hrtimer: Update base[CLOCK_BOOTTIME].offset correctly
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
60 */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63
64 .clock_base =
65 {
66 {
67 .index = CLOCK_REALTIME,
68 .get_time = &ktime_get_real,
69 .resolution = KTIME_LOW_RES,
70 },
71 {
72 .index = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
74 .resolution = KTIME_LOW_RES,
75 },
76 {
77 .index = CLOCK_BOOTTIME,
78 .get_time = &ktime_get_boottime,
79 .resolution = KTIME_LOW_RES,
80 },
81 }
82 };
83
84 static int hrtimer_clock_to_base_table[MAX_CLOCKS];
85
86 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
87 {
88 return hrtimer_clock_to_base_table[clock_id];
89 }
90
91
92 /*
93 * Get the coarse grained time at the softirq based on xtime and
94 * wall_to_monotonic.
95 */
96 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
97 {
98 ktime_t xtim, mono, boot;
99 struct timespec xts, tom, slp;
100
101 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
102
103 xtim = timespec_to_ktime(xts);
104 mono = ktime_add(xtim, timespec_to_ktime(tom));
105 boot = ktime_add(mono, timespec_to_ktime(slp));
106 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
107 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
108 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
109 }
110
111 /*
112 * Functions and macros which are different for UP/SMP systems are kept in a
113 * single place
114 */
115 #ifdef CONFIG_SMP
116
117 /*
118 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
119 * means that all timers which are tied to this base via timer->base are
120 * locked, and the base itself is locked too.
121 *
122 * So __run_timers/migrate_timers can safely modify all timers which could
123 * be found on the lists/queues.
124 *
125 * When the timer's base is locked, and the timer removed from list, it is
126 * possible to set timer->base = NULL and drop the lock: the timer remains
127 * locked.
128 */
129 static
130 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
131 unsigned long *flags)
132 {
133 struct hrtimer_clock_base *base;
134
135 for (;;) {
136 base = timer->base;
137 if (likely(base != NULL)) {
138 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
139 if (likely(base == timer->base))
140 return base;
141 /* The timer has migrated to another CPU: */
142 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
143 }
144 cpu_relax();
145 }
146 }
147
148
149 /*
150 * Get the preferred target CPU for NOHZ
151 */
152 static int hrtimer_get_target(int this_cpu, int pinned)
153 {
154 #ifdef CONFIG_NO_HZ
155 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
156 return get_nohz_timer_target();
157 #endif
158 return this_cpu;
159 }
160
161 /*
162 * With HIGHRES=y we do not migrate the timer when it is expiring
163 * before the next event on the target cpu because we cannot reprogram
164 * the target cpu hardware and we would cause it to fire late.
165 *
166 * Called with cpu_base->lock of target cpu held.
167 */
168 static int
169 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
170 {
171 #ifdef CONFIG_HIGH_RES_TIMERS
172 ktime_t expires;
173
174 if (!new_base->cpu_base->hres_active)
175 return 0;
176
177 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
178 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
179 #else
180 return 0;
181 #endif
182 }
183
184 /*
185 * Switch the timer base to the current CPU when possible.
186 */
187 static inline struct hrtimer_clock_base *
188 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
189 int pinned)
190 {
191 struct hrtimer_clock_base *new_base;
192 struct hrtimer_cpu_base *new_cpu_base;
193 int this_cpu = smp_processor_id();
194 int cpu = hrtimer_get_target(this_cpu, pinned);
195 int basenum = hrtimer_clockid_to_base(base->index);
196
197 again:
198 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
199 new_base = &new_cpu_base->clock_base[basenum];
200
201 if (base != new_base) {
202 /*
203 * We are trying to move timer to new_base.
204 * However we can't change timer's base while it is running,
205 * so we keep it on the same CPU. No hassle vs. reprogramming
206 * the event source in the high resolution case. The softirq
207 * code will take care of this when the timer function has
208 * completed. There is no conflict as we hold the lock until
209 * the timer is enqueued.
210 */
211 if (unlikely(hrtimer_callback_running(timer)))
212 return base;
213
214 /* See the comment in lock_timer_base() */
215 timer->base = NULL;
216 raw_spin_unlock(&base->cpu_base->lock);
217 raw_spin_lock(&new_base->cpu_base->lock);
218
219 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
220 cpu = this_cpu;
221 raw_spin_unlock(&new_base->cpu_base->lock);
222 raw_spin_lock(&base->cpu_base->lock);
223 timer->base = base;
224 goto again;
225 }
226 timer->base = new_base;
227 }
228 return new_base;
229 }
230
231 #else /* CONFIG_SMP */
232
233 static inline struct hrtimer_clock_base *
234 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
235 {
236 struct hrtimer_clock_base *base = timer->base;
237
238 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
239
240 return base;
241 }
242
243 # define switch_hrtimer_base(t, b, p) (b)
244
245 #endif /* !CONFIG_SMP */
246
247 /*
248 * Functions for the union type storage format of ktime_t which are
249 * too large for inlining:
250 */
251 #if BITS_PER_LONG < 64
252 # ifndef CONFIG_KTIME_SCALAR
253 /**
254 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
255 * @kt: addend
256 * @nsec: the scalar nsec value to add
257 *
258 * Returns the sum of kt and nsec in ktime_t format
259 */
260 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
261 {
262 ktime_t tmp;
263
264 if (likely(nsec < NSEC_PER_SEC)) {
265 tmp.tv64 = nsec;
266 } else {
267 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
268
269 tmp = ktime_set((long)nsec, rem);
270 }
271
272 return ktime_add(kt, tmp);
273 }
274
275 EXPORT_SYMBOL_GPL(ktime_add_ns);
276
277 /**
278 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
279 * @kt: minuend
280 * @nsec: the scalar nsec value to subtract
281 *
282 * Returns the subtraction of @nsec from @kt in ktime_t format
283 */
284 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
285 {
286 ktime_t tmp;
287
288 if (likely(nsec < NSEC_PER_SEC)) {
289 tmp.tv64 = nsec;
290 } else {
291 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
292
293 tmp = ktime_set((long)nsec, rem);
294 }
295
296 return ktime_sub(kt, tmp);
297 }
298
299 EXPORT_SYMBOL_GPL(ktime_sub_ns);
300 # endif /* !CONFIG_KTIME_SCALAR */
