Merge git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46 #include <linux/debugobjects.h>
47
48 #include <asm/uaccess.h>
49
50 /**
51 * ktime_get - get the monotonic time in ktime_t format
52 *
53 * returns the time in ktime_t format
54 */
55 ktime_t ktime_get(void)
56 {
57 struct timespec now;
58
59 ktime_get_ts(&now);
60
61 return timespec_to_ktime(now);
62 }
63 EXPORT_SYMBOL_GPL(ktime_get);
64
65 /**
66 * ktime_get_real - get the real (wall-) time in ktime_t format
67 *
68 * returns the time in ktime_t format
69 */
70 ktime_t ktime_get_real(void)
71 {
72 struct timespec now;
73
74 getnstimeofday(&now);
75
76 return timespec_to_ktime(now);
77 }
78
79 EXPORT_SYMBOL_GPL(ktime_get_real);
80
81 /*
82 * The timer bases:
83 *
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
89 */
90 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
91 {
92
93 .clock_base =
94 {
95 {
96 .index = CLOCK_REALTIME,
97 .get_time = &ktime_get_real,
98 .resolution = KTIME_LOW_RES,
99 },
100 {
101 .index = CLOCK_MONOTONIC,
102 .get_time = &ktime_get,
103 .resolution = KTIME_LOW_RES,
104 },
105 }
106 };
107
108 /**
109 * ktime_get_ts - get the monotonic clock in timespec format
110 * @ts: pointer to timespec variable
111 *
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
114 * in normalized timespec format in the variable pointed to by @ts.
115 */
116 void ktime_get_ts(struct timespec *ts)
117 {
118 struct timespec tomono;
119 unsigned long seq;
120
121 do {
122 seq = read_seqbegin(&xtime_lock);
123 getnstimeofday(ts);
124 tomono = wall_to_monotonic;
125
126 } while (read_seqretry(&xtime_lock, seq));
127
128 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
129 ts->tv_nsec + tomono.tv_nsec);
130 }
131 EXPORT_SYMBOL_GPL(ktime_get_ts);
132
133 /*
134 * Get the coarse grained time at the softirq based on xtime and
135 * wall_to_monotonic.
136 */
137 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 {
139 ktime_t xtim, tomono;
140 struct timespec xts, tom;
141 unsigned long seq;
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
145 xts = current_kernel_time();
146 tom = wall_to_monotonic;
147 } while (read_seqretry(&xtime_lock, seq));
148
149 xtim = timespec_to_ktime(xts);
150 tomono = timespec_to_ktime(tom);
151 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
152 base->clock_base[CLOCK_MONOTONIC].softirq_time =
153 ktime_add(xtim, tomono);
154 }
155
156 /*
157 * Functions and macros which are different for UP/SMP systems are kept in a
158 * single place
159 */
160 #ifdef CONFIG_SMP
161
162 /*
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
166 *
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
169 *
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
172 * locked.
173 */
174 static
175 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
176 unsigned long *flags)
177 {
178 struct hrtimer_clock_base *base;
179
180 for (;;) {
181 base = timer->base;
182 if (likely(base != NULL)) {
183 spin_lock_irqsave(&base->cpu_base->lock, *flags);
184 if (likely(base == timer->base))
185 return base;
186 /* The timer has migrated to another CPU: */
187 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 }
189 cpu_relax();
190 }
191 }
192
193 /*
194 * Switch the timer base to the current CPU when possible.
195 */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198 {
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
201
202 new_cpu_base = &__get_cpu_var(hrtimer_bases);
203 new_base = &new_cpu_base->clock_base[base->index];
204
205 if (base != new_base) {
206 /*
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
215 if (unlikely(hrtimer_callback_running(timer)))
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
220 spin_unlock(&base->cpu_base->lock);
221 spin_lock(&new_base->cpu_base->lock);
222 timer->base = new_base;
223 }
224 return new_base;
225 }
226
227 #else /* CONFIG_SMP */
228
229 static inline struct hrtimer_clock_base *
230 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231 {
232 struct hrtimer_clock_base *base = timer->base;
233
234 spin_lock_irqsave(&base->cpu_base->lock, *flags);
235
236 return base;
237 }
238
239 # define switch_hrtimer_base(t, b) (b)
240
241 #endif /* !CONFIG_SMP */
242
243 /*
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
246 */
247 #if BITS_PER_LONG < 64
248 # ifndef CONFIG_KTIME_SCALAR
249 /**
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
251 * @kt: addend
252 * @nsec: the scalar nsec value to add
253 *
254 * Returns the sum of kt and nsec in ktime_t format
255 */
256 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257 {
258 ktime_t tmp;
259
260 if (likely(nsec < NSEC_PER_SEC)) {
261 tmp.tv64 = nsec;
262 } else {
263 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264
265 tmp = ktime_set((long)nsec, rem);
266 }
267
268 return ktime_add(kt, tmp);
269 }
270
271 EXPORT_SYMBOL_GPL(ktime_add_ns);
272
273 /**
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @kt: minuend
276 * @nsec: the scalar nsec value to subtract
277 *
278 * Returns the subtraction of @nsec from @kt in ktime_t format
279 */
280 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281 {
282 ktime_t tmp;
283
284 if (likely(nsec < NSEC_PER_SEC)) {
285 tmp.tv64 = nsec;
286 } else {
287 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288
289 tmp = ktime_set((long)nsec, rem);
290 }
291
292 return ktime_sub(kt, tmp);
293 }
294
295 EXPORT_SYMBOL_GPL(ktime_sub_ns);
296 # endif /* !CONFIG_KTIME_SCALAR */
297
298 /*
