timers: Add CLOCK_BOOTTIME hrtimer base
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
60 */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63
64 .clock_base =
65 {
66 {
67 .index = CLOCK_REALTIME,
68 .get_time = &ktime_get_real,
69 .resolution = KTIME_LOW_RES,
70 },
71 {
72 .index = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
74 .resolution = KTIME_LOW_RES,
75 },
76 {
77 .index = CLOCK_BOOTTIME,
78 .get_time = &ktime_get_boottime,
79 .resolution = KTIME_LOW_RES,
80 },
81 }
82 };
83
84 static int hrtimer_clock_to_base_table[MAX_CLOCKS];
85
86 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
87 {
88 return hrtimer_clock_to_base_table[clock_id];
89 }
90
91
92 /*
93 * Get the coarse grained time at the softirq based on xtime and
94 * wall_to_monotonic.
95 */
96 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
97 {
98 ktime_t xtim, mono, boot;
99 struct timespec xts, tom, slp;
100
101 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
102
103 xtim = timespec_to_ktime(xts);
104 mono = ktime_add(xtim, timespec_to_ktime(tom));
105 boot = ktime_add(mono, timespec_to_ktime(slp));
106 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
107 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
108 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
109 }
110
111 /*
112 * Functions and macros which are different for UP/SMP systems are kept in a
113 * single place
114 */
115 #ifdef CONFIG_SMP
116
117 /*
118 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
119 * means that all timers which are tied to this base via timer->base are
120 * locked, and the base itself is locked too.
121 *
122 * So __run_timers/migrate_timers can safely modify all timers which could
123 * be found on the lists/queues.
124 *
125 * When the timer's base is locked, and the timer removed from list, it is
126 * possible to set timer->base = NULL and drop the lock: the timer remains
127 * locked.
128 */
129 static
130 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
131 unsigned long *flags)
132 {
133 struct hrtimer_clock_base *base;
134
135 for (;;) {
136 base = timer->base;
137 if (likely(base != NULL)) {
138 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
139 if (likely(base == timer->base))
140 return base;
141 /* The timer has migrated to another CPU: */
142 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
143 }
144 cpu_relax();
145 }
146 }
147
148
149 /*
150 * Get the preferred target CPU for NOHZ
151 */
152 static int hrtimer_get_target(int this_cpu, int pinned)
153 {
154 #ifdef CONFIG_NO_HZ
155 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
156 return get_nohz_timer_target();
157 #endif
158 return this_cpu;
159 }
160
161 /*
162 * With HIGHRES=y we do not migrate the timer when it is expiring
163 * before the next event on the target cpu because we cannot reprogram
164 * the target cpu hardware and we would cause it to fire late.
165 *
166 * Called with cpu_base->lock of target cpu held.
167 */
168 static int
169 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
170 {
171 #ifdef CONFIG_HIGH_RES_TIMERS
172 ktime_t expires;
173
174 if (!new_base->cpu_base->hres_active)
175 return 0;
176
177 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
178 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
179 #else
180 return 0;
181 #endif
182 }
183
184 /*
185 * Switch the timer base to the current CPU when possible.
186 */
187 static inline struct hrtimer_clock_base *
188 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
189 int pinned)
190 {
191 struct hrtimer_clock_base *new_base;
192 struct hrtimer_cpu_base *new_cpu_base;
193 int this_cpu = smp_processor_id();
194 int cpu = hrtimer_get_target(this_cpu, pinned);
195 int basenum = hrtimer_clockid_to_base(base->index);
196
197 again:
198 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
199 new_base = &new_cpu_base->clock_base[basenum];
200
201 if (base != new_base) {
202 /*
203 * We are trying to move timer to new_base.
204 * However we can't change timer's base while it is running,
205 * so we keep it on the same CPU. No hassle vs. reprogramming
206 * the event source in the high resolution case. The softirq
207 * code will take care of this when the timer function has
208 * completed. There is no conflict as we hold the lock until
209 * the timer is enqueued.
210 */
211 if (unlikely(hrtimer_callback_running(timer)))
212 return base;
213
214 /* See the comment in lock_timer_base() */
215 timer->base = NULL;
216 raw_spin_unlock(&base->cpu_base->lock);
217 raw_spin_lock(&new_base->cpu_base->lock);
218
219 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
220 cpu = this_cpu;
221 raw_spin_unlock(&new_base->cpu_base->lock);
222 raw_spin_lock(&base->cpu_base->lock);
223 timer->base = base;
224 goto again;
225 }
226 timer->base = new_base;
227 }
228 return new_base;
229 }
230
231 #else /* CONFIG_SMP */
232
233 static inline struct hrtimer_clock_base *
234 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
235 {
236 struct hrtimer_clock_base *base = timer->base;
237
238 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
239
240 return base;
241 }
242
243 # define switch_hrtimer_base(t, b, p) (b)
244
245 #endif /* !CONFIG_SMP */
246
247 /*
248 * Functions for the union type storage format of ktime_t which are
249 * too large for inlining:
250 */
251 #if BITS_PER_LONG < 64
252 # ifndef CONFIG_KTIME_SCALAR
253 /**
254 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
255 * @kt: addend
256 * @nsec: the scalar nsec value to add
257 *
258 * Returns the sum of kt and nsec in ktime_t format
259 */
260 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
261 {
262 ktime_t tmp;
263
264 if (likely(nsec < NSEC_PER_SEC)) {
265 tmp.tv64 = nsec;
266 } else {
267 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
268
269 tmp = ktime_set((long)nsec, rem);
270 }
271
272 return ktime_add(kt, tmp);
273 }
274
275 EXPORT_SYMBOL_GPL(ktime_add_ns);
276
277 /**
278 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
279 * @kt: minuend
280 * @nsec: the scalar nsec value to subtract
281 *
282 * Returns the subtraction of @nsec from @kt in ktime_t format
283 */
284 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
285 {
286 ktime_t tmp;
287
288 if (likely(nsec < NSEC_PER_SEC)) {
289 tmp.tv64 = nsec;
290 } else {
291 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
292
293 tmp = ktime_set((long)nsec, rem);
294 }
295
296 return ktime_sub(kt, tmp);
297 }
298
299 EXPORT_SYMBOL_GPL(ktime_sub_ns);
300 # endif /* !CONFIG_KTIME_SCALAR */
