Merge branch 'master' of /pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <asm/futex.h>
56
57 #include "rtmutex_common.h"
58
59 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
60
61 /*
62 * Priority Inheritance state:
63 */
64 struct futex_pi_state {
65 /*
66 * list of 'owned' pi_state instances - these have to be
67 * cleaned up in do_exit() if the task exits prematurely:
68 */
69 struct list_head list;
70
71 /*
72 * The PI object:
73 */
74 struct rt_mutex pi_mutex;
75
76 struct task_struct *owner;
77 atomic_t refcount;
78
79 union futex_key key;
80 };
81
82 /*
83 * We use this hashed waitqueue instead of a normal wait_queue_t, so
84 * we can wake only the relevant ones (hashed queues may be shared).
85 *
86 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
87 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
88 * The order of wakup is always to make the first condition true, then
89 * wake up q->waiters, then make the second condition true.
90 */
91 struct futex_q {
92 struct plist_node list;
93 wait_queue_head_t waiters;
94
95 /* Which hash list lock to use: */
96 spinlock_t *lock_ptr;
97
98 /* Key which the futex is hashed on: */
99 union futex_key key;
100
101 /* For fd, sigio sent using these: */
102 int fd;
103 struct file *filp;
104
105 /* Optional priority inheritance state: */
106 struct futex_pi_state *pi_state;
107 struct task_struct *task;
108 };
109
110 /*
111 * Split the global futex_lock into every hash list lock.
112 */
113 struct futex_hash_bucket {
114 spinlock_t lock;
115 struct plist_head chain;
116 };
117
118 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
119
120 /* Futex-fs vfsmount entry: */
121 static struct vfsmount *futex_mnt;
122
123 /*
124 * Take mm->mmap_sem, when futex is shared
125 */
126 static inline void futex_lock_mm(struct rw_semaphore *fshared)
127 {
128 if (fshared)
129 down_read(fshared);
130 }
131
132 /*
133 * Release mm->mmap_sem, when the futex is shared
134 */
135 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
136 {
137 if (fshared)
138 up_read(fshared);
139 }
140
141 /*
142 * We hash on the keys returned from get_futex_key (see below).
143 */
144 static struct futex_hash_bucket *hash_futex(union futex_key *key)
145 {
146 u32 hash = jhash2((u32*)&key->both.word,
147 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
148 key->both.offset);
149 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
150 }
151
152 /*
153 * Return 1 if two futex_keys are equal, 0 otherwise.
154 */
155 static inline int match_futex(union futex_key *key1, union futex_key *key2)
156 {
157 return (key1->both.word == key2->both.word
158 && key1->both.ptr == key2->both.ptr
159 && key1->both.offset == key2->both.offset);
160 }
161
162 /**
163 * get_futex_key - Get parameters which are the keys for a futex.
164 * @uaddr: virtual address of the futex
165 * @shared: NULL for a PROCESS_PRIVATE futex,
166 * &current->mm->mmap_sem for a PROCESS_SHARED futex
167 * @key: address where result is stored.
168 *
169 * Returns a negative error code or 0
170 * The key words are stored in *key on success.
171 *
172 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
173 * offset_within_page). For private mappings, it's (uaddr, current->mm).
174 * We can usually work out the index without swapping in the page.
175 *
176 * fshared is NULL for PROCESS_PRIVATE futexes
177 * For other futexes, it points to &current->mm->mmap_sem and
178 * caller must have taken the reader lock. but NOT any spinlocks.
179 */
180 int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
181 union futex_key *key)
182 {
183 unsigned long address = (unsigned long)uaddr;
184 struct mm_struct *mm = current->mm;
185 struct vm_area_struct *vma;
186 struct page *page;
187 int err;
188
189 /*
190 * The futex address must be "naturally" aligned.
191 */
192 key->both.offset = address % PAGE_SIZE;
193 if (unlikely((address % sizeof(u32)) != 0))
194 return -EINVAL;
195 address -= key->both.offset;
196
197 /*
198 * PROCESS_PRIVATE futexes are fast.
199 * As the mm cannot disappear under us and the 'key' only needs
200 * virtual address, we dont even have to find the underlying vma.
201 * Note : We do have to check 'uaddr' is a valid user address,
202 * but access_ok() should be faster than find_vma()
203 */
204 if (!fshared) {
205 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
206 return -EFAULT;
207 key->private.mm = mm;
208 key->private.address = address;
209 return 0;
210 }
211 /*
212 * The futex is hashed differently depending on whether
213 * it's in a shared or private mapping. So check vma first.
214 */
215 vma = find_extend_vma(mm, address);
216 if (unlikely(!vma))
217 return -EFAULT;
218
219 /*
220 * Permissions.
221 */
222 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
223 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
224
225 /*
226 * Private mappings are handled in a simple way.
227 *
228 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
229 * it's a read-only handle, it's expected that futexes attach to
230 * the object not the particular process. Therefore we use
231 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
232 * mappings of _writable_ handles.
233 */
234 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
235 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
236 key->private.mm = mm;
237 key->private.address = address;
238 return 0;
239 }
240
241 /*
242 * Linear file mappings are also simple.
243 */
244 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
245 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
246 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
247 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
248 + vma->vm_pgoff);
249 return 0;
250 }
251
252 /*
253 * We could walk the page table to read the non-linear
254 * pte, and get the page index without fetching the page
255 * from swap. But that's a lot of code to duplicate here
256 * for a rare case, so we simply fetch the page.
257 */
258 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
259 if (err >= 0) {
260 key->shared.pgoff =
261 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
262 put_page(page);
263 return 0;
264 }
265 return err;
266 }
267 EXPORT_SYMBOL_GPL(get_futex_key);
268
269 /*
270 * Take a reference to the resource addressed by a key.
271 * Can be called while holding spinlocks.
272 *
273 */
274 inline void get_futex_key_refs(union futex_key *key)
275 {
276 if (key->both.ptr == 0)
277 return;
278 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
279 case FUT_OFF_INODE:
280 atomic_inc(&key->shared.inode->i_count);
281 break;
282 case FUT_OFF_MMSHARED:
283 atomic_inc(&key->private.mm->mm_count);
284 break;
285 }
286 }
287 EXPORT_SYMBOL_GPL(get_futex_key_refs);
288
289 /*
290 * Drop a reference to the resource addressed by a key.
291 * The hash bucket spinlock must not be held.
292 */
293 void drop_futex_key_refs(union futex_key *key)
294 {
295 if (key->both.ptr == 0)
296 return;
297 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298 case FUT_OFF_INODE:
299 iput(key->shared.inode);
300 break;
301 case FUT_OFF_MMSHARED:
302 mmdrop(key->private.mm);
303 break;
304 }
305 }
306 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
307
308 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
309 {
310 u32 curval;
311
312 pagefault_disable();
313 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
314 pagefault_enable();
315
316 return curval;
317 }
318
319 static int get_futex_value_locked(u32 *dest, u32 __user *from)
320 {
321 int ret;
322
323 pagefault_disable();
324 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
325 pagefault_enable();
326
327 return ret ? -EFAULT : 0;
328 }
329
330 /*
331 * Fault handling.