299 * Divide a ktime value by a nanosecond value
300 */
301 u64 ktime_divns(const ktime_t kt, s64 div)
302 {
303 u64 dclc;
304 int sft = 0;
305
306 dclc = ktime_to_ns(kt);
307 /* Make sure the divisor is less than 2^32: */
308 while (div >> 32) {
309 sft++;
310 div >>= 1;
311 }
312 dclc >>= sft;
313 do_div(dclc, (unsigned long) div);
314
315 return dclc;
316 }
317 #endif /* BITS_PER_LONG >= 64 */
318
319 /*
320 * Add two ktime values and do a safety check for overflow:
321 */
322 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323 {
324 ktime_t res = ktime_add(lhs, rhs);
325
326 /*
327 * We use KTIME_SEC_MAX here, the maximum timeout which we can
328 * return to user space in a timespec:
329 */
330 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
331 res = ktime_set(KTIME_SEC_MAX, 0);
332
333 return res;
334 }
335
336 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338 static struct debug_obj_descr hrtimer_debug_descr;
339
340 /*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345 {
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356 }
357
358 /*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364 {
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377 }
378
379 /*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384 {
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395 }
396
397 static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402 };
403
404 static inline void debug_hrtimer_init(struct hrtimer *timer)
405 {
406 debug_object_init(timer, &hrtimer_debug_descr);
407 }
408
409 static inline void debug_hrtimer_activate(struct hrtimer *timer)
410 {
411 debug_object_activate(timer, &hrtimer_debug_descr);
412 }
413
414 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415 {
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417 }
418
419 static inline void debug_hrtimer_free(struct hrtimer *timer)
420 {
421 debug_object_free(timer, &hrtimer_debug_descr);
422 }
423
424 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429 {
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432 }
433
434 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 {
436 debug_object_free(timer, &hrtimer_debug_descr);
437 }
438
439 #else
440 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443 #endif
444
445 /* High resolution timer related functions */
446 #ifdef CONFIG_HIGH_RES_TIMERS
447
448 /*
449 * High resolution timer enabled ?
450 */
451 static int hrtimer_hres_enabled __read_mostly = 1;
452
453 /*
454 * Enable / Disable high resolution mode
455 */
456 static int __init setup_hrtimer_hres(char *str)
457 {
458 if (!strcmp(str, "off"))
459 hrtimer_hres_enabled = 0;
460 else if (!strcmp(str, "on"))
461 hrtimer_hres_enabled = 1;
462 else
463 return 0;
464 return 1;
465 }
466
467 __setup("highres=", setup_hrtimer_hres);
468
469 /*
470 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 */
472 static inline int hrtimer_is_hres_enabled(void)
473 {
474 return hrtimer_hres_enabled;
475 }
476
477 /*
478 * Is the high resolution mode active ?
479 */
480 static inline int hrtimer_hres_active(void)
481 {
482 return __get_cpu_var(hrtimer_bases).hres_active;
483 }
484
485 /*
486 * Reprogram the event source with checking both queues for the
487 * next event
488 * Called with interrupts disabled and base->lock held
489 */
490 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
491 {
492 int i;
493 struct hrtimer_clock_base *base = cpu_base->clock_base;
494 ktime_t expires;
495
496 cpu_base->expires_next.tv64 = KTIME_MAX;
497
498 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
499 struct hrtimer *timer;
500
501 if (!base->first)
502 continue;
503 timer = rb_entry(base->first, struct hrtimer, node);
504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 if (expires.tv64 < cpu_base->expires_next.tv64)
506 cpu_base->expires_next = expires;
507 }
508
509 if (cpu_base->expires_next.tv64 != KTIME_MAX)
510 tick_program_event(cpu_base->expires_next, 1);
511 }
512
513 /*
514 * Shared reprogramming for clock_realtime and clock_monotonic
515 *
516 * When a timer is enqueued and expires earlier than the already enqueued
517 * timers, we have to check, whether it expires earlier than the timer for
518 * which the clock event device was armed.
519 *
520 * Called with interrupts disabled and base->cpu_base.lock held
521 */
522 static int hrtimer_reprogram(struct hrtimer *timer,
523 struct hrtimer_clock_base *base)
524 {
525 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
526 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 int res;
528
529 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
530
531 /*
532 * When the callback is running, we do not reprogram the clock event
533 * device. The timer callback is either running on a different CPU or
534 * the callback is executed in the hrtimer_interrupt context. The
535 * reprogramming is handled either by the softirq, which called the
536 * callback or at the end of the hrtimer_interrupt.
537 */
538 if (hrtimer_callback_running(timer))
539 return 0;
540
541 /*
542 * CLOCK_REALTIME timer might be requested with an absolute
543 * expiry time which is less than base->offset. Nothing wrong
544 * about that, just avoid to call into the tick code, which
545 * has now objections against negative expiry values.
546 */
547 if (expires.tv64 < 0)
548 return -ETIME;
549
550 if (expires.tv64 >= expires_next->tv64)
551 return 0;
552
553 /*
554 * Clockevents returns -ETIME, when the event was in the past.