301
302 /*
303 * Divide a ktime value by a nanosecond value
304 */
305 u64 ktime_divns(const ktime_t kt, s64 div)
306 {
307 u64 dclc;
308 int sft = 0;
309
310 dclc = ktime_to_ns(kt);
311 /* Make sure the divisor is less than 2^32: */
312 while (div >> 32) {
313 sft++;
314 div >>= 1;
315 }
316 dclc >>= sft;
317 do_div(dclc, (unsigned long) div);
318
319 return dclc;
320 }
321 #endif /* BITS_PER_LONG >= 64 */
322
323 /*
324 * Add two ktime values and do a safety check for overflow:
325 */
326 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
327 {
328 ktime_t res = ktime_add(lhs, rhs);
329
330 /*
331 * We use KTIME_SEC_MAX here, the maximum timeout which we can
332 * return to user space in a timespec:
333 */
334 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
335 res = ktime_set(KTIME_SEC_MAX, 0);
336
337 return res;
338 }
339
340 EXPORT_SYMBOL_GPL(ktime_add_safe);
341
342 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
343
344 static struct debug_obj_descr hrtimer_debug_descr;
345
346 /*
347 * fixup_init is called when:
348 * - an active object is initialized
349 */
350 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
351 {
352 struct hrtimer *timer = addr;
353
354 switch (state) {
355 case ODEBUG_STATE_ACTIVE:
356 hrtimer_cancel(timer);
357 debug_object_init(timer, &hrtimer_debug_descr);
358 return 1;
359 default:
360 return 0;
361 }
362 }
363
364 /*
365 * fixup_activate is called when:
366 * - an active object is activated
367 * - an unknown object is activated (might be a statically initialized object)
368 */
369 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
370 {
371 switch (state) {
372
373 case ODEBUG_STATE_NOTAVAILABLE:
374 WARN_ON_ONCE(1);
375 return 0;
376
377 case ODEBUG_STATE_ACTIVE:
378 WARN_ON(1);
379
380 default:
381 return 0;
382 }
383 }
384
385 /*
386 * fixup_free is called when:
387 * - an active object is freed
388 */
389 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
390 {
391 struct hrtimer *timer = addr;
392
393 switch (state) {
394 case ODEBUG_STATE_ACTIVE:
395 hrtimer_cancel(timer);
396 debug_object_free(timer, &hrtimer_debug_descr);
397 return 1;
398 default:
399 return 0;
400 }
401 }
402
403 static struct debug_obj_descr hrtimer_debug_descr = {
404 .name = "hrtimer",
405 .fixup_init = hrtimer_fixup_init,
406 .fixup_activate = hrtimer_fixup_activate,
407 .fixup_free = hrtimer_fixup_free,
408 };
409
410 static inline void debug_hrtimer_init(struct hrtimer *timer)
411 {
412 debug_object_init(timer, &hrtimer_debug_descr);
413 }
414
415 static inline void debug_hrtimer_activate(struct hrtimer *timer)
416 {
417 debug_object_activate(timer, &hrtimer_debug_descr);
418 }
419
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
421 {
422 debug_object_deactivate(timer, &hrtimer_debug_descr);
423 }
424
425 static inline void debug_hrtimer_free(struct hrtimer *timer)
426 {
427 debug_object_free(timer, &hrtimer_debug_descr);
428 }
429
430 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
431 enum hrtimer_mode mode);
432
433 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
434 enum hrtimer_mode mode)
435 {
436 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
437 __hrtimer_init(timer, clock_id, mode);
438 }
439 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440
441 void destroy_hrtimer_on_stack(struct hrtimer *timer)
442 {
443 debug_object_free(timer, &hrtimer_debug_descr);
444 }
445
446 #else
447 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
448 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
449 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
450 #endif
451
452 static inline void
453 debug_init(struct hrtimer *timer, clockid_t clockid,
454 enum hrtimer_mode mode)
455 {
456 debug_hrtimer_init(timer);
457 trace_hrtimer_init(timer, clockid, mode);
458 }
459
460 static inline void debug_activate(struct hrtimer *timer)
461 {
462 debug_hrtimer_activate(timer);
463 trace_hrtimer_start(timer);
464 }
465
466 static inline void debug_deactivate(struct hrtimer *timer)
467 {
468 debug_hrtimer_deactivate(timer);
469 trace_hrtimer_cancel(timer);
470 }
471
472 /* High resolution timer related functions */
473 #ifdef CONFIG_HIGH_RES_TIMERS
474
475 /*
476 * High resolution timer enabled ?
477 */
478 static int hrtimer_hres_enabled __read_mostly = 1;
479
480 /*
481 * Enable / Disable high resolution mode
482 */
483 static int __init setup_hrtimer_hres(char *str)
484 {
485 if (!strcmp(str, "off"))
486 hrtimer_hres_enabled = 0;
487 else if (!strcmp(str, "on"))
488 hrtimer_hres_enabled = 1;
489 else
490 return 0;
491 return 1;
492 }
493
494 __setup("highres=", setup_hrtimer_hres);
495
496 /*
497 * hrtimer_high_res_enabled - query, if the highres mode is enabled
498 */
499 static inline int hrtimer_is_hres_enabled(void)
500 {
501 return hrtimer_hres_enabled;
502 }
503
504 /*
505 * Is the high resolution mode active ?
506 */
507 static inline int hrtimer_hres_active(void)
508 {
509 return __this_cpu_read(hrtimer_bases.hres_active);
510 }
511
512 /*
513 * Reprogram the event source with checking both queues for the
514 * next event
515 * Called with interrupts disabled and base->lock held
516 */
517 static void
518 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
519 {
520 int i;
521 struct hrtimer_clock_base *base = cpu_base->clock_base;
522 ktime_t expires, expires_next;
523
524 expires_next.tv64 = KTIME_MAX;
525
526 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
527 struct hrtimer *timer;
528 struct timerqueue_node *next;
529
530 next = timerqueue_getnext(&base->active);
531 if (!next)
532 continue;
533 timer = container_of(next, struct hrtimer, node);
534
535 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
536 /*
537 * clock_was_set() has changed base->offset so the
538 * result might be negative. Fix it up to prevent a
539 * false positive in clockevents_program_event()
540 */
541 if (expires.tv64 < 0)
542 expires.tv64 = 0;
543 if (expires.tv64 < expires_next.tv64)
544 expires_next = expires;
545 }
546
547 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
548 return;
549
550 cpu_base->expires_next.tv64 = expires_next.tv64;
551
552 if (cpu_base->expires_next.tv64 != KTIME_MAX)
553 tick_program_event(cpu_base->expires_next, 1);
554 }
555
556 /*
557 * Shared reprogramming for clock_realtime and clock_monotonic
558 *
559 * When a timer is enqueued and expires earlier than the already enqueued
560 * timers, we have to check, whether it expires earlier than the timer for
561 * which the clock event device was armed.
