gpio: syscon: reuse for keystone 2 socs
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <uapi/linux/module.h>
64 #include "module-internal.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/module.h>
68
69 #ifndef ARCH_SHF_SMALL
70 #define ARCH_SHF_SMALL 0
71 #endif
72
73 /*
74 * Modules' sections will be aligned on page boundaries
75 * to ensure complete separation of code and data, but
76 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
77 */
78 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
79 # define debug_align(X) ALIGN(X, PAGE_SIZE)
80 #else
81 # define debug_align(X) (X)
82 #endif
83
84 /*
85 * Given BASE and SIZE this macro calculates the number of pages the
86 * memory regions occupies
87 */
88 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
89 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
90 PFN_DOWN((unsigned long)BASE) + 1) \
91 : (0UL))
92
93 /* If this is set, the section belongs in the init part of the module */
94 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
95
96 /*
97 * Mutex protects:
98 * 1) List of modules (also safely readable with preempt_disable),
99 * 2) module_use links,
100 * 3) module_addr_min/module_addr_max.
101 * (delete uses stop_machine/add uses RCU list operations). */
102 DEFINE_MUTEX(module_mutex);
103 EXPORT_SYMBOL_GPL(module_mutex);
104 static LIST_HEAD(modules);
105 #ifdef CONFIG_KGDB_KDB
106 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
107 #endif /* CONFIG_KGDB_KDB */
108
109 #ifdef CONFIG_MODULE_SIG
110 #ifdef CONFIG_MODULE_SIG_FORCE
111 static bool sig_enforce = true;
112 #else
113 static bool sig_enforce = false;
114
115 static int param_set_bool_enable_only(const char *val,
116 const struct kernel_param *kp)
117 {
118 int err;
119 bool test;
120 struct kernel_param dummy_kp = *kp;
121
122 dummy_kp.arg = &test;
123
124 err = param_set_bool(val, &dummy_kp);
125 if (err)
126 return err;
127
128 /* Don't let them unset it once it's set! */
129 if (!test && sig_enforce)
130 return -EROFS;
131
132 if (test)
133 sig_enforce = true;
134 return 0;
135 }
136
137 static const struct kernel_param_ops param_ops_bool_enable_only = {
138 .flags = KERNEL_PARAM_FL_NOARG,
139 .set = param_set_bool_enable_only,
140 .get = param_get_bool,
141 };
142 #define param_check_bool_enable_only param_check_bool
143
144 module_param(sig_enforce, bool_enable_only, 0644);
145 #endif /* !CONFIG_MODULE_SIG_FORCE */
146 #endif /* CONFIG_MODULE_SIG */
147
148 /* Block module loading/unloading? */
149 int modules_disabled = 0;
150 core_param(nomodule, modules_disabled, bint, 0);
151
152 /* Waiting for a module to finish initializing? */
153 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
154
155 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
156
157 /* Bounds of module allocation, for speeding __module_address.
158 * Protected by module_mutex. */
159 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
160
161 int register_module_notifier(struct notifier_block * nb)
162 {
163 return blocking_notifier_chain_register(&module_notify_list, nb);
164 }
165 EXPORT_SYMBOL(register_module_notifier);
166
167 int unregister_module_notifier(struct notifier_block * nb)
168 {
169 return blocking_notifier_chain_unregister(&module_notify_list, nb);
170 }
171 EXPORT_SYMBOL(unregister_module_notifier);
172
173 struct load_info {
174 Elf_Ehdr *hdr;
175 unsigned long len;
176 Elf_Shdr *sechdrs;
177 char *secstrings, *strtab;
178 unsigned long symoffs, stroffs;
179 struct _ddebug *debug;
180 unsigned int num_debug;
181 bool sig_ok;
182 struct {
183 unsigned int sym, str, mod, vers, info, pcpu;
184 } index;
185 };
186
187 /* We require a truly strong try_module_get(): 0 means failure due to
188 ongoing or failed initialization etc. */
189 static inline int strong_try_module_get(struct module *mod)
190 {
191 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
192 if (mod && mod->state == MODULE_STATE_COMING)
193 return -EBUSY;
194 if (try_module_get(mod))
195 return 0;
196 else
197 return -ENOENT;
198 }
199
200 static inline void add_taint_module(struct module *mod, unsigned flag,
201 enum lockdep_ok lockdep_ok)
202 {
203 add_taint(flag, lockdep_ok);
204 mod->taints |= (1U << flag);
205 }
206
207 /*
208 * A thread that wants to hold a reference to a module only while it
209 * is running can call this to safely exit. nfsd and lockd use this.
210 */
211 void __module_put_and_exit(struct module *mod, long code)
212 {
213 module_put(mod);
214 do_exit(code);
215 }
216 EXPORT_SYMBOL(__module_put_and_exit);
217
218 /* Find a module section: 0 means not found. */
219 static unsigned int find_sec(const struct load_info *info, const char *name)
220 {
221 unsigned int i;
222
223 for (i = 1; i < info->hdr->e_shnum; i++) {
224 Elf_Shdr *shdr = &info->sechdrs[i];
225 /* Alloc bit cleared means "ignore it." */
226 if ((shdr->sh_flags & SHF_ALLOC)
227 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
228 return i;
229 }
230 return 0;
231 }
232
233 /* Find a module section, or NULL. */
234 static void *section_addr(const struct load_info *info, const char *name)
235 {
236 /* Section 0 has sh_addr 0. */
237 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
238 }
239
240 /* Find a module section, or NULL. Fill in number of "objects" in section. */
241 static void *section_objs(const struct load_info *info,
242 const char *name,
243 size_t object_size,
244 unsigned int *num)
245 {
246 unsigned int sec = find_sec(info, name);
247
248 /* Section 0 has sh_addr 0 and sh_size 0. */
249 *num = info->sechdrs[sec].sh_size / object_size;
250 return (void *)info->sechdrs[sec].sh_addr;
251 }
252
253 /* Provided by the linker */
254 extern const struct kernel_symbol __start___ksymtab[];
255 extern const struct kernel_symbol __stop___ksymtab[];
256 extern const struct kernel_symbol __start___ksymtab_gpl[];
257 extern const struct kernel_symbol __stop___ksymtab_gpl[];
258 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
259 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
260 extern const unsigned long __start___kcrctab[];
261 extern const unsigned long __start___kcrctab_gpl[];
262 extern const unsigned long __start___kcrctab_gpl_future[];
263 #ifdef CONFIG_UNUSED_SYMBOLS
264 extern const struct kernel_symbol __start___ksymtab_unused[];
265 extern const struct kernel_symbol __stop___ksymtab_unused[];
266 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
267 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
268 extern const unsigned long __start___kcrctab_unused[];
269 extern const unsigned long __start___kcrctab_unused_gpl[];
270 #endif
271
272 #ifndef CONFIG_MODVERSIONS
273 #define symversion(base, idx) NULL
274 #else
275 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
276 #endif
277
278 static bool each_symbol_in_section(const struct symsearch *arr,
279 unsigned int arrsize,
280 struct module *owner,
281 bool (*fn)(const struct symsearch *syms,
282 struct module *owner,
283 void *data),
284 void *data)
285 {
286 unsigned int j;
287
288 for (j = 0; j < arrsize; j++) {
289 if (fn(&arr[j], owner, data))
290 return true;
291 }
292
293 return false;
294 }
295
296 /* Returns true as soon as fn returns true, otherwise false. */
297 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
298 struct module *owner,
299 void *data),
300 void *data)
301 {
302 struct module *mod;
303 static const struct symsearch arr[] = {
304 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
305 NOT_GPL_ONLY, false },
306 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
307 __start___kcrctab_gpl,
308 GPL_ONLY, false },
309 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
310 __start___kcrctab_gpl_future,
311 WILL_BE_GPL_ONLY, false },
312 #ifdef CONFIG_UNUSED_SYMBOLS
313 { __start___ksymtab_unused, __stop___ksymtab_unused,
314 __start___kcrctab_unused,
315 NOT_GPL_ONLY, true },
316 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
317 __start___kcrctab_unused_gpl,
318 GPL_ONLY, true },
319 #endif
320 };
321
322 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
323 return true;
324
325 list_for_each_entry_rcu(mod, &modules, list) {
326 struct symsearch arr[] = {
327 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
328 NOT_GPL_ONLY, false },
329 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
330 mod->gpl_crcs,
331 GPL_ONLY, false },
332 { mod->gpl_future_syms,
333 mod->gpl_future_syms + mod->num_gpl_future_syms,
334 mod->gpl_future_crcs,
335 WILL_BE_GPL_ONLY, false },
336 #ifdef CONFIG_UNUSED_SYMBOLS
337 { mod->unused_syms,
