blk-mq: fix hang in bt_get()
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic();
271 }
272
273 /*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
280 /*
281 * Full barrier (A), see the ordering comment above.
282 */
283 smp_mb__after_atomic();
284 #endif
285 }
286
287 /*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
305 }
306
307 /*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
346 default:
347 smp_mb(); /* explicit MB (B) */
348 }
349 }
350
351 /*
352 * Drop a reference to the resource addressed by a key.
353 * The hash bucket spinlock must not be held.
354 */
355 static void drop_futex_key_refs(union futex_key *key)
356 {
357 if (!key->both.ptr) {
358 /* If we're here then we tried to put a key we failed to get */
359 WARN_ON_ONCE(1);
360 return;
361 }
362
363 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
364 case FUT_OFF_INODE:
365 iput(key->shared.inode);
366 break;
367 case FUT_OFF_MMSHARED:
368 mmdrop(key->private.mm);
369 break;
370 }
371 }
372
373 /**
374 * get_futex_key() - Get parameters which are the keys for a futex
375 * @uaddr: virtual address of the futex
376 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
377 * @key: address where result is stored.
378 * @rw: mapping needs to be read/write (values: VERIFY_READ,
379 * VERIFY_WRITE)
380 *
381 * Return: a negative error code or 0
382 *
383 * The key words are stored in *key on success.
384 *
385 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
386 * offset_within_page). For private mappings, it's (uaddr, current->mm).
387 * We can usually work out the index without swapping in the page.
388 *
389 * lock_page() might sleep, the caller should not hold a spinlock.
390 */
391 static int
392 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
393 {
394 unsigned long address = (unsigned long)uaddr;
395 struct mm_struct *mm = current->mm;
396 struct page *page, *page_head;
397 int err, ro = 0;
398
399 /*
400 * The futex address must be "naturally" aligned.
401 */
402 key->both.offset = address % PAGE_SIZE;
403 if (unlikely((address % sizeof(u32)) != 0))
404 return -EINVAL;
405 address -= key->both.offset;
406
407 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
408 return -EFAULT;
409
410 /*
411 * PROCESS_PRIVATE futexes are fast.
412 * As the mm cannot disappear under us and the 'key' only needs
413 * virtual address, we dont even have to find the underlying vma.
414 * Note : We do have to check 'uaddr' is a valid user address,
415 * but access_ok() should be faster than find_vma()
416 */
417 if (!fshared) {
418 key->private.mm = mm;
419 key->private.address = address;
420 get_futex_key_refs(key); /* implies MB (B) */
421 return 0;
422 }
423
424 again:
425 err = get_user_pages_fast(address, 1, 1, &page);
426 /*
427 * If write access is not required (eg. FUTEX_WAIT), try
428 * and get read-only access.
429 */
430 if (err == -EFAULT && rw == VERIFY_READ) {
431 err = get_user_pages_fast(address, 1, 0, &page);
432 ro = 1;
433 }
434 if (err < 0)
435 return err;
436 else
437 err = 0;
438
439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
440 page_head = page;
441 if (unlikely(PageTail(page))) {
442 put_page(page);
443 /* serialize against __split_huge_page_splitting() */
444 local_irq_disable();
445 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
446 page_head = compound_head(page);
447 /*
448 * page_head is valid pointer but we must pin
449 * it before taking the PG_lock and/or
450 * PG_compound_lock. The moment we re-enable
451 * irqs __split_huge_page_splitting() can
452 * return and the head page can be freed from
453 * under us. We can't take the PG_lock and/or
454 * PG_compound_lock on a page that could be
455 * freed from under us.
456 */
457 if (page != page_head) {
458 get_page(page_head);
459 put_page(page);
460 }
461 local_irq_enable();
462 } else {
463 local_irq_enable();
464 goto again;
465 }
466 }
467 #else
468 page_head = compound_head(page);
469 if (page != page_head) {
470 get_page(page_head);
471 put_page(page);
472 }
473 #endif
474
475 lock_page(page_head);
476
477 /*
478 * If page_head->mapping is NULL, then it cannot be a PageAnon
479 * page; but it might be the ZERO_PAGE or in the gate area or
480 * in a special mapping (all cases which we are happy to fail);
481 * or it may have been a good file page when get_user_pages_fast
482 * found it, but truncated or holepunched or subjected to
483 * invalidate_complete_page2 before we got the page lock (also
484 * cases which we are happy to fail). And we hold a reference,
485 * so refcount care in invalidate_complete_page's remove_mapping
486 * prevents drop_caches from setting mapping to NULL beneath us.
487 *
488 * The case we do have to guard against is when memory pressure made
489 * shmem_writepage move it from filecache to swapcache beneath us:
490 * an unlikely race, but we do need to retry for page_head->mapping.
491 */
492 if (!page_head->mapping) {
493 int shmem_swizzled = PageSwapCache(page_head);
494 unlock_page(page_head);
495 put_page(page_head);
496 if (shmem_swizzled)
497 goto again;
498 return -EFAULT;
499 }
500
501 /*
502 * Private mappings are handled in a simple way.
503 *
504 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
505 * it's a read-only handle, it's expected that futexes attach to
506 * the object not the particular process.
507 */
508 if (PageAnon(page_head)) {
509 /*
510 * A RO anonymous page will never change and thus doesn't make
511 * sense for futex operations.
512 */
513 if (ro) {
514 err = -EFAULT;
515 goto out;
516 }
517
518 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
519 key->private.mm = mm;
520 key->private.address = address;
521 } else {
522 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
523 key->shared.inode = page_head->mapping->host;
524 key->shared.pgoff = basepage_index(page);
525 }
526
527 get_futex_key_refs(key); /* implies MB (B) */
528
529 out:
530 unlock_page(page_head);
531 put_page(page_head);
532 return err;
533 }
534
535 static inline void put_futex_key(union futex_key *key)
536 {
537 drop_futex_key_refs(key);
538 }
539
540 /**
541 * fault_in_user_writeable() - Fault in user address and verify RW access
542 * @uaddr: pointer to faulting user space address
543 *
544 * Slow path to fixup the fault we just took in the atomic write
545 * access to @uaddr.
546 *
547 * We have no generic implementation of a non-destructive write to the
548 * user address. We know that we faulted in the atomic pagefault
549 * disabled section so we can as well avoid the #PF overhead by
550 * calling get_user_pages() right away.
551 */
552 static int fault_in_user_writeable(u32 __user *uaddr)
553 {
554 struct mm_struct *mm = current->mm;
555 int ret;
556
557 down_read(&mm->mmap_sem);
558 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
559 FAULT_FLAG_WRITE);
560 up_read(&mm->mmap_sem);
561
562 return ret < 0 ? ret : 0;
563 }
564
565 /**
566 * futex_top_waiter() - Return the highest priority waiter on a futex
567 * @hb: the hash bucket the futex_q's reside in
568 * @key: the futex key (to distinguish it from other futex futex_q's)
569 *
570 * Must be called with the hb lock held.
571 */
572 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
573 union futex_key *key)
574 {
575 struct futex_q *this;
576
577 plist_for_each_entry(this, &hb->chain, list) {
578 if (match_futex(&this->key, key))
579 return this;
580 }
581 return NULL;
582 }
583
584 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
585 u32 uval, u32 newval)
586 {
587 int ret;
588
589 pagefault_disable();
590 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
591 pagefault_enable();
592
593 return ret;
594 }
595
596 static int get_futex_value_locked(u32 *dest, u32 __user *from)
597 {
598 int ret;
599
600 pagefault_disable();
601 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
602 pagefault_enable();
603
604 return ret ? -EFAULT : 0;
605 }
606
607
608 /*
609 * PI code:
610 */
611 static int refill_pi_state_cache(void)
612 {
613 struct futex_pi_state *pi_state;
614
615 if (likely(current->pi_state_cache))
616 return 0;
617
618 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
619
620 if (!pi_state)
621 return -ENOMEM;
622
623 INIT_LIST_HEAD(&pi_state->list);
624 /* pi_mutex gets initialized later */
625 pi_state->owner = NULL;
626 atomic_set(&pi_state->refcount, 1);
627 pi_state->key = FUTEX_KEY_INIT;
628
629 current->pi_state_cache = pi_state;
630
631 return 0;
632 }
633
634 static struct futex_pi_state * alloc_pi_state(void)
635 {
636 struct futex_pi_state *pi_state = current->pi_state_cache;
637
638 WARN_ON(!pi_state);
639 current->pi_state_cache = NULL;
640
641 return pi_state;
642 }
643
644 static void free_pi_state(struct futex_pi_state *pi_state)
645 {
646 if (!atomic_dec_and_test(&pi_state->refcount))
647 return;
648
649 /*
650 * If pi_state->owner is NULL, the owner is most probably dying
651 * and has cleaned up the pi_state already
652 */
653 if (pi_state->owner) {
654 raw_spin_lock_irq(&pi_state->owner->pi_lock);
655 list_del_init(&pi_state->list);
656 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
657
658 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
659 }
660
661 if (current->pi_state_cache)
662 kfree(pi_state);
663 else {
664 /*
665 * pi_state->list is already empty.
666 * clear pi_state->owner.
667 * refcount is at 0 - put it back to 1.
668 */
669 pi_state->owner = NULL;
670 atomic_set(&pi_state->refcount, 1);
671 current->pi_state_cache = pi_state;
672 }
673 }
674
675 /*
676 * Look up the task based on what TID userspace gave us.
677 * We dont trust it.
678 */
679 static struct task_struct * futex_find_get_task(pid_t pid)
680 {
681 struct task_struct *p;
682
683 rcu_read_lock();
684 p = find_task_by_vpid(pid);
685 if (p)
686 get_task_struct(p);
687
688 rcu_read_unlock();
689
690 return p;
691 }
692
693 /*
694 * This task is holding PI mutexes at exit time => bad.
695 * Kernel cleans up PI-state, but userspace is likely hosed.
696 * (Robust-futex cleanup is separate and might save the day for userspace.)
