Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75
76 #include <trace/events/sched.h>
77
78 /*
79 * Protected counters by write_lock_irq(&tasklist_lock)
80 */
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
83
84 int max_threads; /* tunable limit on nr_threads */
85
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89 EXPORT_SYMBOL_GPL(tasklist_lock);
90
91 int nr_processes(void)
92 {
93 int cpu;
94 int total = 0;
95
96 for_each_possible_cpu(cpu)
97 total += per_cpu(process_counts, cpu);
98
99 return total;
100 }
101
102 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
103 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
104 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
105 static struct kmem_cache *task_struct_cachep;
106 #endif
107
108 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
109 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
110 {
111 #ifdef CONFIG_DEBUG_STACK_USAGE
112 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
113 #else
114 gfp_t mask = GFP_KERNEL;
115 #endif
116 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 }
118
119 static inline void free_thread_info(struct thread_info *ti)
120 {
121 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
122 }
123 #endif
124
125 /* SLAB cache for signal_struct structures (tsk->signal) */
126 static struct kmem_cache *signal_cachep;
127
128 /* SLAB cache for sighand_struct structures (tsk->sighand) */
129 struct kmem_cache *sighand_cachep;
130
131 /* SLAB cache for files_struct structures (tsk->files) */
132 struct kmem_cache *files_cachep;
133
134 /* SLAB cache for fs_struct structures (tsk->fs) */
135 struct kmem_cache *fs_cachep;
136
137 /* SLAB cache for vm_area_struct structures */
138 struct kmem_cache *vm_area_cachep;
139
140 /* SLAB cache for mm_struct structures (tsk->mm) */
141 static struct kmem_cache *mm_cachep;
142
143 static void account_kernel_stack(struct thread_info *ti, int account)
144 {
145 struct zone *zone = page_zone(virt_to_page(ti));
146
147 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 }
149
150 void free_task(struct task_struct *tsk)
151 {
152 prop_local_destroy_single(&tsk->dirties);
153 account_kernel_stack(tsk->stack, -1);
154 free_thread_info(tsk->stack);
155 rt_mutex_debug_task_free(tsk);
156 ftrace_graph_exit_task(tsk);
157 free_task_struct(tsk);
158 }
159 EXPORT_SYMBOL(free_task);
160
161 void __put_task_struct(struct task_struct *tsk)
162 {
163 WARN_ON(!tsk->exit_state);
164 WARN_ON(atomic_read(&tsk->usage));
165 WARN_ON(tsk == current);
166
167 exit_creds(tsk);
168 delayacct_tsk_free(tsk);
169
170 if (!profile_handoff_task(tsk))
171 free_task(tsk);
172 }
173
174 /*
175 * macro override instead of weak attribute alias, to workaround
176 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
177 */
178 #ifndef arch_task_cache_init
179 #define arch_task_cache_init()
180 #endif
181
182 void __init fork_init(unsigned long mempages)
183 {
184 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
185 #ifndef ARCH_MIN_TASKALIGN
186 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
187 #endif
188 /* create a slab on which task_structs can be allocated */
189 task_struct_cachep =
190 kmem_cache_create("task_struct", sizeof(struct task_struct),
191 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
192 #endif
193
194 /* do the arch specific task caches init */
195 arch_task_cache_init();
196
197 /*
198 * The default maximum number of threads is set to a safe
199 * value: the thread structures can take up at most half
200 * of memory.
201 */
202 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
203
204 /*
205 * we need to allow at least 20 threads to boot a system
206 */
207 if(max_threads < 20)
208 max_threads = 20;
209
210 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
211 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
212 init_task.signal->rlim[RLIMIT_SIGPENDING] =
213 init_task.signal->rlim[RLIMIT_NPROC];
214 }
215
216 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
217 struct task_struct *src)
218 {
219 *dst = *src;
220 return 0;
221 }
222
223 static struct task_struct *dup_task_struct(struct task_struct *orig)
224 {
225 struct task_struct *tsk;
226 struct thread_info *ti;
227 unsigned long *stackend;
228
229 int err;
230
231 prepare_to_copy(orig);
232
233 tsk = alloc_task_struct();
234 if (!tsk)
235 return NULL;
236
237 ti = alloc_thread_info(tsk);
238 if (!ti) {
239 free_task_struct(tsk);
240 return NULL;
241 }
242
243 err = arch_dup_task_struct(tsk, orig);
244 if (err)
245 goto out;
246
247 tsk->stack = ti;
248
249 err = prop_local_init_single(&tsk->dirties);
250 if (err)
251 goto out;
252
253 setup_thread_stack(tsk, orig);
254 clear_user_return_notifier(tsk);
255 stackend = end_of_stack(tsk);
256 *stackend = STACK_END_MAGIC; /* for overflow detection */
257
258 #ifdef CONFIG_CC_STACKPROTECTOR
259 tsk->stack_canary = get_random_int();
260 #endif
261
262 /* One for us, one for whoever does the "release_task()" (usually parent) */
263 atomic_set(&tsk->usage,2);
264 atomic_set(&tsk->fs_excl, 0);
265 #ifdef CONFIG_BLK_DEV_IO_TRACE
266 tsk->btrace_seq = 0;
267 #endif
268 tsk->splice_pipe = NULL;
269
270 account_kernel_stack(ti, 1);
271
272 return tsk;
273
274 out:
275 free_thread_info(ti);
276 free_task_struct(tsk);
277 return NULL;
278 }
279
280 #ifdef CONFIG_MMU
281 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
282 {
283 struct vm_area_struct *mpnt, *tmp, **pprev;
284 struct rb_node **rb_link, *rb_parent;
285 int retval;
286 unsigned long charge;
287 struct mempolicy *pol;
288
289 down_write(&oldmm->mmap_sem);
290 flush_cache_dup_mm(oldmm);
291 /*
292 * Not linked in yet - no deadlock potential:
