Merge branch 'omap-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
101
102 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr;
104
105 /* Key which the futex is hashed on: */
106 union futex_key key;
107
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
114 };
115
116 /*
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
120 */
121 struct futex_hash_bucket {
122 spinlock_t lock;
123 struct plist_head chain;
124 };
125
126 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
128 /*
129 * We hash on the keys returned from get_futex_key (see below).
130 */
131 static struct futex_hash_bucket *hash_futex(union futex_key *key)
132 {
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137 }
138
139 /*
140 * Return 1 if two futex_keys are equal, 0 otherwise.
141 */
142 static inline int match_futex(union futex_key *key1, union futex_key *key2)
143 {
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
147 }
148
149 /*
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
152 *
153 */
154 static void get_futex_key_refs(union futex_key *key)
155 {
156 if (!key->both.ptr)
157 return;
158
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
166 }
167 }
168
169 /*
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
172 */
173 static void drop_futex_key_refs(union futex_key *key)
174 {
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
178 return;
179 }
180
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
188 }
189 }
190
191 /**
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
195 * @key: address where result is stored.
196 *
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
199 *
200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
203 *
204 * lock_page() might sleep, the caller should not hold a spinlock.
205 */
206 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
207 {
208 unsigned long address = (unsigned long)uaddr;
209 struct mm_struct *mm = current->mm;
210 struct page *page;
211 int err;
212
213 /*
214 * The futex address must be "naturally" aligned.
215 */
216 key->both.offset = address % PAGE_SIZE;
217 if (unlikely((address % sizeof(u32)) != 0))
218 return -EINVAL;
219 address -= key->both.offset;
220
221 /*
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
227 */
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
233 get_futex_key_refs(key);
234 return 0;
235 }
236
237 again:
238 err = get_user_pages_fast(address, 1, 0, &page);
239 if (err < 0)
240 return err;
241
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
247 }
248
249 /*
250 * Private mappings are handled in a simple way.
251 *
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
254 * the object not the particular process.
255 */
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
258 key->private.mm = mm;
259 key->private.address = address;
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
264 }
265
266 get_futex_key_refs(key);
267
268 unlock_page(page);
269 put_page(page);
270 return 0;
271 }
272
273 static inline
274 void put_futex_key(int fshared, union futex_key *key)
275 {
276 drop_futex_key_refs(key);
277 }
278
279 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
280 {
281 u32 curval;
282
283 pagefault_disable();
284 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
285 pagefault_enable();
286
287 return curval;
288 }
289
290 static int get_futex_value_locked(u32 *dest, u32 __user *from)
291 {
292 int ret;
293
294 pagefault_disable();
295 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
296 pagefault_enable();
297
298 return ret ? -EFAULT : 0;
299 }
300
301
302 /*
303 * PI code:
304 */
305 static int refill_pi_state_cache(void)
306 {
307 struct futex_pi_state *pi_state;
308
309 if (likely(current->pi_state_cache))
310 return 0;
311
312 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
313
314 if (!pi_state)
315 return -ENOMEM;
316
317 INIT_LIST_HEAD(&pi_state->list);
318 /* pi_mutex gets initialized later */
319 pi_state->owner = NULL;
320 atomic_set(&pi_state->refcount, 1);
321 pi_state->key = FUTEX_KEY_INIT;
322
323 current->pi_state_cache = pi_state;
324
325 return 0;
326 }
327
328 static struct futex_pi_state * alloc_pi_state(void)
329 {
330 struct futex_pi_state *pi_state = current->pi_state_cache;
331
332 WARN_ON(!pi_state);
333 current->pi_state_cache = NULL;
334
335 return pi_state;
336 }
337
338 static void free_pi_state(struct futex_pi_state *pi_state)
339 {
340 if (!atomic_dec_and_test(&pi_state->refcount))
341 return;
342
343 /*
344 * If pi_state->owner is NULL, the owner is most probably dying
345 * and has cleaned up the pi_state already
346 */
347 if (pi_state->owner) {
348 spin_lock_irq(&pi_state->owner->pi_lock);
349 list_del_init(&pi_state->list);
350 spin_unlock_irq(&pi_state->owner->pi_lock);
351
352 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
353 }
354
355 if (current->pi_state_cache)
356 kfree(pi_state);
357 else {
358 /*
359 * pi_state->list is already empty.
360 * clear pi_state->owner.
361 * refcount is at 0 - put it back to 1.
362 */
363 pi_state->owner = NULL;
364 atomic_set(&pi_state->refcount, 1);
365 current->pi_state_cache = pi_state;
366 }
367 }
368
369 /*
370 * Look up the task based on what TID userspace gave us.
371 * We dont trust it.
372 */
373 static struct task_struct * futex_find_get_task(pid_t pid)
374 {
375 struct task_struct *p;
376 const struct cred *cred = current_cred(), *pcred;
377
378 rcu_read_lock();
379 p = find_task_by_vpid(pid);
380 if (!p) {
381 p = ERR_PTR(-ESRCH);
382 } else {
383 pcred = __task_cred(p);
384 if (cred->euid != pcred->euid &&
385 cred->euid != pcred->uid)
386 p = ERR_PTR(-ESRCH);
387 else
388 get_task_struct(p);
389 }
390
391 rcu_read_unlock();
392
393 return p;
394 }
395
396 /*
397 * This task is holding PI mutexes at exit time => bad.
398 * Kernel cleans up PI-state, but userspace is likely hosed.
399 * (Robust-futex cleanup is separate and might save the day for userspace.)
