Merge tag 'platform-drivers-x86-v3.18-1' of git://git.infradead.org/users/dvhart...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93 unsigned long total_forks; /* Handle normal Linux uptimes. */
94 int nr_threads; /* The idle threads do not count.. */
95
96 int max_threads; /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152 {
153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168 {
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174 kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261 #endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292 {
293 *dst = *src;
294 return 0;
295 }
296
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299 struct task_struct *tsk;
300 struct thread_info *ti;
301 unsigned long *stackend;
302 int node = tsk_fork_get_node(orig);
303 int err;
304
305 tsk = alloc_task_struct_node(node);
306 if (!tsk)
307 return NULL;
308
309 ti = alloc_thread_info_node(tsk, node);
310 if (!ti)
311 goto free_tsk;
312
313 err = arch_dup_task_struct(tsk, orig);
314 if (err)
315 goto free_ti;
316
317 tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319 /*
320 * We must handle setting up seccomp filters once we're under
321 * the sighand lock in case orig has changed between now and
322 * then. Until then, filter must be NULL to avoid messing up
323 * the usage counts on the error path calling free_task.
324 */
325 tsk->seccomp.filter = NULL;
326 #endif
327
328 setup_thread_stack(tsk, orig);
329 clear_user_return_notifier(tsk);
330 clear_tsk_need_resched(tsk);
331 stackend = end_of_stack(tsk);
332 *stackend = STACK_END_MAGIC; /* for overflow detection */
333
334 #ifdef CONFIG_CC_STACKPROTECTOR
335 tsk->stack_canary = get_random_int();
336 #endif
337
338 /*
339 * One for us, one for whoever does the "release_task()" (usually
340 * parent)
341 */
342 atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344 tsk->btrace_seq = 0;
345 #endif
346 tsk->splice_pipe = NULL;
347 tsk->task_frag.page = NULL;
348
349 account_kernel_stack(ti, 1);
350
351 return tsk;
352
353 free_ti:
354 free_thread_info(ti);
355 free_tsk:
356 free_task_struct(tsk);
357 return NULL;
358 }
359
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364 struct rb_node **rb_link, *rb_parent;
365 int retval;
366 unsigned long charge;
367
368 uprobe_start_dup_mmap();
369 down_write(&oldmm->mmap_sem);
370 flush_cache_dup_mm(oldmm);
371 uprobe_dup_mmap(oldmm, mm);
372 /*
373 * Not linked in yet - no deadlock potential:
374 */
375 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376
377 mm->total_vm = oldmm->total_vm;
378 mm->shared_vm = oldmm->shared_vm;
379 mm->exec_vm = oldmm->exec_vm;
380 mm->stack_vm = oldmm->stack_vm;
381
382 rb_link = &mm->mm_rb.rb_node;
383 rb_parent = NULL;
384 pprev = &mm->mmap;
385 retval = ksm_fork(mm, oldmm);
386 if (retval)
387 goto out;
388 retval = khugepaged_fork(mm, oldmm);
389 if (retval)
390 goto out;
391
392 prev = NULL;
393 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
394 struct file *file;
395
396 if (mpnt->vm_flags & VM_DONTCOPY) {
397 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
398 -vma_pages(mpnt));
399 continue;
400 }
401 charge = 0;
402 if (mpnt->vm_flags & VM_ACCOUNT) {
403 unsigned long len = vma_pages(mpnt);
404
405 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
406 goto fail_nomem;
407 charge = len;
408 }
409 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
410 if (!tmp)
411 goto fail_nomem;
412 *tmp = *mpnt;
413 INIT_LIST_HEAD(&tmp->anon_vma_chain);
414 retval = vma_dup_policy(mpnt, tmp);
415 if (retval)
416 goto fail_nomem_policy;
417 tmp->vm_mm = mm;
418 if (anon_vma_fork(tmp, mpnt))
419 goto fail_nomem_anon_vma_fork;
420 tmp->vm_flags &= ~VM_LOCKED;
421 tmp->vm_next = tmp->vm_prev = NULL;
422 file = tmp->vm_file;
423 if (file) {
424 struct inode *inode = file_inode(file);
425 struct address_space *mapping = file->f_mapping;
426
427 get_file(file);
428 if (tmp->vm_flags & VM_DENYWRITE)
429 atomic_dec(&inode->i_writecount);
430 mutex_lock(&mapping->i_mmap_mutex);
431 if (tmp->vm_flags & VM_SHARED)
432 atomic_inc(&mapping->i_mmap_writable);
433 flush_dcache_mmap_lock(mapping);
434 /* insert tmp into the share list, just after mpnt */
435 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
436 vma_nonlinear_insert(tmp,
437 &mapping->i_mmap_nonlinear);
438 else
439 vma_interval_tree_insert_after(tmp, mpnt,
440 &mapping->i_mmap);
441 flush_dcache_mmap_unlock(mapping);
442 mutex_unlock(&mapping->i_mmap_mutex);
443 }
444
445 /*
446 * Clear hugetlb-related page reserves for children. This only
447 * affects MAP_PRIVATE mappings. Faults generated by the child
448 * are not guaranteed to succeed, even if read-only
449 */
450 if (is_vm_hugetlb_page(tmp))
451 reset_vma_resv_huge_pages(tmp);
452
453 /*
454 * Link in the new vma and copy the page table entries.
