uprobes: Fix the memory out of bound overwrite in copy_insn()
[deliverable/linux.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47 * allows us to skip the uprobe_mmap if there are no uprobe events active
48 * at this time. Probably a fine grained per inode count is better?
49 */
50 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN 0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP 1
65
66 struct uprobe {
67 struct rb_node rb_node; /* node in the rb tree */
68 atomic_t ref;
69 struct rw_semaphore register_rwsem;
70 struct rw_semaphore consumer_rwsem;
71 struct list_head pending_list;
72 struct uprobe_consumer *consumers;
73 struct inode *inode; /* Also hold a ref to inode */
74 loff_t offset;
75 unsigned long flags;
76 struct arch_uprobe arch;
77 };
78
79 struct return_instance {
80 struct uprobe *uprobe;
81 unsigned long func;
82 unsigned long orig_ret_vaddr; /* original return address */
83 bool chained; /* true, if instance is nested */
84
85 struct return_instance *next; /* keep as stack */
86 };
87
88 /*
89 * valid_vma: Verify if the specified vma is an executable vma
90 * Relax restrictions while unregistering: vm_flags might have
91 * changed after breakpoint was inserted.
92 * - is_register: indicates if we are in register context.
93 * - Return 1 if the specified virtual address is in an
94 * executable vma.
95 */
96 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
97 {
98 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
99
100 if (is_register)
101 flags |= VM_WRITE;
102
103 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
104 }
105
106 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
107 {
108 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
109 }
110
111 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
112 {
113 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
114 }
115
116 /**
117 * __replace_page - replace page in vma by new page.
118 * based on replace_page in mm/ksm.c
119 *
120 * @vma: vma that holds the pte pointing to page
121 * @addr: address the old @page is mapped at
122 * @page: the cowed page we are replacing by kpage
123 * @kpage: the modified page we replace page by
124 *
125 * Returns 0 on success, -EFAULT on failure.
126 */
127 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
128 struct page *page, struct page *kpage)
129 {
130 struct mm_struct *mm = vma->vm_mm;
131 spinlock_t *ptl;
132 pte_t *ptep;
133 int err;
134 /* For mmu_notifiers */
135 const unsigned long mmun_start = addr;
136 const unsigned long mmun_end = addr + PAGE_SIZE;
137
138 /* For try_to_free_swap() and munlock_vma_page() below */
139 lock_page(page);
140
141 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
142 err = -EAGAIN;
143 ptep = page_check_address(page, mm, addr, &ptl, 0);
144 if (!ptep)
145 goto unlock;
146
147 get_page(kpage);
148 page_add_new_anon_rmap(kpage, vma, addr);
149
150 if (!PageAnon(page)) {
151 dec_mm_counter(mm, MM_FILEPAGES);
152 inc_mm_counter(mm, MM_ANONPAGES);
153 }
154
155 flush_cache_page(vma, addr, pte_pfn(*ptep));
156 ptep_clear_flush(vma, addr, ptep);
157 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158
159 page_remove_rmap(page);
160 if (!page_mapped(page))
161 try_to_free_swap(page);
162 pte_unmap_unlock(ptep, ptl);
163
164 if (vma->vm_flags & VM_LOCKED)
165 munlock_vma_page(page);
166 put_page(page);
167
168 err = 0;
169 unlock:
170 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
171 unlock_page(page);
172 return err;
173 }
174
175 /**
176 * is_swbp_insn - check if instruction is breakpoint instruction.
177 * @insn: instruction to be checked.
178 * Default implementation of is_swbp_insn
179 * Returns true if @insn is a breakpoint instruction.
180 */
181 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
182 {
183 return *insn == UPROBE_SWBP_INSN;
184 }
185
186 /**
187 * is_trap_insn - check if instruction is breakpoint instruction.
188 * @insn: instruction to be checked.
189 * Default implementation of is_trap_insn
190 * Returns true if @insn is a breakpoint instruction.
191 *
192 * This function is needed for the case where an architecture has multiple
193 * trap instructions (like powerpc).
194 */
195 bool __weak is_trap_insn(uprobe_opcode_t *insn)
196 {
197 return is_swbp_insn(insn);
198 }
199
200 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
201 {
202 void *kaddr = kmap_atomic(page);
203 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
204 kunmap_atomic(kaddr);
205 }
206
207 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
208 {
209 void *kaddr = kmap_atomic(page);
210 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
211 kunmap_atomic(kaddr);
212 }
213
214 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
215 {
216 uprobe_opcode_t old_opcode;
217 bool is_swbp;
218
219 /*
220 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
221 * We do not check if it is any other 'trap variant' which could
222 * be conditional trap instruction such as the one powerpc supports.
223 *
224 * The logic is that we do not care if the underlying instruction
225 * is a trap variant; uprobes always wins over any other (gdb)
226 * breakpoint.
227 */
228 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
229 is_swbp = is_swbp_insn(&old_opcode);
230
231 if (is_swbp_insn(new_opcode)) {
232 if (is_swbp) /* register: already installed? */
233 return 0;
234 } else {
235 if (!is_swbp) /* unregister: was it changed by us? */
236 return 0;
237 }
238
239 return 1;
240 }
241
242 /*
243 * NOTE:
244 * Expect the breakpoint instruction to be the smallest size instruction for
245 * the architecture. If an arch has variable length instruction and the
246 * breakpoint instruction is not of the smallest length instruction
247 * supported by that architecture then we need to modify is_trap_at_addr and
248 * uprobe_write_opcode accordingly. This would never be a problem for archs
249 * that have fixed length instructions.
250 */
251
252 /*
253 * uprobe_write_opcode - write the opcode at a given virtual address.
254 * @mm: the probed process address space.
255 * @vaddr: the virtual address to store the opcode.
256 * @opcode: opcode to be written at @vaddr.
257 *
258 * Called with mm->mmap_sem held (for read and with a reference to
259 * mm).
260 *
261 * For mm @mm, write the opcode at @vaddr.
262 * Return 0 (success) or a negative errno.