338 mod->unused_syms + mod->num_unused_syms,
339 mod->unused_crcs,
340 NOT_GPL_ONLY, true },
341 { mod->unused_gpl_syms,
342 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
343 mod->unused_gpl_crcs,
344 GPL_ONLY, true },
345 #endif
346 };
347
348 if (mod->state == MODULE_STATE_UNFORMED)
349 continue;
350
351 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
352 return true;
353 }
354 return false;
355 }
356 EXPORT_SYMBOL_GPL(each_symbol_section);
357
358 struct find_symbol_arg {
359 /* Input */
360 const char *name;
361 bool gplok;
362 bool warn;
363
364 /* Output */
365 struct module *owner;
366 const unsigned long *crc;
367 const struct kernel_symbol *sym;
368 };
369
370 static bool check_symbol(const struct symsearch *syms,
371 struct module *owner,
372 unsigned int symnum, void *data)
373 {
374 struct find_symbol_arg *fsa = data;
375
376 if (!fsa->gplok) {
377 if (syms->licence == GPL_ONLY)
378 return false;
379 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
380 pr_warn("Symbol %s is being used by a non-GPL module, "
381 "which will not be allowed in the future\n",
382 fsa->name);
383 }
384 }
385
386 #ifdef CONFIG_UNUSED_SYMBOLS
387 if (syms->unused && fsa->warn) {
388 pr_warn("Symbol %s is marked as UNUSED, however this module is "
389 "using it.\n", fsa->name);
390 pr_warn("This symbol will go away in the future.\n");
391 pr_warn("Please evalute if this is the right api to use and if "
392 "it really is, submit a report the linux kernel "
393 "mailinglist together with submitting your code for "
394 "inclusion.\n");
395 }
396 #endif
397
398 fsa->owner = owner;
399 fsa->crc = symversion(syms->crcs, symnum);
400 fsa->sym = &syms->start[symnum];
401 return true;
402 }
403
404 static int cmp_name(const void *va, const void *vb)
405 {
406 const char *a;
407 const struct kernel_symbol *b;
408 a = va; b = vb;
409 return strcmp(a, b->name);
410 }
411
412 static bool find_symbol_in_section(const struct symsearch *syms,
413 struct module *owner,
414 void *data)
415 {
416 struct find_symbol_arg *fsa = data;
417 struct kernel_symbol *sym;
418
419 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
420 sizeof(struct kernel_symbol), cmp_name);
421
422 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
423 return true;
424
425 return false;
426 }
427
428 /* Find a symbol and return it, along with, (optional) crc and
429 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
430 const struct kernel_symbol *find_symbol(const char *name,
431 struct module **owner,
432 const unsigned long **crc,
433 bool gplok,
434 bool warn)
435 {
436 struct find_symbol_arg fsa;
437
438 fsa.name = name;
439 fsa.gplok = gplok;
440 fsa.warn = warn;
441
442 if (each_symbol_section(find_symbol_in_section, &fsa)) {
443 if (owner)
444 *owner = fsa.owner;
445 if (crc)
446 *crc = fsa.crc;
447 return fsa.sym;
448 }
449
450 pr_debug("Failed to find symbol %s\n", name);
451 return NULL;
452 }
453 EXPORT_SYMBOL_GPL(find_symbol);
454
455 /* Search for module by name: must hold module_mutex. */
456 static struct module *find_module_all(const char *name, size_t len,
457 bool even_unformed)
458 {
459 struct module *mod;
460
461 list_for_each_entry(mod, &modules, list) {
462 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
463 continue;
464 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
465 return mod;
466 }
467 return NULL;
468 }
469
470 struct module *find_module(const char *name)
471 {
472 return find_module_all(name, strlen(name), false);
473 }
474 EXPORT_SYMBOL_GPL(find_module);
475
476 #ifdef CONFIG_SMP
477
478 static inline void __percpu *mod_percpu(struct module *mod)
479 {
480 return mod->percpu;
481 }
482
483 static int percpu_modalloc(struct module *mod, struct load_info *info)
484 {
485 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
486 unsigned long align = pcpusec->sh_addralign;
487
488 if (!pcpusec->sh_size)
489 return 0;
490
491 if (align > PAGE_SIZE) {
492 pr_warn("%s: per-cpu alignment %li > %li\n",
493 mod->name, align, PAGE_SIZE);
494 align = PAGE_SIZE;
495 }
496
497 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
498 if (!mod->percpu) {
499 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
500 mod->name, (unsigned long)pcpusec->sh_size);
501 return -ENOMEM;
502 }
503 mod->percpu_size = pcpusec->sh_size;
504 return 0;
505 }
506
507 static void percpu_modfree(struct module *mod)
508 {
509 free_percpu(mod->percpu);
510 }
511
512 static unsigned int find_pcpusec(struct load_info *info)
513 {
514 return find_sec(info, ".data..percpu");
515 }
516
517 static void percpu_modcopy(struct module *mod,
518 const void *from, unsigned long size)
519 {
520 int cpu;
521
522 for_each_possible_cpu(cpu)
523 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
524 }
525
526 /**
527 * is_module_percpu_address - test whether address is from module static percpu
528 * @addr: address to test
529 *
530 * Test whether @addr belongs to module static percpu area.
531 *
532 * RETURNS:
533 * %true if @addr is from module static percpu area
534 */
535 bool is_module_percpu_address(unsigned long addr)
536 {
537 struct module *mod;
538 unsigned int cpu;
539
540 preempt_disable();
541
542 list_for_each_entry_rcu(mod, &modules, list) {
543 if (mod->state == MODULE_STATE_UNFORMED)
544 continue;
545 if (!mod->percpu_size)
546 continue;
547 for_each_possible_cpu(cpu) {
548 void *start = per_cpu_ptr(mod->percpu, cpu);
549
550 if ((void *)addr >= start &&
551 (void *)addr < start + mod->percpu_size) {
552 preempt_enable();
553 return true;
554 }
555 }
556 }
557
558 preempt_enable();
559 return false;
560 }
561
562 #else /* ... !CONFIG_SMP */
563
564 static inline void __percpu *mod_percpu(struct module *mod)
565 {
566 return NULL;
567 }
568 static int percpu_modalloc(struct module *mod, struct load_info *info)
569 {
570 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
571 if (info->sechdrs[info->index.pcpu].sh_size != 0)
572 return -ENOMEM;
573 return 0;
574 }
575 static inline void percpu_modfree(struct module *mod)
576 {
577 }
578 static unsigned int find_pcpusec(struct load_info *info)
579 {
580 return 0;
581 }
582 static inline void percpu_modcopy(struct module *mod,
583 const void *from, unsigned long size)
584 {
585 /* pcpusec should be 0, and size of that section should be 0. */
586 BUG_ON(size != 0);
587 }
588 bool is_module_percpu_address(unsigned long addr)
589 {
590 return false;
591 }
592
593 #endif /* CONFIG_SMP */
594
595 #define MODINFO_ATTR(field) \
596 static void setup_modinfo_##field(struct module *mod, const char *s) \
597 { \
598 mod->field = kstrdup(s, GFP_KERNEL); \
599 } \
600 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
601 struct module_kobject *mk, char *buffer) \
602 { \
603 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
604 } \
605 static int modinfo_##field##_exists(struct module *mod) \
606 { \
607 return mod->field != NULL; \
608 } \
609 static void free_modinfo_##field(struct module *mod) \
610 { \
611 kfree(mod->field); \
612 mod->field = NULL; \
613 } \
614 static struct module_attribute modinfo_##field = { \
615 .attr = { .name = __stringify(field), .mode = 0444 }, \
616 .show = show_modinfo_##field, \
617 .setup = setup_modinfo_##field, \
618 .test = modinfo_##field##_exists, \
619 .free = free_modinfo_##field, \
620 };
621
622 MODINFO_ATTR(version);
623 MODINFO_ATTR(srcversion);
624
625 static char last_unloaded_module[MODULE_NAME_LEN+1];
626
627 #ifdef CONFIG_MODULE_UNLOAD
628
629 EXPORT_TRACEPOINT_SYMBOL(module_get);
630
631 /* Init the unload section of the module. */
632 static int module_unload_init(struct module *mod)
633 {
634 mod->refptr = alloc_percpu(struct module_ref);
635 if (!mod->refptr)
636 return -ENOMEM;
637
638 INIT_LIST_HEAD(&mod->source_list);
639 INIT_LIST_HEAD(&mod->target_list);
640
641 /* Hold reference count during initialization. */
642 raw_cpu_write(mod->refptr->incs, 1);
643
644 return 0;
645 }
646
647 /* Does a already use b? */
648 static int already_uses(struct module *a, struct module *b)
649 {
650 struct module_use *use;
651
652 list_for_each_entry(use, &b->source_list, source_list) {
653 if (use->source == a) {
654 pr_debug("%s uses %s!\n", a->name, b->name);
655 return 1;
656 }
657 }
658 pr_debug("%s does not use %s!\n", a->name, b->name);
659 return 0;
660 }
661
662 /*
663 * Module a uses b
664 * - we add 'a' as a "source", 'b' as a "target" of module use
665 * - the module_use is added to the list of 'b' sources (so
666 * 'b' can walk the list to see who sourced them), and of 'a'
667 * targets (so 'a' can see what modules it targets).