293 */
294 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
295
296 mm->locked_vm = 0;
297 mm->mmap = NULL;
298 mm->mmap_cache = NULL;
299 mm->free_area_cache = oldmm->mmap_base;
300 mm->cached_hole_size = ~0UL;
301 mm->map_count = 0;
302 cpumask_clear(mm_cpumask(mm));
303 mm->mm_rb = RB_ROOT;
304 rb_link = &mm->mm_rb.rb_node;
305 rb_parent = NULL;
306 pprev = &mm->mmap;
307 retval = ksm_fork(mm, oldmm);
308 if (retval)
309 goto out;
310
311 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
312 struct file *file;
313
314 if (mpnt->vm_flags & VM_DONTCOPY) {
315 long pages = vma_pages(mpnt);
316 mm->total_vm -= pages;
317 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
318 -pages);
319 continue;
320 }
321 charge = 0;
322 if (mpnt->vm_flags & VM_ACCOUNT) {
323 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
324 if (security_vm_enough_memory(len))
325 goto fail_nomem;
326 charge = len;
327 }
328 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
329 if (!tmp)
330 goto fail_nomem;
331 *tmp = *mpnt;
332 INIT_LIST_HEAD(&tmp->anon_vma_chain);
333 pol = mpol_dup(vma_policy(mpnt));
334 retval = PTR_ERR(pol);
335 if (IS_ERR(pol))
336 goto fail_nomem_policy;
337 vma_set_policy(tmp, pol);
338 if (anon_vma_fork(tmp, mpnt))
339 goto fail_nomem_anon_vma_fork;
340 tmp->vm_flags &= ~VM_LOCKED;
341 tmp->vm_mm = mm;
342 tmp->vm_next = NULL;
343 file = tmp->vm_file;
344 if (file) {
345 struct inode *inode = file->f_path.dentry->d_inode;
346 struct address_space *mapping = file->f_mapping;
347
348 get_file(file);
349 if (tmp->vm_flags & VM_DENYWRITE)
350 atomic_dec(&inode->i_writecount);
351 spin_lock(&mapping->i_mmap_lock);
352 if (tmp->vm_flags & VM_SHARED)
353 mapping->i_mmap_writable++;
354 tmp->vm_truncate_count = mpnt->vm_truncate_count;
355 flush_dcache_mmap_lock(mapping);
356 /* insert tmp into the share list, just after mpnt */
357 vma_prio_tree_add(tmp, mpnt);
358 flush_dcache_mmap_unlock(mapping);
359 spin_unlock(&mapping->i_mmap_lock);
360 }
361
362 /*
363 * Clear hugetlb-related page reserves for children. This only
364 * affects MAP_PRIVATE mappings. Faults generated by the child
365 * are not guaranteed to succeed, even if read-only
366 */
367 if (is_vm_hugetlb_page(tmp))
368 reset_vma_resv_huge_pages(tmp);
369
370 /*
371 * Link in the new vma and copy the page table entries.
372 */
373 *pprev = tmp;
374 pprev = &tmp->vm_next;
375
376 __vma_link_rb(mm, tmp, rb_link, rb_parent);
377 rb_link = &tmp->vm_rb.rb_right;
378 rb_parent = &tmp->vm_rb;
379
380 mm->map_count++;
381 retval = copy_page_range(mm, oldmm, mpnt);
382
383 if (tmp->vm_ops && tmp->vm_ops->open)
384 tmp->vm_ops->open(tmp);
385
386 if (retval)
387 goto out;
388 }
389 /* a new mm has just been created */
390 arch_dup_mmap(oldmm, mm);
391 retval = 0;
392 out:
393 up_write(&mm->mmap_sem);
394 flush_tlb_mm(oldmm);
395 up_write(&oldmm->mmap_sem);
396 return retval;
397 fail_nomem_anon_vma_fork:
398 mpol_put(pol);
399 fail_nomem_policy:
400 kmem_cache_free(vm_area_cachep, tmp);
401 fail_nomem:
402 retval = -ENOMEM;
403 vm_unacct_memory(charge);
404 goto out;
405 }
406
407 static inline int mm_alloc_pgd(struct mm_struct * mm)
408 {
409 mm->pgd = pgd_alloc(mm);
410 if (unlikely(!mm->pgd))
411 return -ENOMEM;
412 return 0;
413 }
414
415 static inline void mm_free_pgd(struct mm_struct * mm)
416 {
417 pgd_free(mm, mm->pgd);
418 }
419 #else
420 #define dup_mmap(mm, oldmm) (0)
421 #define mm_alloc_pgd(mm) (0)
422 #define mm_free_pgd(mm)
423 #endif /* CONFIG_MMU */
424
425 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
426
427 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
428 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
429
430 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
431
432 static int __init coredump_filter_setup(char *s)
433 {
434 default_dump_filter =
435 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
436 MMF_DUMP_FILTER_MASK;
437 return 1;
438 }
439
440 __setup("coredump_filter=", coredump_filter_setup);
441
442 #include <linux/init_task.h>
443
444 static void mm_init_aio(struct mm_struct *mm)
445 {
446 #ifdef CONFIG_AIO
447 spin_lock_init(&mm->ioctx_lock);
448 INIT_HLIST_HEAD(&mm->ioctx_list);
449 #endif
450 }
451
452 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
453 {
454 atomic_set(&mm->mm_users, 1);
455 atomic_set(&mm->mm_count, 1);
456 init_rwsem(&mm->mmap_sem);
457 INIT_LIST_HEAD(&mm->mmlist);
458 mm->flags = (current->mm) ?
459 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
460 mm->core_state = NULL;
461 mm->nr_ptes = 0;
462 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
463 spin_lock_init(&mm->page_table_lock);
464 mm->free_area_cache = TASK_UNMAPPED_BASE;
465 mm->cached_hole_size = ~0UL;
466 mm_init_aio(mm);
467 mm_init_owner(mm, p);
468
469 if (likely(!mm_alloc_pgd(mm))) {
470 mm->def_flags = 0;
471 mmu_notifier_mm_init(mm);
472 return mm;
473 }
474
475 free_mm(mm);
476 return NULL;
477 }
478
479 /*
480 * Allocate and initialize an mm_struct.
481 */
482 struct mm_struct * mm_alloc(void)
483 {
484 struct mm_struct * mm;
485
486 mm = allocate_mm();
487 if (mm) {
488 memset(mm, 0, sizeof(*mm));
489 mm = mm_init(mm, current);
490 }
491 return mm;
492 }
493
494 /*
495 * Called when the last reference to the mm
496 * is dropped: either by a lazy thread or by
497 * mmput. Free the page directory and the mm.
498 */
499 void __mmdrop(struct mm_struct *mm)
500 {
501 BUG_ON(mm == &init_mm);
502 mm_free_pgd(mm);
503 destroy_context(mm);
504 mmu_notifier_mm_destroy(mm);
505 free_mm(mm);
506 }
507 EXPORT_SYMBOL_GPL(__mmdrop);
508
509 /*
510 * Decrement the use count and release all resources for an mm.
