usb: dwc3: add ACPI support
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers for both
147 * shared and private futexes in get_futex_key_refs().
148 *
149 * This yields the following case (where X:=waiters, Y:=futex):
150 *
151 * X = Y = 0
152 *
153 * w[X]=1 w[Y]=1
154 * MB MB
155 * r[Y]=y r[X]=x
156 *
157 * Which guarantees that x==0 && y==0 is impossible; which translates back into
158 * the guarantee that we cannot both miss the futex variable change and the
159 * enqueue.
160 *
161 * Note that a new waiter is accounted for in (a) even when it is possible that
162 * the wait call can return error, in which case we backtrack from it in (b).
163 * Refer to the comment in queue_lock().
164 *
165 * Similarly, in order to account for waiters being requeued on another
166 * address we always increment the waiters for the destination bucket before
167 * acquiring the lock. It then decrements them again after releasing it -
168 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
169 * will do the additional required waiter count housekeeping. This is done for
170 * double_lock_hb() and double_unlock_hb(), respectively.
171 */
172
173 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
174 int __read_mostly futex_cmpxchg_enabled;
175 #endif
176
177 /*
178 * Futex flags used to encode options to functions and preserve them across
179 * restarts.
180 */
181 #define FLAGS_SHARED 0x01
182 #define FLAGS_CLOCKRT 0x02
183 #define FLAGS_HAS_TIMEOUT 0x04
184
185 /*
186 * Priority Inheritance state:
187 */
188 struct futex_pi_state {
189 /*
190 * list of 'owned' pi_state instances - these have to be
191 * cleaned up in do_exit() if the task exits prematurely:
192 */
193 struct list_head list;
194
195 /*
196 * The PI object:
197 */
198 struct rt_mutex pi_mutex;
199
200 struct task_struct *owner;
201 atomic_t refcount;
202
203 union futex_key key;
204 };
205
206 /**
207 * struct futex_q - The hashed futex queue entry, one per waiting task
208 * @list: priority-sorted list of tasks waiting on this futex
209 * @task: the task waiting on the futex
210 * @lock_ptr: the hash bucket lock
211 * @key: the key the futex is hashed on
212 * @pi_state: optional priority inheritance state
213 * @rt_waiter: rt_waiter storage for use with requeue_pi
214 * @requeue_pi_key: the requeue_pi target futex key
215 * @bitset: bitset for the optional bitmasked wakeup
216 *
217 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
218 * we can wake only the relevant ones (hashed queues may be shared).
219 *
220 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
221 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
222 * The order of wakeup is always to make the first condition true, then
223 * the second.
224 *
225 * PI futexes are typically woken before they are removed from the hash list via
226 * the rt_mutex code. See unqueue_me_pi().
227 */
228 struct futex_q {
229 struct plist_node list;
230
231 struct task_struct *task;
232 spinlock_t *lock_ptr;
233 union futex_key key;
234 struct futex_pi_state *pi_state;
235 struct rt_mutex_waiter *rt_waiter;
236 union futex_key *requeue_pi_key;
237 u32 bitset;
238 };
239
240 static const struct futex_q futex_q_init = {
241 /* list gets initialized in queue_me()*/
242 .key = FUTEX_KEY_INIT,
243 .bitset = FUTEX_BITSET_MATCH_ANY
244 };
245
246 /*
247 * Hash buckets are shared by all the futex_keys that hash to the same
248 * location. Each key may have multiple futex_q structures, one for each task
249 * waiting on a futex.
250 */
251 struct futex_hash_bucket {
252 atomic_t waiters;
253 spinlock_t lock;
254 struct plist_head chain;
255 } ____cacheline_aligned_in_smp;
256
257 static unsigned long __read_mostly futex_hashsize;
258
259 static struct futex_hash_bucket *futex_queues;
260
261 static inline void futex_get_mm(union futex_key *key)
262 {
263 atomic_inc(&key->private.mm->mm_count);
264 /*
265 * Ensure futex_get_mm() implies a full barrier such that
266 * get_futex_key() implies a full barrier. This is relied upon
267 * as full barrier (B), see the ordering comment above.
268 */
269 smp_mb__after_atomic();
270 }
271
272 /*
273 * Reflects a new waiter being added to the waitqueue.
274 */
275 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
276 {
277 #ifdef CONFIG_SMP
278 atomic_inc(&hb->waiters);
279 /*
280 * Full barrier (A), see the ordering comment above.
281 */
282 smp_mb__after_atomic();
283 #endif
284 }
285
286 /*
287 * Reflects a waiter being removed from the waitqueue by wakeup
288 * paths.
289 */
290 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
291 {
292 #ifdef CONFIG_SMP
293 atomic_dec(&hb->waiters);
294 #endif
295 }
296
297 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
298 {
299 #ifdef CONFIG_SMP
300 return atomic_read(&hb->waiters);
301 #else
302 return 1;
303 #endif
304 }
305
306 /*
307 * We hash on the keys returned from get_futex_key (see below).
308 */
309 static struct futex_hash_bucket *hash_futex(union futex_key *key)
310 {
311 u32 hash = jhash2((u32*)&key->both.word,
312 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
313 key->both.offset);
314 return &futex_queues[hash & (futex_hashsize - 1)];
315 }
316
317 /*
318 * Return 1 if two futex_keys are equal, 0 otherwise.
319 */
320 static inline int match_futex(union futex_key *key1, union futex_key *key2)
321 {
322 return (key1 && key2
323 && key1->both.word == key2->both.word
324 && key1->both.ptr == key2->both.ptr
325 && key1->both.offset == key2->both.offset);
326 }
327
328 /*
329 * Take a reference to the resource addressed by a key.
330 * Can be called while holding spinlocks.
331 *
332 */
333 static void get_futex_key_refs(union futex_key *key)
334 {
335 if (!key->both.ptr)
336 return;
337
338 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
339 case FUT_OFF_INODE:
340 ihold(key->shared.inode); /* implies MB (B) */
341 break;
342 case FUT_OFF_MMSHARED:
343 futex_get_mm(key); /* implies MB (B) */
344 break;
345 default:
346 /*
347 * Private futexes do not hold reference on an inode or
348 * mm, therefore the only purpose of calling get_futex_key_refs
349 * is because we need the barrier for the lockless waiter check.
350 */
351 smp_mb(); /* explicit MB (B) */
352 }
353 }
354
355 /*
356 * Drop a reference to the resource addressed by a key.
357 * The hash bucket spinlock must not be held. This is
358 * a no-op for private futexes, see comment in the get
359 * counterpart.
360 */
361 static void drop_futex_key_refs(union futex_key *key)
362 {
363 if (!key->both.ptr) {
364 /* If we're here then we tried to put a key we failed to get */
365 WARN_ON_ONCE(1);
366 return;
367 }
368
369 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
370 case FUT_OFF_INODE:
371 iput(key->shared.inode);
372 break;
373 case FUT_OFF_MMSHARED:
374 mmdrop(key->private.mm);
375 break;
376 }
377 }
378
379 /**
380 * get_futex_key() - Get parameters which are the keys for a futex
381 * @uaddr: virtual address of the futex
382 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
383 * @key: address where result is stored.
384 * @rw: mapping needs to be read/write (values: VERIFY_READ,
385 * VERIFY_WRITE)
386 *
387 * Return: a negative error code or 0
388 *
389 * The key words are stored in *key on success.
390 *
391 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
392 * offset_within_page). For private mappings, it's (uaddr, current->mm).
393 * We can usually work out the index without swapping in the page.
394 *
395 * lock_page() might sleep, the caller should not hold a spinlock.
396 */
397 static int
398 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
399 {
400 unsigned long address = (unsigned long)uaddr;
401 struct mm_struct *mm = current->mm;
402 struct page *page, *page_head;
403 int err, ro = 0;
404
405 /*
406 * The futex address must be "naturally" aligned.
407 */
408 key->both.offset = address % PAGE_SIZE;
409 if (unlikely((address % sizeof(u32)) != 0))
410 return -EINVAL;
411 address -= key->both.offset;
412
413 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
414 return -EFAULT;
415
416 /*
417 * PROCESS_PRIVATE futexes are fast.
418 * As the mm cannot disappear under us and the 'key' only needs
419 * virtual address, we dont even have to find the underlying vma.
420 * Note : We do have to check 'uaddr' is a valid user address,
421 * but access_ok() should be faster than find_vma()
422 */
423 if (!fshared) {
424 key->private.mm = mm;
425 key->private.address = address;
426 get_futex_key_refs(key); /* implies MB (B) */
427 return 0;
428 }
429
430 again:
431 err = get_user_pages_fast(address, 1, 1, &page);
432 /*
433 * If write access is not required (eg. FUTEX_WAIT), try
434 * and get read-only access.
435 */
436 if (err == -EFAULT && rw == VERIFY_READ) {
437 err = get_user_pages_fast(address, 1, 0, &page);
438 ro = 1;
439 }
440 if (err < 0)
441 return err;
442 else
443 err = 0;
444
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 page_head = page;
447 if (unlikely(PageTail(page))) {
448 put_page(page);
449 /* serialize against __split_huge_page_splitting() */
450 local_irq_disable();
451 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
452 page_head = compound_head(page);
453 /*
454 * page_head is valid pointer but we must pin
455 * it before taking the PG_lock and/or
456 * PG_compound_lock. The moment we re-enable
457 * irqs __split_huge_page_splitting() can
458 * return and the head page can be freed from
459 * under us. We can't take the PG_lock and/or
460 * PG_compound_lock on a page that could be
461 * freed from under us.
462 */
463 if (page != page_head) {
464 get_page(page_head);
465 put_page(page);
466 }
467 local_irq_enable();
468 } else {
469 local_irq_enable();
470 goto again;
471 }
472 }
473 #else
474 page_head = compound_head(page);
475 if (page != page_head) {
476 get_page(page_head);
477 put_page(page);
478 }
479 #endif
480
481 lock_page(page_head);
482
483 /*
484 * If page_head->mapping is NULL, then it cannot be a PageAnon
485 * page; but it might be the ZERO_PAGE or in the gate area or
486 * in a special mapping (all cases which we are happy to fail);
487 * or it may have been a good file page when get_user_pages_fast
488 * found it, but truncated or holepunched or subjected to
489 * invalidate_complete_page2 before we got the page lock (also
490 * cases which we are happy to fail). And we hold a reference,
491 * so refcount care in invalidate_complete_page's remove_mapping
492 * prevents drop_caches from setting mapping to NULL beneath us.
493 *
494 * The case we do have to guard against is when memory pressure made
495 * shmem_writepage move it from filecache to swapcache beneath us:
496 * an unlikely race, but we do need to retry for page_head->mapping.
497 */
498 if (!page_head->mapping) {
499 int shmem_swizzled = PageSwapCache(page_head);
500 unlock_page(page_head);
501 put_page(page_head);
502 if (shmem_swizzled)
503 goto again;
504 return -EFAULT;
505 }
506
507 /*
508 * Private mappings are handled in a simple way.
