pmu
->type
< 0)
8558 ret
= pmu_dev_alloc(pmu
);
8559 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
8561 pmu_bus_running
= 1;
8565 mutex_unlock(&pmus_lock
);
8569 device_initcall(perf_event_sysfs_init
);
8571 #ifdef CONFIG_CGROUP_PERF
8572 static struct cgroup_subsys_state
*
8573 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8575 struct perf_cgroup
*jc
;
8577 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
8579 return ERR_PTR(-ENOMEM
);
8581 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
8584 return ERR_PTR(-ENOMEM
);
8590 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
8592 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
8594 free_percpu(jc
->info
);
8598 static int __perf_cgroup_move(void *info
)
8600 struct task_struct
*task
= info
;
8601 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
8605 static void perf_cgroup_attach(struct cgroup_subsys_state
*css
,
8606 struct cgroup_taskset
*tset
)
8608 struct task_struct
*task
;
8610 cgroup_taskset_for_each(task
, tset
)
8611 task_function_call(task
, __perf_cgroup_move
, task
);
8614 static void perf_cgroup_exit(struct cgroup_subsys_state
*css
,
8615 struct cgroup_subsys_state
*old_css
,
8616 struct task_struct
*task
)
8619 * cgroup_exit() is called in the copy_process() failure path.
8620 * Ignore this case since the task hasn't ran yet, this avoids
8621 * trying to poke a half freed task state from generic code.
8623 if (!(task
->flags
& PF_EXITING
))
8626 task_function_call(task
, __perf_cgroup_move
, task
);
8629 struct cgroup_subsys perf_event_cgrp_subsys
= {
8630 .css_alloc
= perf_cgroup_css_alloc
,
8631 .css_free
= perf_cgroup_css_free
,
8632 .exit
= perf_cgroup_exit
,
8633 .attach
= perf_cgroup_attach
,
8635 #endif /* CONFIG_CGROUP_PERF */