Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75
76 #include <trace/events/sched.h>
77
78 /*
79 * Protected counters by write_lock_irq(&tasklist_lock)
80 */
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
83
84 int max_threads; /* tunable limit on nr_threads */
85
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89
90 int nr_processes(void)
91 {
92 int cpu;
93 int total = 0;
94
95 for_each_possible_cpu(cpu)
96 total += per_cpu(process_counts, cpu);
97
98 return total;
99 }
100
101 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
102 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
103 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
104 static struct kmem_cache *task_struct_cachep;
105 #endif
106
107 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
108 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
109 {
110 #ifdef CONFIG_DEBUG_STACK_USAGE
111 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
112 #else
113 gfp_t mask = GFP_KERNEL;
114 #endif
115 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
116 }
117
118 static inline void free_thread_info(struct thread_info *ti)
119 {
120 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
121 }
122 #endif
123
124 /* SLAB cache for signal_struct structures (tsk->signal) */
125 static struct kmem_cache *signal_cachep;
126
127 /* SLAB cache for sighand_struct structures (tsk->sighand) */
128 struct kmem_cache *sighand_cachep;
129
130 /* SLAB cache for files_struct structures (tsk->files) */
131 struct kmem_cache *files_cachep;
132
133 /* SLAB cache for fs_struct structures (tsk->fs) */
134 struct kmem_cache *fs_cachep;
135
136 /* SLAB cache for vm_area_struct structures */
137 struct kmem_cache *vm_area_cachep;
138
139 /* SLAB cache for mm_struct structures (tsk->mm) */
140 static struct kmem_cache *mm_cachep;
141
142 static void account_kernel_stack(struct thread_info *ti, int account)
143 {
144 struct zone *zone = page_zone(virt_to_page(ti));
145
146 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
147 }
148
149 void free_task(struct task_struct *tsk)
150 {
151 prop_local_destroy_single(&tsk->dirties);
152 account_kernel_stack(tsk->stack, -1);
153 free_thread_info(tsk->stack);
154 rt_mutex_debug_task_free(tsk);
155 ftrace_graph_exit_task(tsk);
156 free_task_struct(tsk);
157 }
158 EXPORT_SYMBOL(free_task);
159
160 void __put_task_struct(struct task_struct *tsk)
161 {
162 WARN_ON(!tsk->exit_state);
163 WARN_ON(atomic_read(&tsk->usage));
164 WARN_ON(tsk == current);
165
166 exit_creds(tsk);
167 delayacct_tsk_free(tsk);
168
169 if (!profile_handoff_task(tsk))
170 free_task(tsk);
171 }
172
173 /*
174 * macro override instead of weak attribute alias, to workaround
175 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
176 */
177 #ifndef arch_task_cache_init
178 #define arch_task_cache_init()
179 #endif
180
181 void __init fork_init(unsigned long mempages)
182 {
183 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
184 #ifndef ARCH_MIN_TASKALIGN
185 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
186 #endif
187 /* create a slab on which task_structs can be allocated */
188 task_struct_cachep =
189 kmem_cache_create("task_struct", sizeof(struct task_struct),
190 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
191 #endif
192
193 /* do the arch specific task caches init */
194 arch_task_cache_init();
195
196 /*
197 * The default maximum number of threads is set to a safe
198 * value: the thread structures can take up at most half
199 * of memory.
200 */
201 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
202
203 /*
204 * we need to allow at least 20 threads to boot a system
205 */
206 if(max_threads < 20)
207 max_threads = 20;
208
209 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
210 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
211 init_task.signal->rlim[RLIMIT_SIGPENDING] =
212 init_task.signal->rlim[RLIMIT_NPROC];
213 }
214
215 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
216 struct task_struct *src)
217 {
218 *dst = *src;
219 return 0;
220 }
221
222 static struct task_struct *dup_task_struct(struct task_struct *orig)
223 {
224 struct task_struct *tsk;
225 struct thread_info *ti;
226 unsigned long *stackend;
227
228 int err;
229
230 prepare_to_copy(orig);
231
232 tsk = alloc_task_struct();
233 if (!tsk)
234 return NULL;
235
236 ti = alloc_thread_info(tsk);
237 if (!ti) {
238 free_task_struct(tsk);
239 return NULL;
240 }
241
242 err = arch_dup_task_struct(tsk, orig);
243 if (err)
244 goto out;
245
246 tsk->stack = ti;
247
248 err = prop_local_init_single(&tsk->dirties);
249 if (err)
250 goto out;
251
252 setup_thread_stack(tsk, orig);
253 clear_user_return_notifier(tsk);
254 stackend = end_of_stack(tsk);
255 *stackend = STACK_END_MAGIC; /* for overflow detection */
256
257 #ifdef CONFIG_CC_STACKPROTECTOR
258 tsk->stack_canary = get_random_int();
259 #endif
260
261 /* One for us, one for whoever does the "release_task()" (usually parent) */
262 atomic_set(&tsk->usage,2);
263 atomic_set(&tsk->fs_excl, 0);
264 #ifdef CONFIG_BLK_DEV_IO_TRACE
265 tsk->btrace_seq = 0;
266 #endif
267 tsk->splice_pipe = NULL;
268
269 account_kernel_stack(ti, 1);
270
271 return tsk;
272
273 out:
274 free_thread_info(ti);
275 free_task_struct(tsk);
276 return NULL;
277 }
278
279 #ifdef CONFIG_MMU
280 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
281 {
282 struct vm_area_struct *mpnt, *tmp, **pprev;
283 struct rb_node **rb_link, *rb_parent;
284 int retval;
285 unsigned long charge;
286 struct mempolicy *pol;
287
288 down_write(&oldmm->mmap_sem);
289 flush_cache_dup_mm(oldmm);
