perf_events: Report the MMAP pgoff value in bytes
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72 * Priority Inheritance state:
73 */
74 struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90 };
91
92 /**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
101 *
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103 * we can wake only the relevant ones (hashed queues may be shared).
104 *
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then
108 * the second.
109 *
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
112 */
113 struct futex_q {
114 struct plist_node list;
115
116 struct task_struct *task;
117 spinlock_t *lock_ptr;
118 union futex_key key;
119 struct futex_pi_state *pi_state;
120 struct rt_mutex_waiter *rt_waiter;
121 union futex_key *requeue_pi_key;
122 u32 bitset;
123 };
124
125 /*
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
129 */
130 struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
133 };
134
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137 /*
138 * We hash on the keys returned from get_futex_key (see below).
139 */
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
141 {
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 }
147
148 /*
149 * Return 1 if two futex_keys are equal, 0 otherwise.
150 */
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
152 {
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
157 }
158
159 /*
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
162 *
163 */
164 static void get_futex_key_refs(union futex_key *key)
165 {
166 if (!key->both.ptr)
167 return;
168
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
176 }
177 }
178
179 /*
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
182 */
183 static void drop_futex_key_refs(union futex_key *key)
184 {
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
189 }
190
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
198 }
199 }
200
201 /**
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 *
207 * Returns a negative error code or 0
208 * The key words are stored in *key on success.
209 *
210 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211 * offset_within_page). For private mappings, it's (uaddr, current->mm).
212 * We can usually work out the index without swapping in the page.
213 *
214 * lock_page() might sleep, the caller should not hold a spinlock.
215 */
216 static int
217 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
218 {
219 unsigned long address = (unsigned long)uaddr;
220 struct mm_struct *mm = current->mm;
221 struct page *page;
222 int err;
223
224 /*
225 * The futex address must be "naturally" aligned.
226 */
227 key->both.offset = address % PAGE_SIZE;
228 if (unlikely((address % sizeof(u32)) != 0))
229 return -EINVAL;
230 address -= key->both.offset;
231
232 /*
233 * PROCESS_PRIVATE futexes are fast.
234 * As the mm cannot disappear under us and the 'key' only needs
235 * virtual address, we dont even have to find the underlying vma.
236 * Note : We do have to check 'uaddr' is a valid user address,
237 * but access_ok() should be faster than find_vma()
238 */
239 if (!fshared) {
240 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
241 return -EFAULT;
242 key->private.mm = mm;
243 key->private.address = address;
244 get_futex_key_refs(key);
245 return 0;
246 }
247
248 again:
249 err = get_user_pages_fast(address, 1, 1, &page);
250 if (err < 0)
251 return err;
252
253 page = compound_head(page);
254 lock_page(page);
255 if (!page->mapping) {
256 unlock_page(page);
257 put_page(page);
258 goto again;
259 }
260
261 /*
262 * Private mappings are handled in a simple way.
263 *
264 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265 * it's a read-only handle, it's expected that futexes attach to
266 * the object not the particular process.
267 */
268 if (PageAnon(page)) {
269 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
270 key->private.mm = mm;
271 key->private.address = address;
272 } else {
273 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274 key->shared.inode = page->mapping->host;
275 key->shared.pgoff = page->index;
276 }
277
278 get_futex_key_refs(key);
279
280 unlock_page(page);
281 put_page(page);
282 return 0;
283 }
284
285 static inline
286 void put_futex_key(int fshared, union futex_key *key)
287 {
288 drop_futex_key_refs(key);
289 }
290
291 /**
292 * fault_in_user_writeable() - Fault in user address and verify RW access
293 * @uaddr: pointer to faulting user space address
294 *
295 * Slow path to fixup the fault we just took in the atomic write
296 * access to @uaddr.
297 *
298 * We have no generic implementation of a non destructive write to the
299 * user address. We know that we faulted in the atomic pagefault
300 * disabled section so we can as well avoid the #PF overhead by
301 * calling get_user_pages() right away.
302 */
303 static int fault_in_user_writeable(u32 __user *uaddr)
304 {
305 struct mm_struct *mm = current->mm;
306 int ret;
307
308 down_read(&mm->mmap_sem);
309 ret = get_user_pages(current, mm, (unsigned long)uaddr,
310 1, 1, 0, NULL, NULL);
311 up_read(&mm->mmap_sem);
312
313 return ret < 0 ? ret : 0;
314 }
315
316 /**
317 * futex_top_waiter() - Return the highest priority waiter on a futex
318 * @hb: the hash bucket the futex_q's reside in
319 * @key: the futex key (to distinguish it from other futex futex_q's)
320 *
321 * Must be called with the hb lock held.
322 */
323 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
324 union futex_key *key)
325 {
326 struct futex_q *this;
327
328 plist_for_each_entry(this, &hb->chain, list) {
329 if (match_futex(&this->key, key))
330 return this;
331 }
332 return NULL;
333 }
334
335 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
336 {
337 u32 curval;
338
339 pagefault_disable();
340 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
341 pagefault_enable();
342
343 return curval;
344 }
345
346 static int get_futex_value_locked(u32 *dest, u32 __user *from)
347 {
348 int ret;
349
350 pagefault_disable();
351 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
352 pagefault_enable();
353
354 return ret ? -EFAULT : 0;
355 }
356
357
358 /*
359 * PI code:
360 */
361 static int refill_pi_state_cache(void)
362 {
363 struct futex_pi_state *pi_state;
364
365 if (likely(current->pi_state_cache))
366 return 0;
367
368 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
369
370 if (!pi_state)
371 return -ENOMEM;
372
373 INIT_LIST_HEAD(&pi_state->list);
374 /* pi_mutex gets initialized later */
375 pi_state->owner = NULL;
376 atomic_set(&pi_state->refcount, 1);
377 pi_state->key = FUTEX_KEY_INIT;
378
379 current->pi_state_cache = pi_state;
380
381 return 0;
382 }
383
384 static struct futex_pi_state * alloc_pi_state(void)
385 {
386 struct futex_pi_state *pi_state = current->pi_state_cache;
387
388 WARN_ON(!pi_state);
389 current->pi_state_cache = NULL;
390
391 return pi_state;
392 }
393
394 static void free_pi_state(struct futex_pi_state *pi_state)
395 {
396 if (!atomic_dec_and_test(&pi_state->refcount))
397 return;
398
399 /*
400 * If pi_state->owner is NULL, the owner is most probably dying
401 * and has cleaned up the pi_state already
402 */
403 if (pi_state->owner) {
404 raw_spin_lock_irq(&pi_state->owner->pi_lock);
405 list_del_init(&pi_state->list);
406 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
407
408 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
409 }
410
411 if (current->pi_state_cache)
412 kfree(pi_state);
413 else {
414 /*
415 * pi_state->list is already empty.
416 * clear pi_state->owner.
417 * refcount is at 0 - put it back to 1.
418 */
419 pi_state->owner = NULL;
420 atomic_set(&pi_state->refcount, 1);
421 current->pi_state_cache = pi_state;
422 }
423 }
424
425 /*
426 * Look up the task based on what TID userspace gave us.
427 * We dont trust it.
428 */
429 static struct task_struct * futex_find_get_task(pid_t pid)
430 {
431 struct task_struct *p;
432 const struct cred *cred = current_cred(), *pcred;
433
434 rcu_read_lock();
435 p = find_task_by_vpid(pid);
436 if (!p) {
437 p = ERR_PTR(-ESRCH);
438 } else {
439 pcred = __task_cred(p);
440 if (cred->euid != pcred->euid &&
441 cred->euid != pcred->uid)
442 p = ERR_PTR(-ESRCH);
443 else
444 get_task_struct(p);
445 }
446
447 rcu_read_unlock();
448
449 return p;
450 }
451
452 /*
453 * This task is holding PI mutexes at exit time => bad.
454 * Kernel cleans up PI-state, but userspace is likely hosed.
455 * (Robust-futex cleanup is separate and might save the day for userspace.)