509 *
510 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
511 * it's a read-only handle, it's expected that futexes attach to
512 * the object not the particular process.
513 */
514 if (PageAnon(page_head)) {
515 /*
516 * A RO anonymous page will never change and thus doesn't make
517 * sense for futex operations.
518 */
519 if (ro) {
520 err = -EFAULT;
521 goto out;
522 }
523
524 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
525 key->private.mm = mm;
526 key->private.address = address;
527 } else {
528 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
529 key->shared.inode = page_head->mapping->host;
530 key->shared.pgoff = basepage_index(page);
531 }
532
533 get_futex_key_refs(key); /* implies MB (B) */
534
535 out:
536 unlock_page(page_head);
537 put_page(page_head);
538 return err;
539 }
540
541 static inline void put_futex_key(union futex_key *key)
542 {
543 drop_futex_key_refs(key);
544 }
545
546 /**
547 * fault_in_user_writeable() - Fault in user address and verify RW access
548 * @uaddr: pointer to faulting user space address
549 *
550 * Slow path to fixup the fault we just took in the atomic write
551 * access to @uaddr.
552 *
553 * We have no generic implementation of a non-destructive write to the
554 * user address. We know that we faulted in the atomic pagefault
555 * disabled section so we can as well avoid the #PF overhead by
556 * calling get_user_pages() right away.
557 */
558 static int fault_in_user_writeable(u32 __user *uaddr)
559 {
560 struct mm_struct *mm = current->mm;
561 int ret;
562
563 down_read(&mm->mmap_sem);
564 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
565 FAULT_FLAG_WRITE);
566 up_read(&mm->mmap_sem);
567
568 return ret < 0 ? ret : 0;
569 }
570
571 /**
572 * futex_top_waiter() - Return the highest priority waiter on a futex
573 * @hb: the hash bucket the futex_q's reside in
574 * @key: the futex key (to distinguish it from other futex futex_q's)
575 *
576 * Must be called with the hb lock held.
577 */
578 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
579 union futex_key *key)
580 {
581 struct futex_q *this;
582
583 plist_for_each_entry(this, &hb->chain, list) {
584 if (match_futex(&this->key, key))
585 return this;
586 }
587 return NULL;
588 }
589
590 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
591 u32 uval, u32 newval)
592 {
593 int ret;
594
595 pagefault_disable();
596 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
597 pagefault_enable();
598
599 return ret;
600 }
601
602 static int get_futex_value_locked(u32 *dest, u32 __user *from)
603 {
604 int ret;
605
606 pagefault_disable();
607 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
608 pagefault_enable();
609
610 return ret ? -EFAULT : 0;
611 }
612
613
614 /*
615 * PI code:
616 */
617 static int refill_pi_state_cache(void)
618 {
619 struct futex_pi_state *pi_state;
620
621 if (likely(current->pi_state_cache))
622 return 0;
623
624 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
625
626 if (!pi_state)
627 return -ENOMEM;
628
629 INIT_LIST_HEAD(&pi_state->list);
630 /* pi_mutex gets initialized later */
631 pi_state->owner = NULL;
632 atomic_set(&pi_state->refcount, 1);
633 pi_state->key = FUTEX_KEY_INIT;
634
635 current->pi_state_cache = pi_state;
636
637 return 0;
638 }
639
640 static struct futex_pi_state * alloc_pi_state(void)
641 {
642 struct futex_pi_state *pi_state = current->pi_state_cache;
643
644 WARN_ON(!pi_state);
645 current->pi_state_cache = NULL;
646
647 return pi_state;
648 }
649
650 /*
651 * Must be called with the hb lock held.
652 */
653 static void free_pi_state(struct futex_pi_state *pi_state)
654 {
655 if (!pi_state)
656 return;
657
658 if (!atomic_dec_and_test(&pi_state->refcount))
659 return;
660
661 /*
662 * If pi_state->owner is NULL, the owner is most probably dying
663 * and has cleaned up the pi_state already
664 */
665 if (pi_state->owner) {
666 raw_spin_lock_irq(&pi_state->owner->pi_lock);
667 list_del_init(&pi_state->list);
668 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
669
670 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
671 }
672
673 if (current->pi_state_cache)
674 kfree(pi_state);
675 else {
676 /*
677 * pi_state->list is already empty.
678 * clear pi_state->owner.
679 * refcount is at 0 - put it back to 1.
680 */
681 pi_state->owner = NULL;
682 atomic_set(&pi_state->refcount, 1);
683 current->pi_state_cache = pi_state;
684 }
685 }
686
687 /*
688 * Look up the task based on what TID userspace gave us.
689 * We dont trust it.
690 */
691 static struct task_struct * futex_find_get_task(pid_t pid)
692 {
693 struct task_struct *p;
694
695 rcu_read_lock();
696 p = find_task_by_vpid(pid);
697 if (p)
698 get_task_struct(p);
699
700 rcu_read_unlock();
701
702 return p;
703 }
704
705 /*
706 * This task is holding PI mutexes at exit time => bad.
707 * Kernel cleans up PI-state, but userspace is likely hosed.
708 * (Robust-futex cleanup is separate and might save the day for userspace.)
709 */
710 void exit_pi_state_list(struct task_struct *curr)
711 {
712 struct list_head *next, *head = &curr->pi_state_list;
713 struct futex_pi_state *pi_state;
714 struct futex_hash_bucket *hb;
715 union futex_key key = FUTEX_KEY_INIT;
716
717 if (!futex_cmpxchg_enabled)
718 return;
719 /*
720 * We are a ZOMBIE and nobody can enqueue itself on
721 * pi_state_list anymore, but we have to be careful
722 * versus waiters unqueueing themselves:
723 */
724 raw_spin_lock_irq(&curr->pi_lock);
725 while (!list_empty(head)) {
726
727 next = head->next;
728 pi_state = list_entry(next, struct futex_pi_state, list);
729 key = pi_state->key;
730 hb = hash_futex(&key);
731 raw_spin_unlock_irq(&curr->pi_lock);
732
733 spin_lock(&hb->lock);
734
735 raw_spin_lock_irq(&curr->pi_lock);
736 /*
737 * We dropped the pi-lock, so re-check whether this
738 * task still owns the PI-state:
739 */
740 if (head->next != next) {
741 spin_unlock(&hb->lock);
742 continue;
743 }
744
745 WARN_ON(pi_state->owner != curr);
746 WARN_ON(list_empty(&pi_state->list));
747 list_del_init(&pi_state->list);
748 pi_state->owner = NULL;
749 raw_spin_unlock_irq(&curr->pi_lock);
750
751 rt_mutex_unlock(&pi_state->pi_mutex);
752
753 spin_unlock(&hb->lock);
754
755 raw_spin_lock_irq(&curr->pi_lock);
756 }
757 raw_spin_unlock_irq(&curr->pi_lock);
758 }
759
760 /*
761 * We need to check the following states:
762 *
763 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
764 *
765 * [1] NULL | --- | --- | 0 | 0/1 | Valid
766 * [2] NULL | --- | --- | >0 | 0/1 | Valid
767 *
768 * [3] Found | NULL | -- | Any | 0/1 | Invalid
769 *
770 * [4] Found | Found | NULL | 0 | 1 | Valid
771 * [5] Found | Found | NULL | >0 | 1 | Invalid
772 *
773 * [6] Found | Found | task | 0 | 1 | Valid
774 *
775 * [7] Found | Found | NULL | Any | 0 | Invalid
776 *
777 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
778 * [9] Found | Found | task | 0 | 0 | Invalid
779 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
780 *
781 * [1] Indicates that the kernel can acquire the futex atomically. We
782 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
783 *
784 * [2] Valid, if TID does not belong to a kernel thread. If no matching
785 * thread is found then it indicates that the owner TID has died.
786 *
787 * [3] Invalid. The waiter is queued on a non PI futex
788 *
789 * [4] Valid state after exit_robust_list(), which sets the user space
790 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
791 *
792 * [5] The user space value got manipulated between exit_robust_list()
793 * and exit_pi_state_list()
794 *
795 * [6] Valid state after exit_pi_state_list() which sets the new owner in
796 * the pi_state but cannot access the user space value.
797 *
798 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
799 *
800 * [8] Owner and user space value match
801 *
802 * [9] There is no transient state which sets the user space TID to 0
803 * except exit_robust_list(), but this is indicated by the
804 * FUTEX_OWNER_DIED bit. See [4]
805 *
806 * [10] There is no transient state which leaves owner and user space
807 * TID out of sync.
808 */
809
810 /*
811 * Validate that the existing waiter has a pi_state and sanity check
812 * the pi_state against the user space value. If correct, attach to
813 * it.
814 */
815 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
816 struct futex_pi_state **ps)
817 {
818 pid_t pid = uval & FUTEX_TID_MASK;
819
820 /*
821 * Userspace might have messed up non-PI and PI futexes [3]
822 */
823 if (unlikely(!pi_state))
824 return -EINVAL;
825
826 WARN_ON(!atomic_read(&pi_state->refcount));
827
828 /*
829 * Handle the owner died case:
830 */
831 if (uval & FUTEX_OWNER_DIED) {
832 /*
833 * exit_pi_state_list sets owner to NULL and wakes the
834 * topmost waiter. The task which acquires the
835 * pi_state->rt_mutex will fixup owner.
836 */
837 if (!pi_state->owner) {
838 /*
839 * No pi state owner, but the user space TID
840 * is not 0. Inconsistent state. [5]
841 */
842 if (pid)
843 return -EINVAL;
844 /*
845 * Take a ref on the state and return success. [4]
846 */
847 goto out_state;
848 }
849
850 /*
851 * If TID is 0, then either the dying owner has not
852 * yet executed exit_pi_state_list() or some waiter
853 * acquired the rtmutex in the pi state, but did not
854 * yet fixup the TID in user space.
855 *
856 * Take a ref on the state and return success. [6]
857 */
858 if (!pid)
859 goto out_state;
860 } else {
861 /*
862 * If the owner died bit is not set, then the pi_state
863 * must have an owner. [7]
864 */
865 if (!pi_state->owner)
866 return -EINVAL;
867 }
868
869 /*
870 * Bail out if user space manipulated the futex value. If pi
871 * state exists then the owner TID must be the same as the
872 * user space TID. [9/10]
873 */
874 if (pid != task_pid_vnr(pi_state->owner))
875 return -EINVAL;
876 out_state:
877 atomic_inc(&pi_state->refcount);
878 *ps = pi_state;
879 return 0;
880 }
881
882 /*
883 * Lookup the task for the TID provided from user space and attach to
884 * it after doing proper sanity checks.