290 /*
291 * Not linked in yet - no deadlock potential:
292 */
293 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
294
295 mm->locked_vm = 0;
296 mm->mmap = NULL;
297 mm->mmap_cache = NULL;
298 mm->free_area_cache = oldmm->mmap_base;
299 mm->cached_hole_size = ~0UL;
300 mm->map_count = 0;
301 cpumask_clear(mm_cpumask(mm));
302 mm->mm_rb = RB_ROOT;
303 rb_link = &mm->mm_rb.rb_node;
304 rb_parent = NULL;
305 pprev = &mm->mmap;
306 retval = ksm_fork(mm, oldmm);
307 if (retval)
308 goto out;
309
310 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
311 struct file *file;
312
313 if (mpnt->vm_flags & VM_DONTCOPY) {
314 long pages = vma_pages(mpnt);
315 mm->total_vm -= pages;
316 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
317 -pages);
318 continue;
319 }
320 charge = 0;
321 if (mpnt->vm_flags & VM_ACCOUNT) {
322 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
323 if (security_vm_enough_memory(len))
324 goto fail_nomem;
325 charge = len;
326 }
327 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
328 if (!tmp)
329 goto fail_nomem;
330 *tmp = *mpnt;
331 pol = mpol_dup(vma_policy(mpnt));
332 retval = PTR_ERR(pol);
333 if (IS_ERR(pol))
334 goto fail_nomem_policy;
335 vma_set_policy(tmp, pol);
336 tmp->vm_flags &= ~VM_LOCKED;
337 tmp->vm_mm = mm;
338 tmp->vm_next = NULL;
339 anon_vma_link(tmp);
340 file = tmp->vm_file;
341 if (file) {
342 struct inode *inode = file->f_path.dentry->d_inode;
343 struct address_space *mapping = file->f_mapping;
344
345 get_file(file);
346 if (tmp->vm_flags & VM_DENYWRITE)
347 atomic_dec(&inode->i_writecount);
348 spin_lock(&mapping->i_mmap_lock);
349 if (tmp->vm_flags & VM_SHARED)
350 mapping->i_mmap_writable++;
351 tmp->vm_truncate_count = mpnt->vm_truncate_count;
352 flush_dcache_mmap_lock(mapping);
353 /* insert tmp into the share list, just after mpnt */
354 vma_prio_tree_add(tmp, mpnt);
355 flush_dcache_mmap_unlock(mapping);
356 spin_unlock(&mapping->i_mmap_lock);
357 }
358
359 /*
360 * Clear hugetlb-related page reserves for children. This only
361 * affects MAP_PRIVATE mappings. Faults generated by the child
362 * are not guaranteed to succeed, even if read-only
363 */
364 if (is_vm_hugetlb_page(tmp))
365 reset_vma_resv_huge_pages(tmp);
366
367 /*
368 * Link in the new vma and copy the page table entries.
369 */
370 *pprev = tmp;
371 pprev = &tmp->vm_next;
372
373 __vma_link_rb(mm, tmp, rb_link, rb_parent);
374 rb_link = &tmp->vm_rb.rb_right;
375 rb_parent = &tmp->vm_rb;
376
377 mm->map_count++;
378 retval = copy_page_range(mm, oldmm, mpnt);
379
380 if (tmp->vm_ops && tmp->vm_ops->open)
381 tmp->vm_ops->open(tmp);
382
383 if (retval)
384 goto out;
385 }
386 /* a new mm has just been created */
387 arch_dup_mmap(oldmm, mm);
388 retval = 0;
389 out:
390 up_write(&mm->mmap_sem);
391 flush_tlb_mm(oldmm);
392 up_write(&oldmm->mmap_sem);
393 return retval;
394 fail_nomem_policy:
395 kmem_cache_free(vm_area_cachep, tmp);
396 fail_nomem:
397 retval = -ENOMEM;
398 vm_unacct_memory(charge);
399 goto out;
400 }
401
402 static inline int mm_alloc_pgd(struct mm_struct * mm)
403 {
404 mm->pgd = pgd_alloc(mm);
405 if (unlikely(!mm->pgd))
406 return -ENOMEM;
407 return 0;
408 }
409
410 static inline void mm_free_pgd(struct mm_struct * mm)
411 {
412 pgd_free(mm, mm->pgd);
413 }
414 #else
415 #define dup_mmap(mm, oldmm) (0)
416 #define mm_alloc_pgd(mm) (0)
417 #define mm_free_pgd(mm)
418 #endif /* CONFIG_MMU */
419
420 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
421
422 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
423 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
424
425 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
426
427 static int __init coredump_filter_setup(char *s)
428 {
429 default_dump_filter =
430 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
431 MMF_DUMP_FILTER_MASK;
432 return 1;
433 }
434
435 __setup("coredump_filter=", coredump_filter_setup);
436
437 #include <linux/init_task.h>
438
439 static void mm_init_aio(struct mm_struct *mm)
440 {
441 #ifdef CONFIG_AIO
442 spin_lock_init(&mm->ioctx_lock);
443 INIT_HLIST_HEAD(&mm->ioctx_list);
444 #endif
445 }
446
447 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
448 {
449 atomic_set(&mm->mm_users, 1);
450 atomic_set(&mm->mm_count, 1);
451 init_rwsem(&mm->mmap_sem);
452 INIT_LIST_HEAD(&mm->mmlist);
453 mm->flags = (current->mm) ?
454 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
455 mm->core_state = NULL;
456 mm->nr_ptes = 0;
457 set_mm_counter(mm, file_rss, 0);
458 set_mm_counter(mm, anon_rss, 0);
459 spin_lock_init(&mm->page_table_lock);
460 mm->free_area_cache = TASK_UNMAPPED_BASE;
461 mm->cached_hole_size = ~0UL;
462 mm_init_aio(mm);
463 mm_init_owner(mm, p);
464
465 if (likely(!mm_alloc_pgd(mm))) {
466 mm->def_flags = 0;
467 mmu_notifier_mm_init(mm);
468 return mm;
469 }
470
471 free_mm(mm);
472 return NULL;
473 }
474
475 /*
476 * Allocate and initialize an mm_struct.
477 */
478 struct mm_struct * mm_alloc(void)
479 {
480 struct mm_struct * mm;
481
482 mm = allocate_mm();
483 if (mm) {
484 memset(mm, 0, sizeof(*mm));
485 mm = mm_init(mm, current);
486 }
487 return mm;
488 }
489
490 /*
491 * Called when the last reference to the mm
492 * is dropped: either by a lazy thread or by
493 * mmput. Free the page directory and the mm.
494 */
495 void __mmdrop(struct mm_struct *mm)
496 {
497 BUG_ON(mm == &init_mm);
498 mm_free_pgd(mm);
499 destroy_context(mm);
500 mmu_notifier_mm_destroy(mm);
501 free_mm(mm);
502 }
503 EXPORT_SYMBOL_GPL(__mmdrop);
504
505 /*
506 * Decrement the use count and release all resources for an mm.