455 */
456 *pprev = tmp;
457 pprev = &tmp->vm_next;
458 tmp->vm_prev = prev;
459 prev = tmp;
460
461 __vma_link_rb(mm, tmp, rb_link, rb_parent);
462 rb_link = &tmp->vm_rb.rb_right;
463 rb_parent = &tmp->vm_rb;
464
465 mm->map_count++;
466 retval = copy_page_range(mm, oldmm, mpnt);
467
468 if (tmp->vm_ops && tmp->vm_ops->open)
469 tmp->vm_ops->open(tmp);
470
471 if (retval)
472 goto out;
473 }
474 /* a new mm has just been created */
475 arch_dup_mmap(oldmm, mm);
476 retval = 0;
477 out:
478 up_write(&mm->mmap_sem);
479 flush_tlb_mm(oldmm);
480 up_write(&oldmm->mmap_sem);
481 uprobe_end_dup_mmap();
482 return retval;
483 fail_nomem_anon_vma_fork:
484 mpol_put(vma_policy(tmp));
485 fail_nomem_policy:
486 kmem_cache_free(vm_area_cachep, tmp);
487 fail_nomem:
488 retval = -ENOMEM;
489 vm_unacct_memory(charge);
490 goto out;
491 }
492
493 static inline int mm_alloc_pgd(struct mm_struct *mm)
494 {
495 mm->pgd = pgd_alloc(mm);
496 if (unlikely(!mm->pgd))
497 return -ENOMEM;
498 return 0;
499 }
500
501 static inline void mm_free_pgd(struct mm_struct *mm)
502 {
503 pgd_free(mm, mm->pgd);
504 }
505 #else
506 #define dup_mmap(mm, oldmm) (0)
507 #define mm_alloc_pgd(mm) (0)
508 #define mm_free_pgd(mm)
509 #endif /* CONFIG_MMU */
510
511 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
512
513 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
514 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
515
516 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
517
518 static int __init coredump_filter_setup(char *s)
519 {
520 default_dump_filter =
521 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
522 MMF_DUMP_FILTER_MASK;
523 return 1;
524 }
525
526 __setup("coredump_filter=", coredump_filter_setup);
527
528 #include <linux/init_task.h>
529
530 static void mm_init_aio(struct mm_struct *mm)
531 {
532 #ifdef CONFIG_AIO
533 spin_lock_init(&mm->ioctx_lock);
534 mm->ioctx_table = NULL;
535 #endif
536 }
537
538 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
539 {
540 #ifdef CONFIG_MEMCG
541 mm->owner = p;
542 #endif
543 }
544
545 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
546 {
547 mm->mmap = NULL;
548 mm->mm_rb = RB_ROOT;
549 mm->vmacache_seqnum = 0;
550 atomic_set(&mm->mm_users, 1);
551 atomic_set(&mm->mm_count, 1);
552 init_rwsem(&mm->mmap_sem);
553 INIT_LIST_HEAD(&mm->mmlist);
554 mm->core_state = NULL;
555 atomic_long_set(&mm->nr_ptes, 0);
556 mm->map_count = 0;
557 mm->locked_vm = 0;
558 mm->pinned_vm = 0;
559 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
560 spin_lock_init(&mm->page_table_lock);
561 mm_init_cpumask(mm);
562 mm_init_aio(mm);
563 mm_init_owner(mm, p);
564 mmu_notifier_mm_init(mm);
565 clear_tlb_flush_pending(mm);
566 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
567 mm->pmd_huge_pte = NULL;
568 #endif
569
570 if (current->mm) {
571 mm->flags = current->mm->flags & MMF_INIT_MASK;
572 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
573 } else {
574 mm->flags = default_dump_filter;
575 mm->def_flags = 0;
576 }
577
578 if (mm_alloc_pgd(mm))
579 goto fail_nopgd;
580
581 if (init_new_context(p, mm))
582 goto fail_nocontext;
583
584 return mm;
585
586 fail_nocontext:
587 mm_free_pgd(mm);
588 fail_nopgd:
589 free_mm(mm);
590 return NULL;
591 }
592
593 static void check_mm(struct mm_struct *mm)
594 {
595 int i;
596
597 for (i = 0; i < NR_MM_COUNTERS; i++) {
598 long x = atomic_long_read(&mm->rss_stat.count[i]);
599
600 if (unlikely(x))
601 printk(KERN_ALERT "BUG: Bad rss-counter state "
602 "mm:%p idx:%d val:%ld\n", mm, i, x);
603 }
604 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
605 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
606 #endif
607 }
608
609 /*
610 * Allocate and initialize an mm_struct.
611 */
612 struct mm_struct *mm_alloc(void)
613 {
614 struct mm_struct *mm;
615
616 mm = allocate_mm();
617 if (!mm)
618 return NULL;
619
620 memset(mm, 0, sizeof(*mm));
621 return mm_init(mm, current);
622 }
623
624 /*
625 * Called when the last reference to the mm
626 * is dropped: either by a lazy thread or by
627 * mmput. Free the page directory and the mm.
628 */
629 void __mmdrop(struct mm_struct *mm)
630 {
631 BUG_ON(mm == &init_mm);
632 mm_free_pgd(mm);
633 destroy_context(mm);
634 mmu_notifier_mm_destroy(mm);
635 check_mm(mm);
636 free_mm(mm);
637 }
638 EXPORT_SYMBOL_GPL(__mmdrop);
639
640 /*
641 * Decrement the use count and release all resources for an mm.
642 */
643 void mmput(struct mm_struct *mm)
644 {
645 might_sleep();
646
647 if (atomic_dec_and_test(&mm->mm_users)) {
648 uprobe_clear_state(mm);
649 exit_aio(mm);
650 ksm_exit(mm);
651 khugepaged_exit(mm); /* must run before exit_mmap */
652 exit_mmap(mm);
653 set_mm_exe_file(mm, NULL);
654 if (!list_empty(&mm->mmlist)) {
655 spin_lock(&mmlist_lock);
656 list_del(&mm->mmlist);
657 spin_unlock(&mmlist_lock);
658 }
659 if (mm->binfmt)
660 module_put(mm->binfmt->module);
661 mmdrop(mm);
662 }
663 }
664 EXPORT_SYMBOL_GPL(mmput);
665
666 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
667 {
668 if (new_exe_file)
669 get_file(new_exe_file);
670 if (mm->exe_file)
671 fput(mm->exe_file);
672 mm->exe_file = new_exe_file;
673 }
674
675 struct file *get_mm_exe_file(struct mm_struct *mm)
676 {
677 struct file *exe_file;
678
679 /* We need mmap_sem to protect against races with removal of exe_file */
680 down_read(&mm->mmap_sem);
681 exe_file = mm->exe_file;
682 if (exe_file)
683 get_file(exe_file);
684 up_read(&mm->mmap_sem);
685 return exe_file;
686 }
687
688 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
689 {
690 /* It's safe to write the exe_file pointer without exe_file_lock because
691 * this is called during fork when the task is not yet in /proc */
692 newmm->exe_file = get_mm_exe_file(oldmm);
693 }
694
695 /**
696 * get_task_mm - acquire a reference to the task's mm
697 *
698 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
699 * this kernel workthread has transiently adopted a user mm with use_mm,
700 * to do its AIO) is not set and if so returns a reference to it, after
701 * bumping up the use count. User must release the mm via mmput()
702 * after use. Typically used by /proc and ptrace.
