Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72
73 #include <asm/pgtable.h>
74 #include <asm/pgalloc.h>
75 #include <asm/uaccess.h>
76 #include <asm/mmu_context.h>
77 #include <asm/cacheflush.h>
78 #include <asm/tlbflush.h>
79
80 #include <trace/events/sched.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/task.h>
84
85 /*
86 * Protected counters by write_lock_irq(&tasklist_lock)
87 */
88 unsigned long total_forks; /* Handle normal Linux uptimes. */
89 int nr_threads; /* The idle threads do not count.. */
90
91 int max_threads; /* tunable limit on nr_threads */
92
93 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
94
95 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
96
97 #ifdef CONFIG_PROVE_RCU
98 int lockdep_tasklist_lock_is_held(void)
99 {
100 return lockdep_is_held(&tasklist_lock);
101 }
102 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
103 #endif /* #ifdef CONFIG_PROVE_RCU */
104
105 int nr_processes(void)
106 {
107 int cpu;
108 int total = 0;
109
110 for_each_possible_cpu(cpu)
111 total += per_cpu(process_counts, cpu);
112
113 return total;
114 }
115
116 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
117 static struct kmem_cache *task_struct_cachep;
118
119 static inline struct task_struct *alloc_task_struct_node(int node)
120 {
121 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
122 }
123
124 void __weak arch_release_task_struct(struct task_struct *tsk) { }
125
126 static inline void free_task_struct(struct task_struct *tsk)
127 {
128 arch_release_task_struct(tsk);
129 kmem_cache_free(task_struct_cachep, tsk);
130 }
131 #endif
132
133 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
134 void __weak arch_release_thread_info(struct thread_info *ti) { }
135
136 /*
137 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
138 * kmemcache based allocator.
139 */
140 # if THREAD_SIZE >= PAGE_SIZE
141 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
142 int node)
143 {
144 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
145 THREAD_SIZE_ORDER);
146
147 return page ? page_address(page) : NULL;
148 }
149
150 static inline void free_thread_info(struct thread_info *ti)
151 {
152 arch_release_thread_info(ti);
153 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
154 }
155 # else
156 static struct kmem_cache *thread_info_cache;
157
158 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
159 int node)
160 {
161 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
162 }
163
164 static void free_thread_info(struct thread_info *ti)
165 {
166 arch_release_thread_info(ti);
167 kmem_cache_free(thread_info_cache, ti);
168 }
169
170 void thread_info_cache_init(void)
171 {
172 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
173 THREAD_SIZE, 0, NULL);
174 BUG_ON(thread_info_cache == NULL);
175 }
176 # endif
177 #endif
178
179 /* SLAB cache for signal_struct structures (tsk->signal) */
180 static struct kmem_cache *signal_cachep;
181
182 /* SLAB cache for sighand_struct structures (tsk->sighand) */
183 struct kmem_cache *sighand_cachep;
184
185 /* SLAB cache for files_struct structures (tsk->files) */
186 struct kmem_cache *files_cachep;
187
188 /* SLAB cache for fs_struct structures (tsk->fs) */
189 struct kmem_cache *fs_cachep;
190
191 /* SLAB cache for vm_area_struct structures */
192 struct kmem_cache *vm_area_cachep;
193
194 /* SLAB cache for mm_struct structures (tsk->mm) */
195 static struct kmem_cache *mm_cachep;
196
197 static void account_kernel_stack(struct thread_info *ti, int account)
198 {
199 struct zone *zone = page_zone(virt_to_page(ti));
200
201 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
202 }
203
204 void free_task(struct task_struct *tsk)
205 {
206 account_kernel_stack(tsk->stack, -1);
207 free_thread_info(tsk->stack);
208 rt_mutex_debug_task_free(tsk);
209 ftrace_graph_exit_task(tsk);
210 put_seccomp_filter(tsk);
211 free_task_struct(tsk);
212 }
213 EXPORT_SYMBOL(free_task);
214
215 static inline void free_signal_struct(struct signal_struct *sig)
216 {
217 taskstats_tgid_free(sig);
218 sched_autogroup_exit(sig);
219 kmem_cache_free(signal_cachep, sig);
220 }
221
222 static inline void put_signal_struct(struct signal_struct *sig)
223 {
224 if (atomic_dec_and_test(&sig->sigcnt))
225 free_signal_struct(sig);
226 }
227
228 void __put_task_struct(struct task_struct *tsk)
229 {
230 WARN_ON(!tsk->exit_state);
231 WARN_ON(atomic_read(&tsk->usage));
232 WARN_ON(tsk == current);
233
234 security_task_free(tsk);
235 exit_creds(tsk);
236 delayacct_tsk_free(tsk);
237 put_signal_struct(tsk->signal);
238
239 if (!profile_handoff_task(tsk))
240 free_task(tsk);
241 }
242 EXPORT_SYMBOL_GPL(__put_task_struct);
243
244 void __init __weak arch_task_cache_init(void) { }
245
246 void __init fork_init(unsigned long mempages)
247 {
248 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
249 #ifndef ARCH_MIN_TASKALIGN
250 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
251 #endif
252 /* create a slab on which task_structs can be allocated */
253 task_struct_cachep =
254 kmem_cache_create("task_struct", sizeof(struct task_struct),
255 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
256 #endif
257
258 /* do the arch specific task caches init */
259 arch_task_cache_init();
260
261 /*
262 * The default maximum number of threads is set to a safe
263 * value: the thread structures can take up at most half
264 * of memory.