332 * if fshared is non NULL, current->mm->mmap_sem is already held
333 */
334 static int futex_handle_fault(unsigned long address,
335 struct rw_semaphore *fshared, int attempt)
336 {
337 struct vm_area_struct * vma;
338 struct mm_struct *mm = current->mm;
339 int ret = -EFAULT;
340
341 if (attempt > 2)
342 return ret;
343
344 if (!fshared)
345 down_read(&mm->mmap_sem);
346 vma = find_vma(mm, address);
347 if (vma && address >= vma->vm_start &&
348 (vma->vm_flags & VM_WRITE)) {
349 switch (handle_mm_fault(mm, vma, address, 1)) {
350 case VM_FAULT_MINOR:
351 ret = 0;
352 current->min_flt++;
353 break;
354 case VM_FAULT_MAJOR:
355 ret = 0;
356 current->maj_flt++;
357 break;
358 }
359 }
360 if (!fshared)
361 up_read(&mm->mmap_sem);
362 return ret;
363 }
364
365 /*
366 * PI code:
367 */
368 static int refill_pi_state_cache(void)
369 {
370 struct futex_pi_state *pi_state;
371
372 if (likely(current->pi_state_cache))
373 return 0;
374
375 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
376
377 if (!pi_state)
378 return -ENOMEM;
379
380 INIT_LIST_HEAD(&pi_state->list);
381 /* pi_mutex gets initialized later */
382 pi_state->owner = NULL;
383 atomic_set(&pi_state->refcount, 1);
384
385 current->pi_state_cache = pi_state;
386
387 return 0;
388 }
389
390 static struct futex_pi_state * alloc_pi_state(void)
391 {
392 struct futex_pi_state *pi_state = current->pi_state_cache;
393
394 WARN_ON(!pi_state);
395 current->pi_state_cache = NULL;
396
397 return pi_state;
398 }
399
400 static void free_pi_state(struct futex_pi_state *pi_state)
401 {
402 if (!atomic_dec_and_test(&pi_state->refcount))
403 return;
404
405 /*
406 * If pi_state->owner is NULL, the owner is most probably dying
407 * and has cleaned up the pi_state already
408 */
409 if (pi_state->owner) {
410 spin_lock_irq(&pi_state->owner->pi_lock);
411 list_del_init(&pi_state->list);
412 spin_unlock_irq(&pi_state->owner->pi_lock);
413
414 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
415 }
416
417 if (current->pi_state_cache)
418 kfree(pi_state);
419 else {
420 /*
421 * pi_state->list is already empty.
422 * clear pi_state->owner.
423 * refcount is at 0 - put it back to 1.
424 */
425 pi_state->owner = NULL;
426 atomic_set(&pi_state->refcount, 1);
427 current->pi_state_cache = pi_state;
428 }
429 }
430
431 /*
432 * Look up the task based on what TID userspace gave us.
433 * We dont trust it.
434 */
435 static struct task_struct * futex_find_get_task(pid_t pid)
436 {
437 struct task_struct *p;
438
439 rcu_read_lock();
440 p = find_task_by_pid(pid);
441
442 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
443 p = ERR_PTR(-ESRCH);
444 else
445 get_task_struct(p);
446
447 rcu_read_unlock();
448
449 return p;
450 }
451
452 /*
453 * This task is holding PI mutexes at exit time => bad.
454 * Kernel cleans up PI-state, but userspace is likely hosed.
455 * (Robust-futex cleanup is separate and might save the day for userspace.)
456 */
457 void exit_pi_state_list(struct task_struct *curr)
458 {
459 struct list_head *next, *head = &curr->pi_state_list;
460 struct futex_pi_state *pi_state;
461 struct futex_hash_bucket *hb;
462 union futex_key key;
463
464 /*
465 * We are a ZOMBIE and nobody can enqueue itself on
466 * pi_state_list anymore, but we have to be careful
467 * versus waiters unqueueing themselves:
468 */
469 spin_lock_irq(&curr->pi_lock);
470 while (!list_empty(head)) {
471
472 next = head->next;
473 pi_state = list_entry(next, struct futex_pi_state, list);
474 key = pi_state->key;
475 hb = hash_futex(&key);
476 spin_unlock_irq(&curr->pi_lock);
477
478 spin_lock(&hb->lock);
479
480 spin_lock_irq(&curr->pi_lock);
481 /*
482 * We dropped the pi-lock, so re-check whether this
483 * task still owns the PI-state:
484 */
485 if (head->next != next) {
486 spin_unlock(&hb->lock);
487 continue;
488 }
489
490 WARN_ON(pi_state->owner != curr);
491 WARN_ON(list_empty(&pi_state->list));
492 list_del_init(&pi_state->list);
493 pi_state->owner = NULL;
494 spin_unlock_irq(&curr->pi_lock);
495
496 rt_mutex_unlock(&pi_state->pi_mutex);
497
498 spin_unlock(&hb->lock);
499
500 spin_lock_irq(&curr->pi_lock);
501 }
502 spin_unlock_irq(&curr->pi_lock);
503 }
504
505 static int
506 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
507 union futex_key *key, struct futex_pi_state **ps)
508 {
509 struct futex_pi_state *pi_state = NULL;
510 struct futex_q *this, *next;
511 struct plist_head *head;
512 struct task_struct *p;
513 pid_t pid = uval & FUTEX_TID_MASK;
514
515 head = &hb->chain;
516
517 plist_for_each_entry_safe(this, next, head, list) {
518 if (match_futex(&this->key, key)) {
519 /*
520 * Another waiter already exists - bump up
521 * the refcount and return its pi_state:
522 */
523 pi_state = this->pi_state;
524 /*
525 * Userspace might have messed up non PI and PI futexes
526 */
527 if (unlikely(!pi_state))
528 return -EINVAL;
529
530 WARN_ON(!atomic_read(&pi_state->refcount));
531 WARN_ON(pid && pi_state->owner &&
532 pi_state->owner->pid != pid);
533
534 atomic_inc(&pi_state->refcount);
535 *ps = pi_state;
536
537 return 0;
538 }
539 }
540
541 /*
542 * We are the first waiter - try to look up the real owner and attach
543 * the new pi_state to it, but bail out when TID = 0
544 */
545 if (!pid)
546 return -ESRCH;
547 p = futex_find_get_task(pid);
548 if (IS_ERR(p))
549 return PTR_ERR(p);
550
551 /*
552 * We need to look at the task state flags to figure out,
553 * whether the task is exiting. To protect against the do_exit
554 * change of the task flags, we do this protected by
555 * p->pi_lock:
556 */
557 spin_lock_irq(&p->pi_lock);
558 if (unlikely(p->flags & PF_EXITING)) {
559 /*
560 * The task is on the way out. When PF_EXITPIDONE is
561 * set, we know that the task has finished the
562 * cleanup:
563 */
564 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
565
566 spin_unlock_irq(&p->pi_lock);
567 put_task_struct(p);
568 return ret;
569 }
570
571 pi_state = alloc_pi_state();
572
573 /*
574 * Initialize the pi_mutex in locked state and make 'p'
575 * the owner of it:
576 */
577 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
578
579 /* Store the key for possible exit cleanups: */
580 pi_state->key = *key;
581
582 WARN_ON(!list_empty(&pi_state->list));
583 list_add(&pi_state->list, &p->pi_state_list);
584 pi_state->owner = p;
585 spin_unlock_irq(&p->pi_lock);
586
587 put_task_struct(p);
588
589 *ps = pi_state;
590
591 return 0;
592 }
593
594 /*
595 * The hash bucket lock must be held when this is called.
596 * Afterwards, the futex_q must not be accessed.