507 */
508 void mmput(struct mm_struct *mm)
509 {
510 might_sleep();
511
512 if (atomic_dec_and_test(&mm->mm_users)) {
513 exit_aio(mm);
514 ksm_exit(mm);
515 exit_mmap(mm);
516 set_mm_exe_file(mm, NULL);
517 if (!list_empty(&mm->mmlist)) {
518 spin_lock(&mmlist_lock);
519 list_del(&mm->mmlist);
520 spin_unlock(&mmlist_lock);
521 }
522 put_swap_token(mm);
523 if (mm->binfmt)
524 module_put(mm->binfmt->module);
525 mmdrop(mm);
526 }
527 }
528 EXPORT_SYMBOL_GPL(mmput);
529
530 /**
531 * get_task_mm - acquire a reference to the task's mm
532 *
533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
534 * this kernel workthread has transiently adopted a user mm with use_mm,
535 * to do its AIO) is not set and if so returns a reference to it, after
536 * bumping up the use count. User must release the mm via mmput()
537 * after use. Typically used by /proc and ptrace.
538 */
539 struct mm_struct *get_task_mm(struct task_struct *task)
540 {
541 struct mm_struct *mm;
542
543 task_lock(task);
544 mm = task->mm;
545 if (mm) {
546 if (task->flags & PF_KTHREAD)
547 mm = NULL;
548 else
549 atomic_inc(&mm->mm_users);
550 }
551 task_unlock(task);
552 return mm;
553 }
554 EXPORT_SYMBOL_GPL(get_task_mm);
555
556 /* Please note the differences between mmput and mm_release.
557 * mmput is called whenever we stop holding onto a mm_struct,
558 * error success whatever.
559 *
560 * mm_release is called after a mm_struct has been removed
561 * from the current process.
562 *
563 * This difference is important for error handling, when we
564 * only half set up a mm_struct for a new process and need to restore
565 * the old one. Because we mmput the new mm_struct before
566 * restoring the old one. . .
567 * Eric Biederman 10 January 1998
568 */
569 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
570 {
571 struct completion *vfork_done = tsk->vfork_done;
572
573 /* Get rid of any futexes when releasing the mm */
574 #ifdef CONFIG_FUTEX
575 if (unlikely(tsk->robust_list)) {
576 exit_robust_list(tsk);
577 tsk->robust_list = NULL;
578 }
579 #ifdef CONFIG_COMPAT
580 if (unlikely(tsk->compat_robust_list)) {
581 compat_exit_robust_list(tsk);
582 tsk->compat_robust_list = NULL;
583 }
584 #endif
585 if (unlikely(!list_empty(&tsk->pi_state_list)))
586 exit_pi_state_list(tsk);
587 #endif
588
589 /* Get rid of any cached register state */
590 deactivate_mm(tsk, mm);
591
592 /* notify parent sleeping on vfork() */
593 if (vfork_done) {
594 tsk->vfork_done = NULL;
595 complete(vfork_done);
596 }
597
598 /*
599 * If we're exiting normally, clear a user-space tid field if
600 * requested. We leave this alone when dying by signal, to leave
601 * the value intact in a core dump, and to save the unnecessary
602 * trouble otherwise. Userland only wants this done for a sys_exit.
603 */
604 if (tsk->clear_child_tid) {
605 if (!(tsk->flags & PF_SIGNALED) &&
606 atomic_read(&mm->mm_users) > 1) {
607 /*
608 * We don't check the error code - if userspace has
609 * not set up a proper pointer then tough luck.
610 */
611 put_user(0, tsk->clear_child_tid);
612 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
613 1, NULL, NULL, 0);
614 }
615 tsk->clear_child_tid = NULL;
616 }
617 }
618
619 /*
620 * Allocate a new mm structure and copy contents from the
621 * mm structure of the passed in task structure.
622 */
623 struct mm_struct *dup_mm(struct task_struct *tsk)
624 {
625 struct mm_struct *mm, *oldmm = current->mm;
626 int err;
627
628 if (!oldmm)
629 return NULL;
630
631 mm = allocate_mm();
632 if (!mm)
633 goto fail_nomem;
634
635 memcpy(mm, oldmm, sizeof(*mm));
636
637 /* Initializing for Swap token stuff */
638 mm->token_priority = 0;
639 mm->last_interval = 0;
640
641 if (!mm_init(mm, tsk))
642 goto fail_nomem;
643
644 if (init_new_context(tsk, mm))
645 goto fail_nocontext;
646
647 dup_mm_exe_file(oldmm, mm);
648
649 err = dup_mmap(mm, oldmm);
650 if (err)
651 goto free_pt;
652
653 mm->hiwater_rss = get_mm_rss(mm);
654 mm->hiwater_vm = mm->total_vm;
655
656 if (mm->binfmt && !try_module_get(mm->binfmt->module))
657 goto free_pt;
658
659 return mm;
660
661 free_pt:
662 /* don't put binfmt in mmput, we haven't got module yet */
663 mm->binfmt = NULL;
664 mmput(mm);
665
666 fail_nomem:
667 return NULL;
668
669 fail_nocontext:
670 /*
671 * If init_new_context() failed, we cannot use mmput() to free the mm
672 * because it calls destroy_context()
673 */
674 mm_free_pgd(mm);
675 free_mm(mm);
676 return NULL;
677 }
678
679 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
680 {
681 struct mm_struct * mm, *oldmm;
682 int retval;
683
684 tsk->min_flt = tsk->maj_flt = 0;
685 tsk->nvcsw = tsk->nivcsw = 0;
686 #ifdef CONFIG_DETECT_HUNG_TASK
687 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
688 #endif
689
690 tsk->mm = NULL;
691 tsk->active_mm = NULL;
692
693 /*
694 * Are we cloning a kernel thread?
695 *
696 * We need to steal a active VM for that..
697 */
698 oldmm = current->mm;
699 if (!oldmm)
700 return 0;
701
702 if (clone_flags & CLONE_VM) {
703 atomic_inc(&oldmm->mm_users);
704 mm = oldmm;
705 goto good_mm;
706 }
707
708 retval = -ENOMEM;
709 mm = dup_mm(tsk);
710 if (!mm)
711 goto fail_nomem;
712
713 good_mm:
714 /* Initializing for Swap token stuff */
715 mm->token_priority = 0;
716 mm->last_interval = 0;
717
718 tsk->mm = mm;
719 tsk->active_mm = mm;
720 return 0;
721
722 fail_nomem:
723 return retval;
724 }
725
726 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
727 {
728 struct fs_struct *fs = current->fs;
729 if (clone_flags & CLONE_FS) {
730 /* tsk->fs is already what we want */
731 write_lock(&fs->lock);
732 if (fs->in_exec) {
733 write_unlock(&fs->lock);
734 return -EAGAIN;
735 }
736 fs->users++;
737 write_unlock(&fs->lock);
738 return 0;
739 }
740 tsk->fs = copy_fs_struct(fs);
741 if (!tsk->fs)
742 return -ENOMEM;
743 return 0;
744 }
745
746 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
747 {
748 struct files_struct *oldf, *newf;
749 int error = 0;
750
751 /*
752 * A background process may not have any files ...