265 */
266 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
267
268 /*
269 * we need to allow at least 20 threads to boot a system
270 */
271 if (max_threads < 20)
272 max_threads = 20;
273
274 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
275 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
276 init_task.signal->rlim[RLIMIT_SIGPENDING] =
277 init_task.signal->rlim[RLIMIT_NPROC];
278 }
279
280 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
281 struct task_struct *src)
282 {
283 *dst = *src;
284 return 0;
285 }
286
287 static struct task_struct *dup_task_struct(struct task_struct *orig)
288 {
289 struct task_struct *tsk;
290 struct thread_info *ti;
291 unsigned long *stackend;
292 int node = tsk_fork_get_node(orig);
293 int err;
294
295 prepare_to_copy(orig);
296
297 tsk = alloc_task_struct_node(node);
298 if (!tsk)
299 return NULL;
300
301 ti = alloc_thread_info_node(tsk, node);
302 if (!ti) {
303 free_task_struct(tsk);
304 return NULL;
305 }
306
307 err = arch_dup_task_struct(tsk, orig);
308 if (err)
309 goto out;
310
311 tsk->stack = ti;
312
313 setup_thread_stack(tsk, orig);
314 clear_user_return_notifier(tsk);
315 clear_tsk_need_resched(tsk);
316 stackend = end_of_stack(tsk);
317 *stackend = STACK_END_MAGIC; /* for overflow detection */
318
319 #ifdef CONFIG_CC_STACKPROTECTOR
320 tsk->stack_canary = get_random_int();
321 #endif
322
323 /*
324 * One for us, one for whoever does the "release_task()" (usually
325 * parent)
326 */
327 atomic_set(&tsk->usage, 2);
328 #ifdef CONFIG_BLK_DEV_IO_TRACE
329 tsk->btrace_seq = 0;
330 #endif
331 tsk->splice_pipe = NULL;
332
333 account_kernel_stack(ti, 1);
334
335 return tsk;
336
337 out:
338 free_thread_info(ti);
339 free_task_struct(tsk);
340 return NULL;
341 }
342
343 #ifdef CONFIG_MMU
344 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
345 {
346 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
347 struct rb_node **rb_link, *rb_parent;
348 int retval;
349 unsigned long charge;
350 struct mempolicy *pol;
351
352 down_write(&oldmm->mmap_sem);
353 flush_cache_dup_mm(oldmm);
354 /*
355 * Not linked in yet - no deadlock potential:
356 */
357 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
358
359 mm->locked_vm = 0;
360 mm->mmap = NULL;
361 mm->mmap_cache = NULL;
362 mm->free_area_cache = oldmm->mmap_base;
363 mm->cached_hole_size = ~0UL;
364 mm->map_count = 0;
365 cpumask_clear(mm_cpumask(mm));
366 mm->mm_rb = RB_ROOT;
367 rb_link = &mm->mm_rb.rb_node;
368 rb_parent = NULL;
369 pprev = &mm->mmap;
370 retval = ksm_fork(mm, oldmm);
371 if (retval)
372 goto out;
373 retval = khugepaged_fork(mm, oldmm);
374 if (retval)
375 goto out;
376
377 prev = NULL;
378 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
379 struct file *file;
380
381 if (mpnt->vm_flags & VM_DONTCOPY) {
382 long pages = vma_pages(mpnt);
383 mm->total_vm -= pages;
384 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
385 -pages);
386 continue;
387 }
388 charge = 0;
389 if (mpnt->vm_flags & VM_ACCOUNT) {
390 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
391 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
392 goto fail_nomem;
393 charge = len;
394 }
395 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
396 if (!tmp)
397 goto fail_nomem;
398 *tmp = *mpnt;
399 INIT_LIST_HEAD(&tmp->anon_vma_chain);
400 pol = mpol_dup(vma_policy(mpnt));
401 retval = PTR_ERR(pol);
402 if (IS_ERR(pol))
403 goto fail_nomem_policy;
404 vma_set_policy(tmp, pol);
405 tmp->vm_mm = mm;
406 if (anon_vma_fork(tmp, mpnt))
407 goto fail_nomem_anon_vma_fork;
408 tmp->vm_flags &= ~VM_LOCKED;
409 tmp->vm_next = tmp->vm_prev = NULL;
410 file = tmp->vm_file;
411 if (file) {
412 struct inode *inode = file->f_path.dentry->d_inode;
413 struct address_space *mapping = file->f_mapping;
414
415 get_file(file);
416 if (tmp->vm_flags & VM_DENYWRITE)
417 atomic_dec(&inode->i_writecount);
418 mutex_lock(&mapping->i_mmap_mutex);
419 if (tmp->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 /* insert tmp into the share list, just after mpnt */
423 vma_prio_tree_add(tmp, mpnt);
424 flush_dcache_mmap_unlock(mapping);
425 mutex_unlock(&mapping->i_mmap_mutex);
426 }
427
428 /*
429 * Clear hugetlb-related page reserves for children. This only
430 * affects MAP_PRIVATE mappings. Faults generated by the child
431 * are not guaranteed to succeed, even if read-only
432 */
433 if (is_vm_hugetlb_page(tmp))
434 reset_vma_resv_huge_pages(tmp);
435
436 /*
437 * Link in the new vma and copy the page table entries.
438 */
439 *pprev = tmp;
440 pprev = &tmp->vm_next;
441 tmp->vm_prev = prev;
442 prev = tmp;
443
444 __vma_link_rb(mm, tmp, rb_link, rb_parent);
445 rb_link = &tmp->vm_rb.rb_right;
446 rb_parent = &tmp->vm_rb;
447
448 mm->map_count++;
449 retval = copy_page_range(mm, oldmm, mpnt);
450
451 if (tmp->vm_ops && tmp->vm_ops->open)
452 tmp->vm_ops->open(tmp);
453
454 if (retval)
455 goto out;
456 }
457 /* a new mm has just been created */
458 arch_dup_mmap(oldmm, mm);
459 retval = 0;
460 out:
461 up_write(&mm->mmap_sem);
462 flush_tlb_mm(oldmm);
463 up_write(&oldmm->mmap_sem);
464 return retval;
465 fail_nomem_anon_vma_fork:
466 mpol_put(pol);
467 fail_nomem_policy:
468 kmem_cache_free(vm_area_cachep, tmp);
469 fail_nomem:
470 retval = -ENOMEM;
471 vm_unacct_memory(charge);
472 goto out;
473 }
474
475 static inline int mm_alloc_pgd(struct mm_struct *mm)
476 {
477 mm->pgd = pgd_alloc(mm);
478 if (unlikely(!mm->pgd))
479 return -ENOMEM;
480 return 0;
481 }
482
483 static inline void mm_free_pgd(struct mm_struct *mm)
484 {
485 pgd_free(mm, mm->pgd);
486 }
487 #else
488 #define dup_mmap(mm, oldmm) (0)
489 #define mm_alloc_pgd(mm) (0)
490 #define mm_free_pgd(mm)
491 #endif /* CONFIG_MMU */
492
493 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
494
495 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
496 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
497
498 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
499
500 static int __init coredump_filter_setup(char *s)
501 {
502 default_dump_filter =
503 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
504 MMF_DUMP_FILTER_MASK;
505 return 1;
506 }
507
508 __setup("coredump_filter=", coredump_filter_setup);
509
510 #include <linux/init_task.h>
511
512 static void mm_init_aio(struct mm_struct *mm)
513 {
514 #ifdef CONFIG_AIO
515 spin_lock_init(&mm->ioctx_lock);
516 INIT_HLIST_HEAD(&mm->ioctx_list);
517 #endif
518 }
519
520 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
521 {
522 atomic_set(&mm->mm_users, 1);
523 atomic_set(&mm->mm_count, 1);
524 init_rwsem(&mm->mmap_sem);
525 INIT_LIST_HEAD(&mm->mmlist);
526 mm->flags = (current->mm) ?
