Merge branches 'core/futexes', 'core/locking', 'core/rcu' and 'linus' into core/urgent
[deliverable/linux.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46
47 #include <asm/uaccess.h>
48
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
54 ktime_t ktime_get(void)
55 {
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61 }
62 EXPORT_SYMBOL_GPL(ktime_get);
63
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
69 ktime_t ktime_get_real(void)
70 {
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76 }
77
78 EXPORT_SYMBOL_GPL(ktime_get_real);
79
80 /*
81 * The timer bases:
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
88 */
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90 {
91
92 .clock_base =
93 {
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
103 },
104 }
105 };
106
107 /**
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
114 */
115 void ktime_get_ts(struct timespec *ts)
116 {
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129 }
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
131
132 /*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 {
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
147
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
153 }
154
155 /*
156 * Functions and macros which are different for UP/SMP systems are kept in a
157 * single place
158 */
159 #ifdef CONFIG_SMP
160
161 /*
162 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
163 * means that all timers which are tied to this base via timer->base are
164 * locked, and the base itself is locked too.
165 *
166 * So __run_timers/migrate_timers can safely modify all timers which could
167 * be found on the lists/queues.
168 *
169 * When the timer's base is locked, and the timer removed from list, it is
170 * possible to set timer->base = NULL and drop the lock: the timer remains
171 * locked.
172 */
173 static
174 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
175 unsigned long *flags)
176 {
177 struct hrtimer_clock_base *base;
178
179 for (;;) {
180 base = timer->base;
181 if (likely(base != NULL)) {
182 spin_lock_irqsave(&base->cpu_base->lock, *flags);
183 if (likely(base == timer->base))
184 return base;
185 /* The timer has migrated to another CPU: */
186 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
187 }
188 cpu_relax();
189 }
190 }
191
192 /*
193 * Switch the timer base to the current CPU when possible.
194 */
195 static inline struct hrtimer_clock_base *
196 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
197 {
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
200
201 new_cpu_base = &__get_cpu_var(hrtimer_bases);
202 new_base = &new_cpu_base->clock_base[base->index];
203
204 if (base != new_base) {
205 /*
206 * We are trying to schedule the timer on the local CPU.
207 * However we can't change timer's base while it is running,
208 * so we keep it on the same CPU. No hassle vs. reprogramming
209 * the event source in the high resolution case. The softirq
210 * code will take care of this when the timer function has
211 * completed. There is no conflict as we hold the lock until
212 * the timer is enqueued.
213 */
214 if (unlikely(hrtimer_callback_running(timer)))
215 return base;
216
217 /* See the comment in lock_timer_base() */
218 timer->base = NULL;
219 spin_unlock(&base->cpu_base->lock);
220 spin_lock(&new_base->cpu_base->lock);
221 timer->base = new_base;
222 }
223 return new_base;
224 }
225
226 #else /* CONFIG_SMP */
227
228 static inline struct hrtimer_clock_base *
229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230 {
231 struct hrtimer_clock_base *base = timer->base;
232
233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
234
235 return base;
236 }
237
238 # define switch_hrtimer_base(t, b) (b)
239
240 #endif /* !CONFIG_SMP */
241
242 /*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
248 /**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256 {
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268 }
269
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
271
272 /**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280 {
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292 }
293
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
296
297 /*
298 * Divide a ktime value by a nanosecond value
299 */
300 u64 ktime_divns(const ktime_t kt, s64 div)
301 {
302 u64 dclc;
303 int sft = 0;
304
305 dclc = ktime_to_ns(kt);
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
314 return dclc;
315 }
316 #endif /* BITS_PER_LONG >= 64 */
317
318 /*
319 * Add two ktime values and do a safety check for overflow:
320 */
321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322 {
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333 }
334
335 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
336
337 static struct debug_obj_descr hrtimer_debug_descr;
338
339 /*
340 * fixup_init is called when:
341 * - an active object is initialized
342 */
343 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
344 {
345 struct hrtimer *timer = addr;
346
347 switch (state) {
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
351 return 1;
352 default:
353 return 0;
354 }
355 }
356
357 /*
358 * fixup_activate is called when:
359 * - an active object is activated
360 * - an unknown object is activated (might be a statically initialized object)
361 */
362 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
363 {
364 switch (state) {
365
366 case ODEBUG_STATE_NOTAVAILABLE:
367 WARN_ON_ONCE(1);
368 return 0;
369
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
372
373 default:
374 return 0;
375 }
376 }
377
378 /*
379 * fixup_free is called when:
380 * - an active object is freed
381 */
382 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
383 {
384 struct hrtimer *timer = addr;
385
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_free(timer, &hrtimer_debug_descr);
390 return 1;
391 default:
392 return 0;
393 }
394 }
395
396 static struct debug_obj_descr hrtimer_debug_descr = {
397 .name = "hrtimer",
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
401 };
402
403 static inline void debug_hrtimer_init(struct hrtimer *timer)
404 {
405 debug_object_init(timer, &hrtimer_debug_descr);
406 }
407
408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
409 {
410 debug_object_activate(timer, &hrtimer_debug_descr);
411 }
412
413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
414 {
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
416 }
417
418 static inline void debug_hrtimer_free(struct hrtimer *timer)
419 {
420 debug_object_free(timer, &hrtimer_debug_descr);
421 }
422
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
425
426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
428 {
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
431 }
432
433 void destroy_hrtimer_on_stack(struct hrtimer *timer)
434 {
435 debug_object_free(timer, &hrtimer_debug_descr);
436 }
437
438 #else
439 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
443
444 /* High resolution timer related functions */
445 #ifdef CONFIG_HIGH_RES_TIMERS
446
447 /*
448 * High resolution timer enabled ?