703 */
704 struct mm_struct *get_task_mm(struct task_struct *task)
705 {
706 struct mm_struct *mm;
707
708 task_lock(task);
709 mm = task->mm;
710 if (mm) {
711 if (task->flags & PF_KTHREAD)
712 mm = NULL;
713 else
714 atomic_inc(&mm->mm_users);
715 }
716 task_unlock(task);
717 return mm;
718 }
719 EXPORT_SYMBOL_GPL(get_task_mm);
720
721 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
722 {
723 struct mm_struct *mm;
724 int err;
725
726 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
727 if (err)
728 return ERR_PTR(err);
729
730 mm = get_task_mm(task);
731 if (mm && mm != current->mm &&
732 !ptrace_may_access(task, mode)) {
733 mmput(mm);
734 mm = ERR_PTR(-EACCES);
735 }
736 mutex_unlock(&task->signal->cred_guard_mutex);
737
738 return mm;
739 }
740
741 static void complete_vfork_done(struct task_struct *tsk)
742 {
743 struct completion *vfork;
744
745 task_lock(tsk);
746 vfork = tsk->vfork_done;
747 if (likely(vfork)) {
748 tsk->vfork_done = NULL;
749 complete(vfork);
750 }
751 task_unlock(tsk);
752 }
753
754 static int wait_for_vfork_done(struct task_struct *child,
755 struct completion *vfork)
756 {
757 int killed;
758
759 freezer_do_not_count();
760 killed = wait_for_completion_killable(vfork);
761 freezer_count();
762
763 if (killed) {
764 task_lock(child);
765 child->vfork_done = NULL;
766 task_unlock(child);
767 }
768
769 put_task_struct(child);
770 return killed;
771 }
772
773 /* Please note the differences between mmput and mm_release.
774 * mmput is called whenever we stop holding onto a mm_struct,
775 * error success whatever.
776 *
777 * mm_release is called after a mm_struct has been removed
778 * from the current process.
779 *
780 * This difference is important for error handling, when we
781 * only half set up a mm_struct for a new process and need to restore
782 * the old one. Because we mmput the new mm_struct before
783 * restoring the old one. . .
784 * Eric Biederman 10 January 1998
785 */
786 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
787 {
788 /* Get rid of any futexes when releasing the mm */
789 #ifdef CONFIG_FUTEX
790 if (unlikely(tsk->robust_list)) {
791 exit_robust_list(tsk);
792 tsk->robust_list = NULL;
793 }
794 #ifdef CONFIG_COMPAT
795 if (unlikely(tsk->compat_robust_list)) {
796 compat_exit_robust_list(tsk);
797 tsk->compat_robust_list = NULL;
798 }
799 #endif
800 if (unlikely(!list_empty(&tsk->pi_state_list)))
801 exit_pi_state_list(tsk);
802 #endif
803
804 uprobe_free_utask(tsk);
805
806 /* Get rid of any cached register state */
807 deactivate_mm(tsk, mm);
808
809 /*
810 * If we're exiting normally, clear a user-space tid field if
811 * requested. We leave this alone when dying by signal, to leave
812 * the value intact in a core dump, and to save the unnecessary
813 * trouble, say, a killed vfork parent shouldn't touch this mm.
814 * Userland only wants this done for a sys_exit.
815 */
816 if (tsk->clear_child_tid) {
817 if (!(tsk->flags & PF_SIGNALED) &&
818 atomic_read(&mm->mm_users) > 1) {
819 /*
820 * We don't check the error code - if userspace has
821 * not set up a proper pointer then tough luck.
822 */
823 put_user(0, tsk->clear_child_tid);
824 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
825 1, NULL, NULL, 0);
826 }
827 tsk->clear_child_tid = NULL;
828 }
829
830 /*
831 * All done, finally we can wake up parent and return this mm to him.
832 * Also kthread_stop() uses this completion for synchronization.
833 */
834 if (tsk->vfork_done)
835 complete_vfork_done(tsk);
836 }
837
838 /*
839 * Allocate a new mm structure and copy contents from the
840 * mm structure of the passed in task structure.
841 */
842 static struct mm_struct *dup_mm(struct task_struct *tsk)
843 {
844 struct mm_struct *mm, *oldmm = current->mm;
845 int err;
846
847 mm = allocate_mm();
848 if (!mm)
849 goto fail_nomem;
850
851 memcpy(mm, oldmm, sizeof(*mm));
852
853 if (!mm_init(mm, tsk))
854 goto fail_nomem;
855
856 dup_mm_exe_file(oldmm, mm);
857
858 err = dup_mmap(mm, oldmm);
859 if (err)
860 goto free_pt;
861
862 mm->hiwater_rss = get_mm_rss(mm);
863 mm->hiwater_vm = mm->total_vm;
864
865 if (mm->binfmt && !try_module_get(mm->binfmt->module))
866 goto free_pt;
867
868 return mm;
869
870 free_pt:
871 /* don't put binfmt in mmput, we haven't got module yet */
872 mm->binfmt = NULL;
873 mmput(mm);
874
875 fail_nomem:
876 return NULL;
877 }
878
879 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
880 {
881 struct mm_struct *mm, *oldmm;
882 int retval;
883
884 tsk->min_flt = tsk->maj_flt = 0;
885 tsk->nvcsw = tsk->nivcsw = 0;
886 #ifdef CONFIG_DETECT_HUNG_TASK
887 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
888 #endif
889
890 tsk->mm = NULL;
891 tsk->active_mm = NULL;
892
893 /*
894 * Are we cloning a kernel thread?
895 *
896 * We need to steal a active VM for that..
897 */
898 oldmm = current->mm;
899 if (!oldmm)
900 return 0;
901
902 /* initialize the new vmacache entries */
903 vmacache_flush(tsk);
904
905 if (clone_flags & CLONE_VM) {
906 atomic_inc(&oldmm->mm_users);
907 mm = oldmm;
908 goto good_mm;
909 }
910
911 retval = -ENOMEM;
912 mm = dup_mm(tsk);
913 if (!mm)
914 goto fail_nomem;
915
916 good_mm:
917 tsk->mm = mm;
918 tsk->active_mm = mm;
919 return 0;
920
921 fail_nomem:
922 return retval;
923 }
924
925 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
926 {
927 struct fs_struct *fs = current->fs;
928 if (clone_flags & CLONE_FS) {
929 /* tsk->fs is already what we want */
930 spin_lock(&fs->lock);
931 if (fs->in_exec) {
932 spin_unlock(&fs->lock);
933 return -EAGAIN;
934 }
935 fs->users++;
936 spin_unlock(&fs->lock);
937 return 0;
938 }
939 tsk->fs = copy_fs_struct(fs);
940 if (!tsk->fs)
941 return -ENOMEM;
942 return 0;
943 }
944
945 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 struct files_struct *oldf, *newf;
948 int error = 0;
949
950 /*
951 * A background process may not have any files ...