555 */
556 res = tick_program_event(expires, 0);
557 if (!IS_ERR_VALUE(res))
558 *expires_next = expires;
559 return res;
560 }
561
562
563 /*
564 * Retrigger next event is called after clock was set
565 *
566 * Called with interrupts disabled via on_each_cpu()
567 */
568 static void retrigger_next_event(void *arg)
569 {
570 struct hrtimer_cpu_base *base;
571 struct timespec realtime_offset;
572 unsigned long seq;
573
574 if (!hrtimer_hres_active())
575 return;
576
577 do {
578 seq = read_seqbegin(&xtime_lock);
579 set_normalized_timespec(&realtime_offset,
580 -wall_to_monotonic.tv_sec,
581 -wall_to_monotonic.tv_nsec);
582 } while (read_seqretry(&xtime_lock, seq));
583
584 base = &__get_cpu_var(hrtimer_bases);
585
586 /* Adjust CLOCK_REALTIME offset */
587 spin_lock(&base->lock);
588 base->clock_base[CLOCK_REALTIME].offset =
589 timespec_to_ktime(realtime_offset);
590
591 hrtimer_force_reprogram(base);
592 spin_unlock(&base->lock);
593 }
594
595 /*
596 * Clock realtime was set
597 *
598 * Change the offset of the realtime clock vs. the monotonic
599 * clock.
600 *
601 * We might have to reprogram the high resolution timer interrupt. On
602 * SMP we call the architecture specific code to retrigger _all_ high
603 * resolution timer interrupts. On UP we just disable interrupts and
604 * call the high resolution interrupt code.
605 */
606 void clock_was_set(void)
607 {
608 /* Retrigger the CPU local events everywhere */
609 on_each_cpu(retrigger_next_event, NULL, 1);
610 }
611
612 /*
613 * During resume we might have to reprogram the high resolution timer
614 * interrupt (on the local CPU):
615 */
616 void hres_timers_resume(void)
617 {
618 /* Retrigger the CPU local events: */
619 retrigger_next_event(NULL);
620 }
621
622 /*
623 * Initialize the high resolution related parts of cpu_base
624 */
625 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
626 {
627 base->expires_next.tv64 = KTIME_MAX;
628 base->hres_active = 0;
629 }
630
631 /*
632 * Initialize the high resolution related parts of a hrtimer
633 */
634 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
635 {
636 }
637
638 static void __run_hrtimer(struct hrtimer *timer);
639
640 /*
641 * When High resolution timers are active, try to reprogram. Note, that in case
642 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
643 * check happens. The timer gets enqueued into the rbtree. The reprogramming
644 * and expiry check is done in the hrtimer_interrupt or in the softirq.
645 */
646 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
647 struct hrtimer_clock_base *base)
648 {
649 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
650 /*
651 * XXX: recursion check?
652 * hrtimer_forward() should round up with timer granularity
653 * so that we never get into inf recursion here,
654 * it doesn't do that though
655 */
656 __run_hrtimer(timer);
657 return 1;
658 }
659 return 0;
660 }
661
662 /*
663 * Switch to high resolution mode
664 */
665 static int hrtimer_switch_to_hres(void)
666 {
667 int cpu = smp_processor_id();
668 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
669 unsigned long flags;
670
671 if (base->hres_active)
672 return 1;
673
674 local_irq_save(flags);
675
676 if (tick_init_highres()) {
677 local_irq_restore(flags);
678 printk(KERN_WARNING "Could not switch to high resolution "
679 "mode on CPU %d\n", cpu);
680 return 0;
681 }
682 base->hres_active = 1;
683 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
684 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
685
686 tick_setup_sched_timer();
687
688 /* "Retrigger" the interrupt to get things going */
689 retrigger_next_event(NULL);
690 local_irq_restore(flags);
691 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
692 smp_processor_id());
693 return 1;
694 }
695
696 #else
697
698 static inline int hrtimer_hres_active(void) { return 0; }
699 static inline int hrtimer_is_hres_enabled(void) { return 0; }
700 static inline int hrtimer_switch_to_hres(void) { return 0; }
701 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
702 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
703 struct hrtimer_clock_base *base)
704 {
705 return 0;
706 }
707 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
708 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
709 static inline int hrtimer_reprogram(struct hrtimer *timer,
710 struct hrtimer_clock_base *base)
711 {
712 return 0;
713 }
714
715 #endif /* CONFIG_HIGH_RES_TIMERS */
716
717 #ifdef CONFIG_TIMER_STATS
718 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
719 {
720 if (timer->start_site)
721 return;
722
723 timer->start_site = addr;
724 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
725 timer->start_pid = current->pid;
726 }
727 #endif
728
729 /*
730 * Counterpart to lock_hrtimer_base above:
731 */
732 static inline
733 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
734 {
735 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
736 }
737
738 /**
739 * hrtimer_forward - forward the timer expiry
740 * @timer: hrtimer to forward
741 * @now: forward past this time
742 * @interval: the interval to forward
743 *
744 * Forward the timer expiry so it will expire in the future.
745 * Returns the number of overruns.
746 */
747 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
748 {
749 u64 orun = 1;
750 ktime_t delta;
751
752 delta = ktime_sub(now, hrtimer_get_expires(timer));
753
754 if (delta.tv64 < 0)
755 return 0;
756
757 if (interval.tv64 < timer->base->resolution.tv64)
758 interval.tv64 = timer->base->resolution.tv64;
759
760 if (unlikely(delta.tv64 >= interval.tv64)) {
761 s64 incr = ktime_to_ns(interval);
762
763 orun = ktime_divns(delta, incr);
764 hrtimer_add_expires_ns(timer, incr * orun);
765 if (hrtimer_get_expires_tv64(timer) > now.tv64)
766 return orun;
767 /*
768 * This (and the ktime_add() below) is the
769 * correction for exact:
770 */
771 orun++;
772 }
773 hrtimer_add_expires(timer, interval);
774
775 return orun;
776 }
777 EXPORT_SYMBOL_GPL(hrtimer_forward);
778
779 /*
780 * enqueue_hrtimer - internal function to (re)start a timer
781 *
782 * The timer is inserted in expiry order. Insertion into the
783 * red black tree is O(log(n)). Must hold the base lock.
