Merge branch 'for-4.7-dw' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_info(struct thread_info *ti)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
167
168 if (page)
169 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
170 1 << THREAD_SIZE_ORDER);
171
172 return page ? page_address(page) : NULL;
173 }
174
175 static inline void free_thread_info(struct thread_info *ti)
176 {
177 struct page *page = virt_to_page(ti);
178
179 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
180 -(1 << THREAD_SIZE_ORDER));
181 __free_kmem_pages(page, THREAD_SIZE_ORDER);
182 }
183 # else
184 static struct kmem_cache *thread_info_cache;
185
186 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
187 int node)
188 {
189 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
190 }
191
192 static void free_thread_info(struct thread_info *ti)
193 {
194 kmem_cache_free(thread_info_cache, ti);
195 }
196
197 void thread_info_cache_init(void)
198 {
199 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
200 THREAD_SIZE, 0, NULL);
201 BUG_ON(thread_info_cache == NULL);
202 }
203 # endif
204 #endif
205
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
208
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
211
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
214
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
217
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
220
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
223
224 static void account_kernel_stack(struct thread_info *ti, int account)
225 {
226 struct zone *zone = page_zone(virt_to_page(ti));
227
228 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
229 }
230
231 void free_task(struct task_struct *tsk)
232 {
233 account_kernel_stack(tsk->stack, -1);
234 arch_release_thread_info(tsk->stack);
235 free_thread_info(tsk->stack);
236 rt_mutex_debug_task_free(tsk);
237 ftrace_graph_exit_task(tsk);
238 put_seccomp_filter(tsk);
239 arch_release_task_struct(tsk);
240 free_task_struct(tsk);
241 }
242 EXPORT_SYMBOL(free_task);
243
244 static inline void free_signal_struct(struct signal_struct *sig)
245 {
246 taskstats_tgid_free(sig);
247 sched_autogroup_exit(sig);
248 kmem_cache_free(signal_cachep, sig);
249 }
250
251 static inline void put_signal_struct(struct signal_struct *sig)
252 {
253 if (atomic_dec_and_test(&sig->sigcnt))
254 free_signal_struct(sig);
255 }
256
257 void __put_task_struct(struct task_struct *tsk)
258 {
259 WARN_ON(!tsk->exit_state);
260 WARN_ON(atomic_read(&tsk->usage));
261 WARN_ON(tsk == current);
262
263 cgroup_free(tsk);
264 task_numa_free(tsk);
265 security_task_free(tsk);
266 exit_creds(tsk);
267 delayacct_tsk_free(tsk);
268 put_signal_struct(tsk->signal);
269
270 if (!profile_handoff_task(tsk))
271 free_task(tsk);
272 }
273 EXPORT_SYMBOL_GPL(__put_task_struct);
274
275 void __init __weak arch_task_cache_init(void) { }
276
277 /*
278 * set_max_threads
279 */
280 static void set_max_threads(unsigned int max_threads_suggested)
281 {
282 u64 threads;
283
284 /*
285 * The number of threads shall be limited such that the thread
286 * structures may only consume a small part of the available memory.
287 */
288 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
289 threads = MAX_THREADS;
290 else
291 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
292 (u64) THREAD_SIZE * 8UL);
293
294 if (threads > max_threads_suggested)
295 threads = max_threads_suggested;
296
297 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
298 }
299
300 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
301 /* Initialized by the architecture: */
302 int arch_task_struct_size __read_mostly;
303 #endif
304
305 void __init fork_init(void)
306 {
307 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
308 #ifndef ARCH_MIN_TASKALIGN
309 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
310 #endif
311 /* create a slab on which task_structs can be allocated */
312 task_struct_cachep = kmem_cache_create("task_struct",
313 arch_task_struct_size, ARCH_MIN_TASKALIGN,
314 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
315 #endif
316
317 /* do the arch specific task caches init */
318 arch_task_cache_init();
319
320 set_max_threads(MAX_THREADS);
321
322 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
323 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
324 init_task.signal->rlim[RLIMIT_SIGPENDING] =
325 init_task.signal->rlim[RLIMIT_NPROC];
326 }
327
328 int __weak arch_dup_task_struct(struct task_struct *dst,
329 struct task_struct *src)
330 {
331 *dst = *src;
332 return 0;
333 }
334
335 void set_task_stack_end_magic(struct task_struct *tsk)
336 {
337 unsigned long *stackend;
338
339 stackend = end_of_stack(tsk);
340 *stackend = STACK_END_MAGIC; /* for overflow detection */
341 }
342
343 static struct task_struct *dup_task_struct(struct task_struct *orig)
344 {
345 struct task_struct *tsk;
346 struct thread_info *ti;
347 int node = tsk_fork_get_node(orig);
348 int err;
349
350 tsk = alloc_task_struct_node(node);
351 if (!tsk)
352 return NULL;
353
354 ti = alloc_thread_info_node(tsk, node);
355 if (!ti)
356 goto free_tsk;
357
358 err = arch_dup_task_struct(tsk, orig);
359 if (err)
360 goto free_ti;
361
362 tsk->stack = ti;
363 #ifdef CONFIG_SECCOMP
364 /*
365 * We must handle setting up seccomp filters once we're under
366 * the sighand lock in case orig has changed between now and
367 * then. Until then, filter must be NULL to avoid messing up
368 * the usage counts on the error path calling free_task.
369 */
370 tsk->seccomp.filter = NULL;
371 #endif
372
373 setup_thread_stack(tsk, orig);
374 clear_user_return_notifier(tsk);
375 clear_tsk_need_resched(tsk);
376 set_task_stack_end_magic(tsk);
377
378 #ifdef CONFIG_CC_STACKPROTECTOR
379 tsk->stack_canary = get_random_int();
380 #endif
381
382 /*
383 * One for us, one for whoever does the "release_task()" (usually
384 * parent)
385 */
386 atomic_set(&tsk->usage, 2);
387 #ifdef CONFIG_BLK_DEV_IO_TRACE
388 tsk->btrace_seq = 0;
389 #endif
390 tsk->splice_pipe = NULL;
391 tsk->task_frag.page = NULL;
392 tsk->wake_q.next = NULL;
393
394 account_kernel_stack(ti, 1);
395
396 kcov_task_init(tsk);
397
398 return tsk;
399
400 free_ti:
401 free_thread_info(ti);
402 free_tsk:
403 free_task_struct(tsk);
404 return NULL;
405 }
406
407 #ifdef CONFIG_MMU
408 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
409 {
410 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
411 struct rb_node **rb_link, *rb_parent;
412 int retval;
413 unsigned long charge;
414
415 uprobe_start_dup_mmap();
416 down_write(&oldmm->mmap_sem);
417 flush_cache_dup_mm(oldmm);
418 uprobe_dup_mmap(oldmm, mm);
419 /*
420 * Not linked in yet - no deadlock potential:
421 */
422 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
423
424 /* No ordering required: file already has been exposed. */
425 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
426
427 mm->total_vm = oldmm->total_vm;
428 mm->data_vm = oldmm->data_vm;
429 mm->exec_vm = oldmm->exec_vm;
430 mm->stack_vm = oldmm->stack_vm;
431
432 rb_link = &mm->mm_rb.rb_node;
433 rb_parent = NULL;
434 pprev = &mm->mmap;
435 retval = ksm_fork(mm, oldmm);
436 if (retval)
437 goto out;
438 retval = khugepaged_fork(mm, oldmm);
439 if (retval)
440 goto out;
441
442 prev = NULL;
443 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
444 struct file *file;
445
446 if (mpnt->vm_flags & VM_DONTCOPY) {
447 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
448 continue;
449 }
450 charge = 0;
451 if (mpnt->vm_flags & VM_ACCOUNT) {
452 unsigned long len = vma_pages(mpnt);
453
454 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
455 goto fail_nomem;
456 charge = len;
457 }
458 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 if (!tmp)
460 goto fail_nomem;
461 *tmp = *mpnt;
462 INIT_LIST_HEAD(&tmp->anon_vma_chain);
463 retval = vma_dup_policy(mpnt, tmp);
464 if (retval)
465 goto fail_nomem_policy;
466 tmp->vm_mm = mm;
467 if (anon_vma_fork(tmp, mpnt))
468 goto fail_nomem_anon_vma_fork;
469 tmp->vm_flags &=
470 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
471 tmp->vm_next = tmp->vm_prev = NULL;
472 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
473 file = tmp->vm_file;
474 if (file) {
475 struct inode *inode = file_inode(file);
476 struct address_space *mapping = file->f_mapping;
477
478 get_file(file);
479 if (tmp->vm_flags & VM_DENYWRITE)
480 atomic_dec(&inode->i_writecount);
481 i_mmap_lock_write(mapping);
482 if (tmp->vm_flags & VM_SHARED)
483 atomic_inc(&mapping->i_mmap_writable);
484 flush_dcache_mmap_lock(mapping);
485 /* insert tmp into the share list, just after mpnt */
486 vma_interval_tree_insert_after(tmp, mpnt,
487 &mapping->i_mmap);
488 flush_dcache_mmap_unlock(mapping);
489 i_mmap_unlock_write(mapping);
490 }
491
492 /*
493 * Clear hugetlb-related page reserves for children. This only
494 * affects MAP_PRIVATE mappings. Faults generated by the child
495 * are not guaranteed to succeed, even if read-only
496 */
497 if (is_vm_hugetlb_page(tmp))
498 reset_vma_resv_huge_pages(tmp);
499
500 /*
501 * Link in the new vma and copy the page table entries.
