Merge branch 'linus' of master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58
59 /*
60 * Protected counters by write_lock_irq(&tasklist_lock)
61 */
62 unsigned long total_forks; /* Handle normal Linux uptimes. */
63 int nr_threads; /* The idle threads do not count.. */
64
65 int max_threads; /* tunable limit on nr_threads */
66
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
68
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
70
71 int nr_processes(void)
72 {
73 int cpu;
74 int total = 0;
75
76 for_each_online_cpu(cpu)
77 total += per_cpu(process_counts, cpu);
78
79 return total;
80 }
81
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
85 static struct kmem_cache *task_struct_cachep;
86 #endif
87
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static struct kmem_cache *signal_cachep;
90
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 struct kmem_cache *sighand_cachep;
93
94 /* SLAB cache for files_struct structures (tsk->files) */
95 struct kmem_cache *files_cachep;
96
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 struct kmem_cache *fs_cachep;
99
100 /* SLAB cache for vm_area_struct structures */
101 struct kmem_cache *vm_area_cachep;
102
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static struct kmem_cache *mm_cachep;
105
106 void free_task(struct task_struct *tsk)
107 {
108 free_thread_info(tsk->stack);
109 rt_mutex_debug_task_free(tsk);
110 free_task_struct(tsk);
111 }
112 EXPORT_SYMBOL(free_task);
113
114 void __put_task_struct(struct task_struct *tsk)
115 {
116 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117 WARN_ON(atomic_read(&tsk->usage));
118 WARN_ON(tsk == current);
119
120 security_task_free(tsk);
121 free_uid(tsk->user);
122 put_group_info(tsk->group_info);
123 delayacct_tsk_free(tsk);
124
125 if (!profile_handoff_task(tsk))
126 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
134 #endif
135 /* create a slab on which task_structs can be allocated */
136 task_struct_cachep =
137 kmem_cache_create("task_struct", sizeof(struct task_struct),
138 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141 /*
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
144 * of memory.
145 */
146 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148 /*
149 * we need to allow at least 20 threads to boot a system
150 */
151 if(max_threads < 20)
152 max_threads = 20;
153
154 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 struct task_struct *tsk;
163 struct thread_info *ti;
164
165 prepare_to_copy(orig);
166
167 tsk = alloc_task_struct();
168 if (!tsk)
169 return NULL;
170
171 ti = alloc_thread_info(tsk);
172 if (!ti) {
173 free_task_struct(tsk);
174 return NULL;
175 }
176
177 *tsk = *orig;
178 tsk->stack = ti;
179 setup_thread_stack(tsk, orig);
180
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 tsk->stack_canary = get_random_int();
183 #endif
184
185 /* One for us, one for whoever does the "release_task()" (usually parent) */
186 atomic_set(&tsk->usage,2);
187 atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189 tsk->btrace_seq = 0;
190 #endif
191 tsk->splice_pipe = NULL;
192 return tsk;
193 }
194
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
197 {
198 struct vm_area_struct *mpnt, *tmp, **pprev;
199 struct rb_node **rb_link, *rb_parent;
200 int retval;
201 unsigned long charge;
202 struct mempolicy *pol;
203
204 down_write(&oldmm->mmap_sem);
205 flush_cache_dup_mm(oldmm);
206 /*
207 * Not linked in yet - no deadlock potential:
208 */
209 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
210
211 mm->locked_vm = 0;
212 mm->mmap = NULL;
213 mm->mmap_cache = NULL;
214 mm->free_area_cache = oldmm->mmap_base;
215 mm->cached_hole_size = ~0UL;
216 mm->map_count = 0;
217 cpus_clear(mm->cpu_vm_mask);
218 mm->mm_rb = RB_ROOT;
219 rb_link = &mm->mm_rb.rb_node;
220 rb_parent = NULL;
221 pprev = &mm->mmap;
222
223 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224 struct file *file;
225
226 if (mpnt->vm_flags & VM_DONTCOPY) {
227 long pages = vma_pages(mpnt);
228 mm->total_vm -= pages;
229 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230 -pages);
231 continue;
232 }
233 charge = 0;
234 if (mpnt->vm_flags & VM_ACCOUNT) {
235 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236 if (security_vm_enough_memory(len))
237 goto fail_nomem;
238 charge = len;
239 }
240 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
241 if (!tmp)
242 goto fail_nomem;
243 *tmp = *mpnt;
244 pol = mpol_copy(vma_policy(mpnt));
245 retval = PTR_ERR(pol);
246 if (IS_ERR(pol))
247 goto fail_nomem_policy;
248 vma_set_policy(tmp, pol);
249 tmp->vm_flags &= ~VM_LOCKED;
250 tmp->vm_mm = mm;
251 tmp->vm_next = NULL;
252 anon_vma_link(tmp);
253 file = tmp->vm_file;
254 if (file) {
255 struct inode *inode = file->f_path.dentry->d_inode;
256 get_file(file);
257 if (tmp->vm_flags & VM_DENYWRITE)
258 atomic_dec(&inode->i_writecount);
259
260 /* insert tmp into the share list, just after mpnt */
261 spin_lock(&file->f_mapping->i_mmap_lock);
262 tmp->vm_truncate_count = mpnt->vm_truncate_count;
263 flush_dcache_mmap_lock(file->f_mapping);
264 vma_prio_tree_add(tmp, mpnt);
265 flush_dcache_mmap_unlock(file->f_mapping);
266 spin_unlock(&file->f_mapping->i_mmap_lock);
267 }
268
269 /*
270 * Link in the new vma and copy the page table entries.