562 *
563 * Called with interrupts disabled and base->cpu_base.lock held
564 */
565 static int hrtimer_reprogram(struct hrtimer *timer,
566 struct hrtimer_clock_base *base)
567 {
568 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
569 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
570 int res;
571
572 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
573
574 /*
575 * When the callback is running, we do not reprogram the clock event
576 * device. The timer callback is either running on a different CPU or
577 * the callback is executed in the hrtimer_interrupt context. The
578 * reprogramming is handled either by the softirq, which called the
579 * callback or at the end of the hrtimer_interrupt.
580 */
581 if (hrtimer_callback_running(timer))
582 return 0;
583
584 /*
585 * CLOCK_REALTIME timer might be requested with an absolute
586 * expiry time which is less than base->offset. Nothing wrong
587 * about that, just avoid to call into the tick code, which
588 * has now objections against negative expiry values.
589 */
590 if (expires.tv64 < 0)
591 return -ETIME;
592
593 if (expires.tv64 >= cpu_base->expires_next.tv64)
594 return 0;
595
596 /*
597 * If a hang was detected in the last timer interrupt then we
598 * do not schedule a timer which is earlier than the expiry
599 * which we enforced in the hang detection. We want the system
600 * to make progress.
601 */
602 if (cpu_base->hang_detected)
603 return 0;
604
605 /*
606 * Clockevents returns -ETIME, when the event was in the past.
607 */
608 res = tick_program_event(expires, 0);
609 if (!IS_ERR_VALUE(res))
610 cpu_base->expires_next = expires;
611 return res;
612 }
613
614
615 /*
616 * Retrigger next event is called after clock was set
617 *
618 * Called with interrupts disabled via on_each_cpu()
619 */
620 static void retrigger_next_event(void *arg)
621 {
622 struct hrtimer_cpu_base *base;
623 struct timespec realtime_offset, wtm, sleep;
624
625 if (!hrtimer_hres_active())
626 return;
627
628 get_xtime_and_monotonic_and_sleep_offset(&realtime_offset, &wtm,
629 &sleep);
630 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
631
632 base = &__get_cpu_var(hrtimer_bases);
633
634 /* Adjust CLOCK_REALTIME offset */
635 raw_spin_lock(&base->lock);
636 base->clock_base[HRTIMER_BASE_REALTIME].offset =
637 timespec_to_ktime(realtime_offset);
638
639 hrtimer_force_reprogram(base, 0);
640 raw_spin_unlock(&base->lock);
641 }
642
643 /*
644 * Clock realtime was set
645 *
646 * Change the offset of the realtime clock vs. the monotonic
647 * clock.
648 *
649 * We might have to reprogram the high resolution timer interrupt. On
650 * SMP we call the architecture specific code to retrigger _all_ high
651 * resolution timer interrupts. On UP we just disable interrupts and
652 * call the high resolution interrupt code.
653 */
654 void clock_was_set(void)
655 {
656 /* Retrigger the CPU local events everywhere */
657 on_each_cpu(retrigger_next_event, NULL, 1);
658 }
659
660 /*
661 * During resume we might have to reprogram the high resolution timer
662 * interrupt (on the local CPU):
663 */
664 void hres_timers_resume(void)
665 {
666 WARN_ONCE(!irqs_disabled(),
667 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
668
669 retrigger_next_event(NULL);
670 }
671
672 /*
673 * Initialize the high resolution related parts of cpu_base
674 */
675 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
676 {
677 base->expires_next.tv64 = KTIME_MAX;
678 base->hres_active = 0;
679 }
680
681 /*
682 * Initialize the high resolution related parts of a hrtimer
683 */
684 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
685 {
686 }
687
688
689 /*
690 * When High resolution timers are active, try to reprogram. Note, that in case
691 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
692 * check happens. The timer gets enqueued into the rbtree. The reprogramming
693 * and expiry check is done in the hrtimer_interrupt or in the softirq.
694 */
695 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
696 struct hrtimer_clock_base *base,
697 int wakeup)
698 {
699 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
700 if (wakeup) {
701 raw_spin_unlock(&base->cpu_base->lock);
702 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
703 raw_spin_lock(&base->cpu_base->lock);
704 } else
705 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
706
707 return 1;
708 }
709
710 return 0;
711 }
712
713 /*
714 * Switch to high resolution mode
715 */
716 static int hrtimer_switch_to_hres(void)
717 {
718 int cpu = smp_processor_id();
719 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
720 unsigned long flags;
721
722 if (base->hres_active)
723 return 1;
724
725 local_irq_save(flags);
726
727 if (tick_init_highres()) {
728 local_irq_restore(flags);
729 printk(KERN_WARNING "Could not switch to high resolution "
730 "mode on CPU %d\n", cpu);
731 return 0;
732 }
733 base->hres_active = 1;
734 base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
735 base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
736 base->clock_base[HRTIMER_BASE_BOOTTIME].resolution = KTIME_HIGH_RES;
737
738 tick_setup_sched_timer();
739
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
742 local_irq_restore(flags);
743 return 1;
744 }
745
746 #else
747
748 static inline int hrtimer_hres_active(void) { return 0; }
749 static inline int hrtimer_is_hres_enabled(void) { return 0; }
750 static inline int hrtimer_switch_to_hres(void) { return 0; }
751 static inline void
752 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
753 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
754 struct hrtimer_clock_base *base,
755 int wakeup)
756 {
757 return 0;
758 }
759 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
760 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
761
762 #endif /* CONFIG_HIGH_RES_TIMERS */
763
764 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
765 {
766 #ifdef CONFIG_TIMER_STATS
767 if (timer->start_site)
768 return;
769 timer->start_site = __builtin_return_address(0);
770 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
771 timer->start_pid = current->pid;
772 #endif
773 }
774
775 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
776 {
777 #ifdef CONFIG_TIMER_STATS
778 timer->start_site = NULL;
779 #endif
780 }
781
782 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
783 {
784 #ifdef CONFIG_TIMER_STATS
785 if (likely(!timer_stats_active))
786 return;
787 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
788 timer->function, timer->start_comm, 0);
789 #endif
790 }
791
792 /*
793 * Counterpart to lock_hrtimer_base above:
794 */
795 static inline
796 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
797 {
798 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
799 }
800
801 /**
802 * hrtimer_forward - forward the timer expiry
803 * @timer: hrtimer to forward
804 * @now: forward past this time
805 * @interval: the interval to forward
806 *
807 * Forward the timer expiry so it will expire in the future.