753 */
754 oldf = current->files;
755 if (!oldf)
756 goto out;
757
758 if (clone_flags & CLONE_FILES) {
759 atomic_inc(&oldf->count);
760 goto out;
761 }
762
763 newf = dup_fd(oldf, &error);
764 if (!newf)
765 goto out;
766
767 tsk->files = newf;
768 error = 0;
769 out:
770 return error;
771 }
772
773 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
774 {
775 #ifdef CONFIG_BLOCK
776 struct io_context *ioc = current->io_context;
777
778 if (!ioc)
779 return 0;
780 /*
781 * Share io context with parent, if CLONE_IO is set
782 */
783 if (clone_flags & CLONE_IO) {
784 tsk->io_context = ioc_task_link(ioc);
785 if (unlikely(!tsk->io_context))
786 return -ENOMEM;
787 } else if (ioprio_valid(ioc->ioprio)) {
788 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
789 if (unlikely(!tsk->io_context))
790 return -ENOMEM;
791
792 tsk->io_context->ioprio = ioc->ioprio;
793 }
794 #endif
795 return 0;
796 }
797
798 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
799 {
800 struct sighand_struct *sig;
801
802 if (clone_flags & CLONE_SIGHAND) {
803 atomic_inc(&current->sighand->count);
804 return 0;
805 }
806 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
807 rcu_assign_pointer(tsk->sighand, sig);
808 if (!sig)
809 return -ENOMEM;
810 atomic_set(&sig->count, 1);
811 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
812 return 0;
813 }
814
815 void __cleanup_sighand(struct sighand_struct *sighand)
816 {
817 if (atomic_dec_and_test(&sighand->count))
818 kmem_cache_free(sighand_cachep, sighand);
819 }
820
821
822 /*
823 * Initialize POSIX timer handling for a thread group.
824 */
825 static void posix_cpu_timers_init_group(struct signal_struct *sig)
826 {
827 /* Thread group counters. */
828 thread_group_cputime_init(sig);
829
830 /* Expiration times and increments. */
831 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
832 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
833 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
834 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
835
836 /* Cached expiration times. */
837 sig->cputime_expires.prof_exp = cputime_zero;
838 sig->cputime_expires.virt_exp = cputime_zero;
839 sig->cputime_expires.sched_exp = 0;
840
841 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
842 sig->cputime_expires.prof_exp =
843 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
844 sig->cputimer.running = 1;
845 }
846
847 /* The timer lists. */
848 INIT_LIST_HEAD(&sig->cpu_timers[0]);
849 INIT_LIST_HEAD(&sig->cpu_timers[1]);
850 INIT_LIST_HEAD(&sig->cpu_timers[2]);
851 }
852
853 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
854 {
855 struct signal_struct *sig;
856
857 if (clone_flags & CLONE_THREAD)
858 return 0;
859
860 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
861 tsk->signal = sig;
862 if (!sig)
863 return -ENOMEM;
864
865 atomic_set(&sig->count, 1);
866 atomic_set(&sig->live, 1);
867 init_waitqueue_head(&sig->wait_chldexit);
868 sig->flags = 0;
869 if (clone_flags & CLONE_NEWPID)
870 sig->flags |= SIGNAL_UNKILLABLE;
871 sig->group_exit_code = 0;
872 sig->group_exit_task = NULL;
873 sig->group_stop_count = 0;
874 sig->curr_target = tsk;
875 init_sigpending(&sig->shared_pending);
876 INIT_LIST_HEAD(&sig->posix_timers);
877
878 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
879 sig->it_real_incr.tv64 = 0;
880 sig->real_timer.function = it_real_fn;
881
882 sig->leader = 0; /* session leadership doesn't inherit */
883 sig->tty_old_pgrp = NULL;
884 sig->tty = NULL;
885
886 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
887 sig->gtime = cputime_zero;
888 sig->cgtime = cputime_zero;
889 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
890 sig->prev_utime = sig->prev_stime = cputime_zero;
891 #endif
892 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
893 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
894 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
895 sig->maxrss = sig->cmaxrss = 0;
896 task_io_accounting_init(&sig->ioac);
897 sig->sum_sched_runtime = 0;
898 taskstats_tgid_init(sig);
899
900 task_lock(current->group_leader);
901 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
902 task_unlock(current->group_leader);
903
904 posix_cpu_timers_init_group(sig);
905
906 acct_init_pacct(&sig->pacct);
907
908 tty_audit_fork(sig);
909
910 sig->oom_adj = current->signal->oom_adj;
911
912 return 0;
913 }
914
915 void __cleanup_signal(struct signal_struct *sig)
916 {
917 thread_group_cputime_free(sig);
918 tty_kref_put(sig->tty);
919 kmem_cache_free(signal_cachep, sig);
920 }
921
922 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
923 {
924 unsigned long new_flags = p->flags;
925
926 new_flags &= ~PF_SUPERPRIV;
927 new_flags |= PF_FORKNOEXEC;
928 new_flags |= PF_STARTING;
929 p->flags = new_flags;
930 clear_freeze_flag(p);
931 }
932
933 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
934 {
935 current->clear_child_tid = tidptr;
936
937 return task_pid_vnr(current);
938 }
939
940 static void rt_mutex_init_task(struct task_struct *p)
941 {
942 raw_spin_lock_init(&p->pi_lock);
943 #ifdef CONFIG_RT_MUTEXES
944 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
945 p->pi_blocked_on = NULL;
946 #endif
947 }
948
949 #ifdef CONFIG_MM_OWNER
950 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
951 {
952 mm->owner = p;
953 }
954 #endif /* CONFIG_MM_OWNER */
955
956 /*
957 * Initialize POSIX timer handling for a single task.
958 */
959 static void posix_cpu_timers_init(struct task_struct *tsk)
960 {
961 tsk->cputime_expires.prof_exp = cputime_zero;
962 tsk->cputime_expires.virt_exp = cputime_zero;
963 tsk->cputime_expires.sched_exp = 0;
964 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
965 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
966 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
967 }
968
969 /*
970 * This creates a new process as a copy of the old one,
971 * but does not actually start it yet.
972 *
973 * It copies the registers, and all the appropriate
974 * parts of the process environment (as per the clone
975 * flags). The actual kick-off is left to the caller.