784 */
785 static void enqueue_hrtimer(struct hrtimer *timer,
786 struct hrtimer_clock_base *base, int reprogram)
787 {
788 struct rb_node **link = &base->active.rb_node;
789 struct rb_node *parent = NULL;
790 struct hrtimer *entry;
791 int leftmost = 1;
792
793 debug_hrtimer_activate(timer);
794
795 /*
796 * Find the right place in the rbtree:
797 */
798 while (*link) {
799 parent = *link;
800 entry = rb_entry(parent, struct hrtimer, node);
801 /*
802 * We dont care about collisions. Nodes with
803 * the same expiry time stay together.
804 */
805 if (hrtimer_get_expires_tv64(timer) <
806 hrtimer_get_expires_tv64(entry)) {
807 link = &(*link)->rb_left;
808 } else {
809 link = &(*link)->rb_right;
810 leftmost = 0;
811 }
812 }
813
814 /*
815 * Insert the timer to the rbtree and check whether it
816 * replaces the first pending timer
817 */
818 if (leftmost) {
819 /*
820 * Reprogram the clock event device. When the timer is already
821 * expired hrtimer_enqueue_reprogram has either called the
822 * callback or added it to the pending list and raised the
823 * softirq.
824 *
825 * This is a NOP for !HIGHRES
826 */
827 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
828 return;
829
830 base->first = &timer->node;
831 }
832
833 rb_link_node(&timer->node, parent, link);
834 rb_insert_color(&timer->node, &base->active);
835 /*
836 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
837 * state of a possibly running callback.
838 */
839 timer->state |= HRTIMER_STATE_ENQUEUED;
840 }
841
842 /*
843 * __remove_hrtimer - internal function to remove a timer
844 *
845 * Caller must hold the base lock.
846 *
847 * High resolution timer mode reprograms the clock event device when the
848 * timer is the one which expires next. The caller can disable this by setting
849 * reprogram to zero. This is useful, when the context does a reprogramming
850 * anyway (e.g. timer interrupt)
851 */
852 static void __remove_hrtimer(struct hrtimer *timer,
853 struct hrtimer_clock_base *base,
854 unsigned long newstate, int reprogram)
855 {
856 if (timer->state & HRTIMER_STATE_ENQUEUED) {
857 /*
858 * Remove the timer from the rbtree and replace the
859 * first entry pointer if necessary.
860 */
861 if (base->first == &timer->node) {
862 base->first = rb_next(&timer->node);
863 /* Reprogram the clock event device. if enabled */
864 if (reprogram && hrtimer_hres_active())
865 hrtimer_force_reprogram(base->cpu_base);
866 }
867 rb_erase(&timer->node, &base->active);
868 }
869 timer->state = newstate;
870 }
871
872 /*
873 * remove hrtimer, called with base lock held
874 */
875 static inline int
876 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
877 {
878 if (hrtimer_is_queued(timer)) {
879 int reprogram;
880
881 /*
882 * Remove the timer and force reprogramming when high
883 * resolution mode is active and the timer is on the current
884 * CPU. If we remove a timer on another CPU, reprogramming is
885 * skipped. The interrupt event on this CPU is fired and
886 * reprogramming happens in the interrupt handler. This is a
887 * rare case and less expensive than a smp call.
888 */
889 debug_hrtimer_deactivate(timer);
890 timer_stats_hrtimer_clear_start_info(timer);
891 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
892 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
893 reprogram);
894 return 1;
895 }
896 return 0;
897 }
898
899 /**
900 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
901 * @timer: the timer to be added
902 * @tim: expiry time
903 * @delta_ns: "slack" range for the timer
904 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
905 *
906 * Returns:
907 * 0 on success
908 * 1 when the timer was active
909 */
910 int
911 hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
912 const enum hrtimer_mode mode)
913 {
914 struct hrtimer_clock_base *base, *new_base;
915 unsigned long flags;
916 int ret;
917
918 base = lock_hrtimer_base(timer, &flags);
919
920 /* Remove an active timer from the queue: */
921 ret = remove_hrtimer(timer, base);
922
923 /* Switch the timer base, if necessary: */
924 new_base = switch_hrtimer_base(timer, base);
925
926 if (mode == HRTIMER_MODE_REL) {
927 tim = ktime_add_safe(tim, new_base->get_time());
928 /*
929 * CONFIG_TIME_LOW_RES is a temporary way for architectures
930 * to signal that they simply return xtime in
931 * do_gettimeoffset(). In this case we want to round up by
932 * resolution when starting a relative timer, to avoid short
933 * timeouts. This will go away with the GTOD framework.
934 */
935 #ifdef CONFIG_TIME_LOW_RES
936 tim = ktime_add_safe(tim, base->resolution);
937 #endif
938 }
939
940 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
941
942 timer_stats_hrtimer_set_start_info(timer);
943
944 /*
945 * Only allow reprogramming if the new base is on this CPU.
