93bec48f09ed78b11322fe124fdbda09b1c46b49
[deliverable/linux.git] / kernel / locking / mutex.c
1 /*
2 * kernel/locking/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29
30 /*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define __mutex_slowpath_needs_to_unlock() 0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
55 mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 osq_lock_init(&lock->osq);
58 #endif
59
60 debug_mutex_init(lock, name, key);
61 }
62
63 EXPORT_SYMBOL(__mutex_init);
64
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73
74 /**
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides mutex must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
95 void __sched mutex_lock(struct mutex *lock)
96 {
97 might_sleep();
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 mutex_set_owner(lock);
104 }
105
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108
109 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
110 /*
111 * In order to avoid a stampede of mutex spinners from acquiring the mutex
112 * more or less simultaneously, the spinners need to acquire a MCS lock
113 * first before spinning on the owner field.
114 *
115 */
116
117 /*
118 * Mutex spinning code migrated from kernel/sched/core.c
119 */
120
121 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
122 {
123 if (lock->owner != owner)
124 return false;
125
126 /*
127 * Ensure we emit the owner->on_cpu, dereference _after_ checking
128 * lock->owner still matches owner, if that fails, owner might
129 * point to free()d memory, if it still matches, the rcu_read_lock()
130 * ensures the memory stays valid.
131 */
132 barrier();
133
134 return owner->on_cpu;
135 }
136
137 /*
138 * Look out! "owner" is an entirely speculative pointer
139 * access and not reliable.
140 */
141 static noinline
142 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
143 {
144 rcu_read_lock();
145 while (owner_running(lock, owner)) {
146 if (need_resched())
147 break;
148
149 cpu_relax_lowlatency();
150 }
151 rcu_read_unlock();
152
153 /*
154 * We break out the loop above on need_resched() and when the
155 * owner changed, which is a sign for heavy contention. Return
156 * success only when lock->owner is NULL.
157 */
158 return lock->owner == NULL;
159 }
160
161 /*
162 * Initial check for entering the mutex spinning loop
163 */
164 static inline int mutex_can_spin_on_owner(struct mutex *lock)
165 {
166 struct task_struct *owner;
167 int retval = 1;
168
169 if (need_resched())
170 return 0;
171
172 rcu_read_lock();
173 owner = ACCESS_ONCE(lock->owner);
174 if (owner)
175 retval = owner->on_cpu;
176 rcu_read_unlock();
177 /*
178 * if lock->owner is not set, the mutex owner may have just acquired
179 * it and not set the owner yet or the mutex has been released.
180 */
181 return retval;
182 }
183 #endif
184
185 __visible __used noinline
186 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
187
188 /**
189 * mutex_unlock - release the mutex
190 * @lock: the mutex to be released
191 *
192 * Unlock a mutex that has been locked by this task previously.
193 *
194 * This function must not be used in interrupt context. Unlocking
195 * of a not locked mutex is not allowed.
196 *
197 * This function is similar to (but not equivalent to) up().
198 */
199 void __sched mutex_unlock(struct mutex *lock)
200 {
201 /*
202 * The unlocking fastpath is the 0->1 transition from 'locked'
203 * into 'unlocked' state:
204 */
205 #ifndef CONFIG_DEBUG_MUTEXES
206 /*
207 * When debugging is enabled we must not clear the owner before time,
208 * the slow path will always be taken, and that clears the owner field
209 * after verifying that it was indeed current.
210 */
211 mutex_clear_owner(lock);
212 #endif
213 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
214 }
215
216 EXPORT_SYMBOL(mutex_unlock);
217
218 /**
219 * ww_mutex_unlock - release the w/w mutex
220 * @lock: the mutex to be released
221 *
222 * Unlock a mutex that has been locked by this task previously with any of the
223 * ww_mutex_lock* functions (with or without an acquire context). It is
224 * forbidden to release the locks after releasing the acquire context.
225 *
226 * This function must not be used in interrupt context. Unlocking
227 * of a unlocked mutex is not allowed.
