Merge branch 'kvm-updates/2.6.38' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75 #define FLAGS_SHARED 0x01
76 #define FLAGS_CLOCKRT 0x02
77 #define FLAGS_HAS_TIMEOUT 0x04
78
79 /*
80 * Priority Inheritance state:
81 */
82 struct futex_pi_state {
83 /*
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
86 */
87 struct list_head list;
88
89 /*
90 * The PI object:
91 */
92 struct rt_mutex pi_mutex;
93
94 struct task_struct *owner;
95 atomic_t refcount;
96
97 union futex_key key;
98 };
99
100 /**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
102 * @list: priority-sorted list of tasks waiting on this futex
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116 * The order of wakeup is always to make the first condition true, then
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
121 */
122 struct futex_q {
123 struct plist_node list;
124
125 struct task_struct *task;
126 spinlock_t *lock_ptr;
127 union futex_key key;
128 struct futex_pi_state *pi_state;
129 struct rt_mutex_waiter *rt_waiter;
130 union futex_key *requeue_pi_key;
131 u32 bitset;
132 };
133
134 static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
138 };
139
140 /*
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
144 */
145 struct futex_hash_bucket {
146 spinlock_t lock;
147 struct plist_head chain;
148 };
149
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152 /*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
156 {
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161 }
162
163 /*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
167 {
168 return (key1 && key2
169 && key1->both.word == key2->both.word
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
172 }
173
174 /*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179 static void get_futex_key_refs(union futex_key *key)
180 {
181 if (!key->both.ptr)
182 return;
183
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
186 ihold(key->shared.inode);
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
191 }
192 }
193
194 /*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198 static void drop_futex_key_refs(union futex_key *key)
199 {
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
203 return;
204 }
205
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
213 }
214 }
215
216 /**
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
221 *
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
224 *
225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
228 *
229 * lock_page() might sleep, the caller should not hold a spinlock.
230 */
231 static int
232 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233 {
234 unsigned long address = (unsigned long)uaddr;
235 struct mm_struct *mm = current->mm;
236 struct page *page;
237 int err;
238
239 /*
240 * The futex address must be "naturally" aligned.
241 */
242 key->both.offset = address % PAGE_SIZE;
243 if (unlikely((address % sizeof(u32)) != 0))
244 return -EINVAL;
245 address -= key->both.offset;
246
247 /*
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
253 */
254 if (!fshared) {
255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
259 get_futex_key_refs(key);
260 return 0;
261 }
262
263 again:
264 err = get_user_pages_fast(address, 1, 1, &page);
265 if (err < 0)
266 return err;
267
268 page = compound_head(page);
269 lock_page(page);
270 if (!page->mapping) {
271 unlock_page(page);
272 put_page(page);
273 goto again;
274 }
275
276 /*
277 * Private mappings are handled in a simple way.
278 *
279 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
280 * it's a read-only handle, it's expected that futexes attach to
281 * the object not the particular process.
282 */
283 if (PageAnon(page)) {
284 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
285 key->private.mm = mm;
286 key->private.address = address;
287 } else {
288 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
289 key->shared.inode = page->mapping->host;
290 key->shared.pgoff = page->index;
291 }
292
293 get_futex_key_refs(key);
294
295 unlock_page(page);
296 put_page(page);
297 return 0;
298 }
299
300 static inline void put_futex_key(union futex_key *key)
301 {
302 drop_futex_key_refs(key);
303 }
304
305 /**
306 * fault_in_user_writeable() - Fault in user address and verify RW access
307 * @uaddr: pointer to faulting user space address
308 *
309 * Slow path to fixup the fault we just took in the atomic write
310 * access to @uaddr.
311 *
312 * We have no generic implementation of a non-destructive write to the
313 * user address. We know that we faulted in the atomic pagefault
314 * disabled section so we can as well avoid the #PF overhead by
315 * calling get_user_pages() right away.
316 */
317 static int fault_in_user_writeable(u32 __user *uaddr)
318 {
319 struct mm_struct *mm = current->mm;
320 int ret;
321
322 down_read(&mm->mmap_sem);
323 ret = get_user_pages(current, mm, (unsigned long)uaddr,
324 1, 1, 0, NULL, NULL);
325 up_read(&mm->mmap_sem);
326
327 return ret < 0 ? ret : 0;
328 }
329
330 /**
331 * futex_top_waiter() - Return the highest priority waiter on a futex
332 * @hb: the hash bucket the futex_q's reside in
333 * @key: the futex key (to distinguish it from other futex futex_q's)
334 *
335 * Must be called with the hb lock held.
336 */
337 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
338 union futex_key *key)
339 {
340 struct futex_q *this;
341
342 plist_for_each_entry(this, &hb->chain, list) {
343 if (match_futex(&this->key, key))
344 return this;
345 }
346 return NULL;
347 }
348
349 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
350 {
351 u32 curval;
352
353 pagefault_disable();
354 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
355 pagefault_enable();
356
357 return curval;
358 }
359
360 static int get_futex_value_locked(u32 *dest, u32 __user *from)
361 {
362 int ret;
363
364 pagefault_disable();
365 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
366 pagefault_enable();
367
368 return ret ? -EFAULT : 0;
369 }
370
371
372 /*
373 * PI code:
374 */
375 static int refill_pi_state_cache(void)
376 {
377 struct futex_pi_state *pi_state;
378
379 if (likely(current->pi_state_cache))
380 return 0;
381
382 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
383
384 if (!pi_state)
385 return -ENOMEM;
386
387 INIT_LIST_HEAD(&pi_state->list);
388 /* pi_mutex gets initialized later */
389 pi_state->owner = NULL;
390 atomic_set(&pi_state->refcount, 1);
391 pi_state->key = FUTEX_KEY_INIT;
392
393 current->pi_state_cache = pi_state;
394
395 return 0;
396 }
397
398 static struct futex_pi_state * alloc_pi_state(void)
399 {
400 struct futex_pi_state *pi_state = current->pi_state_cache;
401
402 WARN_ON(!pi_state);
403 current->pi_state_cache = NULL;
404
405 return pi_state;
406 }
407
408 static void free_pi_state(struct futex_pi_state *pi_state)
409 {
410 if (!atomic_dec_and_test(&pi_state->refcount))
411 return;
412
413 /*
414 * If pi_state->owner is NULL, the owner is most probably dying
415 * and has cleaned up the pi_state already
416 */
417 if (pi_state->owner) {
418 raw_spin_lock_irq(&pi_state->owner->pi_lock);
419 list_del_init(&pi_state->list);
420 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
421
422 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
423 }
424
425 if (current->pi_state_cache)
426 kfree(pi_state);
427 else {
428 /*
429 * pi_state->list is already empty.
430 * clear pi_state->owner.
431 * refcount is at 0 - put it back to 1.
432 */
433 pi_state->owner = NULL;
434 atomic_set(&pi_state->refcount, 1);
435 current->pi_state_cache = pi_state;
436 }
437 }
438
439 /*
440 * Look up the task based on what TID userspace gave us.
441 * We dont trust it.
442 */
443 static struct task_struct * futex_find_get_task(pid_t pid)
444 {
445 struct task_struct *p;
446
447 rcu_read_lock();
448 p = find_task_by_vpid(pid);
449 if (p)
450 get_task_struct(p);
451
452 rcu_read_unlock();
453
454 return p;
455 }
456
457 /*
458 * This task is holding PI mutexes at exit time => bad.
459 * Kernel cleans up PI-state, but userspace is likely hosed.
460 * (Robust-futex cleanup is separate and might save the day for userspace.)
461 */
462 void exit_pi_state_list(struct task_struct *curr)
463 {
464 struct list_head *next, *head = &curr->pi_state_list;
465 struct futex_pi_state *pi_state;
466 struct futex_hash_bucket *hb;
467 union futex_key key = FUTEX_KEY_INIT;
468
469 if (!futex_cmpxchg_enabled)
470 return;
471 /*
472 * We are a ZOMBIE and nobody can enqueue itself on
473 * pi_state_list anymore, but we have to be careful
474 * versus waiters unqueueing themselves:
475 */
476 raw_spin_lock_irq(&curr->pi_lock);
477 while (!list_empty(head)) {
478
479 next = head->next;
480 pi_state = list_entry(next, struct futex_pi_state, list);
481 key = pi_state->key;
482 hb = hash_futex(&key);
483 raw_spin_unlock_irq(&curr->pi_lock);
484
485 spin_lock(&hb->lock);
486
487 raw_spin_lock_irq(&curr->pi_lock);
488 /*
489 * We dropped the pi-lock, so re-check whether this
490 * task still owns the PI-state:
491 */
492 if (head->next != next) {
493 spin_unlock(&hb->lock);
494 continue;
495 }
496
497 WARN_ON(pi_state->owner != curr);
498 WARN_ON(list_empty(&pi_state->list));
499 list_del_init(&pi_state->list);
500 pi_state->owner = NULL;
501 raw_spin_unlock_irq(&curr->pi_lock);
502
503 rt_mutex_unlock(&pi_state->pi_mutex);
504
505 spin_unlock(&hb->lock);
506
507 raw_spin_lock_irq(&curr->pi_lock);
508 }
509 raw_spin_unlock_irq(&curr->pi_lock);
510 }
511
512 static int
513 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
514 union futex_key *key, struct futex_pi_state **ps)
515 {
516 struct futex_pi_state *pi_state = NULL;
517 struct futex_q *this, *next;
518 struct plist_head *head;
519 struct task_struct *p;
520 pid_t pid = uval & FUTEX_TID_MASK;
521
522 head = &hb->chain;
523
524 plist_for_each_entry_safe(this, next, head, list) {
525 if (match_futex(&this->key, key)) {
526 /*
527 * Another waiter already exists - bump up
528 * the refcount and return its pi_state:
529 */
530 pi_state = this->pi_state;
531 /*
532 * Userspace might have messed up non-PI and PI futexes
533 */
534 if (unlikely(!pi_state))
535 return -EINVAL;
536
537 WARN_ON(!atomic_read(&pi_state->refcount));
538
539 /*
540 * When pi_state->owner is NULL then the owner died
541 * and another waiter is on the fly. pi_state->owner
542 * is fixed up by the task which acquires
543 * pi_state->rt_mutex.