449 */
450 static int hrtimer_hres_enabled __read_mostly = 1;
451
452 /*
453 * Enable / Disable high resolution mode
454 */
455 static int __init setup_hrtimer_hres(char *str)
456 {
457 if (!strcmp(str, "off"))
458 hrtimer_hres_enabled = 0;
459 else if (!strcmp(str, "on"))
460 hrtimer_hres_enabled = 1;
461 else
462 return 0;
463 return 1;
464 }
465
466 __setup("highres=", setup_hrtimer_hres);
467
468 /*
469 * hrtimer_high_res_enabled - query, if the highres mode is enabled
470 */
471 static inline int hrtimer_is_hres_enabled(void)
472 {
473 return hrtimer_hres_enabled;
474 }
475
476 /*
477 * Is the high resolution mode active ?
478 */
479 static inline int hrtimer_hres_active(void)
480 {
481 return __get_cpu_var(hrtimer_bases).hres_active;
482 }
483
484 /*
485 * Reprogram the event source with checking both queues for the
486 * next event
487 * Called with interrupts disabled and base->lock held
488 */
489 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
490 {
491 int i;
492 struct hrtimer_clock_base *base = cpu_base->clock_base;
493 ktime_t expires;
494
495 cpu_base->expires_next.tv64 = KTIME_MAX;
496
497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 struct hrtimer *timer;
499
500 if (!base->first)
501 continue;
502 timer = rb_entry(base->first, struct hrtimer, node);
503 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
504 if (expires.tv64 < cpu_base->expires_next.tv64)
505 cpu_base->expires_next = expires;
506 }
507
508 if (cpu_base->expires_next.tv64 != KTIME_MAX)
509 tick_program_event(cpu_base->expires_next, 1);
510 }
511
512 /*
513 * Shared reprogramming for clock_realtime and clock_monotonic
514 *
515 * When a timer is enqueued and expires earlier than the already enqueued
516 * timers, we have to check, whether it expires earlier than the timer for
517 * which the clock event device was armed.
518 *
519 * Called with interrupts disabled and base->cpu_base.lock held
520 */
521 static int hrtimer_reprogram(struct hrtimer *timer,
522 struct hrtimer_clock_base *base)
523 {
524 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
525 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 int res;
527
528 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
529
530 /*
531 * When the callback is running, we do not reprogram the clock event
532 * device. The timer callback is either running on a different CPU or
533 * the callback is executed in the hrtimer_interrupt context. The
534 * reprogramming is handled either by the softirq, which called the
535 * callback or at the end of the hrtimer_interrupt.
536 */
537 if (hrtimer_callback_running(timer))
538 return 0;
539
540 /*
541 * CLOCK_REALTIME timer might be requested with an absolute
542 * expiry time which is less than base->offset. Nothing wrong
543 * about that, just avoid to call into the tick code, which
544 * has now objections against negative expiry values.
545 */
546 if (expires.tv64 < 0)
547 return -ETIME;
548
549 if (expires.tv64 >= expires_next->tv64)
550 return 0;
551
552 /*
553 * Clockevents returns -ETIME, when the event was in the past.
554 */
555 res = tick_program_event(expires, 0);
556 if (!IS_ERR_VALUE(res))
557 *expires_next = expires;
558 return res;
559 }
560
561
562 /*
563 * Retrigger next event is called after clock was set
564 *
565 * Called with interrupts disabled via on_each_cpu()
566 */
567 static void retrigger_next_event(void *arg)
568 {
569 struct hrtimer_cpu_base *base;
570 struct timespec realtime_offset;
571 unsigned long seq;
572
573 if (!hrtimer_hres_active())
574 return;
575
576 do {
577 seq = read_seqbegin(&xtime_lock);
578 set_normalized_timespec(&realtime_offset,
579 -wall_to_monotonic.tv_sec,
580 -wall_to_monotonic.tv_nsec);
581 } while (read_seqretry(&xtime_lock, seq));
582
583 base = &__get_cpu_var(hrtimer_bases);
584
585 /* Adjust CLOCK_REALTIME offset */
586 spin_lock(&base->lock);
587 base->clock_base[CLOCK_REALTIME].offset =
588 timespec_to_ktime(realtime_offset);
589
590 hrtimer_force_reprogram(base);
591 spin_unlock(&base->lock);
592 }
593
594 /*
595 * Clock realtime was set
596 *
597 * Change the offset of the realtime clock vs. the monotonic
598 * clock.
599 *
600 * We might have to reprogram the high resolution timer interrupt. On
601 * SMP we call the architecture specific code to retrigger _all_ high
602 * resolution timer interrupts. On UP we just disable interrupts and
603 * call the high resolution interrupt code.