511 */
512 void mmput(struct mm_struct *mm)
513 {
514 might_sleep();
515
516 if (atomic_dec_and_test(&mm->mm_users)) {
517 exit_aio(mm);
518 ksm_exit(mm);
519 exit_mmap(mm);
520 set_mm_exe_file(mm, NULL);
521 if (!list_empty(&mm->mmlist)) {
522 spin_lock(&mmlist_lock);
523 list_del(&mm->mmlist);
524 spin_unlock(&mmlist_lock);
525 }
526 put_swap_token(mm);
527 if (mm->binfmt)
528 module_put(mm->binfmt->module);
529 mmdrop(mm);
530 }
531 }
532 EXPORT_SYMBOL_GPL(mmput);
533
534 /**
535 * get_task_mm - acquire a reference to the task's mm
536 *
537 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
538 * this kernel workthread has transiently adopted a user mm with use_mm,
539 * to do its AIO) is not set and if so returns a reference to it, after
540 * bumping up the use count. User must release the mm via mmput()
541 * after use. Typically used by /proc and ptrace.
542 */
543 struct mm_struct *get_task_mm(struct task_struct *task)
544 {
545 struct mm_struct *mm;
546
547 task_lock(task);
548 mm = task->mm;
549 if (mm) {
550 if (task->flags & PF_KTHREAD)
551 mm = NULL;
552 else
553 atomic_inc(&mm->mm_users);
554 }
555 task_unlock(task);
556 return mm;
557 }
558 EXPORT_SYMBOL_GPL(get_task_mm);
559
560 /* Please note the differences between mmput and mm_release.
561 * mmput is called whenever we stop holding onto a mm_struct,
562 * error success whatever.
563 *
564 * mm_release is called after a mm_struct has been removed
565 * from the current process.
566 *
567 * This difference is important for error handling, when we
568 * only half set up a mm_struct for a new process and need to restore
569 * the old one. Because we mmput the new mm_struct before
570 * restoring the old one. . .
571 * Eric Biederman 10 January 1998
572 */
573 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
574 {
575 struct completion *vfork_done = tsk->vfork_done;
576
577 /* Get rid of any futexes when releasing the mm */
578 #ifdef CONFIG_FUTEX
579 if (unlikely(tsk->robust_list)) {
580 exit_robust_list(tsk);
581 tsk->robust_list = NULL;
582 }
583 #ifdef CONFIG_COMPAT
584 if (unlikely(tsk->compat_robust_list)) {
585 compat_exit_robust_list(tsk);
586 tsk->compat_robust_list = NULL;
587 }
588 #endif
589 if (unlikely(!list_empty(&tsk->pi_state_list)))
590 exit_pi_state_list(tsk);
591 #endif
592
593 /* Get rid of any cached register state */
594 deactivate_mm(tsk, mm);
595
596 /* notify parent sleeping on vfork() */
597 if (vfork_done) {
598 tsk->vfork_done = NULL;
599 complete(vfork_done);
600 }
601
602 /*
603 * If we're exiting normally, clear a user-space tid field if
604 * requested. We leave this alone when dying by signal, to leave
605 * the value intact in a core dump, and to save the unnecessary
606 * trouble otherwise. Userland only wants this done for a sys_exit.
607 */
608 if (tsk->clear_child_tid) {
609 if (!(tsk->flags & PF_SIGNALED) &&
610 atomic_read(&mm->mm_users) > 1) {
611 /*
612 * We don't check the error code - if userspace has
613 * not set up a proper pointer then tough luck.
614 */
615 put_user(0, tsk->clear_child_tid);
616 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
617 1, NULL, NULL, 0);
618 }
619 tsk->clear_child_tid = NULL;
620 }
621 }
622
623 /*
624 * Allocate a new mm structure and copy contents from the
625 * mm structure of the passed in task structure.
626 */
627 struct mm_struct *dup_mm(struct task_struct *tsk)
628 {
629 struct mm_struct *mm, *oldmm = current->mm;
630 int err;
631
632 if (!oldmm)
633 return NULL;
634
635 mm = allocate_mm();
636 if (!mm)
637 goto fail_nomem;
638
639 memcpy(mm, oldmm, sizeof(*mm));
640
641 /* Initializing for Swap token stuff */
642 mm->token_priority = 0;
643 mm->last_interval = 0;
644
645 if (!mm_init(mm, tsk))
646 goto fail_nomem;
647
648 if (init_new_context(tsk, mm))
649 goto fail_nocontext;
650
651 dup_mm_exe_file(oldmm, mm);
652
653 err = dup_mmap(mm, oldmm);
654 if (err)
655 goto free_pt;
656
657 mm->hiwater_rss = get_mm_rss(mm);
658 mm->hiwater_vm = mm->total_vm;
659
660 if (mm->binfmt && !try_module_get(mm->binfmt->module))
661 goto free_pt;
662
663 return mm;
664
665 free_pt:
666 /* don't put binfmt in mmput, we haven't got module yet */
667 mm->binfmt = NULL;
668 mmput(mm);
669
670 fail_nomem:
671 return NULL;
672
673 fail_nocontext:
674 /*
675 * If init_new_context() failed, we cannot use mmput() to free the mm
676 * because it calls destroy_context()
677 */
678 mm_free_pgd(mm);
679 free_mm(mm);
680 return NULL;
681 }
682
683 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
684 {
685 struct mm_struct * mm, *oldmm;
686 int retval;
687
688 tsk->min_flt = tsk->maj_flt = 0;
689 tsk->nvcsw = tsk->nivcsw = 0;
690 #ifdef CONFIG_DETECT_HUNG_TASK
691 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
692 #endif
693
694 tsk->mm = NULL;
695 tsk->active_mm = NULL;
696
697 /*
698 * Are we cloning a kernel thread?
699 *
700 * We need to steal a active VM for that..