544 *
545 * We do not check for pid == 0 which can happen when
546 * the owner died and robust_list_exit() cleared the
547 * TID.
548 */
549 if (pid && pi_state->owner) {
550 /*
551 * Bail out if user space manipulated the
552 * futex value.
553 */
554 if (pid != task_pid_vnr(pi_state->owner))
555 return -EINVAL;
556 }
557
558 atomic_inc(&pi_state->refcount);
559 *ps = pi_state;
560
561 return 0;
562 }
563 }
564
565 /*
566 * We are the first waiter - try to look up the real owner and attach
567 * the new pi_state to it, but bail out when TID = 0
568 */
569 if (!pid)
570 return -ESRCH;
571 p = futex_find_get_task(pid);
572 if (!p)
573 return -ESRCH;
574
575 /*
576 * We need to look at the task state flags to figure out,
577 * whether the task is exiting. To protect against the do_exit
578 * change of the task flags, we do this protected by
579 * p->pi_lock:
580 */
581 raw_spin_lock_irq(&p->pi_lock);
582 if (unlikely(p->flags & PF_EXITING)) {
583 /*
584 * The task is on the way out. When PF_EXITPIDONE is
585 * set, we know that the task has finished the
586 * cleanup:
587 */
588 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
589
590 raw_spin_unlock_irq(&p->pi_lock);
591 put_task_struct(p);
592 return ret;
593 }
594
595 pi_state = alloc_pi_state();
596
597 /*
598 * Initialize the pi_mutex in locked state and make 'p'
599 * the owner of it:
600 */
601 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
602
603 /* Store the key for possible exit cleanups: */
604 pi_state->key = *key;
605
606 WARN_ON(!list_empty(&pi_state->list));
607 list_add(&pi_state->list, &p->pi_state_list);
608 pi_state->owner = p;
609 raw_spin_unlock_irq(&p->pi_lock);
610
611 put_task_struct(p);
612
613 *ps = pi_state;
614
615 return 0;
616 }
617
618 /**
619 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
620 * @uaddr: the pi futex user address
621 * @hb: the pi futex hash bucket
622 * @key: the futex key associated with uaddr and hb
623 * @ps: the pi_state pointer where we store the result of the
624 * lookup
625 * @task: the task to perform the atomic lock work for. This will
626 * be "current" except in the case of requeue pi.
627 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
628 *
629 * Returns:
630 * 0 - ready to wait
631 * 1 - acquired the lock
632 * <0 - error
633 *
634 * The hb->lock and futex_key refs shall be held by the caller.
635 */
636 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
637 union futex_key *key,
638 struct futex_pi_state **ps,
639 struct task_struct *task, int set_waiters)
640 {
641 int lock_taken, ret, ownerdied = 0;
642 u32 uval, newval, curval;
643
644 retry:
645 ret = lock_taken = 0;
646
647 /*
648 * To avoid races, we attempt to take the lock here again
649 * (by doing a 0 -> TID atomic cmpxchg), while holding all
650 * the locks. It will most likely not succeed.
651 */
652 newval = task_pid_vnr(task);
653 if (set_waiters)
654 newval |= FUTEX_WAITERS;
655
656 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
657
658 if (unlikely(curval == -EFAULT))
659 return -EFAULT;
660
661 /*
662 * Detect deadlocks.
663 */
664 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
665 return -EDEADLK;
666
667 /*
668 * Surprise - we got the lock. Just return to userspace:
669 */
670 if (unlikely(!curval))
671 return 1;
672
673 uval = curval;
674
675 /*
676 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
677 * to wake at the next unlock.
678 */
679 newval = curval | FUTEX_WAITERS;
680
681 /*
682 * There are two cases, where a futex might have no owner (the
683 * owner TID is 0): OWNER_DIED. We take over the futex in this
684 * case. We also do an unconditional take over, when the owner
685 * of the futex died.
686 *
687 * This is safe as we are protected by the hash bucket lock !
688 */
689 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
690 /* Keep the OWNER_DIED bit */
691 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
692 ownerdied = 0;
693 lock_taken = 1;
694 }
695
696 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
697
698 if (unlikely(curval == -EFAULT))
699 return -EFAULT;
700 if (unlikely(curval != uval))
701 goto retry;
702
703 /*
704 * We took the lock due to owner died take over.
705 */
706 if (unlikely(lock_taken))
707 return 1;
708
709 /*
710 * We dont have the lock. Look up the PI state (or create it if
711 * we are the first waiter):
712 */
713 ret = lookup_pi_state(uval, hb, key, ps);
714
715 if (unlikely(ret)) {
716 switch (ret) {
717 case -ESRCH:
718 /*
719 * No owner found for this futex. Check if the
720 * OWNER_DIED bit is set to figure out whether
721 * this is a robust futex or not.
722 */
723 if (get_futex_value_locked(&curval, uaddr))
724 return -EFAULT;
725
726 /*
727 * We simply start over in case of a robust
728 * futex. The code above will take the futex
729 * and return happy.
730 */
731 if (curval & FUTEX_OWNER_DIED) {
732 ownerdied = 1;
733 goto retry;
734 }
735 default:
736 break;
737 }
738 }
739
740 return ret;
741 }
742
743 /*
744 * The hash bucket lock must be held when this is called.
745 * Afterwards, the futex_q must not be accessed.
746 */
747 static void wake_futex(struct futex_q *q)
748 {
749 struct task_struct *p = q->task;
750
751 /*
752 * We set q->lock_ptr = NULL _before_ we wake up the task. If
753 * a non-futex wake up happens on another CPU then the task
754 * might exit and p would dereference a non-existing task
755 * struct. Prevent this by holding a reference on p across the
756 * wake up.
757 */
758 get_task_struct(p);
759
760 plist_del(&q->list, &q->list.plist);
761 /*
762 * The waiting task can free the futex_q as soon as
763 * q->lock_ptr = NULL is written, without taking any locks. A
764 * memory barrier is required here to prevent the following
765 * store to lock_ptr from getting ahead of the plist_del.
766 */
767 smp_wmb();
768 q->lock_ptr = NULL;
769
770 wake_up_state(p, TASK_NORMAL);
771 put_task_struct(p);
772 }
773
774 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
775 {
776 struct task_struct *new_owner;
777 struct futex_pi_state *pi_state = this->pi_state;
778 u32 curval, newval;
779
780 if (!pi_state)
781 return -EINVAL;
782
783 /*
784 * If current does not own the pi_state then the futex is
785 * inconsistent and user space fiddled with the futex value.
786 */
787 if (pi_state->owner != current)
788 return -EINVAL;
789
790 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
791 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
792
793 /*
794 * This happens when we have stolen the lock and the original
795 * pending owner did not enqueue itself back on the rt_mutex.
796 * Thats not a tragedy. We know that way, that a lock waiter
797 * is on the fly. We make the futex_q waiter the pending owner.
798 */
799 if (!new_owner)
800 new_owner = this->task;
801
802 /*
803 * We pass it to the next owner. (The WAITERS bit is always
804 * kept enabled while there is PI state around. We must also
805 * preserve the owner died bit.)
806 */
807 if (!(uval & FUTEX_OWNER_DIED)) {
808 int ret = 0;
809
810 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
811
812 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
813
814 if (curval == -EFAULT)
815 ret = -EFAULT;
816 else if (curval != uval)
817 ret = -EINVAL;
818 if (ret) {
819 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
820 return ret;
821 }
822 }
823
824 raw_spin_lock_irq(&pi_state->owner->pi_lock);
825 WARN_ON(list_empty(&pi_state->list));
826 list_del_init(&pi_state->list);
827 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
828
829 raw_spin_lock_irq(&new_owner->pi_lock);
830 WARN_ON(!list_empty(&pi_state->list));
831 list_add(&pi_state->list, &new_owner->pi_state_list);
832 pi_state->owner = new_owner;
833 raw_spin_unlock_irq(&new_owner->pi_lock);
834
835 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
836 rt_mutex_unlock(&pi_state->pi_mutex);
837
838 return 0;
839 }
840
841 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
842 {
843 u32 oldval;
844
845 /*
846 * There is no waiter, so we unlock the futex. The owner died
847 * bit has not to be preserved here. We are the owner:
848 */
849 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
850
851 if (oldval == -EFAULT)
852 return oldval;
853 if (oldval != uval)
854 return -EAGAIN;
855
856 return 0;
857 }
858
859 /*
860 * Express the locking dependencies for lockdep:
861 */
862 static inline void
863 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
864 {
865 if (hb1 <= hb2) {
866 spin_lock(&hb1->lock);
867 if (hb1 < hb2)
868 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
869 } else { /* hb1 > hb2 */
870 spin_lock(&hb2->lock);
871 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
872 }
873 }
874
875 static inline void
876 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
877 {
878 spin_unlock(&hb1->lock);
879 if (hb1 != hb2)
880 spin_unlock(&hb2->lock);
881 }
882
883 /*
884 * Wake up waiters matching bitset queued on this futex (uaddr).