527 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
528 mm->core_state = NULL;
529 mm->nr_ptes = 0;
530 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
531 spin_lock_init(&mm->page_table_lock);
532 mm->free_area_cache = TASK_UNMAPPED_BASE;
533 mm->cached_hole_size = ~0UL;
534 mm_init_aio(mm);
535 mm_init_owner(mm, p);
536
537 if (likely(!mm_alloc_pgd(mm))) {
538 mm->def_flags = 0;
539 mmu_notifier_mm_init(mm);
540 return mm;
541 }
542
543 free_mm(mm);
544 return NULL;
545 }
546
547 static void check_mm(struct mm_struct *mm)
548 {
549 int i;
550
551 for (i = 0; i < NR_MM_COUNTERS; i++) {
552 long x = atomic_long_read(&mm->rss_stat.count[i]);
553
554 if (unlikely(x))
555 printk(KERN_ALERT "BUG: Bad rss-counter state "
556 "mm:%p idx:%d val:%ld\n", mm, i, x);
557 }
558
559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
560 VM_BUG_ON(mm->pmd_huge_pte);
561 #endif
562 }
563
564 /*
565 * Allocate and initialize an mm_struct.
566 */
567 struct mm_struct *mm_alloc(void)
568 {
569 struct mm_struct *mm;
570
571 mm = allocate_mm();
572 if (!mm)
573 return NULL;
574
575 memset(mm, 0, sizeof(*mm));
576 mm_init_cpumask(mm);
577 return mm_init(mm, current);
578 }
579
580 /*
581 * Called when the last reference to the mm
582 * is dropped: either by a lazy thread or by
583 * mmput. Free the page directory and the mm.
584 */
585 void __mmdrop(struct mm_struct *mm)
586 {
587 BUG_ON(mm == &init_mm);
588 mm_free_pgd(mm);
589 destroy_context(mm);
590 mmu_notifier_mm_destroy(mm);
591 check_mm(mm);
592 free_mm(mm);
593 }
594 EXPORT_SYMBOL_GPL(__mmdrop);
595
596 /*
597 * Decrement the use count and release all resources for an mm.
598 */
599 void mmput(struct mm_struct *mm)
600 {
601 might_sleep();
602
603 if (atomic_dec_and_test(&mm->mm_users)) {
604 exit_aio(mm);
605 ksm_exit(mm);
606 khugepaged_exit(mm); /* must run before exit_mmap */
607 exit_mmap(mm);
608 set_mm_exe_file(mm, NULL);
609 if (!list_empty(&mm->mmlist)) {
610 spin_lock(&mmlist_lock);
611 list_del(&mm->mmlist);
612 spin_unlock(&mmlist_lock);
613 }
614 put_swap_token(mm);
615 if (mm->binfmt)
616 module_put(mm->binfmt->module);
617 mmdrop(mm);
618 }
619 }
620 EXPORT_SYMBOL_GPL(mmput);
621
622 /*
623 * We added or removed a vma mapping the executable. The vmas are only mapped
624 * during exec and are not mapped with the mmap system call.
625 * Callers must hold down_write() on the mm's mmap_sem for these
626 */
627 void added_exe_file_vma(struct mm_struct *mm)
628 {
629 mm->num_exe_file_vmas++;
630 }
631
632 void removed_exe_file_vma(struct mm_struct *mm)
633 {
634 mm->num_exe_file_vmas--;
635 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
636 fput(mm->exe_file);
637 mm->exe_file = NULL;
638 }
639
640 }
641
642 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
643 {
644 if (new_exe_file)
645 get_file(new_exe_file);
646 if (mm->exe_file)
647 fput(mm->exe_file);
648 mm->exe_file = new_exe_file;
649 mm->num_exe_file_vmas = 0;
650 }
651
652 struct file *get_mm_exe_file(struct mm_struct *mm)
653 {
654 struct file *exe_file;
655
656 /* We need mmap_sem to protect against races with removal of
657 * VM_EXECUTABLE vmas */
658 down_read(&mm->mmap_sem);
659 exe_file = mm->exe_file;
660 if (exe_file)
661 get_file(exe_file);
662 up_read(&mm->mmap_sem);
663 return exe_file;
664 }
665
666 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
667 {
668 /* It's safe to write the exe_file pointer without exe_file_lock because
669 * this is called during fork when the task is not yet in /proc */
670 newmm->exe_file = get_mm_exe_file(oldmm);
671 }
672
673 /**
674 * get_task_mm - acquire a reference to the task's mm
675 *
676 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
677 * this kernel workthread has transiently adopted a user mm with use_mm,
678 * to do its AIO) is not set and if so returns a reference to it, after
679 * bumping up the use count. User must release the mm via mmput()
680 * after use. Typically used by /proc and ptrace.
681 */
682 struct mm_struct *get_task_mm(struct task_struct *task)
683 {
684 struct mm_struct *mm;
685
686 task_lock(task);
687 mm = task->mm;
688 if (mm) {
689 if (task->flags & PF_KTHREAD)
690 mm = NULL;
691 else
692 atomic_inc(&mm->mm_users);
693 }
694 task_unlock(task);
695 return mm;
696 }
697 EXPORT_SYMBOL_GPL(get_task_mm);
698
699 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
700 {
701 struct mm_struct *mm;
702 int err;
703
704 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
705 if (err)
706 return ERR_PTR(err);
707
708 mm = get_task_mm(task);
709 if (mm && mm != current->mm &&
710 !ptrace_may_access(task, mode)) {
711 mmput(mm);
712 mm = ERR_PTR(-EACCES);
713 }
714 mutex_unlock(&task->signal->cred_guard_mutex);
715
716 return mm;
717 }
718
719 static void complete_vfork_done(struct task_struct *tsk)
720 {
721 struct completion *vfork;
722
723 task_lock(tsk);
724 vfork = tsk->vfork_done;
725 if (likely(vfork)) {
726 tsk->vfork_done = NULL;
727 complete(vfork);
728 }
729 task_unlock(tsk);
730 }
731
732 static int wait_for_vfork_done(struct task_struct *child,
733 struct completion *vfork)
734 {
735 int killed;
736
737 freezer_do_not_count();
738 killed = wait_for_completion_killable(vfork);
739 freezer_count();
740
741 if (killed) {
742 task_lock(child);
743 child->vfork_done = NULL;
744 task_unlock(child);
745 }
746
747 put_task_struct(child);
748 return killed;
749 }
750
751 /* Please note the differences between mmput and mm_release.
752 * mmput is called whenever we stop holding onto a mm_struct,
753 * error success whatever.
754 *
755 * mm_release is called after a mm_struct has been removed
756 * from the current process.
757 *
758 * This difference is important for error handling, when we
759 * only half set up a mm_struct for a new process and need to restore
760 * the old one. Because we mmput the new mm_struct before
761 * restoring the old one. . .