668 */
669 static int add_module_usage(struct module *a, struct module *b)
670 {
671 struct module_use *use;
672
673 pr_debug("Allocating new usage for %s.\n", a->name);
674 use = kmalloc(sizeof(*use), GFP_ATOMIC);
675 if (!use) {
676 pr_warn("%s: out of memory loading\n", a->name);
677 return -ENOMEM;
678 }
679
680 use->source = a;
681 use->target = b;
682 list_add(&use->source_list, &b->source_list);
683 list_add(&use->target_list, &a->target_list);
684 return 0;
685 }
686
687 /* Module a uses b: caller needs module_mutex() */
688 int ref_module(struct module *a, struct module *b)
689 {
690 int err;
691
692 if (b == NULL || already_uses(a, b))
693 return 0;
694
695 /* If module isn't available, we fail. */
696 err = strong_try_module_get(b);
697 if (err)
698 return err;
699
700 err = add_module_usage(a, b);
701 if (err) {
702 module_put(b);
703 return err;
704 }
705 return 0;
706 }
707 EXPORT_SYMBOL_GPL(ref_module);
708
709 /* Clear the unload stuff of the module. */
710 static void module_unload_free(struct module *mod)
711 {
712 struct module_use *use, *tmp;
713
714 mutex_lock(&module_mutex);
715 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
716 struct module *i = use->target;
717 pr_debug("%s unusing %s\n", mod->name, i->name);
718 module_put(i);
719 list_del(&use->source_list);
720 list_del(&use->target_list);
721 kfree(use);
722 }
723 mutex_unlock(&module_mutex);
724
725 free_percpu(mod->refptr);
726 }
727
728 #ifdef CONFIG_MODULE_FORCE_UNLOAD
729 static inline int try_force_unload(unsigned int flags)
730 {
731 int ret = (flags & O_TRUNC);
732 if (ret)
733 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
734 return ret;
735 }
736 #else
737 static inline int try_force_unload(unsigned int flags)
738 {
739 return 0;
740 }
741 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
742
743 struct stopref
744 {
745 struct module *mod;
746 int flags;
747 int *forced;
748 };
749
750 /* Whole machine is stopped with interrupts off when this runs. */
751 static int __try_stop_module(void *_sref)
752 {
753 struct stopref *sref = _sref;
754
755 /* If it's not unused, quit unless we're forcing. */
756 if (module_refcount(sref->mod) != 0) {
757 if (!(*sref->forced = try_force_unload(sref->flags)))
758 return -EWOULDBLOCK;
759 }
760
761 /* Mark it as dying. */
762 sref->mod->state = MODULE_STATE_GOING;
763 return 0;
764 }
765
766 static int try_stop_module(struct module *mod, int flags, int *forced)
767 {
768 struct stopref sref = { mod, flags, forced };
769
770 return stop_machine(__try_stop_module, &sref, NULL);
771 }
772
773 unsigned long module_refcount(struct module *mod)
774 {
775 unsigned long incs = 0, decs = 0;
776 int cpu;
777
778 for_each_possible_cpu(cpu)
779 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
780 /*
781 * ensure the incs are added up after the decs.
782 * module_put ensures incs are visible before decs with smp_wmb.
783 *
784 * This 2-count scheme avoids the situation where the refcount
785 * for CPU0 is read, then CPU0 increments the module refcount,
786 * then CPU1 drops that refcount, then the refcount for CPU1 is
787 * read. We would record a decrement but not its corresponding
788 * increment so we would see a low count (disaster).
789 *
790 * Rare situation? But module_refcount can be preempted, and we
791 * might be tallying up 4096+ CPUs. So it is not impossible.
792 */
793 smp_rmb();
794 for_each_possible_cpu(cpu)
795 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
796 return incs - decs;
797 }
798 EXPORT_SYMBOL(module_refcount);
799
800 /* This exists whether we can unload or not */
801 static void free_module(struct module *mod);
802
803 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
804 unsigned int, flags)
805 {
806 struct module *mod;
807 char name[MODULE_NAME_LEN];
808 int ret, forced = 0;
809
810 if (!capable(CAP_SYS_MODULE) || modules_disabled)
811 return -EPERM;
812
813 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
814 return -EFAULT;
815 name[MODULE_NAME_LEN-1] = '\0';
816
817 if (mutex_lock_interruptible(&module_mutex) != 0)
818 return -EINTR;
819
820 mod = find_module(name);
821 if (!mod) {
822 ret = -ENOENT;
823 goto out;
824 }
825
826 if (!list_empty(&mod->source_list)) {
827 /* Other modules depend on us: get rid of them first. */
828 ret = -EWOULDBLOCK;
829 goto out;
830 }
831
832 /* Doing init or already dying? */
833 if (mod->state != MODULE_STATE_LIVE) {
834 /* FIXME: if (force), slam module count damn the torpedoes */
835 pr_debug("%s already dying\n", mod->name);
836 ret = -EBUSY;
837 goto out;
838 }
839
840 /* If it has an init func, it must have an exit func to unload */
841 if (mod->init && !mod->exit) {
842 forced = try_force_unload(flags);
843 if (!forced) {
844 /* This module can't be removed */
845 ret = -EBUSY;
846 goto out;
847 }
848 }
849
850 /* Stop the machine so refcounts can't move and disable module. */
851 ret = try_stop_module(mod, flags, &forced);
852 if (ret != 0)
853 goto out;
854
855 mutex_unlock(&module_mutex);
856 /* Final destruction now no one is using it. */
857 if (mod->exit != NULL)
858 mod->exit();
859 blocking_notifier_call_chain(&module_notify_list,
860 MODULE_STATE_GOING, mod);
861 async_synchronize_full();
862
863 /* Store the name of the last unloaded module for diagnostic purposes */
864 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
865
866 free_module(mod);
867 return 0;
868 out:
869 mutex_unlock(&module_mutex);
870 return ret;
871 }
872
873 static inline void print_unload_info(struct seq_file *m, struct module *mod)
874 {
875 struct module_use *use;
876 int printed_something = 0;
877
878 seq_printf(m, " %lu ", module_refcount(mod));
879
880 /* Always include a trailing , so userspace can differentiate
881 between this and the old multi-field proc format. */
882 list_for_each_entry(use, &mod->source_list, source_list) {
883 printed_something = 1;
884 seq_printf(m, "%s,", use->source->name);
885 }
886
887 if (mod->init != NULL && mod->exit == NULL) {
888 printed_something = 1;
889 seq_printf(m, "[permanent],");
890 }
891
892 if (!printed_something)
893 seq_printf(m, "-");
894 }
895
896 void __symbol_put(const char *symbol)
897 {
898 struct module *owner;
899
900 preempt_disable();
901 if (!find_symbol(symbol, &owner, NULL, true, false))
902 BUG();
903 module_put(owner);
904 preempt_enable();
905 }
906 EXPORT_SYMBOL(__symbol_put);
907
908 /* Note this assumes addr is a function, which it currently always is. */
909 void symbol_put_addr(void *addr)
910 {
911 struct module *modaddr;
912 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
913
914 if (core_kernel_text(a))
915 return;
916
917 /* module_text_address is safe here: we're supposed to have reference
918 * to module from symbol_get, so it can't go away. */
919 modaddr = __module_text_address(a);
920 BUG_ON(!modaddr);
921 module_put(modaddr);
922 }
923 EXPORT_SYMBOL_GPL(symbol_put_addr);
924
925 static ssize_t show_refcnt(struct module_attribute *mattr,
926 struct module_kobject *mk, char *buffer)
927 {
928 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
929 }
930
931 static struct module_attribute modinfo_refcnt =
932 __ATTR(refcnt, 0444, show_refcnt, NULL);
933
934 void __module_get(struct module *module)
935 {
936 if (module) {
937 preempt_disable();
938 __this_cpu_inc(module->refptr->incs);
939 trace_module_get(module, _RET_IP_);
940 preempt_enable();
941 }
942 }
943 EXPORT_SYMBOL(__module_get);
944
945 bool try_module_get(struct module *module)
946 {
947 bool ret = true;
948
949 if (module) {
950 preempt_disable();
951
952 if (likely(module_is_live(module))) {
953 __this_cpu_inc(module->refptr->incs);
954 trace_module_get(module, _RET_IP_);
955 } else
956 ret = false;
957
958 preempt_enable();
959 }
960 return ret;
961 }
962 EXPORT_SYMBOL(try_module_get);
963
964 void module_put(struct module *module)
965 {
966 if (module) {
967 preempt_disable();
968 smp_wmb(); /* see comment in module_refcount */
969 __this_cpu_inc(module->refptr->decs);
970
971 trace_module_put(module, _RET_IP_);
972 preempt_enable();
973 }
974 }
975 EXPORT_SYMBOL(module_put);
976
977 #else /* !CONFIG_MODULE_UNLOAD */
978 static inline void print_unload_info(struct seq_file *m, struct module *mod)
979 {
980 /* We don't know the usage count, or what modules are using. */
981 seq_printf(m, " - -");
982 }
983
984 static inline void module_unload_free(struct module *mod)
985 {
986 }
987
988 int ref_module(struct module *a, struct module *b)
989 {
990 return strong_try_module_get(b);
991 }
992 EXPORT_SYMBOL_GPL(ref_module);
993
994 static inline int module_unload_init(struct module *mod)
995 {
996 return 0;
997 }
998 #endif /* CONFIG_MODULE_UNLOAD */
999
1000 static size_t module_flags_taint(struct module *mod, char *buf)
1001 {
1002 size_t l = 0;
1003
1004 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1005 buf[l++] = 'P';
1006 if (mod->taints & (1 << TAINT_OOT_MODULE))
1007 buf[l++] = 'O';
1008 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1009 buf[l++] = 'F';
1010 if (mod->taints & (1 << TAINT_CRAP))
1011 buf[l++] = 'C';
1012 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1013 buf[l++] = 'E';
1014 /*
1015 * TAINT_FORCED_RMMOD: could be added.