597 */
598 static void wake_futex(struct futex_q *q)
599 {
600 plist_del(&q->list, &q->list.plist);
601 if (q->filp)
602 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
603 /*
604 * The lock in wake_up_all() is a crucial memory barrier after the
605 * plist_del() and also before assigning to q->lock_ptr.
606 */
607 wake_up_all(&q->waiters);
608 /*
609 * The waiting task can free the futex_q as soon as this is written,
610 * without taking any locks. This must come last.
611 *
612 * A memory barrier is required here to prevent the following store
613 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
614 * at the end of wake_up_all() does not prevent this store from
615 * moving.
616 */
617 smp_wmb();
618 q->lock_ptr = NULL;
619 }
620
621 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
622 {
623 struct task_struct *new_owner;
624 struct futex_pi_state *pi_state = this->pi_state;
625 u32 curval, newval;
626
627 if (!pi_state)
628 return -EINVAL;
629
630 spin_lock(&pi_state->pi_mutex.wait_lock);
631 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
632
633 /*
634 * This happens when we have stolen the lock and the original
635 * pending owner did not enqueue itself back on the rt_mutex.
636 * Thats not a tragedy. We know that way, that a lock waiter
637 * is on the fly. We make the futex_q waiter the pending owner.
638 */
639 if (!new_owner)
640 new_owner = this->task;
641
642 /*
643 * We pass it to the next owner. (The WAITERS bit is always
644 * kept enabled while there is PI state around. We must also
645 * preserve the owner died bit.)
646 */
647 if (!(uval & FUTEX_OWNER_DIED)) {
648 int ret = 0;
649
650 newval = FUTEX_WAITERS | new_owner->pid;
651
652 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
653
654 if (curval == -EFAULT)
655 ret = -EFAULT;
656 if (curval != uval)
657 ret = -EINVAL;
658 if (ret) {
659 spin_unlock(&pi_state->pi_mutex.wait_lock);
660 return ret;
661 }
662 }
663
664 spin_lock_irq(&pi_state->owner->pi_lock);
665 WARN_ON(list_empty(&pi_state->list));
666 list_del_init(&pi_state->list);
667 spin_unlock_irq(&pi_state->owner->pi_lock);
668
669 spin_lock_irq(&new_owner->pi_lock);
670 WARN_ON(!list_empty(&pi_state->list));
671 list_add(&pi_state->list, &new_owner->pi_state_list);
672 pi_state->owner = new_owner;
673 spin_unlock_irq(&new_owner->pi_lock);
674
675 spin_unlock(&pi_state->pi_mutex.wait_lock);
676 rt_mutex_unlock(&pi_state->pi_mutex);
677
678 return 0;
679 }
680
681 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
682 {
683 u32 oldval;
684
685 /*
686 * There is no waiter, so we unlock the futex. The owner died
687 * bit has not to be preserved here. We are the owner:
688 */
689 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
690
691 if (oldval == -EFAULT)
692 return oldval;
693 if (oldval != uval)
694 return -EAGAIN;
695
696 return 0;
697 }
698
699 /*
700 * Express the locking dependencies for lockdep:
701 */
702 static inline void
703 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
704 {
705 if (hb1 <= hb2) {
706 spin_lock(&hb1->lock);
707 if (hb1 < hb2)
708 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
709 } else { /* hb1 > hb2 */
710 spin_lock(&hb2->lock);
711 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
712 }
713 }
714
715 /*
716 * Wake up all waiters hashed on the physical page that is mapped
717 * to this virtual address:
718 */
719 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
720 int nr_wake)
721 {
722 struct futex_hash_bucket *hb;
723 struct futex_q *this, *next;
724 struct plist_head *head;
725 union futex_key key;
726 int ret;
727
728 futex_lock_mm(fshared);
729
730 ret = get_futex_key(uaddr, fshared, &key);
731 if (unlikely(ret != 0))
732 goto out;
733
734 hb = hash_futex(&key);
735 spin_lock(&hb->lock);
736 head = &hb->chain;
737
738 plist_for_each_entry_safe(this, next, head, list) {
739 if (match_futex (&this->key, &key)) {
740 if (this->pi_state) {
741 ret = -EINVAL;
742 break;
743 }
744 wake_futex(this);
745 if (++ret >= nr_wake)
746 break;
747 }
748 }
749
750 spin_unlock(&hb->lock);
751 out:
752 futex_unlock_mm(fshared);
753 return ret;
754 }
755
756 /*
757 * Wake up all waiters hashed on the physical page that is mapped
758 * to this virtual address:
759 */
760 static int
761 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
762 u32 __user *uaddr2,
763 int nr_wake, int nr_wake2, int op)
764 {
765 union futex_key key1, key2;
766 struct futex_hash_bucket *hb1, *hb2;
767 struct plist_head *head;
768 struct futex_q *this, *next;
769 int ret, op_ret, attempt = 0;
770
771 retryfull:
772 futex_lock_mm(fshared);
773
774 ret = get_futex_key(uaddr1, fshared, &key1);
775 if (unlikely(ret != 0))
776 goto out;
777 ret = get_futex_key(uaddr2, fshared, &key2);
778 if (unlikely(ret != 0))
779 goto out;
780
781 hb1 = hash_futex(&key1);
782 hb2 = hash_futex(&key2);
783
784 retry:
785 double_lock_hb(hb1, hb2);
786
787 op_ret = futex_atomic_op_inuser(op, uaddr2);
788 if (unlikely(op_ret < 0)) {
789 u32 dummy;
790
791 spin_unlock(&hb1->lock);
792 if (hb1 != hb2)
793 spin_unlock(&hb2->lock);
794
795 #ifndef CONFIG_MMU
796 /*
797 * we don't get EFAULT from MMU faults if we don't have an MMU,
798 * but we might get them from range checking
799 */
800 ret = op_ret;
801 goto out;
802 #endif
803
804 if (unlikely(op_ret != -EFAULT)) {
805 ret = op_ret;
806 goto out;
807 }
808
809 /*
810 * futex_atomic_op_inuser needs to both read and write
811 * *(int __user *)uaddr2, but we can't modify it
812 * non-atomically. Therefore, if get_user below is not
813 * enough, we need to handle the fault ourselves, while
814 * still holding the mmap_sem.
815 */
816 if (attempt++) {
817 ret = futex_handle_fault((unsigned long)uaddr2,
818 fshared, attempt);
819 if (ret)
820 goto out;
821 goto retry;
822 }
823
824 /*
825 * If we would have faulted, release mmap_sem,
826 * fault it in and start all over again.
827 */
828 futex_unlock_mm(fshared);
829
830 ret = get_user(dummy, uaddr2);
831 if (ret)
832 return ret;
833
834 goto retryfull;
835 }
836
837 head = &hb1->chain;
838
839 plist_for_each_entry_safe(this, next, head, list) {
840 if (match_futex (&this->key, &key1)) {
841 wake_futex(this);
842 if (++ret >= nr_wake)
843 break;
844 }
845 }
846
847 if (op_ret > 0) {
848 head = &hb2->chain;
849
850 op_ret = 0;
851 plist_for_each_entry_safe(this, next, head, list) {
852 if (match_futex (&this->key, &key2)) {
853 wake_futex(this);
854 if (++op_ret >= nr_wake2)
855 break;
856 }
857 }
858 ret += op_ret;
859 }
860
861 spin_unlock(&hb1->lock);
862 if (hb1 != hb2)
863 spin_unlock(&hb2->lock);
864 out:
865 futex_unlock_mm(fshared);
866
867 return ret;
868 }
869
870 /*
871 * Requeue all waiters hashed on one physical page to another
872 * physical page.