400 */
401 void exit_pi_state_list(struct task_struct *curr)
402 {
403 struct list_head *next, *head = &curr->pi_state_list;
404 struct futex_pi_state *pi_state;
405 struct futex_hash_bucket *hb;
406 union futex_key key = FUTEX_KEY_INIT;
407
408 if (!futex_cmpxchg_enabled)
409 return;
410 /*
411 * We are a ZOMBIE and nobody can enqueue itself on
412 * pi_state_list anymore, but we have to be careful
413 * versus waiters unqueueing themselves:
414 */
415 spin_lock_irq(&curr->pi_lock);
416 while (!list_empty(head)) {
417
418 next = head->next;
419 pi_state = list_entry(next, struct futex_pi_state, list);
420 key = pi_state->key;
421 hb = hash_futex(&key);
422 spin_unlock_irq(&curr->pi_lock);
423
424 spin_lock(&hb->lock);
425
426 spin_lock_irq(&curr->pi_lock);
427 /*
428 * We dropped the pi-lock, so re-check whether this
429 * task still owns the PI-state:
430 */
431 if (head->next != next) {
432 spin_unlock(&hb->lock);
433 continue;
434 }
435
436 WARN_ON(pi_state->owner != curr);
437 WARN_ON(list_empty(&pi_state->list));
438 list_del_init(&pi_state->list);
439 pi_state->owner = NULL;
440 spin_unlock_irq(&curr->pi_lock);
441
442 rt_mutex_unlock(&pi_state->pi_mutex);
443
444 spin_unlock(&hb->lock);
445
446 spin_lock_irq(&curr->pi_lock);
447 }
448 spin_unlock_irq(&curr->pi_lock);
449 }
450
451 static int
452 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
453 union futex_key *key, struct futex_pi_state **ps)
454 {
455 struct futex_pi_state *pi_state = NULL;
456 struct futex_q *this, *next;
457 struct plist_head *head;
458 struct task_struct *p;
459 pid_t pid = uval & FUTEX_TID_MASK;
460
461 head = &hb->chain;
462
463 plist_for_each_entry_safe(this, next, head, list) {
464 if (match_futex(&this->key, key)) {
465 /*
466 * Another waiter already exists - bump up
467 * the refcount and return its pi_state:
468 */
469 pi_state = this->pi_state;
470 /*
471 * Userspace might have messed up non PI and PI futexes
472 */
473 if (unlikely(!pi_state))
474 return -EINVAL;
475
476 WARN_ON(!atomic_read(&pi_state->refcount));
477 WARN_ON(pid && pi_state->owner &&
478 pi_state->owner->pid != pid);
479
480 atomic_inc(&pi_state->refcount);
481 *ps = pi_state;
482
483 return 0;
484 }
485 }
486
487 /*
488 * We are the first waiter - try to look up the real owner and attach
489 * the new pi_state to it, but bail out when TID = 0
490 */
491 if (!pid)
492 return -ESRCH;
493 p = futex_find_get_task(pid);
494 if (IS_ERR(p))
495 return PTR_ERR(p);
496
497 /*
498 * We need to look at the task state flags to figure out,
499 * whether the task is exiting. To protect against the do_exit
500 * change of the task flags, we do this protected by
501 * p->pi_lock:
502 */
503 spin_lock_irq(&p->pi_lock);
504 if (unlikely(p->flags & PF_EXITING)) {
505 /*
506 * The task is on the way out. When PF_EXITPIDONE is
507 * set, we know that the task has finished the
508 * cleanup:
509 */
510 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
511
512 spin_unlock_irq(&p->pi_lock);
513 put_task_struct(p);
514 return ret;
515 }
516
517 pi_state = alloc_pi_state();
518
519 /*
520 * Initialize the pi_mutex in locked state and make 'p'
521 * the owner of it:
522 */
523 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
524
525 /* Store the key for possible exit cleanups: */
526 pi_state->key = *key;
527
528 WARN_ON(!list_empty(&pi_state->list));
529 list_add(&pi_state->list, &p->pi_state_list);
530 pi_state->owner = p;
531 spin_unlock_irq(&p->pi_lock);
532
533 put_task_struct(p);
534
535 *ps = pi_state;
536
537 return 0;
538 }
539
540 /*
541 * The hash bucket lock must be held when this is called.
542 * Afterwards, the futex_q must not be accessed.
543 */
544 static void wake_futex(struct futex_q *q)
545 {
546 plist_del(&q->list, &q->list.plist);
547 /*
548 * The lock in wake_up_all() is a crucial memory barrier after the
549 * plist_del() and also before assigning to q->lock_ptr.
550 */
551 wake_up(&q->waiter);
552 /*
553 * The waiting task can free the futex_q as soon as this is written,
554 * without taking any locks. This must come last.
555 *
556 * A memory barrier is required here to prevent the following store to
557 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
558 * end of wake_up() does not prevent this store from moving.
559 */
560 smp_wmb();
561 q->lock_ptr = NULL;
562 }
563
564 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
565 {
566 struct task_struct *new_owner;
567 struct futex_pi_state *pi_state = this->pi_state;
568 u32 curval, newval;
569
570 if (!pi_state)
571 return -EINVAL;
572
573 spin_lock(&pi_state->pi_mutex.wait_lock);
574 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
575
576 /*
577 * This happens when we have stolen the lock and the original
578 * pending owner did not enqueue itself back on the rt_mutex.
579 * Thats not a tragedy. We know that way, that a lock waiter
580 * is on the fly. We make the futex_q waiter the pending owner.
581 */
582 if (!new_owner)
583 new_owner = this->task;
584
585 /*
586 * We pass it to the next owner. (The WAITERS bit is always
587 * kept enabled while there is PI state around. We must also
588 * preserve the owner died bit.)
589 */
590 if (!(uval & FUTEX_OWNER_DIED)) {
591 int ret = 0;
592
593 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
594
595 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
596
597 if (curval == -EFAULT)
598 ret = -EFAULT;
599 else if (curval != uval)
600 ret = -EINVAL;
601 if (ret) {
602 spin_unlock(&pi_state->pi_mutex.wait_lock);
603 return ret;
604 }
605 }
606
607 spin_lock_irq(&pi_state->owner->pi_lock);
608 WARN_ON(list_empty(&pi_state->list));
609 list_del_init(&pi_state->list);
610 spin_unlock_irq(&pi_state->owner->pi_lock);
611
612 spin_lock_irq(&new_owner->pi_lock);
613 WARN_ON(!list_empty(&pi_state->list));
614 list_add(&pi_state->list, &new_owner->pi_state_list);
615 pi_state->owner = new_owner;
616 spin_unlock_irq(&new_owner->pi_lock);
617
618 spin_unlock(&pi_state->pi_mutex.wait_lock);
619 rt_mutex_unlock(&pi_state->pi_mutex);
620
621 return 0;
622 }
623
624 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
625 {
626 u32 oldval;
627
628 /*
629 * There is no waiter, so we unlock the futex. The owner died
630 * bit has not to be preserved here. We are the owner:
631 */
632 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
633
634 if (oldval == -EFAULT)
635 return oldval;
636 if (oldval != uval)
637 return -EAGAIN;
638
639 return 0;
640 }
641
642 /*
643 * Express the locking dependencies for lockdep:
644 */
645 static inline void
646 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
647 {
648 if (hb1 <= hb2) {
649 spin_lock(&hb1->lock);
650 if (hb1 < hb2)
651 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
652 } else { /* hb1 > hb2 */
653 spin_lock(&hb2->lock);
654 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
655 }
656 }
657
658 static inline void
659 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
660 {
661 spin_unlock(&hb1->lock);
662 if (hb1 != hb2)
663 spin_unlock(&hb2->lock);
664 }
665
666 /*
667 * Wake up waiters matching bitset queued on this futex (uaddr).