952 */
953 oldf = current->files;
954 if (!oldf)
955 goto out;
956
957 if (clone_flags & CLONE_FILES) {
958 atomic_inc(&oldf->count);
959 goto out;
960 }
961
962 newf = dup_fd(oldf, &error);
963 if (!newf)
964 goto out;
965
966 tsk->files = newf;
967 error = 0;
968 out:
969 return error;
970 }
971
972 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
973 {
974 #ifdef CONFIG_BLOCK
975 struct io_context *ioc = current->io_context;
976 struct io_context *new_ioc;
977
978 if (!ioc)
979 return 0;
980 /*
981 * Share io context with parent, if CLONE_IO is set
982 */
983 if (clone_flags & CLONE_IO) {
984 ioc_task_link(ioc);
985 tsk->io_context = ioc;
986 } else if (ioprio_valid(ioc->ioprio)) {
987 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
988 if (unlikely(!new_ioc))
989 return -ENOMEM;
990
991 new_ioc->ioprio = ioc->ioprio;
992 put_io_context(new_ioc);
993 }
994 #endif
995 return 0;
996 }
997
998 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
999 {
1000 struct sighand_struct *sig;
1001
1002 if (clone_flags & CLONE_SIGHAND) {
1003 atomic_inc(&current->sighand->count);
1004 return 0;
1005 }
1006 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1007 rcu_assign_pointer(tsk->sighand, sig);
1008 if (!sig)
1009 return -ENOMEM;
1010 atomic_set(&sig->count, 1);
1011 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1012 return 0;
1013 }
1014
1015 void __cleanup_sighand(struct sighand_struct *sighand)
1016 {
1017 if (atomic_dec_and_test(&sighand->count)) {
1018 signalfd_cleanup(sighand);
1019 kmem_cache_free(sighand_cachep, sighand);
1020 }
1021 }
1022
1023
1024 /*
1025 * Initialize POSIX timer handling for a thread group.
1026 */
1027 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1028 {
1029 unsigned long cpu_limit;
1030
1031 /* Thread group counters. */
1032 thread_group_cputime_init(sig);
1033
1034 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1035 if (cpu_limit != RLIM_INFINITY) {
1036 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1037 sig->cputimer.running = 1;
1038 }
1039
1040 /* The timer lists. */
1041 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1042 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1043 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1044 }
1045
1046 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1047 {
1048 struct signal_struct *sig;
1049
1050 if (clone_flags & CLONE_THREAD)
1051 return 0;
1052
1053 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1054 tsk->signal = sig;
1055 if (!sig)
1056 return -ENOMEM;
1057
1058 sig->nr_threads = 1;
1059 atomic_set(&sig->live, 1);
1060 atomic_set(&sig->sigcnt, 1);
1061
1062 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1063 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1064 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1065
1066 init_waitqueue_head(&sig->wait_chldexit);
1067 sig->curr_target = tsk;
1068 init_sigpending(&sig->shared_pending);
1069 INIT_LIST_HEAD(&sig->posix_timers);
1070
1071 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1072 sig->real_timer.function = it_real_fn;
1073
1074 task_lock(current->group_leader);
1075 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1076 task_unlock(current->group_leader);
1077
1078 posix_cpu_timers_init_group(sig);
1079
1080 tty_audit_fork(sig);
1081 sched_autogroup_fork(sig);
1082
1083 #ifdef CONFIG_CGROUPS
1084 init_rwsem(&sig->group_rwsem);
1085 #endif
1086
1087 sig->oom_score_adj = current->signal->oom_score_adj;
1088 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1089
1090 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1091 current->signal->is_child_subreaper;
1092
1093 mutex_init(&sig->cred_guard_mutex);
1094
1095 return 0;
1096 }
1097
1098 static void copy_seccomp(struct task_struct *p)
1099 {
1100 #ifdef CONFIG_SECCOMP
1101 /*
1102 * Must be called with sighand->lock held, which is common to
1103 * all threads in the group. Holding cred_guard_mutex is not
1104 * needed because this new task is not yet running and cannot
1105 * be racing exec.
1106 */
1107 assert_spin_locked(&current->sighand->siglock);
1108
1109 /* Ref-count the new filter user, and assign it. */
1110 get_seccomp_filter(current);
1111 p->seccomp = current->seccomp;
1112
1113 /*
1114 * Explicitly enable no_new_privs here in case it got set
1115 * between the task_struct being duplicated and holding the
1116 * sighand lock. The seccomp state and nnp must be in sync.
1117 */
1118 if (task_no_new_privs(current))
1119 task_set_no_new_privs(p);
1120
1121 /*
1122 * If the parent gained a seccomp mode after copying thread
1123 * flags and between before we held the sighand lock, we have
1124 * to manually enable the seccomp thread flag here.
1125 */
1126 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1127 set_tsk_thread_flag(p, TIF_SECCOMP);
1128 #endif
1129 }
1130
1131 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1132 {
1133 current->clear_child_tid = tidptr;
1134
1135 return task_pid_vnr(current);
1136 }
1137
1138 static void rt_mutex_init_task(struct task_struct *p)
1139 {
1140 raw_spin_lock_init(&p->pi_lock);
1141 #ifdef CONFIG_RT_MUTEXES
1142 p->pi_waiters = RB_ROOT;
1143 p->pi_waiters_leftmost = NULL;
1144 p->pi_blocked_on = NULL;
1145 #endif
1146 }
1147
1148 /*
1149 * Initialize POSIX timer handling for a single task.
1150 */
1151 static void posix_cpu_timers_init(struct task_struct *tsk)
1152 {
1153 tsk->cputime_expires.prof_exp = 0;
1154 tsk->cputime_expires.virt_exp = 0;
1155 tsk->cputime_expires.sched_exp = 0;
1156 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1157 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1158 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1159 }
1160
1161 static inline void
1162 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1163 {
1164 task->pids[type].pid = pid;
1165 }
1166
1167 /*
1168 * This creates a new process as a copy of the old one,
1169 * but does not actually start it yet.
1170 *
1171 * It copies the registers, and all the appropriate
1172 * parts of the process environment (as per the clone
1173 * flags). The actual kick-off is left to the caller.
1174 */
1175 static struct task_struct *copy_process(unsigned long clone_flags,
1176 unsigned long stack_start,
1177 unsigned long stack_size,
1178 int __user *child_tidptr,
1179 struct pid *pid,
1180 int trace)
1181 {
1182 int retval;
1183 struct task_struct *p;
1184
1185 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1186 return ERR_PTR(-EINVAL);
1187
1188 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1189 return ERR_PTR(-EINVAL);
1190
1191 /*
1192 * Thread groups must share signals as well, and detached threads
1193 * can only be started up within the thread group.