502 */
503 *pprev = tmp;
504 pprev = &tmp->vm_next;
505 tmp->vm_prev = prev;
506 prev = tmp;
507
508 __vma_link_rb(mm, tmp, rb_link, rb_parent);
509 rb_link = &tmp->vm_rb.rb_right;
510 rb_parent = &tmp->vm_rb;
511
512 mm->map_count++;
513 retval = copy_page_range(mm, oldmm, mpnt);
514
515 if (tmp->vm_ops && tmp->vm_ops->open)
516 tmp->vm_ops->open(tmp);
517
518 if (retval)
519 goto out;
520 }
521 /* a new mm has just been created */
522 arch_dup_mmap(oldmm, mm);
523 retval = 0;
524 out:
525 up_write(&mm->mmap_sem);
526 flush_tlb_mm(oldmm);
527 up_write(&oldmm->mmap_sem);
528 uprobe_end_dup_mmap();
529 return retval;
530 fail_nomem_anon_vma_fork:
531 mpol_put(vma_policy(tmp));
532 fail_nomem_policy:
533 kmem_cache_free(vm_area_cachep, tmp);
534 fail_nomem:
535 retval = -ENOMEM;
536 vm_unacct_memory(charge);
537 goto out;
538 }
539
540 static inline int mm_alloc_pgd(struct mm_struct *mm)
541 {
542 mm->pgd = pgd_alloc(mm);
543 if (unlikely(!mm->pgd))
544 return -ENOMEM;
545 return 0;
546 }
547
548 static inline void mm_free_pgd(struct mm_struct *mm)
549 {
550 pgd_free(mm, mm->pgd);
551 }
552 #else
553 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
554 {
555 down_write(&oldmm->mmap_sem);
556 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
557 up_write(&oldmm->mmap_sem);
558 return 0;
559 }
560 #define mm_alloc_pgd(mm) (0)
561 #define mm_free_pgd(mm)
562 #endif /* CONFIG_MMU */
563
564 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
565
566 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
567 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
568
569 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
570
571 static int __init coredump_filter_setup(char *s)
572 {
573 default_dump_filter =
574 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
575 MMF_DUMP_FILTER_MASK;
576 return 1;
577 }
578
579 __setup("coredump_filter=", coredump_filter_setup);
580
581 #include <linux/init_task.h>
582
583 static void mm_init_aio(struct mm_struct *mm)
584 {
585 #ifdef CONFIG_AIO
586 spin_lock_init(&mm->ioctx_lock);
587 mm->ioctx_table = NULL;
588 #endif
589 }
590
591 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
592 {
593 #ifdef CONFIG_MEMCG
594 mm->owner = p;
595 #endif
596 }
597
598 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
599 {
600 mm->mmap = NULL;
601 mm->mm_rb = RB_ROOT;
602 mm->vmacache_seqnum = 0;
603 atomic_set(&mm->mm_users, 1);
604 atomic_set(&mm->mm_count, 1);
605 init_rwsem(&mm->mmap_sem);
606 INIT_LIST_HEAD(&mm->mmlist);
607 mm->core_state = NULL;
608 atomic_long_set(&mm->nr_ptes, 0);
609 mm_nr_pmds_init(mm);
610 mm->map_count = 0;
611 mm->locked_vm = 0;
612 mm->pinned_vm = 0;
613 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
614 spin_lock_init(&mm->page_table_lock);
615 mm_init_cpumask(mm);
616 mm_init_aio(mm);
617 mm_init_owner(mm, p);
618 mmu_notifier_mm_init(mm);
619 clear_tlb_flush_pending(mm);
620 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
621 mm->pmd_huge_pte = NULL;
622 #endif
623
624 if (current->mm) {
625 mm->flags = current->mm->flags & MMF_INIT_MASK;
626 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
627 } else {
628 mm->flags = default_dump_filter;
629 mm->def_flags = 0;
630 }
631
632 if (mm_alloc_pgd(mm))
633 goto fail_nopgd;
634
635 if (init_new_context(p, mm))
636 goto fail_nocontext;
637
638 return mm;
639
640 fail_nocontext:
641 mm_free_pgd(mm);
642 fail_nopgd:
643 free_mm(mm);
644 return NULL;
645 }
646
647 static void check_mm(struct mm_struct *mm)
648 {
649 int i;
650
651 for (i = 0; i < NR_MM_COUNTERS; i++) {
652 long x = atomic_long_read(&mm->rss_stat.count[i]);
653
654 if (unlikely(x))
655 printk(KERN_ALERT "BUG: Bad rss-counter state "
656 "mm:%p idx:%d val:%ld\n", mm, i, x);
657 }
658
659 if (atomic_long_read(&mm->nr_ptes))
660 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
661 atomic_long_read(&mm->nr_ptes));
662 if (mm_nr_pmds(mm))
663 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
664 mm_nr_pmds(mm));
665
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670
671 /*
672 * Allocate and initialize an mm_struct.
673 */
674 struct mm_struct *mm_alloc(void)
675 {
676 struct mm_struct *mm;
677
678 mm = allocate_mm();
679 if (!mm)
680 return NULL;
681
682 memset(mm, 0, sizeof(*mm));
683 return mm_init(mm, current);
684 }
685
686 /*
687 * Called when the last reference to the mm
688 * is dropped: either by a lazy thread or by
689 * mmput. Free the page directory and the mm.
