Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
60
61 /*
62 * Protected counters by write_lock_irq(&tasklist_lock)
63 */
64 unsigned long total_forks; /* Handle normal Linux uptimes. */
65 int nr_threads; /* The idle threads do not count.. */
66
67 int max_threads; /* tunable limit on nr_threads */
68
69 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70
71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
72
73 int nr_processes(void)
74 {
75 int cpu;
76 int total = 0;
77
78 for_each_online_cpu(cpu)
79 total += per_cpu(process_counts, cpu);
80
81 return total;
82 }
83
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache *task_struct_cachep;
88 #endif
89
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache *signal_cachep;
92
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache *sighand_cachep;
95
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache *files_cachep;
98
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache *fs_cachep;
101
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache *vm_area_cachep;
104
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache *mm_cachep;
107
108 void free_task(struct task_struct *tsk)
109 {
110 free_thread_info(tsk->stack);
111 rt_mutex_debug_task_free(tsk);
112 free_task_struct(tsk);
113 }
114 EXPORT_SYMBOL(free_task);
115
116 void __put_task_struct(struct task_struct *tsk)
117 {
118 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
119 WARN_ON(atomic_read(&tsk->usage));
120 WARN_ON(tsk == current);
121
122 security_task_free(tsk);
123 free_uid(tsk->user);
124 put_group_info(tsk->group_info);
125 delayacct_tsk_free(tsk);
126
127 if (!profile_handoff_task(tsk))
128 free_task(tsk);
129 }
130
131 void __init fork_init(unsigned long mempages)
132 {
133 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
134 #ifndef ARCH_MIN_TASKALIGN
135 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
136 #endif
137 /* create a slab on which task_structs can be allocated */
138 task_struct_cachep =
139 kmem_cache_create("task_struct", sizeof(struct task_struct),
140 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
141 #endif
142
143 /*
144 * The default maximum number of threads is set to a safe
145 * value: the thread structures can take up at most half
146 * of memory.
147 */
148 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
149
150 /*
151 * we need to allow at least 20 threads to boot a system
152 */
153 if(max_threads < 20)
154 max_threads = 20;
155
156 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
157 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
158 init_task.signal->rlim[RLIMIT_SIGPENDING] =
159 init_task.signal->rlim[RLIMIT_NPROC];
160 }
161
162 static struct task_struct *dup_task_struct(struct task_struct *orig)
163 {
164 struct task_struct *tsk;
165 struct thread_info *ti;
166
167 prepare_to_copy(orig);
168
169 tsk = alloc_task_struct();
170 if (!tsk)
171 return NULL;
172
173 ti = alloc_thread_info(tsk);
174 if (!ti) {
175 free_task_struct(tsk);
176 return NULL;
177 }
178
179 *tsk = *orig;
180 tsk->stack = ti;
181 setup_thread_stack(tsk, orig);
182
183 #ifdef CONFIG_CC_STACKPROTECTOR
184 tsk->stack_canary = get_random_int();
185 #endif
186
187 /* One for us, one for whoever does the "release_task()" (usually parent) */
188 atomic_set(&tsk->usage,2);
189 atomic_set(&tsk->fs_excl, 0);
190 #ifdef CONFIG_BLK_DEV_IO_TRACE
191 tsk->btrace_seq = 0;
192 #endif
193 tsk->splice_pipe = NULL;
194 return tsk;
195 }
196
197 #ifdef CONFIG_MMU
198 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
199 {
200 struct vm_area_struct *mpnt, *tmp, **pprev;
201 struct rb_node **rb_link, *rb_parent;
202 int retval;
203 unsigned long charge;
204 struct mempolicy *pol;
205
206 down_write(&oldmm->mmap_sem);
207 flush_cache_dup_mm(oldmm);
208 /*
209 * Not linked in yet - no deadlock potential:
210 */
211 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
212
213 mm->locked_vm = 0;
214 mm->mmap = NULL;
215 mm->mmap_cache = NULL;
216 mm->free_area_cache = oldmm->mmap_base;
217 mm->cached_hole_size = ~0UL;
218 mm->map_count = 0;
219 cpus_clear(mm->cpu_vm_mask);
220 mm->mm_rb = RB_ROOT;
221 rb_link = &mm->mm_rb.rb_node;
222 rb_parent = NULL;
223 pprev = &mm->mmap;
224
225 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
226 struct file *file;
227
228 if (mpnt->vm_flags & VM_DONTCOPY) {
229 long pages = vma_pages(mpnt);
230 mm->total_vm -= pages;
231 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
232 -pages);
233 continue;
234 }
235 charge = 0;
236 if (mpnt->vm_flags & VM_ACCOUNT) {
237 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
238 if (security_vm_enough_memory(len))
239 goto fail_nomem;
240 charge = len;
241 }
242 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
243 if (!tmp)
244 goto fail_nomem;
245 *tmp = *mpnt;
246 pol = mpol_copy(vma_policy(mpnt));
247 retval = PTR_ERR(pol);
248 if (IS_ERR(pol))
249 goto fail_nomem_policy;
250 vma_set_policy(tmp, pol);
251 tmp->vm_flags &= ~VM_LOCKED;
252 tmp->vm_mm = mm;
253 tmp->vm_next = NULL;
254 anon_vma_link(tmp);
255 file = tmp->vm_file;
256 if (file) {
257 struct inode *inode = file->f_path.dentry->d_inode;
258 get_file(file);
259 if (tmp->vm_flags & VM_DENYWRITE)
260 atomic_dec(&inode->i_writecount);
261
262 /* insert tmp into the share list, just after mpnt */
263 spin_lock(&file->f_mapping->i_mmap_lock);
264 tmp->vm_truncate_count = mpnt->vm_truncate_count;
265 flush_dcache_mmap_lock(file->f_mapping);
266 vma_prio_tree_add(tmp, mpnt);
267 flush_dcache_mmap_unlock(file->f_mapping);
268 spin_unlock(&file->f_mapping->i_mmap_lock);
269 }
270
271 /*
272 * Link in the new vma and copy the page table entries.