701 */
702 oldmm = current->mm;
703 if (!oldmm)
704 return 0;
705
706 if (clone_flags & CLONE_VM) {
707 atomic_inc(&oldmm->mm_users);
708 mm = oldmm;
709 goto good_mm;
710 }
711
712 retval = -ENOMEM;
713 mm = dup_mm(tsk);
714 if (!mm)
715 goto fail_nomem;
716
717 good_mm:
718 /* Initializing for Swap token stuff */
719 mm->token_priority = 0;
720 mm->last_interval = 0;
721
722 tsk->mm = mm;
723 tsk->active_mm = mm;
724 return 0;
725
726 fail_nomem:
727 return retval;
728 }
729
730 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
731 {
732 struct fs_struct *fs = current->fs;
733 if (clone_flags & CLONE_FS) {
734 /* tsk->fs is already what we want */
735 write_lock(&fs->lock);
736 if (fs->in_exec) {
737 write_unlock(&fs->lock);
738 return -EAGAIN;
739 }
740 fs->users++;
741 write_unlock(&fs->lock);
742 return 0;
743 }
744 tsk->fs = copy_fs_struct(fs);
745 if (!tsk->fs)
746 return -ENOMEM;
747 return 0;
748 }
749
750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
751 {
752 struct files_struct *oldf, *newf;
753 int error = 0;
754
755 /*
756 * A background process may not have any files ...
757 */
758 oldf = current->files;
759 if (!oldf)
760 goto out;
761
762 if (clone_flags & CLONE_FILES) {
763 atomic_inc(&oldf->count);
764 goto out;
765 }
766
767 newf = dup_fd(oldf, &error);
768 if (!newf)
769 goto out;
770
771 tsk->files = newf;
772 error = 0;
773 out:
774 return error;
775 }
776
777 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
778 {
779 #ifdef CONFIG_BLOCK
780 struct io_context *ioc = current->io_context;
781
782 if (!ioc)
783 return 0;
784 /*
785 * Share io context with parent, if CLONE_IO is set
786 */
787 if (clone_flags & CLONE_IO) {
788 tsk->io_context = ioc_task_link(ioc);
789 if (unlikely(!tsk->io_context))
790 return -ENOMEM;
791 } else if (ioprio_valid(ioc->ioprio)) {
792 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
793 if (unlikely(!tsk->io_context))
794 return -ENOMEM;
795
796 tsk->io_context->ioprio = ioc->ioprio;
797 }
798 #endif
799 return 0;
800 }
801
802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
803 {
804 struct sighand_struct *sig;
805
806 if (clone_flags & CLONE_SIGHAND) {
807 atomic_inc(&current->sighand->count);
808 return 0;
809 }
810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
811 rcu_assign_pointer(tsk->sighand, sig);
812 if (!sig)
813 return -ENOMEM;
814 atomic_set(&sig->count, 1);
815 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
816 return 0;
817 }
818
819 void __cleanup_sighand(struct sighand_struct *sighand)
820 {
821 if (atomic_dec_and_test(&sighand->count))
822 kmem_cache_free(sighand_cachep, sighand);
823 }
824
825
826 /*
827 * Initialize POSIX timer handling for a thread group.
828 */
829 static void posix_cpu_timers_init_group(struct signal_struct *sig)
830 {
831 unsigned long cpu_limit;
832
833 /* Thread group counters. */
834 thread_group_cputime_init(sig);
835
836 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
837 if (cpu_limit != RLIM_INFINITY) {
838 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
839 sig->cputimer.running = 1;
840 }
841
842 /* The timer lists. */
843 INIT_LIST_HEAD(&sig->cpu_timers[0]);
844 INIT_LIST_HEAD(&sig->cpu_timers[1]);
845 INIT_LIST_HEAD(&sig->cpu_timers[2]);
846 }
847
848 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
849 {
850 struct signal_struct *sig;
851
852 if (clone_flags & CLONE_THREAD)
853 return 0;
854
855 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
856 tsk->signal = sig;
857 if (!sig)
858 return -ENOMEM;
859
860 atomic_set(&sig->count, 1);
861 atomic_set(&sig->live, 1);
862 init_waitqueue_head(&sig->wait_chldexit);
863 if (clone_flags & CLONE_NEWPID)
864 sig->flags |= SIGNAL_UNKILLABLE;
865 sig->curr_target = tsk;
866 init_sigpending(&sig->shared_pending);
867 INIT_LIST_HEAD(&sig->posix_timers);
868
869 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
870 sig->real_timer.function = it_real_fn;
871
872 task_lock(current->group_leader);
873 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
874 task_unlock(current->group_leader);
875
876 posix_cpu_timers_init_group(sig);
877
878 tty_audit_fork(sig);
879
880 sig->oom_adj = current->signal->oom_adj;
881
882 return 0;
883 }
884
885 void __cleanup_signal(struct signal_struct *sig)
886 {
887 thread_group_cputime_free(sig);
888 tty_kref_put(sig->tty);
889 kmem_cache_free(signal_cachep, sig);
890 }
891
892 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
893 {
894 unsigned long new_flags = p->flags;
895
896 new_flags &= ~PF_SUPERPRIV;
897 new_flags |= PF_FORKNOEXEC;
898 new_flags |= PF_STARTING;
899 p->flags = new_flags;
900 clear_freeze_flag(p);
901 }
902
903 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
904 {
905 current->clear_child_tid = tidptr;
906
907 return task_pid_vnr(current);
908 }
909
910 static void rt_mutex_init_task(struct task_struct *p)
911 {
912 raw_spin_lock_init(&p->pi_lock);
913 #ifdef CONFIG_RT_MUTEXES
914 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
915 p->pi_blocked_on = NULL;
916 #endif
917 }
918
919 #ifdef CONFIG_MM_OWNER
920 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
921 {
922 mm->owner = p;
923 }
924 #endif /* CONFIG_MM_OWNER */
925
926 /*
927 * Initialize POSIX timer handling for a single task.
928 */
929 static void posix_cpu_timers_init(struct task_struct *tsk)
930 {
931 tsk->cputime_expires.prof_exp = cputime_zero;
932 tsk->cputime_expires.virt_exp = cputime_zero;
933 tsk->cputime_expires.sched_exp = 0;
934 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
935 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
936 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
937 }
938
939 /*
940 * This creates a new process as a copy of the old one,
941 * but does not actually start it yet.
942 *
943 * It copies the registers, and all the appropriate
944 * parts of the process environment (as per the clone
945 * flags). The actual kick-off is left to the caller.
946 */
947 static struct task_struct *copy_process(unsigned long clone_flags,
948 unsigned long stack_start,
949 struct pt_regs *regs,
950 unsigned long stack_size,
951 int __user *child_tidptr,
952 struct pid *pid,
953 int trace)
954 {
955 int retval;
956 struct task_struct *p;
957 int cgroup_callbacks_done = 0;
958
959 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
960 return ERR_PTR(-EINVAL);
961
962 /*
963 * Thread groups must share signals as well, and detached threads
964 * can only be started up within the thread group.