762 * Eric Biederman 10 January 1998
763 */
764 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
765 {
766 /* Get rid of any futexes when releasing the mm */
767 #ifdef CONFIG_FUTEX
768 if (unlikely(tsk->robust_list)) {
769 exit_robust_list(tsk);
770 tsk->robust_list = NULL;
771 }
772 #ifdef CONFIG_COMPAT
773 if (unlikely(tsk->compat_robust_list)) {
774 compat_exit_robust_list(tsk);
775 tsk->compat_robust_list = NULL;
776 }
777 #endif
778 if (unlikely(!list_empty(&tsk->pi_state_list)))
779 exit_pi_state_list(tsk);
780 #endif
781
782 /* Get rid of any cached register state */
783 deactivate_mm(tsk, mm);
784
785 if (tsk->vfork_done)
786 complete_vfork_done(tsk);
787
788 /*
789 * If we're exiting normally, clear a user-space tid field if
790 * requested. We leave this alone when dying by signal, to leave
791 * the value intact in a core dump, and to save the unnecessary
792 * trouble, say, a killed vfork parent shouldn't touch this mm.
793 * Userland only wants this done for a sys_exit.
794 */
795 if (tsk->clear_child_tid) {
796 if (!(tsk->flags & PF_SIGNALED) &&
797 atomic_read(&mm->mm_users) > 1) {
798 /*
799 * We don't check the error code - if userspace has
800 * not set up a proper pointer then tough luck.
801 */
802 put_user(0, tsk->clear_child_tid);
803 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
804 1, NULL, NULL, 0);
805 }
806 tsk->clear_child_tid = NULL;
807 }
808 }
809
810 /*
811 * Allocate a new mm structure and copy contents from the
812 * mm structure of the passed in task structure.
813 */
814 struct mm_struct *dup_mm(struct task_struct *tsk)
815 {
816 struct mm_struct *mm, *oldmm = current->mm;
817 int err;
818
819 if (!oldmm)
820 return NULL;
821
822 mm = allocate_mm();
823 if (!mm)
824 goto fail_nomem;
825
826 memcpy(mm, oldmm, sizeof(*mm));
827 mm_init_cpumask(mm);
828
829 /* Initializing for Swap token stuff */
830 mm->token_priority = 0;
831 mm->last_interval = 0;
832
833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
834 mm->pmd_huge_pte = NULL;
835 #endif
836
837 if (!mm_init(mm, tsk))
838 goto fail_nomem;
839
840 if (init_new_context(tsk, mm))
841 goto fail_nocontext;
842
843 dup_mm_exe_file(oldmm, mm);
844
845 err = dup_mmap(mm, oldmm);
846 if (err)
847 goto free_pt;
848
849 mm->hiwater_rss = get_mm_rss(mm);
850 mm->hiwater_vm = mm->total_vm;
851
852 if (mm->binfmt && !try_module_get(mm->binfmt->module))
853 goto free_pt;
854
855 return mm;
856
857 free_pt:
858 /* don't put binfmt in mmput, we haven't got module yet */
859 mm->binfmt = NULL;
860 mmput(mm);
861
862 fail_nomem:
863 return NULL;
864
865 fail_nocontext:
866 /*
867 * If init_new_context() failed, we cannot use mmput() to free the mm
868 * because it calls destroy_context()
869 */
870 mm_free_pgd(mm);
871 free_mm(mm);
872 return NULL;
873 }
874
875 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
876 {
877 struct mm_struct *mm, *oldmm;
878 int retval;
879
880 tsk->min_flt = tsk->maj_flt = 0;
881 tsk->nvcsw = tsk->nivcsw = 0;
882 #ifdef CONFIG_DETECT_HUNG_TASK
883 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
884 #endif
885
886 tsk->mm = NULL;
887 tsk->active_mm = NULL;
888
889 /*
890 * Are we cloning a kernel thread?
891 *
892 * We need to steal a active VM for that..
893 */
894 oldmm = current->mm;
895 if (!oldmm)
896 return 0;
897
898 if (clone_flags & CLONE_VM) {
899 atomic_inc(&oldmm->mm_users);
900 mm = oldmm;
901 goto good_mm;
902 }
903
904 retval = -ENOMEM;
905 mm = dup_mm(tsk);
906 if (!mm)
907 goto fail_nomem;
908
909 good_mm:
910 /* Initializing for Swap token stuff */
911 mm->token_priority = 0;
912 mm->last_interval = 0;
913
914 tsk->mm = mm;
915 tsk->active_mm = mm;
916 return 0;
917
918 fail_nomem:
919 return retval;
920 }
921
922 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
923 {
924 struct fs_struct *fs = current->fs;
925 if (clone_flags & CLONE_FS) {
926 /* tsk->fs is already what we want */
927 spin_lock(&fs->lock);
928 if (fs->in_exec) {
929 spin_unlock(&fs->lock);
930 return -EAGAIN;
931 }
932 fs->users++;
933 spin_unlock(&fs->lock);
934 return 0;
935 }
936 tsk->fs = copy_fs_struct(fs);
937 if (!tsk->fs)
938 return -ENOMEM;
939 return 0;
940 }
941
942 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
943 {
944 struct files_struct *oldf, *newf;
945 int error = 0;
946
947 /*
948 * A background process may not have any files ...
949 */
950 oldf = current->files;
951 if (!oldf)
952 goto out;
953
954 if (clone_flags & CLONE_FILES) {
955 atomic_inc(&oldf->count);
956 goto out;
957 }
958
959 newf = dup_fd(oldf, &error);
960 if (!newf)
961 goto out;
962
963 tsk->files = newf;
964 error = 0;
965 out:
966 return error;
967 }
968
969 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
970 {
971 #ifdef CONFIG_BLOCK
972 struct io_context *ioc = current->io_context;
973 struct io_context *new_ioc;
974
975 if (!ioc)
976 return 0;
977 /*
978 * Share io context with parent, if CLONE_IO is set
979 */
980 if (clone_flags & CLONE_IO) {
981 tsk->io_context = ioc_task_link(ioc);
982 if (unlikely(!tsk->io_context))
983 return -ENOMEM;
984 } else if (ioprio_valid(ioc->ioprio)) {
985 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
986 if (unlikely(!new_ioc))
987 return -ENOMEM;
988
989 new_ioc->ioprio = ioc->ioprio;
990 put_io_context(new_ioc);
991 }
992 #endif
993 return 0;
994 }
995
996 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
997 {
998 struct sighand_struct *sig;
999
1000 if (clone_flags & CLONE_SIGHAND) {
1001 atomic_inc(&current->sighand->count);
1002 return 0;
1003 }
1004 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1005 rcu_assign_pointer(tsk->sighand, sig);
1006 if (!sig)
1007 return -ENOMEM;
1008 atomic_set(&sig->count, 1);
1009 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1010 return 0;
1011 }
1012
1013 void __cleanup_sighand(struct sighand_struct *sighand)
1014 {
1015 if (atomic_dec_and_test(&sighand->count)) {
1016 signalfd_cleanup(sighand);
1017 kmem_cache_free(sighand_cachep, sighand);
1018 }
1019 }
1020
1021
1022 /*
1023 * Initialize POSIX timer handling for a thread group.