668 */
669 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
670 {
671 struct futex_hash_bucket *hb;
672 struct futex_q *this, *next;
673 struct plist_head *head;
674 union futex_key key = FUTEX_KEY_INIT;
675 int ret;
676
677 if (!bitset)
678 return -EINVAL;
679
680 ret = get_futex_key(uaddr, fshared, &key);
681 if (unlikely(ret != 0))
682 goto out;
683
684 hb = hash_futex(&key);
685 spin_lock(&hb->lock);
686 head = &hb->chain;
687
688 plist_for_each_entry_safe(this, next, head, list) {
689 if (match_futex (&this->key, &key)) {
690 if (this->pi_state) {
691 ret = -EINVAL;
692 break;
693 }
694
695 /* Check if one of the bits is set in both bitsets */
696 if (!(this->bitset & bitset))
697 continue;
698
699 wake_futex(this);
700 if (++ret >= nr_wake)
701 break;
702 }
703 }
704
705 spin_unlock(&hb->lock);
706 put_futex_key(fshared, &key);
707 out:
708 return ret;
709 }
710
711 /*
712 * Wake up all waiters hashed on the physical page that is mapped
713 * to this virtual address:
714 */
715 static int
716 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
717 int nr_wake, int nr_wake2, int op)
718 {
719 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
720 struct futex_hash_bucket *hb1, *hb2;
721 struct plist_head *head;
722 struct futex_q *this, *next;
723 int ret, op_ret;
724
725 retry:
726 ret = get_futex_key(uaddr1, fshared, &key1);
727 if (unlikely(ret != 0))
728 goto out;
729 ret = get_futex_key(uaddr2, fshared, &key2);
730 if (unlikely(ret != 0))
731 goto out_put_key1;
732
733 hb1 = hash_futex(&key1);
734 hb2 = hash_futex(&key2);
735
736 double_lock_hb(hb1, hb2);
737 retry_private:
738 op_ret = futex_atomic_op_inuser(op, uaddr2);
739 if (unlikely(op_ret < 0)) {
740 u32 dummy;
741
742 double_unlock_hb(hb1, hb2);
743
744 #ifndef CONFIG_MMU
745 /*
746 * we don't get EFAULT from MMU faults if we don't have an MMU,
747 * but we might get them from range checking
748 */
749 ret = op_ret;
750 goto out_put_keys;
751 #endif
752
753 if (unlikely(op_ret != -EFAULT)) {
754 ret = op_ret;
755 goto out_put_keys;
756 }
757
758 ret = get_user(dummy, uaddr2);
759 if (ret)
760 goto out_put_keys;
761
762 if (!fshared)
763 goto retry_private;
764
765 put_futex_key(fshared, &key2);
766 put_futex_key(fshared, &key1);
767 goto retry;
768 }
769
770 head = &hb1->chain;
771
772 plist_for_each_entry_safe(this, next, head, list) {
773 if (match_futex (&this->key, &key1)) {
774 wake_futex(this);
775 if (++ret >= nr_wake)
776 break;
777 }
778 }
779
780 if (op_ret > 0) {
781 head = &hb2->chain;
782
783 op_ret = 0;
784 plist_for_each_entry_safe(this, next, head, list) {
785 if (match_futex (&this->key, &key2)) {
786 wake_futex(this);
787 if (++op_ret >= nr_wake2)
788 break;
789 }
790 }
791 ret += op_ret;
792 }
793
794 double_unlock_hb(hb1, hb2);
795 out_put_keys:
796 put_futex_key(fshared, &key2);
797 out_put_key1:
798 put_futex_key(fshared, &key1);
799 out:
800 return ret;
801 }
802
803 /*
804 * Requeue all waiters hashed on one physical page to another
805 * physical page.
806 */
807 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
808 int nr_wake, int nr_requeue, u32 *cmpval)
809 {
810 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
811 struct futex_hash_bucket *hb1, *hb2;
812 struct plist_head *head1;
813 struct futex_q *this, *next;
814 int ret, drop_count = 0;
815
816 retry:
817 ret = get_futex_key(uaddr1, fshared, &key1);
818 if (unlikely(ret != 0))
819 goto out;
820 ret = get_futex_key(uaddr2, fshared, &key2);
821 if (unlikely(ret != 0))
822 goto out_put_key1;
823
824 hb1 = hash_futex(&key1);
825 hb2 = hash_futex(&key2);
826
827 retry_private:
828 double_lock_hb(hb1, hb2);
829
830 if (likely(cmpval != NULL)) {
831 u32 curval;
832
833 ret = get_futex_value_locked(&curval, uaddr1);
834
835 if (unlikely(ret)) {
836 double_unlock_hb(hb1, hb2);
837
838 ret = get_user(curval, uaddr1);
839 if (ret)
840 goto out_put_keys;
841
842 if (!fshared)
843 goto retry_private;
844
845 put_futex_key(fshared, &key2);
846 put_futex_key(fshared, &key1);
847 goto retry;
848 }
849 if (curval != *cmpval) {
850 ret = -EAGAIN;
851 goto out_unlock;
852 }
853 }
854
855 head1 = &hb1->chain;
856 plist_for_each_entry_safe(this, next, head1, list) {
857 if (!match_futex (&this->key, &key1))
858 continue;
859 if (++ret <= nr_wake) {
860 wake_futex(this);
861 } else {
862 /*
863 * If key1 and key2 hash to the same bucket, no need to
864 * requeue.
865 */
866 if (likely(head1 != &hb2->chain)) {
867 plist_del(&this->list, &hb1->chain);
868 plist_add(&this->list, &hb2->chain);
869 this->lock_ptr = &hb2->lock;
870 #ifdef CONFIG_DEBUG_PI_LIST
871 this->list.plist.lock = &hb2->lock;
872 #endif
873 }
874 this->key = key2;
875 get_futex_key_refs(&key2);
876 drop_count++;
877
878 if (ret - nr_wake >= nr_requeue)
879 break;
880 }
881 }
882
883 out_unlock:
884 double_unlock_hb(hb1, hb2);
885
886 /*
887 * drop_futex_key_refs() must be called outside the spinlocks. During
888 * the requeue we moved futex_q's from the hash bucket at key1 to the
889 * one at key2 and updated their key pointer. We no longer need to
890 * hold the references to key1.
891 */
892 while (--drop_count >= 0)
893 drop_futex_key_refs(&key1);
894
895 out_put_keys:
896 put_futex_key(fshared, &key2);
897 out_put_key1:
898 put_futex_key(fshared, &key1);
899 out:
900 return ret;
901 }
902
903 /* The key must be already stored in q->key. */
904 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
905 {
906 struct futex_hash_bucket *hb;
907
908 init_waitqueue_head(&q->waiter);
909
910 get_futex_key_refs(&q->key);
911 hb = hash_futex(&q->key);
912 q->lock_ptr = &hb->lock;
913
914 spin_lock(&hb->lock);
915 return hb;
916 }
917
918 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
919 {
920 int prio;
921
922 /*
923 * The priority used to register this element is
924 * - either the real thread-priority for the real-time threads
925 * (i.e. threads with a priority lower than MAX_RT_PRIO)
926 * - or MAX_RT_PRIO for non-RT threads.