273 */
274 *pprev = tmp;
275 pprev = &tmp->vm_next;
276
277 __vma_link_rb(mm, tmp, rb_link, rb_parent);
278 rb_link = &tmp->vm_rb.rb_right;
279 rb_parent = &tmp->vm_rb;
280
281 mm->map_count++;
282 retval = copy_page_range(mm, oldmm, mpnt);
283
284 if (tmp->vm_ops && tmp->vm_ops->open)
285 tmp->vm_ops->open(tmp);
286
287 if (retval)
288 goto out;
289 }
290 /* a new mm has just been created */
291 arch_dup_mmap(oldmm, mm);
292 retval = 0;
293 out:
294 up_write(&mm->mmap_sem);
295 flush_tlb_mm(oldmm);
296 up_write(&oldmm->mmap_sem);
297 return retval;
298 fail_nomem_policy:
299 kmem_cache_free(vm_area_cachep, tmp);
300 fail_nomem:
301 retval = -ENOMEM;
302 vm_unacct_memory(charge);
303 goto out;
304 }
305
306 static inline int mm_alloc_pgd(struct mm_struct * mm)
307 {
308 mm->pgd = pgd_alloc(mm);
309 if (unlikely(!mm->pgd))
310 return -ENOMEM;
311 return 0;
312 }
313
314 static inline void mm_free_pgd(struct mm_struct * mm)
315 {
316 pgd_free(mm->pgd);
317 }
318 #else
319 #define dup_mmap(mm, oldmm) (0)
320 #define mm_alloc_pgd(mm) (0)
321 #define mm_free_pgd(mm)
322 #endif /* CONFIG_MMU */
323
324 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
325
326 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
327 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
328
329 #include <linux/init_task.h>
330
331 static struct mm_struct * mm_init(struct mm_struct * mm)
332 {
333 atomic_set(&mm->mm_users, 1);
334 atomic_set(&mm->mm_count, 1);
335 init_rwsem(&mm->mmap_sem);
336 INIT_LIST_HEAD(&mm->mmlist);
337 mm->core_waiters = 0;
338 mm->nr_ptes = 0;
339 set_mm_counter(mm, file_rss, 0);
340 set_mm_counter(mm, anon_rss, 0);
341 spin_lock_init(&mm->page_table_lock);
342 rwlock_init(&mm->ioctx_list_lock);
343 mm->ioctx_list = NULL;
344 mm->free_area_cache = TASK_UNMAPPED_BASE;
345 mm->cached_hole_size = ~0UL;
346
347 if (likely(!mm_alloc_pgd(mm))) {
348 mm->def_flags = 0;
349 return mm;
350 }
351 free_mm(mm);
352 return NULL;
353 }
354
355 /*
356 * Allocate and initialize an mm_struct.
357 */
358 struct mm_struct * mm_alloc(void)
359 {
360 struct mm_struct * mm;
361
362 mm = allocate_mm();
363 if (mm) {
364 memset(mm, 0, sizeof(*mm));
365 mm = mm_init(mm);
366 }
367 return mm;
368 }
369
370 /*
371 * Called when the last reference to the mm
372 * is dropped: either by a lazy thread or by
373 * mmput. Free the page directory and the mm.
374 */
375 void fastcall __mmdrop(struct mm_struct *mm)
376 {
377 BUG_ON(mm == &init_mm);
378 mm_free_pgd(mm);
379 destroy_context(mm);
380 free_mm(mm);
381 }
382
383 /*
384 * Decrement the use count and release all resources for an mm.
385 */
386 void mmput(struct mm_struct *mm)
387 {
388 might_sleep();
389
390 if (atomic_dec_and_test(&mm->mm_users)) {
391 exit_aio(mm);
392 exit_mmap(mm);
393 if (!list_empty(&mm->mmlist)) {
394 spin_lock(&mmlist_lock);
395 list_del(&mm->mmlist);
396 spin_unlock(&mmlist_lock);
397 }
398 put_swap_token(mm);
399 mmdrop(mm);
400 }
401 }
402 EXPORT_SYMBOL_GPL(mmput);
403
404 /**
405 * get_task_mm - acquire a reference to the task's mm
406 *
407 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
408 * this kernel workthread has transiently adopted a user mm with use_mm,
409 * to do its AIO) is not set and if so returns a reference to it, after
410 * bumping up the use count. User must release the mm via mmput()
411 * after use. Typically used by /proc and ptrace.
412 */
413 struct mm_struct *get_task_mm(struct task_struct *task)
414 {
415 struct mm_struct *mm;
416
417 task_lock(task);
418 mm = task->mm;
419 if (mm) {
420 if (task->flags & PF_BORROWED_MM)
421 mm = NULL;
422 else
423 atomic_inc(&mm->mm_users);
424 }
425 task_unlock(task);
426 return mm;
427 }
428 EXPORT_SYMBOL_GPL(get_task_mm);
429
430 /* Please note the differences between mmput and mm_release.
431 * mmput is called whenever we stop holding onto a mm_struct,
432 * error success whatever.
433 *
434 * mm_release is called after a mm_struct has been removed
435 * from the current process.
436 *
437 * This difference is important for error handling, when we
438 * only half set up a mm_struct for a new process and need to restore
439 * the old one. Because we mmput the new mm_struct before
440 * restoring the old one. . .
441 * Eric Biederman 10 January 1998
442 */
443 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
444 {
445 struct completion *vfork_done = tsk->vfork_done;
446
447 /* Get rid of any cached register state */
448 deactivate_mm(tsk, mm);
449
450 /* notify parent sleeping on vfork() */
451 if (vfork_done) {
452 tsk->vfork_done = NULL;
453 complete(vfork_done);
454 }
455
456 /*
457 * If we're exiting normally, clear a user-space tid field if
458 * requested. We leave this alone when dying by signal, to leave
459 * the value intact in a core dump, and to save the unnecessary
460 * trouble otherwise. Userland only wants this done for a sys_exit.
461 */
462 if (tsk->clear_child_tid
463 && !(tsk->flags & PF_SIGNALED)
464 && atomic_read(&mm->mm_users) > 1) {
465 u32 __user * tidptr = tsk->clear_child_tid;
466 tsk->clear_child_tid = NULL;
467
468 /*
469 * We don't check the error code - if userspace has
470 * not set up a proper pointer then tough luck.
471 */
472 put_user(0, tidptr);
473 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
474 }
475 }
476
477 /*
478 * Allocate a new mm structure and copy contents from the
479 * mm structure of the passed in task structure.