885 */
886 static int attach_to_pi_owner(u32 uval, union futex_key *key,
887 struct futex_pi_state **ps)
888 {
889 pid_t pid = uval & FUTEX_TID_MASK;
890 struct futex_pi_state *pi_state;
891 struct task_struct *p;
892
893 /*
894 * We are the first waiter - try to look up the real owner and attach
895 * the new pi_state to it, but bail out when TID = 0 [1]
896 */
897 if (!pid)
898 return -ESRCH;
899 p = futex_find_get_task(pid);
900 if (!p)
901 return -ESRCH;
902
903 if (!p->mm) {
904 put_task_struct(p);
905 return -EPERM;
906 }
907
908 /*
909 * We need to look at the task state flags to figure out,
910 * whether the task is exiting. To protect against the do_exit
911 * change of the task flags, we do this protected by
912 * p->pi_lock:
913 */
914 raw_spin_lock_irq(&p->pi_lock);
915 if (unlikely(p->flags & PF_EXITING)) {
916 /*
917 * The task is on the way out. When PF_EXITPIDONE is
918 * set, we know that the task has finished the
919 * cleanup:
920 */
921 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
922
923 raw_spin_unlock_irq(&p->pi_lock);
924 put_task_struct(p);
925 return ret;
926 }
927
928 /*
929 * No existing pi state. First waiter. [2]
930 */
931 pi_state = alloc_pi_state();
932
933 /*
934 * Initialize the pi_mutex in locked state and make @p
935 * the owner of it:
936 */
937 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
938
939 /* Store the key for possible exit cleanups: */
940 pi_state->key = *key;
941
942 WARN_ON(!list_empty(&pi_state->list));
943 list_add(&pi_state->list, &p->pi_state_list);
944 pi_state->owner = p;
945 raw_spin_unlock_irq(&p->pi_lock);
946
947 put_task_struct(p);
948
949 *ps = pi_state;
950
951 return 0;
952 }
953
954 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
955 union futex_key *key, struct futex_pi_state **ps)
956 {
957 struct futex_q *match = futex_top_waiter(hb, key);
958
959 /*
960 * If there is a waiter on that futex, validate it and
961 * attach to the pi_state when the validation succeeds.
962 */
963 if (match)
964 return attach_to_pi_state(uval, match->pi_state, ps);
965
966 /*
967 * We are the first waiter - try to look up the owner based on
968 * @uval and attach to it.
969 */
970 return attach_to_pi_owner(uval, key, ps);
971 }
972
973 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
974 {
975 u32 uninitialized_var(curval);
976
977 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
978 return -EFAULT;
979
980 /*If user space value changed, let the caller retry */
981 return curval != uval ? -EAGAIN : 0;
982 }
983
984 /**
985 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
986 * @uaddr: the pi futex user address
987 * @hb: the pi futex hash bucket
988 * @key: the futex key associated with uaddr and hb
989 * @ps: the pi_state pointer where we store the result of the
990 * lookup
991 * @task: the task to perform the atomic lock work for. This will
992 * be "current" except in the case of requeue pi.
993 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
994 *
995 * Return:
996 * 0 - ready to wait;
997 * 1 - acquired the lock;
998 * <0 - error
999 *
1000 * The hb->lock and futex_key refs shall be held by the caller.
1001 */
1002 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1003 union futex_key *key,
1004 struct futex_pi_state **ps,
1005 struct task_struct *task, int set_waiters)
1006 {
1007 u32 uval, newval, vpid = task_pid_vnr(task);
1008 struct futex_q *match;
1009 int ret;
1010
1011 /*
1012 * Read the user space value first so we can validate a few
1013 * things before proceeding further.
1014 */
1015 if (get_futex_value_locked(&uval, uaddr))
1016 return -EFAULT;
1017
1018 /*
1019 * Detect deadlocks.
1020 */
1021 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1022 return -EDEADLK;
1023
1024 /*
1025 * Lookup existing state first. If it exists, try to attach to
1026 * its pi_state.
1027 */
1028 match = futex_top_waiter(hb, key);
1029 if (match)
1030 return attach_to_pi_state(uval, match->pi_state, ps);
1031
1032 /*
1033 * No waiter and user TID is 0. We are here because the
1034 * waiters or the owner died bit is set or called from
1035 * requeue_cmp_pi or for whatever reason something took the
1036 * syscall.
1037 */
1038 if (!(uval & FUTEX_TID_MASK)) {
1039 /*
1040 * We take over the futex. No other waiters and the user space
1041 * TID is 0. We preserve the owner died bit.
1042 */
1043 newval = uval & FUTEX_OWNER_DIED;
1044 newval |= vpid;
1045
1046 /* The futex requeue_pi code can enforce the waiters bit */
1047 if (set_waiters)
1048 newval |= FUTEX_WAITERS;
1049
1050 ret = lock_pi_update_atomic(uaddr, uval, newval);
1051 /* If the take over worked, return 1 */
1052 return ret < 0 ? ret : 1;
1053 }
1054
1055 /*
1056 * First waiter. Set the waiters bit before attaching ourself to
1057 * the owner. If owner tries to unlock, it will be forced into
1058 * the kernel and blocked on hb->lock.
1059 */
1060 newval = uval | FUTEX_WAITERS;
1061 ret = lock_pi_update_atomic(uaddr, uval, newval);
1062 if (ret)
1063 return ret;
1064 /*
1065 * If the update of the user space value succeeded, we try to
1066 * attach to the owner. If that fails, no harm done, we only
1067 * set the FUTEX_WAITERS bit in the user space variable.
1068 */
1069 return attach_to_pi_owner(uval, key, ps);
1070 }
1071
1072 /**
1073 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1074 * @q: The futex_q to unqueue
1075 *
1076 * The q->lock_ptr must not be NULL and must be held by the caller.
1077 */
1078 static void __unqueue_futex(struct futex_q *q)
1079 {
1080 struct futex_hash_bucket *hb;
1081
1082 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1083 || WARN_ON(plist_node_empty(&q->list)))
1084 return;
1085
1086 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1087 plist_del(&q->list, &hb->chain);
1088 hb_waiters_dec(hb);
1089 }
1090
1091 /*
1092 * The hash bucket lock must be held when this is called.
1093 * Afterwards, the futex_q must not be accessed.
1094 */
1095 static void wake_futex(struct futex_q *q)
1096 {
1097 struct task_struct *p = q->task;
1098
1099 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1100 return;
1101
1102 /*
1103 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1104 * a non-futex wake up happens on another CPU then the task
1105 * might exit and p would dereference a non-existing task
1106 * struct. Prevent this by holding a reference on p across the
1107 * wake up.
1108 */
1109 get_task_struct(p);
1110
1111 __unqueue_futex(q);
1112 /*
1113 * The waiting task can free the futex_q as soon as
1114 * q->lock_ptr = NULL is written, without taking any locks. A
1115 * memory barrier is required here to prevent the following
1116 * store to lock_ptr from getting ahead of the plist_del.
1117 */
1118 smp_wmb();
1119 q->lock_ptr = NULL;
1120
1121 wake_up_state(p, TASK_NORMAL);
1122 put_task_struct(p);
1123 }
1124
1125 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1126 {
1127 struct task_struct *new_owner;
1128 struct futex_pi_state *pi_state = this->pi_state;
1129 u32 uninitialized_var(curval), newval;
1130 int ret = 0;
1131
1132 if (!pi_state)
1133 return -EINVAL;
1134
1135 /*
1136 * If current does not own the pi_state then the futex is
1137 * inconsistent and user space fiddled with the futex value.
1138 */
1139 if (pi_state->owner != current)
1140 return -EINVAL;
1141
1142 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1143 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1144
1145 /*
1146 * It is possible that the next waiter (the one that brought
1147 * this owner to the kernel) timed out and is no longer
1148 * waiting on the lock.
1149 */
1150 if (!new_owner)
1151 new_owner = this->task;
1152
1153 /*
1154 * We pass it to the next owner. The WAITERS bit is always
1155 * kept enabled while there is PI state around. We cleanup the
1156 * owner died bit, because we are the owner.
1157 */
1158 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1159
1160 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1161 ret = -EFAULT;
1162 else if (curval != uval)
1163 ret = -EINVAL;
1164 if (ret) {
1165 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1166 return ret;
1167 }
1168
1169 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1170 WARN_ON(list_empty(&pi_state->list));
1171 list_del_init(&pi_state->list);
1172 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1173
1174 raw_spin_lock_irq(&new_owner->pi_lock);
1175 WARN_ON(!list_empty(&pi_state->list));
1176 list_add(&pi_state->list, &new_owner->pi_state_list);
1177 pi_state->owner = new_owner;
1178 raw_spin_unlock_irq(&new_owner->pi_lock);
1179
1180 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1181 rt_mutex_unlock(&pi_state->pi_mutex);
1182
1183 return 0;
1184 }
1185
1186 /*
1187 * Express the locking dependencies for lockdep:
1188 */
1189 static inline void
1190 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1191 {
1192 if (hb1 <= hb2) {
1193 spin_lock(&hb1->lock);
1194 if (hb1 < hb2)
1195 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1196 } else { /* hb1 > hb2 */
1197 spin_lock(&hb2->lock);
1198 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1199 }
1200 }
1201
1202 static inline void
1203 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1204 {
1205 spin_unlock(&hb1->lock);
1206 if (hb1 != hb2)
1207 spin_unlock(&hb2->lock);
1208 }
1209
1210 /*
1211 * Wake up waiters matching bitset queued on this futex (uaddr).