228 */
229 void __sched ww_mutex_unlock(struct ww_mutex *lock)
230 {
231 /*
232 * The unlocking fastpath is the 0->1 transition from 'locked'
233 * into 'unlocked' state:
234 */
235 if (lock->ctx) {
236 #ifdef CONFIG_DEBUG_MUTEXES
237 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
238 #endif
239 if (lock->ctx->acquired > 0)
240 lock->ctx->acquired--;
241 lock->ctx = NULL;
242 }
243
244 #ifndef CONFIG_DEBUG_MUTEXES
245 /*
246 * When debugging is enabled we must not clear the owner before time,
247 * the slow path will always be taken, and that clears the owner field
248 * after verifying that it was indeed current.
249 */
250 mutex_clear_owner(&lock->base);
251 #endif
252 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
253 }
254 EXPORT_SYMBOL(ww_mutex_unlock);
255
256 static inline int __sched
257 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
258 {
259 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
260 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
261
262 if (!hold_ctx)
263 return 0;
264
265 if (unlikely(ctx == hold_ctx))
266 return -EALREADY;
267
268 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
269 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
270 #ifdef CONFIG_DEBUG_MUTEXES
271 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
272 ctx->contending_lock = ww;
273 #endif
274 return -EDEADLK;
275 }
276
277 return 0;
278 }
279
280 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
281 struct ww_acquire_ctx *ww_ctx)
282 {
283 #ifdef CONFIG_DEBUG_MUTEXES
284 /*
285 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
286 * but released with a normal mutex_unlock in this call.
287 *
288 * This should never happen, always use ww_mutex_unlock.
289 */
290 DEBUG_LOCKS_WARN_ON(ww->ctx);
291
292 /*
293 * Not quite done after calling ww_acquire_done() ?
294 */
295 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
296
297 if (ww_ctx->contending_lock) {
298 /*
299 * After -EDEADLK you tried to
300 * acquire a different ww_mutex? Bad!
301 */
302 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
303
304 /*
305 * You called ww_mutex_lock after receiving -EDEADLK,
306 * but 'forgot' to unlock everything else first?
307 */
308 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
309 ww_ctx->contending_lock = NULL;
310 }
311
312 /*
313 * Naughty, using a different class will lead to undefined behavior!
314 */
315 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
316 #endif
317 ww_ctx->acquired++;
318 }
319
320 /*
321 * after acquiring lock with fastpath or when we lost out in contested
322 * slowpath, set ctx and wake up any waiters so they can recheck.
323 *
324 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
325 * as the fastpath and opportunistic spinning are disabled in that case.
326 */
327 static __always_inline void
328 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
329 struct ww_acquire_ctx *ctx)
330 {
331 unsigned long flags;
332 struct mutex_waiter *cur;
333
334 ww_mutex_lock_acquired(lock, ctx);
335
336 lock->ctx = ctx;
337
338 /*
339 * The lock->ctx update should be visible on all cores before
340 * the atomic read is done, otherwise contended waiters might be
341 * missed. The contended waiters will either see ww_ctx == NULL
342 * and keep spinning, or it will acquire wait_lock, add itself
343 * to waiter list and sleep.
344 */
345 smp_mb(); /* ^^^ */
346
347 /*
348 * Check if lock is contended, if not there is nobody to wake up
349 */
350 if (likely(atomic_read(&lock->base.count) == 0))
351 return;
352
353 /*
354 * Uh oh, we raced in fastpath, wake up everyone in this case,
355 * so they can see the new lock->ctx.
356 */
357 spin_lock_mutex(&lock->base.wait_lock, flags);
358 list_for_each_entry(cur, &lock->base.wait_list, list) {
359 debug_mutex_wake_waiter(&lock->base, cur);
360 wake_up_process(cur->task);
361 }
362 spin_unlock_mutex(&lock->base.wait_lock, flags);
363 }
364
365 /*
366 * Lock a mutex (possibly interruptible), slowpath:
367 */
368 static __always_inline int __sched
369 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
370 struct lockdep_map *nest_lock, unsigned long ip,
371 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
372 {
373 struct task_struct *task = current;
374 struct mutex_waiter waiter;
375 unsigned long flags;
376 int ret;
377
378 preempt_disable();
379 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
380
381 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
382 /*
383 * Optimistic spinning.