873 */
874 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
875 u32 __user *uaddr2,
876 int nr_wake, int nr_requeue, u32 *cmpval)
877 {
878 union futex_key key1, key2;
879 struct futex_hash_bucket *hb1, *hb2;
880 struct plist_head *head1;
881 struct futex_q *this, *next;
882 int ret, drop_count = 0;
883
884 retry:
885 futex_lock_mm(fshared);
886
887 ret = get_futex_key(uaddr1, fshared, &key1);
888 if (unlikely(ret != 0))
889 goto out;
890 ret = get_futex_key(uaddr2, fshared, &key2);
891 if (unlikely(ret != 0))
892 goto out;
893
894 hb1 = hash_futex(&key1);
895 hb2 = hash_futex(&key2);
896
897 double_lock_hb(hb1, hb2);
898
899 if (likely(cmpval != NULL)) {
900 u32 curval;
901
902 ret = get_futex_value_locked(&curval, uaddr1);
903
904 if (unlikely(ret)) {
905 spin_unlock(&hb1->lock);
906 if (hb1 != hb2)
907 spin_unlock(&hb2->lock);
908
909 /*
910 * If we would have faulted, release mmap_sem, fault
911 * it in and start all over again.
912 */
913 futex_unlock_mm(fshared);
914
915 ret = get_user(curval, uaddr1);
916
917 if (!ret)
918 goto retry;
919
920 return ret;
921 }
922 if (curval != *cmpval) {
923 ret = -EAGAIN;
924 goto out_unlock;
925 }
926 }
927
928 head1 = &hb1->chain;
929 plist_for_each_entry_safe(this, next, head1, list) {
930 if (!match_futex (&this->key, &key1))
931 continue;
932 if (++ret <= nr_wake) {
933 wake_futex(this);
934 } else {
935 /*
936 * If key1 and key2 hash to the same bucket, no need to
937 * requeue.
938 */
939 if (likely(head1 != &hb2->chain)) {
940 plist_del(&this->list, &hb1->chain);
941 plist_add(&this->list, &hb2->chain);
942 this->lock_ptr = &hb2->lock;
943 #ifdef CONFIG_DEBUG_PI_LIST
944 this->list.plist.lock = &hb2->lock;
945 #endif
946 }
947 this->key = key2;
948 get_futex_key_refs(&key2);
949 drop_count++;
950
951 if (ret - nr_wake >= nr_requeue)
952 break;
953 }
954 }
955
956 out_unlock:
957 spin_unlock(&hb1->lock);
958 if (hb1 != hb2)
959 spin_unlock(&hb2->lock);
960
961 /* drop_futex_key_refs() must be called outside the spinlocks. */
962 while (--drop_count >= 0)
963 drop_futex_key_refs(&key1);
964
965 out:
966 futex_unlock_mm(fshared);
967 return ret;
968 }
969
970 /* The key must be already stored in q->key. */
971 static inline struct futex_hash_bucket *
972 queue_lock(struct futex_q *q, int fd, struct file *filp)
973 {
974 struct futex_hash_bucket *hb;
975
976 q->fd = fd;
977 q->filp = filp;
978
979 init_waitqueue_head(&q->waiters);
980
981 get_futex_key_refs(&q->key);
982 hb = hash_futex(&q->key);
983 q->lock_ptr = &hb->lock;
984
985 spin_lock(&hb->lock);
986 return hb;
987 }
988
989 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
990 {
991 int prio;
992
993 /*
994 * The priority used to register this element is
995 * - either the real thread-priority for the real-time threads
996 * (i.e. threads with a priority lower than MAX_RT_PRIO)
997 * - or MAX_RT_PRIO for non-RT threads.
998 * Thus, all RT-threads are woken first in priority order, and
999 * the others are woken last, in FIFO order.
1000 */
1001 prio = min(current->normal_prio, MAX_RT_PRIO);
1002
1003 plist_node_init(&q->list, prio);
1004 #ifdef CONFIG_DEBUG_PI_LIST
1005 q->list.plist.lock = &hb->lock;
1006 #endif
1007 plist_add(&q->list, &hb->chain);
1008 q->task = current;
1009 spin_unlock(&hb->lock);
1010 }
1011
1012 static inline void
1013 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1014 {
1015 spin_unlock(&hb->lock);
1016 drop_futex_key_refs(&q->key);
1017 }
1018
1019 /*
1020 * queue_me and unqueue_me must be called as a pair, each
1021 * exactly once. They are called with the hashed spinlock held.
1022 */
1023
1024 /* The key must be already stored in q->key. */
1025 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1026 {
1027 struct futex_hash_bucket *hb;
1028
1029 hb = queue_lock(q, fd, filp);
1030 __queue_me(q, hb);
1031 }
1032
1033 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1034 static int unqueue_me(struct futex_q *q)
1035 {
1036 spinlock_t *lock_ptr;
1037 int ret = 0;
1038
1039 /* In the common case we don't take the spinlock, which is nice. */
1040 retry:
1041 lock_ptr = q->lock_ptr;
1042 barrier();
1043 if (lock_ptr != 0) {
1044 spin_lock(lock_ptr);
1045 /*
1046 * q->lock_ptr can change between reading it and
1047 * spin_lock(), causing us to take the wrong lock. This
1048 * corrects the race condition.
1049 *
1050 * Reasoning goes like this: if we have the wrong lock,
1051 * q->lock_ptr must have changed (maybe several times)
1052 * between reading it and the spin_lock(). It can
1053 * change again after the spin_lock() but only if it was
1054 * already changed before the spin_lock(). It cannot,
1055 * however, change back to the original value. Therefore
1056 * we can detect whether we acquired the correct lock.
1057 */
1058 if (unlikely(lock_ptr != q->lock_ptr)) {
1059 spin_unlock(lock_ptr);
1060 goto retry;
1061 }
1062 WARN_ON(plist_node_empty(&q->list));
1063 plist_del(&q->list, &q->list.plist);
1064
1065 BUG_ON(q->pi_state);
1066
1067 spin_unlock(lock_ptr);
1068 ret = 1;
1069 }
1070
1071 drop_futex_key_refs(&q->key);
1072 return ret;
1073 }
1074
1075 /*
1076 * PI futexes can not be requeued and must remove themself from the
1077 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1078 * and dropped here.
1079 */
1080 static void unqueue_me_pi(struct futex_q *q)
1081 {
1082 WARN_ON(plist_node_empty(&q->list));
1083 plist_del(&q->list, &q->list.plist);
1084
1085 BUG_ON(!q->pi_state);
1086 free_pi_state(q->pi_state);
1087 q->pi_state = NULL;
1088
1089 spin_unlock(q->lock_ptr);
1090
1091 drop_futex_key_refs(&q->key);
1092 }
1093
1094 /*
1095 * Fixup the pi_state owner with current.
1096 *
1097 * Must be called with hash bucket lock held and mm->sem held for non
1098 * private futexes.