1024 */
1025 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1026 {
1027 unsigned long cpu_limit;
1028
1029 /* Thread group counters. */
1030 thread_group_cputime_init(sig);
1031
1032 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1033 if (cpu_limit != RLIM_INFINITY) {
1034 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1035 sig->cputimer.running = 1;
1036 }
1037
1038 /* The timer lists. */
1039 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1040 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1041 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1042 }
1043
1044 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1045 {
1046 struct signal_struct *sig;
1047
1048 if (clone_flags & CLONE_THREAD)
1049 return 0;
1050
1051 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1052 tsk->signal = sig;
1053 if (!sig)
1054 return -ENOMEM;
1055
1056 sig->nr_threads = 1;
1057 atomic_set(&sig->live, 1);
1058 atomic_set(&sig->sigcnt, 1);
1059 init_waitqueue_head(&sig->wait_chldexit);
1060 if (clone_flags & CLONE_NEWPID)
1061 sig->flags |= SIGNAL_UNKILLABLE;
1062 sig->curr_target = tsk;
1063 init_sigpending(&sig->shared_pending);
1064 INIT_LIST_HEAD(&sig->posix_timers);
1065
1066 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067 sig->real_timer.function = it_real_fn;
1068
1069 task_lock(current->group_leader);
1070 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1071 task_unlock(current->group_leader);
1072
1073 posix_cpu_timers_init_group(sig);
1074
1075 tty_audit_fork(sig);
1076 sched_autogroup_fork(sig);
1077
1078 #ifdef CONFIG_CGROUPS
1079 init_rwsem(&sig->group_rwsem);
1080 #endif
1081
1082 sig->oom_adj = current->signal->oom_adj;
1083 sig->oom_score_adj = current->signal->oom_score_adj;
1084 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1085
1086 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1087 current->signal->is_child_subreaper;
1088
1089 mutex_init(&sig->cred_guard_mutex);
1090
1091 return 0;
1092 }
1093
1094 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1095 {
1096 unsigned long new_flags = p->flags;
1097
1098 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1099 new_flags |= PF_FORKNOEXEC;
1100 p->flags = new_flags;
1101 }
1102
1103 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1104 {
1105 current->clear_child_tid = tidptr;
1106
1107 return task_pid_vnr(current);
1108 }
1109
1110 static void rt_mutex_init_task(struct task_struct *p)
1111 {
1112 raw_spin_lock_init(&p->pi_lock);
1113 #ifdef CONFIG_RT_MUTEXES
1114 plist_head_init(&p->pi_waiters);
1115 p->pi_blocked_on = NULL;
1116 #endif
1117 }
1118
1119 #ifdef CONFIG_MM_OWNER
1120 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1121 {
1122 mm->owner = p;
1123 }
1124 #endif /* CONFIG_MM_OWNER */
1125
1126 /*
1127 * Initialize POSIX timer handling for a single task.
1128 */
1129 static void posix_cpu_timers_init(struct task_struct *tsk)
1130 {
1131 tsk->cputime_expires.prof_exp = 0;
1132 tsk->cputime_expires.virt_exp = 0;
1133 tsk->cputime_expires.sched_exp = 0;
1134 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1135 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1136 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1137 }
1138
1139 /*
1140 * This creates a new process as a copy of the old one,
1141 * but does not actually start it yet.
1142 *
1143 * It copies the registers, and all the appropriate
1144 * parts of the process environment (as per the clone
1145 * flags). The actual kick-off is left to the caller.
1146 */
1147 static struct task_struct *copy_process(unsigned long clone_flags,
1148 unsigned long stack_start,
1149 struct pt_regs *regs,
1150 unsigned long stack_size,
1151 int __user *child_tidptr,
1152 struct pid *pid,
1153 int trace)
1154 {
1155 int retval;
1156 struct task_struct *p;
1157 int cgroup_callbacks_done = 0;
1158
1159 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1160 return ERR_PTR(-EINVAL);
1161
1162 /*
1163 * Thread groups must share signals as well, and detached threads
1164 * can only be started up within the thread group.
1165 */
1166 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1167 return ERR_PTR(-EINVAL);
1168
1169 /*
1170 * Shared signal handlers imply shared VM. By way of the above,
1171 * thread groups also imply shared VM. Blocking this case allows
1172 * for various simplifications in other code.
1173 */
1174 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1175 return ERR_PTR(-EINVAL);
1176
1177 /*
1178 * Siblings of global init remain as zombies on exit since they are
1179 * not reaped by their parent (swapper). To solve this and to avoid
1180 * multi-rooted process trees, prevent global and container-inits
1181 * from creating siblings.
1182 */
1183 if ((clone_flags & CLONE_PARENT) &&
1184 current->signal->flags & SIGNAL_UNKILLABLE)
1185 return ERR_PTR(-EINVAL);
1186
1187 retval = security_task_create(clone_flags);
1188 if (retval)
1189 goto fork_out;
1190
1191 retval = -ENOMEM;
1192 p = dup_task_struct(current);
1193 if (!p)
1194 goto fork_out;
1195
1196 ftrace_graph_init_task(p);
1197 get_seccomp_filter(p);
1198
1199 rt_mutex_init_task(p);
1200
1201 #ifdef CONFIG_PROVE_LOCKING
1202 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1203 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1204 #endif
1205 retval = -EAGAIN;
1206 if (atomic_read(&p->real_cred->user->processes) >=
1207 task_rlimit(p, RLIMIT_NPROC)) {
1208 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1209 p->real_cred->user != INIT_USER)
1210 goto bad_fork_free;
1211 }
1212 current->flags &= ~PF_NPROC_EXCEEDED;
1213
1214 retval = copy_creds(p, clone_flags);
1215 if (retval < 0)
1216 goto bad_fork_free;
1217
1218 /*
1219 * If multiple threads are within copy_process(), then this check
1220 * triggers too late. This doesn't hurt, the check is only there
1221 * to stop root fork bombs.