301
302 /*
303 * Divide a ktime value by a nanosecond value
304 */
305 u64 ktime_divns(const ktime_t kt, s64 div)
306 {
307 u64 dclc;
308 int sft = 0;
309
310 dclc = ktime_to_ns(kt);
311 /* Make sure the divisor is less than 2^32: */
312 while (div >> 32) {
313 sft++;
314 div >>= 1;
315 }
316 dclc >>= sft;
317 do_div(dclc, (unsigned long) div);
318
319 return dclc;
320 }
321 #endif /* BITS_PER_LONG >= 64 */
322
323 /*
324 * Add two ktime values and do a safety check for overflow:
325 */
326 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
327 {
328 ktime_t res = ktime_add(lhs, rhs);
329
330 /*
331 * We use KTIME_SEC_MAX here, the maximum timeout which we can
332 * return to user space in a timespec:
333 */
334 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
335 res = ktime_set(KTIME_SEC_MAX, 0);
336
337 return res;
338 }
339
340 EXPORT_SYMBOL_GPL(ktime_add_safe);
341
342 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
343
344 static struct debug_obj_descr hrtimer_debug_descr;
345
346 /*
347 * fixup_init is called when:
348 * - an active object is initialized
349 */
350 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
351 {
352 struct hrtimer *timer = addr;
353
354 switch (state) {
355 case ODEBUG_STATE_ACTIVE:
356 hrtimer_cancel(timer);
357 debug_object_init(timer, &hrtimer_debug_descr);
358 return 1;
359 default:
360 return 0;
361 }
362 }
363
364 /*
365 * fixup_activate is called when:
366 * - an active object is activated
367 * - an unknown object is activated (might be a statically initialized object)
368 */
369 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
370 {
371 switch (state) {
372
373 case ODEBUG_STATE_NOTAVAILABLE:
374 WARN_ON_ONCE(1);
375 return 0;
376
377 case ODEBUG_STATE_ACTIVE:
378 WARN_ON(1);
379
380 default:
381 return 0;
382 }
383 }
384
385 /*
386 * fixup_free is called when:
387 * - an active object is freed
388 */
389 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
390 {
391 struct hrtimer *timer = addr;
392
393 switch (state) {
394 case ODEBUG_STATE_ACTIVE:
395 hrtimer_cancel(timer);
396 debug_object_free(timer, &hrtimer_debug_descr);
397 return 1;
398 default:
399 return 0;
400 }
401 }
402
403 static struct debug_obj_descr hrtimer_debug_descr = {
404 .name = "hrtimer",
405 .fixup_init = hrtimer_fixup_init,
406 .fixup_activate = hrtimer_fixup_activate,
407 .fixup_free = hrtimer_fixup_free,
408 };
409
410 static inline void debug_hrtimer_init(struct hrtimer *timer)
411 {
412 debug_object_init(timer, &hrtimer_debug_descr);
413 }
414
415 static inline void debug_hrtimer_activate(struct hrtimer *timer)
416 {
417 debug_object_activate(timer, &hrtimer_debug_descr);
418 }
419
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
421 {
422 debug_object_deactivate(timer, &hrtimer_debug_descr);
423 }
424
425 static inline void debug_hrtimer_free(struct hrtimer *timer)
426 {
427 debug_object_free(timer, &hrtimer_debug_descr);
428 }
429
430 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
431 enum hrtimer_mode mode);
432
433 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
434 enum hrtimer_mode mode)
435 {
436 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
437 __hrtimer_init(timer, clock_id, mode);
438 }
439 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440
441 void destroy_hrtimer_on_stack(struct hrtimer *timer)
442 {
443 debug_object_free(timer, &hrtimer_debug_descr);
444 }
445
446 #else
447 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
448 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
449 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
450 #endif
451
452 static inline void
453 debug_init(struct hrtimer *timer, clockid_t clockid,
454 enum hrtimer_mode mode)
455 {
456 debug_hrtimer_init(timer);
457 trace_hrtimer_init(timer, clockid, mode);
458 }
459
460 static inline void debug_activate(struct hrtimer *timer)
461 {
462 debug_hrtimer_activate(timer);
463 trace_hrtimer_start(timer);
464 }
465
466 static inline void debug_deactivate(struct hrtimer *timer)
467 {
468 debug_hrtimer_deactivate(timer);
469 trace_hrtimer_cancel(timer);
470 }
471
472 /* High resolution timer related functions */
473 #ifdef CONFIG_HIGH_RES_TIMERS
474
475 /*
476 * High resolution timer enabled ?
477 */
478 static int hrtimer_hres_enabled __read_mostly = 1;
479
480 /*
481 * Enable / Disable high resolution mode
482 */
483 static int __init setup_hrtimer_hres(char *str)
484 {
485 if (!strcmp(str, "off"))
486 hrtimer_hres_enabled = 0;
487 else if (!strcmp(str, "on"))
488 hrtimer_hres_enabled = 1;
489 else
490 return 0;
491 return 1;
492 }
493
494 __setup("highres=", setup_hrtimer_hres);
495
496 /*
497 * hrtimer_high_res_enabled - query, if the highres mode is enabled
498 */
499 static inline int hrtimer_is_hres_enabled(void)
500 {
501 return hrtimer_hres_enabled;
502 }
503
504 /*
505 * Is the high resolution mode active ?
506 */
507 static inline int hrtimer_hres_active(void)
508 {
509 return __this_cpu_read(hrtimer_bases.hres_active);
510 }
511
512 /*
513 * Reprogram the event source with checking both queues for the
514 * next event
515 * Called with interrupts disabled and base->lock held
516 */
517 static void
518 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
519 {
520 int i;
521 struct hrtimer_clock_base *base = cpu_base->clock_base;
522 ktime_t expires, expires_next;
523
524 expires_next.tv64 = KTIME_MAX;
525
526 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
527 struct hrtimer *timer;
528 struct timerqueue_node *next;
529
530 next = timerqueue_getnext(&base->active);
531 if (!next)
532 continue;
533 timer = container_of(next, struct hrtimer, node);
534
535 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
536 /*
537 * clock_was_set() has changed base->offset so the
538 * result might be negative. Fix it up to prevent a
539 * false positive in clockevents_program_event()
540 */
541 if (expires.tv64 < 0)
542 expires.tv64 = 0;
543 if (expires.tv64 < expires_next.tv64)
544 expires_next = expires;
545 }
546
547 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
548 return;
549
550 cpu_base->expires_next.tv64 = expires_next.tv64;
551
552 if (cpu_base->expires_next.tv64 != KTIME_MAX)
553 tick_program_event(cpu_base->expires_next, 1);
554 }
555
556 /*
557 * Shared reprogramming for clock_realtime and clock_monotonic
558 *
559 * When a timer is enqueued and expires earlier than the already enqueued
560 * timers, we have to check, whether it expires earlier than the timer for
561 * which the clock event device was armed.