965 */
966 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
967 return ERR_PTR(-EINVAL);
968
969 /*
970 * Shared signal handlers imply shared VM. By way of the above,
971 * thread groups also imply shared VM. Blocking this case allows
972 * for various simplifications in other code.
973 */
974 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
975 return ERR_PTR(-EINVAL);
976
977 /*
978 * Siblings of global init remain as zombies on exit since they are
979 * not reaped by their parent (swapper). To solve this and to avoid
980 * multi-rooted process trees, prevent global and container-inits
981 * from creating siblings.
982 */
983 if ((clone_flags & CLONE_PARENT) &&
984 current->signal->flags & SIGNAL_UNKILLABLE)
985 return ERR_PTR(-EINVAL);
986
987 retval = security_task_create(clone_flags);
988 if (retval)
989 goto fork_out;
990
991 retval = -ENOMEM;
992 p = dup_task_struct(current);
993 if (!p)
994 goto fork_out;
995
996 ftrace_graph_init_task(p);
997
998 rt_mutex_init_task(p);
999
1000 #ifdef CONFIG_PROVE_LOCKING
1001 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1002 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1003 #endif
1004 retval = -EAGAIN;
1005 if (atomic_read(&p->real_cred->user->processes) >=
1006 task_rlimit(p, RLIMIT_NPROC)) {
1007 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1008 p->real_cred->user != INIT_USER)
1009 goto bad_fork_free;
1010 }
1011
1012 retval = copy_creds(p, clone_flags);
1013 if (retval < 0)
1014 goto bad_fork_free;
1015
1016 /*
1017 * If multiple threads are within copy_process(), then this check
1018 * triggers too late. This doesn't hurt, the check is only there
1019 * to stop root fork bombs.
1020 */
1021 retval = -EAGAIN;
1022 if (nr_threads >= max_threads)
1023 goto bad_fork_cleanup_count;
1024
1025 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1026 goto bad_fork_cleanup_count;
1027
1028 p->did_exec = 0;
1029 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1030 copy_flags(clone_flags, p);
1031 INIT_LIST_HEAD(&p->children);
1032 INIT_LIST_HEAD(&p->sibling);
1033 rcu_copy_process(p);
1034 p->vfork_done = NULL;
1035 spin_lock_init(&p->alloc_lock);
1036
1037 init_sigpending(&p->pending);
1038
1039 p->utime = cputime_zero;
1040 p->stime = cputime_zero;
1041 p->gtime = cputime_zero;
1042 p->utimescaled = cputime_zero;
1043 p->stimescaled = cputime_zero;
1044 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1045 p->prev_utime = cputime_zero;
1046 p->prev_stime = cputime_zero;
1047 #endif
1048
1049 p->default_timer_slack_ns = current->timer_slack_ns;
1050
1051 task_io_accounting_init(&p->ioac);
1052 acct_clear_integrals(p);
1053
1054 posix_cpu_timers_init(p);
1055
1056 p->lock_depth = -1; /* -1 = no lock */
1057 do_posix_clock_monotonic_gettime(&p->start_time);
1058 p->real_start_time = p->start_time;
1059 monotonic_to_bootbased(&p->real_start_time);
1060 p->io_context = NULL;
1061 p->audit_context = NULL;
1062 cgroup_fork(p);
1063 #ifdef CONFIG_NUMA
1064 p->mempolicy = mpol_dup(p->mempolicy);
1065 if (IS_ERR(p->mempolicy)) {
1066 retval = PTR_ERR(p->mempolicy);
1067 p->mempolicy = NULL;
1068 goto bad_fork_cleanup_cgroup;
1069 }
1070 mpol_fix_fork_child_flag(p);
1071 #endif
1072 #ifdef CONFIG_TRACE_IRQFLAGS
1073 p->irq_events = 0;
1074 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1075 p->hardirqs_enabled = 1;
1076 #else
1077 p->hardirqs_enabled = 0;
1078 #endif
1079 p->hardirq_enable_ip = 0;
1080 p->hardirq_enable_event = 0;
1081 p->hardirq_disable_ip = _THIS_IP_;
1082 p->hardirq_disable_event = 0;
1083 p->softirqs_enabled = 1;
1084 p->softirq_enable_ip = _THIS_IP_;
1085 p->softirq_enable_event = 0;
1086 p->softirq_disable_ip = 0;
1087 p->softirq_disable_event = 0;
1088 p->hardirq_context = 0;
1089 p->softirq_context = 0;
1090 #endif
1091 #ifdef CONFIG_LOCKDEP
1092 p->lockdep_depth = 0; /* no locks held yet */
1093 p->curr_chain_key = 0;
1094 p->lockdep_recursion = 0;
1095 #endif
1096
1097 #ifdef CONFIG_DEBUG_MUTEXES
1098 p->blocked_on = NULL; /* not blocked yet */
1099 #endif
1100 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1101 p->memcg_batch.do_batch = 0;
1102 p->memcg_batch.memcg = NULL;
1103 #endif
1104
1105 p->bts = NULL;
1106
1107 p->stack_start = stack_start;
1108
1109 /* Perform scheduler related setup. Assign this task to a CPU. */
1110 sched_fork(p, clone_flags);
1111
1112 retval = perf_event_init_task(p);
1113 if (retval)
1114 goto bad_fork_cleanup_policy;
1115
1116 if ((retval = audit_alloc(p)))
1117 goto bad_fork_cleanup_policy;
1118 /* copy all the process information */
1119 if ((retval = copy_semundo(clone_flags, p)))
1120 goto bad_fork_cleanup_audit;
1121 if ((retval = copy_files(clone_flags, p)))
1122 goto bad_fork_cleanup_semundo;
1123 if ((retval = copy_fs(clone_flags, p)))
1124 goto bad_fork_cleanup_files;
1125 if ((retval = copy_sighand(clone_flags, p)))
1126 goto bad_fork_cleanup_fs;
1127 if ((retval = copy_signal(clone_flags, p)))
1128 goto bad_fork_cleanup_sighand;
1129 if ((retval = copy_mm(clone_flags, p)))
1130 goto bad_fork_cleanup_signal;
1131 if ((retval = copy_namespaces(clone_flags, p)))
1132 goto bad_fork_cleanup_mm;
1133 if ((retval = copy_io(clone_flags, p)))
1134 goto bad_fork_cleanup_namespaces;
1135 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1136 if (retval)
1137 goto bad_fork_cleanup_io;
1138
1139 if (pid != &init_struct_pid) {
1140 retval = -ENOMEM;
1141 pid = alloc_pid(p->nsproxy->pid_ns);
1142 if (!pid)
1143 goto bad_fork_cleanup_io;
1144
1145 if (clone_flags & CLONE_NEWPID) {
1146 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1147 if (retval < 0)
1148 goto bad_fork_free_pid;
1149 }
1150 }
1151
1152 p->pid = pid_nr(pid);
1153 p->tgid = p->pid;
1154 if (clone_flags & CLONE_THREAD)
1155 p->tgid = current->tgid;
1156
1157 if (current->nsproxy != p->nsproxy) {
1158 retval = ns_cgroup_clone(p, pid);
1159 if (retval)
1160 goto bad_fork_free_pid;
1161 }
1162
1163 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1164 /*
1165 * Clear TID on mm_release()?
