Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct *tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 }
119
120 /*
121 * Accumulate here the counters for all threads but the group leader
122 * as they die, so they can be added into the process-wide totals
123 * when those are taken. The group leader stays around as a zombie as
124 * long as there are other threads. When it gets reaped, the exit.c
125 * code will add its counts into these totals. We won't ever get here
126 * for the group leader, since it will have been the last reference on
127 * the signal_struct.
128 */
129 task_cputime(tsk, &utime, &stime);
130 write_seqlock(&sig->stats_lock);
131 sig->utime += utime;
132 sig->stime += stime;
133 sig->gtime += task_gtime(tsk);
134 sig->min_flt += tsk->min_flt;
135 sig->maj_flt += tsk->maj_flt;
136 sig->nvcsw += tsk->nvcsw;
137 sig->nivcsw += tsk->nivcsw;
138 sig->inblock += task_io_get_inblock(tsk);
139 sig->oublock += task_io_get_oublock(tsk);
140 task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144 write_sequnlock(&sig->stats_lock);
145
146 /*
147 * Do this under ->siglock, we can race with another thread
148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 */
150 flush_sigqueue(&tsk->pending);
151 tsk->sighand = NULL;
152 spin_unlock(&sighand->siglock);
153
154 __cleanup_sighand(sighand);
155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 if (group_dead) {
157 flush_sigqueue(&sig->shared_pending);
158 tty_kref_put(tty);
159 }
160 }
161
162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 {
164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165
166 perf_event_delayed_put(tsk);
167 trace_sched_process_free(tsk);
168 put_task_struct(tsk);
169 }
170
171
172 void release_task(struct task_struct *p)
173 {
174 struct task_struct *leader;
175 int zap_leader;
176 repeat:
177 /* don't need to get the RCU readlock here - the process is dead and
178 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 rcu_read_lock();
180 atomic_dec(&__task_cred(p)->user->processes);
181 rcu_read_unlock();
182
183 proc_flush_task(p);
184
185 write_lock_irq(&tasklist_lock);
186 ptrace_release_task(p);
187 __exit_signal(p);
188
189 /*
190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.)
193 */
194 zap_leader = 0;
195 leader = p->group_leader;
196 if (leader != p && thread_group_empty(leader)
197 && leader->exit_state == EXIT_ZOMBIE) {
198 /*
199 * If we were the last child thread and the leader has
200 * exited already, and the leader's parent ignores SIGCHLD,
201 * then we are the one who should release the leader.
202 */
203 zap_leader = do_notify_parent(leader, leader->exit_signal);
204 if (zap_leader)
205 leader->exit_state = EXIT_DEAD;
206 }
207
208 write_unlock_irq(&tasklist_lock);
209 release_thread(p);
210 call_rcu(&p->rcu, delayed_put_task_struct);
211
212 p = leader;
213 if (unlikely(zap_leader))
214 goto repeat;
215 }
216
217 /*
218 * This checks not only the pgrp, but falls back on the pid if no
219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220 * without this...
221 *
222 * The caller must hold rcu lock or the tasklist lock.
223 */
224 struct pid *session_of_pgrp(struct pid *pgrp)
225 {
226 struct task_struct *p;
227 struct pid *sid = NULL;
228
229 p = pid_task(pgrp, PIDTYPE_PGID);
230 if (p == NULL)
231 p = pid_task(pgrp, PIDTYPE_PID);
232 if (p != NULL)
233 sid = task_session(p);
234
235 return sid;
236 }
237
238 /*
239 * Determine if a process group is "orphaned", according to the POSIX
240 * definition in 2.2.2.52. Orphaned process groups are not to be affected
241 * by terminal-generated stop signals. Newly orphaned process groups are
242 * to receive a SIGHUP and a SIGCONT.
243 *
244 * "I ask you, have you ever known what it is to be an orphan?"
245 */
246 static int will_become_orphaned_pgrp(struct pid *pgrp,
247 struct task_struct *ignored_task)
248 {
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263 }
264
265 int is_current_pgrp_orphaned(void)
266 {
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274 }
275
276 static bool has_stopped_jobs(struct pid *pgrp)
277 {
278 struct task_struct *p;
279
280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 if (p->signal->flags & SIGNAL_STOP_STOPPED)
282 return true;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285 return false;
286 }
287
288 /*
289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 */
293 static void
294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 {
296 struct pid *pgrp = task_pgrp(tsk);
297 struct task_struct *ignored_task = tsk;
298
299 if (!parent)
300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside.
302 */
303 parent = tsk->real_parent;
304 else
305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside.
307 */
308 ignored_task = NULL;
309
310 if (task_pgrp(parent) != pgrp &&
311 task_session(parent) == task_session(tsk) &&
312 will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 has_stopped_jobs(pgrp)) {
314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 }
317 }
318
319 #ifdef CONFIG_MEMCG
320 /*
321 * A task is exiting. If it owned this mm, find a new owner for the mm.
322 */
323 void mm_update_next_owner(struct mm_struct *mm)
324 {
325 struct task_struct *c, *g, *p = current;
326
327 retry:
328 /*
329 * If the exiting or execing task is not the owner, it's
330 * someone else's problem.
331 */
332 if (mm->owner != p)
333 return;
334 /*
335 * The current owner is exiting/execing and there are no other
336 * candidates. Do not leave the mm pointing to a possibly
337 * freed task structure.
338 */
339 if (atomic_read(&mm->mm_users) <= 1) {
340 mm->owner = NULL;
341 return;
342 }
343
344 read_lock(&tasklist_lock);
345 /*
346 * Search in the children
347 */
348 list_for_each_entry(c, &p->children, sibling) {
349 if (c->mm == mm)
350 goto assign_new_owner;
351 }
352
353 /*
354 * Search in the siblings
355 */
356 list_for_each_entry(c, &p->real_parent->children, sibling) {
357 if (c->mm == mm)
358 goto assign_new_owner;
359 }
360
361 /*
362 * Search through everything else, we should not get here often.