480 */
481 static struct mm_struct *dup_mm(struct task_struct *tsk)
482 {
483 struct mm_struct *mm, *oldmm = current->mm;
484 int err;
485
486 if (!oldmm)
487 return NULL;
488
489 mm = allocate_mm();
490 if (!mm)
491 goto fail_nomem;
492
493 memcpy(mm, oldmm, sizeof(*mm));
494
495 /* Initializing for Swap token stuff */
496 mm->token_priority = 0;
497 mm->last_interval = 0;
498
499 if (!mm_init(mm))
500 goto fail_nomem;
501
502 if (init_new_context(tsk, mm))
503 goto fail_nocontext;
504
505 err = dup_mmap(mm, oldmm);
506 if (err)
507 goto free_pt;
508
509 mm->hiwater_rss = get_mm_rss(mm);
510 mm->hiwater_vm = mm->total_vm;
511
512 return mm;
513
514 free_pt:
515 mmput(mm);
516
517 fail_nomem:
518 return NULL;
519
520 fail_nocontext:
521 /*
522 * If init_new_context() failed, we cannot use mmput() to free the mm
523 * because it calls destroy_context()
524 */
525 mm_free_pgd(mm);
526 free_mm(mm);
527 return NULL;
528 }
529
530 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
531 {
532 struct mm_struct * mm, *oldmm;
533 int retval;
534
535 tsk->min_flt = tsk->maj_flt = 0;
536 tsk->nvcsw = tsk->nivcsw = 0;
537
538 tsk->mm = NULL;
539 tsk->active_mm = NULL;
540
541 /*
542 * Are we cloning a kernel thread?
543 *
544 * We need to steal a active VM for that..
545 */
546 oldmm = current->mm;
547 if (!oldmm)
548 return 0;
549
550 if (clone_flags & CLONE_VM) {
551 atomic_inc(&oldmm->mm_users);
552 mm = oldmm;
553 goto good_mm;
554 }
555
556 retval = -ENOMEM;
557 mm = dup_mm(tsk);
558 if (!mm)
559 goto fail_nomem;
560
561 good_mm:
562 /* Initializing for Swap token stuff */
563 mm->token_priority = 0;
564 mm->last_interval = 0;
565
566 tsk->mm = mm;
567 tsk->active_mm = mm;
568 return 0;
569
570 fail_nomem:
571 return retval;
572 }
573
574 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
575 {
576 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
577 /* We don't need to lock fs - think why ;-) */
578 if (fs) {
579 atomic_set(&fs->count, 1);
580 rwlock_init(&fs->lock);
581 fs->umask = old->umask;
582 read_lock(&old->lock);
583 fs->rootmnt = mntget(old->rootmnt);
584 fs->root = dget(old->root);
585 fs->pwdmnt = mntget(old->pwdmnt);
586 fs->pwd = dget(old->pwd);
587 if (old->altroot) {
588 fs->altrootmnt = mntget(old->altrootmnt);
589 fs->altroot = dget(old->altroot);
590 } else {
591 fs->altrootmnt = NULL;
592 fs->altroot = NULL;
593 }
594 read_unlock(&old->lock);
595 }
596 return fs;
597 }
598
599 struct fs_struct *copy_fs_struct(struct fs_struct *old)
600 {
601 return __copy_fs_struct(old);
602 }
603
604 EXPORT_SYMBOL_GPL(copy_fs_struct);
605
606 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
607 {
608 if (clone_flags & CLONE_FS) {
609 atomic_inc(&current->fs->count);
610 return 0;
611 }
612 tsk->fs = __copy_fs_struct(current->fs);
613 if (!tsk->fs)
614 return -ENOMEM;
615 return 0;
616 }
617
618 static int count_open_files(struct fdtable *fdt)
619 {
620 int size = fdt->max_fds;
621 int i;
622
623 /* Find the last open fd */
624 for (i = size/(8*sizeof(long)); i > 0; ) {
625 if (fdt->open_fds->fds_bits[--i])
626 break;
627 }
628 i = (i+1) * 8 * sizeof(long);
629 return i;
630 }
631
632 static struct files_struct *alloc_files(void)
633 {
634 struct files_struct *newf;
635 struct fdtable *fdt;
636
637 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
638 if (!newf)
639 goto out;
640
641 atomic_set(&newf->count, 1);
642
643 spin_lock_init(&newf->file_lock);
644 newf->next_fd = 0;
645 fdt = &newf->fdtab;
646 fdt->max_fds = NR_OPEN_DEFAULT;
647 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
648 fdt->open_fds = (fd_set *)&newf->open_fds_init;
649 fdt->fd = &newf->fd_array[0];
650 INIT_RCU_HEAD(&fdt->rcu);
651 fdt->next = NULL;
652 rcu_assign_pointer(newf->fdt, fdt);
653 out:
654 return newf;
655 }
656
657 /*
658 * Allocate a new files structure and copy contents from the
659 * passed in files structure.
660 * errorp will be valid only when the returned files_struct is NULL.
661 */
662 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
663 {
664 struct files_struct *newf;
665 struct file **old_fds, **new_fds;
666 int open_files, size, i;
667 struct fdtable *old_fdt, *new_fdt;
668
669 *errorp = -ENOMEM;
670 newf = alloc_files();
671 if (!newf)
672 goto out;
673
674 spin_lock(&oldf->file_lock);
675 old_fdt = files_fdtable(oldf);
676 new_fdt = files_fdtable(newf);
677 open_files = count_open_files(old_fdt);
678
679 /*
680 * Check whether we need to allocate a larger fd array and fd set.
681 * Note: we're not a clone task, so the open count won't change.
682 */
683 if (open_files > new_fdt->max_fds) {
684 new_fdt->max_fds = 0;
685 spin_unlock(&oldf->file_lock);
686 spin_lock(&newf->file_lock);
687 *errorp = expand_files(newf, open_files-1);
688 spin_unlock(&newf->file_lock);
689 if (*errorp < 0)
690 goto out_release;
691 new_fdt = files_fdtable(newf);
692 /*
693 * Reacquire the oldf lock and a pointer to its fd table
694 * who knows it may have a new bigger fd table. We need
695 * the latest pointer.