456 */
457 void exit_pi_state_list(struct task_struct *curr)
458 {
459 struct list_head *next, *head = &curr->pi_state_list;
460 struct futex_pi_state *pi_state;
461 struct futex_hash_bucket *hb;
462 union futex_key key = FUTEX_KEY_INIT;
463
464 if (!futex_cmpxchg_enabled)
465 return;
466 /*
467 * We are a ZOMBIE and nobody can enqueue itself on
468 * pi_state_list anymore, but we have to be careful
469 * versus waiters unqueueing themselves:
470 */
471 raw_spin_lock_irq(&curr->pi_lock);
472 while (!list_empty(head)) {
473
474 next = head->next;
475 pi_state = list_entry(next, struct futex_pi_state, list);
476 key = pi_state->key;
477 hb = hash_futex(&key);
478 raw_spin_unlock_irq(&curr->pi_lock);
479
480 spin_lock(&hb->lock);
481
482 raw_spin_lock_irq(&curr->pi_lock);
483 /*
484 * We dropped the pi-lock, so re-check whether this
485 * task still owns the PI-state:
486 */
487 if (head->next != next) {
488 spin_unlock(&hb->lock);
489 continue;
490 }
491
492 WARN_ON(pi_state->owner != curr);
493 WARN_ON(list_empty(&pi_state->list));
494 list_del_init(&pi_state->list);
495 pi_state->owner = NULL;
496 raw_spin_unlock_irq(&curr->pi_lock);
497
498 rt_mutex_unlock(&pi_state->pi_mutex);
499
500 spin_unlock(&hb->lock);
501
502 raw_spin_lock_irq(&curr->pi_lock);
503 }
504 raw_spin_unlock_irq(&curr->pi_lock);
505 }
506
507 static int
508 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
509 union futex_key *key, struct futex_pi_state **ps)
510 {
511 struct futex_pi_state *pi_state = NULL;
512 struct futex_q *this, *next;
513 struct plist_head *head;
514 struct task_struct *p;
515 pid_t pid = uval & FUTEX_TID_MASK;
516
517 head = &hb->chain;
518
519 plist_for_each_entry_safe(this, next, head, list) {
520 if (match_futex(&this->key, key)) {
521 /*
522 * Another waiter already exists - bump up
523 * the refcount and return its pi_state:
524 */
525 pi_state = this->pi_state;
526 /*
527 * Userspace might have messed up non PI and PI futexes
528 */
529 if (unlikely(!pi_state))
530 return -EINVAL;
531
532 WARN_ON(!atomic_read(&pi_state->refcount));
533 WARN_ON(pid && pi_state->owner &&
534 pi_state->owner->pid != pid);
535
536 atomic_inc(&pi_state->refcount);
537 *ps = pi_state;
538
539 return 0;
540 }
541 }
542
543 /*
544 * We are the first waiter - try to look up the real owner and attach
545 * the new pi_state to it, but bail out when TID = 0
546 */
547 if (!pid)
548 return -ESRCH;
549 p = futex_find_get_task(pid);
550 if (IS_ERR(p))
551 return PTR_ERR(p);
552
553 /*
554 * We need to look at the task state flags to figure out,
555 * whether the task is exiting. To protect against the do_exit
556 * change of the task flags, we do this protected by
557 * p->pi_lock:
558 */
559 raw_spin_lock_irq(&p->pi_lock);
560 if (unlikely(p->flags & PF_EXITING)) {
561 /*
562 * The task is on the way out. When PF_EXITPIDONE is
563 * set, we know that the task has finished the
564 * cleanup:
565 */
566 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
567
568 raw_spin_unlock_irq(&p->pi_lock);
569 put_task_struct(p);
570 return ret;
571 }
572
573 pi_state = alloc_pi_state();
574
575 /*
576 * Initialize the pi_mutex in locked state and make 'p'
577 * the owner of it:
578 */
579 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
580
581 /* Store the key for possible exit cleanups: */
582 pi_state->key = *key;
583
584 WARN_ON(!list_empty(&pi_state->list));
585 list_add(&pi_state->list, &p->pi_state_list);
586 pi_state->owner = p;
587 raw_spin_unlock_irq(&p->pi_lock);
588
589 put_task_struct(p);
590
591 *ps = pi_state;
592
593 return 0;
594 }
595
596 /**
597 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
598 * @uaddr: the pi futex user address
599 * @hb: the pi futex hash bucket
600 * @key: the futex key associated with uaddr and hb
601 * @ps: the pi_state pointer where we store the result of the
602 * lookup
603 * @task: the task to perform the atomic lock work for. This will
604 * be "current" except in the case of requeue pi.
605 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
606 *
607 * Returns:
608 * 0 - ready to wait
609 * 1 - acquired the lock
610 * <0 - error
611 *
612 * The hb->lock and futex_key refs shall be held by the caller.
613 */
614 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
615 union futex_key *key,
616 struct futex_pi_state **ps,
617 struct task_struct *task, int set_waiters)
618 {
619 int lock_taken, ret, ownerdied = 0;
620 u32 uval, newval, curval;
621
622 retry:
623 ret = lock_taken = 0;
624
625 /*
626 * To avoid races, we attempt to take the lock here again
627 * (by doing a 0 -> TID atomic cmpxchg), while holding all
628 * the locks. It will most likely not succeed.
629 */
630 newval = task_pid_vnr(task);
631 if (set_waiters)
632 newval |= FUTEX_WAITERS;
633
634 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
635
636 if (unlikely(curval == -EFAULT))
637 return -EFAULT;
638
639 /*
640 * Detect deadlocks.
641 */
642 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
643 return -EDEADLK;
644
645 /*
646 * Surprise - we got the lock. Just return to userspace:
647 */
648 if (unlikely(!curval))
649 return 1;
650
651 uval = curval;
652
653 /*
654 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
655 * to wake at the next unlock.
656 */
657 newval = curval | FUTEX_WAITERS;
658
659 /*
660 * There are two cases, where a futex might have no owner (the
661 * owner TID is 0): OWNER_DIED. We take over the futex in this
662 * case. We also do an unconditional take over, when the owner
663 * of the futex died.
664 *
665 * This is safe as we are protected by the hash bucket lock !
666 */
667 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
668 /* Keep the OWNER_DIED bit */
669 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
670 ownerdied = 0;
671 lock_taken = 1;
672 }
673
674 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
675
676 if (unlikely(curval == -EFAULT))
677 return -EFAULT;
678 if (unlikely(curval != uval))
679 goto retry;
680
681 /*
682 * We took the lock due to owner died take over.
683 */
684 if (unlikely(lock_taken))
685 return 1;
686
687 /*
688 * We dont have the lock. Look up the PI state (or create it if
689 * we are the first waiter):
690 */
691 ret = lookup_pi_state(uval, hb, key, ps);
692
693 if (unlikely(ret)) {
694 switch (ret) {
695 case -ESRCH:
696 /*
697 * No owner found for this futex. Check if the
698 * OWNER_DIED bit is set to figure out whether
699 * this is a robust futex or not.
700 */
701 if (get_futex_value_locked(&curval, uaddr))
702 return -EFAULT;
703
704 /*
705 * We simply start over in case of a robust
706 * futex. The code above will take the futex
707 * and return happy.
708 */
709 if (curval & FUTEX_OWNER_DIED) {
710 ownerdied = 1;
711 goto retry;
712 }
713 default:
714 break;
715 }
716 }
717
718 return ret;
719 }
720
721 /*
722 * The hash bucket lock must be held when this is called.
723 * Afterwards, the futex_q must not be accessed.
724 */
725 static void wake_futex(struct futex_q *q)
726 {
727 struct task_struct *p = q->task;
728
729 /*
730 * We set q->lock_ptr = NULL _before_ we wake up the task. If
731 * a non futex wake up happens on another CPU then the task
732 * might exit and p would dereference a non existing task
733 * struct. Prevent this by holding a reference on p across the
734 * wake up.
735 */
736 get_task_struct(p);
737
738 plist_del(&q->list, &q->list.plist);
739 /*
740 * The waiting task can free the futex_q as soon as
741 * q->lock_ptr = NULL is written, without taking any locks. A
742 * memory barrier is required here to prevent the following
743 * store to lock_ptr from getting ahead of the plist_del.
744 */
745 smp_wmb();
746 q->lock_ptr = NULL;
747
748 wake_up_state(p, TASK_NORMAL);
749 put_task_struct(p);
750 }
751
752 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
753 {
754 struct task_struct *new_owner;
755 struct futex_pi_state *pi_state = this->pi_state;
756 u32 curval, newval;
757
758 if (!pi_state)
759 return -EINVAL;
760
761 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
762 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
763
764 /*
765 * This happens when we have stolen the lock and the original
766 * pending owner did not enqueue itself back on the rt_mutex.
767 * Thats not a tragedy. We know that way, that a lock waiter
768 * is on the fly. We make the futex_q waiter the pending owner.
769 */
770 if (!new_owner)
771 new_owner = this->task;
772
773 /*
774 * We pass it to the next owner. (The WAITERS bit is always
775 * kept enabled while there is PI state around. We must also
776 * preserve the owner died bit.)
777 */
778 if (!(uval & FUTEX_OWNER_DIED)) {
779 int ret = 0;
780
781 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
782
783 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
784
785 if (curval == -EFAULT)
786 ret = -EFAULT;
787 else if (curval != uval)
788 ret = -EINVAL;
789 if (ret) {
790 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
791 return ret;
792 }
793 }
794
795 raw_spin_lock_irq(&pi_state->owner->pi_lock);
796 WARN_ON(list_empty(&pi_state->list));
797 list_del_init(&pi_state->list);
798 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
799
800 raw_spin_lock_irq(&new_owner->pi_lock);
801 WARN_ON(!list_empty(&pi_state->list));
802 list_add(&pi_state->list, &new_owner->pi_state_list);
803 pi_state->owner = new_owner;
804 raw_spin_unlock_irq(&new_owner->pi_lock);
805
806 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
807 rt_mutex_unlock(&pi_state->pi_mutex);
808
809 return 0;
810 }
811
812 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
813 {
814 u32 oldval;
815
816 /*
817 * There is no waiter, so we unlock the futex. The owner died
818 * bit has not to be preserved here. We are the owner:
819 */
820 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
821
822 if (oldval == -EFAULT)
823 return oldval;
824 if (oldval != uval)
825 return -EAGAIN;
826
827 return 0;
828 }
829
830 /*
831 * Express the locking dependencies for lockdep:
832 */
833 static inline void
834 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
835 {
836 if (hb1 <= hb2) {
837 spin_lock(&hb1->lock);
838 if (hb1 < hb2)
839 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
840 } else { /* hb1 > hb2 */
841 spin_lock(&hb2->lock);
842 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
843 }
844 }
845
846 static inline void
847 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
848 {
849 spin_unlock(&hb1->lock);
850 if (hb1 != hb2)
851 spin_unlock(&hb2->lock);
852 }
853
854 /*
855 * Wake up waiters matching bitset queued on this futex (uaddr).