1166 */
1167 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1168 #ifdef CONFIG_FUTEX
1169 p->robust_list = NULL;
1170 #ifdef CONFIG_COMPAT
1171 p->compat_robust_list = NULL;
1172 #endif
1173 INIT_LIST_HEAD(&p->pi_state_list);
1174 p->pi_state_cache = NULL;
1175 #endif
1176 /*
1177 * sigaltstack should be cleared when sharing the same VM
1178 */
1179 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1180 p->sas_ss_sp = p->sas_ss_size = 0;
1181
1182 /*
1183 * Syscall tracing and stepping should be turned off in the
1184 * child regardless of CLONE_PTRACE.
1185 */
1186 user_disable_single_step(p);
1187 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1188 #ifdef TIF_SYSCALL_EMU
1189 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1190 #endif
1191 clear_all_latency_tracing(p);
1192
1193 /* ok, now we should be set up.. */
1194 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1195 p->pdeath_signal = 0;
1196 p->exit_state = 0;
1197
1198 /*
1199 * Ok, make it visible to the rest of the system.
1200 * We dont wake it up yet.
1201 */
1202 p->group_leader = p;
1203 INIT_LIST_HEAD(&p->thread_group);
1204
1205 /* Now that the task is set up, run cgroup callbacks if
1206 * necessary. We need to run them before the task is visible
1207 * on the tasklist. */
1208 cgroup_fork_callbacks(p);
1209 cgroup_callbacks_done = 1;
1210
1211 /* Need tasklist lock for parent etc handling! */
1212 write_lock_irq(&tasklist_lock);
1213
1214 /* CLONE_PARENT re-uses the old parent */
1215 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1216 p->real_parent = current->real_parent;
1217 p->parent_exec_id = current->parent_exec_id;
1218 } else {
1219 p->real_parent = current;
1220 p->parent_exec_id = current->self_exec_id;
1221 }
1222
1223 spin_lock(&current->sighand->siglock);
1224
1225 /*
1226 * Process group and session signals need to be delivered to just the
1227 * parent before the fork or both the parent and the child after the
1228 * fork. Restart if a signal comes in before we add the new process to
1229 * it's process group.
1230 * A fatal signal pending means that current will exit, so the new
1231 * thread can't slip out of an OOM kill (or normal SIGKILL).
1232 */
1233 recalc_sigpending();
1234 if (signal_pending(current)) {
1235 spin_unlock(&current->sighand->siglock);
1236 write_unlock_irq(&tasklist_lock);
1237 retval = -ERESTARTNOINTR;
1238 goto bad_fork_free_pid;
1239 }
1240
1241 if (clone_flags & CLONE_THREAD) {
1242 atomic_inc(&current->signal->count);
1243 atomic_inc(&current->signal->live);
1244 p->group_leader = current->group_leader;
1245 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1246 }
1247
1248 if (likely(p->pid)) {
1249 tracehook_finish_clone(p, clone_flags, trace);
1250
1251 if (thread_group_leader(p)) {
1252 if (clone_flags & CLONE_NEWPID)
1253 p->nsproxy->pid_ns->child_reaper = p;
1254
1255 p->signal->leader_pid = pid;
1256 tty_kref_put(p->signal->tty);
1257 p->signal->tty = tty_kref_get(current->signal->tty);
1258 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1259 attach_pid(p, PIDTYPE_SID, task_session(current));
1260 list_add_tail(&p->sibling, &p->real_parent->children);
1261 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1262 __get_cpu_var(process_counts)++;
1263 }
1264 attach_pid(p, PIDTYPE_PID, pid);
1265 nr_threads++;
1266 }
1267
1268 total_forks++;
1269 spin_unlock(&current->sighand->siglock);
1270 write_unlock_irq(&tasklist_lock);
1271 proc_fork_connector(p);
1272 cgroup_post_fork(p);
1273 perf_event_fork(p);
1274 return p;
1275
1276 bad_fork_free_pid:
1277 if (pid != &init_struct_pid)
1278 free_pid(pid);
1279 bad_fork_cleanup_io:
1280 if (p->io_context)
1281 exit_io_context(p);
1282 bad_fork_cleanup_namespaces:
1283 exit_task_namespaces(p);
1284 bad_fork_cleanup_mm:
1285 if (p->mm)
1286 mmput(p->mm);
1287 bad_fork_cleanup_signal:
1288 if (!(clone_flags & CLONE_THREAD))
1289 __cleanup_signal(p->signal);
1290 bad_fork_cleanup_sighand:
1291 __cleanup_sighand(p->sighand);
1292 bad_fork_cleanup_fs:
1293 exit_fs(p); /* blocking */
1294 bad_fork_cleanup_files:
1295 exit_files(p); /* blocking */
1296 bad_fork_cleanup_semundo:
1297 exit_sem(p);
1298 bad_fork_cleanup_audit:
1299 audit_free(p);
1300 bad_fork_cleanup_policy:
1301 perf_event_free_task(p);
1302 #ifdef CONFIG_NUMA
1303 mpol_put(p->mempolicy);
1304 bad_fork_cleanup_cgroup:
1305 #endif
1306 cgroup_exit(p, cgroup_callbacks_done);
1307 delayacct_tsk_free(p);
1308 module_put(task_thread_info(p)->exec_domain->module);
1309 bad_fork_cleanup_count:
1310 atomic_dec(&p->cred->user->processes);
1311 exit_creds(p);
1312 bad_fork_free:
1313 free_task(p);
1314 fork_out:
1315 return ERR_PTR(retval);
1316 }
1317
1318 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1319 {
1320 memset(regs, 0, sizeof(struct pt_regs));
1321 return regs;
1322 }
1323
1324 struct task_struct * __cpuinit fork_idle(int cpu)
1325 {
1326 struct task_struct *task;
1327 struct pt_regs regs;
1328
1329 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1330 &init_struct_pid, 0);
1331 if (!IS_ERR(task))
1332 init_idle(task, cpu);
1333
1334 return task;
1335 }
1336
1337 /*
1338 * Ok, this is the main fork-routine.