1212 */
1213 static int
1214 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1215 {
1216 struct futex_hash_bucket *hb;
1217 struct futex_q *this, *next;
1218 union futex_key key = FUTEX_KEY_INIT;
1219 int ret;
1220
1221 if (!bitset)
1222 return -EINVAL;
1223
1224 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1225 if (unlikely(ret != 0))
1226 goto out;
1227
1228 hb = hash_futex(&key);
1229
1230 /* Make sure we really have tasks to wakeup */
1231 if (!hb_waiters_pending(hb))
1232 goto out_put_key;
1233
1234 spin_lock(&hb->lock);
1235
1236 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1237 if (match_futex (&this->key, &key)) {
1238 if (this->pi_state || this->rt_waiter) {
1239 ret = -EINVAL;
1240 break;
1241 }
1242
1243 /* Check if one of the bits is set in both bitsets */
1244 if (!(this->bitset & bitset))
1245 continue;
1246
1247 wake_futex(this);
1248 if (++ret >= nr_wake)
1249 break;
1250 }
1251 }
1252
1253 spin_unlock(&hb->lock);
1254 out_put_key:
1255 put_futex_key(&key);
1256 out:
1257 return ret;
1258 }
1259
1260 /*
1261 * Wake up all waiters hashed on the physical page that is mapped
1262 * to this virtual address:
1263 */
1264 static int
1265 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1266 int nr_wake, int nr_wake2, int op)
1267 {
1268 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1269 struct futex_hash_bucket *hb1, *hb2;
1270 struct futex_q *this, *next;
1271 int ret, op_ret;
1272
1273 retry:
1274 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1275 if (unlikely(ret != 0))
1276 goto out;
1277 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1278 if (unlikely(ret != 0))
1279 goto out_put_key1;
1280
1281 hb1 = hash_futex(&key1);
1282 hb2 = hash_futex(&key2);
1283
1284 retry_private:
1285 double_lock_hb(hb1, hb2);
1286 op_ret = futex_atomic_op_inuser(op, uaddr2);
1287 if (unlikely(op_ret < 0)) {
1288
1289 double_unlock_hb(hb1, hb2);
1290
1291 #ifndef CONFIG_MMU
1292 /*
1293 * we don't get EFAULT from MMU faults if we don't have an MMU,
1294 * but we might get them from range checking
1295 */
1296 ret = op_ret;
1297 goto out_put_keys;
1298 #endif
1299
1300 if (unlikely(op_ret != -EFAULT)) {
1301 ret = op_ret;
1302 goto out_put_keys;
1303 }
1304
1305 ret = fault_in_user_writeable(uaddr2);
1306 if (ret)
1307 goto out_put_keys;
1308
1309 if (!(flags & FLAGS_SHARED))
1310 goto retry_private;
1311
1312 put_futex_key(&key2);
1313 put_futex_key(&key1);
1314 goto retry;
1315 }
1316
1317 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1318 if (match_futex (&this->key, &key1)) {
1319 if (this->pi_state || this->rt_waiter) {
1320 ret = -EINVAL;
1321 goto out_unlock;
1322 }
1323 wake_futex(this);
1324 if (++ret >= nr_wake)
1325 break;
1326 }
1327 }
1328
1329 if (op_ret > 0) {
1330 op_ret = 0;
1331 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1332 if (match_futex (&this->key, &key2)) {
1333 if (this->pi_state || this->rt_waiter) {
1334 ret = -EINVAL;
1335 goto out_unlock;
1336 }
1337 wake_futex(this);
1338 if (++op_ret >= nr_wake2)
1339 break;
1340 }
1341 }
1342 ret += op_ret;
1343 }
1344
1345 out_unlock:
1346 double_unlock_hb(hb1, hb2);
1347 out_put_keys:
1348 put_futex_key(&key2);
1349 out_put_key1:
1350 put_futex_key(&key1);
1351 out:
1352 return ret;
1353 }
1354
1355 /**
1356 * requeue_futex() - Requeue a futex_q from one hb to another
1357 * @q: the futex_q to requeue
1358 * @hb1: the source hash_bucket
1359 * @hb2: the target hash_bucket
1360 * @key2: the new key for the requeued futex_q
1361 */
1362 static inline
1363 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1364 struct futex_hash_bucket *hb2, union futex_key *key2)
1365 {
1366
1367 /*
1368 * If key1 and key2 hash to the same bucket, no need to
1369 * requeue.
1370 */
1371 if (likely(&hb1->chain != &hb2->chain)) {
1372 plist_del(&q->list, &hb1->chain);
1373 hb_waiters_dec(hb1);
1374 plist_add(&q->list, &hb2->chain);
1375 hb_waiters_inc(hb2);
1376 q->lock_ptr = &hb2->lock;
1377 }
1378 get_futex_key_refs(key2);
1379 q->key = *key2;
1380 }
1381
1382 /**
1383 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1384 * @q: the futex_q
1385 * @key: the key of the requeue target futex
1386 * @hb: the hash_bucket of the requeue target futex
1387 *
1388 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1389 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1390 * to the requeue target futex so the waiter can detect the wakeup on the right
1391 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1392 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1393 * to protect access to the pi_state to fixup the owner later. Must be called
1394 * with both q->lock_ptr and hb->lock held.
1395 */
1396 static inline
1397 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1398 struct futex_hash_bucket *hb)
1399 {
1400 get_futex_key_refs(key);
1401 q->key = *key;
1402
1403 __unqueue_futex(q);
1404
1405 WARN_ON(!q->rt_waiter);
1406 q->rt_waiter = NULL;
1407
1408 q->lock_ptr = &hb->lock;
1409
1410 wake_up_state(q->task, TASK_NORMAL);
1411 }
1412
1413 /**
1414 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1415 * @pifutex: the user address of the to futex
1416 * @hb1: the from futex hash bucket, must be locked by the caller
1417 * @hb2: the to futex hash bucket, must be locked by the caller
1418 * @key1: the from futex key
1419 * @key2: the to futex key
1420 * @ps: address to store the pi_state pointer
1421 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1422 *
1423 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1424 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1425 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1426 * hb1 and hb2 must be held by the caller.
1427 *
1428 * Return:
1429 * 0 - failed to acquire the lock atomically;
1430 * >0 - acquired the lock, return value is vpid of the top_waiter
1431 * <0 - error
1432 */
1433 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1434 struct futex_hash_bucket *hb1,
1435 struct futex_hash_bucket *hb2,
1436 union futex_key *key1, union futex_key *key2,
1437 struct futex_pi_state **ps, int set_waiters)
1438 {
1439 struct futex_q *top_waiter = NULL;
1440 u32 curval;
1441 int ret, vpid;
1442
1443 if (get_futex_value_locked(&curval, pifutex))
1444 return -EFAULT;
1445
1446 /*
1447 * Find the top_waiter and determine if there are additional waiters.
1448 * If the caller intends to requeue more than 1 waiter to pifutex,
1449 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1450 * as we have means to handle the possible fault. If not, don't set
1451 * the bit unecessarily as it will force the subsequent unlock to enter
1452 * the kernel.
1453 */
1454 top_waiter = futex_top_waiter(hb1, key1);
1455
1456 /* There are no waiters, nothing for us to do. */
1457 if (!top_waiter)
1458 return 0;
1459
1460 /* Ensure we requeue to the expected futex. */
1461 if (!match_futex(top_waiter->requeue_pi_key, key2))
1462 return -EINVAL;
1463
1464 /*
1465 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1466 * the contended case or if set_waiters is 1. The pi_state is returned
1467 * in ps in contended cases.
1468 */
1469 vpid = task_pid_vnr(top_waiter->task);
1470 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1471 set_waiters);
1472 if (ret == 1) {
1473 requeue_pi_wake_futex(top_waiter, key2, hb2);
1474 return vpid;
1475 }
1476 return ret;
1477 }
1478
1479 /**
1480 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1481 * @uaddr1: source futex user address
1482 * @flags: futex flags (FLAGS_SHARED, etc.)
1483 * @uaddr2: target futex user address
1484 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1485 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1486 * @cmpval: @uaddr1 expected value (or %NULL)
1487 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1488 * pi futex (pi to pi requeue is not supported)
1489 *
1490 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1491 * uaddr2 atomically on behalf of the top waiter.
1492 *
1493 * Return:
1494 * >=0 - on success, the number of tasks requeued or woken;
1495 * <0 - on error
1496 */
1497 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1498 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1499 u32 *cmpval, int requeue_pi)
1500 {
1501 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1502 int drop_count = 0, task_count = 0, ret;
1503 struct futex_pi_state *pi_state = NULL;
1504 struct futex_hash_bucket *hb1, *hb2;
1505 struct futex_q *this, *next;
1506
1507 if (requeue_pi) {
1508 /*
1509 * Requeue PI only works on two distinct uaddrs. This
1510 * check is only valid for private futexes. See below.
1511 */
1512 if (uaddr1 == uaddr2)
1513 return -EINVAL;
1514
1515 /*
1516 * requeue_pi requires a pi_state, try to allocate it now
1517 * without any locks in case it fails.
1518 */
1519 if (refill_pi_state_cache())
1520 return -ENOMEM;
1521 /*
1522 * requeue_pi must wake as many tasks as it can, up to nr_wake
1523 * + nr_requeue, since it acquires the rt_mutex prior to
1524 * returning to userspace, so as to not leave the rt_mutex with
1525 * waiters and no owner. However, second and third wake-ups
1526 * cannot be predicted as they involve race conditions with the
1527 * first wake and a fault while looking up the pi_state. Both
1528 * pthread_cond_signal() and pthread_cond_broadcast() should
1529 * use nr_wake=1.
1530 */
1531 if (nr_wake != 1)
1532 return -EINVAL;
1533 }
1534
1535 retry:
1536 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1537 if (unlikely(ret != 0))
1538 goto out;
1539 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1540 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1541 if (unlikely(ret != 0))
1542 goto out_put_key1;
1543
1544 /*
1545 * The check above which compares uaddrs is not sufficient for
1546 * shared futexes. We need to compare the keys:
1547 */
1548 if (requeue_pi && match_futex(&key1, &key2)) {
1549 ret = -EINVAL;
1550 goto out_put_keys;
1551 }
1552
1553 hb1 = hash_futex(&key1);
1554 hb2 = hash_futex(&key2);
1555
1556 retry_private:
1557 hb_waiters_inc(hb2);
1558 double_lock_hb(hb1, hb2);
1559
1560 if (likely(cmpval != NULL)) {
1561 u32 curval;
1562
1563 ret = get_futex_value_locked(&curval, uaddr1);
1564
1565 if (unlikely(ret)) {
1566 double_unlock_hb(hb1, hb2);
1567 hb_waiters_dec(hb2);
1568
1569 ret = get_user(curval, uaddr1);
1570 if (ret)
1571 goto out_put_keys;
1572
1573 if (!(flags & FLAGS_SHARED))
1574 goto retry_private;
1575
1576 put_futex_key(&key2);
1577 put_futex_key(&key1);
1578 goto retry;
1579 }
1580 if (curval != *cmpval) {
1581 ret = -EAGAIN;
1582 goto out_unlock;
1583 }
1584 }
1585
1586 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1587 /*
1588 * Attempt to acquire uaddr2 and wake the top waiter. If we
1589 * intend to requeue waiters, force setting the FUTEX_WAITERS
1590 * bit. We force this here where we are able to easily handle
1591 * faults rather in the requeue loop below.
1592 */
1593 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1594 &key2, &pi_state, nr_requeue);
1595
1596 /*
1597 * At this point the top_waiter has either taken uaddr2 or is
1598 * waiting on it. If the former, then the pi_state will not
1599 * exist yet, look it up one more time to ensure we have a
1600 * reference to it. If the lock was taken, ret contains the
1601 * vpid of the top waiter task.
1602 */
1603 if (ret > 0) {
1604 WARN_ON(pi_state);
1605 drop_count++;
1606 task_count++;
1607 /*
1608 * If we acquired the lock, then the user
1609 * space value of uaddr2 should be vpid. It
1610 * cannot be changed by the top waiter as it
1611 * is blocked on hb2 lock if it tries to do
1612 * so. If something fiddled with it behind our
1613 * back the pi state lookup might unearth
1614 * it. So we rather use the known value than
1615 * rereading and handing potential crap to
1616 * lookup_pi_state.