976 */
977 static struct task_struct *copy_process(unsigned long clone_flags,
978 unsigned long stack_start,
979 struct pt_regs *regs,
980 unsigned long stack_size,
981 int __user *child_tidptr,
982 struct pid *pid,
983 int trace)
984 {
985 int retval;
986 struct task_struct *p;
987 int cgroup_callbacks_done = 0;
988
989 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
990 return ERR_PTR(-EINVAL);
991
992 /*
993 * Thread groups must share signals as well, and detached threads
994 * can only be started up within the thread group.
995 */
996 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
997 return ERR_PTR(-EINVAL);
998
999 /*
1000 * Shared signal handlers imply shared VM. By way of the above,
1001 * thread groups also imply shared VM. Blocking this case allows
1002 * for various simplifications in other code.
1003 */
1004 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1005 return ERR_PTR(-EINVAL);
1006
1007 /*
1008 * Siblings of global init remain as zombies on exit since they are
1009 * not reaped by their parent (swapper). To solve this and to avoid
1010 * multi-rooted process trees, prevent global and container-inits
1011 * from creating siblings.
1012 */
1013 if ((clone_flags & CLONE_PARENT) &&
1014 current->signal->flags & SIGNAL_UNKILLABLE)
1015 return ERR_PTR(-EINVAL);
1016
1017 retval = security_task_create(clone_flags);
1018 if (retval)
1019 goto fork_out;
1020
1021 retval = -ENOMEM;
1022 p = dup_task_struct(current);
1023 if (!p)
1024 goto fork_out;
1025
1026 ftrace_graph_init_task(p);
1027
1028 rt_mutex_init_task(p);
1029
1030 #ifdef CONFIG_PROVE_LOCKING
1031 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1032 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1033 #endif
1034 retval = -EAGAIN;
1035 if (atomic_read(&p->real_cred->user->processes) >=
1036 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1037 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1038 p->real_cred->user != INIT_USER)
1039 goto bad_fork_free;
1040 }
1041
1042 retval = copy_creds(p, clone_flags);
1043 if (retval < 0)
1044 goto bad_fork_free;
1045
1046 /*
1047 * If multiple threads are within copy_process(), then this check
1048 * triggers too late. This doesn't hurt, the check is only there
1049 * to stop root fork bombs.
1050 */
1051 retval = -EAGAIN;
1052 if (nr_threads >= max_threads)
1053 goto bad_fork_cleanup_count;
1054
1055 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1056 goto bad_fork_cleanup_count;
1057
1058 p->did_exec = 0;
1059 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1060 copy_flags(clone_flags, p);
1061 INIT_LIST_HEAD(&p->children);
1062 INIT_LIST_HEAD(&p->sibling);
1063 rcu_copy_process(p);
1064 p->vfork_done = NULL;
1065 spin_lock_init(&p->alloc_lock);
1066
1067 init_sigpending(&p->pending);
1068
1069 p->utime = cputime_zero;
1070 p->stime = cputime_zero;
1071 p->gtime = cputime_zero;
1072 p->utimescaled = cputime_zero;
1073 p->stimescaled = cputime_zero;
1074 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1075 p->prev_utime = cputime_zero;
1076 p->prev_stime = cputime_zero;
1077 #endif
1078
1079 p->default_timer_slack_ns = current->timer_slack_ns;
1080
1081 task_io_accounting_init(&p->ioac);
1082 acct_clear_integrals(p);
1083
1084 posix_cpu_timers_init(p);
1085
1086 p->lock_depth = -1; /* -1 = no lock */
1087 do_posix_clock_monotonic_gettime(&p->start_time);
1088 p->real_start_time = p->start_time;
1089 monotonic_to_bootbased(&p->real_start_time);
1090 p->io_context = NULL;
1091 p->audit_context = NULL;
1092 cgroup_fork(p);
1093 #ifdef CONFIG_NUMA
1094 p->mempolicy = mpol_dup(p->mempolicy);
1095 if (IS_ERR(p->mempolicy)) {
1096 retval = PTR_ERR(p->mempolicy);
1097 p->mempolicy = NULL;
1098 goto bad_fork_cleanup_cgroup;
1099 }
1100 mpol_fix_fork_child_flag(p);
1101 #endif
1102 #ifdef CONFIG_TRACE_IRQFLAGS
1103 p->irq_events = 0;
1104 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1105 p->hardirqs_enabled = 1;
1106 #else
1107 p->hardirqs_enabled = 0;
1108 #endif
1109 p->hardirq_enable_ip = 0;
1110 p->hardirq_enable_event = 0;
1111 p->hardirq_disable_ip = _THIS_IP_;
1112 p->hardirq_disable_event = 0;
1113 p->softirqs_enabled = 1;
1114 p->softirq_enable_ip = _THIS_IP_;
1115 p->softirq_enable_event = 0;
1116 p->softirq_disable_ip = 0;
1117 p->softirq_disable_event = 0;
1118 p->hardirq_context = 0;
1119 p->softirq_context = 0;
1120 #endif
1121 #ifdef CONFIG_LOCKDEP
1122 p->lockdep_depth = 0; /* no locks held yet */
1123 p->curr_chain_key = 0;
1124 p->lockdep_recursion = 0;
1125 #endif
1126
1127 #ifdef CONFIG_DEBUG_MUTEXES
1128 p->blocked_on = NULL; /* not blocked yet */
1129 #endif
1130 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1131 p->memcg_batch.do_batch = 0;
1132 p->memcg_batch.memcg = NULL;
1133 #endif
1134
1135 p->bts = NULL;
1136
1137 p->stack_start = stack_start;
1138
1139 /* Perform scheduler related setup. Assign this task to a CPU. */
1140 sched_fork(p, clone_flags);
1141
1142 retval = perf_event_init_task(p);
1143 if (retval)
1144 goto bad_fork_cleanup_policy;
1145
1146 if ((retval = audit_alloc(p)))
1147 goto bad_fork_cleanup_policy;
1148 /* copy all the process information */
1149 if ((retval = copy_semundo(clone_flags, p)))
1150 goto bad_fork_cleanup_audit;
1151 if ((retval = copy_files(clone_flags, p)))
1152 goto bad_fork_cleanup_semundo;
1153 if ((retval = copy_fs(clone_flags, p)))
1154 goto bad_fork_cleanup_files;
1155 if ((retval = copy_sighand(clone_flags, p)))
1156 goto bad_fork_cleanup_fs;
1157 if ((retval = copy_signal(clone_flags, p)))
1158 goto bad_fork_cleanup_sighand;
1159 if ((retval = copy_mm(clone_flags, p)))
1160 goto bad_fork_cleanup_signal;
1161 if ((retval = copy_namespaces(clone_flags, p)))
1162 goto bad_fork_cleanup_mm;
1163 if ((retval = copy_io(clone_flags, p)))
1164 goto bad_fork_cleanup_namespaces;
1165 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1166 if (retval)
1167 goto bad_fork_cleanup_io;
1168
1169 if (pid != &init_struct_pid) {
1170 retval = -ENOMEM;
1171 pid = alloc_pid(p->nsproxy->pid_ns);
1172 if (!pid)
1173 goto bad_fork_cleanup_io;
1174
1175 if (clone_flags & CLONE_NEWPID) {
1176 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1177 if (retval < 0)
1178 goto bad_fork_free_pid;
1179 }
1180 }
1181
1182 p->pid = pid_nr(pid);
1183 p->tgid = p->pid;
1184 if (clone_flags & CLONE_THREAD)
1185 p->tgid = current->tgid;
1186
1187 if (current->nsproxy != p->nsproxy) {
1188 retval = ns_cgroup_clone(p, pid);
1189 if (retval)
1190 goto bad_fork_free_pid;
1191 }
1192
1193 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1194 /*
1195 * Clear TID on mm_release()?