1339 *
1340 * It copies the process, and if successful kick-starts
1341 * it and waits for it to finish using the VM if required.
1342 */
1343 long do_fork(unsigned long clone_flags,
1344 unsigned long stack_start,
1345 struct pt_regs *regs,
1346 unsigned long stack_size,
1347 int __user *parent_tidptr,
1348 int __user *child_tidptr)
1349 {
1350 struct task_struct *p;
1351 int trace = 0;
1352 long nr;
1353
1354 /*
1355 * Do some preliminary argument and permissions checking before we
1356 * actually start allocating stuff
1357 */
1358 if (clone_flags & CLONE_NEWUSER) {
1359 if (clone_flags & CLONE_THREAD)
1360 return -EINVAL;
1361 /* hopefully this check will go away when userns support is
1362 * complete
1363 */
1364 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1365 !capable(CAP_SETGID))
1366 return -EPERM;
1367 }
1368
1369 /*
1370 * We hope to recycle these flags after 2.6.26
1371 */
1372 if (unlikely(clone_flags & CLONE_STOPPED)) {
1373 static int __read_mostly count = 100;
1374
1375 if (count > 0 && printk_ratelimit()) {
1376 char comm[TASK_COMM_LEN];
1377
1378 count--;
1379 printk(KERN_INFO "fork(): process `%s' used deprecated "
1380 "clone flags 0x%lx\n",
1381 get_task_comm(comm, current),
1382 clone_flags & CLONE_STOPPED);
1383 }
1384 }
1385
1386 /*
1387 * When called from kernel_thread, don't do user tracing stuff.
1388 */
1389 if (likely(user_mode(regs)))
1390 trace = tracehook_prepare_clone(clone_flags);
1391
1392 p = copy_process(clone_flags, stack_start, regs, stack_size,
1393 child_tidptr, NULL, trace);
1394 /*
1395 * Do this prior waking up the new thread - the thread pointer
1396 * might get invalid after that point, if the thread exits quickly.
1397 */
1398 if (!IS_ERR(p)) {
1399 struct completion vfork;
1400
1401 trace_sched_process_fork(current, p);
1402
1403 nr = task_pid_vnr(p);
1404
1405 if (clone_flags & CLONE_PARENT_SETTID)
1406 put_user(nr, parent_tidptr);
1407
1408 if (clone_flags & CLONE_VFORK) {
1409 p->vfork_done = &vfork;
1410 init_completion(&vfork);
1411 }
1412
1413 audit_finish_fork(p);
1414 tracehook_report_clone(regs, clone_flags, nr, p);
1415
1416 /*
1417 * We set PF_STARTING at creation in case tracing wants to
1418 * use this to distinguish a fully live task from one that
1419 * hasn't gotten to tracehook_report_clone() yet. Now we
1420 * clear it and set the child going.
1421 */
1422 p->flags &= ~PF_STARTING;
1423
1424 if (unlikely(clone_flags & CLONE_STOPPED)) {
1425 /*
1426 * We'll start up with an immediate SIGSTOP.
1427 */
1428 sigaddset(&p->pending.signal, SIGSTOP);
1429 set_tsk_thread_flag(p, TIF_SIGPENDING);
1430 __set_task_state(p, TASK_STOPPED);
1431 } else {
1432 wake_up_new_task(p, clone_flags);
1433 }
1434
1435 tracehook_report_clone_complete(trace, regs,
1436 clone_flags, nr, p);
1437
1438 if (clone_flags & CLONE_VFORK) {
1439 freezer_do_not_count();
1440 wait_for_completion(&vfork);
1441 freezer_count();
1442 tracehook_report_vfork_done(p, nr);
1443 }
1444 } else {
1445 nr = PTR_ERR(p);
1446 }
1447 return nr;
1448 }
1449
1450 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1451 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1452 #endif
1453
1454 static void sighand_ctor(void *data)
1455 {
1456 struct sighand_struct *sighand = data;
1457
1458 spin_lock_init(&sighand->siglock);
1459 init_waitqueue_head(&sighand->signalfd_wqh);
1460 }
1461
1462 void __init proc_caches_init(void)
1463 {
1464 sighand_cachep = kmem_cache_create("sighand_cache",
1465 sizeof(struct sighand_struct), 0,
1466 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1467 SLAB_NOTRACK, sighand_ctor);
1468 signal_cachep = kmem_cache_create("signal_cache",
1469 sizeof(struct signal_struct), 0,
1470 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1471 files_cachep = kmem_cache_create("files_cache",
1472 sizeof(struct files_struct), 0,
1473 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1474 fs_cachep = kmem_cache_create("fs_cache",
1475 sizeof(struct fs_struct), 0,
1476 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1477 mm_cachep = kmem_cache_create("mm_struct",
1478 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1479 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1480 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1481 mmap_init();
1482 }
1483
1484 /*
1485 * Check constraints on flags passed to the unshare system call and
1486 * force unsharing of additional process context as appropriate.
1487 */
1488 static void check_unshare_flags(unsigned long *flags_ptr)
1489 {
1490 /*
1491 * If unsharing a thread from a thread group, must also
1492 * unshare vm.
1493 */
1494 if (*flags_ptr & CLONE_THREAD)
1495 *flags_ptr |= CLONE_VM;
1496
1497 /*
1498 * If unsharing vm, must also unshare signal handlers.
1499 */
1500 if (*flags_ptr & CLONE_VM)
1501 *flags_ptr |= CLONE_SIGHAND;
1502
1503 /*
1504 * If unsharing signal handlers and the task was created
1505 * using CLONE_THREAD, then must unshare the thread
1506 */
1507 if ((*flags_ptr & CLONE_SIGHAND) &&
1508 (atomic_read(&current->signal->count) > 1))
1509 *flags_ptr |= CLONE_THREAD;
1510
1511 /*
1512 * If unsharing namespace, must also unshare filesystem information.