1016 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1017 * apply to modules.
1018 */
1019 return l;
1020 }
1021
1022 static ssize_t show_initstate(struct module_attribute *mattr,
1023 struct module_kobject *mk, char *buffer)
1024 {
1025 const char *state = "unknown";
1026
1027 switch (mk->mod->state) {
1028 case MODULE_STATE_LIVE:
1029 state = "live";
1030 break;
1031 case MODULE_STATE_COMING:
1032 state = "coming";
1033 break;
1034 case MODULE_STATE_GOING:
1035 state = "going";
1036 break;
1037 default:
1038 BUG();
1039 }
1040 return sprintf(buffer, "%s\n", state);
1041 }
1042
1043 static struct module_attribute modinfo_initstate =
1044 __ATTR(initstate, 0444, show_initstate, NULL);
1045
1046 static ssize_t store_uevent(struct module_attribute *mattr,
1047 struct module_kobject *mk,
1048 const char *buffer, size_t count)
1049 {
1050 enum kobject_action action;
1051
1052 if (kobject_action_type(buffer, count, &action) == 0)
1053 kobject_uevent(&mk->kobj, action);
1054 return count;
1055 }
1056
1057 struct module_attribute module_uevent =
1058 __ATTR(uevent, 0200, NULL, store_uevent);
1059
1060 static ssize_t show_coresize(struct module_attribute *mattr,
1061 struct module_kobject *mk, char *buffer)
1062 {
1063 return sprintf(buffer, "%u\n", mk->mod->core_size);
1064 }
1065
1066 static struct module_attribute modinfo_coresize =
1067 __ATTR(coresize, 0444, show_coresize, NULL);
1068
1069 static ssize_t show_initsize(struct module_attribute *mattr,
1070 struct module_kobject *mk, char *buffer)
1071 {
1072 return sprintf(buffer, "%u\n", mk->mod->init_size);
1073 }
1074
1075 static struct module_attribute modinfo_initsize =
1076 __ATTR(initsize, 0444, show_initsize, NULL);
1077
1078 static ssize_t show_taint(struct module_attribute *mattr,
1079 struct module_kobject *mk, char *buffer)
1080 {
1081 size_t l;
1082
1083 l = module_flags_taint(mk->mod, buffer);
1084 buffer[l++] = '\n';
1085 return l;
1086 }
1087
1088 static struct module_attribute modinfo_taint =
1089 __ATTR(taint, 0444, show_taint, NULL);
1090
1091 static struct module_attribute *modinfo_attrs[] = {
1092 &module_uevent,
1093 &modinfo_version,
1094 &modinfo_srcversion,
1095 &modinfo_initstate,
1096 &modinfo_coresize,
1097 &modinfo_initsize,
1098 &modinfo_taint,
1099 #ifdef CONFIG_MODULE_UNLOAD
1100 &modinfo_refcnt,
1101 #endif
1102 NULL,
1103 };
1104
1105 static const char vermagic[] = VERMAGIC_STRING;
1106
1107 static int try_to_force_load(struct module *mod, const char *reason)
1108 {
1109 #ifdef CONFIG_MODULE_FORCE_LOAD
1110 if (!test_taint(TAINT_FORCED_MODULE))
1111 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1112 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1113 return 0;
1114 #else
1115 return -ENOEXEC;
1116 #endif
1117 }
1118
1119 #ifdef CONFIG_MODVERSIONS
1120 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1121 static unsigned long maybe_relocated(unsigned long crc,
1122 const struct module *crc_owner)
1123 {
1124 #ifdef ARCH_RELOCATES_KCRCTAB
1125 if (crc_owner == NULL)
1126 return crc - (unsigned long)reloc_start;
1127 #endif
1128 return crc;
1129 }
1130
1131 static int check_version(Elf_Shdr *sechdrs,
1132 unsigned int versindex,
1133 const char *symname,
1134 struct module *mod,
1135 const unsigned long *crc,
1136 const struct module *crc_owner)
1137 {
1138 unsigned int i, num_versions;
1139 struct modversion_info *versions;
1140
1141 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1142 if (!crc)
1143 return 1;
1144
1145 /* No versions at all? modprobe --force does this. */
1146 if (versindex == 0)
1147 return try_to_force_load(mod, symname) == 0;
1148
1149 versions = (void *) sechdrs[versindex].sh_addr;
1150 num_versions = sechdrs[versindex].sh_size
1151 / sizeof(struct modversion_info);
1152
1153 for (i = 0; i < num_versions; i++) {
1154 if (strcmp(versions[i].name, symname) != 0)
1155 continue;
1156
1157 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1158 return 1;
1159 pr_debug("Found checksum %lX vs module %lX\n",
1160 maybe_relocated(*crc, crc_owner), versions[i].crc);
1161 goto bad_version;
1162 }
1163
1164 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1165 return 0;
1166
1167 bad_version:
1168 printk("%s: disagrees about version of symbol %s\n",
1169 mod->name, symname);
1170 return 0;
1171 }
1172
1173 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1174 unsigned int versindex,
1175 struct module *mod)
1176 {
1177 const unsigned long *crc;
1178
1179 /* Since this should be found in kernel (which can't be removed),
1180 * no locking is necessary. */
1181 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1182 &crc, true, false))
1183 BUG();
1184 return check_version(sechdrs, versindex,
1185 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1186 NULL);
1187 }
1188
1189 /* First part is kernel version, which we ignore if module has crcs. */
1190 static inline int same_magic(const char *amagic, const char *bmagic,
1191 bool has_crcs)
1192 {
1193 if (has_crcs) {
1194 amagic += strcspn(amagic, " ");
1195 bmagic += strcspn(bmagic, " ");
1196 }
1197 return strcmp(amagic, bmagic) == 0;
1198 }
1199 #else
1200 static inline int check_version(Elf_Shdr *sechdrs,
1201 unsigned int versindex,
1202 const char *symname,
1203 struct module *mod,
1204 const unsigned long *crc,
1205 const struct module *crc_owner)
1206 {
1207 return 1;
1208 }
1209
1210 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1211 unsigned int versindex,
1212 struct module *mod)
1213 {
1214 return 1;
1215 }
1216
1217 static inline int same_magic(const char *amagic, const char *bmagic,
1218 bool has_crcs)
1219 {
1220 return strcmp(amagic, bmagic) == 0;
1221 }
1222 #endif /* CONFIG_MODVERSIONS */
1223
1224 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1225 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1226 const struct load_info *info,
1227 const char *name,
1228 char ownername[])
1229 {
1230 struct module *owner;
1231 const struct kernel_symbol *sym;
1232 const unsigned long *crc;
1233 int err;
1234
1235 mutex_lock(&module_mutex);
1236 sym = find_symbol(name, &owner, &crc,
1237 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1238 if (!sym)
1239 goto unlock;
1240
1241 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1242 owner)) {
1243 sym = ERR_PTR(-EINVAL);
1244 goto getname;
1245 }
1246
1247 err = ref_module(mod, owner);
1248 if (err) {
1249 sym = ERR_PTR(err);
1250 goto getname;
1251 }
1252
1253 getname:
1254 /* We must make copy under the lock if we failed to get ref. */
1255 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1256 unlock:
1257 mutex_unlock(&module_mutex);
1258 return sym;
1259 }
1260
1261 static const struct kernel_symbol *
1262 resolve_symbol_wait(struct module *mod,
1263 const struct load_info *info,
1264 const char *name)
1265 {
1266 const struct kernel_symbol *ksym;
1267 char owner[MODULE_NAME_LEN];
1268
1269 if (wait_event_interruptible_timeout(module_wq,
1270 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1271 || PTR_ERR(ksym) != -EBUSY,
1272 30 * HZ) <= 0) {
1273 pr_warn("%s: gave up waiting for init of module %s.\n",
1274 mod->name, owner);
1275 }
1276 return ksym;
1277 }
1278
1279 /*
1280 * /sys/module/foo/sections stuff
1281 * J. Corbet <corbet@lwn.net>
1282 */
1283 #ifdef CONFIG_SYSFS
1284
1285 #ifdef CONFIG_KALLSYMS
1286 static inline bool sect_empty(const Elf_Shdr *sect)
1287 {
1288 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1289 }
1290
1291 struct module_sect_attr
1292 {
1293 struct module_attribute mattr;
1294 char *name;
1295 unsigned long address;
1296 };
1297
1298 struct module_sect_attrs
1299 {
1300 struct attribute_group grp;
1301 unsigned int nsections;
1302 struct module_sect_attr attrs[0];
1303 };
1304
1305 static ssize_t module_sect_show(struct module_attribute *mattr,
1306 struct module_kobject *mk, char *buf)
1307 {
1308 struct module_sect_attr *sattr =
1309 container_of(mattr, struct module_sect_attr, mattr);
1310 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1311 }
1312