363 */
364 for_each_process(g) {
365 if (g->flags & PF_KTHREAD)
366 continue;
367 for_each_thread(g, c) {
368 if (c->mm == mm)
369 goto assign_new_owner;
370 if (c->mm)
371 break;
372 }
373 }
374 read_unlock(&tasklist_lock);
375 /*
376 * We found no owner yet mm_users > 1: this implies that we are
377 * most likely racing with swapoff (try_to_unuse()) or /proc or
378 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
379 */
380 mm->owner = NULL;
381 return;
382
383 assign_new_owner:
384 BUG_ON(c == p);
385 get_task_struct(c);
386 /*
387 * The task_lock protects c->mm from changing.
388 * We always want mm->owner->mm == mm
389 */
390 task_lock(c);
391 /*
392 * Delay read_unlock() till we have the task_lock()
393 * to ensure that c does not slip away underneath us
394 */
395 read_unlock(&tasklist_lock);
396 if (c->mm != mm) {
397 task_unlock(c);
398 put_task_struct(c);
399 goto retry;
400 }
401 mm->owner = c;
402 task_unlock(c);
403 put_task_struct(c);
404 }
405 #endif /* CONFIG_MEMCG */
406
407 /*
408 * Turn us into a lazy TLB process if we
409 * aren't already..
410 */
411 static void exit_mm(struct task_struct *tsk)
412 {
413 struct mm_struct *mm = tsk->mm;
414 struct core_state *core_state;
415
416 mm_release(tsk, mm);
417 if (!mm)
418 return;
419 sync_mm_rss(mm);
420 /*
421 * Serialize with any possible pending coredump.
422 * We must hold mmap_sem around checking core_state
423 * and clearing tsk->mm. The core-inducing thread
424 * will increment ->nr_threads for each thread in the
425 * group with ->mm != NULL.
426 */
427 down_read(&mm->mmap_sem);
428 core_state = mm->core_state;
429 if (core_state) {
430 struct core_thread self;
431
432 up_read(&mm->mmap_sem);
433
434 self.task = tsk;
435 self.next = xchg(&core_state->dumper.next, &self);
436 /*
437 * Implies mb(), the result of xchg() must be visible
438 * to core_state->dumper.
439 */
440 if (atomic_dec_and_test(&core_state->nr_threads))
441 complete(&core_state->startup);
442
443 for (;;) {
444 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
445 if (!self.task) /* see coredump_finish() */
446 break;
447 freezable_schedule();
448 }
449 __set_task_state(tsk, TASK_RUNNING);
450 down_read(&mm->mmap_sem);
451 }
452 atomic_inc(&mm->mm_count);
453 BUG_ON(mm != tsk->active_mm);
454 /* more a memory barrier than a real lock */
455 task_lock(tsk);
456 tsk->mm = NULL;
457 up_read(&mm->mmap_sem);
458 enter_lazy_tlb(mm, current);
459 task_unlock(tsk);
460 mm_update_next_owner(mm);
461 mmput(mm);
462 clear_thread_flag(TIF_MEMDIE);
463 }
464
465 /*
466 * When we die, we re-parent all our children, and try to:
467 * 1. give them to another thread in our thread group, if such a member exists
468 * 2. give it to the first ancestor process which prctl'd itself as a
469 * child_subreaper for its children (like a service manager)
470 * 3. give it to the init process (PID 1) in our pid namespace
471 */
472 static struct task_struct *find_new_reaper(struct task_struct *father)
473 __releases(&tasklist_lock)
474 __acquires(&tasklist_lock)
475 {
476 struct pid_namespace *pid_ns = task_active_pid_ns(father);
477 struct task_struct *thread;
478
479 thread = father;
480 while_each_thread(father, thread) {
481 if (thread->flags & PF_EXITING)
482 continue;
483 if (unlikely(pid_ns->child_reaper == father))
484 pid_ns->child_reaper = thread;
485 return thread;
486 }
487
488 if (unlikely(pid_ns->child_reaper == father)) {
489 write_unlock_irq(&tasklist_lock);
490 if (unlikely(pid_ns == &init_pid_ns)) {
491 panic("Attempted to kill init! exitcode=0x%08x\n",
492 father->signal->group_exit_code ?:
493 father->exit_code);
494 }
495
496 zap_pid_ns_processes(pid_ns);
497 write_lock_irq(&tasklist_lock);
498 } else if (father->signal->has_child_subreaper) {
499 struct task_struct *reaper;
500
501 /*
502 * Find the first ancestor marked as child_subreaper.
503 * Note that the code below checks same_thread_group(reaper,
504 * pid_ns->child_reaper). This is what we need to DTRT in a
505 * PID namespace. However we still need the check above, see
506 * http://marc.info/?l=linux-kernel&m=131385460420380
507 */
508 for (reaper = father->real_parent;
509 reaper != &init_task;
510 reaper = reaper->real_parent) {
511 if (same_thread_group(reaper, pid_ns->child_reaper))
512 break;
513 if (!reaper->signal->is_child_subreaper)
514 continue;
515 thread = reaper;
516 do {
517 if (!(thread->flags & PF_EXITING))
518 return reaper;
519 } while_each_thread(reaper, thread);
520 }
521 }
522
523 return pid_ns->child_reaper;
524 }
525
526 /*
527 * Any that need to be release_task'd are put on the @dead list.
528 */
529 static void reparent_leader(struct task_struct *father, struct task_struct *p,
530 struct list_head *dead)
531 {
532 list_move_tail(&p->sibling, &p->real_parent->children);
533
534 if (p->exit_state == EXIT_DEAD)
535 return;
536 /*
537 * If this is a threaded reparent there is no need to
538 * notify anyone anything has happened.