690 */
691 void __mmdrop(struct mm_struct *mm)
692 {
693 BUG_ON(mm == &init_mm);
694 mm_free_pgd(mm);
695 destroy_context(mm);
696 mmu_notifier_mm_destroy(mm);
697 check_mm(mm);
698 free_mm(mm);
699 }
700 EXPORT_SYMBOL_GPL(__mmdrop);
701
702 static inline void __mmput(struct mm_struct *mm)
703 {
704 VM_BUG_ON(atomic_read(&mm->mm_users));
705
706 uprobe_clear_state(mm);
707 exit_aio(mm);
708 ksm_exit(mm);
709 khugepaged_exit(mm); /* must run before exit_mmap */
710 exit_mmap(mm);
711 set_mm_exe_file(mm, NULL);
712 if (!list_empty(&mm->mmlist)) {
713 spin_lock(&mmlist_lock);
714 list_del(&mm->mmlist);
715 spin_unlock(&mmlist_lock);
716 }
717 if (mm->binfmt)
718 module_put(mm->binfmt->module);
719 mmdrop(mm);
720 }
721
722 /*
723 * Decrement the use count and release all resources for an mm.
724 */
725 void mmput(struct mm_struct *mm)
726 {
727 might_sleep();
728
729 if (atomic_dec_and_test(&mm->mm_users))
730 __mmput(mm);
731 }
732 EXPORT_SYMBOL_GPL(mmput);
733
734 static void mmput_async_fn(struct work_struct *work)
735 {
736 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
737 __mmput(mm);
738 }
739
740 void mmput_async(struct mm_struct *mm)
741 {
742 if (atomic_dec_and_test(&mm->mm_users)) {
743 INIT_WORK(&mm->async_put_work, mmput_async_fn);
744 schedule_work(&mm->async_put_work);
745 }
746 }
747
748 /**
749 * set_mm_exe_file - change a reference to the mm's executable file
750 *
751 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
752 *
753 * Main users are mmput() and sys_execve(). Callers prevent concurrent
754 * invocations: in mmput() nobody alive left, in execve task is single
755 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
756 * mm->exe_file, but does so without using set_mm_exe_file() in order
757 * to do avoid the need for any locks.
758 */
759 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
760 {
761 struct file *old_exe_file;
762
763 /*
764 * It is safe to dereference the exe_file without RCU as
765 * this function is only called if nobody else can access
766 * this mm -- see comment above for justification.
767 */
768 old_exe_file = rcu_dereference_raw(mm->exe_file);
769
770 if (new_exe_file)
771 get_file(new_exe_file);
772 rcu_assign_pointer(mm->exe_file, new_exe_file);
773 if (old_exe_file)
774 fput(old_exe_file);
775 }
776
777 /**
778 * get_mm_exe_file - acquire a reference to the mm's executable file
779 *
780 * Returns %NULL if mm has no associated executable file.
781 * User must release file via fput().
782 */
783 struct file *get_mm_exe_file(struct mm_struct *mm)
784 {
785 struct file *exe_file;
786
787 rcu_read_lock();
788 exe_file = rcu_dereference(mm->exe_file);
789 if (exe_file && !get_file_rcu(exe_file))
790 exe_file = NULL;
791 rcu_read_unlock();
792 return exe_file;
793 }
794 EXPORT_SYMBOL(get_mm_exe_file);
795
796 /**
797 * get_task_mm - acquire a reference to the task's mm
798 *
799 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
800 * this kernel workthread has transiently adopted a user mm with use_mm,
801 * to do its AIO) is not set and if so returns a reference to it, after
802 * bumping up the use count. User must release the mm via mmput()
803 * after use. Typically used by /proc and ptrace.
804 */
805 struct mm_struct *get_task_mm(struct task_struct *task)
806 {
807 struct mm_struct *mm;
808
809 task_lock(task);
810 mm = task->mm;
811 if (mm) {
812 if (task->flags & PF_KTHREAD)
813 mm = NULL;
814 else
815 atomic_inc(&mm->mm_users);
816 }
817 task_unlock(task);
818 return mm;
819 }
820 EXPORT_SYMBOL_GPL(get_task_mm);
821
822 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
823 {
824 struct mm_struct *mm;
825 int err;
826
827 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
828 if (err)
829 return ERR_PTR(err);
830
831 mm = get_task_mm(task);
832 if (mm && mm != current->mm &&
833 !ptrace_may_access(task, mode)) {
834 mmput(mm);
835 mm = ERR_PTR(-EACCES);
836 }
837 mutex_unlock(&task->signal->cred_guard_mutex);
838
839 return mm;
840 }
841
842 static void complete_vfork_done(struct task_struct *tsk)
843 {
844 struct completion *vfork;
845
846 task_lock(tsk);
847 vfork = tsk->vfork_done;
848 if (likely(vfork)) {
849 tsk->vfork_done = NULL;
850 complete(vfork);
851 }
852 task_unlock(tsk);
853 }
854
855 static int wait_for_vfork_done(struct task_struct *child,
856 struct completion *vfork)
857 {
858 int killed;
859
860 freezer_do_not_count();
861 killed = wait_for_completion_killable(vfork);
862 freezer_count();
863
864 if (killed) {
865 task_lock(child);
866 child->vfork_done = NULL;
867 task_unlock(child);
868 }
869
870 put_task_struct(child);
871 return killed;
872 }
873
874 /* Please note the differences between mmput and mm_release.
875 * mmput is called whenever we stop holding onto a mm_struct,
876 * error success whatever.
877 *
878 * mm_release is called after a mm_struct has been removed
879 * from the current process.
880 *
881 * This difference is important for error handling, when we
882 * only half set up a mm_struct for a new process and need to restore
883 * the old one. Because we mmput the new mm_struct before
884 * restoring the old one. . .
885 * Eric Biederman 10 January 1998
886 */
887 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
888 {
889 /* Get rid of any futexes when releasing the mm */
890 #ifdef CONFIG_FUTEX
891 if (unlikely(tsk->robust_list)) {
892 exit_robust_list(tsk);
893 tsk->robust_list = NULL;
894 }
895 #ifdef CONFIG_COMPAT
896 if (unlikely(tsk->compat_robust_list)) {
897 compat_exit_robust_list(tsk);
898 tsk->compat_robust_list = NULL;
899 }
900 #endif
901 if (unlikely(!list_empty(&tsk->pi_state_list)))
902 exit_pi_state_list(tsk);
903 #endif
904
905 uprobe_free_utask(tsk);
906
907 /* Get rid of any cached register state */
908 deactivate_mm(tsk, mm);
909
910 /*
911 * If we're exiting normally, clear a user-space tid field if
912 * requested. We leave this alone when dying by signal, to leave
913 * the value intact in a core dump, and to save the unnecessary
914 * trouble, say, a killed vfork parent shouldn't touch this mm.
915 * Userland only wants this done for a sys_exit.
916 */
917 if (tsk->clear_child_tid) {
918 if (!(tsk->flags & PF_SIGNALED) &&
919 atomic_read(&mm->mm_users) > 1) {
920 /*
921 * We don't check the error code - if userspace has
922 * not set up a proper pointer then tough luck.
923 */
924 put_user(0, tsk->clear_child_tid);
925 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
926 1, NULL, NULL, 0);
927 }
928 tsk->clear_child_tid = NULL;
929 }
930
931 /*
932 * All done, finally we can wake up parent and return this mm to him.
933 * Also kthread_stop() uses this completion for synchronization.
934 */
935 if (tsk->vfork_done)
936 complete_vfork_done(tsk);
937 }
938
939 /*
940 * Allocate a new mm structure and copy contents from the
941 * mm structure of the passed in task structure.