562 *
563 * Called with interrupts disabled and base->cpu_base.lock held
564 */
565 static int hrtimer_reprogram(struct hrtimer *timer,
566 struct hrtimer_clock_base *base)
567 {
568 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
569 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
570 int res;
571
572 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
573
574 /*
575 * When the callback is running, we do not reprogram the clock event
576 * device. The timer callback is either running on a different CPU or
577 * the callback is executed in the hrtimer_interrupt context. The
578 * reprogramming is handled either by the softirq, which called the
579 * callback or at the end of the hrtimer_interrupt.
580 */
581 if (hrtimer_callback_running(timer))
582 return 0;
583
584 /*
585 * CLOCK_REALTIME timer might be requested with an absolute
586 * expiry time which is less than base->offset. Nothing wrong
587 * about that, just avoid to call into the tick code, which
588 * has now objections against negative expiry values.
589 */
590 if (expires.tv64 < 0)
591 return -ETIME;
592
593 if (expires.tv64 >= cpu_base->expires_next.tv64)
594 return 0;
595
596 /*
597 * If a hang was detected in the last timer interrupt then we
598 * do not schedule a timer which is earlier than the expiry
599 * which we enforced in the hang detection. We want the system
600 * to make progress.
601 */
602 if (cpu_base->hang_detected)
603 return 0;
604
605 /*
606 * Clockevents returns -ETIME, when the event was in the past.
607 */
608 res = tick_program_event(expires, 0);
609 if (!IS_ERR_VALUE(res))
610 cpu_base->expires_next = expires;
611 return res;
612 }
613
614
615 /*
616 * Retrigger next event is called after clock was set
617 *
618 * Called with interrupts disabled via on_each_cpu()
619 */
620 static void retrigger_next_event(void *arg)
621 {
622 struct hrtimer_cpu_base *base;
623 struct timespec realtime_offset, wtm, sleep;
624
625 if (!hrtimer_hres_active())
626 return;
627
628 get_xtime_and_monotonic_and_sleep_offset(&realtime_offset, &wtm,
629 &sleep);
630 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
631
632 base = &__get_cpu_var(hrtimer_bases);
633
634 /* Adjust CLOCK_REALTIME offset */
635 raw_spin_lock(&base->lock);
636 base->clock_base[HRTIMER_BASE_REALTIME].offset =
637 timespec_to_ktime(realtime_offset);
638 base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
639 timespec_to_ktime(sleep);
640
641 hrtimer_force_reprogram(base, 0);
642 raw_spin_unlock(&base->lock);
643 }
644
645 /*
646 * Clock realtime was set
647 *
648 * Change the offset of the realtime clock vs. the monotonic
649 * clock.
650 *
651 * We might have to reprogram the high resolution timer interrupt. On
652 * SMP we call the architecture specific code to retrigger _all_ high
653 * resolution timer interrupts. On UP we just disable interrupts and
654 * call the high resolution interrupt code.
655 */
656 void clock_was_set(void)
657 {
658 /* Retrigger the CPU local events everywhere */
659 on_each_cpu(retrigger_next_event, NULL, 1);
660 }
661
662 /*
663 * During resume we might have to reprogram the high resolution timer
664 * interrupt (on the local CPU):
665 */
666 void hres_timers_resume(void)
667 {
668 WARN_ONCE(!irqs_disabled(),
669 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
670
671 retrigger_next_event(NULL);
672 }
673
674 /*
675 * Initialize the high resolution related parts of cpu_base
676 */
677 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
678 {
679 base->expires_next.tv64 = KTIME_MAX;
680 base->hres_active = 0;
681 }
682
683 /*
684 * Initialize the high resolution related parts of a hrtimer
685 */
686 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
687 {
688 }
689
690
691 /*
692 * When High resolution timers are active, try to reprogram. Note, that in case
693 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
694 * check happens. The timer gets enqueued into the rbtree. The reprogramming
695 * and expiry check is done in the hrtimer_interrupt or in the softirq.
696 */
697 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
698 struct hrtimer_clock_base *base,
699 int wakeup)
700 {
701 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
702 if (wakeup) {
703 raw_spin_unlock(&base->cpu_base->lock);
704 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
705 raw_spin_lock(&base->cpu_base->lock);
706 } else
707 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
708
709 return 1;
710 }
711
712 return 0;
713 }
714
715 /*
716 * Switch to high resolution mode
717 */
718 static int hrtimer_switch_to_hres(void)
719 {
720 int cpu = smp_processor_id();
721 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
722 unsigned long flags;
723
724 if (base->hres_active)
725 return 1;
726
727 local_irq_save(flags);
728
729 if (tick_init_highres()) {
730 local_irq_restore(flags);
731 printk(KERN_WARNING "Could not switch to high resolution "
732 "mode on CPU %d\n", cpu);
733 return 0;
734 }
735 base->hres_active = 1;
736 base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
737 base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
738 base->clock_base[HRTIMER_BASE_BOOTTIME].resolution = KTIME_HIGH_RES;
739
740 tick_setup_sched_timer();
741
742 /* "Retrigger" the interrupt to get things going */
743 retrigger_next_event(NULL);
744 local_irq_restore(flags);
745 return 1;
746 }
747
748 #else
749
750 static inline int hrtimer_hres_active(void) { return 0; }
751 static inline int hrtimer_is_hres_enabled(void) { return 0; }
752 static inline int hrtimer_switch_to_hres(void) { return 0; }
753 static inline void
754 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
755 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
756 struct hrtimer_clock_base *base,
757 int wakeup)
758 {
759 return 0;
760 }
761 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
762 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
763
764 #endif /* CONFIG_HIGH_RES_TIMERS */
765
766 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
767 {
768 #ifdef CONFIG_TIMER_STATS
769 if (timer->start_site)
770 return;
771 timer->start_site = __builtin_return_address(0);
772 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
773 timer->start_pid = current->pid;
774 #endif
775 }
776
777 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
778 {
779 #ifdef CONFIG_TIMER_STATS
780 timer->start_site = NULL;
781 #endif
782 }
783
784 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
785 {
786 #ifdef CONFIG_TIMER_STATS
787 if (likely(!timer_stats_active))
788 return;
789 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
790 timer->function, timer->start_comm, 0);
791 #endif
792 }
793
794 /*
795 * Counterpart to lock_hrtimer_base above:
796 */
797 static inline
798 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
799 {
800 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
801 }
802
803 /**
804 * hrtimer_forward - forward the timer expiry
805 * @timer: hrtimer to forward
806 * @now: forward past this time
807 * @interval: the interval to forward
808 *
809 * Forward the timer expiry so it will expire in the future.