856 */
857 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
858 {
859 struct futex_hash_bucket *hb;
860 struct futex_q *this, *next;
861 struct plist_head *head;
862 union futex_key key = FUTEX_KEY_INIT;
863 int ret;
864
865 if (!bitset)
866 return -EINVAL;
867
868 ret = get_futex_key(uaddr, fshared, &key);
869 if (unlikely(ret != 0))
870 goto out;
871
872 hb = hash_futex(&key);
873 spin_lock(&hb->lock);
874 head = &hb->chain;
875
876 plist_for_each_entry_safe(this, next, head, list) {
877 if (match_futex (&this->key, &key)) {
878 if (this->pi_state || this->rt_waiter) {
879 ret = -EINVAL;
880 break;
881 }
882
883 /* Check if one of the bits is set in both bitsets */
884 if (!(this->bitset & bitset))
885 continue;
886
887 wake_futex(this);
888 if (++ret >= nr_wake)
889 break;
890 }
891 }
892
893 spin_unlock(&hb->lock);
894 put_futex_key(fshared, &key);
895 out:
896 return ret;
897 }
898
899 /*
900 * Wake up all waiters hashed on the physical page that is mapped
901 * to this virtual address:
902 */
903 static int
904 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
905 int nr_wake, int nr_wake2, int op)
906 {
907 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
908 struct futex_hash_bucket *hb1, *hb2;
909 struct plist_head *head;
910 struct futex_q *this, *next;
911 int ret, op_ret;
912
913 retry:
914 ret = get_futex_key(uaddr1, fshared, &key1);
915 if (unlikely(ret != 0))
916 goto out;
917 ret = get_futex_key(uaddr2, fshared, &key2);
918 if (unlikely(ret != 0))
919 goto out_put_key1;
920
921 hb1 = hash_futex(&key1);
922 hb2 = hash_futex(&key2);
923
924 retry_private:
925 double_lock_hb(hb1, hb2);
926 op_ret = futex_atomic_op_inuser(op, uaddr2);
927 if (unlikely(op_ret < 0)) {
928
929 double_unlock_hb(hb1, hb2);
930
931 #ifndef CONFIG_MMU
932 /*
933 * we don't get EFAULT from MMU faults if we don't have an MMU,
934 * but we might get them from range checking
935 */
936 ret = op_ret;
937 goto out_put_keys;
938 #endif
939
940 if (unlikely(op_ret != -EFAULT)) {
941 ret = op_ret;
942 goto out_put_keys;
943 }
944
945 ret = fault_in_user_writeable(uaddr2);
946 if (ret)
947 goto out_put_keys;
948
949 if (!fshared)
950 goto retry_private;
951
952 put_futex_key(fshared, &key2);
953 put_futex_key(fshared, &key1);
954 goto retry;
955 }
956
957 head = &hb1->chain;
958
959 plist_for_each_entry_safe(this, next, head, list) {
960 if (match_futex (&this->key, &key1)) {
961 wake_futex(this);
962 if (++ret >= nr_wake)
963 break;
964 }
965 }
966
967 if (op_ret > 0) {
968 head = &hb2->chain;
969
970 op_ret = 0;
971 plist_for_each_entry_safe(this, next, head, list) {
972 if (match_futex (&this->key, &key2)) {
973 wake_futex(this);
974 if (++op_ret >= nr_wake2)
975 break;
976 }
977 }
978 ret += op_ret;
979 }
980
981 double_unlock_hb(hb1, hb2);
982 out_put_keys:
983 put_futex_key(fshared, &key2);
984 out_put_key1:
985 put_futex_key(fshared, &key1);
986 out:
987 return ret;
988 }
989
990 /**
991 * requeue_futex() - Requeue a futex_q from one hb to another
992 * @q: the futex_q to requeue
993 * @hb1: the source hash_bucket
994 * @hb2: the target hash_bucket
995 * @key2: the new key for the requeued futex_q
996 */
997 static inline
998 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
999 struct futex_hash_bucket *hb2, union futex_key *key2)
1000 {
1001
1002 /*
1003 * If key1 and key2 hash to the same bucket, no need to
1004 * requeue.
1005 */
1006 if (likely(&hb1->chain != &hb2->chain)) {
1007 plist_del(&q->list, &hb1->chain);
1008 plist_add(&q->list, &hb2->chain);
1009 q->lock_ptr = &hb2->lock;
1010 #ifdef CONFIG_DEBUG_PI_LIST
1011 q->list.plist.spinlock = &hb2->lock;
1012 #endif
1013 }
1014 get_futex_key_refs(key2);
1015 q->key = *key2;
1016 }
1017
1018 /**
1019 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1020 * @q: the futex_q
1021 * @key: the key of the requeue target futex
1022 * @hb: the hash_bucket of the requeue target futex
1023 *
1024 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1025 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1026 * to the requeue target futex so the waiter can detect the wakeup on the right
1027 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1028 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1029 * to protect access to the pi_state to fixup the owner later. Must be called
1030 * with both q->lock_ptr and hb->lock held.
1031 */
1032 static inline
1033 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1034 struct futex_hash_bucket *hb)
1035 {
1036 get_futex_key_refs(key);
1037 q->key = *key;
1038
1039 WARN_ON(plist_node_empty(&q->list));
1040 plist_del(&q->list, &q->list.plist);
1041
1042 WARN_ON(!q->rt_waiter);
1043 q->rt_waiter = NULL;
1044
1045 q->lock_ptr = &hb->lock;
1046 #ifdef CONFIG_DEBUG_PI_LIST
1047 q->list.plist.spinlock = &hb->lock;
1048 #endif
1049
1050 wake_up_state(q->task, TASK_NORMAL);
1051 }
1052
1053 /**
1054 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1055 * @pifutex: the user address of the to futex
1056 * @hb1: the from futex hash bucket, must be locked by the caller
1057 * @hb2: the to futex hash bucket, must be locked by the caller
1058 * @key1: the from futex key
1059 * @key2: the to futex key
1060 * @ps: address to store the pi_state pointer
1061 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1062 *
1063 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1064 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1065 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1066 * hb1 and hb2 must be held by the caller.
1067 *
1068 * Returns:
1069 * 0 - failed to acquire the lock atomicly
1070 * 1 - acquired the lock
1071 * <0 - error
1072 */
1073 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1074 struct futex_hash_bucket *hb1,
1075 struct futex_hash_bucket *hb2,
1076 union futex_key *key1, union futex_key *key2,
1077 struct futex_pi_state **ps, int set_waiters)
1078 {
1079 struct futex_q *top_waiter = NULL;
1080 u32 curval;
1081 int ret;
1082
1083 if (get_futex_value_locked(&curval, pifutex))
1084 return -EFAULT;
1085
1086 /*
1087 * Find the top_waiter and determine if there are additional waiters.
1088 * If the caller intends to requeue more than 1 waiter to pifutex,
1089 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1090 * as we have means to handle the possible fault. If not, don't set
1091 * the bit unecessarily as it will force the subsequent unlock to enter
1092 * the kernel.
1093 */
1094 top_waiter = futex_top_waiter(hb1, key1);
1095
1096 /* There are no waiters, nothing for us to do. */
1097 if (!top_waiter)
1098 return 0;
1099
1100 /* Ensure we requeue to the expected futex. */
1101 if (!match_futex(top_waiter->requeue_pi_key, key2))
1102 return -EINVAL;
1103
1104 /*
1105 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1106 * the contended case or if set_waiters is 1. The pi_state is returned
1107 * in ps in contended cases.
1108 */
1109 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1110 set_waiters);
1111 if (ret == 1)
1112 requeue_pi_wake_futex(top_waiter, key2, hb2);
1113
1114 return ret;
1115 }
1116
1117 /**
1118 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1119 * uaddr1: source futex user address
1120 * uaddr2: target futex user address
1121 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1122 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1123 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1124 * pi futex (pi to pi requeue is not supported)
1125 *
1126 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1127 * uaddr2 atomically on behalf of the top waiter.
1128 *
1129 * Returns:
1130 * >=0 - on success, the number of tasks requeued or woken
1131 * <0 - on error
1132 */
1133 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1134 int nr_wake, int nr_requeue, u32 *cmpval,
1135 int requeue_pi)
1136 {
1137 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1138 int drop_count = 0, task_count = 0, ret;
1139 struct futex_pi_state *pi_state = NULL;
1140 struct futex_hash_bucket *hb1, *hb2;
1141 struct plist_head *head1;
1142 struct futex_q *this, *next;
1143 u32 curval2;
1144
1145 if (requeue_pi) {
1146 /*
1147 * requeue_pi requires a pi_state, try to allocate it now
1148 * without any locks in case it fails.