271 */
272 *pprev = tmp;
273 pprev = &tmp->vm_next;
274
275 __vma_link_rb(mm, tmp, rb_link, rb_parent);
276 rb_link = &tmp->vm_rb.rb_right;
277 rb_parent = &tmp->vm_rb;
278
279 mm->map_count++;
280 retval = copy_page_range(mm, oldmm, mpnt);
281
282 if (tmp->vm_ops && tmp->vm_ops->open)
283 tmp->vm_ops->open(tmp);
284
285 if (retval)
286 goto out;
287 }
288 /* a new mm has just been created */
289 arch_dup_mmap(oldmm, mm);
290 retval = 0;
291 out:
292 up_write(&mm->mmap_sem);
293 flush_tlb_mm(oldmm);
294 up_write(&oldmm->mmap_sem);
295 return retval;
296 fail_nomem_policy:
297 kmem_cache_free(vm_area_cachep, tmp);
298 fail_nomem:
299 retval = -ENOMEM;
300 vm_unacct_memory(charge);
301 goto out;
302 }
303
304 static inline int mm_alloc_pgd(struct mm_struct * mm)
305 {
306 mm->pgd = pgd_alloc(mm);
307 if (unlikely(!mm->pgd))
308 return -ENOMEM;
309 return 0;
310 }
311
312 static inline void mm_free_pgd(struct mm_struct * mm)
313 {
314 pgd_free(mm->pgd);
315 }
316 #else
317 #define dup_mmap(mm, oldmm) (0)
318 #define mm_alloc_pgd(mm) (0)
319 #define mm_free_pgd(mm)
320 #endif /* CONFIG_MMU */
321
322 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
323
324 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
325 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
326
327 #include <linux/init_task.h>
328
329 static struct mm_struct * mm_init(struct mm_struct * mm)
330 {
331 atomic_set(&mm->mm_users, 1);
332 atomic_set(&mm->mm_count, 1);
333 init_rwsem(&mm->mmap_sem);
334 INIT_LIST_HEAD(&mm->mmlist);
335 mm->core_waiters = 0;
336 mm->nr_ptes = 0;
337 set_mm_counter(mm, file_rss, 0);
338 set_mm_counter(mm, anon_rss, 0);
339 spin_lock_init(&mm->page_table_lock);
340 rwlock_init(&mm->ioctx_list_lock);
341 mm->ioctx_list = NULL;
342 mm->free_area_cache = TASK_UNMAPPED_BASE;
343 mm->cached_hole_size = ~0UL;
344
345 if (likely(!mm_alloc_pgd(mm))) {
346 mm->def_flags = 0;
347 return mm;
348 }
349 free_mm(mm);
350 return NULL;
351 }
352
353 /*
354 * Allocate and initialize an mm_struct.
355 */
356 struct mm_struct * mm_alloc(void)
357 {
358 struct mm_struct * mm;
359
360 mm = allocate_mm();
361 if (mm) {
362 memset(mm, 0, sizeof(*mm));
363 mm = mm_init(mm);
364 }
365 return mm;
366 }
367
368 /*
369 * Called when the last reference to the mm
370 * is dropped: either by a lazy thread or by
371 * mmput. Free the page directory and the mm.
372 */
373 void fastcall __mmdrop(struct mm_struct *mm)
374 {
375 BUG_ON(mm == &init_mm);
376 mm_free_pgd(mm);
377 destroy_context(mm);
378 free_mm(mm);
379 }
380
381 /*
382 * Decrement the use count and release all resources for an mm.
383 */
384 void mmput(struct mm_struct *mm)
385 {
386 might_sleep();
387
388 if (atomic_dec_and_test(&mm->mm_users)) {
389 exit_aio(mm);
390 exit_mmap(mm);
391 if (!list_empty(&mm->mmlist)) {
392 spin_lock(&mmlist_lock);
393 list_del(&mm->mmlist);
394 spin_unlock(&mmlist_lock);
395 }
396 put_swap_token(mm);
397 mmdrop(mm);
398 }
399 }
400 EXPORT_SYMBOL_GPL(mmput);
401
402 /**
403 * get_task_mm - acquire a reference to the task's mm
404 *
405 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
406 * this kernel workthread has transiently adopted a user mm with use_mm,
407 * to do its AIO) is not set and if so returns a reference to it, after
408 * bumping up the use count. User must release the mm via mmput()
409 * after use. Typically used by /proc and ptrace.
410 */
411 struct mm_struct *get_task_mm(struct task_struct *task)
412 {
413 struct mm_struct *mm;
414
415 task_lock(task);
416 mm = task->mm;
417 if (mm) {
418 if (task->flags & PF_BORROWED_MM)
419 mm = NULL;
420 else
421 atomic_inc(&mm->mm_users);
422 }
423 task_unlock(task);
424 return mm;
425 }
426 EXPORT_SYMBOL_GPL(get_task_mm);
427
428 /* Please note the differences between mmput and mm_release.
429 * mmput is called whenever we stop holding onto a mm_struct,
430 * error success whatever.
431 *
432 * mm_release is called after a mm_struct has been removed
433 * from the current process.
434 *
435 * This difference is important for error handling, when we
436 * only half set up a mm_struct for a new process and need to restore
437 * the old one. Because we mmput the new mm_struct before
438 * restoring the old one. . .
439 * Eric Biederman 10 January 1998
440 */
441 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
442 {
443 struct completion *vfork_done = tsk->vfork_done;
444
445 /* Get rid of any cached register state */
446 deactivate_mm(tsk, mm);
447
448 /* notify parent sleeping on vfork() */
449 if (vfork_done) {
450 tsk->vfork_done = NULL;
451 complete(vfork_done);
452 }
453
454 /*
455 * If we're exiting normally, clear a user-space tid field if
456 * requested. We leave this alone when dying by signal, to leave
457 * the value intact in a core dump, and to save the unnecessary
458 * trouble otherwise. Userland only wants this done for a sys_exit.
459 */
460 if (tsk->clear_child_tid
461 && !(tsk->flags & PF_SIGNALED)
462 && atomic_read(&mm->mm_users) > 1) {
463 u32 __user * tidptr = tsk->clear_child_tid;
464 tsk->clear_child_tid = NULL;
465
466 /*
467 * We don't check the error code - if userspace has
468 * not set up a proper pointer then tough luck.
469 */
470 put_user(0, tidptr);
471 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
472 }
473 }
474
475 /*
476 * Allocate a new mm structure and copy contents from the
477 * mm structure of the passed in task structure.