539 */
540 if (same_thread_group(p->real_parent, father))
541 return;
542
543 /* We don't want people slaying init. */
544 p->exit_signal = SIGCHLD;
545
546 /* If it has exited notify the new parent about this child's death. */
547 if (!p->ptrace &&
548 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
549 if (do_notify_parent(p, p->exit_signal)) {
550 p->exit_state = EXIT_DEAD;
551 list_move_tail(&p->sibling, dead);
552 }
553 }
554
555 kill_orphaned_pgrp(p, father);
556 }
557
558 static void forget_original_parent(struct task_struct *father)
559 {
560 struct task_struct *p, *n, *reaper;
561 LIST_HEAD(dead_children);
562
563 write_lock_irq(&tasklist_lock);
564 /*
565 * Note that exit_ptrace() and find_new_reaper() might
566 * drop tasklist_lock and reacquire it.
567 */
568 exit_ptrace(father);
569 reaper = find_new_reaper(father);
570
571 list_for_each_entry_safe(p, n, &father->children, sibling) {
572 struct task_struct *t = p;
573
574 do {
575 t->real_parent = reaper;
576 if (t->parent == father) {
577 BUG_ON(t->ptrace);
578 t->parent = t->real_parent;
579 }
580 if (t->pdeath_signal)
581 group_send_sig_info(t->pdeath_signal,
582 SEND_SIG_NOINFO, t);
583 } while_each_thread(p, t);
584 reparent_leader(father, p, &dead_children);
585 }
586 write_unlock_irq(&tasklist_lock);
587
588 BUG_ON(!list_empty(&father->children));
589
590 list_for_each_entry_safe(p, n, &dead_children, sibling) {
591 list_del_init(&p->sibling);
592 release_task(p);
593 }
594 }
595
596 /*
597 * Send signals to all our closest relatives so that they know
598 * to properly mourn us..
599 */
600 static void exit_notify(struct task_struct *tsk, int group_dead)
601 {
602 bool autoreap;
603
604 /*
605 * This does two things:
606 *
607 * A. Make init inherit all the child processes
608 * B. Check to see if any process groups have become orphaned
609 * as a result of our exiting, and if they have any stopped
610 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
611 */
612 forget_original_parent(tsk);
613
614 write_lock_irq(&tasklist_lock);
615 if (group_dead)
616 kill_orphaned_pgrp(tsk->group_leader, NULL);
617
618 if (unlikely(tsk->ptrace)) {
619 int sig = thread_group_leader(tsk) &&
620 thread_group_empty(tsk) &&
621 !ptrace_reparented(tsk) ?
622 tsk->exit_signal : SIGCHLD;
623 autoreap = do_notify_parent(tsk, sig);
624 } else if (thread_group_leader(tsk)) {
625 autoreap = thread_group_empty(tsk) &&
626 do_notify_parent(tsk, tsk->exit_signal);
627 } else {
628 autoreap = true;
629 }
630
631 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
632
633 /* mt-exec, de_thread() is waiting for group leader */
634 if (unlikely(tsk->signal->notify_count < 0))
635 wake_up_process(tsk->signal->group_exit_task);
636 write_unlock_irq(&tasklist_lock);
637
638 /* If the process is dead, release it - nobody will wait for it */
639 if (autoreap)
640 release_task(tsk);
641 }
642
643 #ifdef CONFIG_DEBUG_STACK_USAGE
644 static void check_stack_usage(void)
645 {
646 static DEFINE_SPINLOCK(low_water_lock);
647 static int lowest_to_date = THREAD_SIZE;
648 unsigned long free;
649
650 free = stack_not_used(current);
651
652 if (free >= lowest_to_date)
653 return;
654
655 spin_lock(&low_water_lock);
656 if (free < lowest_to_date) {
657 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
658 current->comm, task_pid_nr(current), free);
659 lowest_to_date = free;
660 }
661 spin_unlock(&low_water_lock);
662 }
663 #else
664 static inline void check_stack_usage(void) {}
665 #endif
666
667 void do_exit(long code)
668 {
669 struct task_struct *tsk = current;
670 int group_dead;
671 TASKS_RCU(int tasks_rcu_i);
672
673 profile_task_exit(tsk);
674
675 WARN_ON(blk_needs_flush_plug(tsk));
676
677 if (unlikely(in_interrupt()))
678 panic("Aiee, killing interrupt handler!");
679 if (unlikely(!tsk->pid))
680 panic("Attempted to kill the idle task!");
681
682 /*
683 * If do_exit is called because this processes oopsed, it's possible
684 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
685 * continuing. Amongst other possible reasons, this is to prevent
686 * mm_release()->clear_child_tid() from writing to a user-controlled
687 * kernel address.
688 */
689 set_fs(USER_DS);
690
691 ptrace_event(PTRACE_EVENT_EXIT, code);
692
693 validate_creds_for_do_exit(tsk);
694
695 /*
696 * We're taking recursive faults here in do_exit. Safest is to just
697 * leave this task alone and wait for reboot.
698 */
699 if (unlikely(tsk->flags & PF_EXITING)) {
700 pr_alert("Fixing recursive fault but reboot is needed!\n");
701 /*
702 * We can do this unlocked here. The futex code uses
703 * this flag just to verify whether the pi state
704 * cleanup has been done or not. In the worst case it
705 * loops once more. We pretend that the cleanup was
706 * done as there is no way to return. Either the
707 * OWNER_DIED bit is set by now or we push the blocked
708 * task into the wait for ever nirwana as well.