263 */
264 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
265 uprobe_opcode_t opcode)
266 {
267 struct page *old_page, *new_page;
268 struct vm_area_struct *vma;
269 int ret;
270
271 retry:
272 /* Read the page with vaddr into memory */
273 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
274 if (ret <= 0)
275 return ret;
276
277 ret = verify_opcode(old_page, vaddr, &opcode);
278 if (ret <= 0)
279 goto put_old;
280
281 ret = -ENOMEM;
282 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
283 if (!new_page)
284 goto put_old;
285
286 __SetPageUptodate(new_page);
287
288 copy_highpage(new_page, old_page);
289 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
290
291 ret = anon_vma_prepare(vma);
292 if (ret)
293 goto put_new;
294
295 ret = __replace_page(vma, vaddr, old_page, new_page);
296
297 put_new:
298 page_cache_release(new_page);
299 put_old:
300 put_page(old_page);
301
302 if (unlikely(ret == -EAGAIN))
303 goto retry;
304 return ret;
305 }
306
307 /**
308 * set_swbp - store breakpoint at a given address.
309 * @auprobe: arch specific probepoint information.
310 * @mm: the probed process address space.
311 * @vaddr: the virtual address to insert the opcode.
312 *
313 * For mm @mm, store the breakpoint instruction at @vaddr.
314 * Return 0 (success) or a negative errno.
315 */
316 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
317 {
318 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
319 }
320
321 /**
322 * set_orig_insn - Restore the original instruction.
323 * @mm: the probed process address space.
324 * @auprobe: arch specific probepoint information.
325 * @vaddr: the virtual address to insert the opcode.
326 *
327 * For mm @mm, restore the original opcode (opcode) at @vaddr.
328 * Return 0 (success) or a negative errno.
329 */
330 int __weak
331 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
332 {
333 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
334 }
335
336 static int match_uprobe(struct uprobe *l, struct uprobe *r)
337 {
338 if (l->inode < r->inode)
339 return -1;
340
341 if (l->inode > r->inode)
342 return 1;
343
344 if (l->offset < r->offset)
345 return -1;
346
347 if (l->offset > r->offset)
348 return 1;
349
350 return 0;
351 }
352
353 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
354 {
355 struct uprobe u = { .inode = inode, .offset = offset };
356 struct rb_node *n = uprobes_tree.rb_node;
357 struct uprobe *uprobe;
358 int match;
359
360 while (n) {
361 uprobe = rb_entry(n, struct uprobe, rb_node);
362 match = match_uprobe(&u, uprobe);
363 if (!match) {
364 atomic_inc(&uprobe->ref);
365 return uprobe;
366 }
367
368 if (match < 0)
369 n = n->rb_left;
370 else
371 n = n->rb_right;
372 }
373 return NULL;
374 }
375
376 /*
377 * Find a uprobe corresponding to a given inode:offset
378 * Acquires uprobes_treelock
379 */
380 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
381 {
382 struct uprobe *uprobe;
383
384 spin_lock(&uprobes_treelock);
385 uprobe = __find_uprobe(inode, offset);
386 spin_unlock(&uprobes_treelock);
387
388 return uprobe;
389 }
390
391 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
392 {
393 struct rb_node **p = &uprobes_tree.rb_node;
394 struct rb_node *parent = NULL;
395 struct uprobe *u;
396 int match;
397
398 while (*p) {
399 parent = *p;
400 u = rb_entry(parent, struct uprobe, rb_node);
401 match = match_uprobe(uprobe, u);
402 if (!match) {
403 atomic_inc(&u->ref);
404 return u;
405 }
406
407 if (match < 0)
408 p = &parent->rb_left;
409 else
410 p = &parent->rb_right;
411
412 }
413
414 u = NULL;
415 rb_link_node(&uprobe->rb_node, parent, p);
416 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
417 /* get access + creation ref */
418 atomic_set(&uprobe->ref, 2);
419
420 return u;
421 }
422
423 /*
424 * Acquire uprobes_treelock.
425 * Matching uprobe already exists in rbtree;
426 * increment (access refcount) and return the matching uprobe.
427 *
428 * No matching uprobe; insert the uprobe in rb_tree;
429 * get a double refcount (access + creation) and return NULL.
430 */
431 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
432 {
433 struct uprobe *u;
434
435 spin_lock(&uprobes_treelock);
436 u = __insert_uprobe(uprobe);
437 spin_unlock(&uprobes_treelock);
438
439 return u;
440 }
441
442 static void put_uprobe(struct uprobe *uprobe)
443 {
444 if (atomic_dec_and_test(&uprobe->ref))
445 kfree(uprobe);
446 }
447
448 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
449 {
450 struct uprobe *uprobe, *cur_uprobe;
451
452 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
453 if (!uprobe)
454 return NULL;
455
456 uprobe->inode = igrab(inode);
457 uprobe->offset = offset;
458 init_rwsem(&uprobe->register_rwsem);
459 init_rwsem(&uprobe->consumer_rwsem);
460 /* For now assume that the instruction need not be single-stepped */
461 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
462
463 /* add to uprobes_tree, sorted on inode:offset */
464 cur_uprobe = insert_uprobe(uprobe);
465
466 /* a uprobe exists for this inode:offset combination */
467 if (cur_uprobe) {
468 kfree(uprobe);
469 uprobe = cur_uprobe;
470 iput(inode);
471 }
472
473 return uprobe;
474 }
475
476 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
477 {
478 down_write(&uprobe->consumer_rwsem);
479 uc->next = uprobe->consumers;
480 uprobe->consumers = uc;
481 up_write(&uprobe->consumer_rwsem);
482 }
483
484 /*
485 * For uprobe @uprobe, delete the consumer @uc.
486 * Return true if the @uc is deleted successfully
487 * or return false.
488 */
489 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
490 {
491 struct uprobe_consumer **con;
492 bool ret = false;
493
494 down_write(&uprobe->consumer_rwsem);
495 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
496 if (*con == uc) {
497 *con = uc->next;
498 ret = true;
499 break;
500 }
501 }
502 up_write(&uprobe->consumer_rwsem);
503
504 return ret;
505 }
506
507 static int __copy_insn(struct address_space *mapping, struct file *filp,
508 void *insn, int nbytes, loff_t offset)
509 {
510 struct page *page;
511
512 if (!mapping->a_ops->readpage)
513 return -EIO;
514 /*
515 * Ensure that the page that has the original instruction is
516 * populated and in page-cache.