1194 */
1195 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1196 return ERR_PTR(-EINVAL);
1197
1198 /*
1199 * Shared signal handlers imply shared VM. By way of the above,
1200 * thread groups also imply shared VM. Blocking this case allows
1201 * for various simplifications in other code.
1202 */
1203 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1204 return ERR_PTR(-EINVAL);
1205
1206 /*
1207 * Siblings of global init remain as zombies on exit since they are
1208 * not reaped by their parent (swapper). To solve this and to avoid
1209 * multi-rooted process trees, prevent global and container-inits
1210 * from creating siblings.
1211 */
1212 if ((clone_flags & CLONE_PARENT) &&
1213 current->signal->flags & SIGNAL_UNKILLABLE)
1214 return ERR_PTR(-EINVAL);
1215
1216 /*
1217 * If the new process will be in a different pid or user namespace
1218 * do not allow it to share a thread group or signal handlers or
1219 * parent with the forking task.
1220 */
1221 if (clone_flags & CLONE_SIGHAND) {
1222 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1223 (task_active_pid_ns(current) !=
1224 current->nsproxy->pid_ns_for_children))
1225 return ERR_PTR(-EINVAL);
1226 }
1227
1228 retval = security_task_create(clone_flags);
1229 if (retval)
1230 goto fork_out;
1231
1232 retval = -ENOMEM;
1233 p = dup_task_struct(current);
1234 if (!p)
1235 goto fork_out;
1236
1237 ftrace_graph_init_task(p);
1238
1239 rt_mutex_init_task(p);
1240
1241 #ifdef CONFIG_PROVE_LOCKING
1242 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1243 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1244 #endif
1245 retval = -EAGAIN;
1246 if (atomic_read(&p->real_cred->user->processes) >=
1247 task_rlimit(p, RLIMIT_NPROC)) {
1248 if (p->real_cred->user != INIT_USER &&
1249 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1250 goto bad_fork_free;
1251 }
1252 current->flags &= ~PF_NPROC_EXCEEDED;
1253
1254 retval = copy_creds(p, clone_flags);
1255 if (retval < 0)
1256 goto bad_fork_free;
1257
1258 /*
1259 * If multiple threads are within copy_process(), then this check
1260 * triggers too late. This doesn't hurt, the check is only there
1261 * to stop root fork bombs.
1262 */
1263 retval = -EAGAIN;
1264 if (nr_threads >= max_threads)
1265 goto bad_fork_cleanup_count;
1266
1267 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1268 goto bad_fork_cleanup_count;
1269
1270 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1271 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1272 p->flags |= PF_FORKNOEXEC;
1273 INIT_LIST_HEAD(&p->children);
1274 INIT_LIST_HEAD(&p->sibling);
1275 rcu_copy_process(p);
1276 p->vfork_done = NULL;
1277 spin_lock_init(&p->alloc_lock);
1278
1279 init_sigpending(&p->pending);
1280
1281 p->utime = p->stime = p->gtime = 0;
1282 p->utimescaled = p->stimescaled = 0;
1283 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1284 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1285 #endif
1286 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1287 seqlock_init(&p->vtime_seqlock);
1288 p->vtime_snap = 0;
1289 p->vtime_snap_whence = VTIME_SLEEPING;
1290 #endif
1291
1292 #if defined(SPLIT_RSS_COUNTING)
1293 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1294 #endif
1295
1296 p->default_timer_slack_ns = current->timer_slack_ns;
1297
1298 task_io_accounting_init(&p->ioac);
1299 acct_clear_integrals(p);
1300
1301 posix_cpu_timers_init(p);
1302
1303 p->start_time = ktime_get_ns();
1304 p->real_start_time = ktime_get_boot_ns();
1305 p->io_context = NULL;
1306 p->audit_context = NULL;
1307 if (clone_flags & CLONE_THREAD)
1308 threadgroup_change_begin(current);
1309 cgroup_fork(p);
1310 #ifdef CONFIG_NUMA
1311 p->mempolicy = mpol_dup(p->mempolicy);
1312 if (IS_ERR(p->mempolicy)) {
1313 retval = PTR_ERR(p->mempolicy);
1314 p->mempolicy = NULL;
1315 goto bad_fork_cleanup_threadgroup_lock;
1316 }
1317 #endif
1318 #ifdef CONFIG_CPUSETS
1319 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1320 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1321 seqcount_init(&p->mems_allowed_seq);
1322 #endif
1323 #ifdef CONFIG_TRACE_IRQFLAGS
1324 p->irq_events = 0;
1325 p->hardirqs_enabled = 0;
1326 p->hardirq_enable_ip = 0;
1327 p->hardirq_enable_event = 0;
1328 p->hardirq_disable_ip = _THIS_IP_;
1329 p->hardirq_disable_event = 0;
1330 p->softirqs_enabled = 1;
1331 p->softirq_enable_ip = _THIS_IP_;
1332 p->softirq_enable_event = 0;
1333 p->softirq_disable_ip = 0;
1334 p->softirq_disable_event = 0;
1335 p->hardirq_context = 0;
1336 p->softirq_context = 0;
1337 #endif
1338 #ifdef CONFIG_LOCKDEP
1339 p->lockdep_depth = 0; /* no locks held yet */
1340 p->curr_chain_key = 0;
1341 p->lockdep_recursion = 0;
1342 #endif
1343
1344 #ifdef CONFIG_DEBUG_MUTEXES
1345 p->blocked_on = NULL; /* not blocked yet */
1346 #endif
1347 #ifdef CONFIG_BCACHE
1348 p->sequential_io = 0;
1349 p->sequential_io_avg = 0;
1350 #endif
1351
1352 /* Perform scheduler related setup. Assign this task to a CPU. */
1353 retval = sched_fork(clone_flags, p);
1354 if (retval)
1355 goto bad_fork_cleanup_policy;
1356
1357 retval = perf_event_init_task(p);
1358 if (retval)
1359 goto bad_fork_cleanup_policy;
1360 retval = audit_alloc(p);
1361 if (retval)
1362 goto bad_fork_cleanup_perf;
1363 /* copy all the process information */
1364 shm_init_task(p);
1365 retval = copy_semundo(clone_flags, p);
1366 if (retval)
1367 goto bad_fork_cleanup_audit;
1368 retval = copy_files(clone_flags, p);
1369 if (retval)
1370 goto bad_fork_cleanup_semundo;
1371 retval = copy_fs(clone_flags, p);
1372 if (retval)
1373 goto bad_fork_cleanup_files;
1374 retval = copy_sighand(clone_flags, p);
1375 if (retval)
1376 goto bad_fork_cleanup_fs;
1377 retval = copy_signal(clone_flags, p);
1378 if (retval)
1379 goto bad_fork_cleanup_sighand;
1380 retval = copy_mm(clone_flags, p);
1381 if (retval)
1382 goto bad_fork_cleanup_signal;
1383 retval = copy_namespaces(clone_flags, p);
1384 if (retval)
1385 goto bad_fork_cleanup_mm;
1386 retval = copy_io(clone_flags, p);
1387 if (retval)
1388 goto bad_fork_cleanup_namespaces;
1389 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1390 if (retval)
1391 goto bad_fork_cleanup_io;
1392
1393 if (pid != &init_struct_pid) {
1394 retval = -ENOMEM;
1395 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1396 if (!pid)
1397 goto bad_fork_cleanup_io;
1398 }
1399
1400 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1401 /*
1402 * Clear TID on mm_release()?