1313 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1314 {
1315 unsigned int section;
1316
1317 for (section = 0; section < sect_attrs->nsections; section++)
1318 kfree(sect_attrs->attrs[section].name);
1319 kfree(sect_attrs);
1320 }
1321
1322 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1323 {
1324 unsigned int nloaded = 0, i, size[2];
1325 struct module_sect_attrs *sect_attrs;
1326 struct module_sect_attr *sattr;
1327 struct attribute **gattr;
1328
1329 /* Count loaded sections and allocate structures */
1330 for (i = 0; i < info->hdr->e_shnum; i++)
1331 if (!sect_empty(&info->sechdrs[i]))
1332 nloaded++;
1333 size[0] = ALIGN(sizeof(*sect_attrs)
1334 + nloaded * sizeof(sect_attrs->attrs[0]),
1335 sizeof(sect_attrs->grp.attrs[0]));
1336 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1337 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1338 if (sect_attrs == NULL)
1339 return;
1340
1341 /* Setup section attributes. */
1342 sect_attrs->grp.name = "sections";
1343 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1344
1345 sect_attrs->nsections = 0;
1346 sattr = &sect_attrs->attrs[0];
1347 gattr = &sect_attrs->grp.attrs[0];
1348 for (i = 0; i < info->hdr->e_shnum; i++) {
1349 Elf_Shdr *sec = &info->sechdrs[i];
1350 if (sect_empty(sec))
1351 continue;
1352 sattr->address = sec->sh_addr;
1353 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1354 GFP_KERNEL);
1355 if (sattr->name == NULL)
1356 goto out;
1357 sect_attrs->nsections++;
1358 sysfs_attr_init(&sattr->mattr.attr);
1359 sattr->mattr.show = module_sect_show;
1360 sattr->mattr.store = NULL;
1361 sattr->mattr.attr.name = sattr->name;
1362 sattr->mattr.attr.mode = S_IRUGO;
1363 *(gattr++) = &(sattr++)->mattr.attr;
1364 }
1365 *gattr = NULL;
1366
1367 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1368 goto out;
1369
1370 mod->sect_attrs = sect_attrs;
1371 return;
1372 out:
1373 free_sect_attrs(sect_attrs);
1374 }
1375
1376 static void remove_sect_attrs(struct module *mod)
1377 {
1378 if (mod->sect_attrs) {
1379 sysfs_remove_group(&mod->mkobj.kobj,
1380 &mod->sect_attrs->grp);
1381 /* We are positive that no one is using any sect attrs
1382 * at this point. Deallocate immediately. */
1383 free_sect_attrs(mod->sect_attrs);
1384 mod->sect_attrs = NULL;
1385 }
1386 }
1387
1388 /*
1389 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1390 */
1391
1392 struct module_notes_attrs {
1393 struct kobject *dir;
1394 unsigned int notes;
1395 struct bin_attribute attrs[0];
1396 };
1397
1398 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1399 struct bin_attribute *bin_attr,
1400 char *buf, loff_t pos, size_t count)
1401 {
1402 /*
1403 * The caller checked the pos and count against our size.
1404 */
1405 memcpy(buf, bin_attr->private + pos, count);
1406 return count;
1407 }
1408
1409 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1410 unsigned int i)
1411 {
1412 if (notes_attrs->dir) {
1413 while (i-- > 0)
1414 sysfs_remove_bin_file(notes_attrs->dir,
1415 &notes_attrs->attrs[i]);
1416 kobject_put(notes_attrs->dir);
1417 }
1418 kfree(notes_attrs);
1419 }
1420
1421 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1422 {
1423 unsigned int notes, loaded, i;
1424 struct module_notes_attrs *notes_attrs;
1425 struct bin_attribute *nattr;
1426
1427 /* failed to create section attributes, so can't create notes */
1428 if (!mod->sect_attrs)
1429 return;
1430
1431 /* Count notes sections and allocate structures. */
1432 notes = 0;
1433 for (i = 0; i < info->hdr->e_shnum; i++)
1434 if (!sect_empty(&info->sechdrs[i]) &&
1435 (info->sechdrs[i].sh_type == SHT_NOTE))
1436 ++notes;
1437
1438 if (notes == 0)
1439 return;
1440
1441 notes_attrs = kzalloc(sizeof(*notes_attrs)
1442 + notes * sizeof(notes_attrs->attrs[0]),
1443 GFP_KERNEL);
1444 if (notes_attrs == NULL)
1445 return;
1446
1447 notes_attrs->notes = notes;
1448 nattr = &notes_attrs->attrs[0];
1449 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1450 if (sect_empty(&info->sechdrs[i]))
1451 continue;
1452 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1453 sysfs_bin_attr_init(nattr);
1454 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1455 nattr->attr.mode = S_IRUGO;
1456 nattr->size = info->sechdrs[i].sh_size;
1457 nattr->private = (void *) info->sechdrs[i].sh_addr;
1458 nattr->read = module_notes_read;
1459 ++nattr;
1460 }
1461 ++loaded;
1462 }
1463
1464 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1465 if (!notes_attrs->dir)
1466 goto out;
1467
1468 for (i = 0; i < notes; ++i)
1469 if (sysfs_create_bin_file(notes_attrs->dir,
1470 &notes_attrs->attrs[i]))
1471 goto out;
1472
1473 mod->notes_attrs = notes_attrs;
1474 return;
1475
1476 out:
1477 free_notes_attrs(notes_attrs, i);
1478 }
1479
1480 static void remove_notes_attrs(struct module *mod)
1481 {
1482 if (mod->notes_attrs)
1483 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1484 }
1485
1486 #else
1487
1488 static inline void add_sect_attrs(struct module *mod,
1489 const struct load_info *info)
1490 {
1491 }
1492
1493 static inline void remove_sect_attrs(struct module *mod)
1494 {
1495 }
1496
1497 static inline void add_notes_attrs(struct module *mod,
1498 const struct load_info *info)
1499 {
1500 }
1501
1502 static inline void remove_notes_attrs(struct module *mod)
1503 {
1504 }
1505 #endif /* CONFIG_KALLSYMS */
1506
1507 static void add_usage_links(struct module *mod)
1508 {
1509 #ifdef CONFIG_MODULE_UNLOAD
1510 struct module_use *use;
1511 int nowarn;
1512
1513 mutex_lock(&module_mutex);
1514 list_for_each_entry(use, &mod->target_list, target_list) {
1515 nowarn = sysfs_create_link(use->target->holders_dir,
1516 &mod->mkobj.kobj, mod->name);
1517 }
1518 mutex_unlock(&module_mutex);
1519 #endif
1520 }
1521
1522 static void del_usage_links(struct module *mod)
1523 {
1524 #ifdef CONFIG_MODULE_UNLOAD
1525 struct module_use *use;
1526
1527 mutex_lock(&module_mutex);
1528 list_for_each_entry(use, &mod->target_list, target_list)
1529 sysfs_remove_link(use->target->holders_dir, mod->name);
1530 mutex_unlock(&module_mutex);
1531 #endif
1532 }
1533
1534 static int module_add_modinfo_attrs(struct module *mod)
1535 {
1536 struct module_attribute *attr;
1537 struct module_attribute *temp_attr;
1538 int error = 0;
1539 int i;
1540
1541 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1542 (ARRAY_SIZE(modinfo_attrs) + 1)),
1543 GFP_KERNEL);
1544 if (!mod->modinfo_attrs)
1545 return -ENOMEM;
1546
1547 temp_attr = mod->modinfo_attrs;
1548 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1549 if (!attr->test ||
1550 (attr->test && attr->test(mod))) {
1551 memcpy(temp_attr, attr, sizeof(*temp_attr));
1552 sysfs_attr_init(&temp_attr->attr);
1553 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1554 ++temp_attr;
1555 }
1556 }
1557 return error;
1558 }
1559
1560 static void module_remove_modinfo_attrs(struct module *mod)
1561 {
1562 struct module_attribute *attr;
1563 int i;
1564
1565 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1566 /* pick a field to test for end of list */
1567 if (!attr->attr.name)
1568 break;
1569 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1570 if (attr->free)
1571 attr->free(mod);
1572 }
1573 kfree(mod->modinfo_attrs);
1574 }
1575
1576 static void mod_kobject_put(struct module *mod)
1577 {
1578 DECLARE_COMPLETION_ONSTACK(c);
1579 mod->mkobj.kobj_completion = &c;
1580 kobject_put(&mod->mkobj.kobj);
1581 wait_for_completion(&c);
1582 }
1583
1584 static int mod_sysfs_init(struct module *mod)
1585 {
1586 int err;
1587 struct kobject *kobj;
1588
1589 if (!module_sysfs_initialized) {
1590 pr_err("%s: module sysfs not initialized\n", mod->name);
1591 err = -EINVAL;
1592 goto out;
1593 }
1594
1595 kobj = kset_find_obj(module_kset, mod->name);
1596 if (kobj) {
1597 pr_err("%s: module is already loaded\n", mod->name);
1598 kobject_put(kobj);
1599 err = -EINVAL;
1600 goto out;
1601 }
1602
1603 mod->mkobj.mod = mod;
1604
1605 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1606 mod->mkobj.kobj.kset = module_kset;