942 */
943 static struct mm_struct *dup_mm(struct task_struct *tsk)
944 {
945 struct mm_struct *mm, *oldmm = current->mm;
946 int err;
947
948 mm = allocate_mm();
949 if (!mm)
950 goto fail_nomem;
951
952 memcpy(mm, oldmm, sizeof(*mm));
953
954 if (!mm_init(mm, tsk))
955 goto fail_nomem;
956
957 err = dup_mmap(mm, oldmm);
958 if (err)
959 goto free_pt;
960
961 mm->hiwater_rss = get_mm_rss(mm);
962 mm->hiwater_vm = mm->total_vm;
963
964 if (mm->binfmt && !try_module_get(mm->binfmt->module))
965 goto free_pt;
966
967 return mm;
968
969 free_pt:
970 /* don't put binfmt in mmput, we haven't got module yet */
971 mm->binfmt = NULL;
972 mmput(mm);
973
974 fail_nomem:
975 return NULL;
976 }
977
978 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
979 {
980 struct mm_struct *mm, *oldmm;
981 int retval;
982
983 tsk->min_flt = tsk->maj_flt = 0;
984 tsk->nvcsw = tsk->nivcsw = 0;
985 #ifdef CONFIG_DETECT_HUNG_TASK
986 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
987 #endif
988
989 tsk->mm = NULL;
990 tsk->active_mm = NULL;
991
992 /*
993 * Are we cloning a kernel thread?
994 *
995 * We need to steal a active VM for that..
996 */
997 oldmm = current->mm;
998 if (!oldmm)
999 return 0;
1000
1001 /* initialize the new vmacache entries */
1002 vmacache_flush(tsk);
1003
1004 if (clone_flags & CLONE_VM) {
1005 atomic_inc(&oldmm->mm_users);
1006 mm = oldmm;
1007 goto good_mm;
1008 }
1009
1010 retval = -ENOMEM;
1011 mm = dup_mm(tsk);
1012 if (!mm)
1013 goto fail_nomem;
1014
1015 good_mm:
1016 tsk->mm = mm;
1017 tsk->active_mm = mm;
1018 return 0;
1019
1020 fail_nomem:
1021 return retval;
1022 }
1023
1024 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1025 {
1026 struct fs_struct *fs = current->fs;
1027 if (clone_flags & CLONE_FS) {
1028 /* tsk->fs is already what we want */
1029 spin_lock(&fs->lock);
1030 if (fs->in_exec) {
1031 spin_unlock(&fs->lock);
1032 return -EAGAIN;
1033 }
1034 fs->users++;
1035 spin_unlock(&fs->lock);
1036 return 0;
1037 }
1038 tsk->fs = copy_fs_struct(fs);
1039 if (!tsk->fs)
1040 return -ENOMEM;
1041 return 0;
1042 }
1043
1044 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1045 {
1046 struct files_struct *oldf, *newf;
1047 int error = 0;
1048
1049 /*
1050 * A background process may not have any files ...
1051 */
1052 oldf = current->files;
1053 if (!oldf)
1054 goto out;
1055
1056 if (clone_flags & CLONE_FILES) {
1057 atomic_inc(&oldf->count);
1058 goto out;
1059 }
1060
1061 newf = dup_fd(oldf, &error);
1062 if (!newf)
1063 goto out;
1064
1065 tsk->files = newf;
1066 error = 0;
1067 out:
1068 return error;
1069 }
1070
1071 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1072 {
1073 #ifdef CONFIG_BLOCK
1074 struct io_context *ioc = current->io_context;
1075 struct io_context *new_ioc;
1076
1077 if (!ioc)
1078 return 0;
1079 /*
1080 * Share io context with parent, if CLONE_IO is set
1081 */
1082 if (clone_flags & CLONE_IO) {
1083 ioc_task_link(ioc);
1084 tsk->io_context = ioc;
1085 } else if (ioprio_valid(ioc->ioprio)) {
1086 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1087 if (unlikely(!new_ioc))
1088 return -ENOMEM;
1089
1090 new_ioc->ioprio = ioc->ioprio;
1091 put_io_context(new_ioc);
1092 }
1093 #endif
1094 return 0;
1095 }
1096
1097 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1098 {
1099 struct sighand_struct *sig;
1100
1101 if (clone_flags & CLONE_SIGHAND) {
1102 atomic_inc(&current->sighand->count);
1103 return 0;
1104 }
1105 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1106 rcu_assign_pointer(tsk->sighand, sig);
1107 if (!sig)
1108 return -ENOMEM;
1109
1110 atomic_set(&sig->count, 1);
1111 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1112 return 0;
1113 }
1114
1115 void __cleanup_sighand(struct sighand_struct *sighand)
1116 {
1117 if (atomic_dec_and_test(&sighand->count)) {
1118 signalfd_cleanup(sighand);
1119 /*
1120 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1121 * without an RCU grace period, see __lock_task_sighand().
1122 */
1123 kmem_cache_free(sighand_cachep, sighand);
1124 }
1125 }
1126
1127 /*
1128 * Initialize POSIX timer handling for a thread group.
1129 */
1130 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1131 {
1132 unsigned long cpu_limit;
1133
1134 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1135 if (cpu_limit != RLIM_INFINITY) {
1136 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1137 sig->cputimer.running = true;
1138 }
1139
1140 /* The timer lists. */
1141 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1142 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1143 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1144 }
1145
1146 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1147 {
1148 struct signal_struct *sig;
1149
1150 if (clone_flags & CLONE_THREAD)
1151 return 0;
1152
1153 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1154 tsk->signal = sig;
1155 if (!sig)
1156 return -ENOMEM;
1157
1158 sig->nr_threads = 1;
1159 atomic_set(&sig->live, 1);
1160 atomic_set(&sig->sigcnt, 1);
1161
1162 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1163 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1164 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1165
1166 init_waitqueue_head(&sig->wait_chldexit);
1167 sig->curr_target = tsk;
1168 init_sigpending(&sig->shared_pending);
1169 INIT_LIST_HEAD(&sig->posix_timers);
1170 seqlock_init(&sig->stats_lock);
1171 prev_cputime_init(&sig->prev_cputime);
1172
1173 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1174 sig->real_timer.function = it_real_fn;
1175
1176 task_lock(current->group_leader);
1177 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1178 task_unlock(current->group_leader);
1179
1180 posix_cpu_timers_init_group(sig);
1181
1182 tty_audit_fork(sig);
1183 sched_autogroup_fork(sig);
1184
1185 sig->oom_score_adj = current->signal->oom_score_adj;
1186 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1187
1188 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1189 current->signal->is_child_subreaper;
1190
1191 mutex_init(&sig->cred_guard_mutex);
1192
1193 return 0;
1194 }
1195
1196 static void copy_seccomp(struct task_struct *p)
1197 {
1198 #ifdef CONFIG_SECCOMP
1199 /*
1200 * Must be called with sighand->lock held, which is common to
1201 * all threads in the group. Holding cred_guard_mutex is not
1202 * needed because this new task is not yet running and cannot
1203 * be racing exec.
1204 */
1205 assert_spin_locked(&current->sighand->siglock);
1206
1207 /* Ref-count the new filter user, and assign it. */
1208 get_seccomp_filter(current);
1209 p->seccomp = current->seccomp;
1210
1211 /*
1212 * Explicitly enable no_new_privs here in case it got set
1213 * between the task_struct being duplicated and holding the
1214 * sighand lock. The seccomp state and nnp must be in sync.
1215 */
1216 if (task_no_new_privs(current))
1217 task_set_no_new_privs(p);
1218
1219 /*
1220 * If the parent gained a seccomp mode after copying thread
1221 * flags and between before we held the sighand lock, we have
1222 * to manually enable the seccomp thread flag here.