810 * Returns the number of overruns.
811 */
812 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
813 {
814 u64 orun = 1;
815 ktime_t delta;
816
817 delta = ktime_sub(now, hrtimer_get_expires(timer));
818
819 if (delta.tv64 < 0)
820 return 0;
821
822 if (interval.tv64 < timer->base->resolution.tv64)
823 interval.tv64 = timer->base->resolution.tv64;
824
825 if (unlikely(delta.tv64 >= interval.tv64)) {
826 s64 incr = ktime_to_ns(interval);
827
828 orun = ktime_divns(delta, incr);
829 hrtimer_add_expires_ns(timer, incr * orun);
830 if (hrtimer_get_expires_tv64(timer) > now.tv64)
831 return orun;
832 /*
833 * This (and the ktime_add() below) is the
834 * correction for exact:
835 */
836 orun++;
837 }
838 hrtimer_add_expires(timer, interval);
839
840 return orun;
841 }
842 EXPORT_SYMBOL_GPL(hrtimer_forward);
843
844 /*
845 * enqueue_hrtimer - internal function to (re)start a timer
846 *
847 * The timer is inserted in expiry order. Insertion into the
848 * red black tree is O(log(n)). Must hold the base lock.
849 *
850 * Returns 1 when the new timer is the leftmost timer in the tree.
851 */
852 static int enqueue_hrtimer(struct hrtimer *timer,
853 struct hrtimer_clock_base *base)
854 {
855 debug_activate(timer);
856
857 timerqueue_add(&base->active, &timer->node);
858
859 /*
860 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
861 * state of a possibly running callback.
862 */
863 timer->state |= HRTIMER_STATE_ENQUEUED;
864
865 return (&timer->node == base->active.next);
866 }
867
868 /*
869 * __remove_hrtimer - internal function to remove a timer
870 *
871 * Caller must hold the base lock.
872 *
873 * High resolution timer mode reprograms the clock event device when the
874 * timer is the one which expires next. The caller can disable this by setting
875 * reprogram to zero. This is useful, when the context does a reprogramming
876 * anyway (e.g. timer interrupt)
877 */
878 static void __remove_hrtimer(struct hrtimer *timer,
879 struct hrtimer_clock_base *base,
880 unsigned long newstate, int reprogram)
881 {
882 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
883 goto out;
884
885 if (&timer->node == timerqueue_getnext(&base->active)) {
886 #ifdef CONFIG_HIGH_RES_TIMERS
887 /* Reprogram the clock event device. if enabled */
888 if (reprogram && hrtimer_hres_active()) {
889 ktime_t expires;
890
891 expires = ktime_sub(hrtimer_get_expires(timer),
892 base->offset);
893 if (base->cpu_base->expires_next.tv64 == expires.tv64)
894 hrtimer_force_reprogram(base->cpu_base, 1);
895 }
896 #endif
897 }
898 timerqueue_del(&base->active, &timer->node);
899 out:
900 timer->state = newstate;
901 }
902
903 /*
904 * remove hrtimer, called with base lock held
905 */
906 static inline int
907 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
908 {
909 if (hrtimer_is_queued(timer)) {
910 unsigned long state;
911 int reprogram;
912
913 /*
914 * Remove the timer and force reprogramming when high
915 * resolution mode is active and the timer is on the current
916 * CPU. If we remove a timer on another CPU, reprogramming is
917 * skipped. The interrupt event on this CPU is fired and
918 * reprogramming happens in the interrupt handler. This is a
919 * rare case and less expensive than a smp call.
920 */
921 debug_deactivate(timer);
922 timer_stats_hrtimer_clear_start_info(timer);
923 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
924 /*
925 * We must preserve the CALLBACK state flag here,
926 * otherwise we could move the timer base in
927 * switch_hrtimer_base.
928 */
929 state = timer->state & HRTIMER_STATE_CALLBACK;
930 __remove_hrtimer(timer, base, state, reprogram);
931 return 1;
932 }
933 return 0;
934 }
935
936 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937 unsigned long delta_ns, const enum hrtimer_mode mode,
938 int wakeup)
939 {
940 struct hrtimer_clock_base *base, *new_base;
941 unsigned long flags;
942 int ret, leftmost;
943
944 base = lock_hrtimer_base(timer, &flags);
945
946 /* Remove an active timer from the queue: */
947 ret = remove_hrtimer(timer, base);
948
949 /* Switch the timer base, if necessary: */
950 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
951
952 if (mode & HRTIMER_MODE_REL) {
953 tim = ktime_add_safe(tim, new_base->get_time());
954 /*
955 * CONFIG_TIME_LOW_RES is a temporary way for architectures
956 * to signal that they simply return xtime in
957 * do_gettimeoffset(). In this case we want to round up by
958 * resolution when starting a relative timer, to avoid short
959 * timeouts. This will go away with the GTOD framework.
960 */
961 #ifdef CONFIG_TIME_LOW_RES
962 tim = ktime_add_safe(tim, base->resolution);
963 #endif
964 }
965
966 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
967
968 timer_stats_hrtimer_set_start_info(timer);
969
970 leftmost = enqueue_hrtimer(timer, new_base);
971
972 /*
973 * Only allow reprogramming if the new base is on this CPU.
974 * (it might still be on another CPU if the timer was pending)
975 *
976 * XXX send_remote_softirq() ?