885 */
886 static int
887 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
888 {
889 struct futex_hash_bucket *hb;
890 struct futex_q *this, *next;
891 struct plist_head *head;
892 union futex_key key = FUTEX_KEY_INIT;
893 int ret;
894
895 if (!bitset)
896 return -EINVAL;
897
898 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
899 if (unlikely(ret != 0))
900 goto out;
901
902 hb = hash_futex(&key);
903 spin_lock(&hb->lock);
904 head = &hb->chain;
905
906 plist_for_each_entry_safe(this, next, head, list) {
907 if (match_futex (&this->key, &key)) {
908 if (this->pi_state || this->rt_waiter) {
909 ret = -EINVAL;
910 break;
911 }
912
913 /* Check if one of the bits is set in both bitsets */
914 if (!(this->bitset & bitset))
915 continue;
916
917 wake_futex(this);
918 if (++ret >= nr_wake)
919 break;
920 }
921 }
922
923 spin_unlock(&hb->lock);
924 put_futex_key(&key);
925 out:
926 return ret;
927 }
928
929 /*
930 * Wake up all waiters hashed on the physical page that is mapped
931 * to this virtual address:
932 */
933 static int
934 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
935 int nr_wake, int nr_wake2, int op)
936 {
937 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
938 struct futex_hash_bucket *hb1, *hb2;
939 struct plist_head *head;
940 struct futex_q *this, *next;
941 int ret, op_ret;
942
943 retry:
944 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
945 if (unlikely(ret != 0))
946 goto out;
947 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
948 if (unlikely(ret != 0))
949 goto out_put_key1;
950
951 hb1 = hash_futex(&key1);
952 hb2 = hash_futex(&key2);
953
954 retry_private:
955 double_lock_hb(hb1, hb2);
956 op_ret = futex_atomic_op_inuser(op, uaddr2);
957 if (unlikely(op_ret < 0)) {
958
959 double_unlock_hb(hb1, hb2);
960
961 #ifndef CONFIG_MMU
962 /*
963 * we don't get EFAULT from MMU faults if we don't have an MMU,
964 * but we might get them from range checking
965 */
966 ret = op_ret;
967 goto out_put_keys;
968 #endif
969
970 if (unlikely(op_ret != -EFAULT)) {
971 ret = op_ret;
972 goto out_put_keys;
973 }
974
975 ret = fault_in_user_writeable(uaddr2);
976 if (ret)
977 goto out_put_keys;
978
979 if (!(flags & FLAGS_SHARED))
980 goto retry_private;
981
982 put_futex_key(&key2);
983 put_futex_key(&key1);
984 goto retry;
985 }
986
987 head = &hb1->chain;
988
989 plist_for_each_entry_safe(this, next, head, list) {
990 if (match_futex (&this->key, &key1)) {
991 wake_futex(this);
992 if (++ret >= nr_wake)
993 break;
994 }
995 }
996
997 if (op_ret > 0) {
998 head = &hb2->chain;
999
1000 op_ret = 0;
1001 plist_for_each_entry_safe(this, next, head, list) {
1002 if (match_futex (&this->key, &key2)) {
1003 wake_futex(this);
1004 if (++op_ret >= nr_wake2)
1005 break;
1006 }
1007 }
1008 ret += op_ret;
1009 }
1010
1011 double_unlock_hb(hb1, hb2);
1012 out_put_keys:
1013 put_futex_key(&key2);
1014 out_put_key1:
1015 put_futex_key(&key1);
1016 out:
1017 return ret;
1018 }
1019
1020 /**
1021 * requeue_futex() - Requeue a futex_q from one hb to another
1022 * @q: the futex_q to requeue
1023 * @hb1: the source hash_bucket
1024 * @hb2: the target hash_bucket
1025 * @key2: the new key for the requeued futex_q
1026 */
1027 static inline
1028 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1029 struct futex_hash_bucket *hb2, union futex_key *key2)
1030 {
1031
1032 /*
1033 * If key1 and key2 hash to the same bucket, no need to
1034 * requeue.
1035 */
1036 if (likely(&hb1->chain != &hb2->chain)) {
1037 plist_del(&q->list, &hb1->chain);
1038 plist_add(&q->list, &hb2->chain);
1039 q->lock_ptr = &hb2->lock;
1040 #ifdef CONFIG_DEBUG_PI_LIST
1041 q->list.plist.spinlock = &hb2->lock;
1042 #endif
1043 }
1044 get_futex_key_refs(key2);
1045 q->key = *key2;
1046 }
1047
1048 /**
1049 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1050 * @q: the futex_q
1051 * @key: the key of the requeue target futex
1052 * @hb: the hash_bucket of the requeue target futex
1053 *
1054 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1055 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1056 * to the requeue target futex so the waiter can detect the wakeup on the right
1057 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1058 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1059 * to protect access to the pi_state to fixup the owner later. Must be called
1060 * with both q->lock_ptr and hb->lock held.
1061 */
1062 static inline
1063 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1064 struct futex_hash_bucket *hb)
1065 {
1066 get_futex_key_refs(key);
1067 q->key = *key;
1068
1069 WARN_ON(plist_node_empty(&q->list));
1070 plist_del(&q->list, &q->list.plist);
1071
1072 WARN_ON(!q->rt_waiter);
1073 q->rt_waiter = NULL;
1074
1075 q->lock_ptr = &hb->lock;
1076 #ifdef CONFIG_DEBUG_PI_LIST
1077 q->list.plist.spinlock = &hb->lock;
1078 #endif
1079
1080 wake_up_state(q->task, TASK_NORMAL);
1081 }
1082
1083 /**
1084 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1085 * @pifutex: the user address of the to futex
1086 * @hb1: the from futex hash bucket, must be locked by the caller
1087 * @hb2: the to futex hash bucket, must be locked by the caller
1088 * @key1: the from futex key
1089 * @key2: the to futex key
1090 * @ps: address to store the pi_state pointer
1091 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1092 *
1093 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1094 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1095 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1096 * hb1 and hb2 must be held by the caller.
1097 *
1098 * Returns:
1099 * 0 - failed to acquire the lock atomicly
1100 * 1 - acquired the lock
1101 * <0 - error
1102 */
1103 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1104 struct futex_hash_bucket *hb1,
1105 struct futex_hash_bucket *hb2,
1106 union futex_key *key1, union futex_key *key2,
1107 struct futex_pi_state **ps, int set_waiters)
1108 {
1109 struct futex_q *top_waiter = NULL;
1110 u32 curval;
1111 int ret;
1112
1113 if (get_futex_value_locked(&curval, pifutex))
1114 return -EFAULT;
1115
1116 /*
1117 * Find the top_waiter and determine if there are additional waiters.
1118 * If the caller intends to requeue more than 1 waiter to pifutex,
1119 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1120 * as we have means to handle the possible fault. If not, don't set
1121 * the bit unecessarily as it will force the subsequent unlock to enter
1122 * the kernel.
1123 */
1124 top_waiter = futex_top_waiter(hb1, key1);
1125
1126 /* There are no waiters, nothing for us to do. */
1127 if (!top_waiter)
1128 return 0;
1129
1130 /* Ensure we requeue to the expected futex. */
1131 if (!match_futex(top_waiter->requeue_pi_key, key2))
1132 return -EINVAL;
1133
1134 /*
1135 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1136 * the contended case or if set_waiters is 1. The pi_state is returned
1137 * in ps in contended cases.
1138 */
1139 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1140 set_waiters);
1141 if (ret == 1)
1142 requeue_pi_wake_futex(top_waiter, key2, hb2);
1143
1144 return ret;
1145 }
1146
1147 /**
1148 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1149 * @uaddr1: source futex user address
1150 * @flags: futex flags (FLAGS_SHARED, etc.)
1151 * @uaddr2: target futex user address
1152 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1153 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1154 * @cmpval: @uaddr1 expected value (or %NULL)
1155 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1156 * pi futex (pi to pi requeue is not supported)
1157 *
1158 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1159 * uaddr2 atomically on behalf of the top waiter.