696 */
697 spin_lock(&oldf->file_lock);
698 old_fdt = files_fdtable(oldf);
699 }
700
701 old_fds = old_fdt->fd;
702 new_fds = new_fdt->fd;
703
704 memcpy(new_fdt->open_fds->fds_bits,
705 old_fdt->open_fds->fds_bits, open_files/8);
706 memcpy(new_fdt->close_on_exec->fds_bits,
707 old_fdt->close_on_exec->fds_bits, open_files/8);
708
709 for (i = open_files; i != 0; i--) {
710 struct file *f = *old_fds++;
711 if (f) {
712 get_file(f);
713 } else {
714 /*
715 * The fd may be claimed in the fd bitmap but not yet
716 * instantiated in the files array if a sibling thread
717 * is partway through open(). So make sure that this
718 * fd is available to the new process.
719 */
720 FD_CLR(open_files - i, new_fdt->open_fds);
721 }
722 rcu_assign_pointer(*new_fds++, f);
723 }
724 spin_unlock(&oldf->file_lock);
725
726 /* compute the remainder to be cleared */
727 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
728
729 /* This is long word aligned thus could use a optimized version */
730 memset(new_fds, 0, size);
731
732 if (new_fdt->max_fds > open_files) {
733 int left = (new_fdt->max_fds-open_files)/8;
734 int start = open_files / (8 * sizeof(unsigned long));
735
736 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
737 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
738 }
739
740 return newf;
741
742 out_release:
743 kmem_cache_free(files_cachep, newf);
744 out:
745 return NULL;
746 }
747
748 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
749 {
750 struct files_struct *oldf, *newf;
751 int error = 0;
752
753 /*
754 * A background process may not have any files ...
755 */
756 oldf = current->files;
757 if (!oldf)
758 goto out;
759
760 if (clone_flags & CLONE_FILES) {
761 atomic_inc(&oldf->count);
762 goto out;
763 }
764
765 /*
766 * Note: we may be using current for both targets (See exec.c)
767 * This works because we cache current->files (old) as oldf. Don't
768 * break this.
769 */
770 tsk->files = NULL;
771 newf = dup_fd(oldf, &error);
772 if (!newf)
773 goto out;
774
775 tsk->files = newf;
776 error = 0;
777 out:
778 return error;
779 }
780
781 /*
782 * Helper to unshare the files of the current task.
783 * We don't want to expose copy_files internals to
784 * the exec layer of the kernel.
785 */
786
787 int unshare_files(void)
788 {
789 struct files_struct *files = current->files;
790 int rc;
791
792 BUG_ON(!files);
793
794 /* This can race but the race causes us to copy when we don't
795 need to and drop the copy */
796 if(atomic_read(&files->count) == 1)
797 {
798 atomic_inc(&files->count);
799 return 0;
800 }
801 rc = copy_files(0, current);
802 if(rc)
803 current->files = files;
804 return rc;
805 }
806
807 EXPORT_SYMBOL(unshare_files);
808
809 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
810 {
811 struct sighand_struct *sig;
812
813 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
814 atomic_inc(&current->sighand->count);
815 return 0;
816 }
817 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
818 rcu_assign_pointer(tsk->sighand, sig);
819 if (!sig)
820 return -ENOMEM;
821 atomic_set(&sig->count, 1);
822 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
823 return 0;
824 }
825
826 void __cleanup_sighand(struct sighand_struct *sighand)
827 {
828 if (atomic_dec_and_test(&sighand->count))
829 kmem_cache_free(sighand_cachep, sighand);
830 }
831
832 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
833 {
834 struct signal_struct *sig;
835 int ret;
836
837 if (clone_flags & CLONE_THREAD) {
838 atomic_inc(&current->signal->count);
839 atomic_inc(&current->signal->live);
840 return 0;
841 }
842 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
843 tsk->signal = sig;
844 if (!sig)
845 return -ENOMEM;
846
847 ret = copy_thread_group_keys(tsk);
848 if (ret < 0) {
849 kmem_cache_free(signal_cachep, sig);
850 return ret;
851 }
852
853 atomic_set(&sig->count, 1);
854 atomic_set(&sig->live, 1);
855 init_waitqueue_head(&sig->wait_chldexit);
856 sig->flags = 0;
857 sig->group_exit_code = 0;
858 sig->group_exit_task = NULL;
859 sig->group_stop_count = 0;
860 sig->curr_target = NULL;
861 init_sigpending(&sig->shared_pending);
862 INIT_LIST_HEAD(&sig->posix_timers);
863
864 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
865 sig->it_real_incr.tv64 = 0;
866 sig->real_timer.function = it_real_fn;
867 sig->tsk = tsk;
868
869 sig->it_virt_expires = cputime_zero;
870 sig->it_virt_incr = cputime_zero;
871 sig->it_prof_expires = cputime_zero;
872 sig->it_prof_incr = cputime_zero;
873
874 sig->leader = 0; /* session leadership doesn't inherit */
875 sig->tty_old_pgrp = NULL;
876
877 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
878 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
879 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
880 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
881 sig->sum_sched_runtime = 0;
882 INIT_LIST_HEAD(&sig->cpu_timers[0]);
883 INIT_LIST_HEAD(&sig->cpu_timers[1]);
884 INIT_LIST_HEAD(&sig->cpu_timers[2]);
885 taskstats_tgid_init(sig);
886
887 task_lock(current->group_leader);
888 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
889 task_unlock(current->group_leader);
890
891 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
892 /*
893 * New sole thread in the process gets an expiry time
894 * of the whole CPU time limit.
895 */
896 tsk->it_prof_expires =
897 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
898 }
899 acct_init_pacct(&sig->pacct);
900
901 tty_audit_fork(sig);
902
903 return 0;
904 }
905
906 void __cleanup_signal(struct signal_struct *sig)
907 {
908 exit_thread_group_keys(sig);
909 kmem_cache_free(signal_cachep, sig);
910 }
911
912 static inline void cleanup_signal(struct task_struct *tsk)
913 {
914 struct signal_struct *sig = tsk->signal;
915
916 atomic_dec(&sig->live);
917
918 if (atomic_dec_and_test(&sig->count))
919 __cleanup_signal(sig);
920 }
921
922 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
923 {
924 unsigned long new_flags = p->flags;
925
926 new_flags &= ~PF_SUPERPRIV;
927 new_flags |= PF_FORKNOEXEC;
928 if (!(clone_flags & CLONE_PTRACE))
929 p->ptrace = 0;
930 p->flags = new_flags;
931 }
932
933 asmlinkage long sys_set_tid_address(int __user *tidptr)
934 {
935 current->clear_child_tid = tidptr;
936
937 return current->pid;
938 }
939
940 static inline void rt_mutex_init_task(struct task_struct *p)
941 {
942 spin_lock_init(&p->pi_lock);
943 #ifdef CONFIG_RT_MUTEXES
944 plist_head_init(&p->pi_waiters, &p->pi_lock);
945 p->pi_blocked_on = NULL;
946 #endif
947 }
948
949 /*
950 * This creates a new process as a copy of the old one,
951 * but does not actually start it yet.
