Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260 {
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 __this_cpu_write(kprobe_instance, kp);
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325 __this_cpu_write(kprobe_instance, NULL);
326 }
327
328 /*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
339
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
344 }
345
346 return NULL;
347 }
348
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354 return p->pre_handler == aggr_pre_handler;
355 }
356
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361 list_empty(&p->list);
362 }
363
364 /*
365 * Keep all fields in the kprobe consistent
366 */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376
377 /*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383 struct kprobe *kp;
384
385 list_for_each_entry_rcu(kp, &p->list, list) {
386 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387 set_kprobe_instance(kp);
388 kp->pre_handler(kp, regs);
389 }
390 reset_kprobe_instance();
391 }
392 }
393
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397 struct optimized_kprobe *op;
398
399 op = container_of(p, struct optimized_kprobe, kp);
400 arch_remove_optimized_kprobe(op);
401 arch_remove_kprobe(p);
402 kfree(op);
403 }
404
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408 struct optimized_kprobe *op;
409
410 if (kprobe_aggrprobe(p)) {
411 op = container_of(p, struct optimized_kprobe, kp);
412 return arch_prepared_optinsn(&op->optinsn);
413 }
414
415 return 0;
416 }
417
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421 struct optimized_kprobe *op;
422
423 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424 if (!kprobe_aggrprobe(p))
425 return kprobe_disabled(p);
426
427 op = container_of(p, struct optimized_kprobe, kp);
428
429 return kprobe_disabled(p) && list_empty(&op->list);
430 }
431
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435 struct optimized_kprobe *op;
436
437 if (kprobe_aggrprobe(p)) {
438 op = container_of(p, struct optimized_kprobe, kp);
439 if (!list_empty(&op->list))
440 return 1;
441 }
442 return 0;
443 }
444
445 /*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451 int i;
452 struct kprobe *p = NULL;
453 struct optimized_kprobe *op;
454
455 /* Don't check i == 0, since that is a breakpoint case. */
456 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457 p = get_kprobe((void *)(addr - i));
458
459 if (p && kprobe_optready(p)) {
460 op = container_of(p, struct optimized_kprobe, kp);
461 if (arch_within_optimized_kprobe(op, addr))
462 return p;
463 }
464
465 return NULL;
466 }
467
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 static DECLARE_COMPLETION(optimizer_comp);
475 #define OPTIMIZE_DELAY 5
476
477 /*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481 static __kprobes void do_optimize_kprobes(void)
482 {
483 /* Optimization never be done when disarmed */
484 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485 list_empty(&optimizing_list))
486 return;
487
488 /*
489 * The optimization/unoptimization refers online_cpus via
490 * stop_machine() and cpu-hotplug modifies online_cpus.
491 * And same time, text_mutex will be held in cpu-hotplug and here.
492 * This combination can cause a deadlock (cpu-hotplug try to lock
493 * text_mutex but stop_machine can not be done because online_cpus
494 * has been changed)
495 * To avoid this deadlock, we need to call get_online_cpus()
496 * for preventing cpu-hotplug outside of text_mutex locking.
497 */
498 get_online_cpus();
499 mutex_lock(&text_mutex);
500 arch_optimize_kprobes(&optimizing_list);
501 mutex_unlock(&text_mutex);
502 put_online_cpus();
503 }
504
505 /*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510 {
511 struct optimized_kprobe *op, *tmp;
512
513 /* Unoptimization must be done anytime */
514 if (list_empty(&unoptimizing_list))
515 return;
516
517 /* Ditto to do_optimize_kprobes */
518 get_online_cpus();
519 mutex_lock(&text_mutex);
520 arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521 /* Loop free_list for disarming */
522 list_for_each_entry_safe(op, tmp, free_list, list) {
523 /* Disarm probes if marked disabled */
524 if (kprobe_disabled(&op->kp))
525 arch_disarm_kprobe(&op->kp);
526 if (kprobe_unused(&op->kp)) {
527 /*
528 * Remove unused probes from hash list. After waiting
529 * for synchronization, these probes are reclaimed.
530 * (reclaiming is done by do_free_cleaned_kprobes.)
531 */
532 hlist_del_rcu(&op->kp.hlist);
533 } else
534 list_del_init(&op->list);
535 }
536 mutex_unlock(&text_mutex);
537 put_online_cpus();
538 }
539
540 /* Reclaim all kprobes on the free_list */
541 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542 {
543 struct optimized_kprobe *op, *tmp;
544
545 list_for_each_entry_safe(op, tmp, free_list, list) {
546 BUG_ON(!kprobe_unused(&op->kp));
547 list_del_init(&op->list);
548 free_aggr_kprobe(&op->kp);
549 }
550 }
551
552 /* Start optimizer after OPTIMIZE_DELAY passed */
553 static __kprobes void kick_kprobe_optimizer(void)
554 {
555 if (!delayed_work_pending(&optimizing_work))
556 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557 }
558
559 /* Kprobe jump optimizer */
560 static __kprobes void kprobe_optimizer(struct work_struct *work)
561 {
562 LIST_HEAD(free_list);
563
564 mutex_lock(&kprobe_mutex);
565 /* Lock modules while optimizing kprobes */
566 mutex_lock(&module_mutex);
567
568 /*
569 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570 * kprobes before waiting for quiesence period.
571 */
572 do_unoptimize_kprobes(&free_list);
573
574 /*
575 * Step 2: Wait for quiesence period to ensure all running interrupts
576 * are done. Because optprobe may modify multiple instructions
577 * there is a chance that Nth instruction is interrupted. In that
578 * case, running interrupt can return to 2nd-Nth byte of jump
579 * instruction. This wait is for avoiding it.
580 */
581 synchronize_sched();
582
583 /* Step 3: Optimize kprobes after quiesence period */
584 do_optimize_kprobes();
585
586 /* Step 4: Free cleaned kprobes after quiesence period */
587 do_free_cleaned_kprobes(&free_list);
588
589 mutex_unlock(&module_mutex);
590 mutex_unlock(&kprobe_mutex);
591
592 /* Step 5: Kick optimizer again if needed */
593 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594 kick_kprobe_optimizer();
595 else
596 /* Wake up all waiters */
597 complete_all(&optimizer_comp);
598 }
599
600 /* Wait for completing optimization and unoptimization */
601 static __kprobes void wait_for_kprobe_optimizer(void)
602 {
603 if (delayed_work_pending(&optimizing_work))
604 wait_for_completion(&optimizer_comp);
605 }
606
607 /* Optimize kprobe if p is ready to be optimized */
608 static __kprobes void optimize_kprobe(struct kprobe *p)
609 {
610 struct optimized_kprobe *op;
611
612 /* Check if the kprobe is disabled or not ready for optimization. */
613 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614 (kprobe_disabled(p) || kprobes_all_disarmed))
615 return;
616
617 /* Both of break_handler and post_handler are not supported. */
618 if (p->break_handler || p->post_handler)
619 return;
620
621 op = container_of(p, struct optimized_kprobe, kp);
622
623 /* Check there is no other kprobes at the optimized instructions */
624 if (arch_check_optimized_kprobe(op) < 0)
625 return;
626
627 /* Check if it is already optimized. */
628 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629 return;
630 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632 if (!list_empty(&op->list))
633 /* This is under unoptimizing. Just dequeue the probe */
634 list_del_init(&op->list);
635 else {
636 list_add(&op->list, &optimizing_list);
637 kick_kprobe_optimizer();
638 }
639 }
640
641 /* Short cut to direct unoptimizing */
642 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643 {
644 get_online_cpus();
645 arch_unoptimize_kprobe(op);
646 put_online_cpus();
647 if (kprobe_disabled(&op->kp))
648 arch_disarm_kprobe(&op->kp);
649 }
650
651 /* Unoptimize a kprobe if p is optimized */
652 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653 {
654 struct optimized_kprobe *op;
655
656 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657 return; /* This is not an optprobe nor optimized */
658
659 op = container_of(p, struct optimized_kprobe, kp);
660 if (!kprobe_optimized(p)) {
661 /* Unoptimized or unoptimizing case */
662 if (force && !list_empty(&op->list)) {
663 /*
664 * Only if this is unoptimizing kprobe and forced,
665 * forcibly unoptimize it. (No need to unoptimize
666 * unoptimized kprobe again :)
667 */
668 list_del_init(&op->list);
669 force_unoptimize_kprobe(op);
670 }
671 return;
672 }
673
674 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675 if (!list_empty(&op->list)) {
676 /* Dequeue from the optimization queue */
677 list_del_init(&op->list);
678 return;
679 }
680 /* Optimized kprobe case */
681 if (force)
682 /* Forcibly update the code: this is a special case */
683 force_unoptimize_kprobe(op);
684 else {
685 list_add(&op->list, &unoptimizing_list);
686 kick_kprobe_optimizer();
687 }
688 }
689
690 /* Cancel unoptimizing for reusing */
691 static void reuse_unused_kprobe(struct kprobe *ap)
692 {
693 struct optimized_kprobe *op;
694
695 BUG_ON(!kprobe_unused(ap));
696 /*
697 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698 * there is still a relative jump) and disabled.