808 * Returns the number of overruns.
809 */
810 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
811 {
812 u64 orun = 1;
813 ktime_t delta;
814
815 delta = ktime_sub(now, hrtimer_get_expires(timer));
816
817 if (delta.tv64 < 0)
818 return 0;
819
820 if (interval.tv64 < timer->base->resolution.tv64)
821 interval.tv64 = timer->base->resolution.tv64;
822
823 if (unlikely(delta.tv64 >= interval.tv64)) {
824 s64 incr = ktime_to_ns(interval);
825
826 orun = ktime_divns(delta, incr);
827 hrtimer_add_expires_ns(timer, incr * orun);
828 if (hrtimer_get_expires_tv64(timer) > now.tv64)
829 return orun;
830 /*
831 * This (and the ktime_add() below) is the
832 * correction for exact:
833 */
834 orun++;
835 }
836 hrtimer_add_expires(timer, interval);
837
838 return orun;
839 }
840 EXPORT_SYMBOL_GPL(hrtimer_forward);
841
842 /*
843 * enqueue_hrtimer - internal function to (re)start a timer
844 *
845 * The timer is inserted in expiry order. Insertion into the
846 * red black tree is O(log(n)). Must hold the base lock.
847 *
848 * Returns 1 when the new timer is the leftmost timer in the tree.
849 */
850 static int enqueue_hrtimer(struct hrtimer *timer,
851 struct hrtimer_clock_base *base)
852 {
853 debug_activate(timer);
854
855 timerqueue_add(&base->active, &timer->node);
856
857 /*
858 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
859 * state of a possibly running callback.
860 */
861 timer->state |= HRTIMER_STATE_ENQUEUED;
862
863 return (&timer->node == base->active.next);
864 }
865
866 /*
867 * __remove_hrtimer - internal function to remove a timer
868 *
869 * Caller must hold the base lock.
870 *
871 * High resolution timer mode reprograms the clock event device when the
872 * timer is the one which expires next. The caller can disable this by setting
873 * reprogram to zero. This is useful, when the context does a reprogramming
874 * anyway (e.g. timer interrupt)
875 */
876 static void __remove_hrtimer(struct hrtimer *timer,
877 struct hrtimer_clock_base *base,
878 unsigned long newstate, int reprogram)
879 {
880 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
881 goto out;
882
883 if (&timer->node == timerqueue_getnext(&base->active)) {
884 #ifdef CONFIG_HIGH_RES_TIMERS
885 /* Reprogram the clock event device. if enabled */
886 if (reprogram && hrtimer_hres_active()) {
887 ktime_t expires;
888
889 expires = ktime_sub(hrtimer_get_expires(timer),
890 base->offset);
891 if (base->cpu_base->expires_next.tv64 == expires.tv64)
892 hrtimer_force_reprogram(base->cpu_base, 1);
893 }
894 #endif
895 }
896 timerqueue_del(&base->active, &timer->node);
897 out:
898 timer->state = newstate;
899 }
900
901 /*
902 * remove hrtimer, called with base lock held
903 */
904 static inline int
905 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
906 {
907 if (hrtimer_is_queued(timer)) {
908 unsigned long state;
909 int reprogram;
910
911 /*
912 * Remove the timer and force reprogramming when high
913 * resolution mode is active and the timer is on the current
914 * CPU. If we remove a timer on another CPU, reprogramming is
915 * skipped. The interrupt event on this CPU is fired and
916 * reprogramming happens in the interrupt handler. This is a
917 * rare case and less expensive than a smp call.
918 */
919 debug_deactivate(timer);
920 timer_stats_hrtimer_clear_start_info(timer);
921 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
922 /*
923 * We must preserve the CALLBACK state flag here,
924 * otherwise we could move the timer base in
925 * switch_hrtimer_base.
926 */
927 state = timer->state & HRTIMER_STATE_CALLBACK;
928 __remove_hrtimer(timer, base, state, reprogram);
929 return 1;
930 }
931 return 0;
932 }
933
934 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935 unsigned long delta_ns, const enum hrtimer_mode mode,
936 int wakeup)
937 {
938 struct hrtimer_clock_base *base, *new_base;
939 unsigned long flags;
940 int ret, leftmost;
941
942 base = lock_hrtimer_base(timer, &flags);
943
944 /* Remove an active timer from the queue: */
945 ret = remove_hrtimer(timer, base);
946
947 /* Switch the timer base, if necessary: */
948 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
949
950 if (mode & HRTIMER_MODE_REL) {
951 tim = ktime_add_safe(tim, new_base->get_time());
952 /*
953 * CONFIG_TIME_LOW_RES is a temporary way for architectures
954 * to signal that they simply return xtime in
955 * do_gettimeoffset(). In this case we want to round up by
956 * resolution when starting a relative timer, to avoid short
957 * timeouts. This will go away with the GTOD framework.
958 */
959 #ifdef CONFIG_TIME_LOW_RES
960 tim = ktime_add_safe(tim, base->resolution);
961 #endif
962 }
963
964 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
965
966 timer_stats_hrtimer_set_start_info(timer);
967
968 leftmost = enqueue_hrtimer(timer, new_base);
969
970 /*
971 * Only allow reprogramming if the new base is on this CPU.
972 * (it might still be on another CPU if the timer was pending)
973 *
974 * XXX send_remote_softirq() ?