952 *
953 * It copies the registers, and all the appropriate
954 * parts of the process environment (as per the clone
955 * flags). The actual kick-off is left to the caller.
956 */
957 static struct task_struct *copy_process(unsigned long clone_flags,
958 unsigned long stack_start,
959 struct pt_regs *regs,
960 unsigned long stack_size,
961 int __user *parent_tidptr,
962 int __user *child_tidptr,
963 struct pid *pid)
964 {
965 int retval;
966 struct task_struct *p = NULL;
967
968 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
969 return ERR_PTR(-EINVAL);
970
971 /*
972 * Thread groups must share signals as well, and detached threads
973 * can only be started up within the thread group.
974 */
975 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
976 return ERR_PTR(-EINVAL);
977
978 /*
979 * Shared signal handlers imply shared VM. By way of the above,
980 * thread groups also imply shared VM. Blocking this case allows
981 * for various simplifications in other code.
982 */
983 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
984 return ERR_PTR(-EINVAL);
985
986 retval = security_task_create(clone_flags);
987 if (retval)
988 goto fork_out;
989
990 retval = -ENOMEM;
991 p = dup_task_struct(current);
992 if (!p)
993 goto fork_out;
994
995 rt_mutex_init_task(p);
996
997 #ifdef CONFIG_TRACE_IRQFLAGS
998 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
999 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1000 #endif
1001 retval = -EAGAIN;
1002 if (atomic_read(&p->user->processes) >=
1003 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1004 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1005 p->user != current->nsproxy->user_ns->root_user)
1006 goto bad_fork_free;
1007 }
1008
1009 atomic_inc(&p->user->__count);
1010 atomic_inc(&p->user->processes);
1011 get_group_info(p->group_info);
1012
1013 /*
1014 * If multiple threads are within copy_process(), then this check
1015 * triggers too late. This doesn't hurt, the check is only there
1016 * to stop root fork bombs.
1017 */
1018 if (nr_threads >= max_threads)
1019 goto bad_fork_cleanup_count;
1020
1021 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1022 goto bad_fork_cleanup_count;
1023
1024 if (p->binfmt && !try_module_get(p->binfmt->module))
1025 goto bad_fork_cleanup_put_domain;
1026
1027 p->did_exec = 0;
1028 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1029 copy_flags(clone_flags, p);
1030 p->pid = pid_nr(pid);
1031 retval = -EFAULT;
1032 if (clone_flags & CLONE_PARENT_SETTID)
1033 if (put_user(p->pid, parent_tidptr))
1034 goto bad_fork_cleanup_delays_binfmt;
1035
1036 INIT_LIST_HEAD(&p->children);
1037 INIT_LIST_HEAD(&p->sibling);
1038 p->vfork_done = NULL;
1039 spin_lock_init(&p->alloc_lock);
1040
1041 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1042 init_sigpending(&p->pending);
1043
1044 p->utime = cputime_zero;
1045 p->stime = cputime_zero;
1046
1047 #ifdef CONFIG_TASK_XACCT
1048 p->rchar = 0; /* I/O counter: bytes read */
1049 p->wchar = 0; /* I/O counter: bytes written */
1050 p->syscr = 0; /* I/O counter: read syscalls */
1051 p->syscw = 0; /* I/O counter: write syscalls */
1052 #endif
1053 task_io_accounting_init(p);
1054 acct_clear_integrals(p);
1055
1056 p->it_virt_expires = cputime_zero;
1057 p->it_prof_expires = cputime_zero;
1058 p->it_sched_expires = 0;
1059 INIT_LIST_HEAD(&p->cpu_timers[0]);
1060 INIT_LIST_HEAD(&p->cpu_timers[1]);
1061 INIT_LIST_HEAD(&p->cpu_timers[2]);
1062
1063 p->lock_depth = -1; /* -1 = no lock */
1064 do_posix_clock_monotonic_gettime(&p->start_time);
1065 p->real_start_time = p->start_time;
1066 monotonic_to_bootbased(&p->real_start_time);
1067 p->security = NULL;
1068 p->io_context = NULL;
1069 p->io_wait = NULL;
1070 p->audit_context = NULL;
1071 cpuset_fork(p);
1072 #ifdef CONFIG_NUMA
1073 p->mempolicy = mpol_copy(p->mempolicy);
1074 if (IS_ERR(p->mempolicy)) {
1075 retval = PTR_ERR(p->mempolicy);
1076 p->mempolicy = NULL;
1077 goto bad_fork_cleanup_cpuset;
1078 }
1079 mpol_fix_fork_child_flag(p);
1080 #endif
1081 #ifdef CONFIG_TRACE_IRQFLAGS
1082 p->irq_events = 0;
1083 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1084 p->hardirqs_enabled = 1;
1085 #else
1086 p->hardirqs_enabled = 0;
1087 #endif
1088 p->hardirq_enable_ip = 0;
1089 p->hardirq_enable_event = 0;
1090 p->hardirq_disable_ip = _THIS_IP_;
1091 p->hardirq_disable_event = 0;
1092 p->softirqs_enabled = 1;
1093 p->softirq_enable_ip = _THIS_IP_;
1094 p->softirq_enable_event = 0;
1095 p->softirq_disable_ip = 0;
1096 p->softirq_disable_event = 0;
1097 p->hardirq_context = 0;
1098 p->softirq_context = 0;
1099 #endif
1100 #ifdef CONFIG_LOCKDEP
1101 p->lockdep_depth = 0; /* no locks held yet */
1102 p->curr_chain_key = 0;
1103 p->lockdep_recursion = 0;
1104 #endif
1105
1106 #ifdef CONFIG_DEBUG_MUTEXES
1107 p->blocked_on = NULL; /* not blocked yet */
1108 #endif
1109
1110 p->tgid = p->pid;
1111 if (clone_flags & CLONE_THREAD)
1112 p->tgid = current->tgid;
1113
1114 if ((retval = security_task_alloc(p)))
1115 goto bad_fork_cleanup_policy;
1116 if ((retval = audit_alloc(p)))
1117 goto bad_fork_cleanup_security;
1118 /* copy all the process information */
1119 if ((retval = copy_semundo(clone_flags, p)))
1120 goto bad_fork_cleanup_audit;
1121 if ((retval = copy_files(clone_flags, p)))
1122 goto bad_fork_cleanup_semundo;
1123 if ((retval = copy_fs(clone_flags, p)))
1124 goto bad_fork_cleanup_files;
1125 if ((retval = copy_sighand(clone_flags, p)))
1126 goto bad_fork_cleanup_fs;
1127 if ((retval = copy_signal(clone_flags, p)))
1128 goto bad_fork_cleanup_sighand;
1129 if ((retval = copy_mm(clone_flags, p)))
1130 goto bad_fork_cleanup_signal;
1131 if ((retval = copy_keys(clone_flags, p)))
1132 goto bad_fork_cleanup_mm;
1133 if ((retval = copy_namespaces(clone_flags, p)))
1134 goto bad_fork_cleanup_keys;
1135 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1136 if (retval)
1137 goto bad_fork_cleanup_namespaces;
1138
1139 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1140 /*
1141 * Clear TID on mm_release()?