1403 */
1404 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1405 #ifdef CONFIG_BLOCK
1406 p->plug = NULL;
1407 #endif
1408 #ifdef CONFIG_FUTEX
1409 p->robust_list = NULL;
1410 #ifdef CONFIG_COMPAT
1411 p->compat_robust_list = NULL;
1412 #endif
1413 INIT_LIST_HEAD(&p->pi_state_list);
1414 p->pi_state_cache = NULL;
1415 #endif
1416 /*
1417 * sigaltstack should be cleared when sharing the same VM
1418 */
1419 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1420 p->sas_ss_sp = p->sas_ss_size = 0;
1421
1422 /*
1423 * Syscall tracing and stepping should be turned off in the
1424 * child regardless of CLONE_PTRACE.
1425 */
1426 user_disable_single_step(p);
1427 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1428 #ifdef TIF_SYSCALL_EMU
1429 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1430 #endif
1431 clear_all_latency_tracing(p);
1432
1433 /* ok, now we should be set up.. */
1434 p->pid = pid_nr(pid);
1435 if (clone_flags & CLONE_THREAD) {
1436 p->exit_signal = -1;
1437 p->group_leader = current->group_leader;
1438 p->tgid = current->tgid;
1439 } else {
1440 if (clone_flags & CLONE_PARENT)
1441 p->exit_signal = current->group_leader->exit_signal;
1442 else
1443 p->exit_signal = (clone_flags & CSIGNAL);
1444 p->group_leader = p;
1445 p->tgid = p->pid;
1446 }
1447
1448 p->nr_dirtied = 0;
1449 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1450 p->dirty_paused_when = 0;
1451
1452 p->pdeath_signal = 0;
1453 INIT_LIST_HEAD(&p->thread_group);
1454 p->task_works = NULL;
1455
1456 /*
1457 * Make it visible to the rest of the system, but dont wake it up yet.
1458 * Need tasklist lock for parent etc handling!
1459 */
1460 write_lock_irq(&tasklist_lock);
1461
1462 /* CLONE_PARENT re-uses the old parent */
1463 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1464 p->real_parent = current->real_parent;
1465 p->parent_exec_id = current->parent_exec_id;
1466 } else {
1467 p->real_parent = current;
1468 p->parent_exec_id = current->self_exec_id;
1469 }
1470
1471 spin_lock(&current->sighand->siglock);
1472
1473 /*
1474 * Copy seccomp details explicitly here, in case they were changed
1475 * before holding sighand lock.
1476 */
1477 copy_seccomp(p);
1478
1479 /*
1480 * Process group and session signals need to be delivered to just the
1481 * parent before the fork or both the parent and the child after the
1482 * fork. Restart if a signal comes in before we add the new process to
1483 * it's process group.
1484 * A fatal signal pending means that current will exit, so the new
1485 * thread can't slip out of an OOM kill (or normal SIGKILL).
1486 */
1487 recalc_sigpending();
1488 if (signal_pending(current)) {
1489 spin_unlock(&current->sighand->siglock);
1490 write_unlock_irq(&tasklist_lock);
1491 retval = -ERESTARTNOINTR;
1492 goto bad_fork_free_pid;
1493 }
1494
1495 if (likely(p->pid)) {
1496 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1497
1498 init_task_pid(p, PIDTYPE_PID, pid);
1499 if (thread_group_leader(p)) {
1500 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1501 init_task_pid(p, PIDTYPE_SID, task_session(current));
1502
1503 if (is_child_reaper(pid)) {
1504 ns_of_pid(pid)->child_reaper = p;
1505 p->signal->flags |= SIGNAL_UNKILLABLE;
1506 }
1507
1508 p->signal->leader_pid = pid;
1509 p->signal->tty = tty_kref_get(current->signal->tty);
1510 list_add_tail(&p->sibling, &p->real_parent->children);
1511 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1512 attach_pid(p, PIDTYPE_PGID);
1513 attach_pid(p, PIDTYPE_SID);
1514 __this_cpu_inc(process_counts);
1515 } else {
1516 current->signal->nr_threads++;
1517 atomic_inc(&current->signal->live);
1518 atomic_inc(&current->signal->sigcnt);
1519 list_add_tail_rcu(&p->thread_group,
1520 &p->group_leader->thread_group);
1521 list_add_tail_rcu(&p->thread_node,
1522 &p->signal->thread_head);
1523 }
1524 attach_pid(p, PIDTYPE_PID);
1525 nr_threads++;
1526 }
1527
1528 total_forks++;
1529 spin_unlock(&current->sighand->siglock);
1530 syscall_tracepoint_update(p);
1531 write_unlock_irq(&tasklist_lock);
1532
1533 proc_fork_connector(p);
1534 cgroup_post_fork(p);
1535 if (clone_flags & CLONE_THREAD)
1536 threadgroup_change_end(current);
1537 perf_event_fork(p);
1538
1539 trace_task_newtask(p, clone_flags);
1540 uprobe_copy_process(p, clone_flags);
1541
1542 return p;
1543
1544 bad_fork_free_pid:
1545 if (pid != &init_struct_pid)
1546 free_pid(pid);
1547 bad_fork_cleanup_io:
1548 if (p->io_context)
1549 exit_io_context(p);
1550 bad_fork_cleanup_namespaces:
1551 exit_task_namespaces(p);
1552 bad_fork_cleanup_mm:
1553 if (p->mm)
1554 mmput(p->mm);
1555 bad_fork_cleanup_signal:
1556 if (!(clone_flags & CLONE_THREAD))
1557 free_signal_struct(p->signal);
1558 bad_fork_cleanup_sighand:
1559 __cleanup_sighand(p->sighand);
1560 bad_fork_cleanup_fs:
1561 exit_fs(p); /* blocking */
1562 bad_fork_cleanup_files:
1563 exit_files(p); /* blocking */
1564 bad_fork_cleanup_semundo:
1565 exit_sem(p);
1566 bad_fork_cleanup_audit:
1567 audit_free(p);
1568 bad_fork_cleanup_perf:
1569 perf_event_free_task(p);
1570 bad_fork_cleanup_policy:
1571 #ifdef CONFIG_NUMA
1572 mpol_put(p->mempolicy);
1573 bad_fork_cleanup_threadgroup_lock:
1574 #endif
1575 if (clone_flags & CLONE_THREAD)
1576 threadgroup_change_end(current);
1577 delayacct_tsk_free(p);
1578 module_put(task_thread_info(p)->exec_domain->module);
1579 bad_fork_cleanup_count:
1580 atomic_dec(&p->cred->user->processes);
1581 exit_creds(p);
1582 bad_fork_free:
1583 free_task(p);
1584 fork_out:
1585 return ERR_PTR(retval);
1586 }
1587
1588 static inline void init_idle_pids(struct pid_link *links)
1589 {
1590 enum pid_type type;
1591
1592 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1593 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1594 links[type].pid = &init_struct_pid;
1595 }
1596 }
1597
1598 struct task_struct *fork_idle(int cpu)
1599 {
1600 struct task_struct *task;
1601 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1602 if (!IS_ERR(task)) {
1603 init_idle_pids(task->pids);
1604 init_idle(task, cpu);
1605 }
1606
1607 return task;
1608 }
1609
1610 /*
1611 * Ok, this is the main fork-routine.