384 *
385 * We try to spin for acquisition when we find that the lock owner
386 * is currently running on a (different) CPU and while we don't
387 * need to reschedule. The rationale is that if the lock owner is
388 * running, it is likely to release the lock soon.
389 *
390 * Since this needs the lock owner, and this mutex implementation
391 * doesn't track the owner atomically in the lock field, we need to
392 * track it non-atomically.
393 *
394 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
395 * to serialize everything.
396 *
397 * The mutex spinners are queued up using MCS lock so that only one
398 * spinner can compete for the mutex. However, if mutex spinning isn't
399 * going to happen, there is no point in going through the lock/unlock
400 * overhead.
401 */
402 if (!mutex_can_spin_on_owner(lock))
403 goto slowpath;
404
405 if (!osq_lock(&lock->osq))
406 goto slowpath;
407
408 for (;;) {
409 struct task_struct *owner;
410
411 if (use_ww_ctx && ww_ctx->acquired > 0) {
412 struct ww_mutex *ww;
413
414 ww = container_of(lock, struct ww_mutex, base);
415 /*
416 * If ww->ctx is set the contents are undefined, only
417 * by acquiring wait_lock there is a guarantee that
418 * they are not invalid when reading.
419 *
420 * As such, when deadlock detection needs to be
421 * performed the optimistic spinning cannot be done.
422 */
423 if (ACCESS_ONCE(ww->ctx))
424 break;
425 }
426
427 /*
428 * If there's an owner, wait for it to either
429 * release the lock or go to sleep.
430 */
431 owner = ACCESS_ONCE(lock->owner);
432 if (owner && !mutex_spin_on_owner(lock, owner))
433 break;
434
435 /* Try to acquire the mutex if it is unlocked. */
436 if (!mutex_is_locked(lock) &&
437 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
438 lock_acquired(&lock->dep_map, ip);
439 if (use_ww_ctx) {
440 struct ww_mutex *ww;
441 ww = container_of(lock, struct ww_mutex, base);
442
443 ww_mutex_set_context_fastpath(ww, ww_ctx);
444 }
445
446 mutex_set_owner(lock);
447 osq_unlock(&lock->osq);
448 preempt_enable();
449 return 0;
450 }
451
452 /*
453 * When there's no owner, we might have preempted between the
454 * owner acquiring the lock and setting the owner field. If
455 * we're an RT task that will live-lock because we won't let
456 * the owner complete.
457 */
458 if (!owner && (need_resched() || rt_task(task)))
459 break;
460
461 /*
462 * The cpu_relax() call is a compiler barrier which forces
463 * everything in this loop to be re-loaded. We don't need
464 * memory barriers as we'll eventually observe the right
465 * values at the cost of a few extra spins.
466 */
467 cpu_relax_lowlatency();
468 }
469 osq_unlock(&lock->osq);
470 slowpath:
471 /*
472 * If we fell out of the spin path because of need_resched(),
473 * reschedule now, before we try-lock the mutex. This avoids getting
474 * scheduled out right after we obtained the mutex.
475 */
476 if (need_resched())
477 schedule_preempt_disabled();
478 #endif
479 spin_lock_mutex(&lock->wait_lock, flags);
480
481 /*
482 * Once more, try to acquire the lock. Only try-lock the mutex if
483 * it is unlocked to reduce unnecessary xchg() operations.
484 */
485 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
486 goto skip_wait;
487
488 debug_mutex_lock_common(lock, &waiter);
489 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
490
491 /* add waiting tasks to the end of the waitqueue (FIFO): */
492 list_add_tail(&waiter.list, &lock->wait_list);
493 waiter.task = task;
494
495 lock_contended(&lock->dep_map, ip);
496
497 for (;;) {
498 /*
499 * Lets try to take the lock again - this is needed even if
500 * we get here for the first time (shortly after failing to
501 * acquire the lock), to make sure that we get a wakeup once
502 * it's unlocked. Later on, if we sleep, this is the
503 * operation that gives us the lock. We xchg it to -1, so
504 * that when we release the lock, we properly wake up the
505 * other waiters. We only attempt the xchg if the count is
506 * non-negative in order to avoid unnecessary xchg operations:
507 */
508 if (atomic_read(&lock->count) >= 0 &&
509 (atomic_xchg(&lock->count, -1) == 1))
510 break;
511
512 /*
513 * got a signal? (This code gets eliminated in the
514 * TASK_UNINTERRUPTIBLE case.)