517 */
518 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
519 if (IS_ERR(page))
520 return PTR_ERR(page);
521
522 copy_from_page(page, offset, insn, nbytes);
523 page_cache_release(page);
524
525 return 0;
526 }
527
528 static int copy_insn(struct uprobe *uprobe, struct file *filp)
529 {
530 struct address_space *mapping = uprobe->inode->i_mapping;
531 loff_t offs = uprobe->offset;
532 void *insn = uprobe->arch.insn;
533 int size = MAX_UINSN_BYTES;
534 int len, err = -EIO;
535
536 /* Copy only available bytes, -EIO if nothing was read */
537 do {
538 if (offs >= i_size_read(uprobe->inode))
539 break;
540
541 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
542 err = __copy_insn(mapping, filp, insn, len, offs);
543 if (err)
544 break;
545
546 insn += len;
547 offs += len;
548 size -= len;
549 } while (size);
550
551 return err;
552 }
553
554 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
555 struct mm_struct *mm, unsigned long vaddr)
556 {
557 int ret = 0;
558
559 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
560 return ret;
561
562 /* TODO: move this into _register, until then we abuse this sem. */
563 down_write(&uprobe->consumer_rwsem);
564 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
565 goto out;
566
567 ret = copy_insn(uprobe, file);
568 if (ret)
569 goto out;
570
571 ret = -ENOTSUPP;
572 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
573 goto out;
574
575 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
576 if (ret)
577 goto out;
578
579 /* uprobe_write_opcode() assumes we don't cross page boundary */
580 BUG_ON((uprobe->offset & ~PAGE_MASK) +
581 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
582
583 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
584 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
585
586 out:
587 up_write(&uprobe->consumer_rwsem);
588
589 return ret;
590 }
591
592 static inline bool consumer_filter(struct uprobe_consumer *uc,
593 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
594 {
595 return !uc->filter || uc->filter(uc, ctx, mm);
596 }
597
598 static bool filter_chain(struct uprobe *uprobe,
599 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
600 {
601 struct uprobe_consumer *uc;
602 bool ret = false;
603
604 down_read(&uprobe->consumer_rwsem);
605 for (uc = uprobe->consumers; uc; uc = uc->next) {
606 ret = consumer_filter(uc, ctx, mm);
607 if (ret)
608 break;
609 }
610 up_read(&uprobe->consumer_rwsem);
611
612 return ret;
613 }
614
615 static int
616 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
617 struct vm_area_struct *vma, unsigned long vaddr)
618 {
619 bool first_uprobe;
620 int ret;
621
622 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
623 if (ret)
624 return ret;
625
626 /*
627 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
628 * the task can hit this breakpoint right after __replace_page().
629 */
630 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
631 if (first_uprobe)
632 set_bit(MMF_HAS_UPROBES, &mm->flags);
633
634 ret = set_swbp(&uprobe->arch, mm, vaddr);
635 if (!ret)
636 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
637 else if (first_uprobe)
638 clear_bit(MMF_HAS_UPROBES, &mm->flags);
639
640 return ret;
641 }
642
643 static int
644 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
645 {
646 set_bit(MMF_RECALC_UPROBES, &mm->flags);
647 return set_orig_insn(&uprobe->arch, mm, vaddr);
648 }
649
650 static inline bool uprobe_is_active(struct uprobe *uprobe)
651 {
652 return !RB_EMPTY_NODE(&uprobe->rb_node);
653 }
654 /*
655 * There could be threads that have already hit the breakpoint. They
656 * will recheck the current insn and restart if find_uprobe() fails.
657 * See find_active_uprobe().
658 */
659 static void delete_uprobe(struct uprobe *uprobe)
660 {
661 if (WARN_ON(!uprobe_is_active(uprobe)))
662 return;
663
664 spin_lock(&uprobes_treelock);
665 rb_erase(&uprobe->rb_node, &uprobes_tree);
666 spin_unlock(&uprobes_treelock);
667 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
668 iput(uprobe->inode);
669 put_uprobe(uprobe);
670 }
671
672 struct map_info {
673 struct map_info *next;
674 struct mm_struct *mm;
675 unsigned long vaddr;
676 };
677
678 static inline struct map_info *free_map_info(struct map_info *info)
679 {
680 struct map_info *next = info->next;
681 kfree(info);
682 return next;
683 }
684
685 static struct map_info *
686 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
687 {
688 unsigned long pgoff = offset >> PAGE_SHIFT;
689 struct vm_area_struct *vma;
690 struct map_info *curr = NULL;
691 struct map_info *prev = NULL;
692 struct map_info *info;
693 int more = 0;
694
695 again:
696 mutex_lock(&mapping->i_mmap_mutex);
697 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
698 if (!valid_vma(vma, is_register))
699 continue;
700
701 if (!prev && !more) {
702 /*
703 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
704 * reclaim. This is optimistic, no harm done if it fails.
705 */
706 prev = kmalloc(sizeof(struct map_info),
707 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
708 if (prev)
709 prev->next = NULL;
710 }
711 if (!prev) {
712 more++;
713 continue;
714 }
715
716 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
717 continue;
718
719 info = prev;
720 prev = prev->next;
721 info->next = curr;
722 curr = info;
723
724 info->mm = vma->vm_mm;
725 info->vaddr = offset_to_vaddr(vma, offset);
726 }
727 mutex_unlock(&mapping->i_mmap_mutex);
728
729 if (!more)
730 goto out;
731
732 prev = curr;
733 while (curr) {
734 mmput(curr->mm);
735 curr = curr->next;
736 }
737
738 do {
739 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
740 if (!info) {
741 curr = ERR_PTR(-ENOMEM);
742 goto out;
743 }
744 info->next = prev;
745 prev = info;
746 } while (--more);
747
748 goto again;
749 out:
750 while (prev)
751 prev = free_map_info(prev);
752 return curr;
753 }
754
755 static int
756 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
757 {
758 bool is_register = !!new;
759 struct map_info *info;
760 int err = 0;
761
762 percpu_down_write(&dup_mmap_sem);
763 info = build_map_info(uprobe->inode->i_mapping,
764 uprobe->offset, is_register);
765 if (IS_ERR(info)) {
766 err = PTR_ERR(info);
767 goto out;
768 }
769
770 while (info) {
771 struct mm_struct *mm = info->mm;
772 struct vm_area_struct *vma;
773
774 if (err && is_register)
775 goto free;
776
777 down_write(&mm->mmap_sem);
778 vma = find_vma(mm, info->vaddr);
779 if (!vma || !valid_vma(vma, is_register) ||
780 file_inode(vma->vm_file) != uprobe->inode)
781 goto unlock;
782
783 if (vma->vm_start > info->vaddr ||
784 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
785 goto unlock;
786
787 if (is_register) {
788 /* consult only the "caller", new consumer. */
789 if (consumer_filter(new,
790 UPROBE_FILTER_REGISTER, mm))
791 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
792 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
793 if (!filter_chain(uprobe,
794 UPROBE_FILTER_UNREGISTER, mm))
795 err |= remove_breakpoint(uprobe, mm, info->vaddr);
796 }
797
798 unlock:
799 up_write(&mm->mmap_sem);
800 free:
801 mmput(mm);
802 info = free_map_info(info);
803 }
804 out:
805 percpu_up_write(&dup_mmap_sem);
806 return err;
807 }
808
809 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
810 {
811 consumer_add(uprobe, uc);
812 return register_for_each_vma(uprobe, uc);
813 }
814
815 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
816 {
817 int err;
818
819 if (!consumer_del(uprobe, uc)) /* WARN? */
820 return;
821
822 err = register_for_each_vma(uprobe, NULL);
823 /* TODO : cant unregister? schedule a worker thread */
824 if (!uprobe->consumers && !err)
825 delete_uprobe(uprobe);
826 }
827
828 /*
829 * uprobe_register - register a probe
830 * @inode: the file in which the probe has to be placed.