697 */
698 void exit_pi_state_list(struct task_struct *curr)
699 {
700 struct list_head *next, *head = &curr->pi_state_list;
701 struct futex_pi_state *pi_state;
702 struct futex_hash_bucket *hb;
703 union futex_key key = FUTEX_KEY_INIT;
704
705 if (!futex_cmpxchg_enabled)
706 return;
707 /*
708 * We are a ZOMBIE and nobody can enqueue itself on
709 * pi_state_list anymore, but we have to be careful
710 * versus waiters unqueueing themselves:
711 */
712 raw_spin_lock_irq(&curr->pi_lock);
713 while (!list_empty(head)) {
714
715 next = head->next;
716 pi_state = list_entry(next, struct futex_pi_state, list);
717 key = pi_state->key;
718 hb = hash_futex(&key);
719 raw_spin_unlock_irq(&curr->pi_lock);
720
721 spin_lock(&hb->lock);
722
723 raw_spin_lock_irq(&curr->pi_lock);
724 /*
725 * We dropped the pi-lock, so re-check whether this
726 * task still owns the PI-state:
727 */
728 if (head->next != next) {
729 spin_unlock(&hb->lock);
730 continue;
731 }
732
733 WARN_ON(pi_state->owner != curr);
734 WARN_ON(list_empty(&pi_state->list));
735 list_del_init(&pi_state->list);
736 pi_state->owner = NULL;
737 raw_spin_unlock_irq(&curr->pi_lock);
738
739 rt_mutex_unlock(&pi_state->pi_mutex);
740
741 spin_unlock(&hb->lock);
742
743 raw_spin_lock_irq(&curr->pi_lock);
744 }
745 raw_spin_unlock_irq(&curr->pi_lock);
746 }
747
748 /*
749 * We need to check the following states:
750 *
751 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
752 *
753 * [1] NULL | --- | --- | 0 | 0/1 | Valid
754 * [2] NULL | --- | --- | >0 | 0/1 | Valid
755 *
756 * [3] Found | NULL | -- | Any | 0/1 | Invalid
757 *
758 * [4] Found | Found | NULL | 0 | 1 | Valid
759 * [5] Found | Found | NULL | >0 | 1 | Invalid
760 *
761 * [6] Found | Found | task | 0 | 1 | Valid
762 *
763 * [7] Found | Found | NULL | Any | 0 | Invalid
764 *
765 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
766 * [9] Found | Found | task | 0 | 0 | Invalid
767 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
768 *
769 * [1] Indicates that the kernel can acquire the futex atomically. We
770 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
771 *
772 * [2] Valid, if TID does not belong to a kernel thread. If no matching
773 * thread is found then it indicates that the owner TID has died.
774 *
775 * [3] Invalid. The waiter is queued on a non PI futex
776 *
777 * [4] Valid state after exit_robust_list(), which sets the user space
778 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
779 *
780 * [5] The user space value got manipulated between exit_robust_list()
781 * and exit_pi_state_list()
782 *
783 * [6] Valid state after exit_pi_state_list() which sets the new owner in
784 * the pi_state but cannot access the user space value.
785 *
786 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
787 *
788 * [8] Owner and user space value match
789 *
790 * [9] There is no transient state which sets the user space TID to 0
791 * except exit_robust_list(), but this is indicated by the
792 * FUTEX_OWNER_DIED bit. See [4]
793 *
794 * [10] There is no transient state which leaves owner and user space
795 * TID out of sync.
796 */
797
798 /*
799 * Validate that the existing waiter has a pi_state and sanity check
800 * the pi_state against the user space value. If correct, attach to
801 * it.
802 */
803 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
804 struct futex_pi_state **ps)
805 {
806 pid_t pid = uval & FUTEX_TID_MASK;
807
808 /*
809 * Userspace might have messed up non-PI and PI futexes [3]
810 */
811 if (unlikely(!pi_state))
812 return -EINVAL;
813
814 WARN_ON(!atomic_read(&pi_state->refcount));
815
816 /*
817 * Handle the owner died case:
818 */
819 if (uval & FUTEX_OWNER_DIED) {
820 /*
821 * exit_pi_state_list sets owner to NULL and wakes the
822 * topmost waiter. The task which acquires the
823 * pi_state->rt_mutex will fixup owner.
824 */
825 if (!pi_state->owner) {
826 /*
827 * No pi state owner, but the user space TID
828 * is not 0. Inconsistent state. [5]
829 */
830 if (pid)
831 return -EINVAL;
832 /*
833 * Take a ref on the state and return success. [4]
834 */
835 goto out_state;
836 }
837
838 /*
839 * If TID is 0, then either the dying owner has not
840 * yet executed exit_pi_state_list() or some waiter
841 * acquired the rtmutex in the pi state, but did not
842 * yet fixup the TID in user space.
843 *
844 * Take a ref on the state and return success. [6]
845 */
846 if (!pid)
847 goto out_state;
848 } else {
849 /*
850 * If the owner died bit is not set, then the pi_state
851 * must have an owner. [7]
852 */
853 if (!pi_state->owner)
854 return -EINVAL;
855 }
856
857 /*
858 * Bail out if user space manipulated the futex value. If pi
859 * state exists then the owner TID must be the same as the
860 * user space TID. [9/10]
861 */
862 if (pid != task_pid_vnr(pi_state->owner))
863 return -EINVAL;
864 out_state:
865 atomic_inc(&pi_state->refcount);
866 *ps = pi_state;
867 return 0;
868 }
869
870 /*
871 * Lookup the task for the TID provided from user space and attach to
872 * it after doing proper sanity checks.
873 */
874 static int attach_to_pi_owner(u32 uval, union futex_key *key,
875 struct futex_pi_state **ps)
876 {
877 pid_t pid = uval & FUTEX_TID_MASK;
878 struct futex_pi_state *pi_state;
879 struct task_struct *p;
880
881 /*
882 * We are the first waiter - try to look up the real owner and attach
883 * the new pi_state to it, but bail out when TID = 0 [1]
884 */
885 if (!pid)
886 return -ESRCH;
887 p = futex_find_get_task(pid);
888 if (!p)
889 return -ESRCH;
890
891 if (!p->mm) {
892 put_task_struct(p);
893 return -EPERM;
894 }
895
896 /*
897 * We need to look at the task state flags to figure out,
898 * whether the task is exiting. To protect against the do_exit
899 * change of the task flags, we do this protected by
900 * p->pi_lock:
901 */
902 raw_spin_lock_irq(&p->pi_lock);
903 if (unlikely(p->flags & PF_EXITING)) {
904 /*
905 * The task is on the way out. When PF_EXITPIDONE is
906 * set, we know that the task has finished the
907 * cleanup:
908 */
909 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
910
911 raw_spin_unlock_irq(&p->pi_lock);
912 put_task_struct(p);
913 return ret;
914 }
915
916 /*
917 * No existing pi state. First waiter. [2]
918 */
919 pi_state = alloc_pi_state();
920
921 /*
922 * Initialize the pi_mutex in locked state and make @p
923 * the owner of it:
924 */
925 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
926
927 /* Store the key for possible exit cleanups: */
928 pi_state->key = *key;
929
930 WARN_ON(!list_empty(&pi_state->list));
931 list_add(&pi_state->list, &p->pi_state_list);
932 pi_state->owner = p;
933 raw_spin_unlock_irq(&p->pi_lock);
934
935 put_task_struct(p);
936
937 *ps = pi_state;
938
939 return 0;
940 }
941
942 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
943 union futex_key *key, struct futex_pi_state **ps)
944 {
945 struct futex_q *match = futex_top_waiter(hb, key);
946
947 /*
948 * If there is a waiter on that futex, validate it and
949 * attach to the pi_state when the validation succeeds.
950 */
951 if (match)
952 return attach_to_pi_state(uval, match->pi_state, ps);
953
954 /*
955 * We are the first waiter - try to look up the owner based on
956 * @uval and attach to it.
957 */
958 return attach_to_pi_owner(uval, key, ps);
959 }
960
961 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
962 {
963 u32 uninitialized_var(curval);
964
965 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
966 return -EFAULT;
967
968 /*If user space value changed, let the caller retry */
969 return curval != uval ? -EAGAIN : 0;
970 }
971
972 /**
973 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
974 * @uaddr: the pi futex user address
975 * @hb: the pi futex hash bucket
976 * @key: the futex key associated with uaddr and hb
977 * @ps: the pi_state pointer where we store the result of the
978 * lookup
979 * @task: the task to perform the atomic lock work for. This will
980 * be "current" except in the case of requeue pi.
981 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
982 *
983 * Return:
984 * 0 - ready to wait;
985 * 1 - acquired the lock;
986 * <0 - error
987 *
988 * The hb->lock and futex_key refs shall be held by the caller.
989 */
990 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
991 union futex_key *key,
992 struct futex_pi_state **ps,
993 struct task_struct *task, int set_waiters)
994 {
995 u32 uval, newval, vpid = task_pid_vnr(task);
996 struct futex_q *match;
997 int ret;
998
999 /*
1000 * Read the user space value first so we can validate a few
1001 * things before proceeding further.
1002 */
1003 if (get_futex_value_locked(&uval, uaddr))
1004 return -EFAULT;
1005
1006 /*
1007 * Detect deadlocks.
1008 */
1009 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1010 return -EDEADLK;
1011
1012 /*
1013 * Lookup existing state first. If it exists, try to attach to
1014 * its pi_state.
1015 */
1016 match = futex_top_waiter(hb, key);
1017 if (match)
1018 return attach_to_pi_state(uval, match->pi_state, ps);
1019
1020 /*
1021 * No waiter and user TID is 0. We are here because the
1022 * waiters or the owner died bit is set or called from
1023 * requeue_cmp_pi or for whatever reason something took the
1024 * syscall.
1025 */
1026 if (!(uval & FUTEX_TID_MASK)) {
1027 /*
1028 * We take over the futex. No other waiters and the user space
1029 * TID is 0. We preserve the owner died bit.
1030 */
1031 newval = uval & FUTEX_OWNER_DIED;
1032 newval |= vpid;
1033
1034 /* The futex requeue_pi code can enforce the waiters bit */
1035 if (set_waiters)
1036 newval |= FUTEX_WAITERS;
1037
1038 ret = lock_pi_update_atomic(uaddr, uval, newval);
1039 /* If the take over worked, return 1 */
1040 return ret < 0 ? ret : 1;
1041 }
1042
1043 /*
1044 * First waiter. Set the waiters bit before attaching ourself to
1045 * the owner. If owner tries to unlock, it will be forced into
1046 * the kernel and blocked on hb->lock.