975 */
976 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
977 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
978
979 unlock_hrtimer_base(timer, &flags);
980
981 return ret;
982 }
983
984 /**
985 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
986 * @timer: the timer to be added
987 * @tim: expiry time
988 * @delta_ns: "slack" range for the timer
989 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
990 *
991 * Returns:
992 * 0 on success
993 * 1 when the timer was active
994 */
995 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
996 unsigned long delta_ns, const enum hrtimer_mode mode)
997 {
998 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
999 }
1000 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1001
1002 /**
1003 * hrtimer_start - (re)start an hrtimer on the current CPU
1004 * @timer: the timer to be added
1005 * @tim: expiry time
1006 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1007 *
1008 * Returns:
1009 * 0 on success
1010 * 1 when the timer was active
1011 */
1012 int
1013 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1014 {
1015 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1016 }
1017 EXPORT_SYMBOL_GPL(hrtimer_start);
1018
1019
1020 /**
1021 * hrtimer_try_to_cancel - try to deactivate a timer
1022 * @timer: hrtimer to stop
1023 *
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1027 * -1 when the timer is currently excuting the callback function and
1028 * cannot be stopped
1029 */
1030 int hrtimer_try_to_cancel(struct hrtimer *timer)
1031 {
1032 struct hrtimer_clock_base *base;
1033 unsigned long flags;
1034 int ret = -1;
1035
1036 base = lock_hrtimer_base(timer, &flags);
1037
1038 if (!hrtimer_callback_running(timer))
1039 ret = remove_hrtimer(timer, base);
1040
1041 unlock_hrtimer_base(timer, &flags);
1042
1043 return ret;
1044
1045 }
1046 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1047
1048 /**
1049 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1050 * @timer: the timer to be cancelled
1051 *
1052 * Returns:
1053 * 0 when the timer was not active
1054 * 1 when the timer was active
1055 */
1056 int hrtimer_cancel(struct hrtimer *timer)
1057 {
1058 for (;;) {
1059 int ret = hrtimer_try_to_cancel(timer);
1060
1061 if (ret >= 0)
1062 return ret;
1063 cpu_relax();
1064 }
1065 }
1066 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1067
1068 /**
1069 * hrtimer_get_remaining - get remaining time for the timer
1070 * @timer: the timer to read
1071 */
1072 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1073 {
1074 unsigned long flags;
1075 ktime_t rem;
1076
1077 lock_hrtimer_base(timer, &flags);
1078 rem = hrtimer_expires_remaining(timer);
1079 unlock_hrtimer_base(timer, &flags);
1080
1081 return rem;
1082 }
1083 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1084
1085 #ifdef CONFIG_NO_HZ
1086 /**
1087 * hrtimer_get_next_event - get the time until next expiry event
1088 *
1089 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1090 * is pending.
1091 */
1092 ktime_t hrtimer_get_next_event(void)
1093 {
1094 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1095 struct hrtimer_clock_base *base = cpu_base->clock_base;
1096 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1097 unsigned long flags;
1098 int i;
1099
1100 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1101
1102 if (!hrtimer_hres_active()) {
1103 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1104 struct hrtimer *timer;
1105 struct timerqueue_node *next;
1106
1107 next = timerqueue_getnext(&base->active);
1108 if (!next)
1109 continue;
1110
1111 timer = container_of(next, struct hrtimer, node);
1112 delta.tv64 = hrtimer_get_expires_tv64(timer);
1113 delta = ktime_sub(delta, base->get_time());
1114 if (delta.tv64 < mindelta.tv64)
1115 mindelta.tv64 = delta.tv64;
1116 }
1117 }
1118
1119 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1120
1121 if (mindelta.tv64 < 0)
1122 mindelta.tv64 = 0;
1123 return mindelta;
1124 }
1125 #endif
1126
1127 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1128 enum hrtimer_mode mode)
1129 {
1130 struct hrtimer_cpu_base *cpu_base;
1131 int base;
1132
1133 memset(timer, 0, sizeof(struct hrtimer));
1134
1135 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1136
1137 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1138 clock_id = CLOCK_MONOTONIC;
1139
1140 base = hrtimer_clockid_to_base(clock_id);
1141 timer->base = &cpu_base->clock_base[base];
1142 hrtimer_init_timer_hres(timer);
1143 timerqueue_init(&timer->node);
1144
1145 #ifdef CONFIG_TIMER_STATS
1146 timer->start_site = NULL;
1147 timer->start_pid = -1;
1148 memset(timer->start_comm, 0, TASK_COMM_LEN);
1149 #endif
1150 }
1151
1152 /**
1153 * hrtimer_init - initialize a timer to the given clock
1154 * @timer: the timer to be initialized
1155 * @clock_id: the clock to be used
1156 * @mode: timer mode abs/rel
1157 */
1158 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1159 enum hrtimer_mode mode)
1160 {
1161 debug_init(timer, clock_id, mode);
1162 __hrtimer_init(timer, clock_id, mode);
1163 }
1164 EXPORT_SYMBOL_GPL(hrtimer_init);
1165
1166 /**
1167 * hrtimer_get_res - get the timer resolution for a clock
1168 * @which_clock: which clock to query
1169 * @tp: pointer to timespec variable to store the resolution
1170 *
1171 * Store the resolution of the clock selected by @which_clock in the
1172 * variable pointed to by @tp.
1173 */
1174 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1175 {
1176 struct hrtimer_cpu_base *cpu_base;
1177 int base = hrtimer_clockid_to_base(which_clock);
1178
1179 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1180 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1181
1182 return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1185
1186 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1187 {
1188 struct hrtimer_clock_base *base = timer->base;
1189 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1190 enum hrtimer_restart (*fn)(struct hrtimer *);
1191 int restart;
1192
1193 WARN_ON(!irqs_disabled());
1194
1195 debug_deactivate(timer);
1196 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1197 timer_stats_account_hrtimer(timer);
1198 fn = timer->function;
1199
1200 /*
1201 * Because we run timers from hardirq context, there is no chance
1202 * they get migrated to another cpu, therefore its safe to unlock
1203 * the timer base.