604 */
605 void clock_was_set(void)
606 {
607 /* Retrigger the CPU local events everywhere */
608 on_each_cpu(retrigger_next_event, NULL, 1);
609 }
610
611 /*
612 * During resume we might have to reprogram the high resolution timer
613 * interrupt (on the local CPU):
614 */
615 void hres_timers_resume(void)
616 {
617 /* Retrigger the CPU local events: */
618 retrigger_next_event(NULL);
619 }
620
621 /*
622 * Initialize the high resolution related parts of cpu_base
623 */
624 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
625 {
626 base->expires_next.tv64 = KTIME_MAX;
627 base->hres_active = 0;
628 }
629
630 /*
631 * Initialize the high resolution related parts of a hrtimer
632 */
633 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
634 {
635 }
636
637 static void __run_hrtimer(struct hrtimer *timer);
638
639 /*
640 * When High resolution timers are active, try to reprogram. Note, that in case
641 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
642 * check happens. The timer gets enqueued into the rbtree. The reprogramming
643 * and expiry check is done in the hrtimer_interrupt or in the softirq.
644 */
645 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
646 struct hrtimer_clock_base *base)
647 {
648 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
649 /*
650 * XXX: recursion check?
651 * hrtimer_forward() should round up with timer granularity
652 * so that we never get into inf recursion here,
653 * it doesn't do that though
654 */
655 __run_hrtimer(timer);
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Switch to high resolution mode
663 */
664 static int hrtimer_switch_to_hres(void)
665 {
666 int cpu = smp_processor_id();
667 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
668 unsigned long flags;
669
670 if (base->hres_active)
671 return 1;
672
673 local_irq_save(flags);
674
675 if (tick_init_highres()) {
676 local_irq_restore(flags);
677 printk(KERN_WARNING "Could not switch to high resolution "
678 "mode on CPU %d\n", cpu);
679 return 0;
680 }
681 base->hres_active = 1;
682 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
683 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
684
685 tick_setup_sched_timer();
686
687 /* "Retrigger" the interrupt to get things going */
688 retrigger_next_event(NULL);
689 local_irq_restore(flags);
690 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
691 smp_processor_id());
692 return 1;
693 }
694
695 #else
696
697 static inline int hrtimer_hres_active(void) { return 0; }
698 static inline int hrtimer_is_hres_enabled(void) { return 0; }
699 static inline int hrtimer_switch_to_hres(void) { return 0; }
700 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
701 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
702 struct hrtimer_clock_base *base)
703 {
704 return 0;
705 }
706 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
707 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
708 static inline int hrtimer_reprogram(struct hrtimer *timer,
709 struct hrtimer_clock_base *base)
710 {
711 return 0;
712 }
713
714 #endif /* CONFIG_HIGH_RES_TIMERS */
715
716 #ifdef CONFIG_TIMER_STATS
717 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
718 {
719 if (timer->start_site)
720 return;
721
722 timer->start_site = addr;
723 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
724 timer->start_pid = current->pid;
725 }
726 #endif
727
728 /*
729 * Counterpart to lock_hrtimer_base above:
730 */
731 static inline
732 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
733 {
734 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
735 }
736
737 /**
738 * hrtimer_forward - forward the timer expiry
739 * @timer: hrtimer to forward
740 * @now: forward past this time
741 * @interval: the interval to forward
742 *
743 * Forward the timer expiry so it will expire in the future.
744 * Returns the number of overruns.
745 */
746 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
747 {
748 u64 orun = 1;
749 ktime_t delta;
750
751 delta = ktime_sub(now, hrtimer_get_expires(timer));
752
753 if (delta.tv64 < 0)
754 return 0;
755
756 if (interval.tv64 < timer->base->resolution.tv64)
757 interval.tv64 = timer->base->resolution.tv64;
758
759 if (unlikely(delta.tv64 >= interval.tv64)) {
760 s64 incr = ktime_to_ns(interval);
761
762 orun = ktime_divns(delta, incr);
763 hrtimer_add_expires_ns(timer, incr * orun);
764 if (hrtimer_get_expires_tv64(timer) > now.tv64)
765 return orun;
766 /*
767 * This (and the ktime_add() below) is the
768 * correction for exact:
769 */
770 orun++;
771 }
772 hrtimer_add_expires(timer, interval);
773
774 return orun;
775 }
776 EXPORT_SYMBOL_GPL(hrtimer_forward);
777
778 /*
779 * enqueue_hrtimer - internal function to (re)start a timer
780 *
781 * The timer is inserted in expiry order. Insertion into the
782 * red black tree is O(log(n)). Must hold the base lock.
783 */
784 static void enqueue_hrtimer(struct hrtimer *timer,
785 struct hrtimer_clock_base *base, int reprogram)
786 {
787 struct rb_node **link = &base->active.rb_node;
788 struct rb_node *parent = NULL;
789 struct hrtimer *entry;
790 int leftmost = 1;
791
792 debug_hrtimer_activate(timer);
793
794 /*
795 * Find the right place in the rbtree:
796 */
797 while (*link) {
798 parent = *link;
799 entry = rb_entry(parent, struct hrtimer, node);
800 /*
801 * We dont care about collisions. Nodes with
802 * the same expiry time stay together.