1612 *
1613 * It copies the process, and if successful kick-starts
1614 * it and waits for it to finish using the VM if required.
1615 */
1616 long do_fork(unsigned long clone_flags,
1617 unsigned long stack_start,
1618 unsigned long stack_size,
1619 int __user *parent_tidptr,
1620 int __user *child_tidptr)
1621 {
1622 struct task_struct *p;
1623 int trace = 0;
1624 long nr;
1625
1626 /*
1627 * Determine whether and which event to report to ptracer. When
1628 * called from kernel_thread or CLONE_UNTRACED is explicitly
1629 * requested, no event is reported; otherwise, report if the event
1630 * for the type of forking is enabled.
1631 */
1632 if (!(clone_flags & CLONE_UNTRACED)) {
1633 if (clone_flags & CLONE_VFORK)
1634 trace = PTRACE_EVENT_VFORK;
1635 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1636 trace = PTRACE_EVENT_CLONE;
1637 else
1638 trace = PTRACE_EVENT_FORK;
1639
1640 if (likely(!ptrace_event_enabled(current, trace)))
1641 trace = 0;
1642 }
1643
1644 p = copy_process(clone_flags, stack_start, stack_size,
1645 child_tidptr, NULL, trace);
1646 /*
1647 * Do this prior waking up the new thread - the thread pointer
1648 * might get invalid after that point, if the thread exits quickly.
1649 */
1650 if (!IS_ERR(p)) {
1651 struct completion vfork;
1652 struct pid *pid;
1653
1654 trace_sched_process_fork(current, p);
1655
1656 pid = get_task_pid(p, PIDTYPE_PID);
1657 nr = pid_vnr(pid);
1658
1659 if (clone_flags & CLONE_PARENT_SETTID)
1660 put_user(nr, parent_tidptr);
1661
1662 if (clone_flags & CLONE_VFORK) {
1663 p->vfork_done = &vfork;
1664 init_completion(&vfork);
1665 get_task_struct(p);
1666 }
1667
1668 wake_up_new_task(p);
1669
1670 /* forking complete and child started to run, tell ptracer */
1671 if (unlikely(trace))
1672 ptrace_event_pid(trace, pid);
1673
1674 if (clone_flags & CLONE_VFORK) {
1675 if (!wait_for_vfork_done(p, &vfork))
1676 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1677 }
1678
1679 put_pid(pid);
1680 } else {
1681 nr = PTR_ERR(p);
1682 }
1683 return nr;
1684 }
1685
1686 /*
1687 * Create a kernel thread.
1688 */
1689 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1690 {
1691 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1692 (unsigned long)arg, NULL, NULL);
1693 }
1694
1695 #ifdef __ARCH_WANT_SYS_FORK
1696 SYSCALL_DEFINE0(fork)
1697 {
1698 #ifdef CONFIG_MMU
1699 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1700 #else
1701 /* can not support in nommu mode */
1702 return -EINVAL;
1703 #endif
1704 }
1705 #endif
1706
1707 #ifdef __ARCH_WANT_SYS_VFORK
1708 SYSCALL_DEFINE0(vfork)
1709 {
1710 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1711 0, NULL, NULL);
1712 }
1713 #endif
1714
1715 #ifdef __ARCH_WANT_SYS_CLONE
1716 #ifdef CONFIG_CLONE_BACKWARDS
1717 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1718 int __user *, parent_tidptr,
1719 int, tls_val,
1720 int __user *, child_tidptr)
1721 #elif defined(CONFIG_CLONE_BACKWARDS2)
1722 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1723 int __user *, parent_tidptr,
1724 int __user *, child_tidptr,
1725 int, tls_val)
1726 #elif defined(CONFIG_CLONE_BACKWARDS3)
1727 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1728 int, stack_size,
1729 int __user *, parent_tidptr,
1730 int __user *, child_tidptr,
1731 int, tls_val)
1732 #else
1733 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1734 int __user *, parent_tidptr,
1735 int __user *, child_tidptr,
1736 int, tls_val)
1737 #endif
1738 {
1739 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1740 }
1741 #endif
1742
1743 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1744 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1745 #endif
1746
1747 static void sighand_ctor(void *data)
1748 {
1749 struct sighand_struct *sighand = data;
1750
1751 spin_lock_init(&sighand->siglock);
1752 init_waitqueue_head(&sighand->signalfd_wqh);
1753 }
1754
1755 void __init proc_caches_init(void)
1756 {
1757 sighand_cachep = kmem_cache_create("sighand_cache",
1758 sizeof(struct sighand_struct), 0,
1759 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1760 SLAB_NOTRACK, sighand_ctor);
1761 signal_cachep = kmem_cache_create("signal_cache",
1762 sizeof(struct signal_struct), 0,
1763 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1764 files_cachep = kmem_cache_create("files_cache",
1765 sizeof(struct files_struct), 0,
1766 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1767 fs_cachep = kmem_cache_create("fs_cache",
1768 sizeof(struct fs_struct), 0,
1769 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1770 /*
1771 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1772 * whole struct cpumask for the OFFSTACK case. We could change
1773 * this to *only* allocate as much of it as required by the
1774 * maximum number of CPU's we can ever have. The cpumask_allocation
1775 * is at the end of the structure, exactly for that reason.