1160 *
1161 * Returns:
1162 * >=0 - on success, the number of tasks requeued or woken
1163 * <0 - on error
1164 */
1165 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1166 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1167 u32 *cmpval, int requeue_pi)
1168 {
1169 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1170 int drop_count = 0, task_count = 0, ret;
1171 struct futex_pi_state *pi_state = NULL;
1172 struct futex_hash_bucket *hb1, *hb2;
1173 struct plist_head *head1;
1174 struct futex_q *this, *next;
1175 u32 curval2;
1176
1177 if (requeue_pi) {
1178 /*
1179 * requeue_pi requires a pi_state, try to allocate it now
1180 * without any locks in case it fails.
1181 */
1182 if (refill_pi_state_cache())
1183 return -ENOMEM;
1184 /*
1185 * requeue_pi must wake as many tasks as it can, up to nr_wake
1186 * + nr_requeue, since it acquires the rt_mutex prior to
1187 * returning to userspace, so as to not leave the rt_mutex with
1188 * waiters and no owner. However, second and third wake-ups
1189 * cannot be predicted as they involve race conditions with the
1190 * first wake and a fault while looking up the pi_state. Both
1191 * pthread_cond_signal() and pthread_cond_broadcast() should
1192 * use nr_wake=1.
1193 */
1194 if (nr_wake != 1)
1195 return -EINVAL;
1196 }
1197
1198 retry:
1199 if (pi_state != NULL) {
1200 /*
1201 * We will have to lookup the pi_state again, so free this one
1202 * to keep the accounting correct.
1203 */
1204 free_pi_state(pi_state);
1205 pi_state = NULL;
1206 }
1207
1208 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1209 if (unlikely(ret != 0))
1210 goto out;
1211 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1212 if (unlikely(ret != 0))
1213 goto out_put_key1;
1214
1215 hb1 = hash_futex(&key1);
1216 hb2 = hash_futex(&key2);
1217
1218 retry_private:
1219 double_lock_hb(hb1, hb2);
1220
1221 if (likely(cmpval != NULL)) {
1222 u32 curval;
1223
1224 ret = get_futex_value_locked(&curval, uaddr1);
1225
1226 if (unlikely(ret)) {
1227 double_unlock_hb(hb1, hb2);
1228
1229 ret = get_user(curval, uaddr1);
1230 if (ret)
1231 goto out_put_keys;
1232
1233 if (!(flags & FLAGS_SHARED))
1234 goto retry_private;
1235
1236 put_futex_key(&key2);
1237 put_futex_key(&key1);
1238 goto retry;
1239 }
1240 if (curval != *cmpval) {
1241 ret = -EAGAIN;
1242 goto out_unlock;
1243 }
1244 }
1245
1246 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1247 /*
1248 * Attempt to acquire uaddr2 and wake the top waiter. If we
1249 * intend to requeue waiters, force setting the FUTEX_WAITERS
1250 * bit. We force this here where we are able to easily handle
1251 * faults rather in the requeue loop below.
1252 */
1253 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1254 &key2, &pi_state, nr_requeue);
1255
1256 /*
1257 * At this point the top_waiter has either taken uaddr2 or is
1258 * waiting on it. If the former, then the pi_state will not
1259 * exist yet, look it up one more time to ensure we have a
1260 * reference to it.
1261 */
1262 if (ret == 1) {
1263 WARN_ON(pi_state);
1264 drop_count++;
1265 task_count++;
1266 ret = get_futex_value_locked(&curval2, uaddr2);
1267 if (!ret)
1268 ret = lookup_pi_state(curval2, hb2, &key2,
1269 &pi_state);
1270 }
1271
1272 switch (ret) {
1273 case 0:
1274 break;
1275 case -EFAULT:
1276 double_unlock_hb(hb1, hb2);
1277 put_futex_key(&key2);
1278 put_futex_key(&key1);
1279 ret = fault_in_user_writeable(uaddr2);
1280 if (!ret)
1281 goto retry;
1282 goto out;
1283 case -EAGAIN:
1284 /* The owner was exiting, try again. */
1285 double_unlock_hb(hb1, hb2);
1286 put_futex_key(&key2);
1287 put_futex_key(&key1);
1288 cond_resched();
1289 goto retry;
1290 default:
1291 goto out_unlock;
1292 }
1293 }
1294
1295 head1 = &hb1->chain;
1296 plist_for_each_entry_safe(this, next, head1, list) {
1297 if (task_count - nr_wake >= nr_requeue)
1298 break;
1299
1300 if (!match_futex(&this->key, &key1))
1301 continue;
1302
1303 /*
1304 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1305 * be paired with each other and no other futex ops.
1306 */
1307 if ((requeue_pi && !this->rt_waiter) ||
1308 (!requeue_pi && this->rt_waiter)) {
1309 ret = -EINVAL;
1310 break;
1311 }
1312
1313 /*
1314 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1315 * lock, we already woke the top_waiter. If not, it will be
1316 * woken by futex_unlock_pi().
1317 */
1318 if (++task_count <= nr_wake && !requeue_pi) {
1319 wake_futex(this);
1320 continue;
1321 }
1322
1323 /* Ensure we requeue to the expected futex for requeue_pi. */
1324 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1325 ret = -EINVAL;
1326 break;
1327 }
1328
1329 /*
1330 * Requeue nr_requeue waiters and possibly one more in the case
1331 * of requeue_pi if we couldn't acquire the lock atomically.
1332 */
1333 if (requeue_pi) {
1334 /* Prepare the waiter to take the rt_mutex. */
1335 atomic_inc(&pi_state->refcount);
1336 this->pi_state = pi_state;
1337 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1338 this->rt_waiter,
1339 this->task, 1);
1340 if (ret == 1) {
1341 /* We got the lock. */
1342 requeue_pi_wake_futex(this, &key2, hb2);
1343 drop_count++;
1344 continue;
1345 } else if (ret) {
1346 /* -EDEADLK */
1347 this->pi_state = NULL;
1348 free_pi_state(pi_state);
1349 goto out_unlock;
1350 }
1351 }
1352 requeue_futex(this, hb1, hb2, &key2);
1353 drop_count++;
1354 }
1355
1356 out_unlock:
1357 double_unlock_hb(hb1, hb2);
1358
1359 /*
1360 * drop_futex_key_refs() must be called outside the spinlocks. During
1361 * the requeue we moved futex_q's from the hash bucket at key1 to the
1362 * one at key2 and updated their key pointer. We no longer need to
1363 * hold the references to key1.
1364 */
1365 while (--drop_count >= 0)
1366 drop_futex_key_refs(&key1);
1367
1368 out_put_keys:
1369 put_futex_key(&key2);
1370 out_put_key1:
1371 put_futex_key(&key1);
1372 out:
1373 if (pi_state != NULL)
1374 free_pi_state(pi_state);
1375 return ret ? ret : task_count;
1376 }
1377
1378 /* The key must be already stored in q->key. */
1379 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1380 __acquires(&hb->lock)
1381 {
1382 struct futex_hash_bucket *hb;
1383
1384 hb = hash_futex(&q->key);
1385 q->lock_ptr = &hb->lock;
1386
1387 spin_lock(&hb->lock);
1388 return hb;
1389 }
1390
1391 static inline void
1392 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1393 __releases(&hb->lock)
1394 {
1395 spin_unlock(&hb->lock);
1396 }
1397
1398 /**
1399 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1400 * @q: The futex_q to enqueue
1401 * @hb: The destination hash bucket
1402 *
1403 * The hb->lock must be held by the caller, and is released here. A call to
1404 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1405 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1406 * or nothing if the unqueue is done as part of the wake process and the unqueue
1407 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1408 * an example).
1409 */
1410 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1411 __releases(&hb->lock)
1412 {
1413 int prio;
1414
1415 /*
1416 * The priority used to register this element is
1417 * - either the real thread-priority for the real-time threads
1418 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1419 * - or MAX_RT_PRIO for non-RT threads.
1420 * Thus, all RT-threads are woken first in priority order, and
1421 * the others are woken last, in FIFO order.
1422 */
1423 prio = min(current->normal_prio, MAX_RT_PRIO);
1424
1425 plist_node_init(&q->list, prio);
1426 #ifdef CONFIG_DEBUG_PI_LIST
1427 q->list.plist.spinlock = &hb->lock;
1428 #endif
1429 plist_add(&q->list, &hb->chain);
1430 q->task = current;
1431 spin_unlock(&hb->lock);
1432 }
1433
1434 /**
1435 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1436 * @q: The futex_q to unqueue
1437 *
1438 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1439 * be paired with exactly one earlier call to queue_me().
1440 *
1441 * Returns:
1442 * 1 - if the futex_q was still queued (and we removed unqueued it)
1443 * 0 - if the futex_q was already removed by the waking thread
1444 */
1445 static int unqueue_me(struct futex_q *q)
1446 {
1447 spinlock_t *lock_ptr;
1448 int ret = 0;
1449
1450 /* In the common case we don't take the spinlock, which is nice. */
1451 retry:
1452 lock_ptr = q->lock_ptr;
1453 barrier();
1454 if (lock_ptr != NULL) {
1455 spin_lock(lock_ptr);
1456 /*
1457 * q->lock_ptr can change between reading it and
1458 * spin_lock(), causing us to take the wrong lock. This
1459 * corrects the race condition.