977 */
978 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
979 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
980
981 unlock_hrtimer_base(timer, &flags);
982
983 return ret;
984 }
985
986 /**
987 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
988 * @timer: the timer to be added
989 * @tim: expiry time
990 * @delta_ns: "slack" range for the timer
991 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
992 *
993 * Returns:
994 * 0 on success
995 * 1 when the timer was active
996 */
997 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
998 unsigned long delta_ns, const enum hrtimer_mode mode)
999 {
1000 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1001 }
1002 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1003
1004 /**
1005 * hrtimer_start - (re)start an hrtimer on the current CPU
1006 * @timer: the timer to be added
1007 * @tim: expiry time
1008 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1009 *
1010 * Returns:
1011 * 0 on success
1012 * 1 when the timer was active
1013 */
1014 int
1015 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1016 {
1017 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1018 }
1019 EXPORT_SYMBOL_GPL(hrtimer_start);
1020
1021
1022 /**
1023 * hrtimer_try_to_cancel - try to deactivate a timer
1024 * @timer: hrtimer to stop
1025 *
1026 * Returns:
1027 * 0 when the timer was not active
1028 * 1 when the timer was active
1029 * -1 when the timer is currently excuting the callback function and
1030 * cannot be stopped
1031 */
1032 int hrtimer_try_to_cancel(struct hrtimer *timer)
1033 {
1034 struct hrtimer_clock_base *base;
1035 unsigned long flags;
1036 int ret = -1;
1037
1038 base = lock_hrtimer_base(timer, &flags);
1039
1040 if (!hrtimer_callback_running(timer))
1041 ret = remove_hrtimer(timer, base);
1042
1043 unlock_hrtimer_base(timer, &flags);
1044
1045 return ret;
1046
1047 }
1048 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1049
1050 /**
1051 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1052 * @timer: the timer to be cancelled
1053 *
1054 * Returns:
1055 * 0 when the timer was not active
1056 * 1 when the timer was active
1057 */
1058 int hrtimer_cancel(struct hrtimer *timer)
1059 {
1060 for (;;) {
1061 int ret = hrtimer_try_to_cancel(timer);
1062
1063 if (ret >= 0)
1064 return ret;
1065 cpu_relax();
1066 }
1067 }
1068 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1069
1070 /**
1071 * hrtimer_get_remaining - get remaining time for the timer
1072 * @timer: the timer to read
1073 */
1074 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1075 {
1076 unsigned long flags;
1077 ktime_t rem;
1078
1079 lock_hrtimer_base(timer, &flags);
1080 rem = hrtimer_expires_remaining(timer);
1081 unlock_hrtimer_base(timer, &flags);
1082
1083 return rem;
1084 }
1085 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1086
1087 #ifdef CONFIG_NO_HZ
1088 /**
1089 * hrtimer_get_next_event - get the time until next expiry event
1090 *
1091 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1092 * is pending.
1093 */
1094 ktime_t hrtimer_get_next_event(void)
1095 {
1096 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1097 struct hrtimer_clock_base *base = cpu_base->clock_base;
1098 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1099 unsigned long flags;
1100 int i;
1101
1102 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1103
1104 if (!hrtimer_hres_active()) {
1105 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1106 struct hrtimer *timer;
1107 struct timerqueue_node *next;
1108
1109 next = timerqueue_getnext(&base->active);
1110 if (!next)
1111 continue;
1112
1113 timer = container_of(next, struct hrtimer, node);
1114 delta.tv64 = hrtimer_get_expires_tv64(timer);
1115 delta = ktime_sub(delta, base->get_time());
1116 if (delta.tv64 < mindelta.tv64)
1117 mindelta.tv64 = delta.tv64;
1118 }
1119 }
1120
1121 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1122
1123 if (mindelta.tv64 < 0)
1124 mindelta.tv64 = 0;
1125 return mindelta;
1126 }
1127 #endif
1128
1129 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1130 enum hrtimer_mode mode)
1131 {
1132 struct hrtimer_cpu_base *cpu_base;
1133 int base;
1134
1135 memset(timer, 0, sizeof(struct hrtimer));
1136
1137 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1138
1139 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1140 clock_id = CLOCK_MONOTONIC;
1141
1142 base = hrtimer_clockid_to_base(clock_id);
1143 timer->base = &cpu_base->clock_base[base];
1144 hrtimer_init_timer_hres(timer);
1145 timerqueue_init(&timer->node);
1146
1147 #ifdef CONFIG_TIMER_STATS
1148 timer->start_site = NULL;
1149 timer->start_pid = -1;
1150 memset(timer->start_comm, 0, TASK_COMM_LEN);
1151 #endif
1152 }
1153
1154 /**
1155 * hrtimer_init - initialize a timer to the given clock
1156 * @timer: the timer to be initialized
1157 * @clock_id: the clock to be used
1158 * @mode: timer mode abs/rel
1159 */
1160 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1161 enum hrtimer_mode mode)
1162 {
1163 debug_init(timer, clock_id, mode);
1164 __hrtimer_init(timer, clock_id, mode);
1165 }
1166 EXPORT_SYMBOL_GPL(hrtimer_init);
1167
1168 /**
1169 * hrtimer_get_res - get the timer resolution for a clock
1170 * @which_clock: which clock to query
1171 * @tp: pointer to timespec variable to store the resolution
1172 *
1173 * Store the resolution of the clock selected by @which_clock in the
1174 * variable pointed to by @tp.
1175 */
1176 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1177 {
1178 struct hrtimer_cpu_base *cpu_base;
1179 int base = hrtimer_clockid_to_base(which_clock);
1180
1181 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1182 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1183
1184 return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1187
1188 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1189 {
1190 struct hrtimer_clock_base *base = timer->base;
1191 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1192 enum hrtimer_restart (*fn)(struct hrtimer *);
1193 int restart;
1194
1195 WARN_ON(!irqs_disabled());
1196
1197 debug_deactivate(timer);
1198 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1199 timer_stats_account_hrtimer(timer);
1200 fn = timer->function;
1201
1202 /*
1203 * Because we run timers from hardirq context, there is no chance
1204 * they get migrated to another cpu, therefore its safe to unlock
1205 * the timer base.