1223 */
1224 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1225 set_tsk_thread_flag(p, TIF_SECCOMP);
1226 #endif
1227 }
1228
1229 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1230 {
1231 current->clear_child_tid = tidptr;
1232
1233 return task_pid_vnr(current);
1234 }
1235
1236 static void rt_mutex_init_task(struct task_struct *p)
1237 {
1238 raw_spin_lock_init(&p->pi_lock);
1239 #ifdef CONFIG_RT_MUTEXES
1240 p->pi_waiters = RB_ROOT;
1241 p->pi_waiters_leftmost = NULL;
1242 p->pi_blocked_on = NULL;
1243 #endif
1244 }
1245
1246 /*
1247 * Initialize POSIX timer handling for a single task.
1248 */
1249 static void posix_cpu_timers_init(struct task_struct *tsk)
1250 {
1251 tsk->cputime_expires.prof_exp = 0;
1252 tsk->cputime_expires.virt_exp = 0;
1253 tsk->cputime_expires.sched_exp = 0;
1254 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1255 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1256 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1257 }
1258
1259 static inline void
1260 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1261 {
1262 task->pids[type].pid = pid;
1263 }
1264
1265 /*
1266 * This creates a new process as a copy of the old one,
1267 * but does not actually start it yet.
1268 *
1269 * It copies the registers, and all the appropriate
1270 * parts of the process environment (as per the clone
1271 * flags). The actual kick-off is left to the caller.
1272 */
1273 static struct task_struct *copy_process(unsigned long clone_flags,
1274 unsigned long stack_start,
1275 unsigned long stack_size,
1276 int __user *child_tidptr,
1277 struct pid *pid,
1278 int trace,
1279 unsigned long tls)
1280 {
1281 int retval;
1282 struct task_struct *p;
1283
1284 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1285 return ERR_PTR(-EINVAL);
1286
1287 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1288 return ERR_PTR(-EINVAL);
1289
1290 /*
1291 * Thread groups must share signals as well, and detached threads
1292 * can only be started up within the thread group.
1293 */
1294 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1295 return ERR_PTR(-EINVAL);
1296
1297 /*
1298 * Shared signal handlers imply shared VM. By way of the above,
1299 * thread groups also imply shared VM. Blocking this case allows
1300 * for various simplifications in other code.
1301 */
1302 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1303 return ERR_PTR(-EINVAL);
1304
1305 /*
1306 * Siblings of global init remain as zombies on exit since they are
1307 * not reaped by their parent (swapper). To solve this and to avoid
1308 * multi-rooted process trees, prevent global and container-inits
1309 * from creating siblings.
1310 */
1311 if ((clone_flags & CLONE_PARENT) &&
1312 current->signal->flags & SIGNAL_UNKILLABLE)
1313 return ERR_PTR(-EINVAL);
1314
1315 /*
1316 * If the new process will be in a different pid or user namespace
1317 * do not allow it to share a thread group with the forking task.
1318 */
1319 if (clone_flags & CLONE_THREAD) {
1320 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1321 (task_active_pid_ns(current) !=
1322 current->nsproxy->pid_ns_for_children))
1323 return ERR_PTR(-EINVAL);
1324 }
1325
1326 retval = security_task_create(clone_flags);
1327 if (retval)
1328 goto fork_out;
1329
1330 retval = -ENOMEM;
1331 p = dup_task_struct(current);
1332 if (!p)
1333 goto fork_out;
1334
1335 ftrace_graph_init_task(p);
1336
1337 rt_mutex_init_task(p);
1338
1339 #ifdef CONFIG_PROVE_LOCKING
1340 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1341 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1342 #endif
1343 retval = -EAGAIN;
1344 if (atomic_read(&p->real_cred->user->processes) >=
1345 task_rlimit(p, RLIMIT_NPROC)) {
1346 if (p->real_cred->user != INIT_USER &&
1347 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1348 goto bad_fork_free;
1349 }
1350 current->flags &= ~PF_NPROC_EXCEEDED;
1351
1352 retval = copy_creds(p, clone_flags);
1353 if (retval < 0)
1354 goto bad_fork_free;
1355
1356 /*
1357 * If multiple threads are within copy_process(), then this check
1358 * triggers too late. This doesn't hurt, the check is only there
1359 * to stop root fork bombs.
1360 */
1361 retval = -EAGAIN;
1362 if (nr_threads >= max_threads)
1363 goto bad_fork_cleanup_count;
1364
1365 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1366 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1367 p->flags |= PF_FORKNOEXEC;
1368 INIT_LIST_HEAD(&p->children);
1369 INIT_LIST_HEAD(&p->sibling);
1370 rcu_copy_process(p);
1371 p->vfork_done = NULL;
1372 spin_lock_init(&p->alloc_lock);
1373
1374 init_sigpending(&p->pending);
1375
1376 p->utime = p->stime = p->gtime = 0;
1377 p->utimescaled = p->stimescaled = 0;
1378 prev_cputime_init(&p->prev_cputime);
1379
1380 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1381 seqcount_init(&p->vtime_seqcount);
1382 p->vtime_snap = 0;
1383 p->vtime_snap_whence = VTIME_INACTIVE;
1384 #endif
1385
1386 #if defined(SPLIT_RSS_COUNTING)
1387 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1388 #endif
1389
1390 p->default_timer_slack_ns = current->timer_slack_ns;
1391
1392 task_io_accounting_init(&p->ioac);
1393 acct_clear_integrals(p);
1394
1395 posix_cpu_timers_init(p);
1396
1397 p->start_time = ktime_get_ns();
1398 p->real_start_time = ktime_get_boot_ns();
1399 p->io_context = NULL;
1400 p->audit_context = NULL;
1401 threadgroup_change_begin(current);
1402 cgroup_fork(p);
1403 #ifdef CONFIG_NUMA
1404 p->mempolicy = mpol_dup(p->mempolicy);
1405 if (IS_ERR(p->mempolicy)) {
1406 retval = PTR_ERR(p->mempolicy);
1407 p->mempolicy = NULL;
1408 goto bad_fork_cleanup_threadgroup_lock;
1409 }
1410 #endif
1411 #ifdef CONFIG_CPUSETS
1412 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1413 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1414 seqcount_init(&p->mems_allowed_seq);
1415 #endif
1416 #ifdef CONFIG_TRACE_IRQFLAGS
1417 p->irq_events = 0;
1418 p->hardirqs_enabled = 0;
1419 p->hardirq_enable_ip = 0;
1420 p->hardirq_enable_event = 0;
1421 p->hardirq_disable_ip = _THIS_IP_;
1422 p->hardirq_disable_event = 0;
1423 p->softirqs_enabled = 1;
1424 p->softirq_enable_ip = _THIS_IP_;
1425 p->softirq_enable_event = 0;
1426 p->softirq_disable_ip = 0;
1427 p->softirq_disable_event = 0;
1428 p->hardirq_context = 0;
1429 p->softirq_context = 0;
1430 #endif
1431
1432 p->pagefault_disabled = 0;
1433
1434 #ifdef CONFIG_LOCKDEP
1435 p->lockdep_depth = 0; /* no locks held yet */
1436 p->curr_chain_key = 0;
1437 p->lockdep_recursion = 0;
1438 #endif
1439
1440 #ifdef CONFIG_DEBUG_MUTEXES
1441 p->blocked_on = NULL; /* not blocked yet */
1442 #endif
1443 #ifdef CONFIG_BCACHE
1444 p->sequential_io = 0;
1445 p->sequential_io_avg = 0;
1446 #endif
1447
1448 /* Perform scheduler related setup. Assign this task to a CPU. */
1449 retval = sched_fork(clone_flags, p);
1450 if (retval)
1451 goto bad_fork_cleanup_policy;
1452
1453 retval = perf_event_init_task(p);
1454 if (retval)
1455 goto bad_fork_cleanup_policy;
1456 retval = audit_alloc(p);
1457 if (retval)
1458 goto bad_fork_cleanup_perf;
1459 /* copy all the process information */
1460 shm_init_task(p);
1461 retval = copy_semundo(clone_flags, p);
1462 if (retval)
1463 goto bad_fork_cleanup_audit;
1464 retval = copy_files(clone_flags, p);
1465 if (retval)
1466 goto bad_fork_cleanup_semundo;
1467 retval = copy_fs(clone_flags, p);
1468 if (retval)
1469 goto bad_fork_cleanup_files;
1470 retval = copy_sighand(clone_flags, p);
1471 if (retval)
1472 goto bad_fork_cleanup_fs;
1473 retval = copy_signal(clone_flags, p);
1474 if (retval)
1475 goto bad_fork_cleanup_sighand;
1476 retval = copy_mm(clone_flags, p);
1477 if (retval)
1478 goto bad_fork_cleanup_signal;
1479 retval = copy_namespaces(clone_flags, p);
1480 if (retval)
1481 goto bad_fork_cleanup_mm;
1482 retval = copy_io(clone_flags, p);
1483 if (retval)
1484 goto bad_fork_cleanup_namespaces;
1485 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1486 if (retval)
1487 goto bad_fork_cleanup_io;
1488
1489 if (pid != &init_struct_pid) {
1490 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1491 if (IS_ERR(pid)) {
1492 retval = PTR_ERR(pid);
1493 goto bad_fork_cleanup_thread;
1494 }
1495 }
1496
1497 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1498 /*
1499 * Clear TID on mm_release()?