1204 */
1205 raw_spin_unlock(&cpu_base->lock);
1206 trace_hrtimer_expire_entry(timer, now);
1207 restart = fn(timer);
1208 trace_hrtimer_expire_exit(timer);
1209 raw_spin_lock(&cpu_base->lock);
1210
1211 /*
1212 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1213 * we do not reprogramm the event hardware. Happens either in
1214 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1215 */
1216 if (restart != HRTIMER_NORESTART) {
1217 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1218 enqueue_hrtimer(timer, base);
1219 }
1220
1221 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1222
1223 timer->state &= ~HRTIMER_STATE_CALLBACK;
1224 }
1225
1226 #ifdef CONFIG_HIGH_RES_TIMERS
1227
1228 /*
1229 * High resolution timer interrupt
1230 * Called with interrupts disabled
1231 */
1232 void hrtimer_interrupt(struct clock_event_device *dev)
1233 {
1234 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1235 struct hrtimer_clock_base *base;
1236 ktime_t expires_next, now, entry_time, delta;
1237 int i, retries = 0;
1238
1239 BUG_ON(!cpu_base->hres_active);
1240 cpu_base->nr_events++;
1241 dev->next_event.tv64 = KTIME_MAX;
1242
1243 entry_time = now = ktime_get();
1244 retry:
1245 expires_next.tv64 = KTIME_MAX;
1246
1247 raw_spin_lock(&cpu_base->lock);
1248 /*
1249 * We set expires_next to KTIME_MAX here with cpu_base->lock
1250 * held to prevent that a timer is enqueued in our queue via
1251 * the migration code. This does not affect enqueueing of
1252 * timers which run their callback and need to be requeued on
1253 * this CPU.
1254 */
1255 cpu_base->expires_next.tv64 = KTIME_MAX;
1256
1257 base = cpu_base->clock_base;
1258
1259 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1260 ktime_t basenow;
1261 struct timerqueue_node *node;
1262
1263 basenow = ktime_add(now, base->offset);
1264
1265 while ((node = timerqueue_getnext(&base->active))) {
1266 struct hrtimer *timer;
1267
1268 timer = container_of(node, struct hrtimer, node);
1269
1270 /*
1271 * The immediate goal for using the softexpires is
1272 * minimizing wakeups, not running timers at the
1273 * earliest interrupt after their soft expiration.
1274 * This allows us to avoid using a Priority Search
1275 * Tree, which can answer a stabbing querry for
1276 * overlapping intervals and instead use the simple
1277 * BST we already have.
1278 * We don't add extra wakeups by delaying timers that
1279 * are right-of a not yet expired timer, because that
1280 * timer will have to trigger a wakeup anyway.
1281 */
1282
1283 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1284 ktime_t expires;
1285
1286 expires = ktime_sub(hrtimer_get_expires(timer),
1287 base->offset);
1288 if (expires.tv64 < expires_next.tv64)
1289 expires_next = expires;
1290 break;
1291 }
1292
1293 __run_hrtimer(timer, &basenow);
1294 }
1295 base++;
1296 }
1297
1298 /*
1299 * Store the new expiry value so the migration code can verify
1300 * against it.
1301 */
1302 cpu_base->expires_next = expires_next;
1303 raw_spin_unlock(&cpu_base->lock);
1304
1305 /* Reprogramming necessary ? */
1306 if (expires_next.tv64 == KTIME_MAX ||
1307 !tick_program_event(expires_next, 0)) {
1308 cpu_base->hang_detected = 0;
1309 return;
1310 }
1311
1312 /*
1313 * The next timer was already expired due to:
1314 * - tracing
1315 * - long lasting callbacks
1316 * - being scheduled away when running in a VM
1317 *
1318 * We need to prevent that we loop forever in the hrtimer
1319 * interrupt routine. We give it 3 attempts to avoid
1320 * overreacting on some spurious event.
1321 */
1322 now = ktime_get();
1323 cpu_base->nr_retries++;
1324 if (++retries < 3)
1325 goto retry;
1326 /*
1327 * Give the system a chance to do something else than looping
1328 * here. We stored the entry time, so we know exactly how long
1329 * we spent here. We schedule the next event this amount of
1330 * time away.
1331 */
1332 cpu_base->nr_hangs++;
1333 cpu_base->hang_detected = 1;
1334 delta = ktime_sub(now, entry_time);
1335 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1336 cpu_base->max_hang_time = delta;
1337 /*
1338 * Limit it to a sensible value as we enforce a longer
1339 * delay. Give the CPU at least 100ms to catch up.
1340 */
1341 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1342 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1343 else
1344 expires_next = ktime_add(now, delta);
1345 tick_program_event(expires_next, 1);
1346 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1347 ktime_to_ns(delta));
1348 }
1349
1350 /*
1351 * local version of hrtimer_peek_ahead_timers() called with interrupts
1352 * disabled.
1353 */
1354 static void __hrtimer_peek_ahead_timers(void)
1355 {
1356 struct tick_device *td;
1357
1358 if (!hrtimer_hres_active())
1359 return;
1360
1361 td = &__get_cpu_var(tick_cpu_device);
1362 if (td && td->evtdev)
1363 hrtimer_interrupt(td->evtdev);
1364 }
1365
1366 /**
1367 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1368 *
1369 * hrtimer_peek_ahead_timers will peek at the timer queue of
1370 * the current cpu and check if there are any timers for which
1371 * the soft expires time has passed. If any such timers exist,
1372 * they are run immediately and then removed from the timer queue.
1373 *
1374 */
1375 void hrtimer_peek_ahead_timers(void)
1376 {
1377 unsigned long flags;
1378
1379 local_irq_save(flags);
1380 __hrtimer_peek_ahead_timers();
1381 local_irq_restore(flags);
1382 }
1383
1384 static void run_hrtimer_softirq(struct softirq_action *h)
1385 {
1386 hrtimer_peek_ahead_timers();
1387 }
1388
1389 #else /* CONFIG_HIGH_RES_TIMERS */
1390
1391 static inline void __hrtimer_peek_ahead_timers(void) { }
1392
1393 #endif /* !CONFIG_HIGH_RES_TIMERS */
1394
1395 /*
1396 * Called from timer softirq every jiffy, expire hrtimers:
1397 *
1398 * For HRT its the fall back code to run the softirq in the timer
1399 * softirq context in case the hrtimer initialization failed or has
1400 * not been done yet.
1401 */
1402 void hrtimer_run_pending(void)
1403 {
1404 if (hrtimer_hres_active())
1405 return;
1406
1407 /*
1408 * This _is_ ugly: We have to check in the softirq context,
1409 * whether we can switch to highres and / or nohz mode. The
1410 * clocksource switch happens in the timer interrupt with
1411 * xtime_lock held. Notification from there only sets the
1412 * check bit in the tick_oneshot code, otherwise we might
1413 * deadlock vs. xtime_lock.