515 */
516 if (unlikely(signal_pending_state(state, task))) {
517 ret = -EINTR;
518 goto err;
519 }
520
521 if (use_ww_ctx && ww_ctx->acquired > 0) {
522 ret = __mutex_lock_check_stamp(lock, ww_ctx);
523 if (ret)
524 goto err;
525 }
526
527 __set_task_state(task, state);
528
529 /* didn't get the lock, go to sleep: */
530 spin_unlock_mutex(&lock->wait_lock, flags);
531 schedule_preempt_disabled();
532 spin_lock_mutex(&lock->wait_lock, flags);
533 }
534 mutex_remove_waiter(lock, &waiter, current_thread_info());
535 /* set it to 0 if there are no waiters left: */
536 if (likely(list_empty(&lock->wait_list)))
537 atomic_set(&lock->count, 0);
538 debug_mutex_free_waiter(&waiter);
539
540 skip_wait:
541 /* got the lock - cleanup and rejoice! */
542 lock_acquired(&lock->dep_map, ip);
543 mutex_set_owner(lock);
544
545 if (use_ww_ctx) {
546 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
547 struct mutex_waiter *cur;
548
549 /*
550 * This branch gets optimized out for the common case,
551 * and is only important for ww_mutex_lock.
552 */
553 ww_mutex_lock_acquired(ww, ww_ctx);
554 ww->ctx = ww_ctx;
555
556 /*
557 * Give any possible sleeping processes the chance to wake up,
558 * so they can recheck if they have to back off.
559 */
560 list_for_each_entry(cur, &lock->wait_list, list) {
561 debug_mutex_wake_waiter(lock, cur);
562 wake_up_process(cur->task);
563 }
564 }
565
566 spin_unlock_mutex(&lock->wait_lock, flags);
567 preempt_enable();
568 return 0;
569
570 err:
571 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
572 spin_unlock_mutex(&lock->wait_lock, flags);
573 debug_mutex_free_waiter(&waiter);
574 mutex_release(&lock->dep_map, 1, ip);
575 preempt_enable();
576 return ret;
577 }
578
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 void __sched
581 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
582 {
583 might_sleep();
584 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
585 subclass, NULL, _RET_IP_, NULL, 0);
586 }
587
588 EXPORT_SYMBOL_GPL(mutex_lock_nested);
589
590 void __sched
591 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
592 {
593 might_sleep();
594 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
595 0, nest, _RET_IP_, NULL, 0);
596 }
597
598 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
599
600 int __sched
601 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
602 {
603 might_sleep();
604 return __mutex_lock_common(lock, TASK_KILLABLE,
605 subclass, NULL, _RET_IP_, NULL, 0);
606 }
607 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
608
609 int __sched
610 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
611 {
612 might_sleep();
613 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
614 subclass, NULL, _RET_IP_, NULL, 0);
615 }
616
617 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
618
619 static inline int
620 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
621 {
622 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
623 unsigned tmp;
624
625 if (ctx->deadlock_inject_countdown-- == 0) {
626 tmp = ctx->deadlock_inject_interval;
627 if (tmp > UINT_MAX/4)
628 tmp = UINT_MAX;
629 else
630 tmp = tmp*2 + tmp + tmp/2;
631
632 ctx->deadlock_inject_interval = tmp;
633 ctx->deadlock_inject_countdown = tmp;
634 ctx->contending_lock = lock;
635
636 ww_mutex_unlock(lock);
637
638 return -EDEADLK;
639 }
640 #endif
641
642 return 0;
643 }
644
645 int __sched
646 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
647 {
648 int ret;
649
650 might_sleep();
651 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
652 0, &ctx->dep_map, _RET_IP_, ctx, 1);
653 if (!ret && ctx->acquired > 1)
654 return ww_mutex_deadlock_injection(lock, ctx);
655
656 return ret;
657 }
658 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
659
660 int __sched
661 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
662 {
663 int ret;
664
665 might_sleep();
666 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
667 0, &ctx->dep_map, _RET_IP_, ctx, 1);
668
669 if (!ret && ctx->acquired > 1)
670 return ww_mutex_deadlock_injection(lock, ctx);
671
672 return ret;
673 }
674 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
675
676 #endif
677
678 /*
679 * Release the lock, slowpath:
680 */
681 static inline void
682 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
683 {
684 unsigned long flags;
685
686 /*
687 * As a performance measurement, release the lock before doing other
688 * wakeup related duties to follow. This allows other tasks to acquire
689 * the lock sooner, while still handling cleanups in past unlock calls.