1460 *
1461 * Reasoning goes like this: if we have the wrong lock,
1462 * q->lock_ptr must have changed (maybe several times)
1463 * between reading it and the spin_lock(). It can
1464 * change again after the spin_lock() but only if it was
1465 * already changed before the spin_lock(). It cannot,
1466 * however, change back to the original value. Therefore
1467 * we can detect whether we acquired the correct lock.
1468 */
1469 if (unlikely(lock_ptr != q->lock_ptr)) {
1470 spin_unlock(lock_ptr);
1471 goto retry;
1472 }
1473 WARN_ON(plist_node_empty(&q->list));
1474 plist_del(&q->list, &q->list.plist);
1475
1476 BUG_ON(q->pi_state);
1477
1478 spin_unlock(lock_ptr);
1479 ret = 1;
1480 }
1481
1482 drop_futex_key_refs(&q->key);
1483 return ret;
1484 }
1485
1486 /*
1487 * PI futexes can not be requeued and must remove themself from the
1488 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1489 * and dropped here.
1490 */
1491 static void unqueue_me_pi(struct futex_q *q)
1492 __releases(q->lock_ptr)
1493 {
1494 WARN_ON(plist_node_empty(&q->list));
1495 plist_del(&q->list, &q->list.plist);
1496
1497 BUG_ON(!q->pi_state);
1498 free_pi_state(q->pi_state);
1499 q->pi_state = NULL;
1500
1501 spin_unlock(q->lock_ptr);
1502 }
1503
1504 /*
1505 * Fixup the pi_state owner with the new owner.
1506 *
1507 * Must be called with hash bucket lock held and mm->sem held for non
1508 * private futexes.
1509 */
1510 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1511 struct task_struct *newowner)
1512 {
1513 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1514 struct futex_pi_state *pi_state = q->pi_state;
1515 struct task_struct *oldowner = pi_state->owner;
1516 u32 uval, curval, newval;
1517 int ret;
1518
1519 /* Owner died? */
1520 if (!pi_state->owner)
1521 newtid |= FUTEX_OWNER_DIED;
1522
1523 /*
1524 * We are here either because we stole the rtmutex from the
1525 * pending owner or we are the pending owner which failed to
1526 * get the rtmutex. We have to replace the pending owner TID
1527 * in the user space variable. This must be atomic as we have
1528 * to preserve the owner died bit here.
1529 *
1530 * Note: We write the user space value _before_ changing the pi_state
1531 * because we can fault here. Imagine swapped out pages or a fork
1532 * that marked all the anonymous memory readonly for cow.
1533 *
1534 * Modifying pi_state _before_ the user space value would
1535 * leave the pi_state in an inconsistent state when we fault
1536 * here, because we need to drop the hash bucket lock to
1537 * handle the fault. This might be observed in the PID check
1538 * in lookup_pi_state.
1539 */
1540 retry:
1541 if (get_futex_value_locked(&uval, uaddr))
1542 goto handle_fault;
1543
1544 while (1) {
1545 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1546
1547 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1548
1549 if (curval == -EFAULT)
1550 goto handle_fault;
1551 if (curval == uval)
1552 break;
1553 uval = curval;
1554 }
1555
1556 /*
1557 * We fixed up user space. Now we need to fix the pi_state
1558 * itself.
1559 */
1560 if (pi_state->owner != NULL) {
1561 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1562 WARN_ON(list_empty(&pi_state->list));
1563 list_del_init(&pi_state->list);
1564 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1565 }
1566
1567 pi_state->owner = newowner;
1568
1569 raw_spin_lock_irq(&newowner->pi_lock);
1570 WARN_ON(!list_empty(&pi_state->list));
1571 list_add(&pi_state->list, &newowner->pi_state_list);
1572 raw_spin_unlock_irq(&newowner->pi_lock);
1573 return 0;
1574
1575 /*
1576 * To handle the page fault we need to drop the hash bucket
1577 * lock here. That gives the other task (either the pending
1578 * owner itself or the task which stole the rtmutex) the
1579 * chance to try the fixup of the pi_state. So once we are
1580 * back from handling the fault we need to check the pi_state
1581 * after reacquiring the hash bucket lock and before trying to
1582 * do another fixup. When the fixup has been done already we
1583 * simply return.
1584 */
1585 handle_fault:
1586 spin_unlock(q->lock_ptr);
1587
1588 ret = fault_in_user_writeable(uaddr);
1589
1590 spin_lock(q->lock_ptr);
1591
1592 /*
1593 * Check if someone else fixed it for us:
1594 */
1595 if (pi_state->owner != oldowner)
1596 return 0;
1597
1598 if (ret)
1599 return ret;
1600
1601 goto retry;
1602 }
1603
1604 static long futex_wait_restart(struct restart_block *restart);
1605
1606 /**
1607 * fixup_owner() - Post lock pi_state and corner case management
1608 * @uaddr: user address of the futex
1609 * @q: futex_q (contains pi_state and access to the rt_mutex)
1610 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1611 *
1612 * After attempting to lock an rt_mutex, this function is called to cleanup
1613 * the pi_state owner as well as handle race conditions that may allow us to
1614 * acquire the lock. Must be called with the hb lock held.
1615 *
1616 * Returns:
1617 * 1 - success, lock taken
1618 * 0 - success, lock not taken
1619 * <0 - on error (-EFAULT)
1620 */
1621 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1622 {
1623 struct task_struct *owner;
1624 int ret = 0;
1625
1626 if (locked) {
1627 /*
1628 * Got the lock. We might not be the anticipated owner if we
1629 * did a lock-steal - fix up the PI-state in that case:
1630 */
1631 if (q->pi_state->owner != current)
1632 ret = fixup_pi_state_owner(uaddr, q, current);
1633 goto out;
1634 }
1635
1636 /*
1637 * Catch the rare case, where the lock was released when we were on the
1638 * way back before we locked the hash bucket.
1639 */
1640 if (q->pi_state->owner == current) {
1641 /*
1642 * Try to get the rt_mutex now. This might fail as some other
1643 * task acquired the rt_mutex after we removed ourself from the
1644 * rt_mutex waiters list.
1645 */
1646 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1647 locked = 1;
1648 goto out;
1649 }
1650
1651 /*
1652 * pi_state is incorrect, some other task did a lock steal and
1653 * we returned due to timeout or signal without taking the
1654 * rt_mutex. Too late. We can access the rt_mutex_owner without
1655 * locking, as the other task is now blocked on the hash bucket
1656 * lock. Fix the state up.
1657 */
1658 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1659 ret = fixup_pi_state_owner(uaddr, q, owner);
1660 goto out;
1661 }
1662
1663 /*
1664 * Paranoia check. If we did not take the lock, then we should not be
1665 * the owner, nor the pending owner, of the rt_mutex.
1666 */
1667 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1668 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1669 "pi-state %p\n", ret,
1670 q->pi_state->pi_mutex.owner,
1671 q->pi_state->owner);
1672
1673 out:
1674 return ret ? ret : locked;
1675 }
1676
1677 /**
1678 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1679 * @hb: the futex hash bucket, must be locked by the caller
1680 * @q: the futex_q to queue up on
1681 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1682 */
1683 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1684 struct hrtimer_sleeper *timeout)
1685 {
1686 /*
1687 * The task state is guaranteed to be set before another task can
1688 * wake it. set_current_state() is implemented using set_mb() and
1689 * queue_me() calls spin_unlock() upon completion, both serializing
1690 * access to the hash list and forcing another memory barrier.
1691 */
1692 set_current_state(TASK_INTERRUPTIBLE);
1693 queue_me(q, hb);
1694
1695 /* Arm the timer */
1696 if (timeout) {
1697 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1698 if (!hrtimer_active(&timeout->timer))
1699 timeout->task = NULL;
1700 }
1701
1702 /*
1703 * If we have been removed from the hash list, then another task
1704 * has tried to wake us, and we can skip the call to schedule().
1705 */
1706 if (likely(!plist_node_empty(&q->list))) {
1707 /*
1708 * If the timer has already expired, current will already be
1709 * flagged for rescheduling. Only call schedule if there
1710 * is no timeout, or if it has yet to expire.
1711 */
1712 if (!timeout || timeout->task)
1713 schedule();
1714 }
1715 __set_current_state(TASK_RUNNING);
1716 }
1717
1718 /**
1719 * futex_wait_setup() - Prepare to wait on a futex
1720 * @uaddr: the futex userspace address
1721 * @val: the expected value
1722 * @flags: futex flags (FLAGS_SHARED, etc.)
1723 * @q: the associated futex_q
1724 * @hb: storage for hash_bucket pointer to be returned to caller
1725 *
1726 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1727 * compare it with the expected value. Handle atomic faults internally.
1728 * Return with the hb lock held and a q.key reference on success, and unlocked
1729 * with no q.key reference on failure.
1730 *
1731 * Returns:
1732 * 0 - uaddr contains val and hb has been locked
1733 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1734 */
1735 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1736 struct futex_q *q, struct futex_hash_bucket **hb)
1737 {
1738 u32 uval;
1739 int ret;
1740
1741 /*
1742 * Access the page AFTER the hash-bucket is locked.
1743 * Order is important:
1744 *
1745 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1746 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1747 *
1748 * The basic logical guarantee of a futex is that it blocks ONLY
1749 * if cond(var) is known to be true at the time of blocking, for
1750 * any cond. If we queued after testing *uaddr, that would open
1751 * a race condition where we could block indefinitely with
1752 * cond(var) false, which would violate the guarantee.