1149 */
1150 if (refill_pi_state_cache())
1151 return -ENOMEM;
1152 /*
1153 * requeue_pi must wake as many tasks as it can, up to nr_wake
1154 * + nr_requeue, since it acquires the rt_mutex prior to
1155 * returning to userspace, so as to not leave the rt_mutex with
1156 * waiters and no owner. However, second and third wake-ups
1157 * cannot be predicted as they involve race conditions with the
1158 * first wake and a fault while looking up the pi_state. Both
1159 * pthread_cond_signal() and pthread_cond_broadcast() should
1160 * use nr_wake=1.
1161 */
1162 if (nr_wake != 1)
1163 return -EINVAL;
1164 }
1165
1166 retry:
1167 if (pi_state != NULL) {
1168 /*
1169 * We will have to lookup the pi_state again, so free this one
1170 * to keep the accounting correct.
1171 */
1172 free_pi_state(pi_state);
1173 pi_state = NULL;
1174 }
1175
1176 ret = get_futex_key(uaddr1, fshared, &key1);
1177 if (unlikely(ret != 0))
1178 goto out;
1179 ret = get_futex_key(uaddr2, fshared, &key2);
1180 if (unlikely(ret != 0))
1181 goto out_put_key1;
1182
1183 hb1 = hash_futex(&key1);
1184 hb2 = hash_futex(&key2);
1185
1186 retry_private:
1187 double_lock_hb(hb1, hb2);
1188
1189 if (likely(cmpval != NULL)) {
1190 u32 curval;
1191
1192 ret = get_futex_value_locked(&curval, uaddr1);
1193
1194 if (unlikely(ret)) {
1195 double_unlock_hb(hb1, hb2);
1196
1197 ret = get_user(curval, uaddr1);
1198 if (ret)
1199 goto out_put_keys;
1200
1201 if (!fshared)
1202 goto retry_private;
1203
1204 put_futex_key(fshared, &key2);
1205 put_futex_key(fshared, &key1);
1206 goto retry;
1207 }
1208 if (curval != *cmpval) {
1209 ret = -EAGAIN;
1210 goto out_unlock;
1211 }
1212 }
1213
1214 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1215 /*
1216 * Attempt to acquire uaddr2 and wake the top waiter. If we
1217 * intend to requeue waiters, force setting the FUTEX_WAITERS
1218 * bit. We force this here where we are able to easily handle
1219 * faults rather in the requeue loop below.
1220 */
1221 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1222 &key2, &pi_state, nr_requeue);
1223
1224 /*
1225 * At this point the top_waiter has either taken uaddr2 or is
1226 * waiting on it. If the former, then the pi_state will not
1227 * exist yet, look it up one more time to ensure we have a
1228 * reference to it.
1229 */
1230 if (ret == 1) {
1231 WARN_ON(pi_state);
1232 drop_count++;
1233 task_count++;
1234 ret = get_futex_value_locked(&curval2, uaddr2);
1235 if (!ret)
1236 ret = lookup_pi_state(curval2, hb2, &key2,
1237 &pi_state);
1238 }
1239
1240 switch (ret) {
1241 case 0:
1242 break;
1243 case -EFAULT:
1244 double_unlock_hb(hb1, hb2);
1245 put_futex_key(fshared, &key2);
1246 put_futex_key(fshared, &key1);
1247 ret = fault_in_user_writeable(uaddr2);
1248 if (!ret)
1249 goto retry;
1250 goto out;
1251 case -EAGAIN:
1252 /* The owner was exiting, try again. */
1253 double_unlock_hb(hb1, hb2);
1254 put_futex_key(fshared, &key2);
1255 put_futex_key(fshared, &key1);
1256 cond_resched();
1257 goto retry;
1258 default:
1259 goto out_unlock;
1260 }
1261 }
1262
1263 head1 = &hb1->chain;
1264 plist_for_each_entry_safe(this, next, head1, list) {
1265 if (task_count - nr_wake >= nr_requeue)
1266 break;
1267
1268 if (!match_futex(&this->key, &key1))
1269 continue;
1270
1271 /*
1272 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1273 * be paired with each other and no other futex ops.
1274 */
1275 if ((requeue_pi && !this->rt_waiter) ||
1276 (!requeue_pi && this->rt_waiter)) {
1277 ret = -EINVAL;
1278 break;
1279 }
1280
1281 /*
1282 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1283 * lock, we already woke the top_waiter. If not, it will be
1284 * woken by futex_unlock_pi().
1285 */
1286 if (++task_count <= nr_wake && !requeue_pi) {
1287 wake_futex(this);
1288 continue;
1289 }
1290
1291 /* Ensure we requeue to the expected futex for requeue_pi. */
1292 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1293 ret = -EINVAL;
1294 break;
1295 }
1296
1297 /*
1298 * Requeue nr_requeue waiters and possibly one more in the case
1299 * of requeue_pi if we couldn't acquire the lock atomically.
1300 */
1301 if (requeue_pi) {
1302 /* Prepare the waiter to take the rt_mutex. */
1303 atomic_inc(&pi_state->refcount);
1304 this->pi_state = pi_state;
1305 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1306 this->rt_waiter,
1307 this->task, 1);
1308 if (ret == 1) {
1309 /* We got the lock. */
1310 requeue_pi_wake_futex(this, &key2, hb2);
1311 drop_count++;
1312 continue;
1313 } else if (ret) {
1314 /* -EDEADLK */
1315 this->pi_state = NULL;
1316 free_pi_state(pi_state);
1317 goto out_unlock;
1318 }
1319 }
1320 requeue_futex(this, hb1, hb2, &key2);
1321 drop_count++;
1322 }
1323
1324 out_unlock:
1325 double_unlock_hb(hb1, hb2);
1326
1327 /*
1328 * drop_futex_key_refs() must be called outside the spinlocks. During
1329 * the requeue we moved futex_q's from the hash bucket at key1 to the
1330 * one at key2 and updated their key pointer. We no longer need to
1331 * hold the references to key1.
1332 */
1333 while (--drop_count >= 0)
1334 drop_futex_key_refs(&key1);
1335
1336 out_put_keys:
1337 put_futex_key(fshared, &key2);
1338 out_put_key1:
1339 put_futex_key(fshared, &key1);
1340 out:
1341 if (pi_state != NULL)
1342 free_pi_state(pi_state);
1343 return ret ? ret : task_count;
1344 }
1345
1346 /* The key must be already stored in q->key. */
1347 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1348 {
1349 struct futex_hash_bucket *hb;
1350
1351 get_futex_key_refs(&q->key);
1352 hb = hash_futex(&q->key);
1353 q->lock_ptr = &hb->lock;
1354
1355 spin_lock(&hb->lock);
1356 return hb;
1357 }
1358
1359 static inline void
1360 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1361 {
1362 spin_unlock(&hb->lock);
1363 drop_futex_key_refs(&q->key);
1364 }
1365
1366 /**
1367 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1368 * @q: The futex_q to enqueue
1369 * @hb: The destination hash bucket
1370 *
1371 * The hb->lock must be held by the caller, and is released here. A call to
1372 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1373 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1374 * or nothing if the unqueue is done as part of the wake process and the unqueue
1375 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1376 * an example).
1377 */
1378 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1379 {
1380 int prio;
1381
1382 /*
1383 * The priority used to register this element is
1384 * - either the real thread-priority for the real-time threads
1385 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1386 * - or MAX_RT_PRIO for non-RT threads.
1387 * Thus, all RT-threads are woken first in priority order, and
1388 * the others are woken last, in FIFO order.
1389 */
1390 prio = min(current->normal_prio, MAX_RT_PRIO);
1391
1392 plist_node_init(&q->list, prio);
1393 #ifdef CONFIG_DEBUG_PI_LIST
1394 q->list.plist.spinlock = &hb->lock;
1395 #endif
1396 plist_add(&q->list, &hb->chain);
1397 q->task = current;
1398 spin_unlock(&hb->lock);
1399 }
1400
1401 /**
1402 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1403 * @q: The futex_q to unqueue
1404 *
1405 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1406 * be paired with exactly one earlier call to queue_me().
1407 *
1408 * Returns:
1409 * 1 - if the futex_q was still queued (and we removed unqueued it)
1410 * 0 - if the futex_q was already removed by the waking thread
1411 */
1412 static int unqueue_me(struct futex_q *q)
1413 {
1414 spinlock_t *lock_ptr;
1415 int ret = 0;
1416
1417 /* In the common case we don't take the spinlock, which is nice. */
1418 retry:
1419 lock_ptr = q->lock_ptr;
1420 barrier();
1421 if (lock_ptr != NULL) {
1422 spin_lock(lock_ptr);
1423 /*
1424 * q->lock_ptr can change between reading it and
1425 * spin_lock(), causing us to take the wrong lock. This
1426 * corrects the race condition.
1427 *
1428 * Reasoning goes like this: if we have the wrong lock,
1429 * q->lock_ptr must have changed (maybe several times)
1430 * between reading it and the spin_lock(). It can
1431 * change again after the spin_lock() but only if it was
1432 * already changed before the spin_lock(). It cannot,
1433 * however, change back to the original value. Therefore
1434 * we can detect whether we acquired the correct lock.