927 * Thus, all RT-threads are woken first in priority order, and
928 * the others are woken last, in FIFO order.
929 */
930 prio = min(current->normal_prio, MAX_RT_PRIO);
931
932 plist_node_init(&q->list, prio);
933 #ifdef CONFIG_DEBUG_PI_LIST
934 q->list.plist.lock = &hb->lock;
935 #endif
936 plist_add(&q->list, &hb->chain);
937 q->task = current;
938 spin_unlock(&hb->lock);
939 }
940
941 static inline void
942 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
943 {
944 spin_unlock(&hb->lock);
945 drop_futex_key_refs(&q->key);
946 }
947
948 /*
949 * queue_me and unqueue_me must be called as a pair, each
950 * exactly once. They are called with the hashed spinlock held.
951 */
952
953 /* Return 1 if we were still queued (ie. 0 means we were woken) */
954 static int unqueue_me(struct futex_q *q)
955 {
956 spinlock_t *lock_ptr;
957 int ret = 0;
958
959 /* In the common case we don't take the spinlock, which is nice. */
960 retry:
961 lock_ptr = q->lock_ptr;
962 barrier();
963 if (lock_ptr != NULL) {
964 spin_lock(lock_ptr);
965 /*
966 * q->lock_ptr can change between reading it and
967 * spin_lock(), causing us to take the wrong lock. This
968 * corrects the race condition.
969 *
970 * Reasoning goes like this: if we have the wrong lock,
971 * q->lock_ptr must have changed (maybe several times)
972 * between reading it and the spin_lock(). It can
973 * change again after the spin_lock() but only if it was
974 * already changed before the spin_lock(). It cannot,
975 * however, change back to the original value. Therefore
976 * we can detect whether we acquired the correct lock.
977 */
978 if (unlikely(lock_ptr != q->lock_ptr)) {
979 spin_unlock(lock_ptr);
980 goto retry;
981 }
982 WARN_ON(plist_node_empty(&q->list));
983 plist_del(&q->list, &q->list.plist);
984
985 BUG_ON(q->pi_state);
986
987 spin_unlock(lock_ptr);
988 ret = 1;
989 }
990
991 drop_futex_key_refs(&q->key);
992 return ret;
993 }
994
995 /*
996 * PI futexes can not be requeued and must remove themself from the
997 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
998 * and dropped here.
999 */
1000 static void unqueue_me_pi(struct futex_q *q)
1001 {
1002 WARN_ON(plist_node_empty(&q->list));
1003 plist_del(&q->list, &q->list.plist);
1004
1005 BUG_ON(!q->pi_state);
1006 free_pi_state(q->pi_state);
1007 q->pi_state = NULL;
1008
1009 spin_unlock(q->lock_ptr);
1010
1011 drop_futex_key_refs(&q->key);
1012 }
1013
1014 /*
1015 * Fixup the pi_state owner with the new owner.
1016 *
1017 * Must be called with hash bucket lock held and mm->sem held for non
1018 * private futexes.
1019 */
1020 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1021 struct task_struct *newowner, int fshared)
1022 {
1023 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1024 struct futex_pi_state *pi_state = q->pi_state;
1025 struct task_struct *oldowner = pi_state->owner;
1026 u32 uval, curval, newval;
1027 int ret;
1028
1029 /* Owner died? */
1030 if (!pi_state->owner)
1031 newtid |= FUTEX_OWNER_DIED;
1032
1033 /*
1034 * We are here either because we stole the rtmutex from the
1035 * pending owner or we are the pending owner which failed to
1036 * get the rtmutex. We have to replace the pending owner TID
1037 * in the user space variable. This must be atomic as we have
1038 * to preserve the owner died bit here.
1039 *
1040 * Note: We write the user space value _before_ changing the pi_state
1041 * because we can fault here. Imagine swapped out pages or a fork
1042 * that marked all the anonymous memory readonly for cow.
1043 *
1044 * Modifying pi_state _before_ the user space value would
1045 * leave the pi_state in an inconsistent state when we fault
1046 * here, because we need to drop the hash bucket lock to
1047 * handle the fault. This might be observed in the PID check
1048 * in lookup_pi_state.
1049 */
1050 retry:
1051 if (get_futex_value_locked(&uval, uaddr))
1052 goto handle_fault;
1053
1054 while (1) {
1055 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1056
1057 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1058
1059 if (curval == -EFAULT)
1060 goto handle_fault;
1061 if (curval == uval)
1062 break;
1063 uval = curval;
1064 }
1065
1066 /*
1067 * We fixed up user space. Now we need to fix the pi_state
1068 * itself.
1069 */
1070 if (pi_state->owner != NULL) {
1071 spin_lock_irq(&pi_state->owner->pi_lock);
1072 WARN_ON(list_empty(&pi_state->list));
1073 list_del_init(&pi_state->list);
1074 spin_unlock_irq(&pi_state->owner->pi_lock);
1075 }
1076
1077 pi_state->owner = newowner;
1078
1079 spin_lock_irq(&newowner->pi_lock);
1080 WARN_ON(!list_empty(&pi_state->list));
1081 list_add(&pi_state->list, &newowner->pi_state_list);
1082 spin_unlock_irq(&newowner->pi_lock);
1083 return 0;
1084
1085 /*
1086 * To handle the page fault we need to drop the hash bucket
1087 * lock here. That gives the other task (either the pending
1088 * owner itself or the task which stole the rtmutex) the
1089 * chance to try the fixup of the pi_state. So once we are
1090 * back from handling the fault we need to check the pi_state
1091 * after reacquiring the hash bucket lock and before trying to
1092 * do another fixup. When the fixup has been done already we
1093 * simply return.