709 */
710 tsk->flags |= PF_EXITPIDONE;
711 set_current_state(TASK_UNINTERRUPTIBLE);
712 schedule();
713 }
714
715 exit_signals(tsk); /* sets PF_EXITING */
716 /*
717 * tsk->flags are checked in the futex code to protect against
718 * an exiting task cleaning up the robust pi futexes.
719 */
720 smp_mb();
721 raw_spin_unlock_wait(&tsk->pi_lock);
722
723 if (unlikely(in_atomic()))
724 pr_info("note: %s[%d] exited with preempt_count %d\n",
725 current->comm, task_pid_nr(current),
726 preempt_count());
727
728 acct_update_integrals(tsk);
729 /* sync mm's RSS info before statistics gathering */
730 if (tsk->mm)
731 sync_mm_rss(tsk->mm);
732 group_dead = atomic_dec_and_test(&tsk->signal->live);
733 if (group_dead) {
734 hrtimer_cancel(&tsk->signal->real_timer);
735 exit_itimers(tsk->signal);
736 if (tsk->mm)
737 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
738 }
739 acct_collect(code, group_dead);
740 if (group_dead)
741 tty_audit_exit();
742 audit_free(tsk);
743
744 tsk->exit_code = code;
745 taskstats_exit(tsk, group_dead);
746
747 exit_mm(tsk);
748
749 if (group_dead)
750 acct_process();
751 trace_sched_process_exit(tsk);
752
753 exit_sem(tsk);
754 exit_shm(tsk);
755 exit_files(tsk);
756 exit_fs(tsk);
757 if (group_dead)
758 disassociate_ctty(1);
759 exit_task_namespaces(tsk);
760 exit_task_work(tsk);
761 exit_thread();
762
763 /*
764 * Flush inherited counters to the parent - before the parent
765 * gets woken up by child-exit notifications.
766 *
767 * because of cgroup mode, must be called before cgroup_exit()
768 */
769 perf_event_exit_task(tsk);
770
771 cgroup_exit(tsk);
772
773 module_put(task_thread_info(tsk)->exec_domain->module);
774
775 /*
776 * FIXME: do that only when needed, using sched_exit tracepoint
777 */
778 flush_ptrace_hw_breakpoint(tsk);
779
780 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
781 exit_notify(tsk, group_dead);
782 proc_exit_connector(tsk);
783 #ifdef CONFIG_NUMA
784 task_lock(tsk);
785 mpol_put(tsk->mempolicy);
786 tsk->mempolicy = NULL;
787 task_unlock(tsk);
788 #endif
789 #ifdef CONFIG_FUTEX
790 if (unlikely(current->pi_state_cache))
791 kfree(current->pi_state_cache);
792 #endif
793 /*
794 * Make sure we are holding no locks:
795 */
796 debug_check_no_locks_held();
797 /*
798 * We can do this unlocked here. The futex code uses this flag
799 * just to verify whether the pi state cleanup has been done
800 * or not. In the worst case it loops once more.
801 */
802 tsk->flags |= PF_EXITPIDONE;
803
804 if (tsk->io_context)
805 exit_io_context(tsk);
806
807 if (tsk->splice_pipe)
808 free_pipe_info(tsk->splice_pipe);
809
810 if (tsk->task_frag.page)
811 put_page(tsk->task_frag.page);
812
813 validate_creds_for_do_exit(tsk);
814
815 check_stack_usage();
816 preempt_disable();
817 if (tsk->nr_dirtied)
818 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
819 exit_rcu();
820 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
821
822 /*
823 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
824 * when the following two conditions become true.
825 * - There is race condition of mmap_sem (It is acquired by
826 * exit_mm()), and
827 * - SMI occurs before setting TASK_RUNINNG.
828 * (or hypervisor of virtual machine switches to other guest)
829 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
830 *
831 * To avoid it, we have to wait for releasing tsk->pi_lock which
832 * is held by try_to_wake_up()
833 */
834 smp_mb();
835 raw_spin_unlock_wait(&tsk->pi_lock);
836
837 /* causes final put_task_struct in finish_task_switch(). */
838 tsk->state = TASK_DEAD;
839 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
840 schedule();
841 BUG();
842 /* Avoid "noreturn function does return". */
843 for (;;)
844 cpu_relax(); /* For when BUG is null */
845 }
846 EXPORT_SYMBOL_GPL(do_exit);
847
848 void complete_and_exit(struct completion *comp, long code)
849 {
850 if (comp)
851 complete(comp);
852
853 do_exit(code);
854 }
855 EXPORT_SYMBOL(complete_and_exit);
856
857 SYSCALL_DEFINE1(exit, int, error_code)
858 {
859 do_exit((error_code&0xff)<<8);
860 }
861
862 /*
863 * Take down every thread in the group. This is called by fatal signals
864 * as well as by sys_exit_group (below).
865 */
866 void
867 do_group_exit(int exit_code)
868 {
869 struct signal_struct *sig = current->signal;
870
871 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
872
873 if (signal_group_exit(sig))
874 exit_code = sig->group_exit_code;
875 else if (!thread_group_empty(current)) {
876 struct sighand_struct *const sighand = current->sighand;
877
878 spin_lock_irq(&sighand->siglock);
879 if (signal_group_exit(sig))
880 /* Another thread got here before we took the lock. */
881 exit_code = sig->group_exit_code;
882 else {
883 sig->group_exit_code = exit_code;
884 sig->flags = SIGNAL_GROUP_EXIT;
885 zap_other_threads(current);
886 }
887 spin_unlock_irq(&sighand->siglock);
888 }
889
890 do_exit(exit_code);
891 /* NOTREACHED */
892 }
893
894 /*
895 * this kills every thread in the thread group. Note that any externally
896 * wait4()-ing process will get the correct exit code - even if this
897 * thread is not the thread group leader.