831 * @offset: offset from the start of the file.
832 * @uc: information on howto handle the probe..
833 *
834 * Apart from the access refcount, uprobe_register() takes a creation
835 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
836 * inserted into the rbtree (i.e first consumer for a @inode:@offset
837 * tuple). Creation refcount stops uprobe_unregister from freeing the
838 * @uprobe even before the register operation is complete. Creation
839 * refcount is released when the last @uc for the @uprobe
840 * unregisters.
841 *
842 * Return errno if it cannot successully install probes
843 * else return 0 (success)
844 */
845 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
846 {
847 struct uprobe *uprobe;
848 int ret;
849
850 /* Uprobe must have at least one set consumer */
851 if (!uc->handler && !uc->ret_handler)
852 return -EINVAL;
853
854 /* Racy, just to catch the obvious mistakes */
855 if (offset > i_size_read(inode))
856 return -EINVAL;
857
858 retry:
859 uprobe = alloc_uprobe(inode, offset);
860 if (!uprobe)
861 return -ENOMEM;
862 /*
863 * We can race with uprobe_unregister()->delete_uprobe().
864 * Check uprobe_is_active() and retry if it is false.
865 */
866 down_write(&uprobe->register_rwsem);
867 ret = -EAGAIN;
868 if (likely(uprobe_is_active(uprobe))) {
869 ret = __uprobe_register(uprobe, uc);
870 if (ret)
871 __uprobe_unregister(uprobe, uc);
872 }
873 up_write(&uprobe->register_rwsem);
874 put_uprobe(uprobe);
875
876 if (unlikely(ret == -EAGAIN))
877 goto retry;
878 return ret;
879 }
880 EXPORT_SYMBOL_GPL(uprobe_register);
881
882 /*
883 * uprobe_apply - unregister a already registered probe.
884 * @inode: the file in which the probe has to be removed.
885 * @offset: offset from the start of the file.
886 * @uc: consumer which wants to add more or remove some breakpoints
887 * @add: add or remove the breakpoints
888 */
889 int uprobe_apply(struct inode *inode, loff_t offset,
890 struct uprobe_consumer *uc, bool add)
891 {
892 struct uprobe *uprobe;
893 struct uprobe_consumer *con;
894 int ret = -ENOENT;
895
896 uprobe = find_uprobe(inode, offset);
897 if (!uprobe)
898 return ret;
899
900 down_write(&uprobe->register_rwsem);
901 for (con = uprobe->consumers; con && con != uc ; con = con->next)
902 ;
903 if (con)
904 ret = register_for_each_vma(uprobe, add ? uc : NULL);
905 up_write(&uprobe->register_rwsem);
906 put_uprobe(uprobe);
907
908 return ret;
909 }
910
911 /*
912 * uprobe_unregister - unregister a already registered probe.
913 * @inode: the file in which the probe has to be removed.
914 * @offset: offset from the start of the file.
915 * @uc: identify which probe if multiple probes are colocated.
916 */
917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
918 {
919 struct uprobe *uprobe;
920
921 uprobe = find_uprobe(inode, offset);
922 if (!uprobe)
923 return;
924
925 down_write(&uprobe->register_rwsem);
926 __uprobe_unregister(uprobe, uc);
927 up_write(&uprobe->register_rwsem);
928 put_uprobe(uprobe);
929 }
930 EXPORT_SYMBOL_GPL(uprobe_unregister);
931
932 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
933 {
934 struct vm_area_struct *vma;
935 int err = 0;
936
937 down_read(&mm->mmap_sem);
938 for (vma = mm->mmap; vma; vma = vma->vm_next) {
939 unsigned long vaddr;
940 loff_t offset;
941
942 if (!valid_vma(vma, false) ||
943 file_inode(vma->vm_file) != uprobe->inode)
944 continue;
945
946 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
947 if (uprobe->offset < offset ||
948 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
949 continue;
950
951 vaddr = offset_to_vaddr(vma, uprobe->offset);
952 err |= remove_breakpoint(uprobe, mm, vaddr);
953 }
954 up_read(&mm->mmap_sem);
955
956 return err;
957 }
958
959 static struct rb_node *
960 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
961 {
962 struct rb_node *n = uprobes_tree.rb_node;
963
964 while (n) {
965 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
966
967 if (inode < u->inode) {
968 n = n->rb_left;
969 } else if (inode > u->inode) {
970 n = n->rb_right;
971 } else {
972 if (max < u->offset)
973 n = n->rb_left;
974 else if (min > u->offset)
975 n = n->rb_right;
976 else
977 break;
978 }
979 }
980
981 return n;
982 }
983
984 /*
985 * For a given range in vma, build a list of probes that need to be inserted.
986 */
987 static void build_probe_list(struct inode *inode,
988 struct vm_area_struct *vma,
989 unsigned long start, unsigned long end,
990 struct list_head *head)
991 {
992 loff_t min, max;
993 struct rb_node *n, *t;
994 struct uprobe *u;
995
996 INIT_LIST_HEAD(head);
997 min = vaddr_to_offset(vma, start);
998 max = min + (end - start) - 1;
999
1000 spin_lock(&uprobes_treelock);
1001 n = find_node_in_range(inode, min, max);
1002 if (n) {
1003 for (t = n; t; t = rb_prev(t)) {
1004 u = rb_entry(t, struct uprobe, rb_node);
1005 if (u->inode != inode || u->offset < min)
1006 break;
1007 list_add(&u->pending_list, head);
1008 atomic_inc(&u->ref);
1009 }
1010 for (t = n; (t = rb_next(t)); ) {
1011 u = rb_entry(t, struct uprobe, rb_node);
1012 if (u->inode != inode || u->offset > max)
1013 break;
1014 list_add(&u->pending_list, head);
1015 atomic_inc(&u->ref);
1016 }
1017 }
1018 spin_unlock(&uprobes_treelock);
1019 }
1020
1021 /*
1022 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1023 *
1024 * Currently we ignore all errors and always return 0, the callers
1025 * can't handle the failure anyway.