946 * (it might still be on another CPU if the timer was pending)
947 */
948 enqueue_hrtimer(timer, new_base,
949 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
950
951 unlock_hrtimer_base(timer, &flags);
952
953 return ret;
954 }
955 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
956
957 /**
958 * hrtimer_start - (re)start an hrtimer on the current CPU
959 * @timer: the timer to be added
960 * @tim: expiry time
961 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
962 *
963 * Returns:
964 * 0 on success
965 * 1 when the timer was active
966 */
967 int
968 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
969 {
970 return hrtimer_start_range_ns(timer, tim, 0, mode);
971 }
972 EXPORT_SYMBOL_GPL(hrtimer_start);
973
974
975 /**
976 * hrtimer_try_to_cancel - try to deactivate a timer
977 * @timer: hrtimer to stop
978 *
979 * Returns:
980 * 0 when the timer was not active
981 * 1 when the timer was active
982 * -1 when the timer is currently excuting the callback function and
983 * cannot be stopped
984 */
985 int hrtimer_try_to_cancel(struct hrtimer *timer)
986 {
987 struct hrtimer_clock_base *base;
988 unsigned long flags;
989 int ret = -1;
990
991 base = lock_hrtimer_base(timer, &flags);
992
993 if (!hrtimer_callback_running(timer))
994 ret = remove_hrtimer(timer, base);
995
996 unlock_hrtimer_base(timer, &flags);
997
998 return ret;
999
1000 }
1001 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1002
1003 /**
1004 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1005 * @timer: the timer to be cancelled
1006 *
1007 * Returns:
1008 * 0 when the timer was not active
1009 * 1 when the timer was active
1010 */
1011 int hrtimer_cancel(struct hrtimer *timer)
1012 {
1013 for (;;) {
1014 int ret = hrtimer_try_to_cancel(timer);
1015
1016 if (ret >= 0)
1017 return ret;
1018 cpu_relax();
1019 }
1020 }
1021 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1022
1023 /**
1024 * hrtimer_get_remaining - get remaining time for the timer
1025 * @timer: the timer to read
1026 */
1027 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1028 {
1029 struct hrtimer_clock_base *base;
1030 unsigned long flags;
1031 ktime_t rem;
1032
1033 base = lock_hrtimer_base(timer, &flags);
1034 rem = hrtimer_expires_remaining(timer);
1035 unlock_hrtimer_base(timer, &flags);
1036
1037 return rem;
1038 }
1039 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1040
1041 #ifdef CONFIG_NO_HZ
1042 /**
1043 * hrtimer_get_next_event - get the time until next expiry event
1044 *
1045 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1046 * is pending.
1047 */
1048 ktime_t hrtimer_get_next_event(void)
1049 {
1050 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1051 struct hrtimer_clock_base *base = cpu_base->clock_base;
1052 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1053 unsigned long flags;
1054 int i;
1055
1056 spin_lock_irqsave(&cpu_base->lock, flags);
1057
1058 if (!hrtimer_hres_active()) {
1059 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1060 struct hrtimer *timer;
1061
1062 if (!base->first)
1063 continue;
1064
1065 timer = rb_entry(base->first, struct hrtimer, node);
1066 delta.tv64 = hrtimer_get_expires_tv64(timer);
1067 delta = ktime_sub(delta, base->get_time());
1068 if (delta.tv64 < mindelta.tv64)
1069 mindelta.tv64 = delta.tv64;
1070 }
1071 }
1072
1073 spin_unlock_irqrestore(&cpu_base->lock, flags);
1074
1075 if (mindelta.tv64 < 0)
1076 mindelta.tv64 = 0;
1077 return mindelta;
1078 }
1079 #endif
1080
1081 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1082 enum hrtimer_mode mode)
1083 {
1084 struct hrtimer_cpu_base *cpu_base;
1085
1086 memset(timer, 0, sizeof(struct hrtimer));
1087
1088 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1089
1090 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1091 clock_id = CLOCK_MONOTONIC;
1092
1093 timer->base = &cpu_base->clock_base[clock_id];
1094 INIT_LIST_HEAD(&timer->cb_entry);
1095 hrtimer_init_timer_hres(timer);
1096
1097 #ifdef CONFIG_TIMER_STATS
1098 timer->start_site = NULL;
1099 timer->start_pid = -1;
1100 memset(timer->start_comm, 0, TASK_COMM_LEN);
1101 #endif
1102 }
1103
1104 /**
1105 * hrtimer_init - initialize a timer to the given clock
1106 * @timer: the timer to be initialized
1107 * @clock_id: the clock to be used
1108 * @mode: timer mode abs/rel
1109 */
1110 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1111 enum hrtimer_mode mode)
1112 {
1113 debug_hrtimer_init(timer);
1114 __hrtimer_init(timer, clock_id, mode);
1115 }
1116 EXPORT_SYMBOL_GPL(hrtimer_init);
1117
1118 /**
1119 * hrtimer_get_res - get the timer resolution for a clock
1120 * @which_clock: which clock to query
1121 * @tp: pointer to timespec variable to store the resolution
1122 *
1123 * Store the resolution of the clock selected by @which_clock in the
1124 * variable pointed to by @tp.
1125 */
1126 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1127 {
1128 struct hrtimer_cpu_base *cpu_base;
1129
1130 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1131 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1132
1133 return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1136
1137 static void __run_hrtimer(struct hrtimer *timer)
1138 {
1139 struct hrtimer_clock_base *base = timer->base;
1140 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1141 enum hrtimer_restart (*fn)(struct hrtimer *);
1142 int restart;
1143
1144 WARN_ON(!irqs_disabled());
1145
1146 debug_hrtimer_deactivate(timer);
1147 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1148 timer_stats_account_hrtimer(timer);
1149 fn = timer->function;
1150
1151 /*
1152 * Because we run timers from hardirq context, there is no chance
1153 * they get migrated to another cpu, therefore its safe to unlock
1154 * the timer base.