699 */
700 op = container_of(ap, struct optimized_kprobe, kp);
701 if (unlikely(list_empty(&op->list)))
702 printk(KERN_WARNING "Warning: found a stray unused "
703 "aggrprobe@%p\n", ap->addr);
704 /* Enable the probe again */
705 ap->flags &= ~KPROBE_FLAG_DISABLED;
706 /* Optimize it again (remove from op->list) */
707 BUG_ON(!kprobe_optready(ap));
708 optimize_kprobe(ap);
709 }
710
711 /* Remove optimized instructions */
712 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713 {
714 struct optimized_kprobe *op;
715
716 op = container_of(p, struct optimized_kprobe, kp);
717 if (!list_empty(&op->list))
718 /* Dequeue from the (un)optimization queue */
719 list_del_init(&op->list);
720
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 /* Don't touch the code, because it is already freed. */
723 arch_remove_optimized_kprobe(op);
724 }
725
726 /* Try to prepare optimized instructions */
727 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728 {
729 struct optimized_kprobe *op;
730
731 op = container_of(p, struct optimized_kprobe, kp);
732 arch_prepare_optimized_kprobe(op);
733 }
734
735 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
736 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737 {
738 struct optimized_kprobe *op;
739
740 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741 if (!op)
742 return NULL;
743
744 INIT_LIST_HEAD(&op->list);
745 op->kp.addr = p->addr;
746 arch_prepare_optimized_kprobe(op);
747
748 return &op->kp;
749 }
750
751 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753 /*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758 {
759 struct kprobe *ap;
760 struct optimized_kprobe *op;
761
762 /* Impossible to optimize ftrace-based kprobe */
763 if (kprobe_ftrace(p))
764 return;
765
766 /* For preparing optimization, jump_label_text_reserved() is called */
767 jump_label_lock();
768 mutex_lock(&text_mutex);
769
770 ap = alloc_aggr_kprobe(p);
771 if (!ap)
772 goto out;
773
774 op = container_of(ap, struct optimized_kprobe, kp);
775 if (!arch_prepared_optinsn(&op->optinsn)) {
776 /* If failed to setup optimizing, fallback to kprobe */
777 arch_remove_optimized_kprobe(op);
778 kfree(op);
779 goto out;
780 }
781
782 init_aggr_kprobe(ap, p);
783 optimize_kprobe(ap); /* This just kicks optimizer thread */
784
785 out:
786 mutex_unlock(&text_mutex);
787 jump_label_unlock();
788 }
789
790 #ifdef CONFIG_SYSCTL
791 /* This should be called with kprobe_mutex locked */
792 static void __kprobes optimize_all_kprobes(void)
793 {
794 struct hlist_head *head;
795 struct hlist_node *node;
796 struct kprobe *p;
797 unsigned int i;
798
799 /* If optimization is already allowed, just return */
800 if (kprobes_allow_optimization)
801 return;
802
803 kprobes_allow_optimization = true;
804 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
805 head = &kprobe_table[i];
806 hlist_for_each_entry_rcu(p, node, head, hlist)
807 if (!kprobe_disabled(p))
808 optimize_kprobe(p);
809 }
810 printk(KERN_INFO "Kprobes globally optimized\n");
811 }
812
813 /* This should be called with kprobe_mutex locked */
814 static void __kprobes unoptimize_all_kprobes(void)
815 {
816 struct hlist_head *head;
817 struct hlist_node *node;
818 struct kprobe *p;
819 unsigned int i;
820
821 /* If optimization is already prohibited, just return */
822 if (!kprobes_allow_optimization)
823 return;
824
825 kprobes_allow_optimization = false;
826 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827 head = &kprobe_table[i];
828 hlist_for_each_entry_rcu(p, node, head, hlist) {
829 if (!kprobe_disabled(p))
830 unoptimize_kprobe(p, false);
831 }
832 }
833 /* Wait for unoptimizing completion */
834 wait_for_kprobe_optimizer();
835 printk(KERN_INFO "Kprobes globally unoptimized\n");
836 }
837
838 int sysctl_kprobes_optimization;
839 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
840 void __user *buffer, size_t *length,
841 loff_t *ppos)
842 {
843 int ret;
844
845 mutex_lock(&kprobe_mutex);
846 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
847 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
848
849 if (sysctl_kprobes_optimization)
850 optimize_all_kprobes();
851 else
852 unoptimize_all_kprobes();
853 mutex_unlock(&kprobe_mutex);
854
855 return ret;
856 }
857 #endif /* CONFIG_SYSCTL */
858
859 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
860 static void __kprobes __arm_kprobe(struct kprobe *p)
861 {
862 struct kprobe *_p;
863
864 /* Check collision with other optimized kprobes */
865 _p = get_optimized_kprobe((unsigned long)p->addr);
866 if (unlikely(_p))
867 /* Fallback to unoptimized kprobe */
868 unoptimize_kprobe(_p, true);
869
870 arch_arm_kprobe(p);
871 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
872 }
873
874 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
875 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
876 {
877 struct kprobe *_p;
878
879 unoptimize_kprobe(p, false); /* Try to unoptimize */
880
881 if (!kprobe_queued(p)) {
882 arch_disarm_kprobe(p);
883 /* If another kprobe was blocked, optimize it. */
884 _p = get_optimized_kprobe((unsigned long)p->addr);
885 if (unlikely(_p) && reopt)
886 optimize_kprobe(_p);
887 }
888 /* TODO: reoptimize others after unoptimized this probe */
889 }
890
891 #else /* !CONFIG_OPTPROBES */
892
893 #define optimize_kprobe(p) do {} while (0)
894 #define unoptimize_kprobe(p, f) do {} while (0)
895 #define kill_optimized_kprobe(p) do {} while (0)
896 #define prepare_optimized_kprobe(p) do {} while (0)
897 #define try_to_optimize_kprobe(p) do {} while (0)
898 #define __arm_kprobe(p) arch_arm_kprobe(p)
899 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
900 #define kprobe_disarmed(p) kprobe_disabled(p)
901 #define wait_for_kprobe_optimizer() do {} while (0)
902
903 /* There should be no unused kprobes can be reused without optimization */
904 static void reuse_unused_kprobe(struct kprobe *ap)
905 {
906 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
907 BUG_ON(kprobe_unused(ap));
908 }
909
910 static __kprobes void free_aggr_kprobe(struct kprobe *p)
911 {
912 arch_remove_kprobe(p);
913 kfree(p);
914 }
915
916 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
917 {
918 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
919 }
920 #endif /* CONFIG_OPTPROBES */