1142 */
1143 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1144 p->robust_list = NULL;
1145 #ifdef CONFIG_COMPAT
1146 p->compat_robust_list = NULL;
1147 #endif
1148 INIT_LIST_HEAD(&p->pi_state_list);
1149 p->pi_state_cache = NULL;
1150
1151 /*
1152 * sigaltstack should be cleared when sharing the same VM
1153 */
1154 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1155 p->sas_ss_sp = p->sas_ss_size = 0;
1156
1157 /*
1158 * Syscall tracing should be turned off in the child regardless
1159 * of CLONE_PTRACE.
1160 */
1161 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1162 #ifdef TIF_SYSCALL_EMU
1163 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1164 #endif
1165
1166 /* Our parent execution domain becomes current domain
1167 These must match for thread signalling to apply */
1168 p->parent_exec_id = p->self_exec_id;
1169
1170 /* ok, now we should be set up.. */
1171 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1172 p->pdeath_signal = 0;
1173 p->exit_state = 0;
1174
1175 /*
1176 * Ok, make it visible to the rest of the system.
1177 * We dont wake it up yet.
1178 */
1179 p->group_leader = p;
1180 INIT_LIST_HEAD(&p->thread_group);
1181 INIT_LIST_HEAD(&p->ptrace_children);
1182 INIT_LIST_HEAD(&p->ptrace_list);
1183
1184 /* Perform scheduler related setup. Assign this task to a CPU. */
1185 sched_fork(p, clone_flags);
1186
1187 /* Need tasklist lock for parent etc handling! */
1188 write_lock_irq(&tasklist_lock);
1189
1190 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1191 p->ioprio = current->ioprio;
1192
1193 /*
1194 * The task hasn't been attached yet, so its cpus_allowed mask will
1195 * not be changed, nor will its assigned CPU.
1196 *
1197 * The cpus_allowed mask of the parent may have changed after it was
1198 * copied first time - so re-copy it here, then check the child's CPU
1199 * to ensure it is on a valid CPU (and if not, just force it back to
1200 * parent's CPU). This avoids alot of nasty races.
1201 */
1202 p->cpus_allowed = current->cpus_allowed;
1203 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1204 !cpu_online(task_cpu(p))))
1205 set_task_cpu(p, smp_processor_id());
1206
1207 /* CLONE_PARENT re-uses the old parent */
1208 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1209 p->real_parent = current->real_parent;
1210 else
1211 p->real_parent = current;
1212 p->parent = p->real_parent;
1213
1214 spin_lock(&current->sighand->siglock);
1215
1216 /*
1217 * Process group and session signals need to be delivered to just the
1218 * parent before the fork or both the parent and the child after the
1219 * fork. Restart if a signal comes in before we add the new process to
1220 * it's process group.
1221 * A fatal signal pending means that current will exit, so the new
1222 * thread can't slip out of an OOM kill (or normal SIGKILL).
1223 */
1224 recalc_sigpending();
1225 if (signal_pending(current)) {
1226 spin_unlock(&current->sighand->siglock);
1227 write_unlock_irq(&tasklist_lock);
1228 retval = -ERESTARTNOINTR;
1229 goto bad_fork_cleanup_namespaces;
1230 }
1231
1232 if (clone_flags & CLONE_THREAD) {
1233 p->group_leader = current->group_leader;
1234 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1235
1236 if (!cputime_eq(current->signal->it_virt_expires,
1237 cputime_zero) ||
1238 !cputime_eq(current->signal->it_prof_expires,
1239 cputime_zero) ||
1240 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1241 !list_empty(&current->signal->cpu_timers[0]) ||
1242 !list_empty(&current->signal->cpu_timers[1]) ||
1243 !list_empty(&current->signal->cpu_timers[2])) {
1244 /*
1245 * Have child wake up on its first tick to check
1246 * for process CPU timers.