1047 */
1048 newval = uval | FUTEX_WAITERS;
1049 ret = lock_pi_update_atomic(uaddr, uval, newval);
1050 if (ret)
1051 return ret;
1052 /*
1053 * If the update of the user space value succeeded, we try to
1054 * attach to the owner. If that fails, no harm done, we only
1055 * set the FUTEX_WAITERS bit in the user space variable.
1056 */
1057 return attach_to_pi_owner(uval, key, ps);
1058 }
1059
1060 /**
1061 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1062 * @q: The futex_q to unqueue
1063 *
1064 * The q->lock_ptr must not be NULL and must be held by the caller.
1065 */
1066 static void __unqueue_futex(struct futex_q *q)
1067 {
1068 struct futex_hash_bucket *hb;
1069
1070 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1071 || WARN_ON(plist_node_empty(&q->list)))
1072 return;
1073
1074 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1075 plist_del(&q->list, &hb->chain);
1076 hb_waiters_dec(hb);
1077 }
1078
1079 /*
1080 * The hash bucket lock must be held when this is called.
1081 * Afterwards, the futex_q must not be accessed.
1082 */
1083 static void wake_futex(struct futex_q *q)
1084 {
1085 struct task_struct *p = q->task;
1086
1087 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1088 return;
1089
1090 /*
1091 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1092 * a non-futex wake up happens on another CPU then the task
1093 * might exit and p would dereference a non-existing task
1094 * struct. Prevent this by holding a reference on p across the
1095 * wake up.
1096 */
1097 get_task_struct(p);
1098
1099 __unqueue_futex(q);
1100 /*
1101 * The waiting task can free the futex_q as soon as
1102 * q->lock_ptr = NULL is written, without taking any locks. A
1103 * memory barrier is required here to prevent the following
1104 * store to lock_ptr from getting ahead of the plist_del.
1105 */
1106 smp_wmb();
1107 q->lock_ptr = NULL;
1108
1109 wake_up_state(p, TASK_NORMAL);
1110 put_task_struct(p);
1111 }
1112
1113 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1114 {
1115 struct task_struct *new_owner;
1116 struct futex_pi_state *pi_state = this->pi_state;
1117 u32 uninitialized_var(curval), newval;
1118 int ret = 0;
1119
1120 if (!pi_state)
1121 return -EINVAL;
1122
1123 /*
1124 * If current does not own the pi_state then the futex is
1125 * inconsistent and user space fiddled with the futex value.
1126 */
1127 if (pi_state->owner != current)
1128 return -EINVAL;
1129
1130 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1131 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1132
1133 /*
1134 * It is possible that the next waiter (the one that brought
1135 * this owner to the kernel) timed out and is no longer
1136 * waiting on the lock.
1137 */
1138 if (!new_owner)
1139 new_owner = this->task;
1140
1141 /*
1142 * We pass it to the next owner. The WAITERS bit is always
1143 * kept enabled while there is PI state around. We cleanup the
1144 * owner died bit, because we are the owner.
1145 */
1146 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1147
1148 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1149 ret = -EFAULT;
1150 else if (curval != uval)
1151 ret = -EINVAL;
1152 if (ret) {
1153 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1154 return ret;
1155 }
1156
1157 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1158 WARN_ON(list_empty(&pi_state->list));
1159 list_del_init(&pi_state->list);
1160 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1161
1162 raw_spin_lock_irq(&new_owner->pi_lock);
1163 WARN_ON(!list_empty(&pi_state->list));
1164 list_add(&pi_state->list, &new_owner->pi_state_list);
1165 pi_state->owner = new_owner;
1166 raw_spin_unlock_irq(&new_owner->pi_lock);
1167
1168 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1169 rt_mutex_unlock(&pi_state->pi_mutex);
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * Express the locking dependencies for lockdep:
1176 */
1177 static inline void
1178 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1179 {
1180 if (hb1 <= hb2) {
1181 spin_lock(&hb1->lock);
1182 if (hb1 < hb2)
1183 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1184 } else { /* hb1 > hb2 */
1185 spin_lock(&hb2->lock);
1186 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1187 }
1188 }
1189
1190 static inline void
1191 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1192 {
1193 spin_unlock(&hb1->lock);
1194 if (hb1 != hb2)
1195 spin_unlock(&hb2->lock);
1196 }
1197
1198 /*
1199 * Wake up waiters matching bitset queued on this futex (uaddr).
1200 */
1201 static int
1202 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1203 {
1204 struct futex_hash_bucket *hb;
1205 struct futex_q *this, *next;
1206 union futex_key key = FUTEX_KEY_INIT;
1207 int ret;
1208
1209 if (!bitset)
1210 return -EINVAL;
1211
1212 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1213 if (unlikely(ret != 0))
1214 goto out;
1215
1216 hb = hash_futex(&key);
1217
1218 /* Make sure we really have tasks to wakeup */
1219 if (!hb_waiters_pending(hb))
1220 goto out_put_key;
1221
1222 spin_lock(&hb->lock);
1223
1224 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1225 if (match_futex (&this->key, &key)) {
1226 if (this->pi_state || this->rt_waiter) {
1227 ret = -EINVAL;
1228 break;
1229 }
1230
1231 /* Check if one of the bits is set in both bitsets */
1232 if (!(this->bitset & bitset))
1233 continue;
1234
1235 wake_futex(this);
1236 if (++ret >= nr_wake)
1237 break;
1238 }
1239 }
1240
1241 spin_unlock(&hb->lock);
1242 out_put_key:
1243 put_futex_key(&key);
1244 out:
1245 return ret;
1246 }
1247
1248 /*
1249 * Wake up all waiters hashed on the physical page that is mapped
1250 * to this virtual address:
1251 */
1252 static int
1253 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1254 int nr_wake, int nr_wake2, int op)
1255 {
1256 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1257 struct futex_hash_bucket *hb1, *hb2;
1258 struct futex_q *this, *next;
1259 int ret, op_ret;
1260
1261 retry:
1262 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1263 if (unlikely(ret != 0))
1264 goto out;
1265 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1266 if (unlikely(ret != 0))
1267 goto out_put_key1;
1268
1269 hb1 = hash_futex(&key1);
1270 hb2 = hash_futex(&key2);
1271
1272 retry_private:
1273 double_lock_hb(hb1, hb2);
1274 op_ret = futex_atomic_op_inuser(op, uaddr2);
1275 if (unlikely(op_ret < 0)) {
1276
1277 double_unlock_hb(hb1, hb2);
1278
1279 #ifndef CONFIG_MMU
1280 /*
1281 * we don't get EFAULT from MMU faults if we don't have an MMU,
1282 * but we might get them from range checking
1283 */
1284 ret = op_ret;
1285 goto out_put_keys;
1286 #endif
1287
1288 if (unlikely(op_ret != -EFAULT)) {
1289 ret = op_ret;
1290 goto out_put_keys;
1291 }
1292
1293 ret = fault_in_user_writeable(uaddr2);
1294 if (ret)
1295 goto out_put_keys;
1296
1297 if (!(flags & FLAGS_SHARED))
1298 goto retry_private;
1299
1300 put_futex_key(&key2);
1301 put_futex_key(&key1);
1302 goto retry;
1303 }
1304
1305 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1306 if (match_futex (&this->key, &key1)) {
1307 if (this->pi_state || this->rt_waiter) {
1308 ret = -EINVAL;
1309 goto out_unlock;
1310 }
1311 wake_futex(this);
1312 if (++ret >= nr_wake)
1313 break;
1314 }
1315 }
1316
1317 if (op_ret > 0) {
1318 op_ret = 0;
1319 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1320 if (match_futex (&this->key, &key2)) {
1321 if (this->pi_state || this->rt_waiter) {
1322 ret = -EINVAL;
1323 goto out_unlock;
1324 }
1325 wake_futex(this);
1326 if (++op_ret >= nr_wake2)
1327 break;
1328 }
1329 }
1330 ret += op_ret;
1331 }
1332
1333 out_unlock:
1334 double_unlock_hb(hb1, hb2);
1335 out_put_keys:
1336 put_futex_key(&key2);
1337 out_put_key1:
1338 put_futex_key(&key1);
1339 out:
1340 return ret;
1341 }
1342
1343 /**
1344 * requeue_futex() - Requeue a futex_q from one hb to another
1345 * @q: the futex_q to requeue
1346 * @hb1: the source hash_bucket
1347 * @hb2: the target hash_bucket
1348 * @key2: the new key for the requeued futex_q
1349 */
1350 static inline
1351 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1352 struct futex_hash_bucket *hb2, union futex_key *key2)
1353 {
1354
1355 /*
1356 * If key1 and key2 hash to the same bucket, no need to
1357 * requeue.
1358 */
1359 if (likely(&hb1->chain != &hb2->chain)) {
1360 plist_del(&q->list, &hb1->chain);
1361 hb_waiters_dec(hb1);
1362 plist_add(&q->list, &hb2->chain);
1363 hb_waiters_inc(hb2);
1364 q->lock_ptr = &hb2->lock;
1365 }
1366 get_futex_key_refs(key2);
1367 q->key = *key2;
1368 }
1369
1370 /**
1371 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1372 * @q: the futex_q
1373 * @key: the key of the requeue target futex
1374 * @hb: the hash_bucket of the requeue target futex
1375 *
1376 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1377 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1378 * to the requeue target futex so the waiter can detect the wakeup on the right
1379 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1380 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1381 * to protect access to the pi_state to fixup the owner later. Must be called
1382 * with both q->lock_ptr and hb->lock held.
1383 */
1384 static inline
1385 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1386 struct futex_hash_bucket *hb)
1387 {
1388 get_futex_key_refs(key);
1389 q->key = *key;
1390
1391 __unqueue_futex(q);
1392
1393 WARN_ON(!q->rt_waiter);
1394 q->rt_waiter = NULL;
1395
1396 q->lock_ptr = &hb->lock;
1397
1398 wake_up_state(q->task, TASK_NORMAL);
1399 }
1400
1401 /**
1402 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1403 * @pifutex: the user address of the to futex
1404 * @hb1: the from futex hash bucket, must be locked by the caller
1405 * @hb2: the to futex hash bucket, must be locked by the caller
1406 * @key1: the from futex key
1407 * @key2: the to futex key
1408 * @ps: address to store the pi_state pointer
1409 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1410 *
1411 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1412 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1413 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1414 * hb1 and hb2 must be held by the caller.