921
922 #ifdef KPROBES_CAN_USE_FTRACE
923 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
924 .func = kprobe_ftrace_handler,
925 .flags = FTRACE_OPS_FL_SAVE_REGS,
926 };
927 static int kprobe_ftrace_enabled;
928
929 /* Must ensure p->addr is really on ftrace */
930 static int __kprobes prepare_kprobe(struct kprobe *p)
931 {
932 if (!kprobe_ftrace(p))
933 return arch_prepare_kprobe(p);
934
935 return arch_prepare_kprobe_ftrace(p);
936 }
937
938 /* Caller must lock kprobe_mutex */
939 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
940 {
941 int ret;
942
943 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
944 (unsigned long)p->addr, 0, 0);
945 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
946 kprobe_ftrace_enabled++;
947 if (kprobe_ftrace_enabled == 1) {
948 ret = register_ftrace_function(&kprobe_ftrace_ops);
949 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
950 }
951 }
952
953 /* Caller must lock kprobe_mutex */
954 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
955 {
956 int ret;
957
958 kprobe_ftrace_enabled--;
959 if (kprobe_ftrace_enabled == 0) {
960 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
961 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
962 }
963 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
964 (unsigned long)p->addr, 1, 0);
965 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
966 }
967 #else /* !KPROBES_CAN_USE_FTRACE */
968 #define prepare_kprobe(p) arch_prepare_kprobe(p)
969 #define arm_kprobe_ftrace(p) do {} while (0)
970 #define disarm_kprobe_ftrace(p) do {} while (0)
971 #endif
972
973 /* Arm a kprobe with text_mutex */
974 static void __kprobes arm_kprobe(struct kprobe *kp)
975 {
976 if (unlikely(kprobe_ftrace(kp))) {
977 arm_kprobe_ftrace(kp);
978 return;
979 }
980 /*
981 * Here, since __arm_kprobe() doesn't use stop_machine(),
982 * this doesn't cause deadlock on text_mutex. So, we don't
983 * need get_online_cpus().
984 */
985 mutex_lock(&text_mutex);
986 __arm_kprobe(kp);
987 mutex_unlock(&text_mutex);
988 }
989
990 /* Disarm a kprobe with text_mutex */
991 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
992 {
993 if (unlikely(kprobe_ftrace(kp))) {
994 disarm_kprobe_ftrace(kp);
995 return;
996 }
997 /* Ditto */
998 mutex_lock(&text_mutex);
999 __disarm_kprobe(kp, reopt);
1000 mutex_unlock(&text_mutex);
1001 }
1002
1003 /*
1004 * Aggregate handlers for multiple kprobes support - these handlers
1005 * take care of invoking the individual kprobe handlers on p->list
1006 */
1007 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1008 {
1009 struct kprobe *kp;
1010
1011 list_for_each_entry_rcu(kp, &p->list, list) {
1012 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1013 set_kprobe_instance(kp);
1014 if (kp->pre_handler(kp, regs))
1015 return 1;
1016 }
1017 reset_kprobe_instance();
1018 }
1019 return 0;
1020 }
1021
1022 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1023 unsigned long flags)
1024 {
1025 struct kprobe *kp;
1026
1027 list_for_each_entry_rcu(kp, &p->list, list) {
1028 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1029 set_kprobe_instance(kp);
1030 kp->post_handler(kp, regs, flags);
1031 reset_kprobe_instance();
1032 }
1033 }
1034 }
1035
1036 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1037 int trapnr)
1038 {
1039 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1040
1041 /*
1042 * if we faulted "during" the execution of a user specified
1043 * probe handler, invoke just that probe's fault handler
1044 */
1045 if (cur && cur->fault_handler) {
1046 if (cur->fault_handler(cur, regs, trapnr))
1047 return 1;
1048 }
1049 return 0;
1050 }
1051
1052 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1053 {
1054 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1055 int ret = 0;
1056
1057 if (cur && cur->break_handler) {
1058 if (cur->break_handler(cur, regs))
1059 ret = 1;
1060 }
1061 reset_kprobe_instance();
1062 return ret;
1063 }
1064
1065 /* Walks the list and increments nmissed count for multiprobe case */
1066 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1067 {
1068 struct kprobe *kp;
1069 if (!kprobe_aggrprobe(p)) {
1070 p->nmissed++;
1071 } else {
1072 list_for_each_entry_rcu(kp, &p->list, list)
1073 kp->nmissed++;
1074 }
1075 return;
1076 }
1077
1078 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1079 struct hlist_head *head)
1080 {
1081 struct kretprobe *rp = ri->rp;
1082
1083 /* remove rp inst off the rprobe_inst_table */
1084 hlist_del(&ri->hlist);
1085 INIT_HLIST_NODE(&ri->hlist);
1086 if (likely(rp)) {
1087 raw_spin_lock(&rp->lock);
1088 hlist_add_head(&ri->hlist, &rp->free_instances);
1089 raw_spin_unlock(&rp->lock);
1090 } else
1091 /* Unregistering */
1092 hlist_add_head(&ri->hlist, head);
1093 }
1094
1095 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1096 struct hlist_head **head, unsigned long *flags)
1097 __acquires(hlist_lock)
1098 {
1099 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100 raw_spinlock_t *hlist_lock;
1101
1102 *head = &kretprobe_inst_table[hash];
1103 hlist_lock = kretprobe_table_lock_ptr(hash);
1104 raw_spin_lock_irqsave(hlist_lock, *flags);
1105 }
1106
1107 static void __kprobes kretprobe_table_lock(unsigned long hash,
1108 unsigned long *flags)
1109 __acquires(hlist_lock)
1110 {
1111 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112 raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114
1115 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1116 unsigned long *flags)
1117 __releases(hlist_lock)
1118 {
1119 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1120 raw_spinlock_t *hlist_lock;
1121
1122 hlist_lock = kretprobe_table_lock_ptr(hash);
1123 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1124 }
1125
1126 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1127 unsigned long *flags)
1128 __releases(hlist_lock)
1129 {
1130 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1131 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1132 }
1133
1134 /*
1135 * This function is called from finish_task_switch when task tk becomes dead,
1136 * so that we can recycle any function-return probe instances associated
1137 * with this task. These left over instances represent probed functions
1138 * that have been called but will never return.