1247 */
1248 p->it_prof_expires = jiffies_to_cputime(1);
1249 }
1250 }
1251
1252 if (likely(p->pid)) {
1253 add_parent(p);
1254 if (unlikely(p->ptrace & PT_PTRACED))
1255 __ptrace_link(p, current->parent);
1256
1257 if (thread_group_leader(p)) {
1258 p->signal->tty = current->signal->tty;
1259 p->signal->pgrp = process_group(current);
1260 set_signal_session(p->signal, process_session(current));
1261 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1262 attach_pid(p, PIDTYPE_SID, task_session(current));
1263
1264 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1265 __get_cpu_var(process_counts)++;
1266 }
1267 attach_pid(p, PIDTYPE_PID, pid);
1268 nr_threads++;
1269 }
1270
1271 total_forks++;
1272 spin_unlock(&current->sighand->siglock);
1273 write_unlock_irq(&tasklist_lock);
1274 proc_fork_connector(p);
1275 return p;
1276
1277 bad_fork_cleanup_namespaces:
1278 exit_task_namespaces(p);
1279 bad_fork_cleanup_keys:
1280 exit_keys(p);
1281 bad_fork_cleanup_mm:
1282 if (p->mm)
1283 mmput(p->mm);
1284 bad_fork_cleanup_signal:
1285 cleanup_signal(p);
1286 bad_fork_cleanup_sighand:
1287 __cleanup_sighand(p->sighand);
1288 bad_fork_cleanup_fs:
1289 exit_fs(p); /* blocking */
1290 bad_fork_cleanup_files:
1291 exit_files(p); /* blocking */
1292 bad_fork_cleanup_semundo:
1293 exit_sem(p);
1294 bad_fork_cleanup_audit:
1295 audit_free(p);
1296 bad_fork_cleanup_security:
1297 security_task_free(p);
1298 bad_fork_cleanup_policy:
1299 #ifdef CONFIG_NUMA
1300 mpol_free(p->mempolicy);
1301 bad_fork_cleanup_cpuset:
1302 #endif
1303 cpuset_exit(p);
1304 bad_fork_cleanup_delays_binfmt:
1305 delayacct_tsk_free(p);
1306 if (p->binfmt)
1307 module_put(p->binfmt->module);
1308 bad_fork_cleanup_put_domain:
1309 module_put(task_thread_info(p)->exec_domain->module);
1310 bad_fork_cleanup_count:
1311 put_group_info(p->group_info);
1312 atomic_dec(&p->user->processes);
1313 free_uid(p->user);
1314 bad_fork_free:
1315 free_task(p);
1316 fork_out:
1317 return ERR_PTR(retval);
1318 }
1319
1320 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1321 {
1322 memset(regs, 0, sizeof(struct pt_regs));
1323 return regs;
1324 }
1325
1326 struct task_struct * __cpuinit fork_idle(int cpu)
1327 {
1328 struct task_struct *task;
1329 struct pt_regs regs;
1330
1331 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1332 &init_struct_pid);
1333 if (!IS_ERR(task))
1334 init_idle(task, cpu);
1335
1336 return task;
1337 }
1338
1339 static inline int fork_traceflag (unsigned clone_flags)
1340 {
1341 if (clone_flags & CLONE_UNTRACED)
1342 return 0;
1343 else if (clone_flags & CLONE_VFORK) {
1344 if (current->ptrace & PT_TRACE_VFORK)
1345 return PTRACE_EVENT_VFORK;
1346 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1347 if (current->ptrace & PT_TRACE_CLONE)
1348 return PTRACE_EVENT_CLONE;
1349 } else if (current->ptrace & PT_TRACE_FORK)
1350 return PTRACE_EVENT_FORK;
1351
1352 return 0;
1353 }
1354
1355 /*
1356 * Ok, this is the main fork-routine.
1357 *
1358 * It copies the process, and if successful kick-starts
1359 * it and waits for it to finish using the VM if required.
1360 */
1361 long do_fork(unsigned long clone_flags,
1362 unsigned long stack_start,
1363 struct pt_regs *regs,
1364 unsigned long stack_size,
1365 int __user *parent_tidptr,
1366 int __user *child_tidptr)
1367 {
1368 struct task_struct *p;
1369 int trace = 0;
1370 struct pid *pid = alloc_pid();
1371 long nr;
1372
1373 if (!pid)
1374 return -EAGAIN;
1375 nr = pid->nr;
1376 if (unlikely(current->ptrace)) {
1377 trace = fork_traceflag (clone_flags);
1378 if (trace)
1379 clone_flags |= CLONE_PTRACE;
1380 }
1381
1382 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1383 /*
1384 * Do this prior waking up the new thread - the thread pointer
1385 * might get invalid after that point, if the thread exits quickly.
1386 */
1387 if (!IS_ERR(p)) {
1388 struct completion vfork;
1389
1390 if (clone_flags & CLONE_VFORK) {
1391 p->vfork_done = &vfork;
1392 init_completion(&vfork);
1393 }
1394
1395 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1396 /*
1397 * We'll start up with an immediate SIGSTOP.
1398 */
1399 sigaddset(&p->pending.signal, SIGSTOP);
1400 set_tsk_thread_flag(p, TIF_SIGPENDING);
1401 }
1402
1403 if (!(clone_flags & CLONE_STOPPED))
1404 wake_up_new_task(p, clone_flags);
1405 else
1406 p->state = TASK_STOPPED;
1407
1408 if (unlikely (trace)) {
1409 current->ptrace_message = nr;
1410 ptrace_notify ((trace << 8) | SIGTRAP);
1411 }
1412
1413 if (clone_flags & CLONE_VFORK) {
1414 freezer_do_not_count();
1415 wait_for_completion(&vfork);
1416 freezer_count();
1417 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1418 current->ptrace_message = nr;
1419 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1420 }
1421 }
1422 } else {
1423 free_pid(pid);
1424 nr = PTR_ERR(p);
1425 }
1426 return nr;
1427 }
1428
1429 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1430 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1431 #endif
1432
1433 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1434 unsigned long flags)
1435 {
1436 struct sighand_struct *sighand = data;
1437
1438 spin_lock_init(&sighand->siglock);
1439 INIT_LIST_HEAD(&sighand->signalfd_list);
1440 }
1441
1442 void __init proc_caches_init(void)
1443 {
1444 sighand_cachep = kmem_cache_create("sighand_cache",
1445 sizeof(struct sighand_struct), 0,
1446 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1447 sighand_ctor, NULL);
1448 signal_cachep = kmem_cache_create("signal_cache",
1449 sizeof(struct signal_struct), 0,
1450 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1451 files_cachep = kmem_cache_create("files_cache",
1452 sizeof(struct files_struct), 0,
1453 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1454 fs_cachep = kmem_cache_create("fs_cache",
1455 sizeof(struct fs_struct), 0,
1456 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1457 vm_area_cachep = kmem_cache_create("vm_area_struct",
1458 sizeof(struct vm_area_struct), 0,
1459 SLAB_PANIC, NULL, NULL);
1460 mm_cachep = kmem_cache_create("mm_struct",
1461 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1462 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1463 }
1464
1465 /*
1466 * Check constraints on flags passed to the unshare system call and
1467 * force unsharing of additional process context as appropriate.