898 */
899 SYSCALL_DEFINE1(exit_group, int, error_code)
900 {
901 do_group_exit((error_code & 0xff) << 8);
902 /* NOTREACHED */
903 return 0;
904 }
905
906 struct wait_opts {
907 enum pid_type wo_type;
908 int wo_flags;
909 struct pid *wo_pid;
910
911 struct siginfo __user *wo_info;
912 int __user *wo_stat;
913 struct rusage __user *wo_rusage;
914
915 wait_queue_t child_wait;
916 int notask_error;
917 };
918
919 static inline
920 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
921 {
922 if (type != PIDTYPE_PID)
923 task = task->group_leader;
924 return task->pids[type].pid;
925 }
926
927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
928 {
929 return wo->wo_type == PIDTYPE_MAX ||
930 task_pid_type(p, wo->wo_type) == wo->wo_pid;
931 }
932
933 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
934 {
935 if (!eligible_pid(wo, p))
936 return 0;
937 /* Wait for all children (clone and not) if __WALL is set;
938 * otherwise, wait for clone children *only* if __WCLONE is
939 * set; otherwise, wait for non-clone children *only*. (Note:
940 * A "clone" child here is one that reports to its parent
941 * using a signal other than SIGCHLD.) */
942 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
943 && !(wo->wo_flags & __WALL))
944 return 0;
945
946 return 1;
947 }
948
949 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
950 pid_t pid, uid_t uid, int why, int status)
951 {
952 struct siginfo __user *infop;
953 int retval = wo->wo_rusage
954 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
955
956 put_task_struct(p);
957 infop = wo->wo_info;
958 if (infop) {
959 if (!retval)
960 retval = put_user(SIGCHLD, &infop->si_signo);
961 if (!retval)
962 retval = put_user(0, &infop->si_errno);
963 if (!retval)
964 retval = put_user((short)why, &infop->si_code);
965 if (!retval)
966 retval = put_user(pid, &infop->si_pid);
967 if (!retval)
968 retval = put_user(uid, &infop->si_uid);
969 if (!retval)
970 retval = put_user(status, &infop->si_status);
971 }
972 if (!retval)
973 retval = pid;
974 return retval;
975 }
976
977 /*
978 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
979 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
980 * the lock and this task is uninteresting. If we return nonzero, we have
981 * released the lock and the system call should return.
982 */
983 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
984 {
985 unsigned long state;
986 int retval, status, traced;
987 pid_t pid = task_pid_vnr(p);
988 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
989 struct siginfo __user *infop;
990
991 if (!likely(wo->wo_flags & WEXITED))
992 return 0;
993
994 if (unlikely(wo->wo_flags & WNOWAIT)) {
995 int exit_code = p->exit_code;
996 int why;
997
998 get_task_struct(p);
999 read_unlock(&tasklist_lock);
1000 if ((exit_code & 0x7f) == 0) {
1001 why = CLD_EXITED;
1002 status = exit_code >> 8;
1003 } else {
1004 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1005 status = exit_code & 0x7f;
1006 }
1007 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1008 }
1009
1010 traced = ptrace_reparented(p);
1011 /*
1012 * Move the task's state to DEAD/TRACE, only one thread can do this.
1013 */
1014 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1015 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1016 return 0;
1017 /*
1018 * It can be ptraced but not reparented, check
1019 * thread_group_leader() to filter out sub-threads.
1020 */
1021 if (likely(!traced) && thread_group_leader(p)) {
1022 struct signal_struct *psig;
1023 struct signal_struct *sig;
1024 unsigned long maxrss;
1025 cputime_t tgutime, tgstime;
1026
1027 /*
1028 * The resource counters for the group leader are in its
1029 * own task_struct. Those for dead threads in the group
1030 * are in its signal_struct, as are those for the child
1031 * processes it has previously reaped. All these
1032 * accumulate in the parent's signal_struct c* fields.
1033 *
1034 * We don't bother to take a lock here to protect these
1035 * p->signal fields, because they are only touched by
1036 * __exit_signal, which runs with tasklist_lock
1037 * write-locked anyway, and so is excluded here. We do
1038 * need to protect the access to parent->signal fields,
1039 * as other threads in the parent group can be right
1040 * here reaping other children at the same time.
1041 *
1042 * We use thread_group_cputime_adjusted() to get times for
1043 * the thread group, which consolidates times for all threads
1044 * in the group including the group leader.
1045 */
1046 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047 spin_lock_irq(&p->real_parent->sighand->siglock);
1048 psig = p->real_parent->signal;
1049 sig = p->signal;
1050 write_seqlock(&psig->stats_lock);
1051 psig->cutime += tgutime + sig->cutime;
1052 psig->cstime += tgstime + sig->cstime;
1053 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1054 psig->cmin_flt +=
1055 p->min_flt + sig->min_flt + sig->cmin_flt;
1056 psig->cmaj_flt +=
1057 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1058 psig->cnvcsw +=
1059 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1060 psig->cnivcsw +=
1061 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1062 psig->cinblock +=
1063 task_io_get_inblock(p) +
1064 sig->inblock + sig->cinblock;
1065 psig->coublock +=
1066 task_io_get_oublock(p) +
1067 sig->oublock + sig->coublock;
1068 maxrss = max(sig->maxrss, sig->cmaxrss);
1069 if (psig->cmaxrss < maxrss)
1070 psig->cmaxrss = maxrss;
1071 task_io_accounting_add(&psig->ioac, &p->ioac);
1072 task_io_accounting_add(&psig->ioac, &sig->ioac);
1073 write_sequnlock(&psig->stats_lock);
1074 spin_unlock_irq(&p->real_parent->sighand->siglock);
1075 }
1076
1077 /*
1078 * Now we are sure this task is interesting, and no other
1079 * thread can reap it because we its state == DEAD/TRACE.