1139 */
1140 void __kprobes kprobe_flush_task(struct task_struct *tk)
1141 {
1142 struct kretprobe_instance *ri;
1143 struct hlist_head *head, empty_rp;
1144 struct hlist_node *node, *tmp;
1145 unsigned long hash, flags = 0;
1146
1147 if (unlikely(!kprobes_initialized))
1148 /* Early boot. kretprobe_table_locks not yet initialized. */
1149 return;
1150
1151 INIT_HLIST_HEAD(&empty_rp);
1152 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1153 head = &kretprobe_inst_table[hash];
1154 kretprobe_table_lock(hash, &flags);
1155 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1156 if (ri->task == tk)
1157 recycle_rp_inst(ri, &empty_rp);
1158 }
1159 kretprobe_table_unlock(hash, &flags);
1160 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1161 hlist_del(&ri->hlist);
1162 kfree(ri);
1163 }
1164 }
1165
1166 static inline void free_rp_inst(struct kretprobe *rp)
1167 {
1168 struct kretprobe_instance *ri;
1169 struct hlist_node *pos, *next;
1170
1171 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1172 hlist_del(&ri->hlist);
1173 kfree(ri);
1174 }
1175 }
1176
1177 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1178 {
1179 unsigned long flags, hash;
1180 struct kretprobe_instance *ri;
1181 struct hlist_node *pos, *next;
1182 struct hlist_head *head;
1183
1184 /* No race here */
1185 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1186 kretprobe_table_lock(hash, &flags);
1187 head = &kretprobe_inst_table[hash];
1188 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1189 if (ri->rp == rp)
1190 ri->rp = NULL;
1191 }
1192 kretprobe_table_unlock(hash, &flags);
1193 }
1194 free_rp_inst(rp);
1195 }
1196
1197 /*
1198 * Add the new probe to ap->list. Fail if this is the
1199 * second jprobe at the address - two jprobes can't coexist
1200 */
1201 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1202 {
1203 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1204
1205 if (p->break_handler || p->post_handler)
1206 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1207
1208 if (p->break_handler) {
1209 if (ap->break_handler)
1210 return -EEXIST;
1211 list_add_tail_rcu(&p->list, &ap->list);
1212 ap->break_handler = aggr_break_handler;
1213 } else
1214 list_add_rcu(&p->list, &ap->list);
1215 if (p->post_handler && !ap->post_handler)
1216 ap->post_handler = aggr_post_handler;
1217
1218 return 0;
1219 }
1220
1221 /*
1222 * Fill in the required fields of the "manager kprobe". Replace the
1223 * earlier kprobe in the hlist with the manager kprobe
1224 */
1225 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1226 {
1227 /* Copy p's insn slot to ap */
1228 copy_kprobe(p, ap);
1229 flush_insn_slot(ap);
1230 ap->addr = p->addr;
1231 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1232 ap->pre_handler = aggr_pre_handler;
1233 ap->fault_handler = aggr_fault_handler;
1234 /* We don't care the kprobe which has gone. */
1235 if (p->post_handler && !kprobe_gone(p))
1236 ap->post_handler = aggr_post_handler;
1237 if (p->break_handler && !kprobe_gone(p))
1238 ap->break_handler = aggr_break_handler;
1239
1240 INIT_LIST_HEAD(&ap->list);
1241 INIT_HLIST_NODE(&ap->hlist);
1242
1243 list_add_rcu(&p->list, &ap->list);
1244 hlist_replace_rcu(&p->hlist, &ap->hlist);
1245 }
1246
1247 /*
1248 * This is the second or subsequent kprobe at the address - handle
1249 * the intricacies
1250 */
1251 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1252 struct kprobe *p)
1253 {
1254 int ret = 0;
1255 struct kprobe *ap = orig_p;
1256
1257 /* For preparing optimization, jump_label_text_reserved() is called */
1258 jump_label_lock();
1259 /*
1260 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1261 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1262 */
1263 get_online_cpus();
1264 mutex_lock(&text_mutex);
1265
1266 if (!kprobe_aggrprobe(orig_p)) {
1267 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1268 ap = alloc_aggr_kprobe(orig_p);
1269 if (!ap) {
1270 ret = -ENOMEM;
1271 goto out;
1272 }
1273 init_aggr_kprobe(ap, orig_p);
1274 } else if (kprobe_unused(ap))
1275 /* This probe is going to die. Rescue it */
1276 reuse_unused_kprobe(ap);
1277
1278 if (kprobe_gone(ap)) {
1279 /*
1280 * Attempting to insert new probe at the same location that
1281 * had a probe in the module vaddr area which already
1282 * freed. So, the instruction slot has already been
1283 * released. We need a new slot for the new probe.
1284 */
1285 ret = arch_prepare_kprobe(ap);
1286 if (ret)
1287 /*
1288 * Even if fail to allocate new slot, don't need to
1289 * free aggr_probe. It will be used next time, or
1290 * freed by unregister_kprobe.
1291 */
1292 goto out;
1293
1294 /* Prepare optimized instructions if possible. */
1295 prepare_optimized_kprobe(ap);
1296
1297 /*
1298 * Clear gone flag to prevent allocating new slot again, and
1299 * set disabled flag because it is not armed yet.
1300 */
1301 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1302 | KPROBE_FLAG_DISABLED;
1303 }
1304
1305 /* Copy ap's insn slot to p */
1306 copy_kprobe(ap, p);
1307 ret = add_new_kprobe(ap, p);
1308
1309 out:
1310 mutex_unlock(&text_mutex);
1311 put_online_cpus();
1312 jump_label_unlock();
1313
1314 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1315 ap->flags &= ~KPROBE_FLAG_DISABLED;
1316 if (!kprobes_all_disarmed)
1317 /* Arm the breakpoint again. */
1318 arm_kprobe(ap);
1319 }
1320 return ret;
1321 }
1322
1323 static int __kprobes in_kprobes_functions(unsigned long addr)
1324 {
1325 struct kprobe_blackpoint *kb;
1326
1327 if (addr >= (unsigned long)__kprobes_text_start &&
1328 addr < (unsigned long)__kprobes_text_end)
1329 return -EINVAL;
1330 /*
1331 * If there exists a kprobe_blacklist, verify and
1332 * fail any probe registration in the prohibited area
1333 */
1334 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1335 if (kb->start_addr) {
1336 if (addr >= kb->start_addr &&
1337 addr < (kb->start_addr + kb->range))
1338 return -EINVAL;
1339 }
1340 }
1341 return 0;
1342 }
1343
1344 /*
1345 * If we have a symbol_name argument, look it up and add the offset field
1346 * to it. This way, we can specify a relative address to a symbol.
1347 * This returns encoded errors if it fails to look up symbol or invalid
1348 * combination of parameters.
1349 */
1350 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1351 {
1352 kprobe_opcode_t *addr = p->addr;
1353
1354 if ((p->symbol_name && p->addr) ||
1355 (!p->symbol_name && !p->addr))
1356 goto invalid;
1357
1358 if (p->symbol_name) {
1359 kprobe_lookup_name(p->symbol_name, addr);
1360 if (!addr)
1361 return ERR_PTR(-ENOENT);
1362 }
1363
1364 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1365 if (addr)
1366 return addr;
1367
1368 invalid:
1369 return ERR_PTR(-EINVAL);
1370 }
1371
1372 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1373 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1374 {
1375 struct kprobe *ap, *list_p;
1376
1377 ap = get_kprobe(p->addr);
1378 if (unlikely(!ap))
1379 return NULL;
1380
1381 if (p != ap) {
1382 list_for_each_entry_rcu(list_p, &ap->list, list)
1383 if (list_p == p)
1384 /* kprobe p is a valid probe */
1385 goto valid;
1386 return NULL;
1387 }
1388 valid:
1389 return ap;
1390 }
1391
1392 /* Return error if the kprobe is being re-registered */
1393 static inline int check_kprobe_rereg(struct kprobe *p)
1394 {
1395 int ret = 0;
1396
1397 mutex_lock(&kprobe_mutex);
1398 if (__get_valid_kprobe(p))
1399 ret = -EINVAL;
1400 mutex_unlock(&kprobe_mutex);
1401
1402 return ret;
1403 }
1404
1405 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1406 struct module **probed_mod)
1407 {
1408 int ret = 0;
1409 unsigned long ftrace_addr;
1410
1411 /*
1412 * If the address is located on a ftrace nop, set the
1413 * breakpoint to the following instruction.