1500 */
1501 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1502 #ifdef CONFIG_BLOCK
1503 p->plug = NULL;
1504 #endif
1505 #ifdef CONFIG_FUTEX
1506 p->robust_list = NULL;
1507 #ifdef CONFIG_COMPAT
1508 p->compat_robust_list = NULL;
1509 #endif
1510 INIT_LIST_HEAD(&p->pi_state_list);
1511 p->pi_state_cache = NULL;
1512 #endif
1513 /*
1514 * sigaltstack should be cleared when sharing the same VM
1515 */
1516 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1517 sas_ss_reset(p);
1518
1519 /*
1520 * Syscall tracing and stepping should be turned off in the
1521 * child regardless of CLONE_PTRACE.
1522 */
1523 user_disable_single_step(p);
1524 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1525 #ifdef TIF_SYSCALL_EMU
1526 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1527 #endif
1528 clear_all_latency_tracing(p);
1529
1530 /* ok, now we should be set up.. */
1531 p->pid = pid_nr(pid);
1532 if (clone_flags & CLONE_THREAD) {
1533 p->exit_signal = -1;
1534 p->group_leader = current->group_leader;
1535 p->tgid = current->tgid;
1536 } else {
1537 if (clone_flags & CLONE_PARENT)
1538 p->exit_signal = current->group_leader->exit_signal;
1539 else
1540 p->exit_signal = (clone_flags & CSIGNAL);
1541 p->group_leader = p;
1542 p->tgid = p->pid;
1543 }
1544
1545 p->nr_dirtied = 0;
1546 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1547 p->dirty_paused_when = 0;
1548
1549 p->pdeath_signal = 0;
1550 INIT_LIST_HEAD(&p->thread_group);
1551 p->task_works = NULL;
1552
1553 /*
1554 * Ensure that the cgroup subsystem policies allow the new process to be
1555 * forked. It should be noted the the new process's css_set can be changed
1556 * between here and cgroup_post_fork() if an organisation operation is in
1557 * progress.
1558 */
1559 retval = cgroup_can_fork(p);
1560 if (retval)
1561 goto bad_fork_free_pid;
1562
1563 /*
1564 * Make it visible to the rest of the system, but dont wake it up yet.
1565 * Need tasklist lock for parent etc handling!
1566 */
1567 write_lock_irq(&tasklist_lock);
1568
1569 /* CLONE_PARENT re-uses the old parent */
1570 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1571 p->real_parent = current->real_parent;
1572 p->parent_exec_id = current->parent_exec_id;
1573 } else {
1574 p->real_parent = current;
1575 p->parent_exec_id = current->self_exec_id;
1576 }
1577
1578 spin_lock(&current->sighand->siglock);
1579
1580 /*
1581 * Copy seccomp details explicitly here, in case they were changed
1582 * before holding sighand lock.
1583 */
1584 copy_seccomp(p);
1585
1586 /*
1587 * Process group and session signals need to be delivered to just the
1588 * parent before the fork or both the parent and the child after the
1589 * fork. Restart if a signal comes in before we add the new process to
1590 * it's process group.
1591 * A fatal signal pending means that current will exit, so the new
1592 * thread can't slip out of an OOM kill (or normal SIGKILL).
1593 */
1594 recalc_sigpending();
1595 if (signal_pending(current)) {
1596 spin_unlock(&current->sighand->siglock);
1597 write_unlock_irq(&tasklist_lock);
1598 retval = -ERESTARTNOINTR;
1599 goto bad_fork_cancel_cgroup;
1600 }
1601
1602 if (likely(p->pid)) {
1603 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1604
1605 init_task_pid(p, PIDTYPE_PID, pid);
1606 if (thread_group_leader(p)) {
1607 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1608 init_task_pid(p, PIDTYPE_SID, task_session(current));
1609
1610 if (is_child_reaper(pid)) {
1611 ns_of_pid(pid)->child_reaper = p;
1612 p->signal->flags |= SIGNAL_UNKILLABLE;
1613 }
1614
1615 p->signal->leader_pid = pid;
1616 p->signal->tty = tty_kref_get(current->signal->tty);
1617 list_add_tail(&p->sibling, &p->real_parent->children);
1618 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1619 attach_pid(p, PIDTYPE_PGID);
1620 attach_pid(p, PIDTYPE_SID);
1621 __this_cpu_inc(process_counts);
1622 } else {
1623 current->signal->nr_threads++;
1624 atomic_inc(&current->signal->live);
1625 atomic_inc(&current->signal->sigcnt);
1626 list_add_tail_rcu(&p->thread_group,
1627 &p->group_leader->thread_group);
1628 list_add_tail_rcu(&p->thread_node,
1629 &p->signal->thread_head);
1630 }
1631 attach_pid(p, PIDTYPE_PID);
1632 nr_threads++;
1633 }
1634
1635 total_forks++;
1636 spin_unlock(&current->sighand->siglock);
1637 syscall_tracepoint_update(p);
1638 write_unlock_irq(&tasklist_lock);
1639
1640 proc_fork_connector(p);
1641 cgroup_post_fork(p);
1642 threadgroup_change_end(current);
1643 perf_event_fork(p);
1644
1645 trace_task_newtask(p, clone_flags);
1646 uprobe_copy_process(p, clone_flags);
1647
1648 return p;
1649
1650 bad_fork_cancel_cgroup:
1651 cgroup_cancel_fork(p);
1652 bad_fork_free_pid:
1653 if (pid != &init_struct_pid)
1654 free_pid(pid);
1655 bad_fork_cleanup_thread:
1656 exit_thread(p);
1657 bad_fork_cleanup_io:
1658 if (p->io_context)
1659 exit_io_context(p);
1660 bad_fork_cleanup_namespaces:
1661 exit_task_namespaces(p);
1662 bad_fork_cleanup_mm:
1663 if (p->mm)
1664 mmput(p->mm);
1665 bad_fork_cleanup_signal:
1666 if (!(clone_flags & CLONE_THREAD))
1667 free_signal_struct(p->signal);
1668 bad_fork_cleanup_sighand:
1669 __cleanup_sighand(p->sighand);
1670 bad_fork_cleanup_fs:
1671 exit_fs(p); /* blocking */
1672 bad_fork_cleanup_files:
1673 exit_files(p); /* blocking */
1674 bad_fork_cleanup_semundo:
1675 exit_sem(p);
1676 bad_fork_cleanup_audit:
1677 audit_free(p);
1678 bad_fork_cleanup_perf:
1679 perf_event_free_task(p);
1680 bad_fork_cleanup_policy:
1681 #ifdef CONFIG_NUMA
1682 mpol_put(p->mempolicy);
1683 bad_fork_cleanup_threadgroup_lock:
1684 #endif
1685 threadgroup_change_end(current);
1686 delayacct_tsk_free(p);
1687 bad_fork_cleanup_count:
1688 atomic_dec(&p->cred->user->processes);
1689 exit_creds(p);
1690 bad_fork_free:
1691 free_task(p);
1692 fork_out:
1693 return ERR_PTR(retval);
1694 }
1695
1696 static inline void init_idle_pids(struct pid_link *links)
1697 {
1698 enum pid_type type;
1699
1700 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1701 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1702 links[type].pid = &init_struct_pid;
1703 }
1704 }
1705
1706 struct task_struct *fork_idle(int cpu)
1707 {
1708 struct task_struct *task;
1709 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1710 if (!IS_ERR(task)) {
1711 init_idle_pids(task->pids);
1712 init_idle(task, cpu);
1713 }
1714
1715 return task;
1716 }
1717
1718 /*
1719 * Ok, this is the main fork-routine.