1080 */
1081 read_unlock(&tasklist_lock);
1082
1083 retval = wo->wo_rusage
1084 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1085 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1086 ? p->signal->group_exit_code : p->exit_code;
1087 if (!retval && wo->wo_stat)
1088 retval = put_user(status, wo->wo_stat);
1089
1090 infop = wo->wo_info;
1091 if (!retval && infop)
1092 retval = put_user(SIGCHLD, &infop->si_signo);
1093 if (!retval && infop)
1094 retval = put_user(0, &infop->si_errno);
1095 if (!retval && infop) {
1096 int why;
1097
1098 if ((status & 0x7f) == 0) {
1099 why = CLD_EXITED;
1100 status >>= 8;
1101 } else {
1102 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1103 status &= 0x7f;
1104 }
1105 retval = put_user((short)why, &infop->si_code);
1106 if (!retval)
1107 retval = put_user(status, &infop->si_status);
1108 }
1109 if (!retval && infop)
1110 retval = put_user(pid, &infop->si_pid);
1111 if (!retval && infop)
1112 retval = put_user(uid, &infop->si_uid);
1113 if (!retval)
1114 retval = pid;
1115
1116 if (state == EXIT_TRACE) {
1117 write_lock_irq(&tasklist_lock);
1118 /* We dropped tasklist, ptracer could die and untrace */
1119 ptrace_unlink(p);
1120
1121 /* If parent wants a zombie, don't release it now */
1122 state = EXIT_ZOMBIE;
1123 if (do_notify_parent(p, p->exit_signal))
1124 state = EXIT_DEAD;
1125 p->exit_state = state;
1126 write_unlock_irq(&tasklist_lock);
1127 }
1128 if (state == EXIT_DEAD)
1129 release_task(p);
1130
1131 return retval;
1132 }
1133
1134 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1135 {
1136 if (ptrace) {
1137 if (task_is_stopped_or_traced(p) &&
1138 !(p->jobctl & JOBCTL_LISTENING))
1139 return &p->exit_code;
1140 } else {
1141 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1142 return &p->signal->group_exit_code;
1143 }
1144 return NULL;
1145 }
1146
1147 /**
1148 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1149 * @wo: wait options
1150 * @ptrace: is the wait for ptrace
1151 * @p: task to wait for
1152 *
1153 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1154 *
1155 * CONTEXT:
1156 * read_lock(&tasklist_lock), which is released if return value is
1157 * non-zero. Also, grabs and releases @p->sighand->siglock.
1158 *
1159 * RETURNS:
1160 * 0 if wait condition didn't exist and search for other wait conditions
1161 * should continue. Non-zero return, -errno on failure and @p's pid on
1162 * success, implies that tasklist_lock is released and wait condition
1163 * search should terminate.
1164 */
1165 static int wait_task_stopped(struct wait_opts *wo,
1166 int ptrace, struct task_struct *p)
1167 {
1168 struct siginfo __user *infop;
1169 int retval, exit_code, *p_code, why;
1170 uid_t uid = 0; /* unneeded, required by compiler */
1171 pid_t pid;
1172
1173 /*
1174 * Traditionally we see ptrace'd stopped tasks regardless of options.
1175 */
1176 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1177 return 0;
1178
1179 if (!task_stopped_code(p, ptrace))
1180 return 0;
1181
1182 exit_code = 0;
1183 spin_lock_irq(&p->sighand->siglock);
1184
1185 p_code = task_stopped_code(p, ptrace);
1186 if (unlikely(!p_code))
1187 goto unlock_sig;
1188
1189 exit_code = *p_code;
1190 if (!exit_code)
1191 goto unlock_sig;
1192
1193 if (!unlikely(wo->wo_flags & WNOWAIT))
1194 *p_code = 0;
1195
1196 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1197 unlock_sig:
1198 spin_unlock_irq(&p->sighand->siglock);
1199 if (!exit_code)
1200 return 0;
1201
1202 /*
1203 * Now we are pretty sure this task is interesting.
1204 * Make sure it doesn't get reaped out from under us while we
1205 * give up the lock and then examine it below. We don't want to
1206 * keep holding onto the tasklist_lock while we call getrusage and
1207 * possibly take page faults for user memory.
1208 */
1209 get_task_struct(p);
1210 pid = task_pid_vnr(p);
1211 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1212 read_unlock(&tasklist_lock);
1213
1214 if (unlikely(wo->wo_flags & WNOWAIT))
1215 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1216
1217 retval = wo->wo_rusage
1218 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1219 if (!retval && wo->wo_stat)
1220 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1221
1222 infop = wo->wo_info;
1223 if (!retval && infop)
1224 retval = put_user(SIGCHLD, &infop->si_signo);
1225 if (!retval && infop)
1226 retval = put_user(0, &infop->si_errno);
1227 if (!retval && infop)
1228 retval = put_user((short)why, &infop->si_code);
1229 if (!retval && infop)
1230 retval = put_user(exit_code, &infop->si_status);
1231 if (!retval && infop)
1232 retval = put_user(pid, &infop->si_pid);
1233 if (!retval && infop)
1234 retval = put_user(uid, &infop->si_uid);
1235 if (!retval)
1236 retval = pid;
1237 put_task_struct(p);
1238
1239 BUG_ON(!retval);
1240 return retval;
1241 }
1242
1243 /*
1244 * Handle do_wait work for one task in a live, non-stopped state.
1245 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1246 * the lock and this task is uninteresting. If we return nonzero, we have
1247 * released the lock and the system call should return.