1155 */
1156 spin_unlock(&cpu_base->lock);
1157 restart = fn(timer);
1158 spin_lock(&cpu_base->lock);
1159
1160 /*
1161 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1162 * reprogramming of the event hardware. This happens at the end of this
1163 * function anyway.
1164 */
1165 if (restart != HRTIMER_NORESTART) {
1166 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1167 enqueue_hrtimer(timer, base, 0);
1168 }
1169 timer->state &= ~HRTIMER_STATE_CALLBACK;
1170 }
1171
1172 #ifdef CONFIG_HIGH_RES_TIMERS
1173
1174 /*
1175 * High resolution timer interrupt
1176 * Called with interrupts disabled
1177 */
1178 void hrtimer_interrupt(struct clock_event_device *dev)
1179 {
1180 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1181 struct hrtimer_clock_base *base;
1182 ktime_t expires_next, now;
1183 int i;
1184
1185 BUG_ON(!cpu_base->hres_active);
1186 cpu_base->nr_events++;
1187 dev->next_event.tv64 = KTIME_MAX;
1188
1189 retry:
1190 now = ktime_get();
1191
1192 expires_next.tv64 = KTIME_MAX;
1193
1194 base = cpu_base->clock_base;
1195
1196 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1197 ktime_t basenow;
1198 struct rb_node *node;
1199
1200 spin_lock(&cpu_base->lock);
1201
1202 basenow = ktime_add(now, base->offset);
1203
1204 while ((node = base->first)) {
1205 struct hrtimer *timer;
1206
1207 timer = rb_entry(node, struct hrtimer, node);
1208
1209 /*
1210 * The immediate goal for using the softexpires is
1211 * minimizing wakeups, not running timers at the
1212 * earliest interrupt after their soft expiration.
1213 * This allows us to avoid using a Priority Search
1214 * Tree, which can answer a stabbing querry for
1215 * overlapping intervals and instead use the simple
1216 * BST we already have.
1217 * We don't add extra wakeups by delaying timers that
1218 * are right-of a not yet expired timer, because that
1219 * timer will have to trigger a wakeup anyway.
1220 */
1221
1222 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1223 ktime_t expires;
1224
1225 expires = ktime_sub(hrtimer_get_expires(timer),
1226 base->offset);
1227 if (expires.tv64 < expires_next.tv64)
1228 expires_next = expires;
1229 break;
1230 }
1231
1232 __run_hrtimer(timer);
1233 }
1234 spin_unlock(&cpu_base->lock);
1235 base++;
1236 }
1237
1238 cpu_base->expires_next = expires_next;
1239
1240 /* Reprogramming necessary ? */
1241 if (expires_next.tv64 != KTIME_MAX) {
1242 if (tick_program_event(expires_next, 0))
1243 goto retry;
1244 }
1245 }
1246
1247 /**
1248 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1249 *
1250 * hrtimer_peek_ahead_timers will peek at the timer queue of
1251 * the current cpu and check if there are any timers for which
1252 * the soft expires time has passed. If any such timers exist,
1253 * they are run immediately and then removed from the timer queue.
1254 *
1255 */
1256 void hrtimer_peek_ahead_timers(void)
1257 {
1258 struct tick_device *td;
1259 unsigned long flags;
1260
1261 if (!hrtimer_hres_active())
1262 return;
1263
1264 local_irq_save(flags);
1265 td = &__get_cpu_var(tick_cpu_device);
1266 if (td && td->evtdev)
1267 hrtimer_interrupt(td->evtdev);
1268 local_irq_restore(flags);
1269 }
1270
1271 #endif /* CONFIG_HIGH_RES_TIMERS */
1272
1273 /*
1274 * Called from timer softirq every jiffy, expire hrtimers:
1275 *
1276 * For HRT its the fall back code to run the softirq in the timer
1277 * softirq context in case the hrtimer initialization failed or has
1278 * not been done yet.
1279 */
1280 void hrtimer_run_pending(void)
1281 {
1282 if (hrtimer_hres_active())
1283 return;
1284
1285 /*
1286 * This _is_ ugly: We have to check in the softirq context,
1287 * whether we can switch to highres and / or nohz mode. The
1288 * clocksource switch happens in the timer interrupt with
1289 * xtime_lock held. Notification from there only sets the
1290 * check bit in the tick_oneshot code, otherwise we might
1291 * deadlock vs. xtime_lock.