803 */
804 if (hrtimer_get_expires_tv64(timer) <
805 hrtimer_get_expires_tv64(entry)) {
806 link = &(*link)->rb_left;
807 } else {
808 link = &(*link)->rb_right;
809 leftmost = 0;
810 }
811 }
812
813 /*
814 * Insert the timer to the rbtree and check whether it
815 * replaces the first pending timer
816 */
817 if (leftmost) {
818 /*
819 * Reprogram the clock event device. When the timer is already
820 * expired hrtimer_enqueue_reprogram has either called the
821 * callback or added it to the pending list and raised the
822 * softirq.
823 *
824 * This is a NOP for !HIGHRES
825 */
826 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
827 return;
828
829 base->first = &timer->node;
830 }
831
832 rb_link_node(&timer->node, parent, link);
833 rb_insert_color(&timer->node, &base->active);
834 /*
835 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
836 * state of a possibly running callback.
837 */
838 timer->state |= HRTIMER_STATE_ENQUEUED;
839 }
840
841 /*
842 * __remove_hrtimer - internal function to remove a timer
843 *
844 * Caller must hold the base lock.
845 *
846 * High resolution timer mode reprograms the clock event device when the
847 * timer is the one which expires next. The caller can disable this by setting
848 * reprogram to zero. This is useful, when the context does a reprogramming
849 * anyway (e.g. timer interrupt)
850 */
851 static void __remove_hrtimer(struct hrtimer *timer,
852 struct hrtimer_clock_base *base,
853 unsigned long newstate, int reprogram)
854 {
855 if (timer->state & HRTIMER_STATE_ENQUEUED) {
856 /*
857 * Remove the timer from the rbtree and replace the
858 * first entry pointer if necessary.
859 */
860 if (base->first == &timer->node) {
861 base->first = rb_next(&timer->node);
862 /* Reprogram the clock event device. if enabled */
863 if (reprogram && hrtimer_hres_active())
864 hrtimer_force_reprogram(base->cpu_base);
865 }
866 rb_erase(&timer->node, &base->active);
867 }
868 timer->state = newstate;
869 }
870
871 /*
872 * remove hrtimer, called with base lock held
873 */
874 static inline int
875 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
876 {
877 if (hrtimer_is_queued(timer)) {
878 int reprogram;
879
880 /*
881 * Remove the timer and force reprogramming when high
882 * resolution mode is active and the timer is on the current
883 * CPU. If we remove a timer on another CPU, reprogramming is
884 * skipped. The interrupt event on this CPU is fired and
885 * reprogramming happens in the interrupt handler. This is a
886 * rare case and less expensive than a smp call.
887 */
888 debug_hrtimer_deactivate(timer);
889 timer_stats_hrtimer_clear_start_info(timer);
890 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
891 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
892 reprogram);
893 return 1;
894 }
895 return 0;
896 }
897
898 /**
899 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
900 * @timer: the timer to be added
901 * @tim: expiry time
902 * @delta_ns: "slack" range for the timer
903 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
904 *
905 * Returns:
906 * 0 on success
907 * 1 when the timer was active
908 */
909 int
910 hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
911 const enum hrtimer_mode mode)
912 {
913 struct hrtimer_clock_base *base, *new_base;
914 unsigned long flags;
915 int ret;
916
917 base = lock_hrtimer_base(timer, &flags);
918
919 /* Remove an active timer from the queue: */
920 ret = remove_hrtimer(timer, base);
921
922 /* Switch the timer base, if necessary: */
923 new_base = switch_hrtimer_base(timer, base);
924
925 if (mode == HRTIMER_MODE_REL) {
926 tim = ktime_add_safe(tim, new_base->get_time());
927 /*
928 * CONFIG_TIME_LOW_RES is a temporary way for architectures
929 * to signal that they simply return xtime in
930 * do_gettimeoffset(). In this case we want to round up by
931 * resolution when starting a relative timer, to avoid short
932 * timeouts. This will go away with the GTOD framework.
933 */
934 #ifdef CONFIG_TIME_LOW_RES
935 tim = ktime_add_safe(tim, base->resolution);
936 #endif
937 }
938
939 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
940
941 timer_stats_hrtimer_set_start_info(timer);
942
943 /*
944 * Only allow reprogramming if the new base is on this CPU.