1435 */
1436 if (unlikely(lock_ptr != q->lock_ptr)) {
1437 spin_unlock(lock_ptr);
1438 goto retry;
1439 }
1440 WARN_ON(plist_node_empty(&q->list));
1441 plist_del(&q->list, &q->list.plist);
1442
1443 BUG_ON(q->pi_state);
1444
1445 spin_unlock(lock_ptr);
1446 ret = 1;
1447 }
1448
1449 drop_futex_key_refs(&q->key);
1450 return ret;
1451 }
1452
1453 /*
1454 * PI futexes can not be requeued and must remove themself from the
1455 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1456 * and dropped here.
1457 */
1458 static void unqueue_me_pi(struct futex_q *q)
1459 {
1460 WARN_ON(plist_node_empty(&q->list));
1461 plist_del(&q->list, &q->list.plist);
1462
1463 BUG_ON(!q->pi_state);
1464 free_pi_state(q->pi_state);
1465 q->pi_state = NULL;
1466
1467 spin_unlock(q->lock_ptr);
1468
1469 drop_futex_key_refs(&q->key);
1470 }
1471
1472 /*
1473 * Fixup the pi_state owner with the new owner.
1474 *
1475 * Must be called with hash bucket lock held and mm->sem held for non
1476 * private futexes.
1477 */
1478 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1479 struct task_struct *newowner, int fshared)
1480 {
1481 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1482 struct futex_pi_state *pi_state = q->pi_state;
1483 struct task_struct *oldowner = pi_state->owner;
1484 u32 uval, curval, newval;
1485 int ret;
1486
1487 /* Owner died? */
1488 if (!pi_state->owner)
1489 newtid |= FUTEX_OWNER_DIED;
1490
1491 /*
1492 * We are here either because we stole the rtmutex from the
1493 * pending owner or we are the pending owner which failed to
1494 * get the rtmutex. We have to replace the pending owner TID
1495 * in the user space variable. This must be atomic as we have
1496 * to preserve the owner died bit here.
1497 *
1498 * Note: We write the user space value _before_ changing the pi_state
1499 * because we can fault here. Imagine swapped out pages or a fork
1500 * that marked all the anonymous memory readonly for cow.
1501 *
1502 * Modifying pi_state _before_ the user space value would
1503 * leave the pi_state in an inconsistent state when we fault
1504 * here, because we need to drop the hash bucket lock to
1505 * handle the fault. This might be observed in the PID check
1506 * in lookup_pi_state.
1507 */
1508 retry:
1509 if (get_futex_value_locked(&uval, uaddr))
1510 goto handle_fault;
1511
1512 while (1) {
1513 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1514
1515 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1516
1517 if (curval == -EFAULT)
1518 goto handle_fault;
1519 if (curval == uval)
1520 break;
1521 uval = curval;
1522 }
1523
1524 /*
1525 * We fixed up user space. Now we need to fix the pi_state
1526 * itself.
1527 */
1528 if (pi_state->owner != NULL) {
1529 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1530 WARN_ON(list_empty(&pi_state->list));
1531 list_del_init(&pi_state->list);
1532 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1533 }
1534
1535 pi_state->owner = newowner;
1536
1537 raw_spin_lock_irq(&newowner->pi_lock);
1538 WARN_ON(!list_empty(&pi_state->list));
1539 list_add(&pi_state->list, &newowner->pi_state_list);
1540 raw_spin_unlock_irq(&newowner->pi_lock);
1541 return 0;
1542
1543 /*
1544 * To handle the page fault we need to drop the hash bucket
1545 * lock here. That gives the other task (either the pending
1546 * owner itself or the task which stole the rtmutex) the
1547 * chance to try the fixup of the pi_state. So once we are
1548 * back from handling the fault we need to check the pi_state
1549 * after reacquiring the hash bucket lock and before trying to
1550 * do another fixup. When the fixup has been done already we
1551 * simply return.
1552 */
1553 handle_fault:
1554 spin_unlock(q->lock_ptr);
1555
1556 ret = fault_in_user_writeable(uaddr);
1557
1558 spin_lock(q->lock_ptr);
1559
1560 /*
1561 * Check if someone else fixed it for us:
1562 */
1563 if (pi_state->owner != oldowner)
1564 return 0;
1565
1566 if (ret)
1567 return ret;
1568
1569 goto retry;
1570 }
1571
1572 /*
1573 * In case we must use restart_block to restart a futex_wait,
1574 * we encode in the 'flags' shared capability
1575 */
1576 #define FLAGS_SHARED 0x01
1577 #define FLAGS_CLOCKRT 0x02
1578 #define FLAGS_HAS_TIMEOUT 0x04
1579
1580 static long futex_wait_restart(struct restart_block *restart);
1581
1582 /**
1583 * fixup_owner() - Post lock pi_state and corner case management
1584 * @uaddr: user address of the futex
1585 * @fshared: whether the futex is shared (1) or not (0)
1586 * @q: futex_q (contains pi_state and access to the rt_mutex)
1587 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1588 *
1589 * After attempting to lock an rt_mutex, this function is called to cleanup
1590 * the pi_state owner as well as handle race conditions that may allow us to
1591 * acquire the lock. Must be called with the hb lock held.
1592 *
1593 * Returns:
1594 * 1 - success, lock taken
1595 * 0 - success, lock not taken
1596 * <0 - on error (-EFAULT)
1597 */
1598 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1599 int locked)
1600 {
1601 struct task_struct *owner;
1602 int ret = 0;
1603
1604 if (locked) {
1605 /*
1606 * Got the lock. We might not be the anticipated owner if we
1607 * did a lock-steal - fix up the PI-state in that case:
1608 */
1609 if (q->pi_state->owner != current)
1610 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1611 goto out;
1612 }
1613
1614 /*
1615 * Catch the rare case, where the lock was released when we were on the
1616 * way back before we locked the hash bucket.
1617 */
1618 if (q->pi_state->owner == current) {
1619 /*
1620 * Try to get the rt_mutex now. This might fail as some other
1621 * task acquired the rt_mutex after we removed ourself from the
1622 * rt_mutex waiters list.
1623 */
1624 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1625 locked = 1;
1626 goto out;
1627 }
1628
1629 /*
1630 * pi_state is incorrect, some other task did a lock steal and
1631 * we returned due to timeout or signal without taking the
1632 * rt_mutex. Too late. We can access the rt_mutex_owner without
1633 * locking, as the other task is now blocked on the hash bucket
1634 * lock. Fix the state up.
1635 */
1636 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1637 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1638 goto out;
1639 }
1640
1641 /*
1642 * Paranoia check. If we did not take the lock, then we should not be
1643 * the owner, nor the pending owner, of the rt_mutex.
1644 */
1645 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1646 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1647 "pi-state %p\n", ret,
1648 q->pi_state->pi_mutex.owner,
1649 q->pi_state->owner);
1650
1651 out:
1652 return ret ? ret : locked;
1653 }
1654
1655 /**
1656 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1657 * @hb: the futex hash bucket, must be locked by the caller
1658 * @q: the futex_q to queue up on
1659 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1660 */
1661 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1662 struct hrtimer_sleeper *timeout)
1663 {
1664 /*
1665 * The task state is guaranteed to be set before another task can
1666 * wake it. set_current_state() is implemented using set_mb() and
1667 * queue_me() calls spin_unlock() upon completion, both serializing
1668 * access to the hash list and forcing another memory barrier.
1669 */
1670 set_current_state(TASK_INTERRUPTIBLE);
1671 queue_me(q, hb);
1672
1673 /* Arm the timer */
1674 if (timeout) {
1675 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1676 if (!hrtimer_active(&timeout->timer))
1677 timeout->task = NULL;
1678 }
1679
1680 /*
1681 * If we have been removed from the hash list, then another task
1682 * has tried to wake us, and we can skip the call to schedule().
1683 */
1684 if (likely(!plist_node_empty(&q->list))) {
1685 /*
1686 * If the timer has already expired, current will already be
1687 * flagged for rescheduling. Only call schedule if there
1688 * is no timeout, or if it has yet to expire.
1689 */
1690 if (!timeout || timeout->task)
1691 schedule();
1692 }
1693 __set_current_state(TASK_RUNNING);
1694 }
1695
1696 /**
1697 * futex_wait_setup() - Prepare to wait on a futex
1698 * @uaddr: the futex userspace address
1699 * @val: the expected value
1700 * @fshared: whether the futex is shared (1) or not (0)
1701 * @q: the associated futex_q
1702 * @hb: storage for hash_bucket pointer to be returned to caller
1703 *
1704 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1705 * compare it with the expected value. Handle atomic faults internally.
1706 * Return with the hb lock held and a q.key reference on success, and unlocked
1707 * with no q.key reference on failure.
1708 *
1709 * Returns:
1710 * 0 - uaddr contains val and hb has been locked
1711 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1712 */
1713 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1714 struct futex_q *q, struct futex_hash_bucket **hb)
1715 {
1716 u32 uval;
1717 int ret;
1718
1719 /*
1720 * Access the page AFTER the hash-bucket is locked.
1721 * Order is important:
1722 *
1723 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1724 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1725 *
1726 * The basic logical guarantee of a futex is that it blocks ONLY
1727 * if cond(var) is known to be true at the time of blocking, for
1728 * any cond. If we queued after testing *uaddr, that would open
1729 * a race condition where we could block indefinitely with
1730 * cond(var) false, which would violate the guarantee.
1731 *
1732 * A consequence is that futex_wait() can return zero and absorb
1733 * a wakeup when *uaddr != val on entry to the syscall. This is
1734 * rare, but normal.