1196 */
1197 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1198 #ifdef CONFIG_FUTEX
1199 p->robust_list = NULL;
1200 #ifdef CONFIG_COMPAT
1201 p->compat_robust_list = NULL;
1202 #endif
1203 INIT_LIST_HEAD(&p->pi_state_list);
1204 p->pi_state_cache = NULL;
1205 #endif
1206 /*
1207 * sigaltstack should be cleared when sharing the same VM
1208 */
1209 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1210 p->sas_ss_sp = p->sas_ss_size = 0;
1211
1212 /*
1213 * Syscall tracing and stepping should be turned off in the
1214 * child regardless of CLONE_PTRACE.
1215 */
1216 user_disable_single_step(p);
1217 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1218 #ifdef TIF_SYSCALL_EMU
1219 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1220 #endif
1221 clear_all_latency_tracing(p);
1222
1223 /* ok, now we should be set up.. */
1224 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1225 p->pdeath_signal = 0;
1226 p->exit_state = 0;
1227
1228 /*
1229 * Ok, make it visible to the rest of the system.
1230 * We dont wake it up yet.
1231 */
1232 p->group_leader = p;
1233 INIT_LIST_HEAD(&p->thread_group);
1234
1235 /* Now that the task is set up, run cgroup callbacks if
1236 * necessary. We need to run them before the task is visible
1237 * on the tasklist. */
1238 cgroup_fork_callbacks(p);
1239 cgroup_callbacks_done = 1;
1240
1241 /* Need tasklist lock for parent etc handling! */
1242 write_lock_irq(&tasklist_lock);
1243
1244 /*
1245 * The task hasn't been attached yet, so its cpus_allowed mask will
1246 * not be changed, nor will its assigned CPU.
1247 *
1248 * The cpus_allowed mask of the parent may have changed after it was
1249 * copied first time - so re-copy it here, then check the child's CPU
1250 * to ensure it is on a valid CPU (and if not, just force it back to
1251 * parent's CPU). This avoids alot of nasty races.
1252 */
1253 p->cpus_allowed = current->cpus_allowed;
1254 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1255 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1256 !cpu_online(task_cpu(p))))
1257 set_task_cpu(p, smp_processor_id());
1258
1259 /* CLONE_PARENT re-uses the old parent */
1260 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1261 p->real_parent = current->real_parent;
1262 p->parent_exec_id = current->parent_exec_id;
1263 } else {
1264 p->real_parent = current;
1265 p->parent_exec_id = current->self_exec_id;
1266 }
1267
1268 spin_lock(&current->sighand->siglock);
1269
1270 /*
1271 * Process group and session signals need to be delivered to just the
1272 * parent before the fork or both the parent and the child after the
1273 * fork. Restart if a signal comes in before we add the new process to
1274 * it's process group.
1275 * A fatal signal pending means that current will exit, so the new
1276 * thread can't slip out of an OOM kill (or normal SIGKILL).
1277 */
1278 recalc_sigpending();
1279 if (signal_pending(current)) {
1280 spin_unlock(&current->sighand->siglock);
1281 write_unlock_irq(&tasklist_lock);
1282 retval = -ERESTARTNOINTR;
1283 goto bad_fork_free_pid;
1284 }
1285
1286 if (clone_flags & CLONE_THREAD) {
1287 atomic_inc(&current->signal->count);
1288 atomic_inc(&current->signal->live);
1289 p->group_leader = current->group_leader;
1290 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1291 }
1292
1293 if (likely(p->pid)) {
1294 tracehook_finish_clone(p, clone_flags, trace);
1295
1296 if (thread_group_leader(p)) {
1297 if (clone_flags & CLONE_NEWPID)
1298 p->nsproxy->pid_ns->child_reaper = p;
1299
1300 p->signal->leader_pid = pid;
1301 tty_kref_put(p->signal->tty);
1302 p->signal->tty = tty_kref_get(current->signal->tty);
1303 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1304 attach_pid(p, PIDTYPE_SID, task_session(current));
1305 list_add_tail(&p->sibling, &p->real_parent->children);
1306 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1307 __get_cpu_var(process_counts)++;
1308 }
1309 attach_pid(p, PIDTYPE_PID, pid);
1310 nr_threads++;
1311 }
1312
1313 total_forks++;
1314 spin_unlock(&current->sighand->siglock);
1315 write_unlock_irq(&tasklist_lock);
1316 proc_fork_connector(p);
1317 cgroup_post_fork(p);
1318 perf_event_fork(p);
1319 return p;
1320
1321 bad_fork_free_pid:
1322 if (pid != &init_struct_pid)
1323 free_pid(pid);
1324 bad_fork_cleanup_io:
1325 if (p->io_context)
1326 exit_io_context(p);
1327 bad_fork_cleanup_namespaces:
1328 exit_task_namespaces(p);
1329 bad_fork_cleanup_mm:
1330 if (p->mm)
1331 mmput(p->mm);
1332 bad_fork_cleanup_signal:
1333 if (!(clone_flags & CLONE_THREAD))
1334 __cleanup_signal(p->signal);
1335 bad_fork_cleanup_sighand:
1336 __cleanup_sighand(p->sighand);
1337 bad_fork_cleanup_fs:
1338 exit_fs(p); /* blocking */
1339 bad_fork_cleanup_files:
1340 exit_files(p); /* blocking */
1341 bad_fork_cleanup_semundo:
1342 exit_sem(p);
1343 bad_fork_cleanup_audit:
1344 audit_free(p);
1345 bad_fork_cleanup_policy:
1346 perf_event_free_task(p);
1347 #ifdef CONFIG_NUMA
1348 mpol_put(p->mempolicy);
1349 bad_fork_cleanup_cgroup:
1350 #endif
1351 cgroup_exit(p, cgroup_callbacks_done);
1352 delayacct_tsk_free(p);
1353 module_put(task_thread_info(p)->exec_domain->module);
1354 bad_fork_cleanup_count:
1355 atomic_dec(&p->cred->user->processes);
1356 exit_creds(p);
1357 bad_fork_free:
1358 free_task(p);
1359 fork_out:
1360 return ERR_PTR(retval);
1361 }
1362
1363 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1364 {
1365 memset(regs, 0, sizeof(struct pt_regs));
1366 return regs;
1367 }
1368
1369 struct task_struct * __cpuinit fork_idle(int cpu)
1370 {
1371 struct task_struct *task;
1372 struct pt_regs regs;
1373
1374 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1375 &init_struct_pid, 0);
1376 if (!IS_ERR(task))
1377 init_idle(task, cpu);
1378
1379 return task;
1380 }
1381
1382 /*
1383 * Ok, this is the main fork-routine.