1292 */
1293 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1294 hrtimer_switch_to_hres();
1295 }
1296
1297 /*
1298 * Called from hardirq context every jiffy
1299 */
1300 void hrtimer_run_queues(void)
1301 {
1302 struct rb_node *node;
1303 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1304 struct hrtimer_clock_base *base;
1305 int index, gettime = 1;
1306
1307 if (hrtimer_hres_active())
1308 return;
1309
1310 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1311 base = &cpu_base->clock_base[index];
1312
1313 if (!base->first)
1314 continue;
1315
1316 if (gettime) {
1317 hrtimer_get_softirq_time(cpu_base);
1318 gettime = 0;
1319 }
1320
1321 spin_lock(&cpu_base->lock);
1322
1323 while ((node = base->first)) {
1324 struct hrtimer *timer;
1325
1326 timer = rb_entry(node, struct hrtimer, node);
1327 if (base->softirq_time.tv64 <=
1328 hrtimer_get_expires_tv64(timer))
1329 break;
1330
1331 __run_hrtimer(timer);
1332 }
1333 spin_unlock(&cpu_base->lock);
1334 }
1335 }
1336
1337 /*
1338 * Sleep related functions:
1339 */
1340 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1341 {
1342 struct hrtimer_sleeper *t =
1343 container_of(timer, struct hrtimer_sleeper, timer);
1344 struct task_struct *task = t->task;
1345
1346 t->task = NULL;
1347 if (task)
1348 wake_up_process(task);
1349
1350 return HRTIMER_NORESTART;
1351 }
1352
1353 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1354 {
1355 sl->timer.function = hrtimer_wakeup;
1356 sl->task = task;
1357 }
1358
1359 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1360 {
1361 hrtimer_init_sleeper(t, current);
1362
1363 do {
1364 set_current_state(TASK_INTERRUPTIBLE);
1365 hrtimer_start_expires(&t->timer, mode);
1366 if (!hrtimer_active(&t->timer))
1367 t->task = NULL;
1368
1369 if (likely(t->task))
1370 schedule();
1371
1372 hrtimer_cancel(&t->timer);
1373 mode = HRTIMER_MODE_ABS;
1374
1375 } while (t->task && !signal_pending(current));
1376
1377 __set_current_state(TASK_RUNNING);
1378
1379 return t->task == NULL;
1380 }
1381
1382 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1383 {
1384 struct timespec rmt;
1385 ktime_t rem;
1386
1387 rem = hrtimer_expires_remaining(timer);
1388 if (rem.tv64 <= 0)
1389 return 0;
1390 rmt = ktime_to_timespec(rem);
1391
1392 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1393 return -EFAULT;
1394
1395 return 1;
1396 }
1397
1398 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1399 {
1400 struct hrtimer_sleeper t;
1401 struct timespec __user *rmtp;
1402 int ret = 0;
1403
1404 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1405 HRTIMER_MODE_ABS);
1406 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1407
1408 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1409 goto out;
1410
1411 rmtp = restart->nanosleep.rmtp;
1412 if (rmtp) {
1413 ret = update_rmtp(&t.timer, rmtp);
1414 if (ret <= 0)
1415 goto out;
1416 }
1417
1418 /* The other values in restart are already filled in */
1419 ret = -ERESTART_RESTARTBLOCK;
1420 out:
1421 destroy_hrtimer_on_stack(&t.timer);
1422 return ret;
1423 }
1424
1425 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1426 const enum hrtimer_mode mode, const clockid_t clockid)
1427 {
1428 struct restart_block *restart;
1429 struct hrtimer_sleeper t;
1430 int ret = 0;
1431 unsigned long slack;
1432
1433 slack = current->timer_slack_ns;
1434 if (rt_task(current))
1435 slack = 0;
1436
1437 hrtimer_init_on_stack(&t.timer, clockid, mode);
1438 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1439 if (do_nanosleep(&t, mode))
1440 goto out;
1441
1442 /* Absolute timers do not update the rmtp value and restart: */
1443 if (mode == HRTIMER_MODE_ABS) {
1444 ret = -ERESTARTNOHAND;
1445 goto out;
1446 }
1447
1448 if (rmtp) {
1449 ret = update_rmtp(&t.timer, rmtp);
1450 if (ret <= 0)
1451 goto out;
1452 }
1453
1454 restart = &current_thread_info()->restart_block;
1455 restart->fn = hrtimer_nanosleep_restart;
1456 restart->nanosleep.index = t.timer.base->index;
1457 restart->nanosleep.rmtp = rmtp;
1458 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1459
1460 ret = -ERESTART_RESTARTBLOCK;
1461 out:
1462 destroy_hrtimer_on_stack(&t.timer);
1463 return ret;
1464 }
1465
1466 asmlinkage long
1467 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1468 {
1469 struct timespec tu;
1470
1471 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1472 return -EFAULT;
1473
1474 if (!timespec_valid(&tu))
1475 return -EINVAL;
1476
1477 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1478 }
1479
1480 /*
1481 * Functions related to boot-time initialization:
1482 */
1483 static void __cpuinit init_hrtimers_cpu(int cpu)
1484 {
1485 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1486 int i;
1487
1488 spin_lock_init(&cpu_base->lock);
1489
1490 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1491 cpu_base->clock_base[i].cpu_base = cpu_base;
1492
1493 hrtimer_init_hres(cpu_base);
1494 }
1495
1496 #ifdef CONFIG_HOTPLUG_CPU
1497
1498 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1499 struct hrtimer_clock_base *new_base)
1500 {
1501 struct hrtimer *timer;
1502 struct rb_node *node;
1503
1504 while ((node = rb_first(&old_base->active))) {
1505 timer = rb_entry(node, struct hrtimer, node);
1506 BUG_ON(hrtimer_callback_running(timer));
1507 debug_hrtimer_deactivate(timer);
1508
1509 /*
1510 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1511 * timer could be seen as !active and just vanish away
1512 * under us on another CPU
1513 */
1514 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1515 timer->base = new_base;
1516 /*
1517 * Enqueue the timers on the new cpu, but do not reprogram
1518 * the timer as that would enable a deadlock between
1519 * hrtimer_enqueue_reprogramm() running the timer and us still
1520 * holding a nested base lock.
1521 *
1522 * Instead we tickle the hrtimer interrupt after the migration
1523 * is done, which will run all expired timers and re-programm
1524 * the timer device.