1607 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1608 "%s", mod->name);
1609 if (err)
1610 mod_kobject_put(mod);
1611
1612 /* delay uevent until full sysfs population */
1613 out:
1614 return err;
1615 }
1616
1617 static int mod_sysfs_setup(struct module *mod,
1618 const struct load_info *info,
1619 struct kernel_param *kparam,
1620 unsigned int num_params)
1621 {
1622 int err;
1623
1624 err = mod_sysfs_init(mod);
1625 if (err)
1626 goto out;
1627
1628 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1629 if (!mod->holders_dir) {
1630 err = -ENOMEM;
1631 goto out_unreg;
1632 }
1633
1634 err = module_param_sysfs_setup(mod, kparam, num_params);
1635 if (err)
1636 goto out_unreg_holders;
1637
1638 err = module_add_modinfo_attrs(mod);
1639 if (err)
1640 goto out_unreg_param;
1641
1642 add_usage_links(mod);
1643 add_sect_attrs(mod, info);
1644 add_notes_attrs(mod, info);
1645
1646 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1647 return 0;
1648
1649 out_unreg_param:
1650 module_param_sysfs_remove(mod);
1651 out_unreg_holders:
1652 kobject_put(mod->holders_dir);
1653 out_unreg:
1654 mod_kobject_put(mod);
1655 out:
1656 return err;
1657 }
1658
1659 static void mod_sysfs_fini(struct module *mod)
1660 {
1661 remove_notes_attrs(mod);
1662 remove_sect_attrs(mod);
1663 mod_kobject_put(mod);
1664 }
1665
1666 #else /* !CONFIG_SYSFS */
1667
1668 static int mod_sysfs_setup(struct module *mod,
1669 const struct load_info *info,
1670 struct kernel_param *kparam,
1671 unsigned int num_params)
1672 {
1673 return 0;
1674 }
1675
1676 static void mod_sysfs_fini(struct module *mod)
1677 {
1678 }
1679
1680 static void module_remove_modinfo_attrs(struct module *mod)
1681 {
1682 }
1683
1684 static void del_usage_links(struct module *mod)
1685 {
1686 }
1687
1688 #endif /* CONFIG_SYSFS */
1689
1690 static void mod_sysfs_teardown(struct module *mod)
1691 {
1692 del_usage_links(mod);
1693 module_remove_modinfo_attrs(mod);
1694 module_param_sysfs_remove(mod);
1695 kobject_put(mod->mkobj.drivers_dir);
1696 kobject_put(mod->holders_dir);
1697 mod_sysfs_fini(mod);
1698 }
1699
1700 /*
1701 * unlink the module with the whole machine is stopped with interrupts off
1702 * - this defends against kallsyms not taking locks
1703 */
1704 static int __unlink_module(void *_mod)
1705 {
1706 struct module *mod = _mod;
1707 list_del(&mod->list);
1708 module_bug_cleanup(mod);
1709 return 0;
1710 }
1711
1712 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1713 /*
1714 * LKM RO/NX protection: protect module's text/ro-data
1715 * from modification and any data from execution.
1716 */
1717 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1718 {
1719 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1720 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1721
1722 if (end_pfn > begin_pfn)
1723 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1724 }
1725
1726 static void set_section_ro_nx(void *base,
1727 unsigned long text_size,
1728 unsigned long ro_size,
1729 unsigned long total_size)
1730 {
1731 /* begin and end PFNs of the current subsection */
1732 unsigned long begin_pfn;
1733 unsigned long end_pfn;
1734
1735 /*
1736 * Set RO for module text and RO-data:
1737 * - Always protect first page.
1738 * - Do not protect last partial page.
1739 */
1740 if (ro_size > 0)
1741 set_page_attributes(base, base + ro_size, set_memory_ro);
1742
1743 /*
1744 * Set NX permissions for module data:
1745 * - Do not protect first partial page.
1746 * - Always protect last page.
1747 */
1748 if (total_size > text_size) {
1749 begin_pfn = PFN_UP((unsigned long)base + text_size);
1750 end_pfn = PFN_UP((unsigned long)base + total_size);
1751 if (end_pfn > begin_pfn)
1752 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1753 }
1754 }
1755
1756 static void unset_module_core_ro_nx(struct module *mod)
1757 {
1758 set_page_attributes(mod->module_core + mod->core_text_size,
1759 mod->module_core + mod->core_size,
1760 set_memory_x);
1761 set_page_attributes(mod->module_core,
1762 mod->module_core + mod->core_ro_size,
1763 set_memory_rw);
1764 }
1765
1766 static void unset_module_init_ro_nx(struct module *mod)
1767 {
1768 set_page_attributes(mod->module_init + mod->init_text_size,
1769 mod->module_init + mod->init_size,
1770 set_memory_x);
1771 set_page_attributes(mod->module_init,
1772 mod->module_init + mod->init_ro_size,
1773 set_memory_rw);
1774 }
1775
1776 /* Iterate through all modules and set each module's text as RW */
1777 void set_all_modules_text_rw(void)
1778 {
1779 struct module *mod;
1780
1781 mutex_lock(&module_mutex);
1782 list_for_each_entry_rcu(mod, &modules, list) {
1783 if (mod->state == MODULE_STATE_UNFORMED)
1784 continue;
1785 if ((mod->module_core) && (mod->core_text_size)) {
1786 set_page_attributes(mod->module_core,
1787 mod->module_core + mod->core_text_size,
1788 set_memory_rw);
1789 }
1790 if ((mod->module_init) && (mod->init_text_size)) {
1791 set_page_attributes(mod->module_init,
1792 mod->module_init + mod->init_text_size,
1793 set_memory_rw);
1794 }
1795 }
1796 mutex_unlock(&module_mutex);
1797 }
1798
1799 /* Iterate through all modules and set each module's text as RO */
1800 void set_all_modules_text_ro(void)
1801 {
1802 struct module *mod;
1803
1804 mutex_lock(&module_mutex);
1805 list_for_each_entry_rcu(mod, &modules, list) {
1806 if (mod->state == MODULE_STATE_UNFORMED)
1807 continue;
1808 if ((mod->module_core) && (mod->core_text_size)) {
1809 set_page_attributes(mod->module_core,
1810 mod->module_core + mod->core_text_size,
1811 set_memory_ro);
1812 }
1813 if ((mod->module_init) && (mod->init_text_size)) {
1814 set_page_attributes(mod->module_init,
1815 mod->module_init + mod->init_text_size,
1816 set_memory_ro);
1817 }
1818 }
1819 mutex_unlock(&module_mutex);
1820 }
1821 #else
1822 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1823 static void unset_module_core_ro_nx(struct module *mod) { }
1824 static void unset_module_init_ro_nx(struct module *mod) { }
1825 #endif
1826
1827 void __weak module_free(struct module *mod, void *module_region)
1828 {
1829 vfree(module_region);
1830 }
1831
1832 void __weak module_arch_cleanup(struct module *mod)
1833 {
1834 }
1835
1836 /* Free a module, remove from lists, etc. */
1837 static void free_module(struct module *mod)
1838 {
1839 trace_module_free(mod);
1840
1841 mod_sysfs_teardown(mod);
1842
1843 /* We leave it in list to prevent duplicate loads, but make sure
1844 * that noone uses it while it's being deconstructed. */
1845 mod->state = MODULE_STATE_UNFORMED;
1846
1847 /* Remove dynamic debug info */
1848 ddebug_remove_module(mod->name);
1849
1850 /* Arch-specific cleanup. */
1851 module_arch_cleanup(mod);
1852
1853 /* Module unload stuff */
1854 module_unload_free(mod);
1855
1856 /* Free any allocated parameters. */
1857 destroy_params(mod->kp, mod->num_kp);
1858
1859 /* Now we can delete it from the lists */
1860 mutex_lock(&module_mutex);
1861 stop_machine(__unlink_module, mod, NULL);
1862 mutex_unlock(&module_mutex);
1863
1864 /* This may be NULL, but that's OK */
1865 unset_module_init_ro_nx(mod);
1866 module_free(mod, mod->module_init);
1867 kfree(mod->args);
1868 percpu_modfree(mod);
1869
1870 /* Free lock-classes: */
1871 lockdep_free_key_range(mod->module_core, mod->core_size);
1872
1873 /* Finally, free the core (containing the module structure) */
1874 unset_module_core_ro_nx(mod);
1875 module_free(mod, mod->module_core);
1876
1877 #ifdef CONFIG_MPU
1878 update_protections(current->mm);
1879 #endif
1880 }
1881
1882 void *__symbol_get(const char *symbol)
1883 {
1884 struct module *owner;
1885 const struct kernel_symbol *sym;
1886
1887 preempt_disable();
1888 sym = find_symbol(symbol, &owner, NULL, true, true);
1889 if (sym && strong_try_module_get(owner))
1890 sym = NULL;
1891 preempt_enable();
1892
1893 return sym ? (void *)sym->value : NULL;
1894 }
1895 EXPORT_SYMBOL_GPL(__symbol_get);
1896
1897 /*
1898 * Ensure that an exported symbol [global namespace] does not already exist
1899 * in the kernel or in some other module's exported symbol table.