1776 */
1777 mm_cachep = kmem_cache_create("mm_struct",
1778 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1779 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1780 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1781 mmap_init();
1782 nsproxy_cache_init();
1783 }
1784
1785 /*
1786 * Check constraints on flags passed to the unshare system call.
1787 */
1788 static int check_unshare_flags(unsigned long unshare_flags)
1789 {
1790 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1791 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1792 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1793 CLONE_NEWUSER|CLONE_NEWPID))
1794 return -EINVAL;
1795 /*
1796 * Not implemented, but pretend it works if there is nothing to
1797 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1798 * needs to unshare vm.
1799 */
1800 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1801 /* FIXME: get_task_mm() increments ->mm_users */
1802 if (atomic_read(&current->mm->mm_users) > 1)
1803 return -EINVAL;
1804 }
1805
1806 return 0;
1807 }
1808
1809 /*
1810 * Unshare the filesystem structure if it is being shared
1811 */
1812 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1813 {
1814 struct fs_struct *fs = current->fs;
1815
1816 if (!(unshare_flags & CLONE_FS) || !fs)
1817 return 0;
1818
1819 /* don't need lock here; in the worst case we'll do useless copy */
1820 if (fs->users == 1)
1821 return 0;
1822
1823 *new_fsp = copy_fs_struct(fs);
1824 if (!*new_fsp)
1825 return -ENOMEM;
1826
1827 return 0;
1828 }
1829
1830 /*
1831 * Unshare file descriptor table if it is being shared
1832 */
1833 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1834 {
1835 struct files_struct *fd = current->files;
1836 int error = 0;
1837
1838 if ((unshare_flags & CLONE_FILES) &&
1839 (fd && atomic_read(&fd->count) > 1)) {
1840 *new_fdp = dup_fd(fd, &error);
1841 if (!*new_fdp)
1842 return error;
1843 }
1844
1845 return 0;
1846 }
1847
1848 /*
1849 * unshare allows a process to 'unshare' part of the process
1850 * context which was originally shared using clone. copy_*
1851 * functions used by do_fork() cannot be used here directly
1852 * because they modify an inactive task_struct that is being
1853 * constructed. Here we are modifying the current, active,
1854 * task_struct.
1855 */
1856 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1857 {
1858 struct fs_struct *fs, *new_fs = NULL;
1859 struct files_struct *fd, *new_fd = NULL;
1860 struct cred *new_cred = NULL;
1861 struct nsproxy *new_nsproxy = NULL;
1862 int do_sysvsem = 0;
1863 int err;
1864
1865 /*
1866 * If unsharing a user namespace must also unshare the thread.
1867 */
1868 if (unshare_flags & CLONE_NEWUSER)
1869 unshare_flags |= CLONE_THREAD | CLONE_FS;
1870 /*
1871 * If unsharing a thread from a thread group, must also unshare vm.
1872 */
1873 if (unshare_flags & CLONE_THREAD)
1874 unshare_flags |= CLONE_VM;
1875 /*
1876 * If unsharing vm, must also unshare signal handlers.
1877 */
1878 if (unshare_flags & CLONE_VM)
1879 unshare_flags |= CLONE_SIGHAND;
1880 /*
1881 * If unsharing namespace, must also unshare filesystem information.
1882 */
1883 if (unshare_flags & CLONE_NEWNS)
1884 unshare_flags |= CLONE_FS;
1885
1886 err = check_unshare_flags(unshare_flags);
1887 if (err)
1888 goto bad_unshare_out;
1889 /*
1890 * CLONE_NEWIPC must also detach from the undolist: after switching
1891 * to a new ipc namespace, the semaphore arrays from the old
1892 * namespace are unreachable.
1893 */
1894 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1895 do_sysvsem = 1;
1896 err = unshare_fs(unshare_flags, &new_fs);
1897 if (err)
1898 goto bad_unshare_out;
1899 err = unshare_fd(unshare_flags, &new_fd);
1900 if (err)
1901 goto bad_unshare_cleanup_fs;
1902 err = unshare_userns(unshare_flags, &new_cred);
1903 if (err)
1904 goto bad_unshare_cleanup_fd;
1905 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1906 new_cred, new_fs);
1907 if (err)
1908 goto bad_unshare_cleanup_cred;
1909
1910 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1911 if (do_sysvsem) {
1912 /*
1913 * CLONE_SYSVSEM is equivalent to sys_exit().
1914 */
1915 exit_sem(current);
1916 }
1917 if (unshare_flags & CLONE_NEWIPC) {
1918 /* Orphan segments in old ns (see sem above). */
1919 exit_shm(current);
1920 shm_init_task(current);
1921 }
1922
1923 if (new_nsproxy)
1924 switch_task_namespaces(current, new_nsproxy);
1925
1926 task_lock(current);
1927
1928 if (new_fs) {
1929 fs = current->fs;
1930 spin_lock(&fs->lock);
1931 current->fs = new_fs;
1932 if (--fs->users)
1933 new_fs = NULL;
1934 else
1935 new_fs = fs;
1936 spin_unlock(&fs->lock);
1937 }
1938
1939 if (new_fd) {
1940 fd = current->files;
1941 current->files = new_fd;
1942 new_fd = fd;
1943 }
1944
1945 task_unlock(current);
1946
1947 if (new_cred) {
1948 /* Install the new user namespace */
1949 commit_creds(new_cred);
1950 new_cred = NULL;
1951 }
1952 }
1953
1954 bad_unshare_cleanup_cred:
1955 if (new_cred)
1956 put_cred(new_cred);
1957 bad_unshare_cleanup_fd:
1958 if (new_fd)
1959 put_files_struct(new_fd);
1960
1961 bad_unshare_cleanup_fs:
1962 if (new_fs)
1963 free_fs_struct(new_fs);
1964
1965 bad_unshare_out:
1966 return err;
1967 }
1968
1969 /*
1970 * Helper to unshare the files of the current task.
1971 * We don't want to expose copy_files internals to
1972 * the exec layer of the kernel.
1973 */
1974
1975 int unshare_files(struct files_struct **displaced)
1976 {
1977 struct task_struct *task = current;
1978 struct files_struct *copy = NULL;
1979 int error;
1980
1981 error = unshare_fd(CLONE_FILES, &copy);
1982 if (error || !copy) {
1983 *displaced = NULL;
1984 return error;
1985 }
1986 *displaced = task->files;
1987 task_lock(task);
1988 task->files = copy;
1989 task_unlock(task);
1990 return 0;
1991 }
This page took 0.093332 seconds and 6 git commands to generate.