1735 */
1736 retry:
1737 q->key = FUTEX_KEY_INIT;
1738 ret = get_futex_key(uaddr, fshared, &q->key);
1739 if (unlikely(ret != 0))
1740 return ret;
1741
1742 retry_private:
1743 *hb = queue_lock(q);
1744
1745 ret = get_futex_value_locked(&uval, uaddr);
1746
1747 if (ret) {
1748 queue_unlock(q, *hb);
1749
1750 ret = get_user(uval, uaddr);
1751 if (ret)
1752 goto out;
1753
1754 if (!fshared)
1755 goto retry_private;
1756
1757 put_futex_key(fshared, &q->key);
1758 goto retry;
1759 }
1760
1761 if (uval != val) {
1762 queue_unlock(q, *hb);
1763 ret = -EWOULDBLOCK;
1764 }
1765
1766 out:
1767 if (ret)
1768 put_futex_key(fshared, &q->key);
1769 return ret;
1770 }
1771
1772 static int futex_wait(u32 __user *uaddr, int fshared,
1773 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1774 {
1775 struct hrtimer_sleeper timeout, *to = NULL;
1776 struct restart_block *restart;
1777 struct futex_hash_bucket *hb;
1778 struct futex_q q;
1779 int ret;
1780
1781 if (!bitset)
1782 return -EINVAL;
1783
1784 q.pi_state = NULL;
1785 q.bitset = bitset;
1786 q.rt_waiter = NULL;
1787 q.requeue_pi_key = NULL;
1788
1789 if (abs_time) {
1790 to = &timeout;
1791
1792 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1793 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1794 hrtimer_init_sleeper(to, current);
1795 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1796 current->timer_slack_ns);
1797 }
1798
1799 retry:
1800 /* Prepare to wait on uaddr. */
1801 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1802 if (ret)
1803 goto out;
1804
1805 /* queue_me and wait for wakeup, timeout, or a signal. */
1806 futex_wait_queue_me(hb, &q, to);
1807
1808 /* If we were woken (and unqueued), we succeeded, whatever. */
1809 ret = 0;
1810 if (!unqueue_me(&q))
1811 goto out_put_key;
1812 ret = -ETIMEDOUT;
1813 if (to && !to->task)
1814 goto out_put_key;
1815
1816 /*
1817 * We expect signal_pending(current), but we might be the
1818 * victim of a spurious wakeup as well.
1819 */
1820 if (!signal_pending(current)) {
1821 put_futex_key(fshared, &q.key);
1822 goto retry;
1823 }
1824
1825 ret = -ERESTARTSYS;
1826 if (!abs_time)
1827 goto out_put_key;
1828
1829 restart = &current_thread_info()->restart_block;
1830 restart->fn = futex_wait_restart;
1831 restart->futex.uaddr = (u32 *)uaddr;
1832 restart->futex.val = val;
1833 restart->futex.time = abs_time->tv64;
1834 restart->futex.bitset = bitset;
1835 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1836
1837 if (fshared)
1838 restart->futex.flags |= FLAGS_SHARED;
1839 if (clockrt)
1840 restart->futex.flags |= FLAGS_CLOCKRT;
1841
1842 ret = -ERESTART_RESTARTBLOCK;
1843
1844 out_put_key:
1845 put_futex_key(fshared, &q.key);
1846 out:
1847 if (to) {
1848 hrtimer_cancel(&to->timer);
1849 destroy_hrtimer_on_stack(&to->timer);
1850 }
1851 return ret;
1852 }
1853
1854
1855 static long futex_wait_restart(struct restart_block *restart)
1856 {
1857 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1858 int fshared = 0;
1859 ktime_t t, *tp = NULL;
1860
1861 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1862 t.tv64 = restart->futex.time;
1863 tp = &t;
1864 }
1865 restart->fn = do_no_restart_syscall;
1866 if (restart->futex.flags & FLAGS_SHARED)
1867 fshared = 1;
1868 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1869 restart->futex.bitset,
1870 restart->futex.flags & FLAGS_CLOCKRT);
1871 }
1872
1873
1874 /*
1875 * Userspace tried a 0 -> TID atomic transition of the futex value
1876 * and failed. The kernel side here does the whole locking operation:
1877 * if there are waiters then it will block, it does PI, etc. (Due to
1878 * races the kernel might see a 0 value of the futex too.)
1879 */
1880 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1881 int detect, ktime_t *time, int trylock)
1882 {
1883 struct hrtimer_sleeper timeout, *to = NULL;
1884 struct futex_hash_bucket *hb;
1885 struct futex_q q;
1886 int res, ret;
1887
1888 if (refill_pi_state_cache())
1889 return -ENOMEM;
1890
1891 if (time) {
1892 to = &timeout;
1893 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1894 HRTIMER_MODE_ABS);
1895 hrtimer_init_sleeper(to, current);
1896 hrtimer_set_expires(&to->timer, *time);
1897 }
1898
1899 q.pi_state = NULL;
1900 q.rt_waiter = NULL;
1901 q.requeue_pi_key = NULL;
1902 retry:
1903 q.key = FUTEX_KEY_INIT;
1904 ret = get_futex_key(uaddr, fshared, &q.key);
1905 if (unlikely(ret != 0))
1906 goto out;
1907
1908 retry_private:
1909 hb = queue_lock(&q);
1910
1911 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1912 if (unlikely(ret)) {
1913 switch (ret) {
1914 case 1:
1915 /* We got the lock. */
1916 ret = 0;
1917 goto out_unlock_put_key;
1918 case -EFAULT:
1919 goto uaddr_faulted;
1920 case -EAGAIN:
1921 /*
1922 * Task is exiting and we just wait for the
1923 * exit to complete.
1924 */
1925 queue_unlock(&q, hb);
1926 put_futex_key(fshared, &q.key);
1927 cond_resched();
1928 goto retry;
1929 default:
1930 goto out_unlock_put_key;
1931 }
1932 }
1933
1934 /*
1935 * Only actually queue now that the atomic ops are done:
1936 */
1937 queue_me(&q, hb);
1938
1939 WARN_ON(!q.pi_state);
1940 /*
1941 * Block on the PI mutex:
1942 */
1943 if (!trylock)
1944 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1945 else {
1946 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1947 /* Fixup the trylock return value: */
1948 ret = ret ? 0 : -EWOULDBLOCK;
1949 }
1950
1951 spin_lock(q.lock_ptr);
1952 /*
1953 * Fixup the pi_state owner and possibly acquire the lock if we
1954 * haven't already.
1955 */
1956 res = fixup_owner(uaddr, fshared, &q, !ret);
1957 /*
1958 * If fixup_owner() returned an error, proprogate that. If it acquired
1959 * the lock, clear our -ETIMEDOUT or -EINTR.
1960 */
1961 if (res)
1962 ret = (res < 0) ? res : 0;
1963
1964 /*
1965 * If fixup_owner() faulted and was unable to handle the fault, unlock
1966 * it and return the fault to userspace.
1967 */
1968 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1969 rt_mutex_unlock(&q.pi_state->pi_mutex);
1970
1971 /* Unqueue and drop the lock */
1972 unqueue_me_pi(&q);
1973
1974 goto out;
1975
1976 out_unlock_put_key:
1977 queue_unlock(&q, hb);
1978
1979 out_put_key:
1980 put_futex_key(fshared, &q.key);
1981 out:
1982 if (to)
1983 destroy_hrtimer_on_stack(&to->timer);
1984 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1985
1986 uaddr_faulted:
1987 queue_unlock(&q, hb);
1988
1989 ret = fault_in_user_writeable(uaddr);
1990 if (ret)
1991 goto out_put_key;
1992
1993 if (!fshared)
1994 goto retry_private;
1995
1996 put_futex_key(fshared, &q.key);
1997 goto retry;
1998 }
1999
2000 /*
2001 * Userspace attempted a TID -> 0 atomic transition, and failed.
2002 * This is the in-kernel slowpath: we look up the PI state (if any),
2003 * and do the rt-mutex unlock.