1753 *
1754 * A consequence is that futex_wait() can return zero and absorb
1755 * a wakeup when *uaddr != val on entry to the syscall. This is
1756 * rare, but normal.
1757 */
1758 retry:
1759 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1760 if (unlikely(ret != 0))
1761 return ret;
1762
1763 retry_private:
1764 *hb = queue_lock(q);
1765
1766 ret = get_futex_value_locked(&uval, uaddr);
1767
1768 if (ret) {
1769 queue_unlock(q, *hb);
1770
1771 ret = get_user(uval, uaddr);
1772 if (ret)
1773 goto out;
1774
1775 if (!(flags & FLAGS_SHARED))
1776 goto retry_private;
1777
1778 put_futex_key(&q->key);
1779 goto retry;
1780 }
1781
1782 if (uval != val) {
1783 queue_unlock(q, *hb);
1784 ret = -EWOULDBLOCK;
1785 }
1786
1787 out:
1788 if (ret)
1789 put_futex_key(&q->key);
1790 return ret;
1791 }
1792
1793 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1794 ktime_t *abs_time, u32 bitset)
1795 {
1796 struct hrtimer_sleeper timeout, *to = NULL;
1797 struct restart_block *restart;
1798 struct futex_hash_bucket *hb;
1799 struct futex_q q = futex_q_init;
1800 int ret;
1801
1802 if (!bitset)
1803 return -EINVAL;
1804 q.bitset = bitset;
1805
1806 if (abs_time) {
1807 to = &timeout;
1808
1809 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1810 CLOCK_REALTIME : CLOCK_MONOTONIC,
1811 HRTIMER_MODE_ABS);
1812 hrtimer_init_sleeper(to, current);
1813 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1814 current->timer_slack_ns);
1815 }
1816
1817 retry:
1818 /*
1819 * Prepare to wait on uaddr. On success, holds hb lock and increments
1820 * q.key refs.
1821 */
1822 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1823 if (ret)
1824 goto out;
1825
1826 /* queue_me and wait for wakeup, timeout, or a signal. */
1827 futex_wait_queue_me(hb, &q, to);
1828
1829 /* If we were woken (and unqueued), we succeeded, whatever. */
1830 ret = 0;
1831 /* unqueue_me() drops q.key ref */
1832 if (!unqueue_me(&q))
1833 goto out;
1834 ret = -ETIMEDOUT;
1835 if (to && !to->task)
1836 goto out;
1837
1838 /*
1839 * We expect signal_pending(current), but we might be the
1840 * victim of a spurious wakeup as well.
1841 */
1842 if (!signal_pending(current))
1843 goto retry;
1844
1845 ret = -ERESTARTSYS;
1846 if (!abs_time)
1847 goto out;
1848
1849 restart = &current_thread_info()->restart_block;
1850 restart->fn = futex_wait_restart;
1851 restart->futex.uaddr = uaddr;
1852 restart->futex.val = val;
1853 restart->futex.time = abs_time->tv64;
1854 restart->futex.bitset = bitset;
1855 restart->futex.flags = flags;
1856
1857 ret = -ERESTART_RESTARTBLOCK;
1858
1859 out:
1860 if (to) {
1861 hrtimer_cancel(&to->timer);
1862 destroy_hrtimer_on_stack(&to->timer);
1863 }
1864 return ret;
1865 }
1866
1867
1868 static long futex_wait_restart(struct restart_block *restart)
1869 {
1870 u32 __user *uaddr = restart->futex.uaddr;
1871 ktime_t t, *tp = NULL;
1872
1873 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1874 t.tv64 = restart->futex.time;
1875 tp = &t;
1876 }
1877 restart->fn = do_no_restart_syscall;
1878
1879 return (long)futex_wait(uaddr, restart->futex.flags,
1880 restart->futex.val, tp, restart->futex.bitset);
1881 }
1882
1883
1884 /*
1885 * Userspace tried a 0 -> TID atomic transition of the futex value
1886 * and failed. The kernel side here does the whole locking operation:
1887 * if there are waiters then it will block, it does PI, etc. (Due to
1888 * races the kernel might see a 0 value of the futex too.)
1889 */
1890 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1891 ktime_t *time, int trylock)
1892 {
1893 struct hrtimer_sleeper timeout, *to = NULL;
1894 struct futex_hash_bucket *hb;
1895 struct futex_q q = futex_q_init;
1896 int res, ret;
1897
1898 if (refill_pi_state_cache())
1899 return -ENOMEM;
1900
1901 if (time) {
1902 to = &timeout;
1903 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1904 HRTIMER_MODE_ABS);
1905 hrtimer_init_sleeper(to, current);
1906 hrtimer_set_expires(&to->timer, *time);
1907 }
1908
1909 retry:
1910 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1911 if (unlikely(ret != 0))
1912 goto out;
1913
1914 retry_private:
1915 hb = queue_lock(&q);
1916
1917 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1918 if (unlikely(ret)) {
1919 switch (ret) {
1920 case 1:
1921 /* We got the lock. */
1922 ret = 0;
1923 goto out_unlock_put_key;
1924 case -EFAULT:
1925 goto uaddr_faulted;
1926 case -EAGAIN:
1927 /*
1928 * Task is exiting and we just wait for the
1929 * exit to complete.
1930 */
1931 queue_unlock(&q, hb);
1932 put_futex_key(&q.key);
1933 cond_resched();
1934 goto retry;
1935 default:
1936 goto out_unlock_put_key;
1937 }
1938 }
1939
1940 /*
1941 * Only actually queue now that the atomic ops are done:
1942 */
1943 queue_me(&q, hb);
1944
1945 WARN_ON(!q.pi_state);
1946 /*
1947 * Block on the PI mutex:
1948 */
1949 if (!trylock)
1950 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1951 else {
1952 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1953 /* Fixup the trylock return value: */
1954 ret = ret ? 0 : -EWOULDBLOCK;
1955 }
1956
1957 spin_lock(q.lock_ptr);
1958 /*
1959 * Fixup the pi_state owner and possibly acquire the lock if we
1960 * haven't already.
1961 */
1962 res = fixup_owner(uaddr, &q, !ret);
1963 /*
1964 * If fixup_owner() returned an error, proprogate that. If it acquired
1965 * the lock, clear our -ETIMEDOUT or -EINTR.
1966 */
1967 if (res)
1968 ret = (res < 0) ? res : 0;
1969
1970 /*
1971 * If fixup_owner() faulted and was unable to handle the fault, unlock
1972 * it and return the fault to userspace.
1973 */
1974 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1975 rt_mutex_unlock(&q.pi_state->pi_mutex);
1976
1977 /* Unqueue and drop the lock */
1978 unqueue_me_pi(&q);
1979
1980 goto out_put_key;
1981
1982 out_unlock_put_key:
1983 queue_unlock(&q, hb);
1984
1985 out_put_key:
1986 put_futex_key(&q.key);
1987 out:
1988 if (to)
1989 destroy_hrtimer_on_stack(&to->timer);
1990 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1991
1992 uaddr_faulted:
1993 queue_unlock(&q, hb);
1994
1995 ret = fault_in_user_writeable(uaddr);
1996 if (ret)
1997 goto out_put_key;
1998
1999 if (!(flags & FLAGS_SHARED))
2000 goto retry_private;
2001
2002 put_futex_key(&q.key);
2003 goto retry;
2004 }
2005
2006 /*
2007 * Userspace attempted a TID -> 0 atomic transition, and failed.
2008 * This is the in-kernel slowpath: we look up the PI state (if any),
2009 * and do the rt-mutex unlock.