1900 *
1901 * You must hold the module_mutex.
1902 */
1903 static int verify_export_symbols(struct module *mod)
1904 {
1905 unsigned int i;
1906 struct module *owner;
1907 const struct kernel_symbol *s;
1908 struct {
1909 const struct kernel_symbol *sym;
1910 unsigned int num;
1911 } arr[] = {
1912 { mod->syms, mod->num_syms },
1913 { mod->gpl_syms, mod->num_gpl_syms },
1914 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1915 #ifdef CONFIG_UNUSED_SYMBOLS
1916 { mod->unused_syms, mod->num_unused_syms },
1917 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1918 #endif
1919 };
1920
1921 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1922 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1923 if (find_symbol(s->name, &owner, NULL, true, false)) {
1924 pr_err("%s: exports duplicate symbol %s"
1925 " (owned by %s)\n",
1926 mod->name, s->name, module_name(owner));
1927 return -ENOEXEC;
1928 }
1929 }
1930 }
1931 return 0;
1932 }
1933
1934 /* Change all symbols so that st_value encodes the pointer directly. */
1935 static int simplify_symbols(struct module *mod, const struct load_info *info)
1936 {
1937 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1938 Elf_Sym *sym = (void *)symsec->sh_addr;
1939 unsigned long secbase;
1940 unsigned int i;
1941 int ret = 0;
1942 const struct kernel_symbol *ksym;
1943
1944 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1945 const char *name = info->strtab + sym[i].st_name;
1946
1947 switch (sym[i].st_shndx) {
1948 case SHN_COMMON:
1949 /* Ignore common symbols */
1950 if (!strncmp(name, "__gnu_lto", 9))
1951 break;
1952
1953 /* We compiled with -fno-common. These are not
1954 supposed to happen. */
1955 pr_debug("Common symbol: %s\n", name);
1956 printk("%s: please compile with -fno-common\n",
1957 mod->name);
1958 ret = -ENOEXEC;
1959 break;
1960
1961 case SHN_ABS:
1962 /* Don't need to do anything */
1963 pr_debug("Absolute symbol: 0x%08lx\n",
1964 (long)sym[i].st_value);
1965 break;
1966
1967 case SHN_UNDEF:
1968 ksym = resolve_symbol_wait(mod, info, name);
1969 /* Ok if resolved. */
1970 if (ksym && !IS_ERR(ksym)) {
1971 sym[i].st_value = ksym->value;
1972 break;
1973 }
1974
1975 /* Ok if weak. */
1976 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1977 break;
1978
1979 pr_warn("%s: Unknown symbol %s (err %li)\n",
1980 mod->name, name, PTR_ERR(ksym));
1981 ret = PTR_ERR(ksym) ?: -ENOENT;
1982 break;
1983
1984 default:
1985 /* Divert to percpu allocation if a percpu var. */
1986 if (sym[i].st_shndx == info->index.pcpu)
1987 secbase = (unsigned long)mod_percpu(mod);
1988 else
1989 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1990 sym[i].st_value += secbase;
1991 break;
1992 }
1993 }
1994
1995 return ret;
1996 }
1997
1998 static int apply_relocations(struct module *mod, const struct load_info *info)
1999 {
2000 unsigned int i;
2001 int err = 0;
2002
2003 /* Now do relocations. */
2004 for (i = 1; i < info->hdr->e_shnum; i++) {
2005 unsigned int infosec = info->sechdrs[i].sh_info;
2006
2007 /* Not a valid relocation section? */
2008 if (infosec >= info->hdr->e_shnum)
2009 continue;
2010
2011 /* Don't bother with non-allocated sections */
2012 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2013 continue;
2014
2015 if (info->sechdrs[i].sh_type == SHT_REL)
2016 err = apply_relocate(info->sechdrs, info->strtab,
2017 info->index.sym, i, mod);
2018 else if (info->sechdrs[i].sh_type == SHT_RELA)
2019 err = apply_relocate_add(info->sechdrs, info->strtab,
2020 info->index.sym, i, mod);
2021 if (err < 0)
2022 break;
2023 }
2024 return err;
2025 }
2026
2027 /* Additional bytes needed by arch in front of individual sections */
2028 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2029 unsigned int section)
2030 {
2031 /* default implementation just returns zero */
2032 return 0;
2033 }
2034
2035 /* Update size with this section: return offset. */
2036 static long get_offset(struct module *mod, unsigned int *size,
2037 Elf_Shdr *sechdr, unsigned int section)
2038 {
2039 long ret;
2040
2041 *size += arch_mod_section_prepend(mod, section);
2042 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2043 *size = ret + sechdr->sh_size;
2044 return ret;
2045 }
2046
2047 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2048 might -- code, read-only data, read-write data, small data. Tally
2049 sizes, and place the offsets into sh_entsize fields: high bit means it
2050 belongs in init. */
2051 static void layout_sections(struct module *mod, struct load_info *info)
2052 {
2053 static unsigned long const masks[][2] = {
2054 /* NOTE: all executable code must be the first section
2055 * in this array; otherwise modify the text_size
2056 * finder in the two loops below */
2057 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2058 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2059 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2060 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2061 };
2062 unsigned int m, i;
2063
2064 for (i = 0; i < info->hdr->e_shnum; i++)
2065 info->sechdrs[i].sh_entsize = ~0UL;
2066
2067 pr_debug("Core section allocation order:\n");
2068 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2069 for (i = 0; i < info->hdr->e_shnum; ++i) {
2070 Elf_Shdr *s = &info->sechdrs[i];
2071 const char *sname = info->secstrings + s->sh_name;
2072
2073 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2074 || (s->sh_flags & masks[m][1])
2075 || s->sh_entsize != ~0UL
2076 || strstarts(sname, ".init"))
2077 continue;
2078 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2079 pr_debug("\t%s\n", sname);
2080 }
2081 switch (m) {
2082 case 0: /* executable */
2083 mod->core_size = debug_align(mod->core_size);
2084 mod->core_text_size = mod->core_size;
2085 break;
2086 case 1: /* RO: text and ro-data */
2087 mod->core_size = debug_align(mod->core_size);
2088 mod->core_ro_size = mod->core_size;
2089 break;
2090 case 3: /* whole core */
2091 mod->core_size = debug_align(mod->core_size);
2092 break;
2093 }
2094 }
2095
2096 pr_debug("Init section allocation order:\n");
2097 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2098 for (i = 0; i < info->hdr->e_shnum; ++i) {
2099 Elf_Shdr *s = &info->sechdrs[i];
2100 const char *sname = info->secstrings + s->sh_name;
2101
2102 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2103 || (s->sh_flags & masks[m][1])
2104 || s->sh_entsize != ~0UL
2105 || !strstarts(sname, ".init"))
2106 continue;
2107 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2108 | INIT_OFFSET_MASK);
2109 pr_debug("\t%s\n", sname);
2110 }
2111 switch (m) {
2112 case 0: /* executable */
2113 mod->init_size = debug_align(mod->init_size);
2114 mod->init_text_size = mod->init_size;
2115 break;
2116 case 1: /* RO: text and ro-data */
2117 mod->init_size = debug_align(mod->init_size);
2118 mod->init_ro_size = mod->init_size;
2119 break;
2120 case 3: /* whole init */
2121 mod->init_size = debug_align(mod->init_size);
2122 break;
2123 }
2124 }
2125 }
2126
2127 static void set_license(struct module *mod, const char *license)
2128 {
2129 if (!license)
2130 license = "unspecified";
2131
2132 if (!license_is_gpl_compatible(license)) {
2133 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2134 pr_warn("%s: module license '%s' taints kernel.\n",
2135 mod->name, license);
2136 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2137 LOCKDEP_NOW_UNRELIABLE);
2138 }
2139 }
2140
2141 /* Parse tag=value strings from .modinfo section */
2142 static char *next_string(char *string, unsigned long *secsize)
2143 {
2144 /* Skip non-zero chars */
2145 while (string[0]) {
2146 string++;
2147 if ((*secsize)-- <= 1)
2148 return NULL;
2149 }
2150
2151 /* Skip any zero padding. */
2152 while (!string[0]) {
2153 string++;
2154 if ((*secsize)-- <= 1)
2155 return NULL;
2156 }
2157 return string;
2158 }
2159
2160 static char *get_modinfo(struct load_info *info, const char *tag)
2161 {
2162 char *p;
2163 unsigned int taglen = strlen(tag);
2164 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2165 unsigned long size = infosec->sh_size;