1094 */
1095 handle_fault:
1096 spin_unlock(q->lock_ptr);
1097
1098 ret = get_user(uval, uaddr);
1099
1100 spin_lock(q->lock_ptr);
1101
1102 /*
1103 * Check if someone else fixed it for us:
1104 */
1105 if (pi_state->owner != oldowner)
1106 return 0;
1107
1108 if (ret)
1109 return ret;
1110
1111 goto retry;
1112 }
1113
1114 /*
1115 * In case we must use restart_block to restart a futex_wait,
1116 * we encode in the 'flags' shared capability
1117 */
1118 #define FLAGS_SHARED 0x01
1119 #define FLAGS_CLOCKRT 0x02
1120
1121 static long futex_wait_restart(struct restart_block *restart);
1122
1123 static int futex_wait(u32 __user *uaddr, int fshared,
1124 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1125 {
1126 struct task_struct *curr = current;
1127 struct restart_block *restart;
1128 DECLARE_WAITQUEUE(wait, curr);
1129 struct futex_hash_bucket *hb;
1130 struct futex_q q;
1131 u32 uval;
1132 int ret;
1133 struct hrtimer_sleeper t;
1134 int rem = 0;
1135
1136 if (!bitset)
1137 return -EINVAL;
1138
1139 q.pi_state = NULL;
1140 q.bitset = bitset;
1141 retry:
1142 q.key = FUTEX_KEY_INIT;
1143 ret = get_futex_key(uaddr, fshared, &q.key);
1144 if (unlikely(ret != 0))
1145 goto out;
1146
1147 retry_private:
1148 hb = queue_lock(&q);
1149
1150 /*
1151 * Access the page AFTER the hash-bucket is locked.
1152 * Order is important:
1153 *
1154 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1155 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1156 *
1157 * The basic logical guarantee of a futex is that it blocks ONLY
1158 * if cond(var) is known to be true at the time of blocking, for
1159 * any cond. If we queued after testing *uaddr, that would open
1160 * a race condition where we could block indefinitely with
1161 * cond(var) false, which would violate the guarantee.
1162 *
1163 * A consequence is that futex_wait() can return zero and absorb
1164 * a wakeup when *uaddr != val on entry to the syscall. This is
1165 * rare, but normal.
1166 *
1167 * For shared futexes, we hold the mmap semaphore, so the mapping
1168 * cannot have changed since we looked it up in get_futex_key.
1169 */
1170 ret = get_futex_value_locked(&uval, uaddr);
1171
1172 if (unlikely(ret)) {
1173 queue_unlock(&q, hb);
1174
1175 ret = get_user(uval, uaddr);
1176 if (ret)
1177 goto out_put_key;
1178
1179 if (!fshared)
1180 goto retry_private;
1181
1182 put_futex_key(fshared, &q.key);
1183 goto retry;
1184 }
1185 ret = -EWOULDBLOCK;
1186 if (unlikely(uval != val)) {
1187 queue_unlock(&q, hb);
1188 goto out_put_key;
1189 }
1190
1191 /* Only actually queue if *uaddr contained val. */
1192 queue_me(&q, hb);
1193
1194 /*
1195 * There might have been scheduling since the queue_me(), as we
1196 * cannot hold a spinlock across the get_user() in case it
1197 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1198 * queueing ourselves into the futex hash. This code thus has to
1199 * rely on the futex_wake() code removing us from hash when it
1200 * wakes us up.
1201 */
1202
1203 /* add_wait_queue is the barrier after __set_current_state. */
1204 __set_current_state(TASK_INTERRUPTIBLE);
1205 add_wait_queue(&q.waiter, &wait);
1206 /*
1207 * !plist_node_empty() is safe here without any lock.
1208 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1209 */
1210 if (likely(!plist_node_empty(&q.list))) {
1211 if (!abs_time)
1212 schedule();
1213 else {
1214 hrtimer_init_on_stack(&t.timer,
1215 clockrt ? CLOCK_REALTIME :
1216 CLOCK_MONOTONIC,
1217 HRTIMER_MODE_ABS);
1218 hrtimer_init_sleeper(&t, current);
1219 hrtimer_set_expires_range_ns(&t.timer, *abs_time,
1220 current->timer_slack_ns);
1221
1222 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1223 if (!hrtimer_active(&t.timer))
1224 t.task = NULL;
1225
1226 /*
1227 * the timer could have already expired, in which
1228 * case current would be flagged for rescheduling.
1229 * Don't bother calling schedule.
1230 */
1231 if (likely(t.task))
1232 schedule();
1233
1234 hrtimer_cancel(&t.timer);
1235
1236 /* Flag if a timeout occured */
1237 rem = (t.task == NULL);
1238
1239 destroy_hrtimer_on_stack(&t.timer);
1240 }
1241 }
1242 __set_current_state(TASK_RUNNING);
1243
1244 /*
1245 * NOTE: we don't remove ourselves from the waitqueue because
1246 * we are the only user of it.
1247 */
1248
1249 /* If we were woken (and unqueued), we succeeded, whatever. */
1250 ret = 0;
1251 if (!unqueue_me(&q))
1252 goto out_put_key;
1253 ret = -ETIMEDOUT;
1254 if (rem)
1255 goto out_put_key;
1256
1257 /*
1258 * We expect signal_pending(current), but another thread may
1259 * have handled it for us already.
1260 */
1261 ret = -ERESTARTSYS;
1262 if (!abs_time)
1263 goto out_put_key;
1264
1265 restart = &current_thread_info()->restart_block;
1266 restart->fn = futex_wait_restart;
1267 restart->futex.uaddr = (u32 *)uaddr;
1268 restart->futex.val = val;
1269 restart->futex.time = abs_time->tv64;
1270 restart->futex.bitset = bitset;
1271 restart->futex.flags = 0;
1272
1273 if (fshared)
1274 restart->futex.flags |= FLAGS_SHARED;
1275 if (clockrt)
1276 restart->futex.flags |= FLAGS_CLOCKRT;
1277
1278 ret = -ERESTART_RESTARTBLOCK;
1279
1280 out_put_key:
1281 put_futex_key(fshared, &q.key);
1282 out:
1283 return ret;
1284 }
1285
1286
1287 static long futex_wait_restart(struct restart_block *restart)
1288 {
1289 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1290 int fshared = 0;
1291 ktime_t t;
1292
1293 t.tv64 = restart->futex.time;
1294 restart->fn = do_no_restart_syscall;
1295 if (restart->futex.flags & FLAGS_SHARED)
1296 fshared = 1;
1297 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1298 restart->futex.bitset,
1299 restart->futex.flags & FLAGS_CLOCKRT);
1300 }
1301
1302
1303 /*
1304 * Userspace tried a 0 -> TID atomic transition of the futex value
1305 * and failed. The kernel side here does the whole locking operation:
1306 * if there are waiters then it will block, it does PI, etc. (Due to
1307 * races the kernel might see a 0 value of the futex too.)