1415 *
1416 * Return:
1417 * 0 - failed to acquire the lock atomically;
1418 * >0 - acquired the lock, return value is vpid of the top_waiter
1419 * <0 - error
1420 */
1421 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1422 struct futex_hash_bucket *hb1,
1423 struct futex_hash_bucket *hb2,
1424 union futex_key *key1, union futex_key *key2,
1425 struct futex_pi_state **ps, int set_waiters)
1426 {
1427 struct futex_q *top_waiter = NULL;
1428 u32 curval;
1429 int ret, vpid;
1430
1431 if (get_futex_value_locked(&curval, pifutex))
1432 return -EFAULT;
1433
1434 /*
1435 * Find the top_waiter and determine if there are additional waiters.
1436 * If the caller intends to requeue more than 1 waiter to pifutex,
1437 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1438 * as we have means to handle the possible fault. If not, don't set
1439 * the bit unecessarily as it will force the subsequent unlock to enter
1440 * the kernel.
1441 */
1442 top_waiter = futex_top_waiter(hb1, key1);
1443
1444 /* There are no waiters, nothing for us to do. */
1445 if (!top_waiter)
1446 return 0;
1447
1448 /* Ensure we requeue to the expected futex. */
1449 if (!match_futex(top_waiter->requeue_pi_key, key2))
1450 return -EINVAL;
1451
1452 /*
1453 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1454 * the contended case or if set_waiters is 1. The pi_state is returned
1455 * in ps in contended cases.
1456 */
1457 vpid = task_pid_vnr(top_waiter->task);
1458 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1459 set_waiters);
1460 if (ret == 1) {
1461 requeue_pi_wake_futex(top_waiter, key2, hb2);
1462 return vpid;
1463 }
1464 return ret;
1465 }
1466
1467 /**
1468 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1469 * @uaddr1: source futex user address
1470 * @flags: futex flags (FLAGS_SHARED, etc.)
1471 * @uaddr2: target futex user address
1472 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1473 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1474 * @cmpval: @uaddr1 expected value (or %NULL)
1475 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1476 * pi futex (pi to pi requeue is not supported)
1477 *
1478 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1479 * uaddr2 atomically on behalf of the top waiter.
1480 *
1481 * Return:
1482 * >=0 - on success, the number of tasks requeued or woken;
1483 * <0 - on error
1484 */
1485 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1486 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1487 u32 *cmpval, int requeue_pi)
1488 {
1489 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1490 int drop_count = 0, task_count = 0, ret;
1491 struct futex_pi_state *pi_state = NULL;
1492 struct futex_hash_bucket *hb1, *hb2;
1493 struct futex_q *this, *next;
1494
1495 if (requeue_pi) {
1496 /*
1497 * Requeue PI only works on two distinct uaddrs. This
1498 * check is only valid for private futexes. See below.
1499 */
1500 if (uaddr1 == uaddr2)
1501 return -EINVAL;
1502
1503 /*
1504 * requeue_pi requires a pi_state, try to allocate it now
1505 * without any locks in case it fails.
1506 */
1507 if (refill_pi_state_cache())
1508 return -ENOMEM;
1509 /*
1510 * requeue_pi must wake as many tasks as it can, up to nr_wake
1511 * + nr_requeue, since it acquires the rt_mutex prior to
1512 * returning to userspace, so as to not leave the rt_mutex with
1513 * waiters and no owner. However, second and third wake-ups
1514 * cannot be predicted as they involve race conditions with the
1515 * first wake and a fault while looking up the pi_state. Both
1516 * pthread_cond_signal() and pthread_cond_broadcast() should
1517 * use nr_wake=1.
1518 */
1519 if (nr_wake != 1)
1520 return -EINVAL;
1521 }
1522
1523 retry:
1524 if (pi_state != NULL) {
1525 /*
1526 * We will have to lookup the pi_state again, so free this one
1527 * to keep the accounting correct.
1528 */
1529 free_pi_state(pi_state);
1530 pi_state = NULL;
1531 }
1532
1533 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1534 if (unlikely(ret != 0))
1535 goto out;
1536 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1537 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1538 if (unlikely(ret != 0))
1539 goto out_put_key1;
1540
1541 /*
1542 * The check above which compares uaddrs is not sufficient for
1543 * shared futexes. We need to compare the keys:
1544 */
1545 if (requeue_pi && match_futex(&key1, &key2)) {
1546 ret = -EINVAL;
1547 goto out_put_keys;
1548 }
1549
1550 hb1 = hash_futex(&key1);
1551 hb2 = hash_futex(&key2);
1552
1553 retry_private:
1554 hb_waiters_inc(hb2);
1555 double_lock_hb(hb1, hb2);
1556
1557 if (likely(cmpval != NULL)) {
1558 u32 curval;
1559
1560 ret = get_futex_value_locked(&curval, uaddr1);
1561
1562 if (unlikely(ret)) {
1563 double_unlock_hb(hb1, hb2);
1564 hb_waiters_dec(hb2);
1565
1566 ret = get_user(curval, uaddr1);
1567 if (ret)
1568 goto out_put_keys;
1569
1570 if (!(flags & FLAGS_SHARED))
1571 goto retry_private;
1572
1573 put_futex_key(&key2);
1574 put_futex_key(&key1);
1575 goto retry;
1576 }
1577 if (curval != *cmpval) {
1578 ret = -EAGAIN;
1579 goto out_unlock;
1580 }
1581 }
1582
1583 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1584 /*
1585 * Attempt to acquire uaddr2 and wake the top waiter. If we
1586 * intend to requeue waiters, force setting the FUTEX_WAITERS
1587 * bit. We force this here where we are able to easily handle
1588 * faults rather in the requeue loop below.
1589 */
1590 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1591 &key2, &pi_state, nr_requeue);
1592
1593 /*
1594 * At this point the top_waiter has either taken uaddr2 or is
1595 * waiting on it. If the former, then the pi_state will not
1596 * exist yet, look it up one more time to ensure we have a
1597 * reference to it. If the lock was taken, ret contains the
1598 * vpid of the top waiter task.
1599 */
1600 if (ret > 0) {
1601 WARN_ON(pi_state);
1602 drop_count++;
1603 task_count++;
1604 /*
1605 * If we acquired the lock, then the user
1606 * space value of uaddr2 should be vpid. It
1607 * cannot be changed by the top waiter as it
1608 * is blocked on hb2 lock if it tries to do
1609 * so. If something fiddled with it behind our
1610 * back the pi state lookup might unearth
1611 * it. So we rather use the known value than
1612 * rereading and handing potential crap to
1613 * lookup_pi_state.
1614 */
1615 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1616 }
1617
1618 switch (ret) {
1619 case 0:
1620 break;
1621 case -EFAULT:
1622 double_unlock_hb(hb1, hb2);
1623 hb_waiters_dec(hb2);
1624 put_futex_key(&key2);
1625 put_futex_key(&key1);
1626 ret = fault_in_user_writeable(uaddr2);
1627 if (!ret)
1628 goto retry;
1629 goto out;
1630 case -EAGAIN:
1631 /*
1632 * Two reasons for this:
1633 * - Owner is exiting and we just wait for the
1634 * exit to complete.
1635 * - The user space value changed.
1636 */
1637 double_unlock_hb(hb1, hb2);
1638 hb_waiters_dec(hb2);
1639 put_futex_key(&key2);
1640 put_futex_key(&key1);
1641 cond_resched();
1642 goto retry;
1643 default:
1644 goto out_unlock;
1645 }
1646 }
1647
1648 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1649 if (task_count - nr_wake >= nr_requeue)
1650 break;
1651
1652 if (!match_futex(&this->key, &key1))
1653 continue;
1654
1655 /*
1656 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1657 * be paired with each other and no other futex ops.
1658 *
1659 * We should never be requeueing a futex_q with a pi_state,
1660 * which is awaiting a futex_unlock_pi().
1661 */
1662 if ((requeue_pi && !this->rt_waiter) ||
1663 (!requeue_pi && this->rt_waiter) ||
1664 this->pi_state) {
1665 ret = -EINVAL;
1666 break;
1667 }
1668
1669 /*
1670 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1671 * lock, we already woke the top_waiter. If not, it will be
1672 * woken by futex_unlock_pi().
1673 */
1674 if (++task_count <= nr_wake && !requeue_pi) {
1675 wake_futex(this);
1676 continue;
1677 }
1678
1679 /* Ensure we requeue to the expected futex for requeue_pi. */
1680 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1681 ret = -EINVAL;
1682 break;
1683 }
1684
1685 /*
1686 * Requeue nr_requeue waiters and possibly one more in the case
1687 * of requeue_pi if we couldn't acquire the lock atomically.
1688 */
1689 if (requeue_pi) {
1690 /* Prepare the waiter to take the rt_mutex. */
1691 atomic_inc(&pi_state->refcount);
1692 this->pi_state = pi_state;
1693 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1694 this->rt_waiter,
1695 this->task);
1696 if (ret == 1) {
1697 /* We got the lock. */
1698 requeue_pi_wake_futex(this, &key2, hb2);
1699 drop_count++;
1700 continue;
1701 } else if (ret) {
1702 /* -EDEADLK */
1703 this->pi_state = NULL;
1704 free_pi_state(pi_state);
1705 goto out_unlock;
1706 }
1707 }
1708 requeue_futex(this, hb1, hb2, &key2);
1709 drop_count++;
1710 }
1711
1712 out_unlock:
1713 double_unlock_hb(hb1, hb2);
1714 hb_waiters_dec(hb2);
1715
1716 /*
1717 * drop_futex_key_refs() must be called outside the spinlocks. During
1718 * the requeue we moved futex_q's from the hash bucket at key1 to the
1719 * one at key2 and updated their key pointer. We no longer need to
1720 * hold the references to key1.