690 * This can be done as we do not enforce strict equivalence between the
691 * mutex counter and wait_list.
692 *
693 *
694 * Some architectures leave the lock unlocked in the fastpath failure
695 * case, others need to leave it locked. In the later case we have to
696 * unlock it here - as the lock counter is currently 0 or negative.
697 */
698 if (__mutex_slowpath_needs_to_unlock())
699 atomic_set(&lock->count, 1);
700
701 spin_lock_mutex(&lock->wait_lock, flags);
702 mutex_release(&lock->dep_map, nested, _RET_IP_);
703 debug_mutex_unlock(lock);
704
705 if (!list_empty(&lock->wait_list)) {
706 /* get the first entry from the wait-list: */
707 struct mutex_waiter *waiter =
708 list_entry(lock->wait_list.next,
709 struct mutex_waiter, list);
710
711 debug_mutex_wake_waiter(lock, waiter);
712
713 wake_up_process(waiter->task);
714 }
715
716 spin_unlock_mutex(&lock->wait_lock, flags);
717 }
718
719 /*
720 * Release the lock, slowpath:
721 */
722 __visible void
723 __mutex_unlock_slowpath(atomic_t *lock_count)
724 {
725 struct mutex *lock = container_of(lock_count, struct mutex, count);
726
727 __mutex_unlock_common_slowpath(lock, 1);
728 }
729
730 #ifndef CONFIG_DEBUG_LOCK_ALLOC
731 /*
732 * Here come the less common (and hence less performance-critical) APIs:
733 * mutex_lock_interruptible() and mutex_trylock().
734 */
735 static noinline int __sched
736 __mutex_lock_killable_slowpath(struct mutex *lock);
737
738 static noinline int __sched
739 __mutex_lock_interruptible_slowpath(struct mutex *lock);
740
741 /**
742 * mutex_lock_interruptible - acquire the mutex, interruptible
743 * @lock: the mutex to be acquired
744 *
745 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
746 * been acquired or sleep until the mutex becomes available. If a
747 * signal arrives while waiting for the lock then this function
748 * returns -EINTR.
749 *
750 * This function is similar to (but not equivalent to) down_interruptible().