1308 */
1309 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1310 int detect, ktime_t *time, int trylock)
1311 {
1312 struct hrtimer_sleeper timeout, *to = NULL;
1313 struct task_struct *curr = current;
1314 struct futex_hash_bucket *hb;
1315 u32 uval, newval, curval;
1316 struct futex_q q;
1317 int ret, lock_taken, ownerdied = 0;
1318
1319 if (refill_pi_state_cache())
1320 return -ENOMEM;
1321
1322 if (time) {
1323 to = &timeout;
1324 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1325 HRTIMER_MODE_ABS);
1326 hrtimer_init_sleeper(to, current);
1327 hrtimer_set_expires(&to->timer, *time);
1328 }
1329
1330 q.pi_state = NULL;
1331 retry:
1332 q.key = FUTEX_KEY_INIT;
1333 ret = get_futex_key(uaddr, fshared, &q.key);
1334 if (unlikely(ret != 0))
1335 goto out;
1336
1337 retry_private:
1338 hb = queue_lock(&q);
1339
1340 retry_locked:
1341 ret = lock_taken = 0;
1342
1343 /*
1344 * To avoid races, we attempt to take the lock here again
1345 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1346 * the locks. It will most likely not succeed.
1347 */
1348 newval = task_pid_vnr(current);
1349
1350 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1351
1352 if (unlikely(curval == -EFAULT))
1353 goto uaddr_faulted;
1354
1355 /*
1356 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1357 * situation and we return success to user space.
1358 */
1359 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1360 ret = -EDEADLK;
1361 goto out_unlock_put_key;
1362 }
1363
1364 /*
1365 * Surprise - we got the lock. Just return to userspace:
1366 */
1367 if (unlikely(!curval))
1368 goto out_unlock_put_key;
1369
1370 uval = curval;
1371
1372 /*
1373 * Set the WAITERS flag, so the owner will know it has someone
1374 * to wake at next unlock
1375 */
1376 newval = curval | FUTEX_WAITERS;
1377
1378 /*
1379 * There are two cases, where a futex might have no owner (the
1380 * owner TID is 0): OWNER_DIED. We take over the futex in this
1381 * case. We also do an unconditional take over, when the owner
1382 * of the futex died.
1383 *
1384 * This is safe as we are protected by the hash bucket lock !
1385 */
1386 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1387 /* Keep the OWNER_DIED bit */
1388 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1389 ownerdied = 0;
1390 lock_taken = 1;
1391 }
1392
1393 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1394
1395 if (unlikely(curval == -EFAULT))
1396 goto uaddr_faulted;
1397 if (unlikely(curval != uval))
1398 goto retry_locked;
1399
1400 /*
1401 * We took the lock due to owner died take over.
1402 */
1403 if (unlikely(lock_taken))
1404 goto out_unlock_put_key;
1405
1406 /*
1407 * We dont have the lock. Look up the PI state (or create it if
1408 * we are the first waiter):
1409 */
1410 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1411
1412 if (unlikely(ret)) {
1413 switch (ret) {
1414
1415 case -EAGAIN:
1416 /*
1417 * Task is exiting and we just wait for the
1418 * exit to complete.
1419 */
1420 queue_unlock(&q, hb);
1421 put_futex_key(fshared, &q.key);
1422 cond_resched();
1423 goto retry;
1424
1425 case -ESRCH:
1426 /*
1427 * No owner found for this futex. Check if the
1428 * OWNER_DIED bit is set to figure out whether
1429 * this is a robust futex or not.
1430 */
1431 if (get_futex_value_locked(&curval, uaddr))
1432 goto uaddr_faulted;
1433
1434 /*
1435 * We simply start over in case of a robust
1436 * futex. The code above will take the futex
1437 * and return happy.
1438 */
1439 if (curval & FUTEX_OWNER_DIED) {
1440 ownerdied = 1;
1441 goto retry_locked;
1442 }
1443 default:
1444 goto out_unlock_put_key;
1445 }
1446 }
1447
1448 /*
1449 * Only actually queue now that the atomic ops are done:
1450 */
1451 queue_me(&q, hb);
1452
1453 WARN_ON(!q.pi_state);
1454 /*
1455 * Block on the PI mutex:
1456 */
1457 if (!trylock)
1458 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1459 else {
1460 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1461 /* Fixup the trylock return value: */
1462 ret = ret ? 0 : -EWOULDBLOCK;
1463 }
1464
1465 spin_lock(q.lock_ptr);
1466
1467 if (!ret) {
1468 /*
1469 * Got the lock. We might not be the anticipated owner
1470 * if we did a lock-steal - fix up the PI-state in
1471 * that case:
1472 */
1473 if (q.pi_state->owner != curr)
1474 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1475 } else {
1476 /*
1477 * Catch the rare case, where the lock was released
1478 * when we were on the way back before we locked the
1479 * hash bucket.
1480 */
1481 if (q.pi_state->owner == curr) {
1482 /*
1483 * Try to get the rt_mutex now. This might
1484 * fail as some other task acquired the
1485 * rt_mutex after we removed ourself from the
1486 * rt_mutex waiters list.
1487 */
1488 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1489 ret = 0;
1490 else {
1491 /*
1492 * pi_state is incorrect, some other
1493 * task did a lock steal and we
1494 * returned due to timeout or signal
1495 * without taking the rt_mutex. Too
1496 * late. We can access the
1497 * rt_mutex_owner without locking, as
1498 * the other task is now blocked on
1499 * the hash bucket lock. Fix the state
1500 * up.
1501 */
1502 struct task_struct *owner;
1503 int res;
1504
1505 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1506 res = fixup_pi_state_owner(uaddr, &q, owner,
1507 fshared);
1508
1509 /* propagate -EFAULT, if the fixup failed */
1510 if (res)
1511 ret = res;
1512 }
1513 } else {
1514 /*
1515 * Paranoia check. If we did not take the lock
1516 * in the trylock above, then we should not be
1517 * the owner of the rtmutex, neither the real
1518 * nor the pending one:
1519 */
1520 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1521 printk(KERN_ERR "futex_lock_pi: ret = %d "
1522 "pi-mutex: %p pi-state %p\n", ret,
1523 q.pi_state->pi_mutex.owner,
1524 q.pi_state->owner);
1525 }
1526 }
1527
1528 /*
1529 * If fixup_pi_state_owner() faulted and was unable to handle the
1530 * fault, unlock it and return the fault to userspace.
1531 */
1532 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1533 rt_mutex_unlock(&q.pi_state->pi_mutex);
1534
1535 /* Unqueue and drop the lock */
1536 unqueue_me_pi(&q);
1537
1538 if (to)
1539 destroy_hrtimer_on_stack(&to->timer);
1540 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1541
1542 out_unlock_put_key:
1543 queue_unlock(&q, hb);
1544
1545 out_put_key:
1546 put_futex_key(fshared, &q.key);
1547 out:
1548 if (to)
1549 destroy_hrtimer_on_stack(&to->timer);
1550 return ret;
1551
1552 uaddr_faulted:
1553 /*
1554 * We have to r/w *(int __user *)uaddr, and we have to modify it
1555 * atomically. Therefore, if we continue to fault after get_user()
1556 * below, we need to handle the fault ourselves, while still holding
1557 * the mmap_sem. This can occur if the uaddr is under contention as
1558 * we have to drop the mmap_sem in order to call get_user().