1721 */
1722 while (--drop_count >= 0)
1723 drop_futex_key_refs(&key1);
1724
1725 out_put_keys:
1726 put_futex_key(&key2);
1727 out_put_key1:
1728 put_futex_key(&key1);
1729 out:
1730 if (pi_state != NULL)
1731 free_pi_state(pi_state);
1732 return ret ? ret : task_count;
1733 }
1734
1735 /* The key must be already stored in q->key. */
1736 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1737 __acquires(&hb->lock)
1738 {
1739 struct futex_hash_bucket *hb;
1740
1741 hb = hash_futex(&q->key);
1742
1743 /*
1744 * Increment the counter before taking the lock so that
1745 * a potential waker won't miss a to-be-slept task that is
1746 * waiting for the spinlock. This is safe as all queue_lock()
1747 * users end up calling queue_me(). Similarly, for housekeeping,
1748 * decrement the counter at queue_unlock() when some error has
1749 * occurred and we don't end up adding the task to the list.
1750 */
1751 hb_waiters_inc(hb);
1752
1753 q->lock_ptr = &hb->lock;
1754
1755 spin_lock(&hb->lock); /* implies MB (A) */
1756 return hb;
1757 }
1758
1759 static inline void
1760 queue_unlock(struct futex_hash_bucket *hb)
1761 __releases(&hb->lock)
1762 {
1763 spin_unlock(&hb->lock);
1764 hb_waiters_dec(hb);
1765 }
1766
1767 /**
1768 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1769 * @q: The futex_q to enqueue
1770 * @hb: The destination hash bucket
1771 *
1772 * The hb->lock must be held by the caller, and is released here. A call to
1773 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1774 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1775 * or nothing if the unqueue is done as part of the wake process and the unqueue
1776 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1777 * an example).
1778 */
1779 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1780 __releases(&hb->lock)
1781 {
1782 int prio;
1783
1784 /*
1785 * The priority used to register this element is
1786 * - either the real thread-priority for the real-time threads
1787 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1788 * - or MAX_RT_PRIO for non-RT threads.
1789 * Thus, all RT-threads are woken first in priority order, and
1790 * the others are woken last, in FIFO order.
1791 */
1792 prio = min(current->normal_prio, MAX_RT_PRIO);
1793
1794 plist_node_init(&q->list, prio);
1795 plist_add(&q->list, &hb->chain);
1796 q->task = current;
1797 spin_unlock(&hb->lock);
1798 }
1799
1800 /**
1801 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1802 * @q: The futex_q to unqueue
1803 *
1804 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1805 * be paired with exactly one earlier call to queue_me().
1806 *
1807 * Return:
1808 * 1 - if the futex_q was still queued (and we removed unqueued it);
1809 * 0 - if the futex_q was already removed by the waking thread
1810 */
1811 static int unqueue_me(struct futex_q *q)
1812 {
1813 spinlock_t *lock_ptr;
1814 int ret = 0;
1815
1816 /* In the common case we don't take the spinlock, which is nice. */
1817 retry:
1818 lock_ptr = q->lock_ptr;
1819 barrier();
1820 if (lock_ptr != NULL) {
1821 spin_lock(lock_ptr);
1822 /*
1823 * q->lock_ptr can change between reading it and
1824 * spin_lock(), causing us to take the wrong lock. This
1825 * corrects the race condition.
1826 *
1827 * Reasoning goes like this: if we have the wrong lock,
1828 * q->lock_ptr must have changed (maybe several times)
1829 * between reading it and the spin_lock(). It can
1830 * change again after the spin_lock() but only if it was
1831 * already changed before the spin_lock(). It cannot,
1832 * however, change back to the original value. Therefore
1833 * we can detect whether we acquired the correct lock.
1834 */
1835 if (unlikely(lock_ptr != q->lock_ptr)) {
1836 spin_unlock(lock_ptr);
1837 goto retry;
1838 }
1839 __unqueue_futex(q);
1840
1841 BUG_ON(q->pi_state);
1842
1843 spin_unlock(lock_ptr);
1844 ret = 1;
1845 }
1846
1847 drop_futex_key_refs(&q->key);
1848 return ret;
1849 }
1850
1851 /*
1852 * PI futexes can not be requeued and must remove themself from the
1853 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1854 * and dropped here.
1855 */
1856 static void unqueue_me_pi(struct futex_q *q)
1857 __releases(q->lock_ptr)
1858 {
1859 __unqueue_futex(q);
1860
1861 BUG_ON(!q->pi_state);
1862 free_pi_state(q->pi_state);
1863 q->pi_state = NULL;
1864
1865 spin_unlock(q->lock_ptr);
1866 }
1867
1868 /*
1869 * Fixup the pi_state owner with the new owner.
1870 *
1871 * Must be called with hash bucket lock held and mm->sem held for non
1872 * private futexes.
1873 */
1874 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1875 struct task_struct *newowner)
1876 {
1877 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1878 struct futex_pi_state *pi_state = q->pi_state;
1879 struct task_struct *oldowner = pi_state->owner;
1880 u32 uval, uninitialized_var(curval), newval;
1881 int ret;
1882
1883 /* Owner died? */
1884 if (!pi_state->owner)
1885 newtid |= FUTEX_OWNER_DIED;
1886
1887 /*
1888 * We are here either because we stole the rtmutex from the
1889 * previous highest priority waiter or we are the highest priority
1890 * waiter but failed to get the rtmutex the first time.
1891 * We have to replace the newowner TID in the user space variable.
1892 * This must be atomic as we have to preserve the owner died bit here.
1893 *
1894 * Note: We write the user space value _before_ changing the pi_state
1895 * because we can fault here. Imagine swapped out pages or a fork
1896 * that marked all the anonymous memory readonly for cow.
1897 *
1898 * Modifying pi_state _before_ the user space value would
1899 * leave the pi_state in an inconsistent state when we fault
1900 * here, because we need to drop the hash bucket lock to
1901 * handle the fault. This might be observed in the PID check
1902 * in lookup_pi_state.
1903 */
1904 retry:
1905 if (get_futex_value_locked(&uval, uaddr))
1906 goto handle_fault;
1907
1908 while (1) {
1909 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1910
1911 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1912 goto handle_fault;
1913 if (curval == uval)
1914 break;
1915 uval = curval;
1916 }
1917
1918 /*
1919 * We fixed up user space. Now we need to fix the pi_state
1920 * itself.
1921 */
1922 if (pi_state->owner != NULL) {
1923 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1924 WARN_ON(list_empty(&pi_state->list));
1925 list_del_init(&pi_state->list);
1926 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1927 }
1928
1929 pi_state->owner = newowner;
1930
1931 raw_spin_lock_irq(&newowner->pi_lock);
1932 WARN_ON(!list_empty(&pi_state->list));
1933 list_add(&pi_state->list, &newowner->pi_state_list);
1934 raw_spin_unlock_irq(&newowner->pi_lock);
1935 return 0;
1936
1937 /*
1938 * To handle the page fault we need to drop the hash bucket
1939 * lock here. That gives the other task (either the highest priority
1940 * waiter itself or the task which stole the rtmutex) the
1941 * chance to try the fixup of the pi_state. So once we are
1942 * back from handling the fault we need to check the pi_state
1943 * after reacquiring the hash bucket lock and before trying to
1944 * do another fixup. When the fixup has been done already we
1945 * simply return.
1946 */
1947 handle_fault:
1948 spin_unlock(q->lock_ptr);
1949
1950 ret = fault_in_user_writeable(uaddr);
1951
1952 spin_lock(q->lock_ptr);
1953
1954 /*
1955 * Check if someone else fixed it for us:
1956 */
1957 if (pi_state->owner != oldowner)
1958 return 0;
1959
1960 if (ret)
1961 return ret;
1962
1963 goto retry;
1964 }
1965
1966 static long futex_wait_restart(struct restart_block *restart);
1967
1968 /**
1969 * fixup_owner() - Post lock pi_state and corner case management
1970 * @uaddr: user address of the futex
1971 * @q: futex_q (contains pi_state and access to the rt_mutex)
1972 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1973 *
1974 * After attempting to lock an rt_mutex, this function is called to cleanup
1975 * the pi_state owner as well as handle race conditions that may allow us to
1976 * acquire the lock. Must be called with the hb lock held.
1977 *
1978 * Return:
1979 * 1 - success, lock taken;
1980 * 0 - success, lock not taken;
1981 * <0 - on error (-EFAULT)
1982 */
1983 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1984 {
1985 struct task_struct *owner;
1986 int ret = 0;
1987
1988 if (locked) {
1989 /*
1990 * Got the lock. We might not be the anticipated owner if we
1991 * did a lock-steal - fix up the PI-state in that case:
1992 */
1993 if (q->pi_state->owner != current)
1994 ret = fixup_pi_state_owner(uaddr, q, current);
1995 goto out;
1996 }
1997
1998 /*
1999 * Catch the rare case, where the lock was released when we were on the
2000 * way back before we locked the hash bucket.
2001 */
2002 if (q->pi_state->owner == current) {
2003 /*
2004 * Try to get the rt_mutex now. This might fail as some other
2005 * task acquired the rt_mutex after we removed ourself from the
2006 * rt_mutex waiters list.
2007 */
2008 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2009 locked = 1;
2010 goto out;
2011 }
2012
2013 /*
2014 * pi_state is incorrect, some other task did a lock steal and
2015 * we returned due to timeout or signal without taking the
2016 * rt_mutex. Too late.
2017 */
2018 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2019 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2020 if (!owner)
2021 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2022 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2023 ret = fixup_pi_state_owner(uaddr, q, owner);
2024 goto out;
2025 }
2026
2027 /*
2028 * Paranoia check. If we did not take the lock, then we should not be
2029 * the owner of the rt_mutex.
2030 */
2031 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2032 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2033 "pi-state %p\n", ret,
2034 q->pi_state->pi_mutex.owner,
2035 q->pi_state->owner);
2036
2037 out:
2038 return ret ? ret : locked;
2039 }
2040
2041 /**
2042 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2043 * @hb: the futex hash bucket, must be locked by the caller
2044 * @q: the futex_q to queue up on
2045 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2046 */
2047 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2048 struct hrtimer_sleeper *timeout)
2049 {
2050 /*
2051 * The task state is guaranteed to be set before another task can
2052 * wake it. set_current_state() is implemented using set_mb() and
2053 * queue_me() calls spin_unlock() upon completion, both serializing
2054 * access to the hash list and forcing another memory barrier.