1099 */
1100 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1101 struct task_struct *curr)
1102 {
1103 u32 newtid = curr->pid | FUTEX_WAITERS;
1104 struct futex_pi_state *pi_state = q->pi_state;
1105 u32 uval, curval, newval;
1106 int ret;
1107
1108 /* Owner died? */
1109 if (pi_state->owner != NULL) {
1110 spin_lock_irq(&pi_state->owner->pi_lock);
1111 WARN_ON(list_empty(&pi_state->list));
1112 list_del_init(&pi_state->list);
1113 spin_unlock_irq(&pi_state->owner->pi_lock);
1114 } else
1115 newtid |= FUTEX_OWNER_DIED;
1116
1117 pi_state->owner = curr;
1118
1119 spin_lock_irq(&curr->pi_lock);
1120 WARN_ON(!list_empty(&pi_state->list));
1121 list_add(&pi_state->list, &curr->pi_state_list);
1122 spin_unlock_irq(&curr->pi_lock);
1123
1124 /*
1125 * We own it, so we have to replace the pending owner
1126 * TID. This must be atomic as we have preserve the
1127 * owner died bit here.
1128 */
1129 ret = get_futex_value_locked(&uval, uaddr);
1130
1131 while (!ret) {
1132 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1133
1134 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1135
1136 if (curval == -EFAULT)
1137 ret = -EFAULT;
1138 if (curval == uval)
1139 break;
1140 uval = curval;
1141 }
1142 return ret;
1143 }
1144
1145 /*
1146 * In case we must use restart_block to restart a futex_wait,
1147 * we encode in the 'arg3' shared capability
1148 */
1149 #define ARG3_SHARED 1
1150
1151 static long futex_wait_restart(struct restart_block *restart);
1152
1153 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1154 u32 val, ktime_t *abs_time)
1155 {
1156 struct task_struct *curr = current;
1157 DECLARE_WAITQUEUE(wait, curr);
1158 struct futex_hash_bucket *hb;
1159 struct futex_q q;
1160 u32 uval;
1161 int ret;
1162 struct hrtimer_sleeper t;
1163 int rem = 0;
1164
1165 q.pi_state = NULL;
1166 retry:
1167 futex_lock_mm(fshared);
1168
1169 ret = get_futex_key(uaddr, fshared, &q.key);
1170 if (unlikely(ret != 0))
1171 goto out_release_sem;
1172
1173 hb = queue_lock(&q, -1, NULL);
1174
1175 /*
1176 * Access the page AFTER the futex is queued.
1177 * Order is important:
1178 *
1179 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1180 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1181 *
1182 * The basic logical guarantee of a futex is that it blocks ONLY
1183 * if cond(var) is known to be true at the time of blocking, for
1184 * any cond. If we queued after testing *uaddr, that would open
1185 * a race condition where we could block indefinitely with
1186 * cond(var) false, which would violate the guarantee.
1187 *
1188 * A consequence is that futex_wait() can return zero and absorb
1189 * a wakeup when *uaddr != val on entry to the syscall. This is
1190 * rare, but normal.
1191 *
1192 * for shared futexes, we hold the mmap semaphore, so the mapping
1193 * cannot have changed since we looked it up in get_futex_key.
1194 */
1195 ret = get_futex_value_locked(&uval, uaddr);
1196
1197 if (unlikely(ret)) {
1198 queue_unlock(&q, hb);
1199
1200 /*
1201 * If we would have faulted, release mmap_sem, fault it in and
1202 * start all over again.
1203 */
1204 futex_unlock_mm(fshared);
1205
1206 ret = get_user(uval, uaddr);
1207
1208 if (!ret)
1209 goto retry;
1210 return ret;
1211 }
1212 ret = -EWOULDBLOCK;
1213 if (uval != val)
1214 goto out_unlock_release_sem;
1215
1216 /* Only actually queue if *uaddr contained val. */
1217 __queue_me(&q, hb);
1218
1219 /*
1220 * Now the futex is queued and we have checked the data, we
1221 * don't want to hold mmap_sem while we sleep.
1222 */
1223 futex_unlock_mm(fshared);
1224
1225 /*
1226 * There might have been scheduling since the queue_me(), as we
1227 * cannot hold a spinlock across the get_user() in case it
1228 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1229 * queueing ourselves into the futex hash. This code thus has to
1230 * rely on the futex_wake() code removing us from hash when it
1231 * wakes us up.
1232 */
1233
1234 /* add_wait_queue is the barrier after __set_current_state. */
1235 __set_current_state(TASK_INTERRUPTIBLE);
1236 add_wait_queue(&q.waiters, &wait);
1237 /*
1238 * !plist_node_empty() is safe here without any lock.
1239 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1240 */
1241 if (likely(!plist_node_empty(&q.list))) {
1242 if (!abs_time)
1243 schedule();
1244 else {
1245 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1246 hrtimer_init_sleeper(&t, current);
1247 t.timer.expires = *abs_time;
1248
1249 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1250
1251 /*
1252 * the timer could have already expired, in which
1253 * case current would be flagged for rescheduling.
1254 * Don't bother calling schedule.
1255 */
1256 if (likely(t.task))
1257 schedule();
1258
1259 hrtimer_cancel(&t.timer);
1260
1261 /* Flag if a timeout occured */
1262 rem = (t.task == NULL);
1263 }
1264 }
1265 __set_current_state(TASK_RUNNING);
1266
1267 /*
1268 * NOTE: we don't remove ourselves from the waitqueue because
1269 * we are the only user of it.
1270 */
1271
1272 /* If we were woken (and unqueued), we succeeded, whatever. */
1273 if (!unqueue_me(&q))
1274 return 0;
1275 if (rem)
1276 return -ETIMEDOUT;
1277
1278 /*
1279 * We expect signal_pending(current), but another thread may
1280 * have handled it for us already.
1281 */
1282 if (!abs_time)
1283 return -ERESTARTSYS;
1284 else {
1285 struct restart_block *restart;
1286 restart = &current_thread_info()->restart_block;
1287 restart->fn = futex_wait_restart;
1288 restart->arg0 = (unsigned long)uaddr;
1289 restart->arg1 = (unsigned long)val;
1290 restart->arg2 = (unsigned long)abs_time;
1291 restart->arg3 = 0;
1292 if (fshared)
1293 restart->arg3 |= ARG3_SHARED;
1294 return -ERESTART_RESTARTBLOCK;
1295 }
1296
1297 out_unlock_release_sem:
1298 queue_unlock(&q, hb);
1299
1300 out_release_sem:
1301 futex_unlock_mm(fshared);
1302 return ret;
1303 }
1304
1305
1306 static long futex_wait_restart(struct restart_block *restart)
1307 {
1308 u32 __user *uaddr = (u32 __user *)restart->arg0;
1309 u32 val = (u32)restart->arg1;
1310 ktime_t *abs_time = (ktime_t *)restart->arg2;
1311 struct rw_semaphore *fshared = NULL;
1312
1313 restart->fn = do_no_restart_syscall;
1314 if (restart->arg3 & ARG3_SHARED)
1315 fshared = &current->mm->mmap_sem;
1316 return (long)futex_wait(uaddr, fshared, val, abs_time);
1317 }
1318
1319
1320 /*
1321 * Userspace tried a 0 -> TID atomic transition of the futex value
1322 * and failed. The kernel side here does the whole locking operation:
1323 * if there are waiters then it will block, it does PI, etc. (Due to
1324 * races the kernel might see a 0 value of the futex too.)