1468 */
1469 static inline void check_unshare_flags(unsigned long *flags_ptr)
1470 {
1471 /*
1472 * If unsharing a thread from a thread group, must also
1473 * unshare vm.
1474 */
1475 if (*flags_ptr & CLONE_THREAD)
1476 *flags_ptr |= CLONE_VM;
1477
1478 /*
1479 * If unsharing vm, must also unshare signal handlers.
1480 */
1481 if (*flags_ptr & CLONE_VM)
1482 *flags_ptr |= CLONE_SIGHAND;
1483
1484 /*
1485 * If unsharing signal handlers and the task was created
1486 * using CLONE_THREAD, then must unshare the thread
1487 */
1488 if ((*flags_ptr & CLONE_SIGHAND) &&
1489 (atomic_read(&current->signal->count) > 1))
1490 *flags_ptr |= CLONE_THREAD;
1491
1492 /*
1493 * If unsharing namespace, must also unshare filesystem information.
1494 */
1495 if (*flags_ptr & CLONE_NEWNS)
1496 *flags_ptr |= CLONE_FS;
1497 }
1498
1499 /*
1500 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1501 */
1502 static int unshare_thread(unsigned long unshare_flags)
1503 {
1504 if (unshare_flags & CLONE_THREAD)
1505 return -EINVAL;
1506
1507 return 0;
1508 }
1509
1510 /*
1511 * Unshare the filesystem structure if it is being shared
1512 */
1513 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1514 {
1515 struct fs_struct *fs = current->fs;
1516
1517 if ((unshare_flags & CLONE_FS) &&
1518 (fs && atomic_read(&fs->count) > 1)) {
1519 *new_fsp = __copy_fs_struct(current->fs);
1520 if (!*new_fsp)
1521 return -ENOMEM;
1522 }
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * Unsharing of sighand is not supported yet
1529 */
1530 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1531 {
1532 struct sighand_struct *sigh = current->sighand;
1533
1534 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1535 return -EINVAL;
1536 else
1537 return 0;
1538 }
1539
1540 /*
1541 * Unshare vm if it is being shared
1542 */
1543 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1544 {
1545 struct mm_struct *mm = current->mm;
1546
1547 if ((unshare_flags & CLONE_VM) &&
1548 (mm && atomic_read(&mm->mm_users) > 1)) {
1549 return -EINVAL;
1550 }
1551
1552 return 0;
1553 }
1554
1555 /*
1556 * Unshare file descriptor table if it is being shared
1557 */
1558 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1559 {
1560 struct files_struct *fd = current->files;
1561 int error = 0;
1562
1563 if ((unshare_flags & CLONE_FILES) &&
1564 (fd && atomic_read(&fd->count) > 1)) {
1565 *new_fdp = dup_fd(fd, &error);
1566 if (!*new_fdp)
1567 return error;
1568 }
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1575 * supported yet
1576 */
1577 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1578 {
1579 if (unshare_flags & CLONE_SYSVSEM)
1580 return -EINVAL;
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * unshare allows a process to 'unshare' part of the process
1587 * context which was originally shared using clone. copy_*
1588 * functions used by do_fork() cannot be used here directly
1589 * because they modify an inactive task_struct that is being
1590 * constructed. Here we are modifying the current, active,
1591 * task_struct.
1592 */
1593 asmlinkage long sys_unshare(unsigned long unshare_flags)
1594 {
1595 int err = 0;
1596 struct fs_struct *fs, *new_fs = NULL;
1597 struct sighand_struct *new_sigh = NULL;
1598 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1599 struct files_struct *fd, *new_fd = NULL;
1600 struct sem_undo_list *new_ulist = NULL;
1601 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1602
1603 check_unshare_flags(&unshare_flags);
1604
1605 /* Return -EINVAL for all unsupported flags */
1606 err = -EINVAL;
1607 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1608 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1609 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
1610 goto bad_unshare_out;
1611
1612 if ((err = unshare_thread(unshare_flags)))
1613 goto bad_unshare_out;
1614 if ((err = unshare_fs(unshare_flags, &new_fs)))
1615 goto bad_unshare_cleanup_thread;
1616 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1617 goto bad_unshare_cleanup_fs;
1618 if ((err = unshare_vm(unshare_flags, &new_mm)))
1619 goto bad_unshare_cleanup_sigh;
1620 if ((err = unshare_fd(unshare_flags, &new_fd)))
1621 goto bad_unshare_cleanup_vm;
1622 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1623 goto bad_unshare_cleanup_fd;
1624 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1625 new_fs)))
1626 goto bad_unshare_cleanup_semundo;
1627
1628 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1629
1630 task_lock(current);
1631
1632 if (new_nsproxy) {
1633 old_nsproxy = current->nsproxy;
1634 current->nsproxy = new_nsproxy;
1635 new_nsproxy = old_nsproxy;
1636 }
1637
1638 if (new_fs) {
1639 fs = current->fs;
1640 current->fs = new_fs;
1641 new_fs = fs;
1642 }
1643
1644 if (new_mm) {
1645 mm = current->mm;
1646 active_mm = current->active_mm;
1647 current->mm = new_mm;
1648 current->active_mm = new_mm;
1649 activate_mm(active_mm, new_mm);
1650 new_mm = mm;
1651 }
1652
1653 if (new_fd) {
1654 fd = current->files;
1655 current->files = new_fd;
1656 new_fd = fd;
1657 }
1658
1659 task_unlock(current);
1660 }
1661
1662 if (new_nsproxy)
1663 put_nsproxy(new_nsproxy);
1664
1665 bad_unshare_cleanup_semundo:
1666 bad_unshare_cleanup_fd:
1667 if (new_fd)
1668 put_files_struct(new_fd);
1669
1670 bad_unshare_cleanup_vm:
1671 if (new_mm)
1672 mmput(new_mm);
1673
1674 bad_unshare_cleanup_sigh:
1675 if (new_sigh)
1676 if (atomic_dec_and_test(&new_sigh->count))
1677 kmem_cache_free(sighand_cachep, new_sigh);
1678
1679 bad_unshare_cleanup_fs:
1680 if (new_fs)
1681 put_fs_struct(new_fs);
1682
1683 bad_unshare_cleanup_thread:
1684 bad_unshare_out:
1685 return err;
1686 }
This page took 0.064213 seconds and 6 git commands to generate.