1026 */
1027 int uprobe_mmap(struct vm_area_struct *vma)
1028 {
1029 struct list_head tmp_list;
1030 struct uprobe *uprobe, *u;
1031 struct inode *inode;
1032
1033 if (no_uprobe_events() || !valid_vma(vma, true))
1034 return 0;
1035
1036 inode = file_inode(vma->vm_file);
1037 if (!inode)
1038 return 0;
1039
1040 mutex_lock(uprobes_mmap_hash(inode));
1041 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1042 /*
1043 * We can race with uprobe_unregister(), this uprobe can be already
1044 * removed. But in this case filter_chain() must return false, all
1045 * consumers have gone away.
1046 */
1047 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1048 if (!fatal_signal_pending(current) &&
1049 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1050 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1051 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1052 }
1053 put_uprobe(uprobe);
1054 }
1055 mutex_unlock(uprobes_mmap_hash(inode));
1056
1057 return 0;
1058 }
1059
1060 static bool
1061 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1062 {
1063 loff_t min, max;
1064 struct inode *inode;
1065 struct rb_node *n;
1066
1067 inode = file_inode(vma->vm_file);
1068
1069 min = vaddr_to_offset(vma, start);
1070 max = min + (end - start) - 1;
1071
1072 spin_lock(&uprobes_treelock);
1073 n = find_node_in_range(inode, min, max);
1074 spin_unlock(&uprobes_treelock);
1075
1076 return !!n;
1077 }
1078
1079 /*
1080 * Called in context of a munmap of a vma.
1081 */
1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084 if (no_uprobe_events() || !valid_vma(vma, false))
1085 return;
1086
1087 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1088 return;
1089
1090 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1091 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1092 return;
1093
1094 if (vma_has_uprobes(vma, start, end))
1095 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1096 }
1097
1098 /* Slot allocation for XOL */
1099 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1100 {
1101 int ret = -EALREADY;
1102
1103 down_write(&mm->mmap_sem);
1104 if (mm->uprobes_state.xol_area)
1105 goto fail;
1106
1107 if (!area->vaddr) {
1108 /* Try to map as high as possible, this is only a hint. */
1109 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1110 PAGE_SIZE, 0, 0);
1111 if (area->vaddr & ~PAGE_MASK) {
1112 ret = area->vaddr;
1113 goto fail;
1114 }
1115 }
1116
1117 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1118 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1119 if (ret)
1120 goto fail;
1121
1122 smp_wmb(); /* pairs with get_xol_area() */
1123 mm->uprobes_state.xol_area = area;
1124 fail:
1125 up_write(&mm->mmap_sem);
1126
1127 return ret;
1128 }
1129
1130 static struct xol_area *__create_xol_area(unsigned long vaddr)
1131 {
1132 struct mm_struct *mm = current->mm;
1133 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1134 struct xol_area *area;
1135
1136 area = kmalloc(sizeof(*area), GFP_KERNEL);
1137 if (unlikely(!area))
1138 goto out;
1139
1140 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1141 if (!area->bitmap)
1142 goto free_area;
1143
1144 area->page = alloc_page(GFP_HIGHUSER);
1145 if (!area->page)
1146 goto free_bitmap;
1147
1148 area->vaddr = vaddr;
1149 init_waitqueue_head(&area->wq);
1150 /* Reserve the 1st slot for get_trampoline_vaddr() */
1151 set_bit(0, area->bitmap);
1152 atomic_set(&area->slot_count, 1);
1153 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1154
1155 if (!xol_add_vma(mm, area))
1156 return area;
1157
1158 __free_page(area->page);
1159 free_bitmap:
1160 kfree(area->bitmap);
1161 free_area:
1162 kfree(area);
1163 out:
1164 return NULL;
1165 }
1166
1167 /*
1168 * get_xol_area - Allocate process's xol_area if necessary.
1169 * This area will be used for storing instructions for execution out of line.
1170 *
1171 * Returns the allocated area or NULL.
1172 */
1173 static struct xol_area *get_xol_area(void)
1174 {
1175 struct mm_struct *mm = current->mm;
1176 struct xol_area *area;
1177
1178 if (!mm->uprobes_state.xol_area)
1179 __create_xol_area(0);
1180
1181 area = mm->uprobes_state.xol_area;
1182 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1183 return area;
1184 }
1185
1186 /*
1187 * uprobe_clear_state - Free the area allocated for slots.
1188 */
1189 void uprobe_clear_state(struct mm_struct *mm)
1190 {
1191 struct xol_area *area = mm->uprobes_state.xol_area;
1192
1193 if (!area)
1194 return;
1195
1196 put_page(area->page);
1197 kfree(area->bitmap);
1198 kfree(area);
1199 }
1200
1201 void uprobe_start_dup_mmap(void)
1202 {
1203 percpu_down_read(&dup_mmap_sem);
1204 }
1205
1206 void uprobe_end_dup_mmap(void)
1207 {
1208 percpu_up_read(&dup_mmap_sem);
1209 }
1210
1211 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1212 {
1213 newmm->uprobes_state.xol_area = NULL;
1214
1215 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1216 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1217 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1218 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1219 }
1220 }
1221
1222 /*
1223 * - search for a free slot.
1224 */
1225 static unsigned long xol_take_insn_slot(struct xol_area *area)
1226 {
1227 unsigned long slot_addr;
1228 int slot_nr;
1229
1230 do {
1231 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1232 if (slot_nr < UINSNS_PER_PAGE) {
1233 if (!test_and_set_bit(slot_nr, area->bitmap))
1234 break;
1235
1236 slot_nr = UINSNS_PER_PAGE;
1237 continue;
1238 }
1239 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1240 } while (slot_nr >= UINSNS_PER_PAGE);
1241
1242 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1243 atomic_inc(&area->slot_count);
1244
1245 return slot_addr;
1246 }
1247
1248 /*
1249 * xol_get_insn_slot - allocate a slot for xol.
1250 * Returns the allocated slot address or 0.