1384 *
1385 * It copies the process, and if successful kick-starts
1386 * it and waits for it to finish using the VM if required.
1387 */
1388 long do_fork(unsigned long clone_flags,
1389 unsigned long stack_start,
1390 struct pt_regs *regs,
1391 unsigned long stack_size,
1392 int __user *parent_tidptr,
1393 int __user *child_tidptr)
1394 {
1395 struct task_struct *p;
1396 int trace = 0;
1397 long nr;
1398
1399 /*
1400 * Do some preliminary argument and permissions checking before we
1401 * actually start allocating stuff
1402 */
1403 if (clone_flags & CLONE_NEWUSER) {
1404 if (clone_flags & CLONE_THREAD)
1405 return -EINVAL;
1406 /* hopefully this check will go away when userns support is
1407 * complete
1408 */
1409 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1410 !capable(CAP_SETGID))
1411 return -EPERM;
1412 }
1413
1414 /*
1415 * We hope to recycle these flags after 2.6.26
1416 */
1417 if (unlikely(clone_flags & CLONE_STOPPED)) {
1418 static int __read_mostly count = 100;
1419
1420 if (count > 0 && printk_ratelimit()) {
1421 char comm[TASK_COMM_LEN];
1422
1423 count--;
1424 printk(KERN_INFO "fork(): process `%s' used deprecated "
1425 "clone flags 0x%lx\n",
1426 get_task_comm(comm, current),
1427 clone_flags & CLONE_STOPPED);
1428 }
1429 }
1430
1431 /*
1432 * When called from kernel_thread, don't do user tracing stuff.
1433 */
1434 if (likely(user_mode(regs)))
1435 trace = tracehook_prepare_clone(clone_flags);
1436
1437 p = copy_process(clone_flags, stack_start, regs, stack_size,
1438 child_tidptr, NULL, trace);
1439 /*
1440 * Do this prior waking up the new thread - the thread pointer
1441 * might get invalid after that point, if the thread exits quickly.
1442 */
1443 if (!IS_ERR(p)) {
1444 struct completion vfork;
1445
1446 trace_sched_process_fork(current, p);
1447
1448 nr = task_pid_vnr(p);
1449
1450 if (clone_flags & CLONE_PARENT_SETTID)
1451 put_user(nr, parent_tidptr);
1452
1453 if (clone_flags & CLONE_VFORK) {
1454 p->vfork_done = &vfork;
1455 init_completion(&vfork);
1456 }
1457
1458 audit_finish_fork(p);
1459 tracehook_report_clone(regs, clone_flags, nr, p);
1460
1461 /*
1462 * We set PF_STARTING at creation in case tracing wants to
1463 * use this to distinguish a fully live task from one that
1464 * hasn't gotten to tracehook_report_clone() yet. Now we
1465 * clear it and set the child going.
1466 */
1467 p->flags &= ~PF_STARTING;
1468
1469 if (unlikely(clone_flags & CLONE_STOPPED)) {
1470 /*
1471 * We'll start up with an immediate SIGSTOP.
1472 */
1473 sigaddset(&p->pending.signal, SIGSTOP);
1474 set_tsk_thread_flag(p, TIF_SIGPENDING);
1475 __set_task_state(p, TASK_STOPPED);
1476 } else {
1477 wake_up_new_task(p, clone_flags);
1478 }
1479
1480 tracehook_report_clone_complete(trace, regs,
1481 clone_flags, nr, p);
1482
1483 if (clone_flags & CLONE_VFORK) {
1484 freezer_do_not_count();
1485 wait_for_completion(&vfork);
1486 freezer_count();
1487 tracehook_report_vfork_done(p, nr);
1488 }
1489 } else {
1490 nr = PTR_ERR(p);
1491 }
1492 return nr;
1493 }
1494
1495 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1496 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1497 #endif
1498
1499 static void sighand_ctor(void *data)
1500 {
1501 struct sighand_struct *sighand = data;
1502
1503 spin_lock_init(&sighand->siglock);
1504 init_waitqueue_head(&sighand->signalfd_wqh);
1505 }
1506
1507 void __init proc_caches_init(void)
1508 {
1509 sighand_cachep = kmem_cache_create("sighand_cache",
1510 sizeof(struct sighand_struct), 0,
1511 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1512 SLAB_NOTRACK, sighand_ctor);
1513 signal_cachep = kmem_cache_create("signal_cache",
1514 sizeof(struct signal_struct), 0,
1515 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1516 files_cachep = kmem_cache_create("files_cache",
1517 sizeof(struct files_struct), 0,
1518 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1519 fs_cachep = kmem_cache_create("fs_cache",
1520 sizeof(struct fs_struct), 0,
1521 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1522 mm_cachep = kmem_cache_create("mm_struct",
1523 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1524 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1525 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1526 mmap_init();
1527 }
1528
1529 /*
1530 * Check constraints on flags passed to the unshare system call and
1531 * force unsharing of additional process context as appropriate.
1532 */
1533 static void check_unshare_flags(unsigned long *flags_ptr)
1534 {
1535 /*
1536 * If unsharing a thread from a thread group, must also
1537 * unshare vm.
1538 */
1539 if (*flags_ptr & CLONE_THREAD)
1540 *flags_ptr |= CLONE_VM;
1541
1542 /*
1543 * If unsharing vm, must also unshare signal handlers.