478 */
479 static struct mm_struct *dup_mm(struct task_struct *tsk)
480 {
481 struct mm_struct *mm, *oldmm = current->mm;
482 int err;
483
484 if (!oldmm)
485 return NULL;
486
487 mm = allocate_mm();
488 if (!mm)
489 goto fail_nomem;
490
491 memcpy(mm, oldmm, sizeof(*mm));
492
493 /* Initializing for Swap token stuff */
494 mm->token_priority = 0;
495 mm->last_interval = 0;
496
497 if (!mm_init(mm))
498 goto fail_nomem;
499
500 if (init_new_context(tsk, mm))
501 goto fail_nocontext;
502
503 err = dup_mmap(mm, oldmm);
504 if (err)
505 goto free_pt;
506
507 mm->hiwater_rss = get_mm_rss(mm);
508 mm->hiwater_vm = mm->total_vm;
509
510 return mm;
511
512 free_pt:
513 mmput(mm);
514
515 fail_nomem:
516 return NULL;
517
518 fail_nocontext:
519 /*
520 * If init_new_context() failed, we cannot use mmput() to free the mm
521 * because it calls destroy_context()
522 */
523 mm_free_pgd(mm);
524 free_mm(mm);
525 return NULL;
526 }
527
528 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
529 {
530 struct mm_struct * mm, *oldmm;
531 int retval;
532
533 tsk->min_flt = tsk->maj_flt = 0;
534 tsk->nvcsw = tsk->nivcsw = 0;
535
536 tsk->mm = NULL;
537 tsk->active_mm = NULL;
538
539 /*
540 * Are we cloning a kernel thread?
541 *
542 * We need to steal a active VM for that..
543 */
544 oldmm = current->mm;
545 if (!oldmm)
546 return 0;
547
548 if (clone_flags & CLONE_VM) {
549 atomic_inc(&oldmm->mm_users);
550 mm = oldmm;
551 goto good_mm;
552 }
553
554 retval = -ENOMEM;
555 mm = dup_mm(tsk);
556 if (!mm)
557 goto fail_nomem;
558
559 good_mm:
560 /* Initializing for Swap token stuff */
561 mm->token_priority = 0;
562 mm->last_interval = 0;
563
564 tsk->mm = mm;
565 tsk->active_mm = mm;
566 return 0;
567
568 fail_nomem:
569 return retval;
570 }
571
572 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
573 {
574 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
575 /* We don't need to lock fs - think why ;-) */
576 if (fs) {
577 atomic_set(&fs->count, 1);
578 rwlock_init(&fs->lock);
579 fs->umask = old->umask;
580 read_lock(&old->lock);
581 fs->rootmnt = mntget(old->rootmnt);
582 fs->root = dget(old->root);
583 fs->pwdmnt = mntget(old->pwdmnt);
584 fs->pwd = dget(old->pwd);
585 if (old->altroot) {
586 fs->altrootmnt = mntget(old->altrootmnt);
587 fs->altroot = dget(old->altroot);
588 } else {
589 fs->altrootmnt = NULL;
590 fs->altroot = NULL;
591 }
592 read_unlock(&old->lock);
593 }
594 return fs;
595 }
596
597 struct fs_struct *copy_fs_struct(struct fs_struct *old)
598 {
599 return __copy_fs_struct(old);
600 }
601
602 EXPORT_SYMBOL_GPL(copy_fs_struct);
603
604 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
605 {
606 if (clone_flags & CLONE_FS) {
607 atomic_inc(&current->fs->count);
608 return 0;
609 }
610 tsk->fs = __copy_fs_struct(current->fs);
611 if (!tsk->fs)
612 return -ENOMEM;
613 return 0;
614 }
615
616 static int count_open_files(struct fdtable *fdt)
617 {
618 int size = fdt->max_fds;
619 int i;
620
621 /* Find the last open fd */
622 for (i = size/(8*sizeof(long)); i > 0; ) {
623 if (fdt->open_fds->fds_bits[--i])
624 break;
625 }
626 i = (i+1) * 8 * sizeof(long);
627 return i;
628 }
629
630 static struct files_struct *alloc_files(void)
631 {
632 struct files_struct *newf;
633 struct fdtable *fdt;
634
635 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
636 if (!newf)
637 goto out;
638
639 atomic_set(&newf->count, 1);
640
641 spin_lock_init(&newf->file_lock);
642 newf->next_fd = 0;
643 fdt = &newf->fdtab;
644 fdt->max_fds = NR_OPEN_DEFAULT;
645 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
646 fdt->open_fds = (fd_set *)&newf->open_fds_init;
647 fdt->fd = &newf->fd_array[0];
648 INIT_RCU_HEAD(&fdt->rcu);
649 fdt->next = NULL;
650 rcu_assign_pointer(newf->fdt, fdt);
651 out:
652 return newf;
653 }
654
655 /*
656 * Allocate a new files structure and copy contents from the
657 * passed in files structure.
658 * errorp will be valid only when the returned files_struct is NULL.
659 */
660 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
661 {
662 struct files_struct *newf;
663 struct file **old_fds, **new_fds;
664 int open_files, size, i;
665 struct fdtable *old_fdt, *new_fdt;
666
667 *errorp = -ENOMEM;
668 newf = alloc_files();
669 if (!newf)
670 goto out;
671
672 spin_lock(&oldf->file_lock);
673 old_fdt = files_fdtable(oldf);
674 new_fdt = files_fdtable(newf);
675 open_files = count_open_files(old_fdt);
676
677 /*
678 * Check whether we need to allocate a larger fd array and fd set.
679 * Note: we're not a clone task, so the open count won't change.
680 */
681 if (open_files > new_fdt->max_fds) {
682 new_fdt->max_fds = 0;
683 spin_unlock(&oldf->file_lock);
684 spin_lock(&newf->file_lock);
685 *errorp = expand_files(newf, open_files-1);
686 spin_unlock(&newf->file_lock);
687 if (*errorp < 0)
688 goto out_release;
689 new_fdt = files_fdtable(newf);
690 /*
691 * Reacquire the oldf lock and a pointer to its fd table
692 * who knows it may have a new bigger fd table. We need
693 * the latest pointer.
694 */
695 spin_lock(&oldf->file_lock);
696 old_fdt = files_fdtable(oldf);
697 }
698
699 old_fds = old_fdt->fd;
700 new_fds = new_fdt->fd;
701
702 memcpy(new_fdt->open_fds->fds_bits,
703 old_fdt->open_fds->fds_bits, open_files/8);
704 memcpy(new_fdt->close_on_exec->fds_bits,
705 old_fdt->close_on_exec->fds_bits, open_files/8);
706
707 for (i = open_files; i != 0; i--) {
708 struct file *f = *old_fds++;
709 if (f) {
710 get_file(f);
711 } else {
712 /*
713 * The fd may be claimed in the fd bitmap but not yet
714 * instantiated in the files array if a sibling thread
715 * is partway through open(). So make sure that this
716 * fd is available to the new process.