1251 */
1252 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1253 {
1254 struct xol_area *area;
1255 unsigned long xol_vaddr;
1256
1257 area = get_xol_area();
1258 if (!area)
1259 return 0;
1260
1261 xol_vaddr = xol_take_insn_slot(area);
1262 if (unlikely(!xol_vaddr))
1263 return 0;
1264
1265 /* Initialize the slot */
1266 copy_to_page(area->page, xol_vaddr,
1267 uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1268 /*
1269 * We probably need flush_icache_user_range() but it needs vma.
1270 * This should work on supported architectures too.
1271 */
1272 flush_dcache_page(area->page);
1273
1274 return xol_vaddr;
1275 }
1276
1277 /*
1278 * xol_free_insn_slot - If slot was earlier allocated by
1279 * @xol_get_insn_slot(), make the slot available for
1280 * subsequent requests.
1281 */
1282 static void xol_free_insn_slot(struct task_struct *tsk)
1283 {
1284 struct xol_area *area;
1285 unsigned long vma_end;
1286 unsigned long slot_addr;
1287
1288 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1289 return;
1290
1291 slot_addr = tsk->utask->xol_vaddr;
1292 if (unlikely(!slot_addr))
1293 return;
1294
1295 area = tsk->mm->uprobes_state.xol_area;
1296 vma_end = area->vaddr + PAGE_SIZE;
1297 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1298 unsigned long offset;
1299 int slot_nr;
1300
1301 offset = slot_addr - area->vaddr;
1302 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1303 if (slot_nr >= UINSNS_PER_PAGE)
1304 return;
1305
1306 clear_bit(slot_nr, area->bitmap);
1307 atomic_dec(&area->slot_count);
1308 if (waitqueue_active(&area->wq))
1309 wake_up(&area->wq);
1310
1311 tsk->utask->xol_vaddr = 0;
1312 }
1313 }
1314
1315 /**
1316 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1317 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1318 * instruction.
1319 * Return the address of the breakpoint instruction.
1320 */
1321 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1322 {
1323 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1324 }
1325
1326 /*
1327 * Called with no locks held.
1328 * Called in context of a exiting or a exec-ing thread.
1329 */
1330 void uprobe_free_utask(struct task_struct *t)
1331 {
1332 struct uprobe_task *utask = t->utask;
1333 struct return_instance *ri, *tmp;
1334
1335 if (!utask)
1336 return;
1337
1338 if (utask->active_uprobe)
1339 put_uprobe(utask->active_uprobe);
1340
1341 ri = utask->return_instances;
1342 while (ri) {
1343 tmp = ri;
1344 ri = ri->next;
1345
1346 put_uprobe(tmp->uprobe);
1347 kfree(tmp);
1348 }
1349
1350 xol_free_insn_slot(t);
1351 kfree(utask);
1352 t->utask = NULL;
1353 }
1354
1355 /*
1356 * Allocate a uprobe_task object for the task if if necessary.
1357 * Called when the thread hits a breakpoint.
1358 *
1359 * Returns:
1360 * - pointer to new uprobe_task on success
1361 * - NULL otherwise
1362 */
1363 static struct uprobe_task *get_utask(void)
1364 {
1365 if (!current->utask)
1366 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1367 return current->utask;
1368 }
1369
1370 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1371 {
1372 struct uprobe_task *n_utask;
1373 struct return_instance **p, *o, *n;
1374
1375 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1376 if (!n_utask)
1377 return -ENOMEM;
1378 t->utask = n_utask;
1379
1380 p = &n_utask->return_instances;
1381 for (o = o_utask->return_instances; o; o = o->next) {
1382 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1383 if (!n)
1384 return -ENOMEM;
1385
1386 *n = *o;
1387 atomic_inc(&n->uprobe->ref);
1388 n->next = NULL;
1389
1390 *p = n;
1391 p = &n->next;
1392 n_utask->depth++;
1393 }
1394
1395 return 0;
1396 }
1397
1398 static void uprobe_warn(struct task_struct *t, const char *msg)
1399 {
1400 pr_warn("uprobe: %s:%d failed to %s\n",
1401 current->comm, current->pid, msg);
1402 }
1403
1404 static void dup_xol_work(struct callback_head *work)
1405 {
1406 kfree(work);
1407
1408 if (current->flags & PF_EXITING)
1409 return;
1410
1411 if (!__create_xol_area(current->utask->vaddr))
1412 uprobe_warn(current, "dup xol area");
1413 }
1414
1415 /*
1416 * Called in context of a new clone/fork from copy_process.
1417 */
1418 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1419 {
1420 struct uprobe_task *utask = current->utask;
1421 struct mm_struct *mm = current->mm;
1422 struct callback_head *work;
1423 struct xol_area *area;
1424
1425 t->utask = NULL;
1426
1427 if (!utask || !utask->return_instances)
1428 return;
1429
1430 if (mm == t->mm && !(flags & CLONE_VFORK))
1431 return;
1432
1433 if (dup_utask(t, utask))
1434 return uprobe_warn(t, "dup ret instances");
1435
1436 /* The task can fork() after dup_xol_work() fails */
1437 area = mm->uprobes_state.xol_area;
1438 if (!area)
1439 return uprobe_warn(t, "dup xol area");
1440
1441 if (mm == t->mm)
1442 return;
1443
1444 /* TODO: move it into the union in uprobe_task */
1445 work = kmalloc(sizeof(*work), GFP_KERNEL);
1446 if (!work)
1447 return uprobe_warn(t, "dup xol area");
1448
1449 t->utask->vaddr = area->vaddr;
1450 init_task_work(work, dup_xol_work);
1451 task_work_add(t, work, true);
1452 }
1453
1454 /*
1455 * Current area->vaddr notion assume the trampoline address is always
1456 * equal area->vaddr.
1457 *
1458 * Returns -1 in case the xol_area is not allocated.
1459 */
1460 static unsigned long get_trampoline_vaddr(void)
1461 {
1462 struct xol_area *area;
1463 unsigned long trampoline_vaddr = -1;
1464
1465 area = current->mm->uprobes_state.xol_area;
1466 smp_read_barrier_depends();
1467 if (area)
1468 trampoline_vaddr = area->vaddr;
1469
1470 return trampoline_vaddr;
1471 }
1472
1473 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1474 {
1475 struct return_instance *ri;
1476 struct uprobe_task *utask;
1477 unsigned long orig_ret_vaddr, trampoline_vaddr;
1478 bool chained = false;
1479
1480 if (!get_xol_area())
1481 return;
1482
1483 utask = get_utask();
1484 if (!utask)
1485 return;
1486
1487 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1488 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1489 " nestedness limit pid/tgid=%d/%d\n",
1490 current->pid, current->tgid);
1491 return;
1492 }
1493
1494 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1495 if (!ri)
1496 goto fail;
1497
1498 trampoline_vaddr = get_trampoline_vaddr();
1499 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1500 if (orig_ret_vaddr == -1)
1501 goto fail;
1502
1503 /*
1504 * We don't want to keep trampoline address in stack, rather keep the
1505 * original return address of first caller thru all the consequent
1506 * instances. This also makes breakpoint unwrapping easier.