1414 */
1415 ftrace_addr = ftrace_location((unsigned long)p->addr);
1416 if (ftrace_addr) {
1417 #ifdef KPROBES_CAN_USE_FTRACE
1418 /* Given address is not on the instruction boundary */
1419 if ((unsigned long)p->addr != ftrace_addr)
1420 return -EILSEQ;
1421 p->flags |= KPROBE_FLAG_FTRACE;
1422 #else /* !KPROBES_CAN_USE_FTRACE */
1423 return -EINVAL;
1424 #endif
1425 }
1426
1427 jump_label_lock();
1428 preempt_disable();
1429
1430 /* Ensure it is not in reserved area nor out of text */
1431 if (!kernel_text_address((unsigned long) p->addr) ||
1432 in_kprobes_functions((unsigned long) p->addr) ||
1433 jump_label_text_reserved(p->addr, p->addr)) {
1434 ret = -EINVAL;
1435 goto out;
1436 }
1437
1438 /* Check if are we probing a module */
1439 *probed_mod = __module_text_address((unsigned long) p->addr);
1440 if (*probed_mod) {
1441 /*
1442 * We must hold a refcount of the probed module while updating
1443 * its code to prohibit unexpected unloading.
1444 */
1445 if (unlikely(!try_module_get(*probed_mod))) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
1449
1450 /*
1451 * If the module freed .init.text, we couldn't insert
1452 * kprobes in there.
1453 */
1454 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1455 (*probed_mod)->state != MODULE_STATE_COMING) {
1456 module_put(*probed_mod);
1457 *probed_mod = NULL;
1458 ret = -ENOENT;
1459 }
1460 }
1461 out:
1462 preempt_enable();
1463 jump_label_unlock();
1464
1465 return ret;
1466 }
1467
1468 int __kprobes register_kprobe(struct kprobe *p)
1469 {
1470 int ret;
1471 struct kprobe *old_p;
1472 struct module *probed_mod;
1473 kprobe_opcode_t *addr;
1474
1475 /* Adjust probe address from symbol */
1476 addr = kprobe_addr(p);
1477 if (IS_ERR(addr))
1478 return PTR_ERR(addr);
1479 p->addr = addr;
1480
1481 ret = check_kprobe_rereg(p);
1482 if (ret)
1483 return ret;
1484
1485 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1486 p->flags &= KPROBE_FLAG_DISABLED;
1487 p->nmissed = 0;
1488 INIT_LIST_HEAD(&p->list);
1489
1490 ret = check_kprobe_address_safe(p, &probed_mod);
1491 if (ret)
1492 return ret;
1493
1494 mutex_lock(&kprobe_mutex);
1495
1496 old_p = get_kprobe(p->addr);
1497 if (old_p) {
1498 /* Since this may unoptimize old_p, locking text_mutex. */
1499 ret = register_aggr_kprobe(old_p, p);
1500 goto out;
1501 }
1502
1503 mutex_lock(&text_mutex); /* Avoiding text modification */
1504 ret = prepare_kprobe(p);
1505 mutex_unlock(&text_mutex);
1506 if (ret)
1507 goto out;
1508
1509 INIT_HLIST_NODE(&p->hlist);
1510 hlist_add_head_rcu(&p->hlist,
1511 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1512
1513 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1514 arm_kprobe(p);
1515
1516 /* Try to optimize kprobe */
1517 try_to_optimize_kprobe(p);
1518
1519 out:
1520 mutex_unlock(&kprobe_mutex);
1521
1522 if (probed_mod)
1523 module_put(probed_mod);
1524
1525 return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(register_kprobe);
1528
1529 /* Check if all probes on the aggrprobe are disabled */
1530 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1531 {
1532 struct kprobe *kp;
1533
1534 list_for_each_entry_rcu(kp, &ap->list, list)
1535 if (!kprobe_disabled(kp))
1536 /*
1537 * There is an active probe on the list.
1538 * We can't disable this ap.
1539 */
1540 return 0;
1541
1542 return 1;
1543 }
1544
1545 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1546 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1547 {
1548 struct kprobe *orig_p;
1549
1550 /* Get an original kprobe for return */
1551 orig_p = __get_valid_kprobe(p);
1552 if (unlikely(orig_p == NULL))
1553 return NULL;
1554
1555 if (!kprobe_disabled(p)) {
1556 /* Disable probe if it is a child probe */
1557 if (p != orig_p)
1558 p->flags |= KPROBE_FLAG_DISABLED;
1559
1560 /* Try to disarm and disable this/parent probe */
1561 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1562 disarm_kprobe(orig_p, true);
1563 orig_p->flags |= KPROBE_FLAG_DISABLED;
1564 }
1565 }
1566
1567 return orig_p;
1568 }
1569
1570 /*
1571 * Unregister a kprobe without a scheduler synchronization.
1572 */
1573 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1574 {
1575 struct kprobe *ap, *list_p;
1576
1577 /* Disable kprobe. This will disarm it if needed. */
1578 ap = __disable_kprobe(p);
1579 if (ap == NULL)
1580 return -EINVAL;
1581
1582 if (ap == p)
1583 /*
1584 * This probe is an independent(and non-optimized) kprobe
1585 * (not an aggrprobe). Remove from the hash list.
1586 */
1587 goto disarmed;
1588
1589 /* Following process expects this probe is an aggrprobe */
1590 WARN_ON(!kprobe_aggrprobe(ap));
1591
1592 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1593 /*
1594 * !disarmed could be happen if the probe is under delayed
1595 * unoptimizing.
1596 */
1597 goto disarmed;
1598 else {
1599 /* If disabling probe has special handlers, update aggrprobe */
1600 if (p->break_handler && !kprobe_gone(p))
1601 ap->break_handler = NULL;
1602 if (p->post_handler && !kprobe_gone(p)) {
1603 list_for_each_entry_rcu(list_p, &ap->list, list) {
1604 if ((list_p != p) && (list_p->post_handler))
1605 goto noclean;
1606 }
1607 ap->post_handler = NULL;
1608 }
1609 noclean:
1610 /*
1611 * Remove from the aggrprobe: this path will do nothing in
1612 * __unregister_kprobe_bottom().
1613 */
1614 list_del_rcu(&p->list);
1615 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1616 /*
1617 * Try to optimize this probe again, because post
1618 * handler may have been changed.