1222 */
1223 retval = -EAGAIN;
1224 if (nr_threads >= max_threads)
1225 goto bad_fork_cleanup_count;
1226
1227 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1228 goto bad_fork_cleanup_count;
1229
1230 p->did_exec = 0;
1231 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1232 copy_flags(clone_flags, p);
1233 INIT_LIST_HEAD(&p->children);
1234 INIT_LIST_HEAD(&p->sibling);
1235 rcu_copy_process(p);
1236 p->vfork_done = NULL;
1237 spin_lock_init(&p->alloc_lock);
1238
1239 init_sigpending(&p->pending);
1240
1241 p->utime = p->stime = p->gtime = 0;
1242 p->utimescaled = p->stimescaled = 0;
1243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1244 p->prev_utime = p->prev_stime = 0;
1245 #endif
1246 #if defined(SPLIT_RSS_COUNTING)
1247 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1248 #endif
1249
1250 p->default_timer_slack_ns = current->timer_slack_ns;
1251
1252 task_io_accounting_init(&p->ioac);
1253 acct_clear_integrals(p);
1254
1255 posix_cpu_timers_init(p);
1256
1257 do_posix_clock_monotonic_gettime(&p->start_time);
1258 p->real_start_time = p->start_time;
1259 monotonic_to_bootbased(&p->real_start_time);
1260 p->io_context = NULL;
1261 p->audit_context = NULL;
1262 if (clone_flags & CLONE_THREAD)
1263 threadgroup_change_begin(current);
1264 cgroup_fork(p);
1265 #ifdef CONFIG_NUMA
1266 p->mempolicy = mpol_dup(p->mempolicy);
1267 if (IS_ERR(p->mempolicy)) {
1268 retval = PTR_ERR(p->mempolicy);
1269 p->mempolicy = NULL;
1270 goto bad_fork_cleanup_cgroup;
1271 }
1272 mpol_fix_fork_child_flag(p);
1273 #endif
1274 #ifdef CONFIG_CPUSETS
1275 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1276 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1277 seqcount_init(&p->mems_allowed_seq);
1278 #endif
1279 #ifdef CONFIG_TRACE_IRQFLAGS
1280 p->irq_events = 0;
1281 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1282 p->hardirqs_enabled = 1;
1283 #else
1284 p->hardirqs_enabled = 0;
1285 #endif
1286 p->hardirq_enable_ip = 0;
1287 p->hardirq_enable_event = 0;
1288 p->hardirq_disable_ip = _THIS_IP_;
1289 p->hardirq_disable_event = 0;
1290 p->softirqs_enabled = 1;
1291 p->softirq_enable_ip = _THIS_IP_;
1292 p->softirq_enable_event = 0;
1293 p->softirq_disable_ip = 0;
1294 p->softirq_disable_event = 0;
1295 p->hardirq_context = 0;
1296 p->softirq_context = 0;
1297 #endif
1298 #ifdef CONFIG_LOCKDEP
1299 p->lockdep_depth = 0; /* no locks held yet */
1300 p->curr_chain_key = 0;
1301 p->lockdep_recursion = 0;
1302 #endif
1303
1304 #ifdef CONFIG_DEBUG_MUTEXES
1305 p->blocked_on = NULL; /* not blocked yet */
1306 #endif
1307 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1308 p->memcg_batch.do_batch = 0;
1309 p->memcg_batch.memcg = NULL;
1310 #endif
1311
1312 /* Perform scheduler related setup. Assign this task to a CPU. */
1313 sched_fork(p);
1314
1315 retval = perf_event_init_task(p);
1316 if (retval)
1317 goto bad_fork_cleanup_policy;
1318 retval = audit_alloc(p);
1319 if (retval)
1320 goto bad_fork_cleanup_policy;
1321 /* copy all the process information */
1322 retval = copy_semundo(clone_flags, p);
1323 if (retval)
1324 goto bad_fork_cleanup_audit;
1325 retval = copy_files(clone_flags, p);
1326 if (retval)
1327 goto bad_fork_cleanup_semundo;
1328 retval = copy_fs(clone_flags, p);
1329 if (retval)
1330 goto bad_fork_cleanup_files;
1331 retval = copy_sighand(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_fs;
1334 retval = copy_signal(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_sighand;
1337 retval = copy_mm(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_signal;
1340 retval = copy_namespaces(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_mm;
1343 retval = copy_io(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_namespaces;
1346 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1347 if (retval)
1348 goto bad_fork_cleanup_io;
1349
1350 if (pid != &init_struct_pid) {
1351 retval = -ENOMEM;
1352 pid = alloc_pid(p->nsproxy->pid_ns);
1353 if (!pid)
1354 goto bad_fork_cleanup_io;
1355 }
1356
1357 p->pid = pid_nr(pid);
1358 p->tgid = p->pid;
1359 if (clone_flags & CLONE_THREAD)
1360 p->tgid = current->tgid;
1361
1362 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1363 /*
1364 * Clear TID on mm_release()?
1365 */
1366 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1367 #ifdef CONFIG_BLOCK
1368 p->plug = NULL;
1369 #endif
1370 #ifdef CONFIG_FUTEX
1371 p->robust_list = NULL;
1372 #ifdef CONFIG_COMPAT
1373 p->compat_robust_list = NULL;
1374 #endif
1375 INIT_LIST_HEAD(&p->pi_state_list);
1376 p->pi_state_cache = NULL;
1377 #endif
1378 /*
1379 * sigaltstack should be cleared when sharing the same VM
1380 */
1381 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1382 p->sas_ss_sp = p->sas_ss_size = 0;
1383
1384 /*
1385 * Syscall tracing and stepping should be turned off in the
1386 * child regardless of CLONE_PTRACE.
1387 */
1388 user_disable_single_step(p);
1389 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1390 #ifdef TIF_SYSCALL_EMU
1391 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1392 #endif
1393 clear_all_latency_tracing(p);
1394
1395 /* ok, now we should be set up.. */
1396 if (clone_flags & CLONE_THREAD)
1397 p->exit_signal = -1;
1398 else if (clone_flags & CLONE_PARENT)
1399 p->exit_signal = current->group_leader->exit_signal;
1400 else
1401 p->exit_signal = (clone_flags & CSIGNAL);
1402
1403 p->pdeath_signal = 0;
1404 p->exit_state = 0;
1405
1406 p->nr_dirtied = 0;
1407 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1408 p->dirty_paused_when = 0;
1409
1410 /*
1411 * Ok, make it visible to the rest of the system.
1412 * We dont wake it up yet.
1413 */
1414 p->group_leader = p;
1415 INIT_LIST_HEAD(&p->thread_group);
1416
1417 /* Now that the task is set up, run cgroup callbacks if
1418 * necessary. We need to run them before the task is visible
1419 * on the tasklist. */
1420 cgroup_fork_callbacks(p);
1421 cgroup_callbacks_done = 1;
1422
1423 /* Need tasklist lock for parent etc handling! */
1424 write_lock_irq(&tasklist_lock);
1425
1426 /* CLONE_PARENT re-uses the old parent */
1427 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1428 p->real_parent = current->real_parent;
1429 p->parent_exec_id = current->parent_exec_id;
1430 } else {
1431 p->real_parent = current;
1432 p->parent_exec_id = current->self_exec_id;
1433 }
1434
1435 spin_lock(&current->sighand->siglock);
1436
1437 /*
1438 * Process group and session signals need to be delivered to just the
1439 * parent before the fork or both the parent and the child after the
1440 * fork. Restart if a signal comes in before we add the new process to
1441 * it's process group.