1720 *
1721 * It copies the process, and if successful kick-starts
1722 * it and waits for it to finish using the VM if required.
1723 */
1724 long _do_fork(unsigned long clone_flags,
1725 unsigned long stack_start,
1726 unsigned long stack_size,
1727 int __user *parent_tidptr,
1728 int __user *child_tidptr,
1729 unsigned long tls)
1730 {
1731 struct task_struct *p;
1732 int trace = 0;
1733 long nr;
1734
1735 /*
1736 * Determine whether and which event to report to ptracer. When
1737 * called from kernel_thread or CLONE_UNTRACED is explicitly
1738 * requested, no event is reported; otherwise, report if the event
1739 * for the type of forking is enabled.
1740 */
1741 if (!(clone_flags & CLONE_UNTRACED)) {
1742 if (clone_flags & CLONE_VFORK)
1743 trace = PTRACE_EVENT_VFORK;
1744 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1745 trace = PTRACE_EVENT_CLONE;
1746 else
1747 trace = PTRACE_EVENT_FORK;
1748
1749 if (likely(!ptrace_event_enabled(current, trace)))
1750 trace = 0;
1751 }
1752
1753 p = copy_process(clone_flags, stack_start, stack_size,
1754 child_tidptr, NULL, trace, tls);
1755 /*
1756 * Do this prior waking up the new thread - the thread pointer
1757 * might get invalid after that point, if the thread exits quickly.
1758 */
1759 if (!IS_ERR(p)) {
1760 struct completion vfork;
1761 struct pid *pid;
1762
1763 trace_sched_process_fork(current, p);
1764
1765 pid = get_task_pid(p, PIDTYPE_PID);
1766 nr = pid_vnr(pid);
1767
1768 if (clone_flags & CLONE_PARENT_SETTID)
1769 put_user(nr, parent_tidptr);
1770
1771 if (clone_flags & CLONE_VFORK) {
1772 p->vfork_done = &vfork;
1773 init_completion(&vfork);
1774 get_task_struct(p);
1775 }
1776
1777 wake_up_new_task(p);
1778
1779 /* forking complete and child started to run, tell ptracer */
1780 if (unlikely(trace))
1781 ptrace_event_pid(trace, pid);
1782
1783 if (clone_flags & CLONE_VFORK) {
1784 if (!wait_for_vfork_done(p, &vfork))
1785 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1786 }
1787
1788 put_pid(pid);
1789 } else {
1790 nr = PTR_ERR(p);
1791 }
1792 return nr;
1793 }
1794
1795 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1796 /* For compatibility with architectures that call do_fork directly rather than
1797 * using the syscall entry points below. */
1798 long do_fork(unsigned long clone_flags,
1799 unsigned long stack_start,
1800 unsigned long stack_size,
1801 int __user *parent_tidptr,
1802 int __user *child_tidptr)
1803 {
1804 return _do_fork(clone_flags, stack_start, stack_size,
1805 parent_tidptr, child_tidptr, 0);
1806 }
1807 #endif
1808
1809 /*
1810 * Create a kernel thread.
1811 */
1812 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1813 {
1814 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1815 (unsigned long)arg, NULL, NULL, 0);
1816 }
1817
1818 #ifdef __ARCH_WANT_SYS_FORK
1819 SYSCALL_DEFINE0(fork)
1820 {
1821 #ifdef CONFIG_MMU
1822 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1823 #else
1824 /* can not support in nommu mode */
1825 return -EINVAL;
1826 #endif
1827 }
1828 #endif
1829
1830 #ifdef __ARCH_WANT_SYS_VFORK
1831 SYSCALL_DEFINE0(vfork)
1832 {
1833 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1834 0, NULL, NULL, 0);
1835 }
1836 #endif
1837
1838 #ifdef __ARCH_WANT_SYS_CLONE
1839 #ifdef CONFIG_CLONE_BACKWARDS
1840 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1841 int __user *, parent_tidptr,
1842 unsigned long, tls,
1843 int __user *, child_tidptr)
1844 #elif defined(CONFIG_CLONE_BACKWARDS2)
1845 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1846 int __user *, parent_tidptr,
1847 int __user *, child_tidptr,
1848 unsigned long, tls)
1849 #elif defined(CONFIG_CLONE_BACKWARDS3)
1850 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1851 int, stack_size,
1852 int __user *, parent_tidptr,
1853 int __user *, child_tidptr,
1854 unsigned long, tls)
1855 #else
1856 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1857 int __user *, parent_tidptr,
1858 int __user *, child_tidptr,
1859 unsigned long, tls)
1860 #endif
1861 {
1862 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1863 }
1864 #endif
1865
1866 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1867 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1868 #endif
1869
1870 static void sighand_ctor(void *data)
1871 {
1872 struct sighand_struct *sighand = data;
1873
1874 spin_lock_init(&sighand->siglock);
1875 init_waitqueue_head(&sighand->signalfd_wqh);
1876 }
1877
1878 void __init proc_caches_init(void)
1879 {
1880 sighand_cachep = kmem_cache_create("sighand_cache",
1881 sizeof(struct sighand_struct), 0,
1882 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1883 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1884 signal_cachep = kmem_cache_create("signal_cache",
1885 sizeof(struct signal_struct), 0,
1886 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1887 NULL);
1888 files_cachep = kmem_cache_create("files_cache",
1889 sizeof(struct files_struct), 0,
1890 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1891 NULL);
1892 fs_cachep = kmem_cache_create("fs_cache",
1893 sizeof(struct fs_struct), 0,
1894 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1895 NULL);
1896 /*
1897 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1898 * whole struct cpumask for the OFFSTACK case. We could change
1899 * this to *only* allocate as much of it as required by the
1900 * maximum number of CPU's we can ever have. The cpumask_allocation
1901 * is at the end of the structure, exactly for that reason.