717 */
718 FD_CLR(open_files - i, new_fdt->open_fds);
719 }
720 rcu_assign_pointer(*new_fds++, f);
721 }
722 spin_unlock(&oldf->file_lock);
723
724 /* compute the remainder to be cleared */
725 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
726
727 /* This is long word aligned thus could use a optimized version */
728 memset(new_fds, 0, size);
729
730 if (new_fdt->max_fds > open_files) {
731 int left = (new_fdt->max_fds-open_files)/8;
732 int start = open_files / (8 * sizeof(unsigned long));
733
734 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
735 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
736 }
737
738 return newf;
739
740 out_release:
741 kmem_cache_free(files_cachep, newf);
742 out:
743 return NULL;
744 }
745
746 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
747 {
748 struct files_struct *oldf, *newf;
749 int error = 0;
750
751 /*
752 * A background process may not have any files ...
753 */
754 oldf = current->files;
755 if (!oldf)
756 goto out;
757
758 if (clone_flags & CLONE_FILES) {
759 atomic_inc(&oldf->count);
760 goto out;
761 }
762
763 /*
764 * Note: we may be using current for both targets (See exec.c)
765 * This works because we cache current->files (old) as oldf. Don't
766 * break this.
767 */
768 tsk->files = NULL;
769 newf = dup_fd(oldf, &error);
770 if (!newf)
771 goto out;
772
773 tsk->files = newf;
774 error = 0;
775 out:
776 return error;
777 }
778
779 /*
780 * Helper to unshare the files of the current task.
781 * We don't want to expose copy_files internals to
782 * the exec layer of the kernel.
783 */
784
785 int unshare_files(void)
786 {
787 struct files_struct *files = current->files;
788 int rc;
789
790 BUG_ON(!files);
791
792 /* This can race but the race causes us to copy when we don't
793 need to and drop the copy */
794 if(atomic_read(&files->count) == 1)
795 {
796 atomic_inc(&files->count);
797 return 0;
798 }
799 rc = copy_files(0, current);
800 if(rc)
801 current->files = files;
802 return rc;
803 }
804
805 EXPORT_SYMBOL(unshare_files);
806
807 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
808 {
809 struct sighand_struct *sig;
810
811 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
812 atomic_inc(&current->sighand->count);
813 return 0;
814 }
815 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
816 rcu_assign_pointer(tsk->sighand, sig);
817 if (!sig)
818 return -ENOMEM;
819 atomic_set(&sig->count, 1);
820 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
821 return 0;
822 }
823
824 void __cleanup_sighand(struct sighand_struct *sighand)
825 {
826 if (atomic_dec_and_test(&sighand->count))
827 kmem_cache_free(sighand_cachep, sighand);
828 }
829
830 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
831 {
832 struct signal_struct *sig;
833 int ret;
834
835 if (clone_flags & CLONE_THREAD) {
836 atomic_inc(&current->signal->count);
837 atomic_inc(&current->signal->live);
838 return 0;
839 }
840 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
841 tsk->signal = sig;
842 if (!sig)
843 return -ENOMEM;
844
845 ret = copy_thread_group_keys(tsk);
846 if (ret < 0) {
847 kmem_cache_free(signal_cachep, sig);
848 return ret;
849 }
850
851 atomic_set(&sig->count, 1);
852 atomic_set(&sig->live, 1);
853 init_waitqueue_head(&sig->wait_chldexit);
854 sig->flags = 0;
855 sig->group_exit_code = 0;
856 sig->group_exit_task = NULL;
857 sig->group_stop_count = 0;
858 sig->curr_target = NULL;
859 init_sigpending(&sig->shared_pending);
860 INIT_LIST_HEAD(&sig->posix_timers);
861
862 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
863 sig->it_real_incr.tv64 = 0;
864 sig->real_timer.function = it_real_fn;
865 sig->tsk = tsk;
866
867 sig->it_virt_expires = cputime_zero;
868 sig->it_virt_incr = cputime_zero;
869 sig->it_prof_expires = cputime_zero;
870 sig->it_prof_incr = cputime_zero;
871
872 sig->leader = 0; /* session leadership doesn't inherit */
873 sig->tty_old_pgrp = NULL;
874
875 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
876 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
877 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
878 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
879 sig->sched_time = 0;
880 INIT_LIST_HEAD(&sig->cpu_timers[0]);
881 INIT_LIST_HEAD(&sig->cpu_timers[1]);
882 INIT_LIST_HEAD(&sig->cpu_timers[2]);
883 taskstats_tgid_init(sig);
884
885 task_lock(current->group_leader);
886 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
887 task_unlock(current->group_leader);
888
889 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
890 /*
891 * New sole thread in the process gets an expiry time
892 * of the whole CPU time limit.
893 */
894 tsk->it_prof_expires =
895 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
896 }
897 acct_init_pacct(&sig->pacct);
898
899 return 0;
900 }
901
902 void __cleanup_signal(struct signal_struct *sig)
903 {
904 exit_thread_group_keys(sig);
905 kmem_cache_free(signal_cachep, sig);
906 }
907
908 static inline void cleanup_signal(struct task_struct *tsk)
909 {
910 struct signal_struct *sig = tsk->signal;
911
912 atomic_dec(&sig->live);
913
914 if (atomic_dec_and_test(&sig->count))
915 __cleanup_signal(sig);
916 }
917
918 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
919 {
920 unsigned long new_flags = p->flags;
921
922 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
923 new_flags |= PF_FORKNOEXEC;
924 if (!(clone_flags & CLONE_PTRACE))
925 p->ptrace = 0;
926 p->flags = new_flags;
927 }
928
929 asmlinkage long sys_set_tid_address(int __user *tidptr)
930 {
931 current->clear_child_tid = tidptr;
932
933 return current->pid;
934 }
935
936 static inline void rt_mutex_init_task(struct task_struct *p)
937 {
938 spin_lock_init(&p->pi_lock);
939 #ifdef CONFIG_RT_MUTEXES
940 plist_head_init(&p->pi_waiters, &p->pi_lock);
941 p->pi_blocked_on = NULL;
942 #endif
943 }
944
945 /*
946 * This creates a new process as a copy of the old one,
947 * but does not actually start it yet.