2055 */
2056 set_current_state(TASK_INTERRUPTIBLE);
2057 queue_me(q, hb);
2058
2059 /* Arm the timer */
2060 if (timeout) {
2061 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2062 if (!hrtimer_active(&timeout->timer))
2063 timeout->task = NULL;
2064 }
2065
2066 /*
2067 * If we have been removed from the hash list, then another task
2068 * has tried to wake us, and we can skip the call to schedule().
2069 */
2070 if (likely(!plist_node_empty(&q->list))) {
2071 /*
2072 * If the timer has already expired, current will already be
2073 * flagged for rescheduling. Only call schedule if there
2074 * is no timeout, or if it has yet to expire.
2075 */
2076 if (!timeout || timeout->task)
2077 freezable_schedule();
2078 }
2079 __set_current_state(TASK_RUNNING);
2080 }
2081
2082 /**
2083 * futex_wait_setup() - Prepare to wait on a futex
2084 * @uaddr: the futex userspace address
2085 * @val: the expected value
2086 * @flags: futex flags (FLAGS_SHARED, etc.)
2087 * @q: the associated futex_q
2088 * @hb: storage for hash_bucket pointer to be returned to caller
2089 *
2090 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2091 * compare it with the expected value. Handle atomic faults internally.
2092 * Return with the hb lock held and a q.key reference on success, and unlocked
2093 * with no q.key reference on failure.
2094 *
2095 * Return:
2096 * 0 - uaddr contains val and hb has been locked;
2097 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2098 */
2099 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2100 struct futex_q *q, struct futex_hash_bucket **hb)
2101 {
2102 u32 uval;
2103 int ret;
2104
2105 /*
2106 * Access the page AFTER the hash-bucket is locked.
2107 * Order is important:
2108 *
2109 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2110 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2111 *
2112 * The basic logical guarantee of a futex is that it blocks ONLY
2113 * if cond(var) is known to be true at the time of blocking, for
2114 * any cond. If we locked the hash-bucket after testing *uaddr, that
2115 * would open a race condition where we could block indefinitely with
2116 * cond(var) false, which would violate the guarantee.
2117 *
2118 * On the other hand, we insert q and release the hash-bucket only
2119 * after testing *uaddr. This guarantees that futex_wait() will NOT
2120 * absorb a wakeup if *uaddr does not match the desired values
2121 * while the syscall executes.
2122 */
2123 retry:
2124 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2125 if (unlikely(ret != 0))
2126 return ret;
2127
2128 retry_private:
2129 *hb = queue_lock(q);
2130
2131 ret = get_futex_value_locked(&uval, uaddr);
2132
2133 if (ret) {
2134 queue_unlock(*hb);
2135
2136 ret = get_user(uval, uaddr);
2137 if (ret)
2138 goto out;
2139
2140 if (!(flags & FLAGS_SHARED))
2141 goto retry_private;
2142
2143 put_futex_key(&q->key);
2144 goto retry;
2145 }
2146
2147 if (uval != val) {
2148 queue_unlock(*hb);
2149 ret = -EWOULDBLOCK;
2150 }
2151
2152 out:
2153 if (ret)
2154 put_futex_key(&q->key);
2155 return ret;
2156 }
2157
2158 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2159 ktime_t *abs_time, u32 bitset)
2160 {
2161 struct hrtimer_sleeper timeout, *to = NULL;
2162 struct restart_block *restart;
2163 struct futex_hash_bucket *hb;
2164 struct futex_q q = futex_q_init;
2165 int ret;
2166
2167 if (!bitset)
2168 return -EINVAL;
2169 q.bitset = bitset;
2170
2171 if (abs_time) {
2172 to = &timeout;
2173
2174 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2175 CLOCK_REALTIME : CLOCK_MONOTONIC,
2176 HRTIMER_MODE_ABS);
2177 hrtimer_init_sleeper(to, current);
2178 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2179 current->timer_slack_ns);
2180 }
2181
2182 retry:
2183 /*
2184 * Prepare to wait on uaddr. On success, holds hb lock and increments
2185 * q.key refs.
2186 */
2187 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2188 if (ret)
2189 goto out;
2190
2191 /* queue_me and wait for wakeup, timeout, or a signal. */
2192 futex_wait_queue_me(hb, &q, to);
2193
2194 /* If we were woken (and unqueued), we succeeded, whatever. */
2195 ret = 0;
2196 /* unqueue_me() drops q.key ref */
2197 if (!unqueue_me(&q))
2198 goto out;
2199 ret = -ETIMEDOUT;
2200 if (to && !to->task)
2201 goto out;
2202
2203 /*
2204 * We expect signal_pending(current), but we might be the
2205 * victim of a spurious wakeup as well.
2206 */
2207 if (!signal_pending(current))
2208 goto retry;
2209
2210 ret = -ERESTARTSYS;
2211 if (!abs_time)
2212 goto out;
2213
2214 restart = &current_thread_info()->restart_block;
2215 restart->fn = futex_wait_restart;
2216 restart->futex.uaddr = uaddr;
2217 restart->futex.val = val;
2218 restart->futex.time = abs_time->tv64;
2219 restart->futex.bitset = bitset;
2220 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2221
2222 ret = -ERESTART_RESTARTBLOCK;
2223
2224 out:
2225 if (to) {
2226 hrtimer_cancel(&to->timer);
2227 destroy_hrtimer_on_stack(&to->timer);
2228 }
2229 return ret;
2230 }
2231
2232
2233 static long futex_wait_restart(struct restart_block *restart)
2234 {
2235 u32 __user *uaddr = restart->futex.uaddr;
2236 ktime_t t, *tp = NULL;
2237
2238 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2239 t.tv64 = restart->futex.time;
2240 tp = &t;
2241 }
2242 restart->fn = do_no_restart_syscall;
2243
2244 return (long)futex_wait(uaddr, restart->futex.flags,
2245 restart->futex.val, tp, restart->futex.bitset);
2246 }
2247
2248
2249 /*
2250 * Userspace tried a 0 -> TID atomic transition of the futex value
2251 * and failed. The kernel side here does the whole locking operation:
2252 * if there are waiters then it will block, it does PI, etc. (Due to
2253 * races the kernel might see a 0 value of the futex too.)
2254 */
2255 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2256 ktime_t *time, int trylock)
2257 {
2258 struct hrtimer_sleeper timeout, *to = NULL;
2259 struct futex_hash_bucket *hb;
2260 struct futex_q q = futex_q_init;
2261 int res, ret;
2262
2263 if (refill_pi_state_cache())
2264 return -ENOMEM;
2265
2266 if (time) {
2267 to = &timeout;
2268 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2269 HRTIMER_MODE_ABS);
2270 hrtimer_init_sleeper(to, current);
2271 hrtimer_set_expires(&to->timer, *time);
2272 }
2273
2274 retry:
2275 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2276 if (unlikely(ret != 0))
2277 goto out;
2278
2279 retry_private:
2280 hb = queue_lock(&q);
2281
2282 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2283 if (unlikely(ret)) {
2284 switch (ret) {
2285 case 1:
2286 /* We got the lock. */
2287 ret = 0;
2288 goto out_unlock_put_key;
2289 case -EFAULT:
2290 goto uaddr_faulted;
2291 case -EAGAIN:
2292 /*
2293 * Two reasons for this:
2294 * - Task is exiting and we just wait for the
2295 * exit to complete.
2296 * - The user space value changed.
2297 */
2298 queue_unlock(hb);
2299 put_futex_key(&q.key);
2300 cond_resched();
2301 goto retry;
2302 default:
2303 goto out_unlock_put_key;
2304 }
2305 }
2306
2307 /*
2308 * Only actually queue now that the atomic ops are done:
2309 */
2310 queue_me(&q, hb);
2311
2312 WARN_ON(!q.pi_state);
2313 /*
2314 * Block on the PI mutex:
2315 */
2316 if (!trylock) {
2317 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2318 } else {
2319 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2320 /* Fixup the trylock return value: */
2321 ret = ret ? 0 : -EWOULDBLOCK;
2322 }
2323
2324 spin_lock(q.lock_ptr);
2325 /*
2326 * Fixup the pi_state owner and possibly acquire the lock if we
2327 * haven't already.
2328 */
2329 res = fixup_owner(uaddr, &q, !ret);
2330 /*
2331 * If fixup_owner() returned an error, proprogate that. If it acquired
2332 * the lock, clear our -ETIMEDOUT or -EINTR.
2333 */
2334 if (res)
2335 ret = (res < 0) ? res : 0;
2336
2337 /*
2338 * If fixup_owner() faulted and was unable to handle the fault, unlock
2339 * it and return the fault to userspace.
2340 */
2341 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2342 rt_mutex_unlock(&q.pi_state->pi_mutex);
2343
2344 /* Unqueue and drop the lock */
2345 unqueue_me_pi(&q);
2346
2347 goto out_put_key;
2348
2349 out_unlock_put_key:
2350 queue_unlock(hb);
2351
2352 out_put_key:
2353 put_futex_key(&q.key);
2354 out:
2355 if (to)
2356 destroy_hrtimer_on_stack(&to->timer);
2357 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2358
2359 uaddr_faulted:
2360 queue_unlock(hb);
2361
2362 ret = fault_in_user_writeable(uaddr);
2363 if (ret)
2364 goto out_put_key;
2365
2366 if (!(flags & FLAGS_SHARED))
2367 goto retry_private;
2368
2369 put_futex_key(&q.key);
2370 goto retry;
2371 }
2372
2373 /*
2374 * Userspace attempted a TID -> 0 atomic transition, and failed.
2375 * This is the in-kernel slowpath: we look up the PI state (if any),
2376 * and do the rt-mutex unlock.