1206 */
1207 raw_spin_unlock(&cpu_base->lock);
1208 trace_hrtimer_expire_entry(timer, now);
1209 restart = fn(timer);
1210 trace_hrtimer_expire_exit(timer);
1211 raw_spin_lock(&cpu_base->lock);
1212
1213 /*
1214 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1215 * we do not reprogramm the event hardware. Happens either in
1216 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1217 */
1218 if (restart != HRTIMER_NORESTART) {
1219 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1220 enqueue_hrtimer(timer, base);
1221 }
1222
1223 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1224
1225 timer->state &= ~HRTIMER_STATE_CALLBACK;
1226 }
1227
1228 #ifdef CONFIG_HIGH_RES_TIMERS
1229
1230 /*
1231 * High resolution timer interrupt
1232 * Called with interrupts disabled
1233 */
1234 void hrtimer_interrupt(struct clock_event_device *dev)
1235 {
1236 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1237 struct hrtimer_clock_base *base;
1238 ktime_t expires_next, now, entry_time, delta;
1239 int i, retries = 0;
1240
1241 BUG_ON(!cpu_base->hres_active);
1242 cpu_base->nr_events++;
1243 dev->next_event.tv64 = KTIME_MAX;
1244
1245 entry_time = now = ktime_get();
1246 retry:
1247 expires_next.tv64 = KTIME_MAX;
1248
1249 raw_spin_lock(&cpu_base->lock);
1250 /*
1251 * We set expires_next to KTIME_MAX here with cpu_base->lock
1252 * held to prevent that a timer is enqueued in our queue via
1253 * the migration code. This does not affect enqueueing of
1254 * timers which run their callback and need to be requeued on
1255 * this CPU.
1256 */
1257 cpu_base->expires_next.tv64 = KTIME_MAX;
1258
1259 base = cpu_base->clock_base;
1260
1261 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1262 ktime_t basenow;
1263 struct timerqueue_node *node;
1264
1265 basenow = ktime_add(now, base->offset);
1266
1267 while ((node = timerqueue_getnext(&base->active))) {
1268 struct hrtimer *timer;
1269
1270 timer = container_of(node, struct hrtimer, node);
1271
1272 /*
1273 * The immediate goal for using the softexpires is
1274 * minimizing wakeups, not running timers at the
1275 * earliest interrupt after their soft expiration.
1276 * This allows us to avoid using a Priority Search
1277 * Tree, which can answer a stabbing querry for
1278 * overlapping intervals and instead use the simple
1279 * BST we already have.
1280 * We don't add extra wakeups by delaying timers that
1281 * are right-of a not yet expired timer, because that
1282 * timer will have to trigger a wakeup anyway.
1283 */
1284
1285 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1286 ktime_t expires;
1287
1288 expires = ktime_sub(hrtimer_get_expires(timer),
1289 base->offset);
1290 if (expires.tv64 < expires_next.tv64)
1291 expires_next = expires;
1292 break;
1293 }
1294
1295 __run_hrtimer(timer, &basenow);
1296 }
1297 base++;
1298 }
1299
1300 /*
1301 * Store the new expiry value so the migration code can verify
1302 * against it.
1303 */
1304 cpu_base->expires_next = expires_next;
1305 raw_spin_unlock(&cpu_base->lock);
1306
1307 /* Reprogramming necessary ? */
1308 if (expires_next.tv64 == KTIME_MAX ||
1309 !tick_program_event(expires_next, 0)) {
1310 cpu_base->hang_detected = 0;
1311 return;
1312 }
1313
1314 /*
1315 * The next timer was already expired due to:
1316 * - tracing
1317 * - long lasting callbacks
1318 * - being scheduled away when running in a VM
1319 *
1320 * We need to prevent that we loop forever in the hrtimer
1321 * interrupt routine. We give it 3 attempts to avoid
1322 * overreacting on some spurious event.
1323 */
1324 now = ktime_get();
1325 cpu_base->nr_retries++;
1326 if (++retries < 3)
1327 goto retry;
1328 /*
1329 * Give the system a chance to do something else than looping
1330 * here. We stored the entry time, so we know exactly how long
1331 * we spent here. We schedule the next event this amount of
1332 * time away.
1333 */
1334 cpu_base->nr_hangs++;
1335 cpu_base->hang_detected = 1;
1336 delta = ktime_sub(now, entry_time);
1337 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1338 cpu_base->max_hang_time = delta;
1339 /*
1340 * Limit it to a sensible value as we enforce a longer
1341 * delay. Give the CPU at least 100ms to catch up.
1342 */
1343 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1344 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1345 else
1346 expires_next = ktime_add(now, delta);
1347 tick_program_event(expires_next, 1);
1348 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1349 ktime_to_ns(delta));
1350 }
1351
1352 /*
1353 * local version of hrtimer_peek_ahead_timers() called with interrupts
1354 * disabled.
1355 */
1356 static void __hrtimer_peek_ahead_timers(void)
1357 {
1358 struct tick_device *td;
1359
1360 if (!hrtimer_hres_active())
1361 return;
1362
1363 td = &__get_cpu_var(tick_cpu_device);
1364 if (td && td->evtdev)
1365 hrtimer_interrupt(td->evtdev);
1366 }
1367
1368 /**
1369 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1370 *
1371 * hrtimer_peek_ahead_timers will peek at the timer queue of
1372 * the current cpu and check if there are any timers for which
1373 * the soft expires time has passed. If any such timers exist,
1374 * they are run immediately and then removed from the timer queue.
1375 *
1376 */
1377 void hrtimer_peek_ahead_timers(void)
1378 {
1379 unsigned long flags;
1380
1381 local_irq_save(flags);
1382 __hrtimer_peek_ahead_timers();
1383 local_irq_restore(flags);
1384 }
1385
1386 static void run_hrtimer_softirq(struct softirq_action *h)
1387 {
1388 hrtimer_peek_ahead_timers();
1389 }
1390
1391 #else /* CONFIG_HIGH_RES_TIMERS */
1392
1393 static inline void __hrtimer_peek_ahead_timers(void) { }
1394
1395 #endif /* !CONFIG_HIGH_RES_TIMERS */
1396
1397 /*
1398 * Called from timer softirq every jiffy, expire hrtimers:
1399 *
1400 * For HRT its the fall back code to run the softirq in the timer
1401 * softirq context in case the hrtimer initialization failed or has
1402 * not been done yet.
1403 */
1404 void hrtimer_run_pending(void)
1405 {
1406 if (hrtimer_hres_active())
1407 return;
1408
1409 /*
1410 * This _is_ ugly: We have to check in the softirq context,
1411 * whether we can switch to highres and / or nohz mode. The
1412 * clocksource switch happens in the timer interrupt with
1413 * xtime_lock held. Notification from there only sets the
1414 * check bit in the tick_oneshot code, otherwise we might
1415 * deadlock vs. xtime_lock.