1617 */
1618 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1619 }
1620
1621 switch (ret) {
1622 case 0:
1623 break;
1624 case -EFAULT:
1625 free_pi_state(pi_state);
1626 pi_state = NULL;
1627 double_unlock_hb(hb1, hb2);
1628 hb_waiters_dec(hb2);
1629 put_futex_key(&key2);
1630 put_futex_key(&key1);
1631 ret = fault_in_user_writeable(uaddr2);
1632 if (!ret)
1633 goto retry;
1634 goto out;
1635 case -EAGAIN:
1636 /*
1637 * Two reasons for this:
1638 * - Owner is exiting and we just wait for the
1639 * exit to complete.
1640 * - The user space value changed.
1641 */
1642 free_pi_state(pi_state);
1643 pi_state = NULL;
1644 double_unlock_hb(hb1, hb2);
1645 hb_waiters_dec(hb2);
1646 put_futex_key(&key2);
1647 put_futex_key(&key1);
1648 cond_resched();
1649 goto retry;
1650 default:
1651 goto out_unlock;
1652 }
1653 }
1654
1655 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1656 if (task_count - nr_wake >= nr_requeue)
1657 break;
1658
1659 if (!match_futex(&this->key, &key1))
1660 continue;
1661
1662 /*
1663 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1664 * be paired with each other and no other futex ops.
1665 *
1666 * We should never be requeueing a futex_q with a pi_state,
1667 * which is awaiting a futex_unlock_pi().
1668 */
1669 if ((requeue_pi && !this->rt_waiter) ||
1670 (!requeue_pi && this->rt_waiter) ||
1671 this->pi_state) {
1672 ret = -EINVAL;
1673 break;
1674 }
1675
1676 /*
1677 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1678 * lock, we already woke the top_waiter. If not, it will be
1679 * woken by futex_unlock_pi().
1680 */
1681 if (++task_count <= nr_wake && !requeue_pi) {
1682 wake_futex(this);
1683 continue;
1684 }
1685
1686 /* Ensure we requeue to the expected futex for requeue_pi. */
1687 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1688 ret = -EINVAL;
1689 break;
1690 }
1691
1692 /*
1693 * Requeue nr_requeue waiters and possibly one more in the case
1694 * of requeue_pi if we couldn't acquire the lock atomically.
1695 */
1696 if (requeue_pi) {
1697 /* Prepare the waiter to take the rt_mutex. */
1698 atomic_inc(&pi_state->refcount);
1699 this->pi_state = pi_state;
1700 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1701 this->rt_waiter,
1702 this->task);
1703 if (ret == 1) {
1704 /* We got the lock. */
1705 requeue_pi_wake_futex(this, &key2, hb2);
1706 drop_count++;
1707 continue;
1708 } else if (ret) {
1709 /* -EDEADLK */
1710 this->pi_state = NULL;
1711 free_pi_state(pi_state);
1712 goto out_unlock;
1713 }
1714 }
1715 requeue_futex(this, hb1, hb2, &key2);
1716 drop_count++;
1717 }
1718
1719 out_unlock:
1720 free_pi_state(pi_state);
1721 double_unlock_hb(hb1, hb2);
1722 hb_waiters_dec(hb2);
1723
1724 /*
1725 * drop_futex_key_refs() must be called outside the spinlocks. During
1726 * the requeue we moved futex_q's from the hash bucket at key1 to the
1727 * one at key2 and updated their key pointer. We no longer need to
1728 * hold the references to key1.
1729 */
1730 while (--drop_count >= 0)
1731 drop_futex_key_refs(&key1);
1732
1733 out_put_keys:
1734 put_futex_key(&key2);
1735 out_put_key1:
1736 put_futex_key(&key1);
1737 out:
1738 return ret ? ret : task_count;
1739 }
1740
1741 /* The key must be already stored in q->key. */
1742 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1743 __acquires(&hb->lock)
1744 {
1745 struct futex_hash_bucket *hb;
1746
1747 hb = hash_futex(&q->key);
1748
1749 /*
1750 * Increment the counter before taking the lock so that
1751 * a potential waker won't miss a to-be-slept task that is
1752 * waiting for the spinlock. This is safe as all queue_lock()
1753 * users end up calling queue_me(). Similarly, for housekeeping,
1754 * decrement the counter at queue_unlock() when some error has
1755 * occurred and we don't end up adding the task to the list.
1756 */
1757 hb_waiters_inc(hb);
1758
1759 q->lock_ptr = &hb->lock;
1760
1761 spin_lock(&hb->lock); /* implies MB (A) */
1762 return hb;
1763 }
1764
1765 static inline void
1766 queue_unlock(struct futex_hash_bucket *hb)
1767 __releases(&hb->lock)
1768 {
1769 spin_unlock(&hb->lock);
1770 hb_waiters_dec(hb);
1771 }
1772
1773 /**
1774 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1775 * @q: The futex_q to enqueue
1776 * @hb: The destination hash bucket
1777 *
1778 * The hb->lock must be held by the caller, and is released here. A call to
1779 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1780 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1781 * or nothing if the unqueue is done as part of the wake process and the unqueue
1782 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1783 * an example).
1784 */
1785 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1786 __releases(&hb->lock)
1787 {
1788 int prio;
1789
1790 /*
1791 * The priority used to register this element is
1792 * - either the real thread-priority for the real-time threads
1793 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1794 * - or MAX_RT_PRIO for non-RT threads.
1795 * Thus, all RT-threads are woken first in priority order, and
1796 * the others are woken last, in FIFO order.
1797 */
1798 prio = min(current->normal_prio, MAX_RT_PRIO);
1799
1800 plist_node_init(&q->list, prio);
1801 plist_add(&q->list, &hb->chain);
1802 q->task = current;
1803 spin_unlock(&hb->lock);
1804 }
1805
1806 /**
1807 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1808 * @q: The futex_q to unqueue
1809 *
1810 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1811 * be paired with exactly one earlier call to queue_me().
1812 *
1813 * Return:
1814 * 1 - if the futex_q was still queued (and we removed unqueued it);
1815 * 0 - if the futex_q was already removed by the waking thread
1816 */
1817 static int unqueue_me(struct futex_q *q)
1818 {
1819 spinlock_t *lock_ptr;
1820 int ret = 0;
1821
1822 /* In the common case we don't take the spinlock, which is nice. */
1823 retry:
1824 lock_ptr = q->lock_ptr;
1825 barrier();
1826 if (lock_ptr != NULL) {
1827 spin_lock(lock_ptr);
1828 /*
1829 * q->lock_ptr can change between reading it and
1830 * spin_lock(), causing us to take the wrong lock. This
1831 * corrects the race condition.
1832 *
1833 * Reasoning goes like this: if we have the wrong lock,
1834 * q->lock_ptr must have changed (maybe several times)
1835 * between reading it and the spin_lock(). It can
1836 * change again after the spin_lock() but only if it was
1837 * already changed before the spin_lock(). It cannot,
1838 * however, change back to the original value. Therefore
1839 * we can detect whether we acquired the correct lock.
1840 */
1841 if (unlikely(lock_ptr != q->lock_ptr)) {
1842 spin_unlock(lock_ptr);
1843 goto retry;
1844 }
1845 __unqueue_futex(q);
1846
1847 BUG_ON(q->pi_state);
1848
1849 spin_unlock(lock_ptr);
1850 ret = 1;
1851 }
1852
1853 drop_futex_key_refs(&q->key);
1854 return ret;
1855 }
1856
1857 /*
1858 * PI futexes can not be requeued and must remove themself from the
1859 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1860 * and dropped here.
1861 */
1862 static void unqueue_me_pi(struct futex_q *q)
1863 __releases(q->lock_ptr)
1864 {
1865 __unqueue_futex(q);
1866
1867 BUG_ON(!q->pi_state);
1868 free_pi_state(q->pi_state);
1869 q->pi_state = NULL;
1870
1871 spin_unlock(q->lock_ptr);
1872 }
1873
1874 /*
1875 * Fixup the pi_state owner with the new owner.
1876 *
1877 * Must be called with hash bucket lock held and mm->sem held for non
1878 * private futexes.
1879 */
1880 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1881 struct task_struct *newowner)
1882 {
1883 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1884 struct futex_pi_state *pi_state = q->pi_state;
1885 struct task_struct *oldowner = pi_state->owner;
1886 u32 uval, uninitialized_var(curval), newval;
1887 int ret;
1888
1889 /* Owner died? */
1890 if (!pi_state->owner)
1891 newtid |= FUTEX_OWNER_DIED;
1892
1893 /*
1894 * We are here either because we stole the rtmutex from the
1895 * previous highest priority waiter or we are the highest priority
1896 * waiter but failed to get the rtmutex the first time.
1897 * We have to replace the newowner TID in the user space variable.
1898 * This must be atomic as we have to preserve the owner died bit here.
1899 *
1900 * Note: We write the user space value _before_ changing the pi_state
1901 * because we can fault here. Imagine swapped out pages or a fork
1902 * that marked all the anonymous memory readonly for cow.
1903 *
1904 * Modifying pi_state _before_ the user space value would
1905 * leave the pi_state in an inconsistent state when we fault
1906 * here, because we need to drop the hash bucket lock to
1907 * handle the fault. This might be observed in the PID check
1908 * in lookup_pi_state.
1909 */
1910 retry:
1911 if (get_futex_value_locked(&uval, uaddr))
1912 goto handle_fault;
1913
1914 while (1) {
1915 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1916
1917 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1918 goto handle_fault;
1919 if (curval == uval)
1920 break;
1921 uval = curval;
1922 }
1923
1924 /*
1925 * We fixed up user space. Now we need to fix the pi_state
1926 * itself.
1927 */
1928 if (pi_state->owner != NULL) {
1929 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1930 WARN_ON(list_empty(&pi_state->list));
1931 list_del_init(&pi_state->list);
1932 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1933 }
1934
1935 pi_state->owner = newowner;
1936
1937 raw_spin_lock_irq(&newowner->pi_lock);
1938 WARN_ON(!list_empty(&pi_state->list));
1939 list_add(&pi_state->list, &newowner->pi_state_list);
1940 raw_spin_unlock_irq(&newowner->pi_lock);
1941 return 0;
1942
1943 /*
1944 * To handle the page fault we need to drop the hash bucket
1945 * lock here. That gives the other task (either the highest priority
1946 * waiter itself or the task which stole the rtmutex) the
1947 * chance to try the fixup of the pi_state. So once we are
1948 * back from handling the fault we need to check the pi_state
1949 * after reacquiring the hash bucket lock and before trying to
1950 * do another fixup. When the fixup has been done already we
1951 * simply return.
1952 */
1953 handle_fault:
1954 spin_unlock(q->lock_ptr);
1955
1956 ret = fault_in_user_writeable(uaddr);
1957
1958 spin_lock(q->lock_ptr);
1959
1960 /*
1961 * Check if someone else fixed it for us:
1962 */
1963 if (pi_state->owner != oldowner)
1964 return 0;
1965
1966 if (ret)
1967 return ret;
1968
1969 goto retry;
1970 }
1971
1972 static long futex_wait_restart(struct restart_block *restart);
1973
1974 /**
1975 * fixup_owner() - Post lock pi_state and corner case management
1976 * @uaddr: user address of the futex
1977 * @q: futex_q (contains pi_state and access to the rt_mutex)
1978 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1979 *
1980 * After attempting to lock an rt_mutex, this function is called to cleanup
1981 * the pi_state owner as well as handle race conditions that may allow us to
1982 * acquire the lock. Must be called with the hb lock held.