948 *
949 * It copies the registers, and all the appropriate
950 * parts of the process environment (as per the clone
951 * flags). The actual kick-off is left to the caller.
952 */
953 static struct task_struct *copy_process(unsigned long clone_flags,
954 unsigned long stack_start,
955 struct pt_regs *regs,
956 unsigned long stack_size,
957 int __user *parent_tidptr,
958 int __user *child_tidptr,
959 struct pid *pid)
960 {
961 int retval;
962 struct task_struct *p = NULL;
963
964 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
965 return ERR_PTR(-EINVAL);
966
967 /*
968 * Thread groups must share signals as well, and detached threads
969 * can only be started up within the thread group.
970 */
971 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
972 return ERR_PTR(-EINVAL);
973
974 /*
975 * Shared signal handlers imply shared VM. By way of the above,
976 * thread groups also imply shared VM. Blocking this case allows
977 * for various simplifications in other code.
978 */
979 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
980 return ERR_PTR(-EINVAL);
981
982 retval = security_task_create(clone_flags);
983 if (retval)
984 goto fork_out;
985
986 retval = -ENOMEM;
987 p = dup_task_struct(current);
988 if (!p)
989 goto fork_out;
990
991 rt_mutex_init_task(p);
992
993 #ifdef CONFIG_TRACE_IRQFLAGS
994 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
995 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
996 #endif
997 retval = -EAGAIN;
998 if (atomic_read(&p->user->processes) >=
999 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1000 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1001 p->user != &root_user)
1002 goto bad_fork_free;
1003 }
1004
1005 atomic_inc(&p->user->__count);
1006 atomic_inc(&p->user->processes);
1007 get_group_info(p->group_info);
1008
1009 /*
1010 * If multiple threads are within copy_process(), then this check
1011 * triggers too late. This doesn't hurt, the check is only there
1012 * to stop root fork bombs.
1013 */
1014 if (nr_threads >= max_threads)
1015 goto bad_fork_cleanup_count;
1016
1017 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1018 goto bad_fork_cleanup_count;
1019
1020 if (p->binfmt && !try_module_get(p->binfmt->module))
1021 goto bad_fork_cleanup_put_domain;
1022
1023 p->did_exec = 0;
1024 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1025 copy_flags(clone_flags, p);
1026 p->pid = pid_nr(pid);
1027 retval = -EFAULT;
1028 if (clone_flags & CLONE_PARENT_SETTID)
1029 if (put_user(p->pid, parent_tidptr))
1030 goto bad_fork_cleanup_delays_binfmt;
1031
1032 INIT_LIST_HEAD(&p->children);
1033 INIT_LIST_HEAD(&p->sibling);
1034 p->vfork_done = NULL;
1035 spin_lock_init(&p->alloc_lock);
1036
1037 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1038 init_sigpending(&p->pending);
1039
1040 p->utime = cputime_zero;
1041 p->stime = cputime_zero;
1042 p->sched_time = 0;
1043 #ifdef CONFIG_TASK_XACCT
1044 p->rchar = 0; /* I/O counter: bytes read */
1045 p->wchar = 0; /* I/O counter: bytes written */
1046 p->syscr = 0; /* I/O counter: read syscalls */
1047 p->syscw = 0; /* I/O counter: write syscalls */
1048 #endif
1049 task_io_accounting_init(p);
1050 acct_clear_integrals(p);
1051
1052 p->it_virt_expires = cputime_zero;
1053 p->it_prof_expires = cputime_zero;
1054 p->it_sched_expires = 0;
1055 INIT_LIST_HEAD(&p->cpu_timers[0]);
1056 INIT_LIST_HEAD(&p->cpu_timers[1]);
1057 INIT_LIST_HEAD(&p->cpu_timers[2]);
1058
1059 p->lock_depth = -1; /* -1 = no lock */
1060 do_posix_clock_monotonic_gettime(&p->start_time);
1061 p->security = NULL;
1062 p->io_context = NULL;
1063 p->io_wait = NULL;
1064 p->audit_context = NULL;
1065 cpuset_fork(p);
1066 #ifdef CONFIG_NUMA
1067 p->mempolicy = mpol_copy(p->mempolicy);
1068 if (IS_ERR(p->mempolicy)) {
1069 retval = PTR_ERR(p->mempolicy);
1070 p->mempolicy = NULL;
1071 goto bad_fork_cleanup_cpuset;
1072 }
1073 mpol_fix_fork_child_flag(p);
1074 #endif
1075 #ifdef CONFIG_TRACE_IRQFLAGS
1076 p->irq_events = 0;
1077 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1078 p->hardirqs_enabled = 1;
1079 #else
1080 p->hardirqs_enabled = 0;
1081 #endif
1082 p->hardirq_enable_ip = 0;
1083 p->hardirq_enable_event = 0;
1084 p->hardirq_disable_ip = _THIS_IP_;
1085 p->hardirq_disable_event = 0;
1086 p->softirqs_enabled = 1;
1087 p->softirq_enable_ip = _THIS_IP_;
1088 p->softirq_enable_event = 0;
1089 p->softirq_disable_ip = 0;
1090 p->softirq_disable_event = 0;
1091 p->hardirq_context = 0;
1092 p->softirq_context = 0;
1093 #endif
1094 #ifdef CONFIG_LOCKDEP
1095 p->lockdep_depth = 0; /* no locks held yet */
1096 p->curr_chain_key = 0;
1097 p->lockdep_recursion = 0;
1098 #endif
1099
1100 #ifdef CONFIG_DEBUG_MUTEXES
1101 p->blocked_on = NULL; /* not blocked yet */
1102 #endif
1103
1104 p->tgid = p->pid;
1105 if (clone_flags & CLONE_THREAD)
1106 p->tgid = current->tgid;
1107
1108 if ((retval = security_task_alloc(p)))
1109 goto bad_fork_cleanup_policy;
1110 if ((retval = audit_alloc(p)))
1111 goto bad_fork_cleanup_security;
1112 /* copy all the process information */
1113 if ((retval = copy_semundo(clone_flags, p)))
1114 goto bad_fork_cleanup_audit;
1115 if ((retval = copy_files(clone_flags, p)))
1116 goto bad_fork_cleanup_semundo;
1117 if ((retval = copy_fs(clone_flags, p)))
1118 goto bad_fork_cleanup_files;
1119 if ((retval = copy_sighand(clone_flags, p)))
1120 goto bad_fork_cleanup_fs;
1121 if ((retval = copy_signal(clone_flags, p)))
1122 goto bad_fork_cleanup_sighand;
1123 if ((retval = copy_mm(clone_flags, p)))
1124 goto bad_fork_cleanup_signal;
1125 if ((retval = copy_keys(clone_flags, p)))
1126 goto bad_fork_cleanup_mm;
1127 if ((retval = copy_namespaces(clone_flags, p)))
1128 goto bad_fork_cleanup_keys;
1129 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1130 if (retval)
1131 goto bad_fork_cleanup_namespaces;
1132
1133 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1134 /*
1135 * Clear TID on mm_release()?