945 * (it might still be on another CPU if the timer was pending)
946 */
947 enqueue_hrtimer(timer, new_base,
948 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
949
950 unlock_hrtimer_base(timer, &flags);
951
952 return ret;
953 }
954 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
955
956 /**
957 * hrtimer_start - (re)start an hrtimer on the current CPU
958 * @timer: the timer to be added
959 * @tim: expiry time
960 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
961 *
962 * Returns:
963 * 0 on success
964 * 1 when the timer was active
965 */
966 int
967 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
968 {
969 return hrtimer_start_range_ns(timer, tim, 0, mode);
970 }
971 EXPORT_SYMBOL_GPL(hrtimer_start);
972
973
974 /**
975 * hrtimer_try_to_cancel - try to deactivate a timer
976 * @timer: hrtimer to stop
977 *
978 * Returns:
979 * 0 when the timer was not active
980 * 1 when the timer was active
981 * -1 when the timer is currently excuting the callback function and
982 * cannot be stopped
983 */
984 int hrtimer_try_to_cancel(struct hrtimer *timer)
985 {
986 struct hrtimer_clock_base *base;
987 unsigned long flags;
988 int ret = -1;
989
990 base = lock_hrtimer_base(timer, &flags);
991
992 if (!hrtimer_callback_running(timer))
993 ret = remove_hrtimer(timer, base);
994
995 unlock_hrtimer_base(timer, &flags);
996
997 return ret;
998
999 }
1000 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1001
1002 /**
1003 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1004 * @timer: the timer to be cancelled
1005 *
1006 * Returns:
1007 * 0 when the timer was not active
1008 * 1 when the timer was active
1009 */
1010 int hrtimer_cancel(struct hrtimer *timer)
1011 {
1012 for (;;) {
1013 int ret = hrtimer_try_to_cancel(timer);
1014
1015 if (ret >= 0)
1016 return ret;
1017 cpu_relax();
1018 }
1019 }
1020 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1021
1022 /**
1023 * hrtimer_get_remaining - get remaining time for the timer
1024 * @timer: the timer to read
1025 */
1026 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1027 {
1028 struct hrtimer_clock_base *base;
1029 unsigned long flags;
1030 ktime_t rem;
1031
1032 base = lock_hrtimer_base(timer, &flags);
1033 rem = hrtimer_expires_remaining(timer);
1034 unlock_hrtimer_base(timer, &flags);
1035
1036 return rem;
1037 }
1038 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1039
1040 #ifdef CONFIG_NO_HZ
1041 /**
1042 * hrtimer_get_next_event - get the time until next expiry event
1043 *
1044 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1045 * is pending.
1046 */
1047 ktime_t hrtimer_get_next_event(void)
1048 {
1049 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1050 struct hrtimer_clock_base *base = cpu_base->clock_base;
1051 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1052 unsigned long flags;
1053 int i;
1054
1055 spin_lock_irqsave(&cpu_base->lock, flags);
1056
1057 if (!hrtimer_hres_active()) {
1058 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1059 struct hrtimer *timer;
1060
1061 if (!base->first)
1062 continue;
1063
1064 timer = rb_entry(base->first, struct hrtimer, node);
1065 delta.tv64 = hrtimer_get_expires_tv64(timer);
1066 delta = ktime_sub(delta, base->get_time());
1067 if (delta.tv64 < mindelta.tv64)
1068 mindelta.tv64 = delta.tv64;
1069 }
1070 }
1071
1072 spin_unlock_irqrestore(&cpu_base->lock, flags);
1073
1074 if (mindelta.tv64 < 0)
1075 mindelta.tv64 = 0;
1076 return mindelta;
1077 }
1078 #endif
1079
1080 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1081 enum hrtimer_mode mode)
1082 {
1083 struct hrtimer_cpu_base *cpu_base;
1084
1085 memset(timer, 0, sizeof(struct hrtimer));
1086
1087 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1088
1089 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1090 clock_id = CLOCK_MONOTONIC;
1091
1092 timer->base = &cpu_base->clock_base[clock_id];
1093 INIT_LIST_HEAD(&timer->cb_entry);
1094 hrtimer_init_timer_hres(timer);
1095
1096 #ifdef CONFIG_TIMER_STATS
1097 timer->start_site = NULL;
1098 timer->start_pid = -1;
1099 memset(timer->start_comm, 0, TASK_COMM_LEN);
1100 #endif
1101 }
1102
1103 /**
1104 * hrtimer_init - initialize a timer to the given clock
1105 * @timer: the timer to be initialized
1106 * @clock_id: the clock to be used
1107 * @mode: timer mode abs/rel
1108 */
1109 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1110 enum hrtimer_mode mode)
1111 {
1112 debug_hrtimer_init(timer);
1113 __hrtimer_init(timer, clock_id, mode);
1114 }
1115 EXPORT_SYMBOL_GPL(hrtimer_init);
1116
1117 /**
1118 * hrtimer_get_res - get the timer resolution for a clock
1119 * @which_clock: which clock to query
1120 * @tp: pointer to timespec variable to store the resolution
1121 *
1122 * Store the resolution of the clock selected by @which_clock in the
1123 * variable pointed to by @tp.
1124 */
1125 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1126 {
1127 struct hrtimer_cpu_base *cpu_base;
1128
1129 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1130 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1131
1132 return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1135
1136 static void __run_hrtimer(struct hrtimer *timer)
1137 {
1138 struct hrtimer_clock_base *base = timer->base;
1139 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1140 enum hrtimer_restart (*fn)(struct hrtimer *);
1141 int restart;
1142
1143 WARN_ON(!irqs_disabled());
1144
1145 debug_hrtimer_deactivate(timer);
1146 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1147 timer_stats_account_hrtimer(timer);
1148 fn = timer->function;
1149
1150 /*
1151 * Because we run timers from hardirq context, there is no chance
1152 * they get migrated to another cpu, therefore its safe to unlock
1153 * the timer base.
1154 */
1155 spin_unlock(&cpu_base->lock);
1156 restart = fn(timer);
1157 spin_lock(&cpu_base->lock);
1158
1159 /*
1160 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1161 * reprogramming of the event hardware. This happens at the end of this
1162 * function anyway.