1983 *
1984 * Return:
1985 * 1 - success, lock taken;
1986 * 0 - success, lock not taken;
1987 * <0 - on error (-EFAULT)
1988 */
1989 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1990 {
1991 struct task_struct *owner;
1992 int ret = 0;
1993
1994 if (locked) {
1995 /*
1996 * Got the lock. We might not be the anticipated owner if we
1997 * did a lock-steal - fix up the PI-state in that case:
1998 */
1999 if (q->pi_state->owner != current)
2000 ret = fixup_pi_state_owner(uaddr, q, current);
2001 goto out;
2002 }
2003
2004 /*
2005 * Catch the rare case, where the lock was released when we were on the
2006 * way back before we locked the hash bucket.
2007 */
2008 if (q->pi_state->owner == current) {
2009 /*
2010 * Try to get the rt_mutex now. This might fail as some other
2011 * task acquired the rt_mutex after we removed ourself from the
2012 * rt_mutex waiters list.
2013 */
2014 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2015 locked = 1;
2016 goto out;
2017 }
2018
2019 /*
2020 * pi_state is incorrect, some other task did a lock steal and
2021 * we returned due to timeout or signal without taking the
2022 * rt_mutex. Too late.
2023 */
2024 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2025 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2026 if (!owner)
2027 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2028 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2029 ret = fixup_pi_state_owner(uaddr, q, owner);
2030 goto out;
2031 }
2032
2033 /*
2034 * Paranoia check. If we did not take the lock, then we should not be
2035 * the owner of the rt_mutex.
2036 */
2037 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2038 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2039 "pi-state %p\n", ret,
2040 q->pi_state->pi_mutex.owner,
2041 q->pi_state->owner);
2042
2043 out:
2044 return ret ? ret : locked;
2045 }
2046
2047 /**
2048 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2049 * @hb: the futex hash bucket, must be locked by the caller
2050 * @q: the futex_q to queue up on
2051 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2052 */
2053 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2054 struct hrtimer_sleeper *timeout)
2055 {
2056 /*
2057 * The task state is guaranteed to be set before another task can
2058 * wake it. set_current_state() is implemented using set_mb() and
2059 * queue_me() calls spin_unlock() upon completion, both serializing
2060 * access to the hash list and forcing another memory barrier.
2061 */
2062 set_current_state(TASK_INTERRUPTIBLE);
2063 queue_me(q, hb);
2064
2065 /* Arm the timer */
2066 if (timeout) {
2067 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2068 if (!hrtimer_active(&timeout->timer))
2069 timeout->task = NULL;
2070 }
2071
2072 /*
2073 * If we have been removed from the hash list, then another task
2074 * has tried to wake us, and we can skip the call to schedule().
2075 */
2076 if (likely(!plist_node_empty(&q->list))) {
2077 /*
2078 * If the timer has already expired, current will already be
2079 * flagged for rescheduling. Only call schedule if there
2080 * is no timeout, or if it has yet to expire.
2081 */
2082 if (!timeout || timeout->task)
2083 freezable_schedule();
2084 }
2085 __set_current_state(TASK_RUNNING);
2086 }
2087
2088 /**
2089 * futex_wait_setup() - Prepare to wait on a futex
2090 * @uaddr: the futex userspace address
2091 * @val: the expected value
2092 * @flags: futex flags (FLAGS_SHARED, etc.)
2093 * @q: the associated futex_q
2094 * @hb: storage for hash_bucket pointer to be returned to caller
2095 *
2096 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2097 * compare it with the expected value. Handle atomic faults internally.
2098 * Return with the hb lock held and a q.key reference on success, and unlocked
2099 * with no q.key reference on failure.
2100 *
2101 * Return:
2102 * 0 - uaddr contains val and hb has been locked;
2103 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2104 */
2105 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2106 struct futex_q *q, struct futex_hash_bucket **hb)
2107 {
2108 u32 uval;
2109 int ret;
2110
2111 /*
2112 * Access the page AFTER the hash-bucket is locked.
2113 * Order is important:
2114 *
2115 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2116 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2117 *
2118 * The basic logical guarantee of a futex is that it blocks ONLY
2119 * if cond(var) is known to be true at the time of blocking, for
2120 * any cond. If we locked the hash-bucket after testing *uaddr, that
2121 * would open a race condition where we could block indefinitely with
2122 * cond(var) false, which would violate the guarantee.
2123 *
2124 * On the other hand, we insert q and release the hash-bucket only
2125 * after testing *uaddr. This guarantees that futex_wait() will NOT
2126 * absorb a wakeup if *uaddr does not match the desired values
2127 * while the syscall executes.
2128 */
2129 retry:
2130 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2131 if (unlikely(ret != 0))
2132 return ret;
2133
2134 retry_private:
2135 *hb = queue_lock(q);
2136
2137 ret = get_futex_value_locked(&uval, uaddr);
2138
2139 if (ret) {
2140 queue_unlock(*hb);
2141
2142 ret = get_user(uval, uaddr);
2143 if (ret)
2144 goto out;
2145
2146 if (!(flags & FLAGS_SHARED))
2147 goto retry_private;
2148
2149 put_futex_key(&q->key);
2150 goto retry;
2151 }
2152
2153 if (uval != val) {
2154 queue_unlock(*hb);
2155 ret = -EWOULDBLOCK;
2156 }
2157
2158 out:
2159 if (ret)
2160 put_futex_key(&q->key);
2161 return ret;
2162 }
2163
2164 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2165 ktime_t *abs_time, u32 bitset)
2166 {
2167 struct hrtimer_sleeper timeout, *to = NULL;
2168 struct restart_block *restart;
2169 struct futex_hash_bucket *hb;
2170 struct futex_q q = futex_q_init;
2171 int ret;
2172
2173 if (!bitset)
2174 return -EINVAL;
2175 q.bitset = bitset;
2176
2177 if (abs_time) {
2178 to = &timeout;
2179
2180 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2181 CLOCK_REALTIME : CLOCK_MONOTONIC,
2182 HRTIMER_MODE_ABS);
2183 hrtimer_init_sleeper(to, current);
2184 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2185 current->timer_slack_ns);
2186 }
2187
2188 retry:
2189 /*
2190 * Prepare to wait on uaddr. On success, holds hb lock and increments
2191 * q.key refs.
2192 */
2193 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2194 if (ret)
2195 goto out;
2196
2197 /* queue_me and wait for wakeup, timeout, or a signal. */
2198 futex_wait_queue_me(hb, &q, to);
2199
2200 /* If we were woken (and unqueued), we succeeded, whatever. */
2201 ret = 0;
2202 /* unqueue_me() drops q.key ref */
2203 if (!unqueue_me(&q))
2204 goto out;
2205 ret = -ETIMEDOUT;
2206 if (to && !to->task)
2207 goto out;
2208
2209 /*
2210 * We expect signal_pending(current), but we might be the
2211 * victim of a spurious wakeup as well.
2212 */
2213 if (!signal_pending(current))
2214 goto retry;
2215
2216 ret = -ERESTARTSYS;
2217 if (!abs_time)
2218 goto out;
2219
2220 restart = &current_thread_info()->restart_block;
2221 restart->fn = futex_wait_restart;
2222 restart->futex.uaddr = uaddr;
2223 restart->futex.val = val;
2224 restart->futex.time = abs_time->tv64;
2225 restart->futex.bitset = bitset;
2226 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2227
2228 ret = -ERESTART_RESTARTBLOCK;
2229
2230 out:
2231 if (to) {
2232 hrtimer_cancel(&to->timer);
2233 destroy_hrtimer_on_stack(&to->timer);
2234 }
2235 return ret;
2236 }
2237
2238
2239 static long futex_wait_restart(struct restart_block *restart)
2240 {
2241 u32 __user *uaddr = restart->futex.uaddr;
2242 ktime_t t, *tp = NULL;
2243
2244 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2245 t.tv64 = restart->futex.time;
2246 tp = &t;
2247 }
2248 restart->fn = do_no_restart_syscall;
2249
2250 return (long)futex_wait(uaddr, restart->futex.flags,
2251 restart->futex.val, tp, restart->futex.bitset);
2252 }
2253
2254
2255 /*
2256 * Userspace tried a 0 -> TID atomic transition of the futex value
2257 * and failed. The kernel side here does the whole locking operation:
2258 * if there are waiters then it will block, it does PI, etc. (Due to
2259 * races the kernel might see a 0 value of the futex too.)
2260 */
2261 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2262 ktime_t *time, int trylock)
2263 {
2264 struct hrtimer_sleeper timeout, *to = NULL;
2265 struct futex_hash_bucket *hb;
2266 struct futex_q q = futex_q_init;
2267 int res, ret;
2268
2269 if (refill_pi_state_cache())
2270 return -ENOMEM;
2271
2272 if (time) {
2273 to = &timeout;
2274 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2275 HRTIMER_MODE_ABS);
2276 hrtimer_init_sleeper(to, current);
2277 hrtimer_set_expires(&to->timer, *time);
2278 }
2279
2280 retry:
2281 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2282 if (unlikely(ret != 0))
2283 goto out;
2284
2285 retry_private:
2286 hb = queue_lock(&q);
2287
2288 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2289 if (unlikely(ret)) {
2290 switch (ret) {
2291 case 1:
2292 /* We got the lock. */
2293 ret = 0;
2294 goto out_unlock_put_key;
2295 case -EFAULT:
2296 goto uaddr_faulted;
2297 case -EAGAIN:
2298 /*
2299 * Two reasons for this:
2300 * - Task is exiting and we just wait for the
2301 * exit to complete.
2302 * - The user space value changed.
2303 */
2304 queue_unlock(hb);
2305 put_futex_key(&q.key);
2306 cond_resched();
2307 goto retry;
2308 default:
2309 goto out_unlock_put_key;
2310 }
2311 }
2312
2313 /*
2314 * Only actually queue now that the atomic ops are done:
2315 */
2316 queue_me(&q, hb);
2317
2318 WARN_ON(!q.pi_state);
2319 /*
2320 * Block on the PI mutex:
2321 */
2322 if (!trylock) {
2323 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2324 } else {
2325 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2326 /* Fixup the trylock return value: */
2327 ret = ret ? 0 : -EWOULDBLOCK;
2328 }
2329
2330 spin_lock(q.lock_ptr);
2331 /*
2332 * Fixup the pi_state owner and possibly acquire the lock if we
2333 * haven't already.
2334 */
2335 res = fixup_owner(uaddr, &q, !ret);
2336 /*
2337 * If fixup_owner() returned an error, proprogate that. If it acquired
2338 * the lock, clear our -ETIMEDOUT or -EINTR.