1902 */
1903 mm_cachep = kmem_cache_create("mm_struct",
1904 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1905 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1906 NULL);
1907 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1908 mmap_init();
1909 nsproxy_cache_init();
1910 }
1911
1912 /*
1913 * Check constraints on flags passed to the unshare system call.
1914 */
1915 static int check_unshare_flags(unsigned long unshare_flags)
1916 {
1917 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1918 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1919 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1920 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1921 return -EINVAL;
1922 /*
1923 * Not implemented, but pretend it works if there is nothing
1924 * to unshare. Note that unsharing the address space or the
1925 * signal handlers also need to unshare the signal queues (aka
1926 * CLONE_THREAD).
1927 */
1928 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1929 if (!thread_group_empty(current))
1930 return -EINVAL;
1931 }
1932 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1933 if (atomic_read(&current->sighand->count) > 1)
1934 return -EINVAL;
1935 }
1936 if (unshare_flags & CLONE_VM) {
1937 if (!current_is_single_threaded())
1938 return -EINVAL;
1939 }
1940
1941 return 0;
1942 }
1943
1944 /*
1945 * Unshare the filesystem structure if it is being shared
1946 */
1947 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1948 {
1949 struct fs_struct *fs = current->fs;
1950
1951 if (!(unshare_flags & CLONE_FS) || !fs)
1952 return 0;
1953
1954 /* don't need lock here; in the worst case we'll do useless copy */
1955 if (fs->users == 1)
1956 return 0;
1957
1958 *new_fsp = copy_fs_struct(fs);
1959 if (!*new_fsp)
1960 return -ENOMEM;
1961
1962 return 0;
1963 }
1964
1965 /*
1966 * Unshare file descriptor table if it is being shared
1967 */
1968 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1969 {
1970 struct files_struct *fd = current->files;
1971 int error = 0;
1972
1973 if ((unshare_flags & CLONE_FILES) &&
1974 (fd && atomic_read(&fd->count) > 1)) {
1975 *new_fdp = dup_fd(fd, &error);
1976 if (!*new_fdp)
1977 return error;
1978 }
1979
1980 return 0;
1981 }
1982
1983 /*
1984 * unshare allows a process to 'unshare' part of the process
1985 * context which was originally shared using clone. copy_*
1986 * functions used by do_fork() cannot be used here directly
1987 * because they modify an inactive task_struct that is being
1988 * constructed. Here we are modifying the current, active,
1989 * task_struct.
1990 */
1991 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1992 {
1993 struct fs_struct *fs, *new_fs = NULL;
1994 struct files_struct *fd, *new_fd = NULL;
1995 struct cred *new_cred = NULL;
1996 struct nsproxy *new_nsproxy = NULL;
1997 int do_sysvsem = 0;
1998 int err;
1999
2000 /*
2001 * If unsharing a user namespace must also unshare the thread group
2002 * and unshare the filesystem root and working directories.
2003 */
2004 if (unshare_flags & CLONE_NEWUSER)
2005 unshare_flags |= CLONE_THREAD | CLONE_FS;
2006 /*
2007 * If unsharing vm, must also unshare signal handlers.
2008 */
2009 if (unshare_flags & CLONE_VM)
2010 unshare_flags |= CLONE_SIGHAND;
2011 /*
2012 * If unsharing a signal handlers, must also unshare the signal queues.
2013 */
2014 if (unshare_flags & CLONE_SIGHAND)
2015 unshare_flags |= CLONE_THREAD;
2016 /*
2017 * If unsharing namespace, must also unshare filesystem information.
2018 */
2019 if (unshare_flags & CLONE_NEWNS)
2020 unshare_flags |= CLONE_FS;
2021
2022 err = check_unshare_flags(unshare_flags);
2023 if (err)
2024 goto bad_unshare_out;
2025 /*
2026 * CLONE_NEWIPC must also detach from the undolist: after switching
2027 * to a new ipc namespace, the semaphore arrays from the old
2028 * namespace are unreachable.
2029 */
2030 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2031 do_sysvsem = 1;
2032 err = unshare_fs(unshare_flags, &new_fs);
2033 if (err)
2034 goto bad_unshare_out;
2035 err = unshare_fd(unshare_flags, &new_fd);
2036 if (err)
2037 goto bad_unshare_cleanup_fs;
2038 err = unshare_userns(unshare_flags, &new_cred);
2039 if (err)
2040 goto bad_unshare_cleanup_fd;
2041 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2042 new_cred, new_fs);
2043 if (err)
2044 goto bad_unshare_cleanup_cred;
2045
2046 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2047 if (do_sysvsem) {
2048 /*
2049 * CLONE_SYSVSEM is equivalent to sys_exit().
2050 */
2051 exit_sem(current);
2052 }
2053 if (unshare_flags & CLONE_NEWIPC) {
2054 /* Orphan segments in old ns (see sem above). */
2055 exit_shm(current);
2056 shm_init_task(current);
2057 }
2058
2059 if (new_nsproxy)
2060 switch_task_namespaces(current, new_nsproxy);
2061
2062 task_lock(current);
2063
2064 if (new_fs) {
2065 fs = current->fs;
2066 spin_lock(&fs->lock);
2067 current->fs = new_fs;
2068 if (--fs->users)
2069 new_fs = NULL;
2070 else
2071 new_fs = fs;
2072 spin_unlock(&fs->lock);
2073 }
2074
2075 if (new_fd) {
2076 fd = current->files;
2077 current->files = new_fd;
2078 new_fd = fd;
2079 }
2080
2081 task_unlock(current);
2082
2083 if (new_cred) {
2084 /* Install the new user namespace */
2085 commit_creds(new_cred);
2086 new_cred = NULL;
2087 }
2088 }
2089
2090 bad_unshare_cleanup_cred:
2091 if (new_cred)
2092 put_cred(new_cred);
2093 bad_unshare_cleanup_fd:
2094 if (new_fd)
2095 put_files_struct(new_fd);
2096
2097 bad_unshare_cleanup_fs:
2098 if (new_fs)
2099 free_fs_struct(new_fs);
2100
2101 bad_unshare_out:
2102 return err;
2103 }
2104
2105 /*
2106 * Helper to unshare the files of the current task.
2107 * We don't want to expose copy_files internals to
2108 * the exec layer of the kernel.
2109 */
2110
2111 int unshare_files(struct files_struct **displaced)
2112 {
2113 struct task_struct *task = current;
2114 struct files_struct *copy = NULL;
2115 int error;
2116
2117 error = unshare_fd(CLONE_FILES, &copy);
2118 if (error || !copy) {
2119 *displaced = NULL;
2120 return error;
2121 }
2122 *displaced = task->files;
2123 task_lock(task);
2124 task->files = copy;
2125 task_unlock(task);
2126 return 0;
2127 }
2128
2129 int sysctl_max_threads(struct ctl_table *table, int write,
2130 void __user *buffer, size_t *lenp, loff_t *ppos)
2131 {
2132 struct ctl_table t;
2133 int ret;
2134 int threads = max_threads;
2135 int min = MIN_THREADS;
2136 int max = MAX_THREADS;
2137
2138 t = *table;
2139 t.data = &threads;
2140 t.extra1 = &min;
2141 t.extra2 = &max;
2142
2143 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2144 if (ret || !write)
2145 return ret;
2146
2147 set_max_threads(threads);
2148
2149 return 0;
2150 }
This page took 0.07015 seconds and 6 git commands to generate.