2010 */
2011 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2012 {
2013 struct futex_hash_bucket *hb;
2014 struct futex_q *this, *next;
2015 u32 uval;
2016 struct plist_head *head;
2017 union futex_key key = FUTEX_KEY_INIT;
2018 int ret;
2019
2020 retry:
2021 if (get_user(uval, uaddr))
2022 return -EFAULT;
2023 /*
2024 * We release only a lock we actually own:
2025 */
2026 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2027 return -EPERM;
2028
2029 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2030 if (unlikely(ret != 0))
2031 goto out;
2032
2033 hb = hash_futex(&key);
2034 spin_lock(&hb->lock);
2035
2036 /*
2037 * To avoid races, try to do the TID -> 0 atomic transition
2038 * again. If it succeeds then we can return without waking
2039 * anyone else up:
2040 */
2041 if (!(uval & FUTEX_OWNER_DIED))
2042 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2043
2044
2045 if (unlikely(uval == -EFAULT))
2046 goto pi_faulted;
2047 /*
2048 * Rare case: we managed to release the lock atomically,
2049 * no need to wake anyone else up:
2050 */
2051 if (unlikely(uval == task_pid_vnr(current)))
2052 goto out_unlock;
2053
2054 /*
2055 * Ok, other tasks may need to be woken up - check waiters
2056 * and do the wakeup if necessary:
2057 */
2058 head = &hb->chain;
2059
2060 plist_for_each_entry_safe(this, next, head, list) {
2061 if (!match_futex (&this->key, &key))
2062 continue;
2063 ret = wake_futex_pi(uaddr, uval, this);
2064 /*
2065 * The atomic access to the futex value
2066 * generated a pagefault, so retry the
2067 * user-access and the wakeup:
2068 */
2069 if (ret == -EFAULT)
2070 goto pi_faulted;
2071 goto out_unlock;
2072 }
2073 /*
2074 * No waiters - kernel unlocks the futex:
2075 */
2076 if (!(uval & FUTEX_OWNER_DIED)) {
2077 ret = unlock_futex_pi(uaddr, uval);
2078 if (ret == -EFAULT)
2079 goto pi_faulted;
2080 }
2081
2082 out_unlock:
2083 spin_unlock(&hb->lock);
2084 put_futex_key(&key);
2085
2086 out:
2087 return ret;
2088
2089 pi_faulted:
2090 spin_unlock(&hb->lock);
2091 put_futex_key(&key);
2092
2093 ret = fault_in_user_writeable(uaddr);
2094 if (!ret)
2095 goto retry;
2096
2097 return ret;
2098 }
2099
2100 /**
2101 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2102 * @hb: the hash_bucket futex_q was original enqueued on
2103 * @q: the futex_q woken while waiting to be requeued
2104 * @key2: the futex_key of the requeue target futex
2105 * @timeout: the timeout associated with the wait (NULL if none)
2106 *
2107 * Detect if the task was woken on the initial futex as opposed to the requeue
2108 * target futex. If so, determine if it was a timeout or a signal that caused
2109 * the wakeup and return the appropriate error code to the caller. Must be
2110 * called with the hb lock held.
2111 *
2112 * Returns
2113 * 0 - no early wakeup detected
2114 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2115 */
2116 static inline
2117 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2118 struct futex_q *q, union futex_key *key2,
2119 struct hrtimer_sleeper *timeout)
2120 {
2121 int ret = 0;
2122
2123 /*
2124 * With the hb lock held, we avoid races while we process the wakeup.
2125 * We only need to hold hb (and not hb2) to ensure atomicity as the
2126 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2127 * It can't be requeued from uaddr2 to something else since we don't
2128 * support a PI aware source futex for requeue.
2129 */
2130 if (!match_futex(&q->key, key2)) {
2131 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2132 /*
2133 * We were woken prior to requeue by a timeout or a signal.
2134 * Unqueue the futex_q and determine which it was.
2135 */
2136 plist_del(&q->list, &q->list.plist);
2137
2138 /* Handle spurious wakeups gracefully */
2139 ret = -EWOULDBLOCK;
2140 if (timeout && !timeout->task)
2141 ret = -ETIMEDOUT;
2142 else if (signal_pending(current))
2143 ret = -ERESTARTNOINTR;
2144 }
2145 return ret;
2146 }
2147
2148 /**
2149 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2150 * @uaddr: the futex we initially wait on (non-pi)
2151 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2152 * the same type, no requeueing from private to shared, etc.
2153 * @val: the expected value of uaddr
2154 * @abs_time: absolute timeout
2155 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2156 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2157 * @uaddr2: the pi futex we will take prior to returning to user-space
2158 *
2159 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2160 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2161 * complete the acquisition of the rt_mutex prior to returning to userspace.
2162 * This ensures the rt_mutex maintains an owner when it has waiters; without
2163 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2164 * need to.
2165 *
2166 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2167 * via the following:
2168 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2169 * 2) wakeup on uaddr2 after a requeue
2170 * 3) signal
2171 * 4) timeout
2172 *
2173 * If 3, cleanup and return -ERESTARTNOINTR.
2174 *
2175 * If 2, we may then block on trying to take the rt_mutex and return via:
2176 * 5) successful lock
2177 * 6) signal
2178 * 7) timeout
2179 * 8) other lock acquisition failure
2180 *
2181 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2182 *
2183 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2184 *
2185 * Returns:
2186 * 0 - On success
2187 * <0 - On error
2188 */
2189 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2190 u32 val, ktime_t *abs_time, u32 bitset,
2191 u32 __user *uaddr2)
2192 {
2193 struct hrtimer_sleeper timeout, *to = NULL;
2194 struct rt_mutex_waiter rt_waiter;
2195 struct rt_mutex *pi_mutex = NULL;
2196 struct futex_hash_bucket *hb;
2197 union futex_key key2 = FUTEX_KEY_INIT;
2198 struct futex_q q = futex_q_init;
2199 int res, ret;
2200
2201 if (!bitset)
2202 return -EINVAL;
2203
2204 if (abs_time) {
2205 to = &timeout;
2206 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2207 CLOCK_REALTIME : CLOCK_MONOTONIC,
2208 HRTIMER_MODE_ABS);
2209 hrtimer_init_sleeper(to, current);
2210 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2211 current->timer_slack_ns);
2212 }
2213
2214 /*
2215 * The waiter is allocated on our stack, manipulated by the requeue
2216 * code while we sleep on uaddr.
2217 */
2218 debug_rt_mutex_init_waiter(&rt_waiter);
2219 rt_waiter.task = NULL;
2220
2221 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2222 if (unlikely(ret != 0))
2223 goto out;
2224
2225 q.bitset = bitset;
2226 q.rt_waiter = &rt_waiter;
2227 q.requeue_pi_key = &key2;
2228
2229 /*
2230 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2231 * count.
2232 */
2233 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2234 if (ret)
2235 goto out_key2;
2236
2237 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2238 futex_wait_queue_me(hb, &q, to);
2239
2240 spin_lock(&hb->lock);
2241 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2242 spin_unlock(&hb->lock);
2243 if (ret)
2244 goto out_put_keys;
2245
2246 /*
2247 * In order for us to be here, we know our q.key == key2, and since
2248 * we took the hb->lock above, we also know that futex_requeue() has
2249 * completed and we no longer have to concern ourselves with a wakeup
2250 * race with the atomic proxy lock acquisition by the requeue code. The
2251 * futex_requeue dropped our key1 reference and incremented our key2
2252 * reference count.
2253 */
2254
2255 /* Check if the requeue code acquired the second futex for us. */
2256 if (!q.rt_waiter) {
2257 /*
2258 * Got the lock. We might not be the anticipated owner if we
2259 * did a lock-steal - fix up the PI-state in that case.
2260 */
2261 if (q.pi_state && (q.pi_state->owner != current)) {
2262 spin_lock(q.lock_ptr);
2263 ret = fixup_pi_state_owner(uaddr2, &q, current);
2264 spin_unlock(q.lock_ptr);
2265 }
2266 } else {
2267 /*
2268 * We have been woken up by futex_unlock_pi(), a timeout, or a
2269 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2270 * the pi_state.
2271 */
2272 WARN_ON(!&q.pi_state);
2273 pi_mutex = &q.pi_state->pi_mutex;
2274 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2275 debug_rt_mutex_free_waiter(&rt_waiter);
2276
2277 spin_lock(q.lock_ptr);
2278 /*
2279 * Fixup the pi_state owner and possibly acquire the lock if we
2280 * haven't already.
2281 */
2282 res = fixup_owner(uaddr2, &q, !ret);
2283 /*
2284 * If fixup_owner() returned an error, proprogate that. If it
2285 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2286 */
2287 if (res)
2288 ret = (res < 0) ? res : 0;
2289
2290 /* Unqueue and drop the lock. */
2291 unqueue_me_pi(&q);
2292 }
2293
2294 /*
2295 * If fixup_pi_state_owner() faulted and was unable to handle the
2296 * fault, unlock the rt_mutex and return the fault to userspace.
2297 */
2298 if (ret == -EFAULT) {
2299 if (rt_mutex_owner(pi_mutex) == current)
2300 rt_mutex_unlock(pi_mutex);
2301 } else if (ret == -EINTR) {
2302 /*
2303 * We've already been requeued, but cannot restart by calling
2304 * futex_lock_pi() directly. We could restart this syscall, but
2305 * it would detect that the user space "val" changed and return
2306 * -EWOULDBLOCK. Save the overhead of the restart and return
2307 * -EWOULDBLOCK directly.
2308 */
2309 ret = -EWOULDBLOCK;
2310 }
2311
2312 out_put_keys:
2313 put_futex_key(&q.key);
2314 out_key2:
2315 put_futex_key(&key2);
2316
2317 out:
2318 if (to) {
2319 hrtimer_cancel(&to->timer);
2320 destroy_hrtimer_on_stack(&to->timer);
2321 }
2322 return ret;
2323 }
2324
2325 /*
2326 * Support for robust futexes: the kernel cleans up held futexes at
2327 * thread exit time.
2328 *
2329 * Implementation: user-space maintains a per-thread list of locks it
2330 * is holding. Upon do_exit(), the kernel carefully walks this list,
2331 * and marks all locks that are owned by this thread with the
2332 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2333 * always manipulated with the lock held, so the list is private and
2334 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2335 * field, to allow the kernel to clean up if the thread dies after
2336 * acquiring the lock, but just before it could have added itself to
2337 * the list. There can only be one such pending lock.