1416 */
1417 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1418 hrtimer_switch_to_hres();
1419 }
1420
1421 /*
1422 * Called from hardirq context every jiffy
1423 */
1424 void hrtimer_run_queues(void)
1425 {
1426 struct timerqueue_node *node;
1427 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1428 struct hrtimer_clock_base *base;
1429 int index, gettime = 1;
1430
1431 if (hrtimer_hres_active())
1432 return;
1433
1434 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1435 base = &cpu_base->clock_base[index];
1436 if (!timerqueue_getnext(&base->active))
1437 continue;
1438
1439 if (gettime) {
1440 hrtimer_get_softirq_time(cpu_base);
1441 gettime = 0;
1442 }
1443
1444 raw_spin_lock(&cpu_base->lock);
1445
1446 while ((node = timerqueue_getnext(&base->active))) {
1447 struct hrtimer *timer;
1448
1449 timer = container_of(node, struct hrtimer, node);
1450 if (base->softirq_time.tv64 <=
1451 hrtimer_get_expires_tv64(timer))
1452 break;
1453
1454 __run_hrtimer(timer, &base->softirq_time);
1455 }
1456 raw_spin_unlock(&cpu_base->lock);
1457 }
1458 }
1459
1460 /*
1461 * Sleep related functions:
1462 */
1463 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1464 {
1465 struct hrtimer_sleeper *t =
1466 container_of(timer, struct hrtimer_sleeper, timer);
1467 struct task_struct *task = t->task;
1468
1469 t->task = NULL;
1470 if (task)
1471 wake_up_process(task);
1472
1473 return HRTIMER_NORESTART;
1474 }
1475
1476 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1477 {
1478 sl->timer.function = hrtimer_wakeup;
1479 sl->task = task;
1480 }
1481 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1482
1483 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1484 {
1485 hrtimer_init_sleeper(t, current);
1486
1487 do {
1488 set_current_state(TASK_INTERRUPTIBLE);
1489 hrtimer_start_expires(&t->timer, mode);
1490 if (!hrtimer_active(&t->timer))
1491 t->task = NULL;
1492
1493 if (likely(t->task))
1494 schedule();
1495
1496 hrtimer_cancel(&t->timer);
1497 mode = HRTIMER_MODE_ABS;
1498
1499 } while (t->task && !signal_pending(current));
1500
1501 __set_current_state(TASK_RUNNING);
1502
1503 return t->task == NULL;
1504 }
1505
1506 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1507 {
1508 struct timespec rmt;
1509 ktime_t rem;
1510
1511 rem = hrtimer_expires_remaining(timer);
1512 if (rem.tv64 <= 0)
1513 return 0;
1514 rmt = ktime_to_timespec(rem);
1515
1516 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1517 return -EFAULT;
1518
1519 return 1;
1520 }
1521
1522 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1523 {
1524 struct hrtimer_sleeper t;
1525 struct timespec __user *rmtp;
1526 int ret = 0;
1527
1528 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1529 HRTIMER_MODE_ABS);
1530 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1531
1532 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1533 goto out;
1534
1535 rmtp = restart->nanosleep.rmtp;
1536 if (rmtp) {
1537 ret = update_rmtp(&t.timer, rmtp);
1538 if (ret <= 0)
1539 goto out;
1540 }
1541
1542 /* The other values in restart are already filled in */
1543 ret = -ERESTART_RESTARTBLOCK;
1544 out:
1545 destroy_hrtimer_on_stack(&t.timer);
1546 return ret;
1547 }
1548
1549 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1550 const enum hrtimer_mode mode, const clockid_t clockid)
1551 {
1552 struct restart_block *restart;
1553 struct hrtimer_sleeper t;
1554 int ret = 0;
1555 unsigned long slack;
1556
1557 slack = current->timer_slack_ns;
1558 if (rt_task(current))
1559 slack = 0;
1560
1561 hrtimer_init_on_stack(&t.timer, clockid, mode);
1562 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1563 if (do_nanosleep(&t, mode))
1564 goto out;
1565
1566 /* Absolute timers do not update the rmtp value and restart: */
1567 if (mode == HRTIMER_MODE_ABS) {
1568 ret = -ERESTARTNOHAND;
1569 goto out;
1570 }
1571
1572 if (rmtp) {
1573 ret = update_rmtp(&t.timer, rmtp);
1574 if (ret <= 0)
1575 goto out;
1576 }
1577
1578 restart = &current_thread_info()->restart_block;
1579 restart->fn = hrtimer_nanosleep_restart;
1580 restart->nanosleep.index = t.timer.base->index;
1581 restart->nanosleep.rmtp = rmtp;
1582 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1583
1584 ret = -ERESTART_RESTARTBLOCK;
1585 out:
1586 destroy_hrtimer_on_stack(&t.timer);
1587 return ret;
1588 }
1589
1590 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1591 struct timespec __user *, rmtp)
1592 {
1593 struct timespec tu;
1594
1595 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1596 return -EFAULT;
1597
1598 if (!timespec_valid(&tu))
1599 return -EINVAL;
1600
1601 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1602 }
1603
1604 /*
1605 * Functions related to boot-time initialization:
1606 */
1607 static void __cpuinit init_hrtimers_cpu(int cpu)
1608 {
1609 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1610 int i;
1611
1612 raw_spin_lock_init(&cpu_base->lock);
1613
1614 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1615 cpu_base->clock_base[i].cpu_base = cpu_base;
1616 timerqueue_init_head(&cpu_base->clock_base[i].active);
1617 }
1618
1619 hrtimer_init_hres(cpu_base);
1620 }
1621
1622 #ifdef CONFIG_HOTPLUG_CPU
1623
1624 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1625 struct hrtimer_clock_base *new_base)
1626 {
1627 struct hrtimer *timer;
1628 struct timerqueue_node *node;
1629
1630 while ((node = timerqueue_getnext(&old_base->active))) {
1631 timer = container_of(node, struct hrtimer, node);
1632 BUG_ON(hrtimer_callback_running(timer));
1633 debug_deactivate(timer);
1634
1635 /*
1636 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1637 * timer could be seen as !active and just vanish away
1638 * under us on another CPU
1639 */
1640 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1641 timer->base = new_base;
1642 /*
1643 * Enqueue the timers on the new cpu. This does not
1644 * reprogram the event device in case the timer
1645 * expires before the earliest on this CPU, but we run
1646 * hrtimer_interrupt after we migrated everything to
1647 * sort out already expired timers and reprogram the
1648 * event device.