2377 */
2378 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2379 {
2380 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2381 union futex_key key = FUTEX_KEY_INIT;
2382 struct futex_hash_bucket *hb;
2383 struct futex_q *match;
2384 int ret;
2385
2386 retry:
2387 if (get_user(uval, uaddr))
2388 return -EFAULT;
2389 /*
2390 * We release only a lock we actually own:
2391 */
2392 if ((uval & FUTEX_TID_MASK) != vpid)
2393 return -EPERM;
2394
2395 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2396 if (ret)
2397 return ret;
2398
2399 hb = hash_futex(&key);
2400 spin_lock(&hb->lock);
2401
2402 /*
2403 * Check waiters first. We do not trust user space values at
2404 * all and we at least want to know if user space fiddled
2405 * with the futex value instead of blindly unlocking.
2406 */
2407 match = futex_top_waiter(hb, &key);
2408 if (match) {
2409 ret = wake_futex_pi(uaddr, uval, match);
2410 /*
2411 * The atomic access to the futex value generated a
2412 * pagefault, so retry the user-access and the wakeup:
2413 */
2414 if (ret == -EFAULT)
2415 goto pi_faulted;
2416 goto out_unlock;
2417 }
2418
2419 /*
2420 * We have no kernel internal state, i.e. no waiters in the
2421 * kernel. Waiters which are about to queue themselves are stuck
2422 * on hb->lock. So we can safely ignore them. We do neither
2423 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2424 * owner.
2425 */
2426 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2427 goto pi_faulted;
2428
2429 /*
2430 * If uval has changed, let user space handle it.
2431 */
2432 ret = (curval == uval) ? 0 : -EAGAIN;
2433
2434 out_unlock:
2435 spin_unlock(&hb->lock);
2436 put_futex_key(&key);
2437 return ret;
2438
2439 pi_faulted:
2440 spin_unlock(&hb->lock);
2441 put_futex_key(&key);
2442
2443 ret = fault_in_user_writeable(uaddr);
2444 if (!ret)
2445 goto retry;
2446
2447 return ret;
2448 }
2449
2450 /**
2451 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2452 * @hb: the hash_bucket futex_q was original enqueued on
2453 * @q: the futex_q woken while waiting to be requeued
2454 * @key2: the futex_key of the requeue target futex
2455 * @timeout: the timeout associated with the wait (NULL if none)
2456 *
2457 * Detect if the task was woken on the initial futex as opposed to the requeue
2458 * target futex. If so, determine if it was a timeout or a signal that caused
2459 * the wakeup and return the appropriate error code to the caller. Must be
2460 * called with the hb lock held.
2461 *
2462 * Return:
2463 * 0 = no early wakeup detected;
2464 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2465 */
2466 static inline
2467 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2468 struct futex_q *q, union futex_key *key2,
2469 struct hrtimer_sleeper *timeout)
2470 {
2471 int ret = 0;
2472
2473 /*
2474 * With the hb lock held, we avoid races while we process the wakeup.
2475 * We only need to hold hb (and not hb2) to ensure atomicity as the
2476 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2477 * It can't be requeued from uaddr2 to something else since we don't
2478 * support a PI aware source futex for requeue.
2479 */
2480 if (!match_futex(&q->key, key2)) {
2481 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2482 /*
2483 * We were woken prior to requeue by a timeout or a signal.
2484 * Unqueue the futex_q and determine which it was.
2485 */
2486 plist_del(&q->list, &hb->chain);
2487 hb_waiters_dec(hb);
2488
2489 /* Handle spurious wakeups gracefully */
2490 ret = -EWOULDBLOCK;
2491 if (timeout && !timeout->task)
2492 ret = -ETIMEDOUT;
2493 else if (signal_pending(current))
2494 ret = -ERESTARTNOINTR;
2495 }
2496 return ret;
2497 }
2498
2499 /**
2500 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2501 * @uaddr: the futex we initially wait on (non-pi)
2502 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2503 * the same type, no requeueing from private to shared, etc.
2504 * @val: the expected value of uaddr
2505 * @abs_time: absolute timeout
2506 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2507 * @uaddr2: the pi futex we will take prior to returning to user-space
2508 *
2509 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2510 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2511 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2512 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2513 * without one, the pi logic would not know which task to boost/deboost, if
2514 * there was a need to.
2515 *
2516 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2517 * via the following--
2518 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2519 * 2) wakeup on uaddr2 after a requeue
2520 * 3) signal
2521 * 4) timeout
2522 *
2523 * If 3, cleanup and return -ERESTARTNOINTR.
2524 *
2525 * If 2, we may then block on trying to take the rt_mutex and return via:
2526 * 5) successful lock
2527 * 6) signal
2528 * 7) timeout
2529 * 8) other lock acquisition failure
2530 *
2531 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2532 *
2533 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2534 *
2535 * Return:
2536 * 0 - On success;
2537 * <0 - On error
2538 */
2539 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2540 u32 val, ktime_t *abs_time, u32 bitset,
2541 u32 __user *uaddr2)
2542 {
2543 struct hrtimer_sleeper timeout, *to = NULL;
2544 struct rt_mutex_waiter rt_waiter;
2545 struct rt_mutex *pi_mutex = NULL;
2546 struct futex_hash_bucket *hb;
2547 union futex_key key2 = FUTEX_KEY_INIT;
2548 struct futex_q q = futex_q_init;
2549 int res, ret;
2550
2551 if (uaddr == uaddr2)
2552 return -EINVAL;
2553
2554 if (!bitset)
2555 return -EINVAL;
2556
2557 if (abs_time) {
2558 to = &timeout;
2559 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2560 CLOCK_REALTIME : CLOCK_MONOTONIC,
2561 HRTIMER_MODE_ABS);
2562 hrtimer_init_sleeper(to, current);
2563 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2564 current->timer_slack_ns);
2565 }
2566
2567 /*
2568 * The waiter is allocated on our stack, manipulated by the requeue
2569 * code while we sleep on uaddr.
2570 */
2571 debug_rt_mutex_init_waiter(&rt_waiter);
2572 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2573 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2574 rt_waiter.task = NULL;
2575
2576 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2577 if (unlikely(ret != 0))
2578 goto out;
2579
2580 q.bitset = bitset;
2581 q.rt_waiter = &rt_waiter;
2582 q.requeue_pi_key = &key2;
2583
2584 /*
2585 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2586 * count.
2587 */
2588 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2589 if (ret)
2590 goto out_key2;
2591
2592 /*
2593 * The check above which compares uaddrs is not sufficient for
2594 * shared futexes. We need to compare the keys:
2595 */
2596 if (match_futex(&q.key, &key2)) {
2597 queue_unlock(hb);
2598 ret = -EINVAL;
2599 goto out_put_keys;
2600 }
2601
2602 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2603 futex_wait_queue_me(hb, &q, to);
2604
2605 spin_lock(&hb->lock);
2606 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2607 spin_unlock(&hb->lock);
2608 if (ret)
2609 goto out_put_keys;
2610
2611 /*
2612 * In order for us to be here, we know our q.key == key2, and since
2613 * we took the hb->lock above, we also know that futex_requeue() has
2614 * completed and we no longer have to concern ourselves with a wakeup
2615 * race with the atomic proxy lock acquisition by the requeue code. The
2616 * futex_requeue dropped our key1 reference and incremented our key2
2617 * reference count.
2618 */
2619
2620 /* Check if the requeue code acquired the second futex for us. */
2621 if (!q.rt_waiter) {
2622 /*
2623 * Got the lock. We might not be the anticipated owner if we
2624 * did a lock-steal - fix up the PI-state in that case.
2625 */
2626 if (q.pi_state && (q.pi_state->owner != current)) {
2627 spin_lock(q.lock_ptr);
2628 ret = fixup_pi_state_owner(uaddr2, &q, current);
2629 spin_unlock(q.lock_ptr);
2630 }
2631 } else {
2632 /*
2633 * We have been woken up by futex_unlock_pi(), a timeout, or a
2634 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2635 * the pi_state.
2636 */
2637 WARN_ON(!q.pi_state);
2638 pi_mutex = &q.pi_state->pi_mutex;
2639 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2640 debug_rt_mutex_free_waiter(&rt_waiter);
2641
2642 spin_lock(q.lock_ptr);
2643 /*
2644 * Fixup the pi_state owner and possibly acquire the lock if we
2645 * haven't already.
2646 */
2647 res = fixup_owner(uaddr2, &q, !ret);
2648 /*
2649 * If fixup_owner() returned an error, proprogate that. If it
2650 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2651 */
2652 if (res)
2653 ret = (res < 0) ? res : 0;
2654
2655 /* Unqueue and drop the lock. */
2656 unqueue_me_pi(&q);
2657 }
2658
2659 /*
2660 * If fixup_pi_state_owner() faulted and was unable to handle the
2661 * fault, unlock the rt_mutex and return the fault to userspace.
2662 */
2663 if (ret == -EFAULT) {
2664 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2665 rt_mutex_unlock(pi_mutex);
2666 } else if (ret == -EINTR) {
2667 /*
2668 * We've already been requeued, but cannot restart by calling
2669 * futex_lock_pi() directly. We could restart this syscall, but
2670 * it would detect that the user space "val" changed and return
2671 * -EWOULDBLOCK. Save the overhead of the restart and return
2672 * -EWOULDBLOCK directly.
2673 */
2674 ret = -EWOULDBLOCK;
2675 }
2676
2677 out_put_keys:
2678 put_futex_key(&q.key);
2679 out_key2:
2680 put_futex_key(&key2);
2681
2682 out:
2683 if (to) {
2684 hrtimer_cancel(&to->timer);
2685 destroy_hrtimer_on_stack(&to->timer);
2686 }
2687 return ret;
2688 }
2689
2690 /*
2691 * Support for robust futexes: the kernel cleans up held futexes at
2692 * thread exit time.
2693 *
2694 * Implementation: user-space maintains a per-thread list of locks it
2695 * is holding. Upon do_exit(), the kernel carefully walks this list,
2696 * and marks all locks that are owned by this thread with the
2697 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2698 * always manipulated with the lock held, so the list is private and
2699 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2700 * field, to allow the kernel to clean up if the thread dies after
2701 * acquiring the lock, but just before it could have added itself to
2702 * the list. There can only be one such pending lock.