2338 */
2339
2340 /**
2341 * sys_set_robust_list() - Set the robust-futex list head of a task
2342 * @head: pointer to the list-head
2343 * @len: length of the list-head, as userspace expects
2344 */
2345 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2346 size_t, len)
2347 {
2348 if (!futex_cmpxchg_enabled)
2349 return -ENOSYS;
2350 /*
2351 * The kernel knows only one size for now:
2352 */
2353 if (unlikely(len != sizeof(*head)))
2354 return -EINVAL;
2355
2356 current->robust_list = head;
2357
2358 return 0;
2359 }
2360
2361 /**
2362 * sys_get_robust_list() - Get the robust-futex list head of a task
2363 * @pid: pid of the process [zero for current task]
2364 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2365 * @len_ptr: pointer to a length field, the kernel fills in the header size
2366 */
2367 SYSCALL_DEFINE3(get_robust_list, int, pid,
2368 struct robust_list_head __user * __user *, head_ptr,
2369 size_t __user *, len_ptr)
2370 {
2371 struct robust_list_head __user *head;
2372 unsigned long ret;
2373 const struct cred *cred = current_cred(), *pcred;
2374
2375 if (!futex_cmpxchg_enabled)
2376 return -ENOSYS;
2377
2378 if (!pid)
2379 head = current->robust_list;
2380 else {
2381 struct task_struct *p;
2382
2383 ret = -ESRCH;
2384 rcu_read_lock();
2385 p = find_task_by_vpid(pid);
2386 if (!p)
2387 goto err_unlock;
2388 ret = -EPERM;
2389 pcred = __task_cred(p);
2390 if (cred->euid != pcred->euid &&
2391 cred->euid != pcred->uid &&
2392 !capable(CAP_SYS_PTRACE))
2393 goto err_unlock;
2394 head = p->robust_list;
2395 rcu_read_unlock();
2396 }
2397
2398 if (put_user(sizeof(*head), len_ptr))
2399 return -EFAULT;
2400 return put_user(head, head_ptr);
2401
2402 err_unlock:
2403 rcu_read_unlock();
2404
2405 return ret;
2406 }
2407
2408 /*
2409 * Process a futex-list entry, check whether it's owned by the
2410 * dying task, and do notification if so:
2411 */
2412 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2413 {
2414 u32 uval, nval, mval;
2415
2416 retry:
2417 if (get_user(uval, uaddr))
2418 return -1;
2419
2420 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2421 /*
2422 * Ok, this dying thread is truly holding a futex
2423 * of interest. Set the OWNER_DIED bit atomically
2424 * via cmpxchg, and if the value had FUTEX_WAITERS
2425 * set, wake up a waiter (if any). (We have to do a
2426 * futex_wake() even if OWNER_DIED is already set -
2427 * to handle the rare but possible case of recursive
2428 * thread-death.) The rest of the cleanup is done in
2429 * userspace.
2430 */
2431 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2432 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2433
2434 if (nval == -EFAULT)
2435 return -1;
2436
2437 if (nval != uval)
2438 goto retry;
2439
2440 /*
2441 * Wake robust non-PI futexes here. The wakeup of
2442 * PI futexes happens in exit_pi_state():
2443 */
2444 if (!pi && (uval & FUTEX_WAITERS))
2445 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2446 }
2447 return 0;
2448 }
2449
2450 /*
2451 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2452 */
2453 static inline int fetch_robust_entry(struct robust_list __user **entry,
2454 struct robust_list __user * __user *head,
2455 unsigned int *pi)
2456 {
2457 unsigned long uentry;
2458
2459 if (get_user(uentry, (unsigned long __user *)head))
2460 return -EFAULT;
2461
2462 *entry = (void __user *)(uentry & ~1UL);
2463 *pi = uentry & 1;
2464
2465 return 0;
2466 }
2467
2468 /*
2469 * Walk curr->robust_list (very carefully, it's a userspace list!)
2470 * and mark any locks found there dead, and notify any waiters.
2471 *
2472 * We silently return on any sign of list-walking problem.
2473 */
2474 void exit_robust_list(struct task_struct *curr)
2475 {
2476 struct robust_list_head __user *head = curr->robust_list;
2477 struct robust_list __user *entry, *next_entry, *pending;
2478 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2479 unsigned int uninitialized_var(next_pi);
2480 unsigned long futex_offset;
2481 int rc;
2482
2483 if (!futex_cmpxchg_enabled)
2484 return;
2485
2486 /*
2487 * Fetch the list head (which was registered earlier, via
2488 * sys_set_robust_list()):
2489 */
2490 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2491 return;
2492 /*
2493 * Fetch the relative futex offset:
2494 */
2495 if (get_user(futex_offset, &head->futex_offset))
2496 return;
2497 /*
2498 * Fetch any possibly pending lock-add first, and handle it
2499 * if it exists:
2500 */
2501 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2502 return;
2503
2504 next_entry = NULL; /* avoid warning with gcc */
2505 while (entry != &head->list) {
2506 /*
2507 * Fetch the next entry in the list before calling
2508 * handle_futex_death:
2509 */
2510 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2511 /*
2512 * A pending lock might already be on the list, so
2513 * don't process it twice:
2514 */
2515 if (entry != pending)
2516 if (handle_futex_death((void __user *)entry + futex_offset,
2517 curr, pi))
2518 return;
2519 if (rc)
2520 return;
2521 entry = next_entry;
2522 pi = next_pi;
2523 /*
2524 * Avoid excessively long or circular lists:
2525 */
2526 if (!--limit)
2527 break;
2528
2529 cond_resched();
2530 }
2531
2532 if (pending)
2533 handle_futex_death((void __user *)pending + futex_offset,
2534 curr, pip);
2535 }
2536
2537 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2538 u32 __user *uaddr2, u32 val2, u32 val3)
2539 {
2540 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2541 unsigned int flags = 0;
2542
2543 if (!(op & FUTEX_PRIVATE_FLAG))
2544 flags |= FLAGS_SHARED;
2545
2546 if (op & FUTEX_CLOCK_REALTIME) {
2547 flags |= FLAGS_CLOCKRT;
2548 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2549 return -ENOSYS;
2550 }
2551
2552 switch (cmd) {
2553 case FUTEX_WAIT:
2554 val3 = FUTEX_BITSET_MATCH_ANY;
2555 case FUTEX_WAIT_BITSET:
2556 ret = futex_wait(uaddr, flags, val, timeout, val3);
2557 break;
2558 case FUTEX_WAKE:
2559 val3 = FUTEX_BITSET_MATCH_ANY;
2560 case FUTEX_WAKE_BITSET:
2561 ret = futex_wake(uaddr, flags, val, val3);
2562 break;
2563 case FUTEX_REQUEUE:
2564 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2565 break;
2566 case FUTEX_CMP_REQUEUE:
2567 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2568 break;
2569 case FUTEX_WAKE_OP:
2570 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2571 break;
2572 case FUTEX_LOCK_PI:
2573 if (futex_cmpxchg_enabled)
2574 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2575 break;
2576 case FUTEX_UNLOCK_PI:
2577 if (futex_cmpxchg_enabled)
2578 ret = futex_unlock_pi(uaddr, flags);
2579 break;
2580 case FUTEX_TRYLOCK_PI:
2581 if (futex_cmpxchg_enabled)
2582 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2583 break;
2584 case FUTEX_WAIT_REQUEUE_PI:
2585 val3 = FUTEX_BITSET_MATCH_ANY;
2586 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2587 uaddr2);
2588 break;
2589 case FUTEX_CMP_REQUEUE_PI:
2590 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2591 break;
2592 default:
2593 ret = -ENOSYS;
2594 }
2595 return ret;
2596 }
2597
2598
2599 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2600 struct timespec __user *, utime, u32 __user *, uaddr2,
2601 u32, val3)
2602 {
2603 struct timespec ts;
2604 ktime_t t, *tp = NULL;
2605 u32 val2 = 0;
2606 int cmd = op & FUTEX_CMD_MASK;
2607
2608 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2609 cmd == FUTEX_WAIT_BITSET ||
2610 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2611 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2612 return -EFAULT;
2613 if (!timespec_valid(&ts))
2614 return -EINVAL;
2615
2616 t = timespec_to_ktime(ts);
2617 if (cmd == FUTEX_WAIT)
2618 t = ktime_add_safe(ktime_get(), t);
2619 tp = &t;
2620 }
2621 /*
2622 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2623 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2624 */
2625 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2626 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2627 val2 = (u32) (unsigned long) utime;
2628
2629 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2630 }
2631
2632 static int __init futex_init(void)
2633 {
2634 u32 curval;
2635 int i;
2636
2637 /*
2638 * This will fail and we want it. Some arch implementations do
2639 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2640 * functionality. We want to know that before we call in any
2641 * of the complex code paths. Also we want to prevent
2642 * registration of robust lists in that case. NULL is
2643 * guaranteed to fault and we get -EFAULT on functional
2644 * implementation, the non-functional ones will return
2645 * -ENOSYS.
2646 */
2647 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2648 if (curval == -EFAULT)
2649 futex_cmpxchg_enabled = 1;
2650
2651 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2652 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2653 spin_lock_init(&futex_queues[i].lock);
2654 }
2655
2656 return 0;
2657 }
2658 __initcall(futex_init);
This page took 0.095427 seconds and 5 git commands to generate.