1136 */
1137 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1138 p->robust_list = NULL;
1139 #ifdef CONFIG_COMPAT
1140 p->compat_robust_list = NULL;
1141 #endif
1142 INIT_LIST_HEAD(&p->pi_state_list);
1143 p->pi_state_cache = NULL;
1144
1145 /*
1146 * sigaltstack should be cleared when sharing the same VM
1147 */
1148 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1149 p->sas_ss_sp = p->sas_ss_size = 0;
1150
1151 /*
1152 * Syscall tracing should be turned off in the child regardless
1153 * of CLONE_PTRACE.
1154 */
1155 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1156 #ifdef TIF_SYSCALL_EMU
1157 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1158 #endif
1159
1160 /* Our parent execution domain becomes current domain
1161 These must match for thread signalling to apply */
1162 p->parent_exec_id = p->self_exec_id;
1163
1164 /* ok, now we should be set up.. */
1165 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1166 p->pdeath_signal = 0;
1167 p->exit_state = 0;
1168
1169 /*
1170 * Ok, make it visible to the rest of the system.
1171 * We dont wake it up yet.
1172 */
1173 p->group_leader = p;
1174 INIT_LIST_HEAD(&p->thread_group);
1175 INIT_LIST_HEAD(&p->ptrace_children);
1176 INIT_LIST_HEAD(&p->ptrace_list);
1177
1178 /* Perform scheduler related setup. Assign this task to a CPU. */
1179 sched_fork(p, clone_flags);
1180
1181 /* Need tasklist lock for parent etc handling! */
1182 write_lock_irq(&tasklist_lock);
1183
1184 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1185 p->ioprio = current->ioprio;
1186
1187 /*
1188 * The task hasn't been attached yet, so its cpus_allowed mask will
1189 * not be changed, nor will its assigned CPU.
1190 *
1191 * The cpus_allowed mask of the parent may have changed after it was
1192 * copied first time - so re-copy it here, then check the child's CPU
1193 * to ensure it is on a valid CPU (and if not, just force it back to
1194 * parent's CPU). This avoids alot of nasty races.
1195 */
1196 p->cpus_allowed = current->cpus_allowed;
1197 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1198 !cpu_online(task_cpu(p))))
1199 set_task_cpu(p, smp_processor_id());
1200
1201 /* CLONE_PARENT re-uses the old parent */
1202 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1203 p->real_parent = current->real_parent;
1204 else
1205 p->real_parent = current;
1206 p->parent = p->real_parent;
1207
1208 spin_lock(&current->sighand->siglock);
1209
1210 /*
1211 * Process group and session signals need to be delivered to just the
1212 * parent before the fork or both the parent and the child after the
1213 * fork. Restart if a signal comes in before we add the new process to
1214 * it's process group.
1215 * A fatal signal pending means that current will exit, so the new
1216 * thread can't slip out of an OOM kill (or normal SIGKILL).
1217 */
1218 recalc_sigpending();
1219 if (signal_pending(current)) {
1220 spin_unlock(&current->sighand->siglock);
1221 write_unlock_irq(&tasklist_lock);
1222 retval = -ERESTARTNOINTR;
1223 goto bad_fork_cleanup_namespaces;
1224 }
1225
1226 if (clone_flags & CLONE_THREAD) {
1227 p->group_leader = current->group_leader;
1228 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1229
1230 if (!cputime_eq(current->signal->it_virt_expires,
1231 cputime_zero) ||
1232 !cputime_eq(current->signal->it_prof_expires,
1233 cputime_zero) ||
1234 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1235 !list_empty(&current->signal->cpu_timers[0]) ||
1236 !list_empty(&current->signal->cpu_timers[1]) ||
1237 !list_empty(&current->signal->cpu_timers[2])) {
1238 /*
1239 * Have child wake up on its first tick to check
1240 * for process CPU timers.