2004 */
2005 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2006 {
2007 struct futex_hash_bucket *hb;
2008 struct futex_q *this, *next;
2009 u32 uval;
2010 struct plist_head *head;
2011 union futex_key key = FUTEX_KEY_INIT;
2012 int ret;
2013
2014 retry:
2015 if (get_user(uval, uaddr))
2016 return -EFAULT;
2017 /*
2018 * We release only a lock we actually own:
2019 */
2020 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2021 return -EPERM;
2022
2023 ret = get_futex_key(uaddr, fshared, &key);
2024 if (unlikely(ret != 0))
2025 goto out;
2026
2027 hb = hash_futex(&key);
2028 spin_lock(&hb->lock);
2029
2030 /*
2031 * To avoid races, try to do the TID -> 0 atomic transition
2032 * again. If it succeeds then we can return without waking
2033 * anyone else up:
2034 */
2035 if (!(uval & FUTEX_OWNER_DIED))
2036 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2037
2038
2039 if (unlikely(uval == -EFAULT))
2040 goto pi_faulted;
2041 /*
2042 * Rare case: we managed to release the lock atomically,
2043 * no need to wake anyone else up:
2044 */
2045 if (unlikely(uval == task_pid_vnr(current)))
2046 goto out_unlock;
2047
2048 /*
2049 * Ok, other tasks may need to be woken up - check waiters
2050 * and do the wakeup if necessary:
2051 */
2052 head = &hb->chain;
2053
2054 plist_for_each_entry_safe(this, next, head, list) {
2055 if (!match_futex (&this->key, &key))
2056 continue;
2057 ret = wake_futex_pi(uaddr, uval, this);
2058 /*
2059 * The atomic access to the futex value
2060 * generated a pagefault, so retry the
2061 * user-access and the wakeup:
2062 */
2063 if (ret == -EFAULT)
2064 goto pi_faulted;
2065 goto out_unlock;
2066 }
2067 /*
2068 * No waiters - kernel unlocks the futex:
2069 */
2070 if (!(uval & FUTEX_OWNER_DIED)) {
2071 ret = unlock_futex_pi(uaddr, uval);
2072 if (ret == -EFAULT)
2073 goto pi_faulted;
2074 }
2075
2076 out_unlock:
2077 spin_unlock(&hb->lock);
2078 put_futex_key(fshared, &key);
2079
2080 out:
2081 return ret;
2082
2083 pi_faulted:
2084 spin_unlock(&hb->lock);
2085 put_futex_key(fshared, &key);
2086
2087 ret = fault_in_user_writeable(uaddr);
2088 if (!ret)
2089 goto retry;
2090
2091 return ret;
2092 }
2093
2094 /**
2095 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2096 * @hb: the hash_bucket futex_q was original enqueued on
2097 * @q: the futex_q woken while waiting to be requeued
2098 * @key2: the futex_key of the requeue target futex
2099 * @timeout: the timeout associated with the wait (NULL if none)
2100 *
2101 * Detect if the task was woken on the initial futex as opposed to the requeue
2102 * target futex. If so, determine if it was a timeout or a signal that caused
2103 * the wakeup and return the appropriate error code to the caller. Must be
2104 * called with the hb lock held.
2105 *
2106 * Returns
2107 * 0 - no early wakeup detected
2108 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2109 */
2110 static inline
2111 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2112 struct futex_q *q, union futex_key *key2,
2113 struct hrtimer_sleeper *timeout)
2114 {
2115 int ret = 0;
2116
2117 /*
2118 * With the hb lock held, we avoid races while we process the wakeup.
2119 * We only need to hold hb (and not hb2) to ensure atomicity as the
2120 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2121 * It can't be requeued from uaddr2 to something else since we don't
2122 * support a PI aware source futex for requeue.
2123 */
2124 if (!match_futex(&q->key, key2)) {
2125 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2126 /*
2127 * We were woken prior to requeue by a timeout or a signal.
2128 * Unqueue the futex_q and determine which it was.
2129 */
2130 plist_del(&q->list, &q->list.plist);
2131
2132 /* Handle spurious wakeups gracefully */
2133 ret = -EWOULDBLOCK;
2134 if (timeout && !timeout->task)
2135 ret = -ETIMEDOUT;
2136 else if (signal_pending(current))
2137 ret = -ERESTARTNOINTR;
2138 }
2139 return ret;
2140 }
2141
2142 /**
2143 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2144 * @uaddr: the futex we initially wait on (non-pi)
2145 * @fshared: whether the futexes are shared (1) or not (0). They must be
2146 * the same type, no requeueing from private to shared, etc.
2147 * @val: the expected value of uaddr
2148 * @abs_time: absolute timeout
2149 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2150 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2151 * @uaddr2: the pi futex we will take prior to returning to user-space
2152 *
2153 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2154 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2155 * complete the acquisition of the rt_mutex prior to returning to userspace.
2156 * This ensures the rt_mutex maintains an owner when it has waiters; without
2157 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2158 * need to.
2159 *
2160 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2161 * via the following:
2162 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2163 * 2) wakeup on uaddr2 after a requeue
2164 * 3) signal
2165 * 4) timeout
2166 *
2167 * If 3, cleanup and return -ERESTARTNOINTR.
2168 *
2169 * If 2, we may then block on trying to take the rt_mutex and return via:
2170 * 5) successful lock
2171 * 6) signal
2172 * 7) timeout
2173 * 8) other lock acquisition failure
2174 *
2175 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2176 *
2177 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2178 *
2179 * Returns:
2180 * 0 - On success
2181 * <0 - On error
2182 */
2183 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2184 u32 val, ktime_t *abs_time, u32 bitset,
2185 int clockrt, u32 __user *uaddr2)
2186 {
2187 struct hrtimer_sleeper timeout, *to = NULL;
2188 struct rt_mutex_waiter rt_waiter;
2189 struct rt_mutex *pi_mutex = NULL;
2190 struct futex_hash_bucket *hb;
2191 union futex_key key2;
2192 struct futex_q q;
2193 int res, ret;
2194
2195 if (!bitset)
2196 return -EINVAL;
2197
2198 if (abs_time) {
2199 to = &timeout;
2200 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2201 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2202 hrtimer_init_sleeper(to, current);
2203 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2204 current->timer_slack_ns);
2205 }
2206
2207 /*
2208 * The waiter is allocated on our stack, manipulated by the requeue
2209 * code while we sleep on uaddr.
2210 */
2211 debug_rt_mutex_init_waiter(&rt_waiter);
2212 rt_waiter.task = NULL;
2213
2214 key2 = FUTEX_KEY_INIT;
2215 ret = get_futex_key(uaddr2, fshared, &key2);
2216 if (unlikely(ret != 0))
2217 goto out;
2218
2219 q.pi_state = NULL;
2220 q.bitset = bitset;
2221 q.rt_waiter = &rt_waiter;
2222 q.requeue_pi_key = &key2;
2223
2224 /* Prepare to wait on uaddr. */
2225 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2226 if (ret)
2227 goto out_key2;
2228
2229 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2230 futex_wait_queue_me(hb, &q, to);
2231
2232 spin_lock(&hb->lock);
2233 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2234 spin_unlock(&hb->lock);
2235 if (ret)
2236 goto out_put_keys;
2237
2238 /*
2239 * In order for us to be here, we know our q.key == key2, and since
2240 * we took the hb->lock above, we also know that futex_requeue() has
2241 * completed and we no longer have to concern ourselves with a wakeup
2242 * race with the atomic proxy lock acquition by the requeue code.
2243 */
2244
2245 /* Check if the requeue code acquired the second futex for us. */
2246 if (!q.rt_waiter) {
2247 /*
2248 * Got the lock. We might not be the anticipated owner if we
2249 * did a lock-steal - fix up the PI-state in that case.
2250 */
2251 if (q.pi_state && (q.pi_state->owner != current)) {
2252 spin_lock(q.lock_ptr);
2253 ret = fixup_pi_state_owner(uaddr2, &q, current,
2254 fshared);
2255 spin_unlock(q.lock_ptr);
2256 }
2257 } else {
2258 /*
2259 * We have been woken up by futex_unlock_pi(), a timeout, or a
2260 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2261 * the pi_state.
2262 */
2263 WARN_ON(!&q.pi_state);
2264 pi_mutex = &q.pi_state->pi_mutex;
2265 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2266 debug_rt_mutex_free_waiter(&rt_waiter);
2267
2268 spin_lock(q.lock_ptr);
2269 /*
2270 * Fixup the pi_state owner and possibly acquire the lock if we
2271 * haven't already.
2272 */
2273 res = fixup_owner(uaddr2, fshared, &q, !ret);
2274 /*
2275 * If fixup_owner() returned an error, proprogate that. If it
2276 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2277 */
2278 if (res)
2279 ret = (res < 0) ? res : 0;
2280
2281 /* Unqueue and drop the lock. */
2282 unqueue_me_pi(&q);
2283 }
2284
2285 /*
2286 * If fixup_pi_state_owner() faulted and was unable to handle the
2287 * fault, unlock the rt_mutex and return the fault to userspace.
2288 */
2289 if (ret == -EFAULT) {
2290 if (rt_mutex_owner(pi_mutex) == current)
2291 rt_mutex_unlock(pi_mutex);
2292 } else if (ret == -EINTR) {
2293 /*
2294 * We've already been requeued, but cannot restart by calling
2295 * futex_lock_pi() directly. We could restart this syscall, but
2296 * it would detect that the user space "val" changed and return
2297 * -EWOULDBLOCK. Save the overhead of the restart and return
2298 * -EWOULDBLOCK directly.
2299 */
2300 ret = -EWOULDBLOCK;
2301 }
2302
2303 out_put_keys:
2304 put_futex_key(fshared, &q.key);
2305 out_key2:
2306 put_futex_key(fshared, &key2);
2307
2308 out:
2309 if (to) {
2310 hrtimer_cancel(&to->timer);
2311 destroy_hrtimer_on_stack(&to->timer);
2312 }
2313 return ret;
2314 }
2315
2316 /*
2317 * Support for robust futexes: the kernel cleans up held futexes at
2318 * thread exit time.
2319 *
2320 * Implementation: user-space maintains a per-thread list of locks it
2321 * is holding. Upon do_exit(), the kernel carefully walks this list,
2322 * and marks all locks that are owned by this thread with the
2323 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2324 * always manipulated with the lock held, so the list is private and
2325 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2326 * field, to allow the kernel to clean up if the thread dies after
2327 * acquiring the lock, but just before it could have added itself to
2328 * the list. There can only be one such pending lock.