2339 */
2340 if (res)
2341 ret = (res < 0) ? res : 0;
2342
2343 /*
2344 * If fixup_owner() faulted and was unable to handle the fault, unlock
2345 * it and return the fault to userspace.
2346 */
2347 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2348 rt_mutex_unlock(&q.pi_state->pi_mutex);
2349
2350 /* Unqueue and drop the lock */
2351 unqueue_me_pi(&q);
2352
2353 goto out_put_key;
2354
2355 out_unlock_put_key:
2356 queue_unlock(hb);
2357
2358 out_put_key:
2359 put_futex_key(&q.key);
2360 out:
2361 if (to)
2362 destroy_hrtimer_on_stack(&to->timer);
2363 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2364
2365 uaddr_faulted:
2366 queue_unlock(hb);
2367
2368 ret = fault_in_user_writeable(uaddr);
2369 if (ret)
2370 goto out_put_key;
2371
2372 if (!(flags & FLAGS_SHARED))
2373 goto retry_private;
2374
2375 put_futex_key(&q.key);
2376 goto retry;
2377 }
2378
2379 /*
2380 * Userspace attempted a TID -> 0 atomic transition, and failed.
2381 * This is the in-kernel slowpath: we look up the PI state (if any),
2382 * and do the rt-mutex unlock.
2383 */
2384 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2385 {
2386 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2387 union futex_key key = FUTEX_KEY_INIT;
2388 struct futex_hash_bucket *hb;
2389 struct futex_q *match;
2390 int ret;
2391
2392 retry:
2393 if (get_user(uval, uaddr))
2394 return -EFAULT;
2395 /*
2396 * We release only a lock we actually own:
2397 */
2398 if ((uval & FUTEX_TID_MASK) != vpid)
2399 return -EPERM;
2400
2401 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2402 if (ret)
2403 return ret;
2404
2405 hb = hash_futex(&key);
2406 spin_lock(&hb->lock);
2407
2408 /*
2409 * Check waiters first. We do not trust user space values at
2410 * all and we at least want to know if user space fiddled
2411 * with the futex value instead of blindly unlocking.
2412 */
2413 match = futex_top_waiter(hb, &key);
2414 if (match) {
2415 ret = wake_futex_pi(uaddr, uval, match);
2416 /*
2417 * The atomic access to the futex value generated a
2418 * pagefault, so retry the user-access and the wakeup:
2419 */
2420 if (ret == -EFAULT)
2421 goto pi_faulted;
2422 goto out_unlock;
2423 }
2424
2425 /*
2426 * We have no kernel internal state, i.e. no waiters in the
2427 * kernel. Waiters which are about to queue themselves are stuck
2428 * on hb->lock. So we can safely ignore them. We do neither
2429 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2430 * owner.
2431 */
2432 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2433 goto pi_faulted;
2434
2435 /*
2436 * If uval has changed, let user space handle it.
2437 */
2438 ret = (curval == uval) ? 0 : -EAGAIN;
2439
2440 out_unlock:
2441 spin_unlock(&hb->lock);
2442 put_futex_key(&key);
2443 return ret;
2444
2445 pi_faulted:
2446 spin_unlock(&hb->lock);
2447 put_futex_key(&key);
2448
2449 ret = fault_in_user_writeable(uaddr);
2450 if (!ret)
2451 goto retry;
2452
2453 return ret;
2454 }
2455
2456 /**
2457 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2458 * @hb: the hash_bucket futex_q was original enqueued on
2459 * @q: the futex_q woken while waiting to be requeued
2460 * @key2: the futex_key of the requeue target futex
2461 * @timeout: the timeout associated with the wait (NULL if none)
2462 *
2463 * Detect if the task was woken on the initial futex as opposed to the requeue
2464 * target futex. If so, determine if it was a timeout or a signal that caused
2465 * the wakeup and return the appropriate error code to the caller. Must be
2466 * called with the hb lock held.
2467 *
2468 * Return:
2469 * 0 = no early wakeup detected;
2470 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2471 */
2472 static inline
2473 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2474 struct futex_q *q, union futex_key *key2,
2475 struct hrtimer_sleeper *timeout)
2476 {
2477 int ret = 0;
2478
2479 /*
2480 * With the hb lock held, we avoid races while we process the wakeup.
2481 * We only need to hold hb (and not hb2) to ensure atomicity as the
2482 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2483 * It can't be requeued from uaddr2 to something else since we don't
2484 * support a PI aware source futex for requeue.
2485 */
2486 if (!match_futex(&q->key, key2)) {
2487 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2488 /*
2489 * We were woken prior to requeue by a timeout or a signal.
2490 * Unqueue the futex_q and determine which it was.
2491 */
2492 plist_del(&q->list, &hb->chain);
2493 hb_waiters_dec(hb);
2494
2495 /* Handle spurious wakeups gracefully */
2496 ret = -EWOULDBLOCK;
2497 if (timeout && !timeout->task)
2498 ret = -ETIMEDOUT;
2499 else if (signal_pending(current))
2500 ret = -ERESTARTNOINTR;
2501 }
2502 return ret;
2503 }
2504
2505 /**
2506 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2507 * @uaddr: the futex we initially wait on (non-pi)
2508 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2509 * the same type, no requeueing from private to shared, etc.
2510 * @val: the expected value of uaddr
2511 * @abs_time: absolute timeout
2512 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2513 * @uaddr2: the pi futex we will take prior to returning to user-space
2514 *
2515 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2516 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2517 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2518 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2519 * without one, the pi logic would not know which task to boost/deboost, if
2520 * there was a need to.
2521 *
2522 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2523 * via the following--
2524 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2525 * 2) wakeup on uaddr2 after a requeue
2526 * 3) signal
2527 * 4) timeout
2528 *
2529 * If 3, cleanup and return -ERESTARTNOINTR.
2530 *
2531 * If 2, we may then block on trying to take the rt_mutex and return via:
2532 * 5) successful lock
2533 * 6) signal
2534 * 7) timeout
2535 * 8) other lock acquisition failure
2536 *
2537 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2538 *
2539 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2540 *
2541 * Return:
2542 * 0 - On success;
2543 * <0 - On error
2544 */
2545 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2546 u32 val, ktime_t *abs_time, u32 bitset,
2547 u32 __user *uaddr2)
2548 {
2549 struct hrtimer_sleeper timeout, *to = NULL;
2550 struct rt_mutex_waiter rt_waiter;
2551 struct rt_mutex *pi_mutex = NULL;
2552 struct futex_hash_bucket *hb;
2553 union futex_key key2 = FUTEX_KEY_INIT;
2554 struct futex_q q = futex_q_init;
2555 int res, ret;
2556
2557 if (uaddr == uaddr2)
2558 return -EINVAL;
2559
2560 if (!bitset)
2561 return -EINVAL;
2562
2563 if (abs_time) {
2564 to = &timeout;
2565 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2566 CLOCK_REALTIME : CLOCK_MONOTONIC,
2567 HRTIMER_MODE_ABS);
2568 hrtimer_init_sleeper(to, current);
2569 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2570 current->timer_slack_ns);
2571 }
2572
2573 /*
2574 * The waiter is allocated on our stack, manipulated by the requeue
2575 * code while we sleep on uaddr.
2576 */
2577 debug_rt_mutex_init_waiter(&rt_waiter);
2578 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2579 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2580 rt_waiter.task = NULL;
2581
2582 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2583 if (unlikely(ret != 0))
2584 goto out;
2585
2586 q.bitset = bitset;
2587 q.rt_waiter = &rt_waiter;
2588 q.requeue_pi_key = &key2;
2589
2590 /*
2591 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2592 * count.
2593 */
2594 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2595 if (ret)
2596 goto out_key2;
2597
2598 /*
2599 * The check above which compares uaddrs is not sufficient for
2600 * shared futexes. We need to compare the keys:
2601 */
2602 if (match_futex(&q.key, &key2)) {
2603 queue_unlock(hb);
2604 ret = -EINVAL;
2605 goto out_put_keys;
2606 }
2607
2608 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2609 futex_wait_queue_me(hb, &q, to);
2610
2611 spin_lock(&hb->lock);
2612 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2613 spin_unlock(&hb->lock);
2614 if (ret)
2615 goto out_put_keys;
2616
2617 /*
2618 * In order for us to be here, we know our q.key == key2, and since
2619 * we took the hb->lock above, we also know that futex_requeue() has
2620 * completed and we no longer have to concern ourselves with a wakeup
2621 * race with the atomic proxy lock acquisition by the requeue code. The
2622 * futex_requeue dropped our key1 reference and incremented our key2
2623 * reference count.
2624 */
2625
2626 /* Check if the requeue code acquired the second futex for us. */
2627 if (!q.rt_waiter) {
2628 /*
2629 * Got the lock. We might not be the anticipated owner if we
2630 * did a lock-steal - fix up the PI-state in that case.
2631 */
2632 if (q.pi_state && (q.pi_state->owner != current)) {
2633 spin_lock(q.lock_ptr);
2634 ret = fixup_pi_state_owner(uaddr2, &q, current);
2635 spin_unlock(q.lock_ptr);
2636 }
2637 } else {
2638 /*
2639 * We have been woken up by futex_unlock_pi(), a timeout, or a
2640 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2641 * the pi_state.
2642 */
2643 WARN_ON(!q.pi_state);
2644 pi_mutex = &q.pi_state->pi_mutex;
2645 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2646 debug_rt_mutex_free_waiter(&rt_waiter);
2647
2648 spin_lock(q.lock_ptr);
2649 /*
2650 * Fixup the pi_state owner and possibly acquire the lock if we
2651 * haven't already.
2652 */
2653 res = fixup_owner(uaddr2, &q, !ret);
2654 /*
2655 * If fixup_owner() returned an error, proprogate that. If it
2656 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2657 */
2658 if (res)
2659 ret = (res < 0) ? res : 0;
2660
2661 /* Unqueue and drop the lock. */
2662 unqueue_me_pi(&q);
2663 }
2664
2665 /*
2666 * If fixup_pi_state_owner() faulted and was unable to handle the
2667 * fault, unlock the rt_mutex and return the fault to userspace.
2668 */
2669 if (ret == -EFAULT) {
2670 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2671 rt_mutex_unlock(pi_mutex);
2672 } else if (ret == -EINTR) {
2673 /*
2674 * We've already been requeued, but cannot restart by calling
2675 * futex_lock_pi() directly. We could restart this syscall, but
2676 * it would detect that the user space "val" changed and return
2677 * -EWOULDBLOCK. Save the overhead of the restart and return
2678 * -EWOULDBLOCK directly.
2679 */
2680 ret = -EWOULDBLOCK;
2681 }
2682
2683 out_put_keys:
2684 put_futex_key(&q.key);
2685 out_key2:
2686 put_futex_key(&key2);
2687
2688 out:
2689 if (to) {
2690 hrtimer_cancel(&to->timer);
2691 destroy_hrtimer_on_stack(&to->timer);
2692 }
2693 return ret;
2694 }
2695
2696 /*
2697 * Support for robust futexes: the kernel cleans up held futexes at
2698 * thread exit time.