1507 */
1508 if (orig_ret_vaddr == trampoline_vaddr) {
1509 if (!utask->return_instances) {
1510 /*
1511 * This situation is not possible. Likely we have an
1512 * attack from user-space.
1513 */
1514 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1515 current->pid, current->tgid);
1516 goto fail;
1517 }
1518
1519 chained = true;
1520 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1521 }
1522
1523 atomic_inc(&uprobe->ref);
1524 ri->uprobe = uprobe;
1525 ri->func = instruction_pointer(regs);
1526 ri->orig_ret_vaddr = orig_ret_vaddr;
1527 ri->chained = chained;
1528
1529 utask->depth++;
1530
1531 /* add instance to the stack */
1532 ri->next = utask->return_instances;
1533 utask->return_instances = ri;
1534
1535 return;
1536
1537 fail:
1538 kfree(ri);
1539 }
1540
1541 /* Prepare to single-step probed instruction out of line. */
1542 static int
1543 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1544 {
1545 struct uprobe_task *utask;
1546 unsigned long xol_vaddr;
1547 int err;
1548
1549 utask = get_utask();
1550 if (!utask)
1551 return -ENOMEM;
1552
1553 xol_vaddr = xol_get_insn_slot(uprobe);
1554 if (!xol_vaddr)
1555 return -ENOMEM;
1556
1557 utask->xol_vaddr = xol_vaddr;
1558 utask->vaddr = bp_vaddr;
1559
1560 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1561 if (unlikely(err)) {
1562 xol_free_insn_slot(current);
1563 return err;
1564 }
1565
1566 utask->active_uprobe = uprobe;
1567 utask->state = UTASK_SSTEP;
1568 return 0;
1569 }
1570
1571 /*
1572 * If we are singlestepping, then ensure this thread is not connected to
1573 * non-fatal signals until completion of singlestep. When xol insn itself
1574 * triggers the signal, restart the original insn even if the task is
1575 * already SIGKILL'ed (since coredump should report the correct ip). This
1576 * is even more important if the task has a handler for SIGSEGV/etc, The
1577 * _same_ instruction should be repeated again after return from the signal
1578 * handler, and SSTEP can never finish in this case.
1579 */
1580 bool uprobe_deny_signal(void)
1581 {
1582 struct task_struct *t = current;
1583 struct uprobe_task *utask = t->utask;
1584
1585 if (likely(!utask || !utask->active_uprobe))
1586 return false;
1587
1588 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1589
1590 if (signal_pending(t)) {
1591 spin_lock_irq(&t->sighand->siglock);
1592 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1593 spin_unlock_irq(&t->sighand->siglock);
1594
1595 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1596 utask->state = UTASK_SSTEP_TRAPPED;
1597 set_tsk_thread_flag(t, TIF_UPROBE);
1598 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1599 }
1600 }
1601
1602 return true;
1603 }
1604
1605 /*
1606 * Avoid singlestepping the original instruction if the original instruction
1607 * is a NOP or can be emulated.
1608 */
1609 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1610 {
1611 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1612 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1613 return true;
1614 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1615 }
1616 return false;
1617 }
1618
1619 static void mmf_recalc_uprobes(struct mm_struct *mm)
1620 {
1621 struct vm_area_struct *vma;
1622
1623 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1624 if (!valid_vma(vma, false))
1625 continue;
1626 /*
1627 * This is not strictly accurate, we can race with
1628 * uprobe_unregister() and see the already removed
1629 * uprobe if delete_uprobe() was not yet called.
1630 * Or this uprobe can be filtered out.
1631 */
1632 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1633 return;
1634 }
1635
1636 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1637 }
1638
1639 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1640 {
1641 struct page *page;
1642 uprobe_opcode_t opcode;
1643 int result;
1644
1645 pagefault_disable();
1646 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1647 sizeof(opcode));
1648 pagefault_enable();
1649
1650 if (likely(result == 0))
1651 goto out;
1652
1653 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1654 if (result < 0)
1655 return result;
1656
1657 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1658 put_page(page);
1659 out:
1660 /* This needs to return true for any variant of the trap insn */
1661 return is_trap_insn(&opcode);
1662 }
1663
1664 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1665 {
1666 struct mm_struct *mm = current->mm;
1667 struct uprobe *uprobe = NULL;
1668 struct vm_area_struct *vma;
1669
1670 down_read(&mm->mmap_sem);
1671 vma = find_vma(mm, bp_vaddr);
1672 if (vma && vma->vm_start <= bp_vaddr) {
1673 if (valid_vma(vma, false)) {
1674 struct inode *inode = file_inode(vma->vm_file);
1675 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1676
1677 uprobe = find_uprobe(inode, offset);
1678 }
1679
1680 if (!uprobe)
1681 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1682 } else {
1683 *is_swbp = -EFAULT;
1684 }
1685
1686 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1687 mmf_recalc_uprobes(mm);
1688 up_read(&mm->mmap_sem);
1689
1690 return uprobe;
1691 }
1692
1693 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1694 {
1695 struct uprobe_consumer *uc;
1696 int remove = UPROBE_HANDLER_REMOVE;
1697 bool need_prep = false; /* prepare return uprobe, when needed */
1698
1699 down_read(&uprobe->register_rwsem);
1700 for (uc = uprobe->consumers; uc; uc = uc->next) {
1701 int rc = 0;
1702
1703 if (uc->handler) {
1704 rc = uc->handler(uc, regs);
1705 WARN(rc & ~UPROBE_HANDLER_MASK,
1706 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1707 }
1708
1709 if (uc->ret_handler)
1710 need_prep = true;
1711
1712 remove &= rc;
1713 }
1714
1715 if (need_prep && !remove)
1716 prepare_uretprobe(uprobe, regs); /* put bp at return */
1717
1718 if (remove && uprobe->consumers) {
1719 WARN_ON(!uprobe_is_active(uprobe));
1720 unapply_uprobe(uprobe, current->mm);
1721 }
1722 up_read(&uprobe->register_rwsem);
1723 }
1724
1725 static void
1726 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1727 {
1728 struct uprobe *uprobe = ri->uprobe;
1729 struct uprobe_consumer *uc;
1730
1731 down_read(&uprobe->register_rwsem);
1732 for (uc = uprobe->consumers; uc; uc = uc->next) {
1733 if (uc->ret_handler)
1734 uc->ret_handler(uc, ri->func, regs);
1735 }
1736 up_read(&uprobe->register_rwsem);
1737 }
1738
1739 static bool handle_trampoline(struct pt_regs *regs)
1740 {
1741 struct uprobe_task *utask;
1742 struct return_instance *ri, *tmp;
1743 bool chained;
1744
1745 utask = current->utask;
1746 if (!utask)
1747 return false;
1748
1749 ri = utask->return_instances;
1750 if (!ri)
1751 return false;
1752
1753 /*
1754 * TODO: we should throw out return_instance's invalidated by
1755 * longjmp(), currently we assume that the probed function always
1756 * returns.