1325 */
1326 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1327 int detect, ktime_t *time, int trylock)
1328 {
1329 struct hrtimer_sleeper timeout, *to = NULL;
1330 struct task_struct *curr = current;
1331 struct futex_hash_bucket *hb;
1332 u32 uval, newval, curval;
1333 struct futex_q q;
1334 int ret, lock_taken, ownerdied = 0, attempt = 0;
1335
1336 if (refill_pi_state_cache())
1337 return -ENOMEM;
1338
1339 if (time) {
1340 to = &timeout;
1341 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1342 hrtimer_init_sleeper(to, current);
1343 to->timer.expires = *time;
1344 }
1345
1346 q.pi_state = NULL;
1347 retry:
1348 futex_lock_mm(fshared);
1349
1350 ret = get_futex_key(uaddr, fshared, &q.key);
1351 if (unlikely(ret != 0))
1352 goto out_release_sem;
1353
1354 retry_unlocked:
1355 hb = queue_lock(&q, -1, NULL);
1356
1357 retry_locked:
1358 ret = lock_taken = 0;
1359
1360 /*
1361 * To avoid races, we attempt to take the lock here again
1362 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1363 * the locks. It will most likely not succeed.
1364 */
1365 newval = current->pid;
1366
1367 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1368
1369 if (unlikely(curval == -EFAULT))
1370 goto uaddr_faulted;
1371
1372 /*
1373 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1374 * situation and we return success to user space.
1375 */
1376 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1377 ret = -EDEADLK;
1378 goto out_unlock_release_sem;
1379 }
1380
1381 /*
1382 * Surprise - we got the lock. Just return to userspace:
1383 */
1384 if (unlikely(!curval))
1385 goto out_unlock_release_sem;
1386
1387 uval = curval;
1388
1389 /*
1390 * Set the WAITERS flag, so the owner will know it has someone
1391 * to wake at next unlock
1392 */
1393 newval = curval | FUTEX_WAITERS;
1394
1395 /*
1396 * There are two cases, where a futex might have no owner (the
1397 * owner TID is 0): OWNER_DIED. We take over the futex in this
1398 * case. We also do an unconditional take over, when the owner
1399 * of the futex died.
1400 *
1401 * This is safe as we are protected by the hash bucket lock !
1402 */
1403 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1404 /* Keep the OWNER_DIED bit */
1405 newval = (curval & ~FUTEX_TID_MASK) | current->pid;
1406 ownerdied = 0;
1407 lock_taken = 1;
1408 }
1409
1410 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1411
1412 if (unlikely(curval == -EFAULT))
1413 goto uaddr_faulted;
1414 if (unlikely(curval != uval))
1415 goto retry_locked;
1416
1417 /*
1418 * We took the lock due to owner died take over.
1419 */
1420 if (unlikely(lock_taken))
1421 goto out_unlock_release_sem;
1422
1423 /*
1424 * We dont have the lock. Look up the PI state (or create it if
1425 * we are the first waiter):
1426 */
1427 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1428
1429 if (unlikely(ret)) {
1430 switch (ret) {
1431
1432 case -EAGAIN:
1433 /*
1434 * Task is exiting and we just wait for the
1435 * exit to complete.
1436 */
1437 queue_unlock(&q, hb);
1438 futex_unlock_mm(fshared);
1439 cond_resched();
1440 goto retry;
1441
1442 case -ESRCH:
1443 /*
1444 * No owner found for this futex. Check if the
1445 * OWNER_DIED bit is set to figure out whether
1446 * this is a robust futex or not.
1447 */
1448 if (get_futex_value_locked(&curval, uaddr))
1449 goto uaddr_faulted;
1450
1451 /*
1452 * We simply start over in case of a robust
1453 * futex. The code above will take the futex
1454 * and return happy.
1455 */
1456 if (curval & FUTEX_OWNER_DIED) {
1457 ownerdied = 1;
1458 goto retry_locked;
1459 }
1460 default:
1461 goto out_unlock_release_sem;
1462 }
1463 }
1464
1465 /*
1466 * Only actually queue now that the atomic ops are done:
1467 */
1468 __queue_me(&q, hb);
1469
1470 /*
1471 * Now the futex is queued and we have checked the data, we
1472 * don't want to hold mmap_sem while we sleep.
1473 */
1474 futex_unlock_mm(fshared);
1475
1476 WARN_ON(!q.pi_state);
1477 /*
1478 * Block on the PI mutex:
1479 */
1480 if (!trylock)
1481 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1482 else {
1483 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1484 /* Fixup the trylock return value: */
1485 ret = ret ? 0 : -EWOULDBLOCK;
1486 }
1487
1488 futex_lock_mm(fshared);
1489 spin_lock(q.lock_ptr);
1490
1491 if (!ret) {
1492 /*
1493 * Got the lock. We might not be the anticipated owner
1494 * if we did a lock-steal - fix up the PI-state in
1495 * that case:
1496 */
1497 if (q.pi_state->owner != curr)
1498 ret = fixup_pi_state_owner(uaddr, &q, curr);
1499 } else {
1500 /*
1501 * Catch the rare case, where the lock was released
1502 * when we were on the way back before we locked the
1503 * hash bucket.
1504 */
1505 if (q.pi_state->owner == curr &&
1506 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1507 ret = 0;
1508 } else {
1509 /*
1510 * Paranoia check. If we did not take the lock
1511 * in the trylock above, then we should not be
1512 * the owner of the rtmutex, neither the real
1513 * nor the pending one:
1514 */
1515 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1516 printk(KERN_ERR "futex_lock_pi: ret = %d "
1517 "pi-mutex: %p pi-state %p\n", ret,
1518 q.pi_state->pi_mutex.owner,
1519 q.pi_state->owner);
1520 }
1521 }
1522
1523 /* Unqueue and drop the lock */
1524 unqueue_me_pi(&q);
1525 futex_unlock_mm(fshared);
1526
1527 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1528
1529 out_unlock_release_sem:
1530 queue_unlock(&q, hb);
1531
1532 out_release_sem:
1533 futex_unlock_mm(fshared);
1534 return ret;
1535
1536 uaddr_faulted:
1537 /*
1538 * We have to r/w *(int __user *)uaddr, but we can't modify it
1539 * non-atomically. Therefore, if get_user below is not
1540 * enough, we need to handle the fault ourselves, while
1541 * still holding the mmap_sem.
1542 *
1543 * ... and hb->lock. :-) --ANK
1544 */
1545 queue_unlock(&q, hb);
1546
1547 if (attempt++) {
1548 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1549 attempt);
1550 if (ret)
1551 goto out_release_sem;
1552 goto retry_unlocked;
1553 }
1554
1555 futex_unlock_mm(fshared);
1556
1557 ret = get_user(uval, uaddr);
1558 if (!ret && (uval != -EFAULT))
1559 goto retry;
1560
1561 return ret;
1562 }
1563
1564 /*
1565 * Userspace attempted a TID -> 0 atomic transition, and failed.
1566 * This is the in-kernel slowpath: we look up the PI state (if any),
1567 * and do the rt-mutex unlock.