2699 *
2700 * Implementation: user-space maintains a per-thread list of locks it
2701 * is holding. Upon do_exit(), the kernel carefully walks this list,
2702 * and marks all locks that are owned by this thread with the
2703 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2704 * always manipulated with the lock held, so the list is private and
2705 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2706 * field, to allow the kernel to clean up if the thread dies after
2707 * acquiring the lock, but just before it could have added itself to
2708 * the list. There can only be one such pending lock.
2709 */
2710
2711 /**
2712 * sys_set_robust_list() - Set the robust-futex list head of a task
2713 * @head: pointer to the list-head
2714 * @len: length of the list-head, as userspace expects
2715 */
2716 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2717 size_t, len)
2718 {
2719 if (!futex_cmpxchg_enabled)
2720 return -ENOSYS;
2721 /*
2722 * The kernel knows only one size for now:
2723 */
2724 if (unlikely(len != sizeof(*head)))
2725 return -EINVAL;
2726
2727 current->robust_list = head;
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * sys_get_robust_list() - Get the robust-futex list head of a task
2734 * @pid: pid of the process [zero for current task]
2735 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2736 * @len_ptr: pointer to a length field, the kernel fills in the header size
2737 */
2738 SYSCALL_DEFINE3(get_robust_list, int, pid,
2739 struct robust_list_head __user * __user *, head_ptr,
2740 size_t __user *, len_ptr)
2741 {
2742 struct robust_list_head __user *head;
2743 unsigned long ret;
2744 struct task_struct *p;
2745
2746 if (!futex_cmpxchg_enabled)
2747 return -ENOSYS;
2748
2749 rcu_read_lock();
2750
2751 ret = -ESRCH;
2752 if (!pid)
2753 p = current;
2754 else {
2755 p = find_task_by_vpid(pid);
2756 if (!p)
2757 goto err_unlock;
2758 }
2759
2760 ret = -EPERM;
2761 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2762 goto err_unlock;
2763
2764 head = p->robust_list;
2765 rcu_read_unlock();
2766
2767 if (put_user(sizeof(*head), len_ptr))
2768 return -EFAULT;
2769 return put_user(head, head_ptr);
2770
2771 err_unlock:
2772 rcu_read_unlock();
2773
2774 return ret;
2775 }
2776
2777 /*
2778 * Process a futex-list entry, check whether it's owned by the
2779 * dying task, and do notification if so:
2780 */
2781 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2782 {
2783 u32 uval, uninitialized_var(nval), mval;
2784
2785 retry:
2786 if (get_user(uval, uaddr))
2787 return -1;
2788
2789 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2790 /*
2791 * Ok, this dying thread is truly holding a futex
2792 * of interest. Set the OWNER_DIED bit atomically
2793 * via cmpxchg, and if the value had FUTEX_WAITERS
2794 * set, wake up a waiter (if any). (We have to do a
2795 * futex_wake() even if OWNER_DIED is already set -
2796 * to handle the rare but possible case of recursive
2797 * thread-death.) The rest of the cleanup is done in
2798 * userspace.
2799 */
2800 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2801 /*
2802 * We are not holding a lock here, but we want to have
2803 * the pagefault_disable/enable() protection because
2804 * we want to handle the fault gracefully. If the
2805 * access fails we try to fault in the futex with R/W
2806 * verification via get_user_pages. get_user() above
2807 * does not guarantee R/W access. If that fails we
2808 * give up and leave the futex locked.
2809 */
2810 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2811 if (fault_in_user_writeable(uaddr))
2812 return -1;
2813 goto retry;
2814 }
2815 if (nval != uval)
2816 goto retry;
2817
2818 /*
2819 * Wake robust non-PI futexes here. The wakeup of
2820 * PI futexes happens in exit_pi_state():
2821 */
2822 if (!pi && (uval & FUTEX_WAITERS))
2823 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2824 }
2825 return 0;
2826 }
2827
2828 /*
2829 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2830 */
2831 static inline int fetch_robust_entry(struct robust_list __user **entry,
2832 struct robust_list __user * __user *head,
2833 unsigned int *pi)
2834 {
2835 unsigned long uentry;
2836
2837 if (get_user(uentry, (unsigned long __user *)head))
2838 return -EFAULT;
2839
2840 *entry = (void __user *)(uentry & ~1UL);
2841 *pi = uentry & 1;
2842
2843 return 0;
2844 }
2845
2846 /*
2847 * Walk curr->robust_list (very carefully, it's a userspace list!)
2848 * and mark any locks found there dead, and notify any waiters.
2849 *
2850 * We silently return on any sign of list-walking problem.
2851 */
2852 void exit_robust_list(struct task_struct *curr)
2853 {
2854 struct robust_list_head __user *head = curr->robust_list;
2855 struct robust_list __user *entry, *next_entry, *pending;
2856 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2857 unsigned int uninitialized_var(next_pi);
2858 unsigned long futex_offset;
2859 int rc;
2860
2861 if (!futex_cmpxchg_enabled)
2862 return;
2863
2864 /*
2865 * Fetch the list head (which was registered earlier, via
2866 * sys_set_robust_list()):
2867 */
2868 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2869 return;
2870 /*
2871 * Fetch the relative futex offset:
2872 */
2873 if (get_user(futex_offset, &head->futex_offset))
2874 return;
2875 /*
2876 * Fetch any possibly pending lock-add first, and handle it
2877 * if it exists:
2878 */
2879 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2880 return;
2881
2882 next_entry = NULL; /* avoid warning with gcc */
2883 while (entry != &head->list) {
2884 /*
2885 * Fetch the next entry in the list before calling
2886 * handle_futex_death:
2887 */
2888 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2889 /*
2890 * A pending lock might already be on the list, so
2891 * don't process it twice:
2892 */
2893 if (entry != pending)
2894 if (handle_futex_death((void __user *)entry + futex_offset,
2895 curr, pi))
2896 return;
2897 if (rc)
2898 return;
2899 entry = next_entry;
2900 pi = next_pi;
2901 /*
2902 * Avoid excessively long or circular lists:
2903 */
2904 if (!--limit)
2905 break;
2906
2907 cond_resched();
2908 }
2909
2910 if (pending)
2911 handle_futex_death((void __user *)pending + futex_offset,
2912 curr, pip);
2913 }
2914
2915 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2916 u32 __user *uaddr2, u32 val2, u32 val3)
2917 {
2918 int cmd = op & FUTEX_CMD_MASK;
2919 unsigned int flags = 0;
2920
2921 if (!(op & FUTEX_PRIVATE_FLAG))
2922 flags |= FLAGS_SHARED;
2923
2924 if (op & FUTEX_CLOCK_REALTIME) {
2925 flags |= FLAGS_CLOCKRT;
2926 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2927 return -ENOSYS;
2928 }
2929
2930 switch (cmd) {
2931 case FUTEX_LOCK_PI:
2932 case FUTEX_UNLOCK_PI:
2933 case FUTEX_TRYLOCK_PI:
2934 case FUTEX_WAIT_REQUEUE_PI:
2935 case FUTEX_CMP_REQUEUE_PI:
2936 if (!futex_cmpxchg_enabled)
2937 return -ENOSYS;
2938 }
2939
2940 switch (cmd) {
2941 case FUTEX_WAIT:
2942 val3 = FUTEX_BITSET_MATCH_ANY;
2943 case FUTEX_WAIT_BITSET:
2944 return futex_wait(uaddr, flags, val, timeout, val3);
2945 case FUTEX_WAKE:
2946 val3 = FUTEX_BITSET_MATCH_ANY;
2947 case FUTEX_WAKE_BITSET:
2948 return futex_wake(uaddr, flags, val, val3);
2949 case FUTEX_REQUEUE:
2950 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2951 case FUTEX_CMP_REQUEUE:
2952 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2953 case FUTEX_WAKE_OP:
2954 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2955 case FUTEX_LOCK_PI:
2956 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2957 case FUTEX_UNLOCK_PI:
2958 return futex_unlock_pi(uaddr, flags);
2959 case FUTEX_TRYLOCK_PI:
2960 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2961 case FUTEX_WAIT_REQUEUE_PI:
2962 val3 = FUTEX_BITSET_MATCH_ANY;
2963 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2964 uaddr2);
2965 case FUTEX_CMP_REQUEUE_PI:
2966 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2967 }
2968 return -ENOSYS;
2969 }
2970
2971
2972 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2973 struct timespec __user *, utime, u32 __user *, uaddr2,
2974 u32, val3)
2975 {
2976 struct timespec ts;
2977 ktime_t t, *tp = NULL;
2978 u32 val2 = 0;
2979 int cmd = op & FUTEX_CMD_MASK;
2980
2981 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2982 cmd == FUTEX_WAIT_BITSET ||
2983 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2984 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2985 return -EFAULT;
2986 if (!timespec_valid(&ts))
2987 return -EINVAL;
2988
2989 t = timespec_to_ktime(ts);
2990 if (cmd == FUTEX_WAIT)
2991 t = ktime_add_safe(ktime_get(), t);
2992 tp = &t;
2993 }
2994 /*
2995 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2996 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2997 */
2998 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2999 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3000 val2 = (u32) (unsigned long) utime;
3001
3002 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3003 }
3004
3005 static void __init futex_detect_cmpxchg(void)
3006 {
3007 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3008 u32 curval;
3009
3010 /*
3011 * This will fail and we want it. Some arch implementations do
3012 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3013 * functionality. We want to know that before we call in any
3014 * of the complex code paths. Also we want to prevent
3015 * registration of robust lists in that case. NULL is
3016 * guaranteed to fault and we get -EFAULT on functional
3017 * implementation, the non-functional ones will return
3018 * -ENOSYS.
3019 */
3020 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3021 futex_cmpxchg_enabled = 1;
3022 #endif
3023 }
3024
3025 static int __init futex_init(void)
3026 {
3027 unsigned int futex_shift;
3028 unsigned long i;
3029
3030 #if CONFIG_BASE_SMALL
3031 futex_hashsize = 16;
3032 #else
3033 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3034 #endif
3035
3036 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3037 futex_hashsize, 0,
3038 futex_hashsize < 256 ? HASH_SMALL : 0,
3039 &futex_shift, NULL,
3040 futex_hashsize, futex_hashsize);
3041 futex_hashsize = 1UL << futex_shift;
3042
3043 futex_detect_cmpxchg();
3044
3045 for (i = 0; i < futex_hashsize; i++) {
3046 atomic_set(&futex_queues[i].waiters, 0);
3047 plist_head_init(&futex_queues[i].chain);
3048 spin_lock_init(&futex_queues[i].lock);
3049 }
3050
3051 return 0;
3052 }
3053 __initcall(futex_init);
This page took 0.095589 seconds and 5 git commands to generate.