1757 */
1758 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1759
1760 for (;;) {
1761 handle_uretprobe_chain(ri, regs);
1762
1763 chained = ri->chained;
1764 put_uprobe(ri->uprobe);
1765
1766 tmp = ri;
1767 ri = ri->next;
1768 kfree(tmp);
1769 utask->depth--;
1770
1771 if (!chained)
1772 break;
1773 BUG_ON(!ri);
1774 }
1775
1776 utask->return_instances = ri;
1777
1778 return true;
1779 }
1780
1781 /*
1782 * Run handler and ask thread to singlestep.
1783 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1784 */
1785 static void handle_swbp(struct pt_regs *regs)
1786 {
1787 struct uprobe *uprobe;
1788 unsigned long bp_vaddr;
1789 int uninitialized_var(is_swbp);
1790
1791 bp_vaddr = uprobe_get_swbp_addr(regs);
1792 if (bp_vaddr == get_trampoline_vaddr()) {
1793 if (handle_trampoline(regs))
1794 return;
1795
1796 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1797 current->pid, current->tgid);
1798 }
1799
1800 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1801 if (!uprobe) {
1802 if (is_swbp > 0) {
1803 /* No matching uprobe; signal SIGTRAP. */
1804 send_sig(SIGTRAP, current, 0);
1805 } else {
1806 /*
1807 * Either we raced with uprobe_unregister() or we can't
1808 * access this memory. The latter is only possible if
1809 * another thread plays with our ->mm. In both cases
1810 * we can simply restart. If this vma was unmapped we
1811 * can pretend this insn was not executed yet and get
1812 * the (correct) SIGSEGV after restart.
1813 */
1814 instruction_pointer_set(regs, bp_vaddr);
1815 }
1816 return;
1817 }
1818
1819 /* change it in advance for ->handler() and restart */
1820 instruction_pointer_set(regs, bp_vaddr);
1821
1822 /*
1823 * TODO: move copy_insn/etc into _register and remove this hack.
1824 * After we hit the bp, _unregister + _register can install the
1825 * new and not-yet-analyzed uprobe at the same address, restart.
1826 */
1827 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1828 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1829 goto out;
1830
1831 handler_chain(uprobe, regs);
1832 if (can_skip_sstep(uprobe, regs))
1833 goto out;
1834
1835 if (!pre_ssout(uprobe, regs, bp_vaddr))
1836 return;
1837
1838 /* can_skip_sstep() succeeded, or restart if can't singlestep */
1839 out:
1840 put_uprobe(uprobe);
1841 }
1842
1843 /*
1844 * Perform required fix-ups and disable singlestep.
1845 * Allow pending signals to take effect.
1846 */
1847 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1848 {
1849 struct uprobe *uprobe;
1850
1851 uprobe = utask->active_uprobe;
1852 if (utask->state == UTASK_SSTEP_ACK)
1853 arch_uprobe_post_xol(&uprobe->arch, regs);
1854 else if (utask->state == UTASK_SSTEP_TRAPPED)
1855 arch_uprobe_abort_xol(&uprobe->arch, regs);
1856 else
1857 WARN_ON_ONCE(1);
1858
1859 put_uprobe(uprobe);
1860 utask->active_uprobe = NULL;
1861 utask->state = UTASK_RUNNING;
1862 xol_free_insn_slot(current);
1863
1864 spin_lock_irq(&current->sighand->siglock);
1865 recalc_sigpending(); /* see uprobe_deny_signal() */
1866 spin_unlock_irq(&current->sighand->siglock);
1867 }
1868
1869 /*
1870 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1871 * allows the thread to return from interrupt. After that handle_swbp()
1872 * sets utask->active_uprobe.
1873 *
1874 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1875 * and allows the thread to return from interrupt.
1876 *
1877 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1878 * uprobe_notify_resume().
1879 */
1880 void uprobe_notify_resume(struct pt_regs *regs)
1881 {
1882 struct uprobe_task *utask;
1883
1884 clear_thread_flag(TIF_UPROBE);
1885
1886 utask = current->utask;
1887 if (utask && utask->active_uprobe)
1888 handle_singlestep(utask, regs);
1889 else
1890 handle_swbp(regs);
1891 }
1892
1893 /*
1894 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1895 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1896 */
1897 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1898 {
1899 if (!current->mm)
1900 return 0;
1901
1902 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1903 (!current->utask || !current->utask->return_instances))
1904 return 0;
1905
1906 set_thread_flag(TIF_UPROBE);
1907 return 1;
1908 }
1909
1910 /*
1911 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1912 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1913 */
1914 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1915 {
1916 struct uprobe_task *utask = current->utask;
1917
1918 if (!current->mm || !utask || !utask->active_uprobe)
1919 /* task is currently not uprobed */
1920 return 0;
1921
1922 utask->state = UTASK_SSTEP_ACK;
1923 set_thread_flag(TIF_UPROBE);
1924 return 1;
1925 }
1926
1927 static struct notifier_block uprobe_exception_nb = {
1928 .notifier_call = arch_uprobe_exception_notify,
1929 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1930 };
1931
1932 static int __init init_uprobes(void)
1933 {
1934 int i;
1935
1936 for (i = 0; i < UPROBES_HASH_SZ; i++)
1937 mutex_init(&uprobes_mmap_mutex[i]);
1938
1939 if (percpu_init_rwsem(&dup_mmap_sem))
1940 return -ENOMEM;
1941
1942 return register_die_notifier(&uprobe_exception_nb);
1943 }
1944 __initcall(init_uprobes);
This page took 0.085874 seconds and 5 git commands to generate.