1568 */
1569 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1570 {
1571 struct futex_hash_bucket *hb;
1572 struct futex_q *this, *next;
1573 u32 uval;
1574 struct plist_head *head;
1575 union futex_key key;
1576 int ret, attempt = 0;
1577
1578 retry:
1579 if (get_user(uval, uaddr))
1580 return -EFAULT;
1581 /*
1582 * We release only a lock we actually own:
1583 */
1584 if ((uval & FUTEX_TID_MASK) != current->pid)
1585 return -EPERM;
1586 /*
1587 * First take all the futex related locks:
1588 */
1589 futex_lock_mm(fshared);
1590
1591 ret = get_futex_key(uaddr, fshared, &key);
1592 if (unlikely(ret != 0))
1593 goto out;
1594
1595 hb = hash_futex(&key);
1596 retry_unlocked:
1597 spin_lock(&hb->lock);
1598
1599 /*
1600 * To avoid races, try to do the TID -> 0 atomic transition
1601 * again. If it succeeds then we can return without waking
1602 * anyone else up:
1603 */
1604 if (!(uval & FUTEX_OWNER_DIED))
1605 uval = cmpxchg_futex_value_locked(uaddr, current->pid, 0);
1606
1607
1608 if (unlikely(uval == -EFAULT))
1609 goto pi_faulted;
1610 /*
1611 * Rare case: we managed to release the lock atomically,
1612 * no need to wake anyone else up:
1613 */
1614 if (unlikely(uval == current->pid))
1615 goto out_unlock;
1616
1617 /*
1618 * Ok, other tasks may need to be woken up - check waiters
1619 * and do the wakeup if necessary:
1620 */
1621 head = &hb->chain;
1622
1623 plist_for_each_entry_safe(this, next, head, list) {
1624 if (!match_futex (&this->key, &key))
1625 continue;
1626 ret = wake_futex_pi(uaddr, uval, this);
1627 /*
1628 * The atomic access to the futex value
1629 * generated a pagefault, so retry the
1630 * user-access and the wakeup:
1631 */
1632 if (ret == -EFAULT)
1633 goto pi_faulted;
1634 goto out_unlock;
1635 }
1636 /*
1637 * No waiters - kernel unlocks the futex:
1638 */
1639 if (!(uval & FUTEX_OWNER_DIED)) {
1640 ret = unlock_futex_pi(uaddr, uval);
1641 if (ret == -EFAULT)
1642 goto pi_faulted;
1643 }
1644
1645 out_unlock:
1646 spin_unlock(&hb->lock);
1647 out:
1648 futex_unlock_mm(fshared);
1649
1650 return ret;
1651
1652 pi_faulted:
1653 /*
1654 * We have to r/w *(int __user *)uaddr, but we can't modify it
1655 * non-atomically. Therefore, if get_user below is not
1656 * enough, we need to handle the fault ourselves, while
1657 * still holding the mmap_sem.
1658 *
1659 * ... and hb->lock. --ANK
1660 */
1661 spin_unlock(&hb->lock);
1662
1663 if (attempt++) {
1664 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1665 attempt);
1666 if (ret)
1667 goto out;
1668 goto retry_unlocked;
1669 }
1670
1671 futex_unlock_mm(fshared);
1672
1673 ret = get_user(uval, uaddr);
1674 if (!ret && (uval != -EFAULT))
1675 goto retry;
1676
1677 return ret;
1678 }
1679
1680 static int futex_close(struct inode *inode, struct file *filp)
1681 {
1682 struct futex_q *q = filp->private_data;
1683
1684 unqueue_me(q);
1685 kfree(q);
1686
1687 return 0;
1688 }
1689
1690 /* This is one-shot: once it's gone off you need a new fd */
1691 static unsigned int futex_poll(struct file *filp,
1692 struct poll_table_struct *wait)
1693 {
1694 struct futex_q *q = filp->private_data;
1695 int ret = 0;
1696
1697 poll_wait(filp, &q->waiters, wait);
1698
1699 /*
1700 * plist_node_empty() is safe here without any lock.
1701 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1702 */
1703 if (plist_node_empty(&q->list))
1704 ret = POLLIN | POLLRDNORM;
1705
1706 return ret;
1707 }
1708
1709 static const struct file_operations futex_fops = {
1710 .release = futex_close,
1711 .poll = futex_poll,
1712 };
1713
1714 /*
1715 * Signal allows caller to avoid the race which would occur if they
1716 * set the sigio stuff up afterwards.
1717 */
1718 static int futex_fd(u32 __user *uaddr, int signal)
1719 {
1720 struct futex_q *q;
1721 struct file *filp;
1722 int ret, err;
1723 struct rw_semaphore *fshared;
1724 static unsigned long printk_interval;
1725
1726 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1727 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1728 "will be removed from the kernel in June 2007\n",
1729 current->comm);
1730 }
1731
1732 ret = -EINVAL;
1733 if (!valid_signal(signal))
1734 goto out;
1735
1736 ret = get_unused_fd();
1737 if (ret < 0)
1738 goto out;
1739 filp = get_empty_filp();
1740 if (!filp) {
1741 put_unused_fd(ret);
1742 ret = -ENFILE;
1743 goto out;
1744 }
1745 filp->f_op = &futex_fops;
1746 filp->f_path.mnt = mntget(futex_mnt);
1747 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1748 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1749
1750 if (signal) {
1751 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1752 if (err < 0) {
1753 goto error;
1754 }
1755 filp->f_owner.signum = signal;
1756 }
1757
1758 q = kmalloc(sizeof(*q), GFP_KERNEL);
1759 if (!q) {
1760 err = -ENOMEM;
1761 goto error;
1762 }
1763 q->pi_state = NULL;
1764
1765 fshared = &current->mm->mmap_sem;
1766 down_read(fshared);
1767 err = get_futex_key(uaddr, fshared, &q->key);
1768
1769 if (unlikely(err != 0)) {
1770 up_read(fshared);
1771 kfree(q);
1772 goto error;
1773 }
1774
1775 /*
1776 * queue_me() must be called before releasing mmap_sem, because
1777 * key->shared.inode needs to be referenced while holding it.
1778 */
1779 filp->private_data = q;
1780
1781 queue_me(q, ret, filp);
1782 up_read(fshared);
1783
1784 /* Now we map fd to filp, so userspace can access it */
1785 fd_install(ret, filp);
1786 out:
1787 return ret;
1788 error:
1789 put_unused_fd(ret);
1790 put_filp(filp);
1791 ret = err;
1792 goto out;
1793 }
1794
1795 /*
1796 * Support for robust futexes: the kernel cleans up held futexes at
1797 * thread exit time.
1798 *
1799 * Implementation: user-space maintains a per-thread list of locks it
1800 * is holding. Upon do_exit(), the kernel carefully walks this list,
1801 * and marks all locks that are owned by this thread with the
1802 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1803 * always manipulated with the lock held, so the list is private and
1804 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1805 * field, to allow the kernel to clean up if the thread dies after
1806 * acquiring the lock, but just before it could have added itself to
1807 * the list. There can only be one such pending lock.