1619 */
1620 optimize_kprobe(ap);
1621 }
1622 return 0;
1623
1624 disarmed:
1625 BUG_ON(!kprobe_disarmed(ap));
1626 hlist_del_rcu(&ap->hlist);
1627 return 0;
1628 }
1629
1630 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1631 {
1632 struct kprobe *ap;
1633
1634 if (list_empty(&p->list))
1635 /* This is an independent kprobe */
1636 arch_remove_kprobe(p);
1637 else if (list_is_singular(&p->list)) {
1638 /* This is the last child of an aggrprobe */
1639 ap = list_entry(p->list.next, struct kprobe, list);
1640 list_del(&p->list);
1641 free_aggr_kprobe(ap);
1642 }
1643 /* Otherwise, do nothing. */
1644 }
1645
1646 int __kprobes register_kprobes(struct kprobe **kps, int num)
1647 {
1648 int i, ret = 0;
1649
1650 if (num <= 0)
1651 return -EINVAL;
1652 for (i = 0; i < num; i++) {
1653 ret = register_kprobe(kps[i]);
1654 if (ret < 0) {
1655 if (i > 0)
1656 unregister_kprobes(kps, i);
1657 break;
1658 }
1659 }
1660 return ret;
1661 }
1662 EXPORT_SYMBOL_GPL(register_kprobes);
1663
1664 void __kprobes unregister_kprobe(struct kprobe *p)
1665 {
1666 unregister_kprobes(&p, 1);
1667 }
1668 EXPORT_SYMBOL_GPL(unregister_kprobe);
1669
1670 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1671 {
1672 int i;
1673
1674 if (num <= 0)
1675 return;
1676 mutex_lock(&kprobe_mutex);
1677 for (i = 0; i < num; i++)
1678 if (__unregister_kprobe_top(kps[i]) < 0)
1679 kps[i]->addr = NULL;
1680 mutex_unlock(&kprobe_mutex);
1681
1682 synchronize_sched();
1683 for (i = 0; i < num; i++)
1684 if (kps[i]->addr)
1685 __unregister_kprobe_bottom(kps[i]);
1686 }
1687 EXPORT_SYMBOL_GPL(unregister_kprobes);
1688
1689 static struct notifier_block kprobe_exceptions_nb = {
1690 .notifier_call = kprobe_exceptions_notify,
1691 .priority = 0x7fffffff /* we need to be notified first */
1692 };
1693
1694 unsigned long __weak arch_deref_entry_point(void *entry)
1695 {
1696 return (unsigned long)entry;
1697 }
1698
1699 int __kprobes register_jprobes(struct jprobe **jps, int num)
1700 {
1701 struct jprobe *jp;
1702 int ret = 0, i;
1703
1704 if (num <= 0)
1705 return -EINVAL;
1706 for (i = 0; i < num; i++) {
1707 unsigned long addr, offset;
1708 jp = jps[i];
1709 addr = arch_deref_entry_point(jp->entry);
1710
1711 /* Verify probepoint is a function entry point */
1712 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1713 offset == 0) {
1714 jp->kp.pre_handler = setjmp_pre_handler;
1715 jp->kp.break_handler = longjmp_break_handler;
1716 ret = register_kprobe(&jp->kp);
1717 } else
1718 ret = -EINVAL;
1719
1720 if (ret < 0) {
1721 if (i > 0)
1722 unregister_jprobes(jps, i);
1723 break;
1724 }
1725 }
1726 return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(register_jprobes);
1729
1730 int __kprobes register_jprobe(struct jprobe *jp)
1731 {
1732 return register_jprobes(&jp, 1);
1733 }
1734 EXPORT_SYMBOL_GPL(register_jprobe);
1735
1736 void __kprobes unregister_jprobe(struct jprobe *jp)
1737 {
1738 unregister_jprobes(&jp, 1);
1739 }
1740 EXPORT_SYMBOL_GPL(unregister_jprobe);
1741
1742 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1743 {
1744 int i;
1745
1746 if (num <= 0)
1747 return;
1748 mutex_lock(&kprobe_mutex);
1749 for (i = 0; i < num; i++)
1750 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1751 jps[i]->kp.addr = NULL;
1752 mutex_unlock(&kprobe_mutex);
1753
1754 synchronize_sched();
1755 for (i = 0; i < num; i++) {
1756 if (jps[i]->kp.addr)
1757 __unregister_kprobe_bottom(&jps[i]->kp);
1758 }
1759 }
1760 EXPORT_SYMBOL_GPL(unregister_jprobes);
1761
1762 #ifdef CONFIG_KRETPROBES
1763 /*
1764 * This kprobe pre_handler is registered with every kretprobe. When probe
1765 * hits it will set up the return probe.
1766 */
1767 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1768 struct pt_regs *regs)
1769 {
1770 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1771 unsigned long hash, flags = 0;
1772 struct kretprobe_instance *ri;
1773
1774 /*TODO: consider to only swap the RA after the last pre_handler fired */
1775 hash = hash_ptr(current, KPROBE_HASH_BITS);
1776 raw_spin_lock_irqsave(&rp->lock, flags);
1777 if (!hlist_empty(&rp->free_instances)) {
1778 ri = hlist_entry(rp->free_instances.first,
1779 struct kretprobe_instance, hlist);
1780 hlist_del(&ri->hlist);
1781 raw_spin_unlock_irqrestore(&rp->lock, flags);
1782
1783 ri->rp = rp;
1784 ri->task = current;
1785
1786 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1787 raw_spin_lock_irqsave(&rp->lock, flags);
1788 hlist_add_head(&ri->hlist, &rp->free_instances);
1789 raw_spin_unlock_irqrestore(&rp->lock, flags);
1790 return 0;
1791 }
1792
1793 arch_prepare_kretprobe(ri, regs);
1794
1795 /* XXX(hch): why is there no hlist_move_head? */
1796 INIT_HLIST_NODE(&ri->hlist);
1797 kretprobe_table_lock(hash, &flags);
1798 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1799 kretprobe_table_unlock(hash, &flags);
1800 } else {
1801 rp->nmissed++;
1802 raw_spin_unlock_irqrestore(&rp->lock, flags);
1803 }
1804 return 0;
1805 }
1806
1807 int __kprobes register_kretprobe(struct kretprobe *rp)
1808 {
1809 int ret = 0;
1810 struct kretprobe_instance *inst;
1811 int i;
1812 void *addr;
1813
1814 if (kretprobe_blacklist_size) {
1815 addr = kprobe_addr(&rp->kp);
1816 if (IS_ERR(addr))
1817 return PTR_ERR(addr);
1818
1819 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1820 if (kretprobe_blacklist[i].addr == addr)
1821 return -EINVAL;
1822 }
1823 }
1824
1825 rp->kp.pre_handler = pre_handler_kretprobe;
1826 rp->kp.post_handler = NULL;
1827 rp->kp.fault_handler = NULL;
1828 rp->kp.break_handler = NULL;
1829
1830 /* Pre-allocate memory for max kretprobe instances */
1831 if (rp->maxactive <= 0) {
1832 #ifdef CONFIG_PREEMPT
1833 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1834 #else
1835 rp->maxactive = num_possible_cpus();
1836 #endif
1837 }
1838 raw_spin_lock_init(&rp->lock);
1839 INIT_HLIST_HEAD(&rp->free_instances);
1840 for (i = 0; i < rp->maxactive; i++) {
1841 inst = kmalloc(sizeof(struct kretprobe_instance) +
1842 rp->data_size, GFP_KERNEL);
1843 if (inst == NULL) {
1844 free_rp_inst(rp);
1845 return -ENOMEM;
1846 }
1847 INIT_HLIST_NODE(&inst->hlist);
1848 hlist_add_head(&inst->hlist, &rp->free_instances);
1849 }
1850
1851 rp->nmissed = 0;
1852 /* Establish function entry probe point */
1853 ret = register_kprobe(&rp->kp);
1854 if (ret != 0)
1855 free_rp_inst(rp);
1856 return ret;
1857 }
1858 EXPORT_SYMBOL_GPL(register_kretprobe);
1859
1860 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1861 {
1862 int ret = 0, i;
1863
1864 if (num <= 0)
1865 return -EINVAL;
1866 for (i = 0; i < num; i++) {
1867 ret = register_kretprobe(rps[i]);
1868 if (ret < 0) {
1869 if (i > 0)
1870 unregister_kretprobes(rps, i);
1871 break;
1872 }
1873 }
1874 return ret;
1875 }
1876 EXPORT_SYMBOL_GPL(register_kretprobes);
1877
1878 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1879 {
1880 unregister_kretprobes(&rp, 1);
1881 }
1882 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1883
1884 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1885 {
1886 int i;
1887
1888 if (num <= 0)
1889 return;
1890 mutex_lock(&kprobe_mutex);
1891 for (i = 0; i < num; i++)
1892 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1893 rps[i]->kp.addr = NULL;
1894 mutex_unlock(&kprobe_mutex);
1895
1896 synchronize_sched();
1897 for (i = 0; i < num; i++) {
1898 if (rps[i]->kp.addr) {
1899 __unregister_kprobe_bottom(&rps[i]->kp);
1900 cleanup_rp_inst(rps[i]);
1901 }
1902 }
1903 }
1904 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1905
1906 #else /* CONFIG_KRETPROBES */
1907 int __kprobes register_kretprobe(struct kretprobe *rp)
1908 {
1909 return -ENOSYS;
1910 }
1911 EXPORT_SYMBOL_GPL(register_kretprobe);
1912
1913 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1914 {
1915 return -ENOSYS;
1916 }
1917 EXPORT_SYMBOL_GPL(register_kretprobes);
1918
1919 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1920 {
1921 }
1922 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1923
1924 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1925 {
1926 }
1927 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1928
1929 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1930 struct pt_regs *regs)
1931 {
1932 return 0;
1933 }
1934
1935 #endif /* CONFIG_KRETPROBES */
1936
1937 /* Set the kprobe gone and remove its instruction buffer. */
1938 static void __kprobes kill_kprobe(struct kprobe *p)
1939 {
1940 struct kprobe *kp;
1941
1942 p->flags |= KPROBE_FLAG_GONE;
1943 if (kprobe_aggrprobe(p)) {
1944 /*
1945 * If this is an aggr_kprobe, we have to list all the
1946 * chained probes and mark them GONE.