751 */
752 int __sched mutex_lock_interruptible(struct mutex *lock)
753 {
754 int ret;
755
756 might_sleep();
757 ret = __mutex_fastpath_lock_retval(&lock->count);
758 if (likely(!ret)) {
759 mutex_set_owner(lock);
760 return 0;
761 } else
762 return __mutex_lock_interruptible_slowpath(lock);
763 }
764
765 EXPORT_SYMBOL(mutex_lock_interruptible);
766
767 int __sched mutex_lock_killable(struct mutex *lock)
768 {
769 int ret;
770
771 might_sleep();
772 ret = __mutex_fastpath_lock_retval(&lock->count);
773 if (likely(!ret)) {
774 mutex_set_owner(lock);
775 return 0;
776 } else
777 return __mutex_lock_killable_slowpath(lock);
778 }
779 EXPORT_SYMBOL(mutex_lock_killable);
780
781 __visible void __sched
782 __mutex_lock_slowpath(atomic_t *lock_count)
783 {
784 struct mutex *lock = container_of(lock_count, struct mutex, count);
785
786 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
787 NULL, _RET_IP_, NULL, 0);
788 }
789
790 static noinline int __sched
791 __mutex_lock_killable_slowpath(struct mutex *lock)
792 {
793 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
794 NULL, _RET_IP_, NULL, 0);
795 }
796
797 static noinline int __sched
798 __mutex_lock_interruptible_slowpath(struct mutex *lock)
799 {
800 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
801 NULL, _RET_IP_, NULL, 0);
802 }
803
804 static noinline int __sched
805 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
806 {
807 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
808 NULL, _RET_IP_, ctx, 1);
809 }
810
811 static noinline int __sched
812 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
813 struct ww_acquire_ctx *ctx)
814 {
815 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
816 NULL, _RET_IP_, ctx, 1);
817 }
818
819 #endif
820
821 /*
822 * Spinlock based trylock, we take the spinlock and check whether we
823 * can get the lock:
824 */
825 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
826 {
827 struct mutex *lock = container_of(lock_count, struct mutex, count);
828 unsigned long flags;
829 int prev;
830
831 /* No need to trylock if the mutex is locked. */
832 if (mutex_is_locked(lock))
833 return 0;
834
835 spin_lock_mutex(&lock->wait_lock, flags);
836
837 prev = atomic_xchg(&lock->count, -1);
838 if (likely(prev == 1)) {
839 mutex_set_owner(lock);
840 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
841 }
842
843 /* Set it back to 0 if there are no waiters: */
844 if (likely(list_empty(&lock->wait_list)))
845 atomic_set(&lock->count, 0);
846
847 spin_unlock_mutex(&lock->wait_lock, flags);
848
849 return prev == 1;
850 }
851
852 /**
853 * mutex_trylock - try to acquire the mutex, without waiting
854 * @lock: the mutex to be acquired
855 *
856 * Try to acquire the mutex atomically. Returns 1 if the mutex
857 * has been acquired successfully, and 0 on contention.
858 *
859 * NOTE: this function follows the spin_trylock() convention, so
860 * it is negated from the down_trylock() return values! Be careful
861 * about this when converting semaphore users to mutexes.
862 *
863 * This function must not be used in interrupt context. The
864 * mutex must be released by the same task that acquired it.
865 */
866 int __sched mutex_trylock(struct mutex *lock)
867 {
868 int ret;
869
870 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
871 if (ret)
872 mutex_set_owner(lock);
873
874 return ret;
875 }
876 EXPORT_SYMBOL(mutex_trylock);
877
878 #ifndef CONFIG_DEBUG_LOCK_ALLOC
879 int __sched
880 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
881 {
882 int ret;
883
884 might_sleep();
885
886 ret = __mutex_fastpath_lock_retval(&lock->base.count);
887
888 if (likely(!ret)) {
889 ww_mutex_set_context_fastpath(lock, ctx);
890 mutex_set_owner(&lock->base);
891 } else
892 ret = __ww_mutex_lock_slowpath(lock, ctx);
893 return ret;
894 }
895 EXPORT_SYMBOL(__ww_mutex_lock);
896
897 int __sched
898 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
899 {
900 int ret;
901
902 might_sleep();
903
904 ret = __mutex_fastpath_lock_retval(&lock->base.count);
905
906 if (likely(!ret)) {
907 ww_mutex_set_context_fastpath(lock, ctx);
908 mutex_set_owner(&lock->base);
909 } else
910 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
911 return ret;
912 }
913 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
914
915 #endif
916
917 /**
918 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
919 * @cnt: the atomic which we are to dec
920 * @lock: the mutex to return holding if we dec to 0
921 *
922 * return true and hold lock if we dec to 0, return false otherwise
923 */
924 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
925 {
926 /* dec if we can't possibly hit 0 */
927 if (atomic_add_unless(cnt, -1, 1))
928 return 0;
929 /* we might hit 0, so take the lock */
930 mutex_lock(lock);
931 if (!atomic_dec_and_test(cnt)) {
932 /* when we actually did the dec, we didn't hit 0 */
933 mutex_unlock(lock);
934 return 0;
935 }
936 /* we hit 0, and we hold the lock */
937 return 1;
938 }
939 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.081685 seconds and 4 git commands to generate.