1649 */
1650 enqueue_hrtimer(timer, new_base);
1651
1652 /* Clear the migration state bit */
1653 timer->state &= ~HRTIMER_STATE_MIGRATE;
1654 }
1655 }
1656
1657 static void migrate_hrtimers(int scpu)
1658 {
1659 struct hrtimer_cpu_base *old_base, *new_base;
1660 int i;
1661
1662 BUG_ON(cpu_online(scpu));
1663 tick_cancel_sched_timer(scpu);
1664
1665 local_irq_disable();
1666 old_base = &per_cpu(hrtimer_bases, scpu);
1667 new_base = &__get_cpu_var(hrtimer_bases);
1668 /*
1669 * The caller is globally serialized and nobody else
1670 * takes two locks at once, deadlock is not possible.
1671 */
1672 raw_spin_lock(&new_base->lock);
1673 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1674
1675 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1676 migrate_hrtimer_list(&old_base->clock_base[i],
1677 &new_base->clock_base[i]);
1678 }
1679
1680 raw_spin_unlock(&old_base->lock);
1681 raw_spin_unlock(&new_base->lock);
1682
1683 /* Check, if we got expired work to do */
1684 __hrtimer_peek_ahead_timers();
1685 local_irq_enable();
1686 }
1687
1688 #endif /* CONFIG_HOTPLUG_CPU */
1689
1690 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1691 unsigned long action, void *hcpu)
1692 {
1693 int scpu = (long)hcpu;
1694
1695 switch (action) {
1696
1697 case CPU_UP_PREPARE:
1698 case CPU_UP_PREPARE_FROZEN:
1699 init_hrtimers_cpu(scpu);
1700 break;
1701
1702 #ifdef CONFIG_HOTPLUG_CPU
1703 case CPU_DYING:
1704 case CPU_DYING_FROZEN:
1705 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1706 break;
1707 case CPU_DEAD:
1708 case CPU_DEAD_FROZEN:
1709 {
1710 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1711 migrate_hrtimers(scpu);
1712 break;
1713 }
1714 #endif
1715
1716 default:
1717 break;
1718 }
1719
1720 return NOTIFY_OK;
1721 }
1722
1723 static struct notifier_block __cpuinitdata hrtimers_nb = {
1724 .notifier_call = hrtimer_cpu_notify,
1725 };
1726
1727 void __init hrtimers_init(void)
1728 {
1729 hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
1730 hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;
1731 hrtimer_clock_to_base_table[CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME;
1732
1733 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1734 (void *)(long)smp_processor_id());
1735 register_cpu_notifier(&hrtimers_nb);
1736 #ifdef CONFIG_HIGH_RES_TIMERS
1737 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1738 #endif
1739 }
1740
1741 /**
1742 * schedule_hrtimeout_range_clock - sleep until timeout
1743 * @expires: timeout value (ktime_t)
1744 * @delta: slack in expires timeout (ktime_t)
1745 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1746 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1747 */
1748 int __sched
1749 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1750 const enum hrtimer_mode mode, int clock)
1751 {
1752 struct hrtimer_sleeper t;
1753
1754 /*
1755 * Optimize when a zero timeout value is given. It does not
1756 * matter whether this is an absolute or a relative time.
1757 */
1758 if (expires && !expires->tv64) {
1759 __set_current_state(TASK_RUNNING);
1760 return 0;
1761 }
1762
1763 /*
1764 * A NULL parameter means "infinite"
1765 */
1766 if (!expires) {
1767 schedule();
1768 __set_current_state(TASK_RUNNING);
1769 return -EINTR;
1770 }
1771
1772 hrtimer_init_on_stack(&t.timer, clock, mode);
1773 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1774
1775 hrtimer_init_sleeper(&t, current);
1776
1777 hrtimer_start_expires(&t.timer, mode);
1778 if (!hrtimer_active(&t.timer))
1779 t.task = NULL;
1780
1781 if (likely(t.task))
1782 schedule();
1783
1784 hrtimer_cancel(&t.timer);
1785 destroy_hrtimer_on_stack(&t.timer);
1786
1787 __set_current_state(TASK_RUNNING);
1788
1789 return !t.task ? 0 : -EINTR;
1790 }
1791
1792 /**
1793 * schedule_hrtimeout_range - sleep until timeout
1794 * @expires: timeout value (ktime_t)
1795 * @delta: slack in expires timeout (ktime_t)
1796 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1797 *
1798 * Make the current task sleep until the given expiry time has
1799 * elapsed. The routine will return immediately unless
1800 * the current task state has been set (see set_current_state()).
1801 *
1802 * The @delta argument gives the kernel the freedom to schedule the
1803 * actual wakeup to a time that is both power and performance friendly.
1804 * The kernel give the normal best effort behavior for "@expires+@delta",
1805 * but may decide to fire the timer earlier, but no earlier than @expires.
1806 *
1807 * You can set the task state as follows -
1808 *
1809 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1810 * pass before the routine returns.
1811 *
1812 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1813 * delivered to the current task.
1814 *
1815 * The current task state is guaranteed to be TASK_RUNNING when this
1816 * routine returns.
1817 *
1818 * Returns 0 when the timer has expired otherwise -EINTR
1819 */
1820 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1821 const enum hrtimer_mode mode)
1822 {
1823 return schedule_hrtimeout_range_clock(expires, delta, mode,
1824 CLOCK_MONOTONIC);
1825 }
1826 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1827
1828 /**
1829 * schedule_hrtimeout - sleep until timeout
1830 * @expires: timeout value (ktime_t)
1831 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1832 *
1833 * Make the current task sleep until the given expiry time has
1834 * elapsed. The routine will return immediately unless
1835 * the current task state has been set (see set_current_state()).
1836 *
1837 * You can set the task state as follows -
1838 *
1839 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1840 * pass before the routine returns.
1841 *
1842 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1843 * delivered to the current task.
1844 *
1845 * The current task state is guaranteed to be TASK_RUNNING when this
1846 * routine returns.
1847 *
1848 * Returns 0 when the timer has expired otherwise -EINTR
1849 */
1850 int __sched schedule_hrtimeout(ktime_t *expires,
1851 const enum hrtimer_mode mode)
1852 {
1853 return schedule_hrtimeout_range(expires, 0, mode);
1854 }
1855 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.265532 seconds and 5 git commands to generate.