1947 */
1948 list_for_each_entry_rcu(kp, &p->list, list)
1949 kp->flags |= KPROBE_FLAG_GONE;
1950 p->post_handler = NULL;
1951 p->break_handler = NULL;
1952 kill_optimized_kprobe(p);
1953 }
1954 /*
1955 * Here, we can remove insn_slot safely, because no thread calls
1956 * the original probed function (which will be freed soon) any more.
1957 */
1958 arch_remove_kprobe(p);
1959 }
1960
1961 /* Disable one kprobe */
1962 int __kprobes disable_kprobe(struct kprobe *kp)
1963 {
1964 int ret = 0;
1965
1966 mutex_lock(&kprobe_mutex);
1967
1968 /* Disable this kprobe */
1969 if (__disable_kprobe(kp) == NULL)
1970 ret = -EINVAL;
1971
1972 mutex_unlock(&kprobe_mutex);
1973 return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(disable_kprobe);
1976
1977 /* Enable one kprobe */
1978 int __kprobes enable_kprobe(struct kprobe *kp)
1979 {
1980 int ret = 0;
1981 struct kprobe *p;
1982
1983 mutex_lock(&kprobe_mutex);
1984
1985 /* Check whether specified probe is valid. */
1986 p = __get_valid_kprobe(kp);
1987 if (unlikely(p == NULL)) {
1988 ret = -EINVAL;
1989 goto out;
1990 }
1991
1992 if (kprobe_gone(kp)) {
1993 /* This kprobe has gone, we couldn't enable it. */
1994 ret = -EINVAL;
1995 goto out;
1996 }
1997
1998 if (p != kp)
1999 kp->flags &= ~KPROBE_FLAG_DISABLED;
2000
2001 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2002 p->flags &= ~KPROBE_FLAG_DISABLED;
2003 arm_kprobe(p);
2004 }
2005 out:
2006 mutex_unlock(&kprobe_mutex);
2007 return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(enable_kprobe);
2010
2011 void __kprobes dump_kprobe(struct kprobe *kp)
2012 {
2013 printk(KERN_WARNING "Dumping kprobe:\n");
2014 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2015 kp->symbol_name, kp->addr, kp->offset);
2016 }
2017
2018 /* Module notifier call back, checking kprobes on the module */
2019 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2020 unsigned long val, void *data)
2021 {
2022 struct module *mod = data;
2023 struct hlist_head *head;
2024 struct hlist_node *node;
2025 struct kprobe *p;
2026 unsigned int i;
2027 int checkcore = (val == MODULE_STATE_GOING);
2028
2029 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2030 return NOTIFY_DONE;
2031
2032 /*
2033 * When MODULE_STATE_GOING was notified, both of module .text and
2034 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2035 * notified, only .init.text section would be freed. We need to
2036 * disable kprobes which have been inserted in the sections.
2037 */
2038 mutex_lock(&kprobe_mutex);
2039 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2040 head = &kprobe_table[i];
2041 hlist_for_each_entry_rcu(p, node, head, hlist)
2042 if (within_module_init((unsigned long)p->addr, mod) ||
2043 (checkcore &&
2044 within_module_core((unsigned long)p->addr, mod))) {
2045 /*
2046 * The vaddr this probe is installed will soon
2047 * be vfreed buy not synced to disk. Hence,
2048 * disarming the breakpoint isn't needed.
2049 */
2050 kill_kprobe(p);
2051 }
2052 }
2053 mutex_unlock(&kprobe_mutex);
2054 return NOTIFY_DONE;
2055 }
2056
2057 static struct notifier_block kprobe_module_nb = {
2058 .notifier_call = kprobes_module_callback,
2059 .priority = 0
2060 };
2061
2062 static int __init init_kprobes(void)
2063 {
2064 int i, err = 0;
2065 unsigned long offset = 0, size = 0;
2066 char *modname, namebuf[128];
2067 const char *symbol_name;
2068 void *addr;
2069 struct kprobe_blackpoint *kb;
2070
2071 /* FIXME allocate the probe table, currently defined statically */
2072 /* initialize all list heads */
2073 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2074 INIT_HLIST_HEAD(&kprobe_table[i]);
2075 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2076 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2077 }
2078
2079 /*
2080 * Lookup and populate the kprobe_blacklist.
2081 *
2082 * Unlike the kretprobe blacklist, we'll need to determine
2083 * the range of addresses that belong to the said functions,
2084 * since a kprobe need not necessarily be at the beginning
2085 * of a function.