1248 */
1249 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1250 {
1251 int retval;
1252 pid_t pid;
1253 uid_t uid;
1254
1255 if (!unlikely(wo->wo_flags & WCONTINUED))
1256 return 0;
1257
1258 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1259 return 0;
1260
1261 spin_lock_irq(&p->sighand->siglock);
1262 /* Re-check with the lock held. */
1263 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1264 spin_unlock_irq(&p->sighand->siglock);
1265 return 0;
1266 }
1267 if (!unlikely(wo->wo_flags & WNOWAIT))
1268 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1269 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270 spin_unlock_irq(&p->sighand->siglock);
1271
1272 pid = task_pid_vnr(p);
1273 get_task_struct(p);
1274 read_unlock(&tasklist_lock);
1275
1276 if (!wo->wo_info) {
1277 retval = wo->wo_rusage
1278 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279 put_task_struct(p);
1280 if (!retval && wo->wo_stat)
1281 retval = put_user(0xffff, wo->wo_stat);
1282 if (!retval)
1283 retval = pid;
1284 } else {
1285 retval = wait_noreap_copyout(wo, p, pid, uid,
1286 CLD_CONTINUED, SIGCONT);
1287 BUG_ON(retval == 0);
1288 }
1289
1290 return retval;
1291 }
1292
1293 /*
1294 * Consider @p for a wait by @parent.
1295 *
1296 * -ECHILD should be in ->notask_error before the first call.
1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1298 * Returns zero if the search for a child should continue;
1299 * then ->notask_error is 0 if @p is an eligible child,
1300 * or another error from security_task_wait(), or still -ECHILD.
1301 */
1302 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1303 struct task_struct *p)
1304 {
1305 int ret;
1306
1307 if (unlikely(p->exit_state == EXIT_DEAD))
1308 return 0;
1309
1310 ret = eligible_child(wo, p);
1311 if (!ret)
1312 return ret;
1313
1314 ret = security_task_wait(p);
1315 if (unlikely(ret < 0)) {
1316 /*
1317 * If we have not yet seen any eligible child,
1318 * then let this error code replace -ECHILD.
1319 * A permission error will give the user a clue
1320 * to look for security policy problems, rather
1321 * than for mysterious wait bugs.
1322 */
1323 if (wo->notask_error)
1324 wo->notask_error = ret;
1325 return 0;
1326 }
1327
1328 if (unlikely(p->exit_state == EXIT_TRACE)) {
1329 /*
1330 * ptrace == 0 means we are the natural parent. In this case
1331 * we should clear notask_error, debugger will notify us.
1332 */
1333 if (likely(!ptrace))
1334 wo->notask_error = 0;
1335 return 0;
1336 }
1337
1338 if (likely(!ptrace) && unlikely(p->ptrace)) {
1339 /*
1340 * If it is traced by its real parent's group, just pretend
1341 * the caller is ptrace_do_wait() and reap this child if it
1342 * is zombie.
1343 *
1344 * This also hides group stop state from real parent; otherwise
1345 * a single stop can be reported twice as group and ptrace stop.
1346 * If a ptracer wants to distinguish these two events for its
1347 * own children it should create a separate process which takes
1348 * the role of real parent.
1349 */
1350 if (!ptrace_reparented(p))
1351 ptrace = 1;
1352 }
1353
1354 /* slay zombie? */
1355 if (p->exit_state == EXIT_ZOMBIE) {
1356 /* we don't reap group leaders with subthreads */
1357 if (!delay_group_leader(p)) {
1358 /*
1359 * A zombie ptracee is only visible to its ptracer.
1360 * Notification and reaping will be cascaded to the
1361 * real parent when the ptracer detaches.
1362 */
1363 if (unlikely(ptrace) || likely(!p->ptrace))
1364 return wait_task_zombie(wo, p);
1365 }
1366
1367 /*
1368 * Allow access to stopped/continued state via zombie by
1369 * falling through. Clearing of notask_error is complex.
1370 *
1371 * When !@ptrace:
1372 *
1373 * If WEXITED is set, notask_error should naturally be
1374 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1375 * so, if there are live subthreads, there are events to
1376 * wait for. If all subthreads are dead, it's still safe
1377 * to clear - this function will be called again in finite
1378 * amount time once all the subthreads are released and
1379 * will then return without clearing.
1380 *
1381 * When @ptrace:
1382 *
1383 * Stopped state is per-task and thus can't change once the
1384 * target task dies. Only continued and exited can happen.
1385 * Clear notask_error if WCONTINUED | WEXITED.
1386 */
1387 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1388 wo->notask_error = 0;
1389 } else {
1390 /*
1391 * @p is alive and it's gonna stop, continue or exit, so
1392 * there always is something to wait for.
1393 */
1394 wo->notask_error = 0;
1395 }
1396
1397 /*
1398 * Wait for stopped. Depending on @ptrace, different stopped state
1399 * is used and the two don't interact with each other.
1400 */
1401 ret = wait_task_stopped(wo, ptrace, p);
1402 if (ret)
1403 return ret;
1404
1405 /*
1406 * Wait for continued. There's only one continued state and the
1407 * ptracer can consume it which can confuse the real parent. Don't
1408 * use WCONTINUED from ptracer. You don't need or want it.
1409 */
1410 return wait_task_continued(wo, p);
1411 }
1412
1413 /*
1414 * Do the work of do_wait() for one thread in the group, @tsk.
1415 *
1416 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue; then
1419 * ->notask_error is 0 if there were any eligible children,
1420 * or another error from security_task_wait(), or still -ECHILD.