1241 */
1242 p->it_prof_expires = jiffies_to_cputime(1);
1243 }
1244 }
1245
1246 if (likely(p->pid)) {
1247 add_parent(p);
1248 if (unlikely(p->ptrace & PT_PTRACED))
1249 __ptrace_link(p, current->parent);
1250
1251 if (thread_group_leader(p)) {
1252 p->signal->tty = current->signal->tty;
1253 p->signal->pgrp = process_group(current);
1254 set_signal_session(p->signal, process_session(current));
1255 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1256 attach_pid(p, PIDTYPE_SID, task_session(current));
1257
1258 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1259 __get_cpu_var(process_counts)++;
1260 }
1261 attach_pid(p, PIDTYPE_PID, pid);
1262 nr_threads++;
1263 }
1264
1265 total_forks++;
1266 spin_unlock(&current->sighand->siglock);
1267 write_unlock_irq(&tasklist_lock);
1268 proc_fork_connector(p);
1269 return p;
1270
1271 bad_fork_cleanup_namespaces:
1272 exit_task_namespaces(p);
1273 bad_fork_cleanup_keys:
1274 exit_keys(p);
1275 bad_fork_cleanup_mm:
1276 if (p->mm)
1277 mmput(p->mm);
1278 bad_fork_cleanup_signal:
1279 cleanup_signal(p);
1280 bad_fork_cleanup_sighand:
1281 __cleanup_sighand(p->sighand);
1282 bad_fork_cleanup_fs:
1283 exit_fs(p); /* blocking */
1284 bad_fork_cleanup_files:
1285 exit_files(p); /* blocking */
1286 bad_fork_cleanup_semundo:
1287 exit_sem(p);
1288 bad_fork_cleanup_audit:
1289 audit_free(p);
1290 bad_fork_cleanup_security:
1291 security_task_free(p);
1292 bad_fork_cleanup_policy:
1293 #ifdef CONFIG_NUMA
1294 mpol_free(p->mempolicy);
1295 bad_fork_cleanup_cpuset:
1296 #endif
1297 cpuset_exit(p);
1298 bad_fork_cleanup_delays_binfmt:
1299 delayacct_tsk_free(p);
1300 if (p->binfmt)
1301 module_put(p->binfmt->module);
1302 bad_fork_cleanup_put_domain:
1303 module_put(task_thread_info(p)->exec_domain->module);
1304 bad_fork_cleanup_count:
1305 put_group_info(p->group_info);
1306 atomic_dec(&p->user->processes);
1307 free_uid(p->user);
1308 bad_fork_free:
1309 free_task(p);
1310 fork_out:
1311 return ERR_PTR(retval);
1312 }
1313
1314 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1315 {
1316 memset(regs, 0, sizeof(struct pt_regs));
1317 return regs;
1318 }
1319
1320 struct task_struct * __cpuinit fork_idle(int cpu)
1321 {
1322 struct task_struct *task;
1323 struct pt_regs regs;
1324
1325 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1326 &init_struct_pid);
1327 if (!IS_ERR(task))
1328 init_idle(task, cpu);
1329
1330 return task;
1331 }
1332
1333 static inline int fork_traceflag (unsigned clone_flags)
1334 {
1335 if (clone_flags & CLONE_UNTRACED)
1336 return 0;
1337 else if (clone_flags & CLONE_VFORK) {
1338 if (current->ptrace & PT_TRACE_VFORK)
1339 return PTRACE_EVENT_VFORK;
1340 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1341 if (current->ptrace & PT_TRACE_CLONE)
1342 return PTRACE_EVENT_CLONE;
1343 } else if (current->ptrace & PT_TRACE_FORK)
1344 return PTRACE_EVENT_FORK;
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * Ok, this is the main fork-routine.
1351 *
1352 * It copies the process, and if successful kick-starts
1353 * it and waits for it to finish using the VM if required.
1354 */
1355 long do_fork(unsigned long clone_flags,
1356 unsigned long stack_start,
1357 struct pt_regs *regs,
1358 unsigned long stack_size,
1359 int __user *parent_tidptr,
1360 int __user *child_tidptr)
1361 {
1362 struct task_struct *p;
1363 int trace = 0;
1364 struct pid *pid = alloc_pid();
1365 long nr;
1366
1367 if (!pid)
1368 return -EAGAIN;
1369 nr = pid->nr;
1370 if (unlikely(current->ptrace)) {
1371 trace = fork_traceflag (clone_flags);
1372 if (trace)
1373 clone_flags |= CLONE_PTRACE;
1374 }
1375
1376 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1377 /*
1378 * Do this prior waking up the new thread - the thread pointer
1379 * might get invalid after that point, if the thread exits quickly.
1380 */
1381 if (!IS_ERR(p)) {
1382 struct completion vfork;
1383
1384 if (clone_flags & CLONE_VFORK) {
1385 p->vfork_done = &vfork;
1386 init_completion(&vfork);
1387 }
1388
1389 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1390 /*
1391 * We'll start up with an immediate SIGSTOP.
1392 */
1393 sigaddset(&p->pending.signal, SIGSTOP);
1394 set_tsk_thread_flag(p, TIF_SIGPENDING);
1395 }
1396
1397 if (!(clone_flags & CLONE_STOPPED))
1398 wake_up_new_task(p, clone_flags);
1399 else
1400 p->state = TASK_STOPPED;
1401
1402 if (unlikely (trace)) {
1403 current->ptrace_message = nr;
1404 ptrace_notify ((trace << 8) | SIGTRAP);
1405 }
1406
1407 if (clone_flags & CLONE_VFORK) {
1408 wait_for_completion(&vfork);
1409 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1410 current->ptrace_message = nr;
1411 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1412 }
1413 }
1414 } else {
1415 free_pid(pid);
1416 nr = PTR_ERR(p);
1417 }
1418 return nr;
1419 }
1420
1421 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1422 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1423 #endif
1424
1425 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1426 unsigned long flags)
1427 {
1428 struct sighand_struct *sighand = data;
1429
1430 if (flags & SLAB_CTOR_CONSTRUCTOR) {
1431 spin_lock_init(&sighand->siglock);
1432 INIT_LIST_HEAD(&sighand->signalfd_list);
1433 }
1434 }
1435
1436 void __init proc_caches_init(void)
1437 {
1438 sighand_cachep = kmem_cache_create("sighand_cache",
1439 sizeof(struct sighand_struct), 0,
1440 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1441 sighand_ctor, NULL);
1442 signal_cachep = kmem_cache_create("signal_cache",
1443 sizeof(struct signal_struct), 0,
1444 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1445 files_cachep = kmem_cache_create("files_cache",
1446 sizeof(struct files_struct), 0,
1447 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1448 fs_cachep = kmem_cache_create("fs_cache",
1449 sizeof(struct fs_struct), 0,
1450 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1451 vm_area_cachep = kmem_cache_create("vm_area_struct",
1452 sizeof(struct vm_area_struct), 0,
1453 SLAB_PANIC, NULL, NULL);
1454 mm_cachep = kmem_cache_create("mm_struct",
1455 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1456 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1457 }
1458
1459 /*
1460 * Check constraints on flags passed to the unshare system call and
1461 * force unsharing of additional process context as appropriate.
1462 */
1463 static inline void check_unshare_flags(unsigned long *flags_ptr)
1464 {
1465 /*
1466 * If unsharing a thread from a thread group, must also
1467 * unshare vm.