1808 */
1809
1810 /**
1811 * sys_set_robust_list - set the robust-futex list head of a task
1812 * @head: pointer to the list-head
1813 * @len: length of the list-head, as userspace expects
1814 */
1815 asmlinkage long
1816 sys_set_robust_list(struct robust_list_head __user *head,
1817 size_t len)
1818 {
1819 /*
1820 * The kernel knows only one size for now:
1821 */
1822 if (unlikely(len != sizeof(*head)))
1823 return -EINVAL;
1824
1825 current->robust_list = head;
1826
1827 return 0;
1828 }
1829
1830 /**
1831 * sys_get_robust_list - get the robust-futex list head of a task
1832 * @pid: pid of the process [zero for current task]
1833 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1834 * @len_ptr: pointer to a length field, the kernel fills in the header size
1835 */
1836 asmlinkage long
1837 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1838 size_t __user *len_ptr)
1839 {
1840 struct robust_list_head __user *head;
1841 unsigned long ret;
1842
1843 if (!pid)
1844 head = current->robust_list;
1845 else {
1846 struct task_struct *p;
1847
1848 ret = -ESRCH;
1849 rcu_read_lock();
1850 p = find_task_by_pid(pid);
1851 if (!p)
1852 goto err_unlock;
1853 ret = -EPERM;
1854 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1855 !capable(CAP_SYS_PTRACE))
1856 goto err_unlock;
1857 head = p->robust_list;
1858 rcu_read_unlock();
1859 }
1860
1861 if (put_user(sizeof(*head), len_ptr))
1862 return -EFAULT;
1863 return put_user(head, head_ptr);
1864
1865 err_unlock:
1866 rcu_read_unlock();
1867
1868 return ret;
1869 }
1870
1871 /*
1872 * Process a futex-list entry, check whether it's owned by the
1873 * dying task, and do notification if so:
1874 */
1875 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1876 {
1877 u32 uval, nval, mval;
1878
1879 retry:
1880 if (get_user(uval, uaddr))
1881 return -1;
1882
1883 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1884 /*
1885 * Ok, this dying thread is truly holding a futex
1886 * of interest. Set the OWNER_DIED bit atomically
1887 * via cmpxchg, and if the value had FUTEX_WAITERS
1888 * set, wake up a waiter (if any). (We have to do a
1889 * futex_wake() even if OWNER_DIED is already set -
1890 * to handle the rare but possible case of recursive
1891 * thread-death.) The rest of the cleanup is done in
1892 * userspace.
1893 */
1894 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1895 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1896
1897 if (nval == -EFAULT)
1898 return -1;
1899
1900 if (nval != uval)
1901 goto retry;
1902
1903 /*
1904 * Wake robust non-PI futexes here. The wakeup of
1905 * PI futexes happens in exit_pi_state():
1906 */
1907 if (!pi && (uval & FUTEX_WAITERS))
1908 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
1909 }
1910 return 0;
1911 }
1912
1913 /*
1914 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1915 */
1916 static inline int fetch_robust_entry(struct robust_list __user **entry,
1917 struct robust_list __user * __user *head,
1918 int *pi)
1919 {
1920 unsigned long uentry;
1921
1922 if (get_user(uentry, (unsigned long __user *)head))
1923 return -EFAULT;
1924
1925 *entry = (void __user *)(uentry & ~1UL);
1926 *pi = uentry & 1;
1927
1928 return 0;
1929 }
1930
1931 /*
1932 * Walk curr->robust_list (very carefully, it's a userspace list!)
1933 * and mark any locks found there dead, and notify any waiters.
1934 *
1935 * We silently return on any sign of list-walking problem.
1936 */
1937 void exit_robust_list(struct task_struct *curr)
1938 {
1939 struct robust_list_head __user *head = curr->robust_list;
1940 struct robust_list __user *entry, *pending;
1941 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1942 unsigned long futex_offset;
1943
1944 /*
1945 * Fetch the list head (which was registered earlier, via
1946 * sys_set_robust_list()):
1947 */
1948 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1949 return;
1950 /*
1951 * Fetch the relative futex offset:
1952 */
1953 if (get_user(futex_offset, &head->futex_offset))
1954 return;
1955 /*
1956 * Fetch any possibly pending lock-add first, and handle it
1957 * if it exists:
1958 */
1959 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1960 return;
1961
1962 if (pending)
1963 handle_futex_death((void __user *)pending + futex_offset,
1964 curr, pip);
1965
1966 while (entry != &head->list) {
1967 /*
1968 * A pending lock might already be on the list, so
1969 * don't process it twice:
1970 */
1971 if (entry != pending)
1972 if (handle_futex_death((void __user *)entry + futex_offset,
1973 curr, pi))
1974 return;
1975 /*
1976 * Fetch the next entry in the list:
1977 */
1978 if (fetch_robust_entry(&entry, &entry->next, &pi))
1979 return;
1980 /*
1981 * Avoid excessively long or circular lists:
1982 */
1983 if (!--limit)
1984 break;
1985
1986 cond_resched();
1987 }
1988 }
1989
1990 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1991 u32 __user *uaddr2, u32 val2, u32 val3)
1992 {
1993 int ret;
1994 int cmd = op & FUTEX_CMD_MASK;
1995 struct rw_semaphore *fshared = NULL;
1996
1997 if (!(op & FUTEX_PRIVATE_FLAG))
1998 fshared = &current->mm->mmap_sem;
1999
2000 switch (cmd) {
2001 case FUTEX_WAIT:
2002 ret = futex_wait(uaddr, fshared, val, timeout);
2003 break;
2004 case FUTEX_WAKE:
2005 ret = futex_wake(uaddr, fshared, val);
2006 break;
2007 case FUTEX_FD:
2008 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2009 ret = futex_fd(uaddr, val);
2010 break;
2011 case FUTEX_REQUEUE:
2012 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2013 break;
2014 case FUTEX_CMP_REQUEUE:
2015 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2016 break;
2017 case FUTEX_WAKE_OP:
2018 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2019 break;
2020 case FUTEX_LOCK_PI:
2021 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2022 break;
2023 case FUTEX_UNLOCK_PI:
2024 ret = futex_unlock_pi(uaddr, fshared);
2025 break;
2026 case FUTEX_TRYLOCK_PI:
2027 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2028 break;
2029 default:
2030 ret = -ENOSYS;
2031 }
2032 return ret;
2033 }
2034
2035
2036 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2037 struct timespec __user *utime, u32 __user *uaddr2,
2038 u32 val3)
2039 {
2040 struct timespec ts;
2041 ktime_t t, *tp = NULL;
2042 u32 val2 = 0;
2043 int cmd = op & FUTEX_CMD_MASK;
2044
2045 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2046 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2047 return -EFAULT;
2048 if (!timespec_valid(&ts))
2049 return -EINVAL;
2050
2051 t = timespec_to_ktime(ts);
2052 if (cmd == FUTEX_WAIT)
2053 t = ktime_add(ktime_get(), t);
2054 tp = &t;
2055 }
2056 /*
2057 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2058 */
2059 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE)
2060 val2 = (u32) (unsigned long) utime;
2061
2062 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2063 }
2064
2065 static int futexfs_get_sb(struct file_system_type *fs_type,
2066 int flags, const char *dev_name, void *data,
2067 struct vfsmount *mnt)
2068 {
2069 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
2070 }
2071
2072 static struct file_system_type futex_fs_type = {
2073 .name = "futexfs",
2074 .get_sb = futexfs_get_sb,
2075 .kill_sb = kill_anon_super,
2076 };
2077
2078 static int __init init(void)
2079 {
2080 int i = register_filesystem(&futex_fs_type);
2081
2082 if (i)
2083 return i;
2084
2085 futex_mnt = kern_mount(&futex_fs_type);
2086 if (IS_ERR(futex_mnt)) {
2087 unregister_filesystem(&futex_fs_type);
2088 return PTR_ERR(futex_mnt);
2089 }
2090
2091 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2092 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2093 spin_lock_init(&futex_queues[i].lock);
2094 }
2095 return 0;
2096 }
2097 __initcall(init);
This page took 0.07566 seconds and 6 git commands to generate.