2329 */
2330
2331 /**
2332 * sys_set_robust_list() - Set the robust-futex list head of a task
2333 * @head: pointer to the list-head
2334 * @len: length of the list-head, as userspace expects
2335 */
2336 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2337 size_t, len)
2338 {
2339 if (!futex_cmpxchg_enabled)
2340 return -ENOSYS;
2341 /*
2342 * The kernel knows only one size for now:
2343 */
2344 if (unlikely(len != sizeof(*head)))
2345 return -EINVAL;
2346
2347 current->robust_list = head;
2348
2349 return 0;
2350 }
2351
2352 /**
2353 * sys_get_robust_list() - Get the robust-futex list head of a task
2354 * @pid: pid of the process [zero for current task]
2355 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2356 * @len_ptr: pointer to a length field, the kernel fills in the header size
2357 */
2358 SYSCALL_DEFINE3(get_robust_list, int, pid,
2359 struct robust_list_head __user * __user *, head_ptr,
2360 size_t __user *, len_ptr)
2361 {
2362 struct robust_list_head __user *head;
2363 unsigned long ret;
2364 const struct cred *cred = current_cred(), *pcred;
2365
2366 if (!futex_cmpxchg_enabled)
2367 return -ENOSYS;
2368
2369 if (!pid)
2370 head = current->robust_list;
2371 else {
2372 struct task_struct *p;
2373
2374 ret = -ESRCH;
2375 rcu_read_lock();
2376 p = find_task_by_vpid(pid);
2377 if (!p)
2378 goto err_unlock;
2379 ret = -EPERM;
2380 pcred = __task_cred(p);
2381 if (cred->euid != pcred->euid &&
2382 cred->euid != pcred->uid &&
2383 !capable(CAP_SYS_PTRACE))
2384 goto err_unlock;
2385 head = p->robust_list;
2386 rcu_read_unlock();
2387 }
2388
2389 if (put_user(sizeof(*head), len_ptr))
2390 return -EFAULT;
2391 return put_user(head, head_ptr);
2392
2393 err_unlock:
2394 rcu_read_unlock();
2395
2396 return ret;
2397 }
2398
2399 /*
2400 * Process a futex-list entry, check whether it's owned by the
2401 * dying task, and do notification if so:
2402 */
2403 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2404 {
2405 u32 uval, nval, mval;
2406
2407 retry:
2408 if (get_user(uval, uaddr))
2409 return -1;
2410
2411 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2412 /*
2413 * Ok, this dying thread is truly holding a futex
2414 * of interest. Set the OWNER_DIED bit atomically
2415 * via cmpxchg, and if the value had FUTEX_WAITERS
2416 * set, wake up a waiter (if any). (We have to do a
2417 * futex_wake() even if OWNER_DIED is already set -
2418 * to handle the rare but possible case of recursive
2419 * thread-death.) The rest of the cleanup is done in
2420 * userspace.
2421 */
2422 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2423 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2424
2425 if (nval == -EFAULT)
2426 return -1;
2427
2428 if (nval != uval)
2429 goto retry;
2430
2431 /*
2432 * Wake robust non-PI futexes here. The wakeup of
2433 * PI futexes happens in exit_pi_state():
2434 */
2435 if (!pi && (uval & FUTEX_WAITERS))
2436 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2437 }
2438 return 0;
2439 }
2440
2441 /*
2442 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2443 */
2444 static inline int fetch_robust_entry(struct robust_list __user **entry,
2445 struct robust_list __user * __user *head,
2446 int *pi)
2447 {
2448 unsigned long uentry;
2449
2450 if (get_user(uentry, (unsigned long __user *)head))
2451 return -EFAULT;
2452
2453 *entry = (void __user *)(uentry & ~1UL);
2454 *pi = uentry & 1;
2455
2456 return 0;
2457 }
2458
2459 /*
2460 * Walk curr->robust_list (very carefully, it's a userspace list!)
2461 * and mark any locks found there dead, and notify any waiters.
2462 *
2463 * We silently return on any sign of list-walking problem.
2464 */
2465 void exit_robust_list(struct task_struct *curr)
2466 {
2467 struct robust_list_head __user *head = curr->robust_list;
2468 struct robust_list __user *entry, *next_entry, *pending;
2469 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2470 unsigned long futex_offset;
2471 int rc;
2472
2473 if (!futex_cmpxchg_enabled)
2474 return;
2475
2476 /*
2477 * Fetch the list head (which was registered earlier, via
2478 * sys_set_robust_list()):
2479 */
2480 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2481 return;
2482 /*
2483 * Fetch the relative futex offset:
2484 */
2485 if (get_user(futex_offset, &head->futex_offset))
2486 return;
2487 /*
2488 * Fetch any possibly pending lock-add first, and handle it
2489 * if it exists:
2490 */
2491 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2492 return;
2493
2494 next_entry = NULL; /* avoid warning with gcc */
2495 while (entry != &head->list) {
2496 /*
2497 * Fetch the next entry in the list before calling
2498 * handle_futex_death:
2499 */
2500 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2501 /*
2502 * A pending lock might already be on the list, so
2503 * don't process it twice:
2504 */
2505 if (entry != pending)
2506 if (handle_futex_death((void __user *)entry + futex_offset,
2507 curr, pi))
2508 return;
2509 if (rc)
2510 return;
2511 entry = next_entry;
2512 pi = next_pi;
2513 /*
2514 * Avoid excessively long or circular lists:
2515 */
2516 if (!--limit)
2517 break;
2518
2519 cond_resched();
2520 }
2521
2522 if (pending)
2523 handle_futex_death((void __user *)pending + futex_offset,
2524 curr, pip);
2525 }
2526
2527 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2528 u32 __user *uaddr2, u32 val2, u32 val3)
2529 {
2530 int clockrt, ret = -ENOSYS;
2531 int cmd = op & FUTEX_CMD_MASK;
2532 int fshared = 0;
2533
2534 if (!(op & FUTEX_PRIVATE_FLAG))
2535 fshared = 1;
2536
2537 clockrt = op & FUTEX_CLOCK_REALTIME;
2538 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2539 return -ENOSYS;
2540
2541 switch (cmd) {
2542 case FUTEX_WAIT:
2543 val3 = FUTEX_BITSET_MATCH_ANY;
2544 case FUTEX_WAIT_BITSET:
2545 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2546 break;
2547 case FUTEX_WAKE:
2548 val3 = FUTEX_BITSET_MATCH_ANY;
2549 case FUTEX_WAKE_BITSET:
2550 ret = futex_wake(uaddr, fshared, val, val3);
2551 break;
2552 case FUTEX_REQUEUE:
2553 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2554 break;
2555 case FUTEX_CMP_REQUEUE:
2556 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2557 0);
2558 break;
2559 case FUTEX_WAKE_OP:
2560 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2561 break;
2562 case FUTEX_LOCK_PI:
2563 if (futex_cmpxchg_enabled)
2564 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2565 break;
2566 case FUTEX_UNLOCK_PI:
2567 if (futex_cmpxchg_enabled)
2568 ret = futex_unlock_pi(uaddr, fshared);
2569 break;
2570 case FUTEX_TRYLOCK_PI:
2571 if (futex_cmpxchg_enabled)
2572 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2573 break;
2574 case FUTEX_WAIT_REQUEUE_PI:
2575 val3 = FUTEX_BITSET_MATCH_ANY;
2576 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2577 clockrt, uaddr2);
2578 break;
2579 case FUTEX_CMP_REQUEUE_PI:
2580 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2581 1);
2582 break;
2583 default:
2584 ret = -ENOSYS;
2585 }
2586 return ret;
2587 }
2588
2589
2590 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2591 struct timespec __user *, utime, u32 __user *, uaddr2,
2592 u32, val3)
2593 {
2594 struct timespec ts;
2595 ktime_t t, *tp = NULL;
2596 u32 val2 = 0;
2597 int cmd = op & FUTEX_CMD_MASK;
2598
2599 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2600 cmd == FUTEX_WAIT_BITSET ||
2601 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2602 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2603 return -EFAULT;
2604 if (!timespec_valid(&ts))
2605 return -EINVAL;
2606
2607 t = timespec_to_ktime(ts);
2608 if (cmd == FUTEX_WAIT)
2609 t = ktime_add_safe(ktime_get(), t);
2610 tp = &t;
2611 }
2612 /*
2613 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2614 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2615 */
2616 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2617 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2618 val2 = (u32) (unsigned long) utime;
2619
2620 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2621 }
2622
2623 static int __init futex_init(void)
2624 {
2625 u32 curval;
2626 int i;
2627
2628 /*
2629 * This will fail and we want it. Some arch implementations do
2630 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2631 * functionality. We want to know that before we call in any
2632 * of the complex code paths. Also we want to prevent
2633 * registration of robust lists in that case. NULL is
2634 * guaranteed to fault and we get -EFAULT on functional
2635 * implementation, the non functional ones will return
2636 * -ENOSYS.
2637 */
2638 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2639 if (curval == -EFAULT)
2640 futex_cmpxchg_enabled = 1;
2641
2642 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2643 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2644 spin_lock_init(&futex_queues[i].lock);
2645 }
2646
2647 return 0;
2648 }
2649 __initcall(futex_init);
This page took 0.086652 seconds and 5 git commands to generate.