1559 */
1560 queue_unlock(&q, hb);
1561
1562 ret = get_user(uval, uaddr);
1563 if (ret)
1564 goto out_put_key;
1565
1566 if (!fshared)
1567 goto retry_private;
1568
1569 put_futex_key(fshared, &q.key);
1570 goto retry;
1571 }
1572
1573
1574 /*
1575 * Userspace attempted a TID -> 0 atomic transition, and failed.
1576 * This is the in-kernel slowpath: we look up the PI state (if any),
1577 * and do the rt-mutex unlock.
1578 */
1579 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1580 {
1581 struct futex_hash_bucket *hb;
1582 struct futex_q *this, *next;
1583 u32 uval;
1584 struct plist_head *head;
1585 union futex_key key = FUTEX_KEY_INIT;
1586 int ret;
1587
1588 retry:
1589 if (get_user(uval, uaddr))
1590 return -EFAULT;
1591 /*
1592 * We release only a lock we actually own:
1593 */
1594 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1595 return -EPERM;
1596
1597 ret = get_futex_key(uaddr, fshared, &key);
1598 if (unlikely(ret != 0))
1599 goto out;
1600
1601 hb = hash_futex(&key);
1602 spin_lock(&hb->lock);
1603
1604 /*
1605 * To avoid races, try to do the TID -> 0 atomic transition
1606 * again. If it succeeds then we can return without waking
1607 * anyone else up:
1608 */
1609 if (!(uval & FUTEX_OWNER_DIED))
1610 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1611
1612
1613 if (unlikely(uval == -EFAULT))
1614 goto pi_faulted;
1615 /*
1616 * Rare case: we managed to release the lock atomically,
1617 * no need to wake anyone else up:
1618 */
1619 if (unlikely(uval == task_pid_vnr(current)))
1620 goto out_unlock;
1621
1622 /*
1623 * Ok, other tasks may need to be woken up - check waiters
1624 * and do the wakeup if necessary:
1625 */
1626 head = &hb->chain;
1627
1628 plist_for_each_entry_safe(this, next, head, list) {
1629 if (!match_futex (&this->key, &key))
1630 continue;
1631 ret = wake_futex_pi(uaddr, uval, this);
1632 /*
1633 * The atomic access to the futex value
1634 * generated a pagefault, so retry the
1635 * user-access and the wakeup:
1636 */
1637 if (ret == -EFAULT)
1638 goto pi_faulted;
1639 goto out_unlock;
1640 }
1641 /*
1642 * No waiters - kernel unlocks the futex:
1643 */
1644 if (!(uval & FUTEX_OWNER_DIED)) {
1645 ret = unlock_futex_pi(uaddr, uval);
1646 if (ret == -EFAULT)
1647 goto pi_faulted;
1648 }
1649
1650 out_unlock:
1651 spin_unlock(&hb->lock);
1652 put_futex_key(fshared, &key);
1653
1654 out:
1655 return ret;
1656
1657 pi_faulted:
1658 /*
1659 * We have to r/w *(int __user *)uaddr, and we have to modify it
1660 * atomically. Therefore, if we continue to fault after get_user()
1661 * below, we need to handle the fault ourselves, while still holding
1662 * the mmap_sem. This can occur if the uaddr is under contention as
1663 * we have to drop the mmap_sem in order to call get_user().
1664 */
1665 spin_unlock(&hb->lock);
1666 put_futex_key(fshared, &key);
1667
1668 ret = get_user(uval, uaddr);
1669 if (!ret)
1670 goto retry;
1671
1672 return ret;
1673 }
1674
1675 /*
1676 * Support for robust futexes: the kernel cleans up held futexes at
1677 * thread exit time.
1678 *
1679 * Implementation: user-space maintains a per-thread list of locks it
1680 * is holding. Upon do_exit(), the kernel carefully walks this list,
1681 * and marks all locks that are owned by this thread with the
1682 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1683 * always manipulated with the lock held, so the list is private and
1684 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1685 * field, to allow the kernel to clean up if the thread dies after
1686 * acquiring the lock, but just before it could have added itself to
1687 * the list. There can only be one such pending lock.
1688 */
1689
1690 /**
1691 * sys_set_robust_list - set the robust-futex list head of a task
1692 * @head: pointer to the list-head
1693 * @len: length of the list-head, as userspace expects
1694 */
1695 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1696 size_t, len)
1697 {
1698 if (!futex_cmpxchg_enabled)
1699 return -ENOSYS;
1700 /*
1701 * The kernel knows only one size for now:
1702 */
1703 if (unlikely(len != sizeof(*head)))
1704 return -EINVAL;
1705
1706 current->robust_list = head;
1707
1708 return 0;
1709 }
1710
1711 /**
1712 * sys_get_robust_list - get the robust-futex list head of a task
1713 * @pid: pid of the process [zero for current task]
1714 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1715 * @len_ptr: pointer to a length field, the kernel fills in the header size
1716 */
1717 SYSCALL_DEFINE3(get_robust_list, int, pid,
1718 struct robust_list_head __user * __user *, head_ptr,
1719 size_t __user *, len_ptr)
1720 {
1721 struct robust_list_head __user *head;
1722 unsigned long ret;
1723 const struct cred *cred = current_cred(), *pcred;
1724
1725 if (!futex_cmpxchg_enabled)
1726 return -ENOSYS;
1727
1728 if (!pid)
1729 head = current->robust_list;
1730 else {
1731 struct task_struct *p;
1732
1733 ret = -ESRCH;
1734 rcu_read_lock();
1735 p = find_task_by_vpid(pid);
1736 if (!p)
1737 goto err_unlock;
1738 ret = -EPERM;
1739 pcred = __task_cred(p);
1740 if (cred->euid != pcred->euid &&
1741 cred->euid != pcred->uid &&
1742 !capable(CAP_SYS_PTRACE))
1743 goto err_unlock;
1744 head = p->robust_list;
1745 rcu_read_unlock();
1746 }
1747
1748 if (put_user(sizeof(*head), len_ptr))
1749 return -EFAULT;
1750 return put_user(head, head_ptr);
1751
1752 err_unlock:
1753 rcu_read_unlock();
1754
1755 return ret;
1756 }
1757
1758 /*
1759 * Process a futex-list entry, check whether it's owned by the
1760 * dying task, and do notification if so:
1761 */
1762 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1763 {
1764 u32 uval, nval, mval;
1765
1766 retry:
1767 if (get_user(uval, uaddr))
1768 return -1;
1769
1770 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1771 /*
1772 * Ok, this dying thread is truly holding a futex
1773 * of interest. Set the OWNER_DIED bit atomically
1774 * via cmpxchg, and if the value had FUTEX_WAITERS
1775 * set, wake up a waiter (if any). (We have to do a
1776 * futex_wake() even if OWNER_DIED is already set -
1777 * to handle the rare but possible case of recursive
1778 * thread-death.) The rest of the cleanup is done in
1779 * userspace.