1468 */
1469 if (*flags_ptr & CLONE_THREAD)
1470 *flags_ptr |= CLONE_VM;
1471
1472 /*
1473 * If unsharing vm, must also unshare signal handlers.
1474 */
1475 if (*flags_ptr & CLONE_VM)
1476 *flags_ptr |= CLONE_SIGHAND;
1477
1478 /*
1479 * If unsharing signal handlers and the task was created
1480 * using CLONE_THREAD, then must unshare the thread
1481 */
1482 if ((*flags_ptr & CLONE_SIGHAND) &&
1483 (atomic_read(&current->signal->count) > 1))
1484 *flags_ptr |= CLONE_THREAD;
1485
1486 /*
1487 * If unsharing namespace, must also unshare filesystem information.
1488 */
1489 if (*flags_ptr & CLONE_NEWNS)
1490 *flags_ptr |= CLONE_FS;
1491 }
1492
1493 /*
1494 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1495 */
1496 static int unshare_thread(unsigned long unshare_flags)
1497 {
1498 if (unshare_flags & CLONE_THREAD)
1499 return -EINVAL;
1500
1501 return 0;
1502 }
1503
1504 /*
1505 * Unshare the filesystem structure if it is being shared
1506 */
1507 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1508 {
1509 struct fs_struct *fs = current->fs;
1510
1511 if ((unshare_flags & CLONE_FS) &&
1512 (fs && atomic_read(&fs->count) > 1)) {
1513 *new_fsp = __copy_fs_struct(current->fs);
1514 if (!*new_fsp)
1515 return -ENOMEM;
1516 }
1517
1518 return 0;
1519 }
1520
1521 /*
1522 * Unsharing of sighand is not supported yet
1523 */
1524 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1525 {
1526 struct sighand_struct *sigh = current->sighand;
1527
1528 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1529 return -EINVAL;
1530 else
1531 return 0;
1532 }
1533
1534 /*
1535 * Unshare vm if it is being shared
1536 */
1537 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1538 {
1539 struct mm_struct *mm = current->mm;
1540
1541 if ((unshare_flags & CLONE_VM) &&
1542 (mm && atomic_read(&mm->mm_users) > 1)) {
1543 return -EINVAL;
1544 }
1545
1546 return 0;
1547 }
1548
1549 /*
1550 * Unshare file descriptor table if it is being shared
1551 */
1552 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1553 {
1554 struct files_struct *fd = current->files;
1555 int error = 0;
1556
1557 if ((unshare_flags & CLONE_FILES) &&
1558 (fd && atomic_read(&fd->count) > 1)) {
1559 *new_fdp = dup_fd(fd, &error);
1560 if (!*new_fdp)
1561 return error;
1562 }
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1569 * supported yet
1570 */
1571 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1572 {
1573 if (unshare_flags & CLONE_SYSVSEM)
1574 return -EINVAL;
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * unshare allows a process to 'unshare' part of the process
1581 * context which was originally shared using clone. copy_*
1582 * functions used by do_fork() cannot be used here directly
1583 * because they modify an inactive task_struct that is being
1584 * constructed. Here we are modifying the current, active,
1585 * task_struct.
1586 */
1587 asmlinkage long sys_unshare(unsigned long unshare_flags)
1588 {
1589 int err = 0;
1590 struct fs_struct *fs, *new_fs = NULL;
1591 struct sighand_struct *new_sigh = NULL;
1592 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1593 struct files_struct *fd, *new_fd = NULL;
1594 struct sem_undo_list *new_ulist = NULL;
1595 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1596
1597 check_unshare_flags(&unshare_flags);
1598
1599 /* Return -EINVAL for all unsupported flags */
1600 err = -EINVAL;
1601 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1602 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1603 CLONE_NEWUTS|CLONE_NEWIPC))
1604 goto bad_unshare_out;
1605
1606 if ((err = unshare_thread(unshare_flags)))
1607 goto bad_unshare_out;
1608 if ((err = unshare_fs(unshare_flags, &new_fs)))
1609 goto bad_unshare_cleanup_thread;
1610 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1611 goto bad_unshare_cleanup_fs;
1612 if ((err = unshare_vm(unshare_flags, &new_mm)))
1613 goto bad_unshare_cleanup_sigh;
1614 if ((err = unshare_fd(unshare_flags, &new_fd)))
1615 goto bad_unshare_cleanup_vm;
1616 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1617 goto bad_unshare_cleanup_fd;
1618 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1619 new_fs)))
1620 goto bad_unshare_cleanup_semundo;
1621
1622 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1623
1624 task_lock(current);
1625
1626 if (new_nsproxy) {
1627 old_nsproxy = current->nsproxy;
1628 current->nsproxy = new_nsproxy;
1629 new_nsproxy = old_nsproxy;
1630 }
1631
1632 if (new_fs) {
1633 fs = current->fs;
1634 current->fs = new_fs;
1635 new_fs = fs;
1636 }
1637
1638 if (new_mm) {
1639 mm = current->mm;
1640 active_mm = current->active_mm;
1641 current->mm = new_mm;
1642 current->active_mm = new_mm;
1643 activate_mm(active_mm, new_mm);
1644 new_mm = mm;
1645 }
1646
1647 if (new_fd) {
1648 fd = current->files;
1649 current->files = new_fd;
1650 new_fd = fd;
1651 }
1652
1653 task_unlock(current);
1654 }
1655
1656 if (new_nsproxy)
1657 put_nsproxy(new_nsproxy);
1658
1659 bad_unshare_cleanup_semundo:
1660 bad_unshare_cleanup_fd:
1661 if (new_fd)
1662 put_files_struct(new_fd);
1663
1664 bad_unshare_cleanup_vm:
1665 if (new_mm)
1666 mmput(new_mm);
1667
1668 bad_unshare_cleanup_sigh:
1669 if (new_sigh)
1670 if (atomic_dec_and_test(&new_sigh->count))
1671 kmem_cache_free(sighand_cachep, new_sigh);
1672
1673 bad_unshare_cleanup_fs:
1674 if (new_fs)
1675 put_fs_struct(new_fs);
1676
1677 bad_unshare_cleanup_thread:
1678 bad_unshare_out:
1679 return err;
1680 }
This page took 0.092056 seconds and 6 git commands to generate.