1525 */
1526 enqueue_hrtimer(timer, new_base, 0);
1527
1528 /* Clear the migration state bit */
1529 timer->state &= ~HRTIMER_STATE_MIGRATE;
1530 }
1531 }
1532
1533 static int migrate_hrtimers(int scpu)
1534 {
1535 struct hrtimer_cpu_base *old_base, *new_base;
1536 int dcpu, i;
1537
1538 BUG_ON(cpu_online(scpu));
1539 old_base = &per_cpu(hrtimer_bases, scpu);
1540 new_base = &get_cpu_var(hrtimer_bases);
1541
1542 dcpu = smp_processor_id();
1543
1544 tick_cancel_sched_timer(scpu);
1545 /*
1546 * The caller is globally serialized and nobody else
1547 * takes two locks at once, deadlock is not possible.
1548 */
1549 spin_lock_irq(&new_base->lock);
1550 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1551
1552 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1553 migrate_hrtimer_list(&old_base->clock_base[i],
1554 &new_base->clock_base[i]);
1555 }
1556
1557 spin_unlock(&old_base->lock);
1558 spin_unlock_irq(&new_base->lock);
1559 put_cpu_var(hrtimer_bases);
1560
1561 return dcpu;
1562 }
1563
1564 static void tickle_timers(void *arg)
1565 {
1566 hrtimer_peek_ahead_timers();
1567 }
1568
1569 #endif /* CONFIG_HOTPLUG_CPU */
1570
1571 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1572 unsigned long action, void *hcpu)
1573 {
1574 int scpu = (long)hcpu;
1575
1576 switch (action) {
1577
1578 case CPU_UP_PREPARE:
1579 case CPU_UP_PREPARE_FROZEN:
1580 init_hrtimers_cpu(scpu);
1581 break;
1582
1583 #ifdef CONFIG_HOTPLUG_CPU
1584 case CPU_DEAD:
1585 case CPU_DEAD_FROZEN:
1586 {
1587 int dcpu;
1588
1589 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1590 dcpu = migrate_hrtimers(scpu);
1591 smp_call_function_single(dcpu, tickle_timers, NULL, 0);
1592 break;
1593 }
1594 #endif
1595
1596 default:
1597 break;
1598 }
1599
1600 return NOTIFY_OK;
1601 }
1602
1603 static struct notifier_block __cpuinitdata hrtimers_nb = {
1604 .notifier_call = hrtimer_cpu_notify,
1605 };
1606
1607 void __init hrtimers_init(void)
1608 {
1609 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1610 (void *)(long)smp_processor_id());
1611 register_cpu_notifier(&hrtimers_nb);
1612 }
1613
1614 /**
1615 * schedule_hrtimeout_range - sleep until timeout
1616 * @expires: timeout value (ktime_t)
1617 * @delta: slack in expires timeout (ktime_t)
1618 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1619 *
1620 * Make the current task sleep until the given expiry time has
1621 * elapsed. The routine will return immediately unless
1622 * the current task state has been set (see set_current_state()).
1623 *
1624 * The @delta argument gives the kernel the freedom to schedule the
1625 * actual wakeup to a time that is both power and performance friendly.
1626 * The kernel give the normal best effort behavior for "@expires+@delta",
1627 * but may decide to fire the timer earlier, but no earlier than @expires.
1628 *
1629 * You can set the task state as follows -
1630 *
1631 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1632 * pass before the routine returns.
1633 *
1634 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1635 * delivered to the current task.
1636 *
1637 * The current task state is guaranteed to be TASK_RUNNING when this
1638 * routine returns.
1639 *
1640 * Returns 0 when the timer has expired otherwise -EINTR
1641 */
1642 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1643 const enum hrtimer_mode mode)
1644 {
1645 struct hrtimer_sleeper t;
1646
1647 /*
1648 * Optimize when a zero timeout value is given. It does not
1649 * matter whether this is an absolute or a relative time.
1650 */
1651 if (expires && !expires->tv64) {
1652 __set_current_state(TASK_RUNNING);
1653 return 0;
1654 }
1655
1656 /*
1657 * A NULL parameter means "inifinte"
1658 */
1659 if (!expires) {
1660 schedule();
1661 __set_current_state(TASK_RUNNING);
1662 return -EINTR;
1663 }
1664
1665 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1666 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1667
1668 hrtimer_init_sleeper(&t, current);
1669
1670 hrtimer_start_expires(&t.timer, mode);
1671 if (!hrtimer_active(&t.timer))
1672 t.task = NULL;
1673
1674 if (likely(t.task))
1675 schedule();
1676
1677 hrtimer_cancel(&t.timer);
1678 destroy_hrtimer_on_stack(&t.timer);
1679
1680 __set_current_state(TASK_RUNNING);
1681
1682 return !t.task ? 0 : -EINTR;
1683 }
1684 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1685
1686 /**
1687 * schedule_hrtimeout - sleep until timeout
1688 * @expires: timeout value (ktime_t)
1689 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1690 *
1691 * Make the current task sleep until the given expiry time has
1692 * elapsed. The routine will return immediately unless
1693 * the current task state has been set (see set_current_state()).
1694 *
1695 * You can set the task state as follows -
1696 *
1697 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1698 * pass before the routine returns.
1699 *
1700 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1701 * delivered to the current task.
1702 *
1703 * The current task state is guaranteed to be TASK_RUNNING when this
1704 * routine returns.
1705 *
1706 * Returns 0 when the timer has expired otherwise -EINTR
1707 */
1708 int __sched schedule_hrtimeout(ktime_t *expires,
1709 const enum hrtimer_mode mode)
1710 {
1711 return schedule_hrtimeout_range(expires, 0, mode);
1712 }
1713 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.086361 seconds and 6 git commands to generate.