1442 * A fatal signal pending means that current will exit, so the new
1443 * thread can't slip out of an OOM kill (or normal SIGKILL).
1444 */
1445 recalc_sigpending();
1446 if (signal_pending(current)) {
1447 spin_unlock(&current->sighand->siglock);
1448 write_unlock_irq(&tasklist_lock);
1449 retval = -ERESTARTNOINTR;
1450 goto bad_fork_free_pid;
1451 }
1452
1453 if (clone_flags & CLONE_THREAD) {
1454 current->signal->nr_threads++;
1455 atomic_inc(&current->signal->live);
1456 atomic_inc(&current->signal->sigcnt);
1457 p->group_leader = current->group_leader;
1458 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1459 }
1460
1461 if (likely(p->pid)) {
1462 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1463
1464 if (thread_group_leader(p)) {
1465 if (is_child_reaper(pid))
1466 p->nsproxy->pid_ns->child_reaper = p;
1467
1468 p->signal->leader_pid = pid;
1469 p->signal->tty = tty_kref_get(current->signal->tty);
1470 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1471 attach_pid(p, PIDTYPE_SID, task_session(current));
1472 list_add_tail(&p->sibling, &p->real_parent->children);
1473 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1474 __this_cpu_inc(process_counts);
1475 }
1476 attach_pid(p, PIDTYPE_PID, pid);
1477 nr_threads++;
1478 }
1479
1480 total_forks++;
1481 spin_unlock(&current->sighand->siglock);
1482 write_unlock_irq(&tasklist_lock);
1483 proc_fork_connector(p);
1484 cgroup_post_fork(p);
1485 if (clone_flags & CLONE_THREAD)
1486 threadgroup_change_end(current);
1487 perf_event_fork(p);
1488
1489 trace_task_newtask(p, clone_flags);
1490
1491 return p;
1492
1493 bad_fork_free_pid:
1494 if (pid != &init_struct_pid)
1495 free_pid(pid);
1496 bad_fork_cleanup_io:
1497 if (p->io_context)
1498 exit_io_context(p);
1499 bad_fork_cleanup_namespaces:
1500 if (unlikely(clone_flags & CLONE_NEWPID))
1501 pid_ns_release_proc(p->nsproxy->pid_ns);
1502 exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504 if (p->mm)
1505 mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507 if (!(clone_flags & CLONE_THREAD))
1508 free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510 __cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512 exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514 exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516 exit_sem(p);
1517 bad_fork_cleanup_audit:
1518 audit_free(p);
1519 bad_fork_cleanup_policy:
1520 perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522 mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525 if (clone_flags & CLONE_THREAD)
1526 threadgroup_change_end(current);
1527 cgroup_exit(p, cgroup_callbacks_done);
1528 delayacct_tsk_free(p);
1529 module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531 atomic_dec(&p->cred->user->processes);
1532 exit_creds(p);
1533 bad_fork_free:
1534 free_task(p);
1535 fork_out:
1536 return ERR_PTR(retval);
1537 }
1538
1539 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1540 {
1541 memset(regs, 0, sizeof(struct pt_regs));
1542 return regs;
1543 }
1544
1545 static inline void init_idle_pids(struct pid_link *links)
1546 {
1547 enum pid_type type;
1548
1549 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1550 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1551 links[type].pid = &init_struct_pid;
1552 }
1553 }
1554
1555 struct task_struct * __cpuinit fork_idle(int cpu)
1556 {
1557 struct task_struct *task;
1558 struct pt_regs regs;
1559
1560 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1561 &init_struct_pid, 0);
1562 if (!IS_ERR(task)) {
1563 init_idle_pids(task->pids);
1564 init_idle(task, cpu);
1565 }
1566
1567 return task;
1568 }
1569
1570 /*
1571 * Ok, this is the main fork-routine.
1572 *
1573 * It copies the process, and if successful kick-starts
1574 * it and waits for it to finish using the VM if required.
1575 */
1576 long do_fork(unsigned long clone_flags,
1577 unsigned long stack_start,
1578 struct pt_regs *regs,
1579 unsigned long stack_size,
1580 int __user *parent_tidptr,
1581 int __user *child_tidptr)
1582 {
1583 struct task_struct *p;
1584 int trace = 0;
1585 long nr;
1586
1587 /*
1588 * Do some preliminary argument and permissions checking before we
1589 * actually start allocating stuff
1590 */
1591 if (clone_flags & CLONE_NEWUSER) {
1592 if (clone_flags & CLONE_THREAD)
1593 return -EINVAL;
1594 /* hopefully this check will go away when userns support is
1595 * complete
1596 */
1597 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1598 !capable(CAP_SETGID))
1599 return -EPERM;
1600 }
1601
1602 /*
1603 * Determine whether and which event to report to ptracer. When
1604 * called from kernel_thread or CLONE_UNTRACED is explicitly
1605 * requested, no event is reported; otherwise, report if the event
1606 * for the type of forking is enabled.
1607 */
1608 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1609 if (clone_flags & CLONE_VFORK)
1610 trace = PTRACE_EVENT_VFORK;
1611 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1612 trace = PTRACE_EVENT_CLONE;
1613 else
1614 trace = PTRACE_EVENT_FORK;
1615
1616 if (likely(!ptrace_event_enabled(current, trace)))
1617 trace = 0;
1618 }
1619
1620 p = copy_process(clone_flags, stack_start, regs, stack_size,
1621 child_tidptr, NULL, trace);
1622 /*
1623 * Do this prior waking up the new thread - the thread pointer
1624 * might get invalid after that point, if the thread exits quickly.