1544 */
1545 if (*flags_ptr & CLONE_VM)
1546 *flags_ptr |= CLONE_SIGHAND;
1547
1548 /*
1549 * If unsharing signal handlers and the task was created
1550 * using CLONE_THREAD, then must unshare the thread
1551 */
1552 if ((*flags_ptr & CLONE_SIGHAND) &&
1553 (atomic_read(&current->signal->count) > 1))
1554 *flags_ptr |= CLONE_THREAD;
1555
1556 /*
1557 * If unsharing namespace, must also unshare filesystem information.
1558 */
1559 if (*flags_ptr & CLONE_NEWNS)
1560 *flags_ptr |= CLONE_FS;
1561 }
1562
1563 /*
1564 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1565 */
1566 static int unshare_thread(unsigned long unshare_flags)
1567 {
1568 if (unshare_flags & CLONE_THREAD)
1569 return -EINVAL;
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Unshare the filesystem structure if it is being shared
1576 */
1577 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1578 {
1579 struct fs_struct *fs = current->fs;
1580
1581 if (!(unshare_flags & CLONE_FS) || !fs)
1582 return 0;
1583
1584 /* don't need lock here; in the worst case we'll do useless copy */
1585 if (fs->users == 1)
1586 return 0;
1587
1588 *new_fsp = copy_fs_struct(fs);
1589 if (!*new_fsp)
1590 return -ENOMEM;
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * Unsharing of sighand is not supported yet
1597 */
1598 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1599 {
1600 struct sighand_struct *sigh = current->sighand;
1601
1602 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1603 return -EINVAL;
1604 else
1605 return 0;
1606 }
1607
1608 /*
1609 * Unshare vm if it is being shared
1610 */
1611 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1612 {
1613 struct mm_struct *mm = current->mm;
1614
1615 if ((unshare_flags & CLONE_VM) &&
1616 (mm && atomic_read(&mm->mm_users) > 1)) {
1617 return -EINVAL;
1618 }
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * Unshare file descriptor table if it is being shared
1625 */
1626 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1627 {
1628 struct files_struct *fd = current->files;
1629 int error = 0;
1630
1631 if ((unshare_flags & CLONE_FILES) &&
1632 (fd && atomic_read(&fd->count) > 1)) {
1633 *new_fdp = dup_fd(fd, &error);
1634 if (!*new_fdp)
1635 return error;
1636 }
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * unshare allows a process to 'unshare' part of the process
1643 * context which was originally shared using clone. copy_*
1644 * functions used by do_fork() cannot be used here directly
1645 * because they modify an inactive task_struct that is being
1646 * constructed. Here we are modifying the current, active,
1647 * task_struct.
1648 */
1649 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1650 {
1651 int err = 0;
1652 struct fs_struct *fs, *new_fs = NULL;
1653 struct sighand_struct *new_sigh = NULL;
1654 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1655 struct files_struct *fd, *new_fd = NULL;
1656 struct nsproxy *new_nsproxy = NULL;
1657 int do_sysvsem = 0;
1658
1659 check_unshare_flags(&unshare_flags);
1660
1661 /* Return -EINVAL for all unsupported flags */
1662 err = -EINVAL;
1663 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1664 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1665 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1666 goto bad_unshare_out;
1667
1668 /*
1669 * CLONE_NEWIPC must also detach from the undolist: after switching
1670 * to a new ipc namespace, the semaphore arrays from the old
1671 * namespace are unreachable.
1672 */
1673 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1674 do_sysvsem = 1;
1675 if ((err = unshare_thread(unshare_flags)))
1676 goto bad_unshare_out;
1677 if ((err = unshare_fs(unshare_flags, &new_fs)))
1678 goto bad_unshare_cleanup_thread;
1679 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1680 goto bad_unshare_cleanup_fs;
1681 if ((err = unshare_vm(unshare_flags, &new_mm)))
1682 goto bad_unshare_cleanup_sigh;
1683 if ((err = unshare_fd(unshare_flags, &new_fd)))
1684 goto bad_unshare_cleanup_vm;
1685 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1686 new_fs)))
1687 goto bad_unshare_cleanup_fd;
1688
1689 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1690 if (do_sysvsem) {
1691 /*
1692 * CLONE_SYSVSEM is equivalent to sys_exit().
1693 */
1694 exit_sem(current);
1695 }
1696
1697 if (new_nsproxy) {
1698 switch_task_namespaces(current, new_nsproxy);
1699 new_nsproxy = NULL;
1700 }
1701
1702 task_lock(current);
1703
1704 if (new_fs) {
1705 fs = current->fs;
1706 write_lock(&fs->lock);
1707 current->fs = new_fs;
1708 if (--fs->users)
1709 new_fs = NULL;
1710 else
1711 new_fs = fs;
1712 write_unlock(&fs->lock);
1713 }
1714
1715 if (new_mm) {
1716 mm = current->mm;
1717 active_mm = current->active_mm;
1718 current->mm = new_mm;
1719 current->active_mm = new_mm;
1720 activate_mm(active_mm, new_mm);
1721 new_mm = mm;
1722 }
1723
1724 if (new_fd) {
1725 fd = current->files;
1726 current->files = new_fd;
1727 new_fd = fd;
1728 }
1729
1730 task_unlock(current);
1731 }
1732
1733 if (new_nsproxy)
1734 put_nsproxy(new_nsproxy);
1735
1736 bad_unshare_cleanup_fd:
1737 if (new_fd)
1738 put_files_struct(new_fd);
1739
1740 bad_unshare_cleanup_vm:
1741 if (new_mm)
1742 mmput(new_mm);
1743
1744 bad_unshare_cleanup_sigh:
1745 if (new_sigh)
1746 if (atomic_dec_and_test(&new_sigh->count))
1747 kmem_cache_free(sighand_cachep, new_sigh);
1748
1749 bad_unshare_cleanup_fs:
1750 if (new_fs)
1751 free_fs_struct(new_fs);
1752
1753 bad_unshare_cleanup_thread:
1754 bad_unshare_out:
1755 return err;
1756 }
1757
1758 /*
1759 * Helper to unshare the files of the current task.
1760 * We don't want to expose copy_files internals to
1761 * the exec layer of the kernel.
1762 */
1763
1764 int unshare_files(struct files_struct **displaced)
1765 {
1766 struct task_struct *task = current;
1767 struct files_struct *copy = NULL;
1768 int error;
1769
1770 error = unshare_fd(CLONE_FILES, &copy);
1771 if (error || !copy) {
1772 *displaced = NULL;
1773 return error;
1774 }
1775 *displaced = task->files;
1776 task_lock(task);
1777 task->files = copy;
1778 task_unlock(task);
1779 return 0;
1780 }
This page took 0.063579 seconds and 6 git commands to generate.