1163 */
1164 if (restart != HRTIMER_NORESTART) {
1165 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1166 enqueue_hrtimer(timer, base, 0);
1167 }
1168 timer->state &= ~HRTIMER_STATE_CALLBACK;
1169 }
1170
1171 #ifdef CONFIG_HIGH_RES_TIMERS
1172
1173 /*
1174 * High resolution timer interrupt
1175 * Called with interrupts disabled
1176 */
1177 void hrtimer_interrupt(struct clock_event_device *dev)
1178 {
1179 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1180 struct hrtimer_clock_base *base;
1181 ktime_t expires_next, now;
1182 int i;
1183
1184 BUG_ON(!cpu_base->hres_active);
1185 cpu_base->nr_events++;
1186 dev->next_event.tv64 = KTIME_MAX;
1187
1188 retry:
1189 now = ktime_get();
1190
1191 expires_next.tv64 = KTIME_MAX;
1192
1193 base = cpu_base->clock_base;
1194
1195 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1196 ktime_t basenow;
1197 struct rb_node *node;
1198
1199 spin_lock(&cpu_base->lock);
1200
1201 basenow = ktime_add(now, base->offset);
1202
1203 while ((node = base->first)) {
1204 struct hrtimer *timer;
1205
1206 timer = rb_entry(node, struct hrtimer, node);
1207
1208 /*
1209 * The immediate goal for using the softexpires is
1210 * minimizing wakeups, not running timers at the
1211 * earliest interrupt after their soft expiration.
1212 * This allows us to avoid using a Priority Search
1213 * Tree, which can answer a stabbing querry for
1214 * overlapping intervals and instead use the simple
1215 * BST we already have.
1216 * We don't add extra wakeups by delaying timers that
1217 * are right-of a not yet expired timer, because that
1218 * timer will have to trigger a wakeup anyway.
1219 */
1220
1221 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1222 ktime_t expires;
1223
1224 expires = ktime_sub(hrtimer_get_expires(timer),
1225 base->offset);
1226 if (expires.tv64 < expires_next.tv64)
1227 expires_next = expires;
1228 break;
1229 }
1230
1231 __run_hrtimer(timer);
1232 }
1233 spin_unlock(&cpu_base->lock);
1234 base++;
1235 }
1236
1237 cpu_base->expires_next = expires_next;
1238
1239 /* Reprogramming necessary ? */
1240 if (expires_next.tv64 != KTIME_MAX) {
1241 if (tick_program_event(expires_next, 0))
1242 goto retry;
1243 }
1244 }
1245
1246 /**
1247 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1248 *
1249 * hrtimer_peek_ahead_timers will peek at the timer queue of
1250 * the current cpu and check if there are any timers for which
1251 * the soft expires time has passed. If any such timers exist,
1252 * they are run immediately and then removed from the timer queue.
1253 *
1254 */
1255 void hrtimer_peek_ahead_timers(void)
1256 {
1257 struct tick_device *td;
1258 unsigned long flags;
1259
1260 if (!hrtimer_hres_active())
1261 return;
1262
1263 local_irq_save(flags);
1264 td = &__get_cpu_var(tick_cpu_device);
1265 if (td && td->evtdev)
1266 hrtimer_interrupt(td->evtdev);
1267 local_irq_restore(flags);
1268 }
1269
1270 #endif /* CONFIG_HIGH_RES_TIMERS */
1271
1272 /*
1273 * Called from timer softirq every jiffy, expire hrtimers:
1274 *
1275 * For HRT its the fall back code to run the softirq in the timer
1276 * softirq context in case the hrtimer initialization failed or has
1277 * not been done yet.
1278 */
1279 void hrtimer_run_pending(void)
1280 {
1281 if (hrtimer_hres_active())
1282 return;
1283
1284 /*
1285 * This _is_ ugly: We have to check in the softirq context,
1286 * whether we can switch to highres and / or nohz mode. The
1287 * clocksource switch happens in the timer interrupt with
1288 * xtime_lock held. Notification from there only sets the
1289 * check bit in the tick_oneshot code, otherwise we might
1290 * deadlock vs. xtime_lock.