2086 */
2087 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2088 kprobe_lookup_name(kb->name, addr);
2089 if (!addr)
2090 continue;
2091
2092 kb->start_addr = (unsigned long)addr;
2093 symbol_name = kallsyms_lookup(kb->start_addr,
2094 &size, &offset, &modname, namebuf);
2095 if (!symbol_name)
2096 kb->range = 0;
2097 else
2098 kb->range = size;
2099 }
2100
2101 if (kretprobe_blacklist_size) {
2102 /* lookup the function address from its name */
2103 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2104 kprobe_lookup_name(kretprobe_blacklist[i].name,
2105 kretprobe_blacklist[i].addr);
2106 if (!kretprobe_blacklist[i].addr)
2107 printk("kretprobe: lookup failed: %s\n",
2108 kretprobe_blacklist[i].name);
2109 }
2110 }
2111
2112 #if defined(CONFIG_OPTPROBES)
2113 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2114 /* Init kprobe_optinsn_slots */
2115 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2116 #endif
2117 /* By default, kprobes can be optimized */
2118 kprobes_allow_optimization = true;
2119 #endif
2120
2121 /* By default, kprobes are armed */
2122 kprobes_all_disarmed = false;
2123
2124 err = arch_init_kprobes();
2125 if (!err)
2126 err = register_die_notifier(&kprobe_exceptions_nb);
2127 if (!err)
2128 err = register_module_notifier(&kprobe_module_nb);
2129
2130 kprobes_initialized = (err == 0);
2131
2132 if (!err)
2133 init_test_probes();
2134 return err;
2135 }
2136
2137 #ifdef CONFIG_DEBUG_FS
2138 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2139 const char *sym, int offset, char *modname, struct kprobe *pp)
2140 {
2141 char *kprobe_type;
2142
2143 if (p->pre_handler == pre_handler_kretprobe)
2144 kprobe_type = "r";
2145 else if (p->pre_handler == setjmp_pre_handler)
2146 kprobe_type = "j";
2147 else
2148 kprobe_type = "k";
2149
2150 if (sym)
2151 seq_printf(pi, "%p %s %s+0x%x %s ",
2152 p->addr, kprobe_type, sym, offset,
2153 (modname ? modname : " "));
2154 else
2155 seq_printf(pi, "%p %s %p ",
2156 p->addr, kprobe_type, p->addr);
2157
2158 if (!pp)
2159 pp = p;
2160 seq_printf(pi, "%s%s%s%s\n",
2161 (kprobe_gone(p) ? "[GONE]" : ""),
2162 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2163 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2164 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2165 }
2166
2167 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2168 {
2169 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2170 }
2171
2172 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2173 {
2174 (*pos)++;
2175 if (*pos >= KPROBE_TABLE_SIZE)
2176 return NULL;
2177 return pos;
2178 }
2179
2180 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2181 {
2182 /* Nothing to do */
2183 }
2184
2185 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2186 {
2187 struct hlist_head *head;
2188 struct hlist_node *node;
2189 struct kprobe *p, *kp;
2190 const char *sym = NULL;
2191 unsigned int i = *(loff_t *) v;
2192 unsigned long offset = 0;
2193 char *modname, namebuf[128];
2194
2195 head = &kprobe_table[i];
2196 preempt_disable();
2197 hlist_for_each_entry_rcu(p, node, head, hlist) {
2198 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2199 &offset, &modname, namebuf);
2200 if (kprobe_aggrprobe(p)) {
2201 list_for_each_entry_rcu(kp, &p->list, list)
2202 report_probe(pi, kp, sym, offset, modname, p);
2203 } else
2204 report_probe(pi, p, sym, offset, modname, NULL);
2205 }
2206 preempt_enable();
2207 return 0;
2208 }
2209
2210 static const struct seq_operations kprobes_seq_ops = {
2211 .start = kprobe_seq_start,
2212 .next = kprobe_seq_next,
2213 .stop = kprobe_seq_stop,
2214 .show = show_kprobe_addr
2215 };
2216
2217 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2218 {
2219 return seq_open(filp, &kprobes_seq_ops);
2220 }
2221
2222 static const struct file_operations debugfs_kprobes_operations = {
2223 .open = kprobes_open,
2224 .read = seq_read,
2225 .llseek = seq_lseek,
2226 .release = seq_release,
2227 };
2228
2229 static void __kprobes arm_all_kprobes(void)
2230 {
2231 struct hlist_head *head;
2232 struct hlist_node *node;
2233 struct kprobe *p;
2234 unsigned int i;
2235
2236 mutex_lock(&kprobe_mutex);
2237
2238 /* If kprobes are armed, just return */
2239 if (!kprobes_all_disarmed)
2240 goto already_enabled;
2241
2242 /* Arming kprobes doesn't optimize kprobe itself */
2243 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2244 head = &kprobe_table[i];
2245 hlist_for_each_entry_rcu(p, node, head, hlist)
2246 if (!kprobe_disabled(p))
2247 arm_kprobe(p);
2248 }
2249
2250 kprobes_all_disarmed = false;
2251 printk(KERN_INFO "Kprobes globally enabled\n");
2252
2253 already_enabled:
2254 mutex_unlock(&kprobe_mutex);
2255 return;
2256 }
2257
2258 static void __kprobes disarm_all_kprobes(void)
2259 {
2260 struct hlist_head *head;
2261 struct hlist_node *node;
2262 struct kprobe *p;
2263 unsigned int i;
2264
2265 mutex_lock(&kprobe_mutex);
2266
2267 /* If kprobes are already disarmed, just return */
2268 if (kprobes_all_disarmed) {
2269 mutex_unlock(&kprobe_mutex);
2270 return;
2271 }
2272
2273 kprobes_all_disarmed = true;
2274 printk(KERN_INFO "Kprobes globally disabled\n");
2275
2276 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277 head = &kprobe_table[i];
2278 hlist_for_each_entry_rcu(p, node, head, hlist) {
2279 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280 disarm_kprobe(p, false);
2281 }
2282 }
2283 mutex_unlock(&kprobe_mutex);
2284
2285 /* Wait for disarming all kprobes by optimizer */
2286 wait_for_kprobe_optimizer();
2287 }
2288
2289 /*
2290 * XXX: The debugfs bool file interface doesn't allow for callbacks
2291 * when the bool state is switched. We can reuse that facility when
2292 * available
2293 */
2294 static ssize_t read_enabled_file_bool(struct file *file,
2295 char __user *user_buf, size_t count, loff_t *ppos)
2296 {
2297 char buf[3];
2298
2299 if (!kprobes_all_disarmed)
2300 buf[0] = '1';
2301 else
2302 buf[0] = '0';
2303 buf[1] = '\n';
2304 buf[2] = 0x00;
2305 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306 }
2307
2308 static ssize_t write_enabled_file_bool(struct file *file,
2309 const char __user *user_buf, size_t count, loff_t *ppos)
2310 {
2311 char buf[32];
2312 size_t buf_size;
2313
2314 buf_size = min(count, (sizeof(buf)-1));
2315 if (copy_from_user(buf, user_buf, buf_size))
2316 return -EFAULT;
2317
2318 switch (buf[0]) {
2319 case 'y':
2320 case 'Y':
2321 case '1':
2322 arm_all_kprobes();
2323 break;
2324 case 'n':
2325 case 'N':
2326 case '0':
2327 disarm_all_kprobes();
2328 break;
2329 }
2330
2331 return count;
2332 }
2333
2334 static const struct file_operations fops_kp = {
2335 .read = read_enabled_file_bool,
2336 .write = write_enabled_file_bool,
2337 .llseek = default_llseek,
2338 };
2339
2340 static int __kprobes debugfs_kprobe_init(void)
2341 {
2342 struct dentry *dir, *file;
2343 unsigned int value = 1;
2344
2345 dir = debugfs_create_dir("kprobes", NULL);
2346 if (!dir)
2347 return -ENOMEM;
2348
2349 file = debugfs_create_file("list", 0444, dir, NULL,
2350 &debugfs_kprobes_operations);
2351 if (!file) {
2352 debugfs_remove(dir);
2353 return -ENOMEM;
2354 }
2355
2356 file = debugfs_create_file("enabled", 0600, dir,
2357 &value, &fops_kp);
2358 if (!file) {
2359 debugfs_remove(dir);
2360 return -ENOMEM;
2361 }
2362
2363 return 0;
2364 }
2365
2366 late_initcall(debugfs_kprobe_init);
2367 #endif /* CONFIG_DEBUG_FS */
2368
2369 module_init(init_kprobes);
2370
2371 /* defined in arch/.../kernel/kprobes.c */
2372 EXPORT_SYMBOL_GPL(jprobe_return);
This page took 0.07985 seconds and 5 git commands to generate.