1414 */
1415 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1416 hrtimer_switch_to_hres();
1417 }
1418
1419 /*
1420 * Called from hardirq context every jiffy
1421 */
1422 void hrtimer_run_queues(void)
1423 {
1424 struct timerqueue_node *node;
1425 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1426 struct hrtimer_clock_base *base;
1427 int index, gettime = 1;
1428
1429 if (hrtimer_hres_active())
1430 return;
1431
1432 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1433 base = &cpu_base->clock_base[index];
1434 if (!timerqueue_getnext(&base->active))
1435 continue;
1436
1437 if (gettime) {
1438 hrtimer_get_softirq_time(cpu_base);
1439 gettime = 0;
1440 }
1441
1442 raw_spin_lock(&cpu_base->lock);
1443
1444 while ((node = timerqueue_getnext(&base->active))) {
1445 struct hrtimer *timer;
1446
1447 timer = container_of(node, struct hrtimer, node);
1448 if (base->softirq_time.tv64 <=
1449 hrtimer_get_expires_tv64(timer))
1450 break;
1451
1452 __run_hrtimer(timer, &base->softirq_time);
1453 }
1454 raw_spin_unlock(&cpu_base->lock);
1455 }
1456 }
1457
1458 /*
1459 * Sleep related functions:
1460 */
1461 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1462 {
1463 struct hrtimer_sleeper *t =
1464 container_of(timer, struct hrtimer_sleeper, timer);
1465 struct task_struct *task = t->task;
1466
1467 t->task = NULL;
1468 if (task)
1469 wake_up_process(task);
1470
1471 return HRTIMER_NORESTART;
1472 }
1473
1474 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1475 {
1476 sl->timer.function = hrtimer_wakeup;
1477 sl->task = task;
1478 }
1479 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1480
1481 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482 {
1483 hrtimer_init_sleeper(t, current);
1484
1485 do {
1486 set_current_state(TASK_INTERRUPTIBLE);
1487 hrtimer_start_expires(&t->timer, mode);
1488 if (!hrtimer_active(&t->timer))
1489 t->task = NULL;
1490
1491 if (likely(t->task))
1492 schedule();
1493
1494 hrtimer_cancel(&t->timer);
1495 mode = HRTIMER_MODE_ABS;
1496
1497 } while (t->task && !signal_pending(current));
1498
1499 __set_current_state(TASK_RUNNING);
1500
1501 return t->task == NULL;
1502 }
1503
1504 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1505 {
1506 struct timespec rmt;
1507 ktime_t rem;
1508
1509 rem = hrtimer_expires_remaining(timer);
1510 if (rem.tv64 <= 0)
1511 return 0;
1512 rmt = ktime_to_timespec(rem);
1513
1514 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1515 return -EFAULT;
1516
1517 return 1;
1518 }
1519
1520 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1521 {
1522 struct hrtimer_sleeper t;
1523 struct timespec __user *rmtp;
1524 int ret = 0;
1525
1526 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1527 HRTIMER_MODE_ABS);
1528 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1529
1530 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1531 goto out;
1532
1533 rmtp = restart->nanosleep.rmtp;
1534 if (rmtp) {
1535 ret = update_rmtp(&t.timer, rmtp);
1536 if (ret <= 0)
1537 goto out;
1538 }
1539
1540 /* The other values in restart are already filled in */
1541 ret = -ERESTART_RESTARTBLOCK;
1542 out:
1543 destroy_hrtimer_on_stack(&t.timer);
1544 return ret;
1545 }
1546
1547 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1548 const enum hrtimer_mode mode, const clockid_t clockid)
1549 {
1550 struct restart_block *restart;
1551 struct hrtimer_sleeper t;
1552 int ret = 0;
1553 unsigned long slack;
1554
1555 slack = current->timer_slack_ns;
1556 if (rt_task(current))
1557 slack = 0;
1558
1559 hrtimer_init_on_stack(&t.timer, clockid, mode);
1560 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1561 if (do_nanosleep(&t, mode))
1562 goto out;
1563
1564 /* Absolute timers do not update the rmtp value and restart: */
1565 if (mode == HRTIMER_MODE_ABS) {
1566 ret = -ERESTARTNOHAND;
1567 goto out;
1568 }
1569
1570 if (rmtp) {
1571 ret = update_rmtp(&t.timer, rmtp);
1572 if (ret <= 0)
1573 goto out;
1574 }
1575
1576 restart = &current_thread_info()->restart_block;
1577 restart->fn = hrtimer_nanosleep_restart;
1578 restart->nanosleep.index = t.timer.base->index;
1579 restart->nanosleep.rmtp = rmtp;
1580 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1581
1582 ret = -ERESTART_RESTARTBLOCK;
1583 out:
1584 destroy_hrtimer_on_stack(&t.timer);
1585 return ret;
1586 }
1587
1588 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1589 struct timespec __user *, rmtp)
1590 {
1591 struct timespec tu;
1592
1593 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1594 return -EFAULT;
1595
1596 if (!timespec_valid(&tu))
1597 return -EINVAL;
1598
1599 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1600 }
1601
1602 /*
1603 * Functions related to boot-time initialization:
1604 */
1605 static void __cpuinit init_hrtimers_cpu(int cpu)
1606 {
1607 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1608 int i;
1609
1610 raw_spin_lock_init(&cpu_base->lock);
1611
1612 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1613 cpu_base->clock_base[i].cpu_base = cpu_base;
1614 timerqueue_init_head(&cpu_base->clock_base[i].active);
1615 }
1616
1617 hrtimer_init_hres(cpu_base);
1618 }
1619
1620 #ifdef CONFIG_HOTPLUG_CPU
1621
1622 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1623 struct hrtimer_clock_base *new_base)
1624 {
1625 struct hrtimer *timer;
1626 struct timerqueue_node *node;
1627
1628 while ((node = timerqueue_getnext(&old_base->active))) {
1629 timer = container_of(node, struct hrtimer, node);
1630 BUG_ON(hrtimer_callback_running(timer));
1631 debug_deactivate(timer);
1632
1633 /*
1634 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1635 * timer could be seen as !active and just vanish away
1636 * under us on another CPU
1637 */
1638 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1639 timer->base = new_base;
1640 /*
1641 * Enqueue the timers on the new cpu. This does not
1642 * reprogram the event device in case the timer
1643 * expires before the earliest on this CPU, but we run
1644 * hrtimer_interrupt after we migrated everything to
1645 * sort out already expired timers and reprogram the
1646 * event device.