1291 */
1292 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1293 hrtimer_switch_to_hres();
1294 }
1295
1296 /*
1297 * Called from hardirq context every jiffy
1298 */
1299 void hrtimer_run_queues(void)
1300 {
1301 struct rb_node *node;
1302 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1303 struct hrtimer_clock_base *base;
1304 int index, gettime = 1;
1305
1306 if (hrtimer_hres_active())
1307 return;
1308
1309 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1310 base = &cpu_base->clock_base[index];
1311
1312 if (!base->first)
1313 continue;
1314
1315 if (gettime) {
1316 hrtimer_get_softirq_time(cpu_base);
1317 gettime = 0;
1318 }
1319
1320 spin_lock(&cpu_base->lock);
1321
1322 while ((node = base->first)) {
1323 struct hrtimer *timer;
1324
1325 timer = rb_entry(node, struct hrtimer, node);
1326 if (base->softirq_time.tv64 <=
1327 hrtimer_get_expires_tv64(timer))
1328 break;
1329
1330 __run_hrtimer(timer);
1331 }
1332 spin_unlock(&cpu_base->lock);
1333 }
1334 }
1335
1336 /*
1337 * Sleep related functions:
1338 */
1339 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1340 {
1341 struct hrtimer_sleeper *t =
1342 container_of(timer, struct hrtimer_sleeper, timer);
1343 struct task_struct *task = t->task;
1344
1345 t->task = NULL;
1346 if (task)
1347 wake_up_process(task);
1348
1349 return HRTIMER_NORESTART;
1350 }
1351
1352 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1353 {
1354 sl->timer.function = hrtimer_wakeup;
1355 sl->task = task;
1356 }
1357
1358 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1359 {
1360 hrtimer_init_sleeper(t, current);
1361
1362 do {
1363 set_current_state(TASK_INTERRUPTIBLE);
1364 hrtimer_start_expires(&t->timer, mode);
1365 if (!hrtimer_active(&t->timer))
1366 t->task = NULL;
1367
1368 if (likely(t->task))
1369 schedule();
1370
1371 hrtimer_cancel(&t->timer);
1372 mode = HRTIMER_MODE_ABS;
1373
1374 } while (t->task && !signal_pending(current));
1375
1376 __set_current_state(TASK_RUNNING);
1377
1378 return t->task == NULL;
1379 }
1380
1381 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1382 {
1383 struct timespec rmt;
1384 ktime_t rem;
1385
1386 rem = hrtimer_expires_remaining(timer);
1387 if (rem.tv64 <= 0)
1388 return 0;
1389 rmt = ktime_to_timespec(rem);
1390
1391 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1392 return -EFAULT;
1393
1394 return 1;
1395 }
1396
1397 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1398 {
1399 struct hrtimer_sleeper t;
1400 struct timespec __user *rmtp;
1401 int ret = 0;
1402
1403 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1404 HRTIMER_MODE_ABS);
1405 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1406
1407 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1408 goto out;
1409
1410 rmtp = restart->nanosleep.rmtp;
1411 if (rmtp) {
1412 ret = update_rmtp(&t.timer, rmtp);
1413 if (ret <= 0)
1414 goto out;
1415 }
1416
1417 /* The other values in restart are already filled in */
1418 ret = -ERESTART_RESTARTBLOCK;
1419 out:
1420 destroy_hrtimer_on_stack(&t.timer);
1421 return ret;
1422 }
1423
1424 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1425 const enum hrtimer_mode mode, const clockid_t clockid)
1426 {
1427 struct restart_block *restart;
1428 struct hrtimer_sleeper t;
1429 int ret = 0;
1430 unsigned long slack;
1431
1432 slack = current->timer_slack_ns;
1433 if (rt_task(current))
1434 slack = 0;
1435
1436 hrtimer_init_on_stack(&t.timer, clockid, mode);
1437 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1438 if (do_nanosleep(&t, mode))
1439 goto out;
1440
1441 /* Absolute timers do not update the rmtp value and restart: */
1442 if (mode == HRTIMER_MODE_ABS) {
1443 ret = -ERESTARTNOHAND;
1444 goto out;
1445 }
1446
1447 if (rmtp) {
1448 ret = update_rmtp(&t.timer, rmtp);
1449 if (ret <= 0)
1450 goto out;
1451 }
1452
1453 restart = &current_thread_info()->restart_block;
1454 restart->fn = hrtimer_nanosleep_restart;
1455 restart->nanosleep.index = t.timer.base->index;
1456 restart->nanosleep.rmtp = rmtp;
1457 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1458
1459 ret = -ERESTART_RESTARTBLOCK;
1460 out:
1461 destroy_hrtimer_on_stack(&t.timer);
1462 return ret;
1463 }
1464
1465 asmlinkage long
1466 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1467 {
1468 struct timespec tu;
1469
1470 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1471 return -EFAULT;
1472
1473 if (!timespec_valid(&tu))
1474 return -EINVAL;
1475
1476 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1477 }
1478
1479 /*
1480 * Functions related to boot-time initialization:
1481 */
1482 static void __cpuinit init_hrtimers_cpu(int cpu)
1483 {
1484 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1485 int i;
1486
1487 spin_lock_init(&cpu_base->lock);
1488
1489 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1490 cpu_base->clock_base[i].cpu_base = cpu_base;
1491
1492 hrtimer_init_hres(cpu_base);
1493 }
1494
1495 #ifdef CONFIG_HOTPLUG_CPU
1496
1497 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1498 struct hrtimer_clock_base *new_base)
1499 {
1500 struct hrtimer *timer;
1501 struct rb_node *node;
1502
1503 while ((node = rb_first(&old_base->active))) {
1504 timer = rb_entry(node, struct hrtimer, node);
1505 BUG_ON(hrtimer_callback_running(timer));
1506 debug_hrtimer_deactivate(timer);
1507
1508 /*
1509 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1510 * timer could be seen as !active and just vanish away
1511 * under us on another CPU
1512 */
1513 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1514 timer->base = new_base;
1515 /*
1516 * Enqueue the timers on the new cpu, but do not reprogram
1517 * the timer as that would enable a deadlock between
1518 * hrtimer_enqueue_reprogramm() running the timer and us still
1519 * holding a nested base lock.
1520 *
1521 * Instead we tickle the hrtimer interrupt after the migration
1522 * is done, which will run all expired timers and re-programm
1523 * the timer device.
1524 */
1525 enqueue_hrtimer(timer, new_base, 0);
1526
1527 /* Clear the migration state bit */
1528 timer->state &= ~HRTIMER_STATE_MIGRATE;
1529 }
1530 }
1531
1532 static int migrate_hrtimers(int scpu)
1533 {
1534 struct hrtimer_cpu_base *old_base, *new_base;
1535 int dcpu, i;
1536
1537 BUG_ON(cpu_online(scpu));
1538 old_base = &per_cpu(hrtimer_bases, scpu);
1539 new_base = &get_cpu_var(hrtimer_bases);
1540
1541 dcpu = smp_processor_id();
1542
1543 tick_cancel_sched_timer(scpu);
1544 /*
1545 * The caller is globally serialized and nobody else
1546 * takes two locks at once, deadlock is not possible.