1513 */
1514 if (*flags_ptr & CLONE_NEWNS)
1515 *flags_ptr |= CLONE_FS;
1516 }
1517
1518 /*
1519 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1520 */
1521 static int unshare_thread(unsigned long unshare_flags)
1522 {
1523 if (unshare_flags & CLONE_THREAD)
1524 return -EINVAL;
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Unshare the filesystem structure if it is being shared
1531 */
1532 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1533 {
1534 struct fs_struct *fs = current->fs;
1535
1536 if (!(unshare_flags & CLONE_FS) || !fs)
1537 return 0;
1538
1539 /* don't need lock here; in the worst case we'll do useless copy */
1540 if (fs->users == 1)
1541 return 0;
1542
1543 *new_fsp = copy_fs_struct(fs);
1544 if (!*new_fsp)
1545 return -ENOMEM;
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * Unsharing of sighand is not supported yet
1552 */
1553 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1554 {
1555 struct sighand_struct *sigh = current->sighand;
1556
1557 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1558 return -EINVAL;
1559 else
1560 return 0;
1561 }
1562
1563 /*
1564 * Unshare vm if it is being shared
1565 */
1566 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1567 {
1568 struct mm_struct *mm = current->mm;
1569
1570 if ((unshare_flags & CLONE_VM) &&
1571 (mm && atomic_read(&mm->mm_users) > 1)) {
1572 return -EINVAL;
1573 }
1574
1575 return 0;
1576 }
1577
1578 /*
1579 * Unshare file descriptor table if it is being shared
1580 */
1581 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1582 {
1583 struct files_struct *fd = current->files;
1584 int error = 0;
1585
1586 if ((unshare_flags & CLONE_FILES) &&
1587 (fd && atomic_read(&fd->count) > 1)) {
1588 *new_fdp = dup_fd(fd, &error);
1589 if (!*new_fdp)
1590 return error;
1591 }
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * unshare allows a process to 'unshare' part of the process
1598 * context which was originally shared using clone. copy_*
1599 * functions used by do_fork() cannot be used here directly
1600 * because they modify an inactive task_struct that is being
1601 * constructed. Here we are modifying the current, active,
1602 * task_struct.
1603 */
1604 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1605 {
1606 int err = 0;
1607 struct fs_struct *fs, *new_fs = NULL;
1608 struct sighand_struct *new_sigh = NULL;
1609 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1610 struct files_struct *fd, *new_fd = NULL;
1611 struct nsproxy *new_nsproxy = NULL;
1612 int do_sysvsem = 0;
1613
1614 check_unshare_flags(&unshare_flags);
1615
1616 /* Return -EINVAL for all unsupported flags */
1617 err = -EINVAL;
1618 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1619 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1620 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1621 goto bad_unshare_out;
1622
1623 /*
1624 * CLONE_NEWIPC must also detach from the undolist: after switching
1625 * to a new ipc namespace, the semaphore arrays from the old
1626 * namespace are unreachable.
1627 */
1628 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1629 do_sysvsem = 1;
1630 if ((err = unshare_thread(unshare_flags)))
1631 goto bad_unshare_out;
1632 if ((err = unshare_fs(unshare_flags, &new_fs)))
1633 goto bad_unshare_cleanup_thread;
1634 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1635 goto bad_unshare_cleanup_fs;
1636 if ((err = unshare_vm(unshare_flags, &new_mm)))
1637 goto bad_unshare_cleanup_sigh;
1638 if ((err = unshare_fd(unshare_flags, &new_fd)))
1639 goto bad_unshare_cleanup_vm;
1640 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1641 new_fs)))
1642 goto bad_unshare_cleanup_fd;
1643
1644 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1645 if (do_sysvsem) {
1646 /*
1647 * CLONE_SYSVSEM is equivalent to sys_exit().
1648 */
1649 exit_sem(current);
1650 }
1651
1652 if (new_nsproxy) {
1653 switch_task_namespaces(current, new_nsproxy);
1654 new_nsproxy = NULL;
1655 }
1656
1657 task_lock(current);
1658
1659 if (new_fs) {
1660 fs = current->fs;
1661 write_lock(&fs->lock);
1662 current->fs = new_fs;
1663 if (--fs->users)
1664 new_fs = NULL;
1665 else
1666 new_fs = fs;
1667 write_unlock(&fs->lock);
1668 }
1669
1670 if (new_mm) {
1671 mm = current->mm;
1672 active_mm = current->active_mm;
1673 current->mm = new_mm;
1674 current->active_mm = new_mm;
1675 activate_mm(active_mm, new_mm);
1676 new_mm = mm;
1677 }
1678
1679 if (new_fd) {
1680 fd = current->files;
1681 current->files = new_fd;
1682 new_fd = fd;
1683 }
1684
1685 task_unlock(current);
1686 }
1687
1688 if (new_nsproxy)
1689 put_nsproxy(new_nsproxy);
1690
1691 bad_unshare_cleanup_fd:
1692 if (new_fd)
1693 put_files_struct(new_fd);
1694
1695 bad_unshare_cleanup_vm:
1696 if (new_mm)
1697 mmput(new_mm);
1698
1699 bad_unshare_cleanup_sigh:
1700 if (new_sigh)
1701 if (atomic_dec_and_test(&new_sigh->count))
1702 kmem_cache_free(sighand_cachep, new_sigh);
1703
1704 bad_unshare_cleanup_fs:
1705 if (new_fs)
1706 free_fs_struct(new_fs);
1707
1708 bad_unshare_cleanup_thread:
1709 bad_unshare_out:
1710 return err;
1711 }
1712
1713 /*
1714 * Helper to unshare the files of the current task.
1715 * We don't want to expose copy_files internals to
1716 * the exec layer of the kernel.
1717 */
1718
1719 int unshare_files(struct files_struct **displaced)
1720 {
1721 struct task_struct *task = current;
1722 struct files_struct *copy = NULL;
1723 int error;
1724
1725 error = unshare_fd(CLONE_FILES, &copy);
1726 if (error || !copy) {
1727 *displaced = NULL;
1728 return error;
1729 }
1730 *displaced = task->files;
1731 task_lock(task);
1732 task->files = copy;
1733 task_unlock(task);
1734 return 0;
1735 }
This page took 0.07853 seconds and 6 git commands to generate.