1625 */
1626 if (!IS_ERR(p)) {
1627 struct completion vfork;
1628
1629 trace_sched_process_fork(current, p);
1630
1631 nr = task_pid_vnr(p);
1632
1633 if (clone_flags & CLONE_PARENT_SETTID)
1634 put_user(nr, parent_tidptr);
1635
1636 if (clone_flags & CLONE_VFORK) {
1637 p->vfork_done = &vfork;
1638 init_completion(&vfork);
1639 get_task_struct(p);
1640 }
1641
1642 wake_up_new_task(p);
1643
1644 /* forking complete and child started to run, tell ptracer */
1645 if (unlikely(trace))
1646 ptrace_event(trace, nr);
1647
1648 if (clone_flags & CLONE_VFORK) {
1649 if (!wait_for_vfork_done(p, &vfork))
1650 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1651 }
1652 } else {
1653 nr = PTR_ERR(p);
1654 }
1655 return nr;
1656 }
1657
1658 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1659 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1660 #endif
1661
1662 static void sighand_ctor(void *data)
1663 {
1664 struct sighand_struct *sighand = data;
1665
1666 spin_lock_init(&sighand->siglock);
1667 init_waitqueue_head(&sighand->signalfd_wqh);
1668 }
1669
1670 void __init proc_caches_init(void)
1671 {
1672 sighand_cachep = kmem_cache_create("sighand_cache",
1673 sizeof(struct sighand_struct), 0,
1674 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1675 SLAB_NOTRACK, sighand_ctor);
1676 signal_cachep = kmem_cache_create("signal_cache",
1677 sizeof(struct signal_struct), 0,
1678 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1679 files_cachep = kmem_cache_create("files_cache",
1680 sizeof(struct files_struct), 0,
1681 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1682 fs_cachep = kmem_cache_create("fs_cache",
1683 sizeof(struct fs_struct), 0,
1684 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685 /*
1686 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1687 * whole struct cpumask for the OFFSTACK case. We could change
1688 * this to *only* allocate as much of it as required by the
1689 * maximum number of CPU's we can ever have. The cpumask_allocation
1690 * is at the end of the structure, exactly for that reason.
1691 */
1692 mm_cachep = kmem_cache_create("mm_struct",
1693 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1694 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1695 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1696 mmap_init();
1697 nsproxy_cache_init();
1698 }
1699
1700 /*
1701 * Check constraints on flags passed to the unshare system call.
1702 */
1703 static int check_unshare_flags(unsigned long unshare_flags)
1704 {
1705 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1706 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1707 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1708 return -EINVAL;
1709 /*
1710 * Not implemented, but pretend it works if there is nothing to
1711 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1712 * needs to unshare vm.
1713 */
1714 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1715 /* FIXME: get_task_mm() increments ->mm_users */
1716 if (atomic_read(&current->mm->mm_users) > 1)
1717 return -EINVAL;
1718 }
1719
1720 return 0;
1721 }
1722
1723 /*
1724 * Unshare the filesystem structure if it is being shared
1725 */
1726 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1727 {
1728 struct fs_struct *fs = current->fs;
1729
1730 if (!(unshare_flags & CLONE_FS) || !fs)
1731 return 0;
1732
1733 /* don't need lock here; in the worst case we'll do useless copy */
1734 if (fs->users == 1)
1735 return 0;
1736
1737 *new_fsp = copy_fs_struct(fs);
1738 if (!*new_fsp)
1739 return -ENOMEM;
1740
1741 return 0;
1742 }
1743
1744 /*
1745 * Unshare file descriptor table if it is being shared
1746 */
1747 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1748 {
1749 struct files_struct *fd = current->files;
1750 int error = 0;
1751
1752 if ((unshare_flags & CLONE_FILES) &&
1753 (fd && atomic_read(&fd->count) > 1)) {
1754 *new_fdp = dup_fd(fd, &error);
1755 if (!*new_fdp)
1756 return error;
1757 }
1758
1759 return 0;
1760 }
1761
1762 /*
1763 * unshare allows a process to 'unshare' part of the process
1764 * context which was originally shared using clone. copy_*
1765 * functions used by do_fork() cannot be used here directly
1766 * because they modify an inactive task_struct that is being
1767 * constructed. Here we are modifying the current, active,
1768 * task_struct.
1769 */
1770 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1771 {
1772 struct fs_struct *fs, *new_fs = NULL;
1773 struct files_struct *fd, *new_fd = NULL;
1774 struct nsproxy *new_nsproxy = NULL;
1775 int do_sysvsem = 0;
1776 int err;
1777
1778 err = check_unshare_flags(unshare_flags);
1779 if (err)
1780 goto bad_unshare_out;
1781
1782 /*
1783 * If unsharing namespace, must also unshare filesystem information.
1784 */
1785 if (unshare_flags & CLONE_NEWNS)
1786 unshare_flags |= CLONE_FS;
1787 /*
1788 * CLONE_NEWIPC must also detach from the undolist: after switching
1789 * to a new ipc namespace, the semaphore arrays from the old
1790 * namespace are unreachable.
1791 */
1792 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1793 do_sysvsem = 1;
1794 err = unshare_fs(unshare_flags, &new_fs);
1795 if (err)
1796 goto bad_unshare_out;
1797 err = unshare_fd(unshare_flags, &new_fd);
1798 if (err)
1799 goto bad_unshare_cleanup_fs;
1800 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1801 if (err)
1802 goto bad_unshare_cleanup_fd;
1803
1804 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1805 if (do_sysvsem) {
1806 /*
1807 * CLONE_SYSVSEM is equivalent to sys_exit().
1808 */
1809 exit_sem(current);
1810 }
1811
1812 if (new_nsproxy) {
1813 switch_task_namespaces(current, new_nsproxy);
1814 new_nsproxy = NULL;
1815 }
1816
1817 task_lock(current);
1818
1819 if (new_fs) {
1820 fs = current->fs;
1821 spin_lock(&fs->lock);
1822 current->fs = new_fs;
1823 if (--fs->users)
1824 new_fs = NULL;
1825 else
1826 new_fs = fs;
1827 spin_unlock(&fs->lock);
1828 }
1829
1830 if (new_fd) {
1831 fd = current->files;
1832 current->files = new_fd;
1833 new_fd = fd;
1834 }
1835
1836 task_unlock(current);
1837 }
1838
1839 if (new_nsproxy)
1840 put_nsproxy(new_nsproxy);
1841
1842 bad_unshare_cleanup_fd:
1843 if (new_fd)
1844 put_files_struct(new_fd);
1845
1846 bad_unshare_cleanup_fs:
1847 if (new_fs)
1848 free_fs_struct(new_fs);
1849
1850 bad_unshare_out:
1851 return err;
1852 }
1853
1854 /*
1855 * Helper to unshare the files of the current task.
1856 * We don't want to expose copy_files internals to
1857 * the exec layer of the kernel.
1858 */
1859
1860 int unshare_files(struct files_struct **displaced)
1861 {
1862 struct task_struct *task = current;
1863 struct files_struct *copy = NULL;
1864 int error;
1865
1866 error = unshare_fd(CLONE_FILES, &copy);
1867 if (error || !copy) {
1868 *displaced = NULL;
1869 return error;
1870 }
1871 *displaced = task->files;
1872 task_lock(task);
1873 task->files = copy;
1874 task_unlock(task);
1875 return 0;
1876 }
This page took 0.082792 seconds and 6 git commands to generate.