1547 */
1548 spin_lock_irq(&new_base->lock);
1549 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1550
1551 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1552 migrate_hrtimer_list(&old_base->clock_base[i],
1553 &new_base->clock_base[i]);
1554 }
1555
1556 spin_unlock(&old_base->lock);
1557 spin_unlock_irq(&new_base->lock);
1558 put_cpu_var(hrtimer_bases);
1559
1560 return dcpu;
1561 }
1562
1563 static void tickle_timers(void *arg)
1564 {
1565 hrtimer_peek_ahead_timers();
1566 }
1567
1568 #endif /* CONFIG_HOTPLUG_CPU */
1569
1570 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1571 unsigned long action, void *hcpu)
1572 {
1573 int scpu = (long)hcpu;
1574
1575 switch (action) {
1576
1577 case CPU_UP_PREPARE:
1578 case CPU_UP_PREPARE_FROZEN:
1579 init_hrtimers_cpu(scpu);
1580 break;
1581
1582 #ifdef CONFIG_HOTPLUG_CPU
1583 case CPU_DEAD:
1584 case CPU_DEAD_FROZEN:
1585 {
1586 int dcpu;
1587
1588 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1589 dcpu = migrate_hrtimers(scpu);
1590 smp_call_function_single(dcpu, tickle_timers, NULL, 0);
1591 break;
1592 }
1593 #endif
1594
1595 default:
1596 break;
1597 }
1598
1599 return NOTIFY_OK;
1600 }
1601
1602 static struct notifier_block __cpuinitdata hrtimers_nb = {
1603 .notifier_call = hrtimer_cpu_notify,
1604 };
1605
1606 void __init hrtimers_init(void)
1607 {
1608 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1609 (void *)(long)smp_processor_id());
1610 register_cpu_notifier(&hrtimers_nb);
1611 }
1612
1613 /**
1614 * schedule_hrtimeout_range - sleep until timeout
1615 * @expires: timeout value (ktime_t)
1616 * @delta: slack in expires timeout (ktime_t)
1617 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1618 *
1619 * Make the current task sleep until the given expiry time has
1620 * elapsed. The routine will return immediately unless
1621 * the current task state has been set (see set_current_state()).
1622 *
1623 * The @delta argument gives the kernel the freedom to schedule the
1624 * actual wakeup to a time that is both power and performance friendly.
1625 * The kernel give the normal best effort behavior for "@expires+@delta",
1626 * but may decide to fire the timer earlier, but no earlier than @expires.
1627 *
1628 * You can set the task state as follows -
1629 *
1630 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1631 * pass before the routine returns.
1632 *
1633 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1634 * delivered to the current task.
1635 *
1636 * The current task state is guaranteed to be TASK_RUNNING when this
1637 * routine returns.
1638 *
1639 * Returns 0 when the timer has expired otherwise -EINTR
1640 */
1641 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1642 const enum hrtimer_mode mode)
1643 {
1644 struct hrtimer_sleeper t;
1645
1646 /*
1647 * Optimize when a zero timeout value is given. It does not
1648 * matter whether this is an absolute or a relative time.
1649 */
1650 if (expires && !expires->tv64) {
1651 __set_current_state(TASK_RUNNING);
1652 return 0;
1653 }
1654
1655 /*
1656 * A NULL parameter means "inifinte"
1657 */
1658 if (!expires) {
1659 schedule();
1660 __set_current_state(TASK_RUNNING);
1661 return -EINTR;
1662 }
1663
1664 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1665 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1666
1667 hrtimer_init_sleeper(&t, current);
1668
1669 hrtimer_start_expires(&t.timer, mode);
1670 if (!hrtimer_active(&t.timer))
1671 t.task = NULL;
1672
1673 if (likely(t.task))
1674 schedule();
1675
1676 hrtimer_cancel(&t.timer);
1677 destroy_hrtimer_on_stack(&t.timer);
1678
1679 __set_current_state(TASK_RUNNING);
1680
1681 return !t.task ? 0 : -EINTR;
1682 }
1683 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1684
1685 /**
1686 * schedule_hrtimeout - sleep until timeout
1687 * @expires: timeout value (ktime_t)
1688 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1689 *
1690 * Make the current task sleep until the given expiry time has
1691 * elapsed. The routine will return immediately unless
1692 * the current task state has been set (see set_current_state()).
1693 *
1694 * You can set the task state as follows -
1695 *
1696 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1697 * pass before the routine returns.
1698 *
1699 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1700 * delivered to the current task.
1701 *
1702 * The current task state is guaranteed to be TASK_RUNNING when this
1703 * routine returns.
1704 *
1705 * Returns 0 when the timer has expired otherwise -EINTR
1706 */
1707 int __sched schedule_hrtimeout(ktime_t *expires,
1708 const enum hrtimer_mode mode)
1709 {
1710 return schedule_hrtimeout_range(expires, 0, mode);
1711 }
1712 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.066261 seconds and 6 git commands to generate.