1421 */
1422 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1423 {
1424 struct task_struct *p;
1425
1426 list_for_each_entry(p, &tsk->children, sibling) {
1427 int ret = wait_consider_task(wo, 0, p);
1428
1429 if (ret)
1430 return ret;
1431 }
1432
1433 return 0;
1434 }
1435
1436 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1437 {
1438 struct task_struct *p;
1439
1440 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1441 int ret = wait_consider_task(wo, 1, p);
1442
1443 if (ret)
1444 return ret;
1445 }
1446
1447 return 0;
1448 }
1449
1450 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1451 int sync, void *key)
1452 {
1453 struct wait_opts *wo = container_of(wait, struct wait_opts,
1454 child_wait);
1455 struct task_struct *p = key;
1456
1457 if (!eligible_pid(wo, p))
1458 return 0;
1459
1460 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1461 return 0;
1462
1463 return default_wake_function(wait, mode, sync, key);
1464 }
1465
1466 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1467 {
1468 __wake_up_sync_key(&parent->signal->wait_chldexit,
1469 TASK_INTERRUPTIBLE, 1, p);
1470 }
1471
1472 static long do_wait(struct wait_opts *wo)
1473 {
1474 struct task_struct *tsk;
1475 int retval;
1476
1477 trace_sched_process_wait(wo->wo_pid);
1478
1479 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1480 wo->child_wait.private = current;
1481 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1482 repeat:
1483 /*
1484 * If there is nothing that can match our critiera just get out.
1485 * We will clear ->notask_error to zero if we see any child that
1486 * might later match our criteria, even if we are not able to reap
1487 * it yet.
1488 */
1489 wo->notask_error = -ECHILD;
1490 if ((wo->wo_type < PIDTYPE_MAX) &&
1491 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1492 goto notask;
1493
1494 set_current_state(TASK_INTERRUPTIBLE);
1495 read_lock(&tasklist_lock);
1496 tsk = current;
1497 do {
1498 retval = do_wait_thread(wo, tsk);
1499 if (retval)
1500 goto end;
1501
1502 retval = ptrace_do_wait(wo, tsk);
1503 if (retval)
1504 goto end;
1505
1506 if (wo->wo_flags & __WNOTHREAD)
1507 break;
1508 } while_each_thread(current, tsk);
1509 read_unlock(&tasklist_lock);
1510
1511 notask:
1512 retval = wo->notask_error;
1513 if (!retval && !(wo->wo_flags & WNOHANG)) {
1514 retval = -ERESTARTSYS;
1515 if (!signal_pending(current)) {
1516 schedule();
1517 goto repeat;
1518 }
1519 }
1520 end:
1521 __set_current_state(TASK_RUNNING);
1522 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1523 return retval;
1524 }
1525
1526 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1527 infop, int, options, struct rusage __user *, ru)
1528 {
1529 struct wait_opts wo;
1530 struct pid *pid = NULL;
1531 enum pid_type type;
1532 long ret;
1533
1534 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1535 return -EINVAL;
1536 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1537 return -EINVAL;
1538
1539 switch (which) {
1540 case P_ALL:
1541 type = PIDTYPE_MAX;
1542 break;
1543 case P_PID:
1544 type = PIDTYPE_PID;
1545 if (upid <= 0)
1546 return -EINVAL;
1547 break;
1548 case P_PGID:
1549 type = PIDTYPE_PGID;
1550 if (upid <= 0)
1551 return -EINVAL;
1552 break;
1553 default:
1554 return -EINVAL;
1555 }
1556
1557 if (type < PIDTYPE_MAX)
1558 pid = find_get_pid(upid);
1559
1560 wo.wo_type = type;
1561 wo.wo_pid = pid;
1562 wo.wo_flags = options;
1563 wo.wo_info = infop;
1564 wo.wo_stat = NULL;
1565 wo.wo_rusage = ru;
1566 ret = do_wait(&wo);
1567
1568 if (ret > 0) {
1569 ret = 0;
1570 } else if (infop) {
1571 /*
1572 * For a WNOHANG return, clear out all the fields
1573 * we would set so the user can easily tell the
1574 * difference.
1575 */
1576 if (!ret)
1577 ret = put_user(0, &infop->si_signo);
1578 if (!ret)
1579 ret = put_user(0, &infop->si_errno);
1580 if (!ret)
1581 ret = put_user(0, &infop->si_code);
1582 if (!ret)
1583 ret = put_user(0, &infop->si_pid);
1584 if (!ret)
1585 ret = put_user(0, &infop->si_uid);
1586 if (!ret)
1587 ret = put_user(0, &infop->si_status);
1588 }
1589
1590 put_pid(pid);
1591 return ret;
1592 }
1593
1594 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1595 int, options, struct rusage __user *, ru)
1596 {
1597 struct wait_opts wo;
1598 struct pid *pid = NULL;
1599 enum pid_type type;
1600 long ret;
1601
1602 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1603 __WNOTHREAD|__WCLONE|__WALL))
1604 return -EINVAL;
1605
1606 if (upid == -1)
1607 type = PIDTYPE_MAX;
1608 else if (upid < 0) {
1609 type = PIDTYPE_PGID;
1610 pid = find_get_pid(-upid);
1611 } else if (upid == 0) {
1612 type = PIDTYPE_PGID;
1613 pid = get_task_pid(current, PIDTYPE_PGID);
1614 } else /* upid > 0 */ {
1615 type = PIDTYPE_PID;
1616 pid = find_get_pid(upid);
1617 }
1618
1619 wo.wo_type = type;
1620 wo.wo_pid = pid;
1621 wo.wo_flags = options | WEXITED;
1622 wo.wo_info = NULL;
1623 wo.wo_stat = stat_addr;
1624 wo.wo_rusage = ru;
1625 ret = do_wait(&wo);
1626 put_pid(pid);
1627
1628 return ret;
1629 }
1630
1631 #ifdef __ARCH_WANT_SYS_WAITPID
1632
1633 /*
1634 * sys_waitpid() remains for compatibility. waitpid() should be
1635 * implemented by calling sys_wait4() from libc.a.
1636 */
1637 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1638 {
1639 return sys_wait4(pid, stat_addr, options, NULL);
1640 }
1641
1642 #endif
This page took 0.061885 seconds and 6 git commands to generate.