1780 */
1781 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1782 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1783
1784 if (nval == -EFAULT)
1785 return -1;
1786
1787 if (nval != uval)
1788 goto retry;
1789
1790 /*
1791 * Wake robust non-PI futexes here. The wakeup of
1792 * PI futexes happens in exit_pi_state():
1793 */
1794 if (!pi && (uval & FUTEX_WAITERS))
1795 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1796 }
1797 return 0;
1798 }
1799
1800 /*
1801 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1802 */
1803 static inline int fetch_robust_entry(struct robust_list __user **entry,
1804 struct robust_list __user * __user *head,
1805 int *pi)
1806 {
1807 unsigned long uentry;
1808
1809 if (get_user(uentry, (unsigned long __user *)head))
1810 return -EFAULT;
1811
1812 *entry = (void __user *)(uentry & ~1UL);
1813 *pi = uentry & 1;
1814
1815 return 0;
1816 }
1817
1818 /*
1819 * Walk curr->robust_list (very carefully, it's a userspace list!)
1820 * and mark any locks found there dead, and notify any waiters.
1821 *
1822 * We silently return on any sign of list-walking problem.
1823 */
1824 void exit_robust_list(struct task_struct *curr)
1825 {
1826 struct robust_list_head __user *head = curr->robust_list;
1827 struct robust_list __user *entry, *next_entry, *pending;
1828 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1829 unsigned long futex_offset;
1830 int rc;
1831
1832 if (!futex_cmpxchg_enabled)
1833 return;
1834
1835 /*
1836 * Fetch the list head (which was registered earlier, via
1837 * sys_set_robust_list()):
1838 */
1839 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1840 return;
1841 /*
1842 * Fetch the relative futex offset:
1843 */
1844 if (get_user(futex_offset, &head->futex_offset))
1845 return;
1846 /*
1847 * Fetch any possibly pending lock-add first, and handle it
1848 * if it exists:
1849 */
1850 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1851 return;
1852
1853 next_entry = NULL; /* avoid warning with gcc */
1854 while (entry != &head->list) {
1855 /*
1856 * Fetch the next entry in the list before calling
1857 * handle_futex_death:
1858 */
1859 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1860 /*
1861 * A pending lock might already be on the list, so
1862 * don't process it twice:
1863 */
1864 if (entry != pending)
1865 if (handle_futex_death((void __user *)entry + futex_offset,
1866 curr, pi))
1867 return;
1868 if (rc)
1869 return;
1870 entry = next_entry;
1871 pi = next_pi;
1872 /*
1873 * Avoid excessively long or circular lists:
1874 */
1875 if (!--limit)
1876 break;
1877
1878 cond_resched();
1879 }
1880
1881 if (pending)
1882 handle_futex_death((void __user *)pending + futex_offset,
1883 curr, pip);
1884 }
1885
1886 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1887 u32 __user *uaddr2, u32 val2, u32 val3)
1888 {
1889 int clockrt, ret = -ENOSYS;
1890 int cmd = op & FUTEX_CMD_MASK;
1891 int fshared = 0;
1892
1893 if (!(op & FUTEX_PRIVATE_FLAG))
1894 fshared = 1;
1895
1896 clockrt = op & FUTEX_CLOCK_REALTIME;
1897 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1898 return -ENOSYS;
1899
1900 switch (cmd) {
1901 case FUTEX_WAIT:
1902 val3 = FUTEX_BITSET_MATCH_ANY;
1903 case FUTEX_WAIT_BITSET:
1904 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1905 break;
1906 case FUTEX_WAKE:
1907 val3 = FUTEX_BITSET_MATCH_ANY;
1908 case FUTEX_WAKE_BITSET:
1909 ret = futex_wake(uaddr, fshared, val, val3);
1910 break;
1911 case FUTEX_REQUEUE:
1912 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1913 break;
1914 case FUTEX_CMP_REQUEUE:
1915 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1916 break;
1917 case FUTEX_WAKE_OP:
1918 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1919 break;
1920 case FUTEX_LOCK_PI:
1921 if (futex_cmpxchg_enabled)
1922 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1923 break;
1924 case FUTEX_UNLOCK_PI:
1925 if (futex_cmpxchg_enabled)
1926 ret = futex_unlock_pi(uaddr, fshared);
1927 break;
1928 case FUTEX_TRYLOCK_PI:
1929 if (futex_cmpxchg_enabled)
1930 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1931 break;
1932 default:
1933 ret = -ENOSYS;
1934 }
1935 return ret;
1936 }
1937
1938
1939 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1940 struct timespec __user *, utime, u32 __user *, uaddr2,
1941 u32, val3)
1942 {
1943 struct timespec ts;
1944 ktime_t t, *tp = NULL;
1945 u32 val2 = 0;
1946 int cmd = op & FUTEX_CMD_MASK;
1947
1948 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1949 cmd == FUTEX_WAIT_BITSET)) {
1950 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1951 return -EFAULT;
1952 if (!timespec_valid(&ts))
1953 return -EINVAL;
1954
1955 t = timespec_to_ktime(ts);
1956 if (cmd == FUTEX_WAIT)
1957 t = ktime_add_safe(ktime_get(), t);
1958 tp = &t;
1959 }
1960 /*
1961 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1962 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1963 */
1964 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1965 cmd == FUTEX_WAKE_OP)
1966 val2 = (u32) (unsigned long) utime;
1967
1968 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1969 }
1970
1971 static int __init futex_init(void)
1972 {
1973 u32 curval;
1974 int i;
1975
1976 /*
1977 * This will fail and we want it. Some arch implementations do
1978 * runtime detection of the futex_atomic_cmpxchg_inatomic()
1979 * functionality. We want to know that before we call in any
1980 * of the complex code paths. Also we want to prevent
1981 * registration of robust lists in that case. NULL is
1982 * guaranteed to fault and we get -EFAULT on functional
1983 * implementation, the non functional ones will return
1984 * -ENOSYS.
1985 */
1986 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
1987 if (curval == -EFAULT)
1988 futex_cmpxchg_enabled = 1;
1989
1990 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1991 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1992 spin_lock_init(&futex_queues[i].lock);
1993 }
1994
1995 return 0;
1996 }
1997 __initcall(futex_init);
This page took 0.074186 seconds and 5 git commands to generate.