2703 */
2704
2705 /**
2706 * sys_set_robust_list() - Set the robust-futex list head of a task
2707 * @head: pointer to the list-head
2708 * @len: length of the list-head, as userspace expects
2709 */
2710 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2711 size_t, len)
2712 {
2713 if (!futex_cmpxchg_enabled)
2714 return -ENOSYS;
2715 /*
2716 * The kernel knows only one size for now:
2717 */
2718 if (unlikely(len != sizeof(*head)))
2719 return -EINVAL;
2720
2721 current->robust_list = head;
2722
2723 return 0;
2724 }
2725
2726 /**
2727 * sys_get_robust_list() - Get the robust-futex list head of a task
2728 * @pid: pid of the process [zero for current task]
2729 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2730 * @len_ptr: pointer to a length field, the kernel fills in the header size
2731 */
2732 SYSCALL_DEFINE3(get_robust_list, int, pid,
2733 struct robust_list_head __user * __user *, head_ptr,
2734 size_t __user *, len_ptr)
2735 {
2736 struct robust_list_head __user *head;
2737 unsigned long ret;
2738 struct task_struct *p;
2739
2740 if (!futex_cmpxchg_enabled)
2741 return -ENOSYS;
2742
2743 rcu_read_lock();
2744
2745 ret = -ESRCH;
2746 if (!pid)
2747 p = current;
2748 else {
2749 p = find_task_by_vpid(pid);
2750 if (!p)
2751 goto err_unlock;
2752 }
2753
2754 ret = -EPERM;
2755 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2756 goto err_unlock;
2757
2758 head = p->robust_list;
2759 rcu_read_unlock();
2760
2761 if (put_user(sizeof(*head), len_ptr))
2762 return -EFAULT;
2763 return put_user(head, head_ptr);
2764
2765 err_unlock:
2766 rcu_read_unlock();
2767
2768 return ret;
2769 }
2770
2771 /*
2772 * Process a futex-list entry, check whether it's owned by the
2773 * dying task, and do notification if so:
2774 */
2775 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2776 {
2777 u32 uval, uninitialized_var(nval), mval;
2778
2779 retry:
2780 if (get_user(uval, uaddr))
2781 return -1;
2782
2783 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2784 /*
2785 * Ok, this dying thread is truly holding a futex
2786 * of interest. Set the OWNER_DIED bit atomically
2787 * via cmpxchg, and if the value had FUTEX_WAITERS
2788 * set, wake up a waiter (if any). (We have to do a
2789 * futex_wake() even if OWNER_DIED is already set -
2790 * to handle the rare but possible case of recursive
2791 * thread-death.) The rest of the cleanup is done in
2792 * userspace.
2793 */
2794 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2795 /*
2796 * We are not holding a lock here, but we want to have
2797 * the pagefault_disable/enable() protection because
2798 * we want to handle the fault gracefully. If the
2799 * access fails we try to fault in the futex with R/W
2800 * verification via get_user_pages. get_user() above
2801 * does not guarantee R/W access. If that fails we
2802 * give up and leave the futex locked.
2803 */
2804 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2805 if (fault_in_user_writeable(uaddr))
2806 return -1;
2807 goto retry;
2808 }
2809 if (nval != uval)
2810 goto retry;
2811
2812 /*
2813 * Wake robust non-PI futexes here. The wakeup of
2814 * PI futexes happens in exit_pi_state():
2815 */
2816 if (!pi && (uval & FUTEX_WAITERS))
2817 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2818 }
2819 return 0;
2820 }
2821
2822 /*
2823 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2824 */
2825 static inline int fetch_robust_entry(struct robust_list __user **entry,
2826 struct robust_list __user * __user *head,
2827 unsigned int *pi)
2828 {
2829 unsigned long uentry;
2830
2831 if (get_user(uentry, (unsigned long __user *)head))
2832 return -EFAULT;
2833
2834 *entry = (void __user *)(uentry & ~1UL);
2835 *pi = uentry & 1;
2836
2837 return 0;
2838 }
2839
2840 /*
2841 * Walk curr->robust_list (very carefully, it's a userspace list!)
2842 * and mark any locks found there dead, and notify any waiters.
2843 *
2844 * We silently return on any sign of list-walking problem.
2845 */
2846 void exit_robust_list(struct task_struct *curr)
2847 {
2848 struct robust_list_head __user *head = curr->robust_list;
2849 struct robust_list __user *entry, *next_entry, *pending;
2850 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2851 unsigned int uninitialized_var(next_pi);
2852 unsigned long futex_offset;
2853 int rc;
2854
2855 if (!futex_cmpxchg_enabled)
2856 return;
2857
2858 /*
2859 * Fetch the list head (which was registered earlier, via
2860 * sys_set_robust_list()):
2861 */
2862 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2863 return;
2864 /*
2865 * Fetch the relative futex offset:
2866 */
2867 if (get_user(futex_offset, &head->futex_offset))
2868 return;
2869 /*
2870 * Fetch any possibly pending lock-add first, and handle it
2871 * if it exists:
2872 */
2873 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2874 return;
2875
2876 next_entry = NULL; /* avoid warning with gcc */
2877 while (entry != &head->list) {
2878 /*
2879 * Fetch the next entry in the list before calling
2880 * handle_futex_death:
2881 */
2882 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2883 /*
2884 * A pending lock might already be on the list, so
2885 * don't process it twice:
2886 */
2887 if (entry != pending)
2888 if (handle_futex_death((void __user *)entry + futex_offset,
2889 curr, pi))
2890 return;
2891 if (rc)
2892 return;
2893 entry = next_entry;
2894 pi = next_pi;
2895 /*
2896 * Avoid excessively long or circular lists:
2897 */
2898 if (!--limit)
2899 break;
2900
2901 cond_resched();
2902 }
2903
2904 if (pending)
2905 handle_futex_death((void __user *)pending + futex_offset,
2906 curr, pip);
2907 }
2908
2909 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2910 u32 __user *uaddr2, u32 val2, u32 val3)
2911 {
2912 int cmd = op & FUTEX_CMD_MASK;
2913 unsigned int flags = 0;
2914
2915 if (!(op & FUTEX_PRIVATE_FLAG))
2916 flags |= FLAGS_SHARED;
2917
2918 if (op & FUTEX_CLOCK_REALTIME) {
2919 flags |= FLAGS_CLOCKRT;
2920 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2921 return -ENOSYS;
2922 }
2923
2924 switch (cmd) {
2925 case FUTEX_LOCK_PI:
2926 case FUTEX_UNLOCK_PI:
2927 case FUTEX_TRYLOCK_PI:
2928 case FUTEX_WAIT_REQUEUE_PI:
2929 case FUTEX_CMP_REQUEUE_PI:
2930 if (!futex_cmpxchg_enabled)
2931 return -ENOSYS;
2932 }
2933
2934 switch (cmd) {
2935 case FUTEX_WAIT:
2936 val3 = FUTEX_BITSET_MATCH_ANY;
2937 case FUTEX_WAIT_BITSET:
2938 return futex_wait(uaddr, flags, val, timeout, val3);
2939 case FUTEX_WAKE:
2940 val3 = FUTEX_BITSET_MATCH_ANY;
2941 case FUTEX_WAKE_BITSET:
2942 return futex_wake(uaddr, flags, val, val3);
2943 case FUTEX_REQUEUE:
2944 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2945 case FUTEX_CMP_REQUEUE:
2946 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2947 case FUTEX_WAKE_OP:
2948 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2949 case FUTEX_LOCK_PI:
2950 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2951 case FUTEX_UNLOCK_PI:
2952 return futex_unlock_pi(uaddr, flags);
2953 case FUTEX_TRYLOCK_PI:
2954 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2955 case FUTEX_WAIT_REQUEUE_PI:
2956 val3 = FUTEX_BITSET_MATCH_ANY;
2957 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2958 uaddr2);
2959 case FUTEX_CMP_REQUEUE_PI:
2960 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2961 }
2962 return -ENOSYS;
2963 }
2964
2965
2966 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2967 struct timespec __user *, utime, u32 __user *, uaddr2,
2968 u32, val3)
2969 {
2970 struct timespec ts;
2971 ktime_t t, *tp = NULL;
2972 u32 val2 = 0;
2973 int cmd = op & FUTEX_CMD_MASK;
2974
2975 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2976 cmd == FUTEX_WAIT_BITSET ||
2977 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2978 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2979 return -EFAULT;
2980 if (!timespec_valid(&ts))
2981 return -EINVAL;
2982
2983 t = timespec_to_ktime(ts);
2984 if (cmd == FUTEX_WAIT)
2985 t = ktime_add_safe(ktime_get(), t);
2986 tp = &t;
2987 }
2988 /*
2989 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2990 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2991 */
2992 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2993 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2994 val2 = (u32) (unsigned long) utime;
2995
2996 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2997 }
2998
2999 static void __init futex_detect_cmpxchg(void)
3000 {
3001 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3002 u32 curval;
3003
3004 /*
3005 * This will fail and we want it. Some arch implementations do
3006 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3007 * functionality. We want to know that before we call in any
3008 * of the complex code paths. Also we want to prevent
3009 * registration of robust lists in that case. NULL is
3010 * guaranteed to fault and we get -EFAULT on functional
3011 * implementation, the non-functional ones will return
3012 * -ENOSYS.
3013 */
3014 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3015 futex_cmpxchg_enabled = 1;
3016 #endif
3017 }
3018
3019 static int __init futex_init(void)
3020 {
3021 unsigned int futex_shift;
3022 unsigned long i;
3023
3024 #if CONFIG_BASE_SMALL
3025 futex_hashsize = 16;
3026 #else
3027 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3028 #endif
3029
3030 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3031 futex_hashsize, 0,
3032 futex_hashsize < 256 ? HASH_SMALL : 0,
3033 &futex_shift, NULL,
3034 futex_hashsize, futex_hashsize);
3035 futex_hashsize = 1UL << futex_shift;
3036
3037 futex_detect_cmpxchg();
3038
3039 for (i = 0; i < futex_hashsize; i++) {
3040 atomic_set(&futex_queues[i].waiters, 0);
3041 plist_head_init(&futex_queues[i].chain);
3042 spin_lock_init(&futex_queues[i].lock);
3043 }
3044
3045 return 0;
3046 }
3047 __initcall(futex_init);
This page took 0.167805 seconds and 5 git commands to generate.