1647 */
1648 enqueue_hrtimer(timer, new_base);
1649
1650 /* Clear the migration state bit */
1651 timer->state &= ~HRTIMER_STATE_MIGRATE;
1652 }
1653 }
1654
1655 static void migrate_hrtimers(int scpu)
1656 {
1657 struct hrtimer_cpu_base *old_base, *new_base;
1658 int i;
1659
1660 BUG_ON(cpu_online(scpu));
1661 tick_cancel_sched_timer(scpu);
1662
1663 local_irq_disable();
1664 old_base = &per_cpu(hrtimer_bases, scpu);
1665 new_base = &__get_cpu_var(hrtimer_bases);
1666 /*
1667 * The caller is globally serialized and nobody else
1668 * takes two locks at once, deadlock is not possible.
1669 */
1670 raw_spin_lock(&new_base->lock);
1671 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1672
1673 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1674 migrate_hrtimer_list(&old_base->clock_base[i],
1675 &new_base->clock_base[i]);
1676 }
1677
1678 raw_spin_unlock(&old_base->lock);
1679 raw_spin_unlock(&new_base->lock);
1680
1681 /* Check, if we got expired work to do */
1682 __hrtimer_peek_ahead_timers();
1683 local_irq_enable();
1684 }
1685
1686 #endif /* CONFIG_HOTPLUG_CPU */
1687
1688 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1689 unsigned long action, void *hcpu)
1690 {
1691 int scpu = (long)hcpu;
1692
1693 switch (action) {
1694
1695 case CPU_UP_PREPARE:
1696 case CPU_UP_PREPARE_FROZEN:
1697 init_hrtimers_cpu(scpu);
1698 break;
1699
1700 #ifdef CONFIG_HOTPLUG_CPU
1701 case CPU_DYING:
1702 case CPU_DYING_FROZEN:
1703 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1704 break;
1705 case CPU_DEAD:
1706 case CPU_DEAD_FROZEN:
1707 {
1708 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1709 migrate_hrtimers(scpu);
1710 break;
1711 }
1712 #endif
1713
1714 default:
1715 break;
1716 }
1717
1718 return NOTIFY_OK;
1719 }
1720
1721 static struct notifier_block __cpuinitdata hrtimers_nb = {
1722 .notifier_call = hrtimer_cpu_notify,
1723 };
1724
1725 void __init hrtimers_init(void)
1726 {
1727 hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
1728 hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;
1729 hrtimer_clock_to_base_table[CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME;
1730
1731 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1732 (void *)(long)smp_processor_id());
1733 register_cpu_notifier(&hrtimers_nb);
1734 #ifdef CONFIG_HIGH_RES_TIMERS
1735 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1736 #endif
1737 }
1738
1739 /**
1740 * schedule_hrtimeout_range_clock - sleep until timeout
1741 * @expires: timeout value (ktime_t)
1742 * @delta: slack in expires timeout (ktime_t)
1743 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1744 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1745 */
1746 int __sched
1747 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1748 const enum hrtimer_mode mode, int clock)
1749 {
1750 struct hrtimer_sleeper t;
1751
1752 /*
1753 * Optimize when a zero timeout value is given. It does not
1754 * matter whether this is an absolute or a relative time.
1755 */
1756 if (expires && !expires->tv64) {
1757 __set_current_state(TASK_RUNNING);
1758 return 0;
1759 }
1760
1761 /*
1762 * A NULL parameter means "infinite"
1763 */
1764 if (!expires) {
1765 schedule();
1766 __set_current_state(TASK_RUNNING);
1767 return -EINTR;
1768 }
1769
1770 hrtimer_init_on_stack(&t.timer, clock, mode);
1771 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1772
1773 hrtimer_init_sleeper(&t, current);
1774
1775 hrtimer_start_expires(&t.timer, mode);
1776 if (!hrtimer_active(&t.timer))
1777 t.task = NULL;
1778
1779 if (likely(t.task))
1780 schedule();
1781
1782 hrtimer_cancel(&t.timer);
1783 destroy_hrtimer_on_stack(&t.timer);
1784
1785 __set_current_state(TASK_RUNNING);
1786
1787 return !t.task ? 0 : -EINTR;
1788 }
1789
1790 /**
1791 * schedule_hrtimeout_range - sleep until timeout
1792 * @expires: timeout value (ktime_t)
1793 * @delta: slack in expires timeout (ktime_t)
1794 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1795 *
1796 * Make the current task sleep until the given expiry time has
1797 * elapsed. The routine will return immediately unless
1798 * the current task state has been set (see set_current_state()).
1799 *
1800 * The @delta argument gives the kernel the freedom to schedule the
1801 * actual wakeup to a time that is both power and performance friendly.
1802 * The kernel give the normal best effort behavior for "@expires+@delta",
1803 * but may decide to fire the timer earlier, but no earlier than @expires.
1804 *
1805 * You can set the task state as follows -
1806 *
1807 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1808 * pass before the routine returns.
1809 *
1810 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1811 * delivered to the current task.
1812 *
1813 * The current task state is guaranteed to be TASK_RUNNING when this
1814 * routine returns.
1815 *
1816 * Returns 0 when the timer has expired otherwise -EINTR
1817 */
1818 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1819 const enum hrtimer_mode mode)
1820 {
1821 return schedule_hrtimeout_range_clock(expires, delta, mode,
1822 CLOCK_MONOTONIC);
1823 }
1824 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1825
1826 /**
1827 * schedule_hrtimeout - sleep until timeout
1828 * @expires: timeout value (ktime_t)
1829 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1830 *
1831 * Make the current task sleep until the given expiry time has
1832 * elapsed. The routine will return immediately unless
1833 * the current task state has been set (see set_current_state()).
1834 *
1835 * You can set the task state as follows -
1836 *
1837 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1838 * pass before the routine returns.
1839 *
1840 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1841 * delivered to the current task.
1842 *
1843 * The current task state is guaranteed to be TASK_RUNNING when this
1844 * routine returns.
1845 *
1846 * Returns 0 when the timer has expired otherwise -EINTR
1847 */
1848 int __sched schedule_hrtimeout(ktime_t *expires,
1849 const enum hrtimer_mode mode)
1850 {
1851 return schedule_hrtimeout_range(expires, 0, mode);
1852 }
1853 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.108146 seconds and 5 git commands to generate.