2166
2167 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2168 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2169 return p + taglen + 1;
2170 }
2171 return NULL;
2172 }
2173
2174 static void setup_modinfo(struct module *mod, struct load_info *info)
2175 {
2176 struct module_attribute *attr;
2177 int i;
2178
2179 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2180 if (attr->setup)
2181 attr->setup(mod, get_modinfo(info, attr->attr.name));
2182 }
2183 }
2184
2185 static void free_modinfo(struct module *mod)
2186 {
2187 struct module_attribute *attr;
2188 int i;
2189
2190 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2191 if (attr->free)
2192 attr->free(mod);
2193 }
2194 }
2195
2196 #ifdef CONFIG_KALLSYMS
2197
2198 /* lookup symbol in given range of kernel_symbols */
2199 static const struct kernel_symbol *lookup_symbol(const char *name,
2200 const struct kernel_symbol *start,
2201 const struct kernel_symbol *stop)
2202 {
2203 return bsearch(name, start, stop - start,
2204 sizeof(struct kernel_symbol), cmp_name);
2205 }
2206
2207 static int is_exported(const char *name, unsigned long value,
2208 const struct module *mod)
2209 {
2210 const struct kernel_symbol *ks;
2211 if (!mod)
2212 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2213 else
2214 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2215 return ks != NULL && ks->value == value;
2216 }
2217
2218 /* As per nm */
2219 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2220 {
2221 const Elf_Shdr *sechdrs = info->sechdrs;
2222
2223 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2224 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2225 return 'v';
2226 else
2227 return 'w';
2228 }
2229 if (sym->st_shndx == SHN_UNDEF)
2230 return 'U';
2231 if (sym->st_shndx == SHN_ABS)
2232 return 'a';
2233 if (sym->st_shndx >= SHN_LORESERVE)
2234 return '?';
2235 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2236 return 't';
2237 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2238 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2239 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2240 return 'r';
2241 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2242 return 'g';
2243 else
2244 return 'd';
2245 }
2246 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2247 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2248 return 's';
2249 else
2250 return 'b';
2251 }
2252 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2253 ".debug")) {
2254 return 'n';
2255 }
2256 return '?';
2257 }
2258
2259 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2260 unsigned int shnum)
2261 {
2262 const Elf_Shdr *sec;
2263
2264 if (src->st_shndx == SHN_UNDEF
2265 || src->st_shndx >= shnum
2266 || !src->st_name)
2267 return false;
2268
2269 sec = sechdrs + src->st_shndx;
2270 if (!(sec->sh_flags & SHF_ALLOC)
2271 #ifndef CONFIG_KALLSYMS_ALL
2272 || !(sec->sh_flags & SHF_EXECINSTR)
2273 #endif
2274 || (sec->sh_entsize & INIT_OFFSET_MASK))
2275 return false;
2276
2277 return true;
2278 }
2279
2280 /*
2281 * We only allocate and copy the strings needed by the parts of symtab
2282 * we keep. This is simple, but has the effect of making multiple
2283 * copies of duplicates. We could be more sophisticated, see
2284 * linux-kernel thread starting with
2285 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2286 */
2287 static void layout_symtab(struct module *mod, struct load_info *info)
2288 {
2289 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2290 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2291 const Elf_Sym *src;
2292 unsigned int i, nsrc, ndst, strtab_size = 0;
2293
2294 /* Put symbol section at end of init part of module. */
2295 symsect->sh_flags |= SHF_ALLOC;
2296 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2297 info->index.sym) | INIT_OFFSET_MASK;
2298 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2299
2300 src = (void *)info->hdr + symsect->sh_offset;
2301 nsrc = symsect->sh_size / sizeof(*src);
2302
2303 /* Compute total space required for the core symbols' strtab. */
2304 for (ndst = i = 0; i < nsrc; i++) {
2305 if (i == 0 ||
2306 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2307 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2308 ndst++;
2309 }
2310 }
2311
2312 /* Append room for core symbols at end of core part. */
2313 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2314 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2315 mod->core_size += strtab_size;
2316
2317 /* Put string table section at end of init part of module. */
2318 strsect->sh_flags |= SHF_ALLOC;
2319 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2320 info->index.str) | INIT_OFFSET_MASK;
2321 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2322 }
2323
2324 static void add_kallsyms(struct module *mod, const struct load_info *info)
2325 {
2326 unsigned int i, ndst;
2327 const Elf_Sym *src;
2328 Elf_Sym *dst;
2329 char *s;
2330 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2331
2332 mod->symtab = (void *)symsec->sh_addr;
2333 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2334 /* Make sure we get permanent strtab: don't use info->strtab. */
2335 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2336
2337 /* Set types up while we still have access to sections. */
2338 for (i = 0; i < mod->num_symtab; i++)
2339 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2340
2341 mod->core_symtab = dst = mod->module_core + info->symoffs;
2342 mod->core_strtab = s = mod->module_core + info->stroffs;
2343 src = mod->symtab;
2344 for (ndst = i = 0; i < mod->num_symtab; i++) {
2345 if (i == 0 ||
2346 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2347 dst[ndst] = src[i];
2348 dst[ndst++].st_name = s - mod->core_strtab;
2349 s += strlcpy(s, &mod->strtab[src[i].st_name],
2350 KSYM_NAME_LEN) + 1;
2351 }
2352 }
2353 mod->core_num_syms = ndst;
2354 }
2355 #else
2356 static inline void layout_symtab(struct module *mod, struct load_info *info)
2357 {
2358 }
2359
2360 static void add_kallsyms(struct module *mod, const struct load_info *info)
2361 {
2362 }
2363 #endif /* CONFIG_KALLSYMS */
2364
2365 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2366 {
2367 if (!debug)
2368 return;
2369 #ifdef CONFIG_DYNAMIC_DEBUG
2370 if (ddebug_add_module(debug, num, debug->modname))
2371 pr_err("dynamic debug error adding module: %s\n",
2372 debug->modname);
2373 #endif
2374 }
2375
2376 static void dynamic_debug_remove(struct _ddebug *debug)
2377 {
2378 if (debug)
2379 ddebug_remove_module(debug->modname);
2380 }
2381
2382 void * __weak module_alloc(unsigned long size)
2383 {
2384 return vmalloc_exec(size);
2385 }
2386
2387 static void *module_alloc_update_bounds(unsigned long size)
2388 {
2389 void *ret = module_alloc(size);
2390
2391 if (ret) {
2392 mutex_lock(&module_mutex);
2393 /* Update module bounds. */
2394 if ((unsigned long)ret < module_addr_min)
2395 module_addr_min = (unsigned long)ret;
2396 if ((unsigned long)ret + size > module_addr_max)
2397 module_addr_max = (unsigned long)ret + size;
2398 mutex_unlock(&module_mutex);
2399 }
2400 return ret;
2401 }
2402
2403 #ifdef CONFIG_DEBUG_KMEMLEAK
2404 static void kmemleak_load_module(const struct module *mod,
2405 const struct load_info *info)
2406 {
2407 unsigned int i;
2408
2409 /* only scan the sections containing data */
2410 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2411
2412 for (i = 1; i < info->hdr->e_shnum; i++) {
2413 /* Scan all writable sections that's not executable */
2414 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2415 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2416 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2417 continue;
2418
2419 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2420 info->sechdrs[i].sh_size, GFP_KERNEL);
2421 }
2422 }
2423 #else
2424 static inline void kmemleak_load_module(const struct module *mod,
2425 const struct load_info *info)
2426 {
2427 }
2428 #endif
2429
2430 #ifdef CONFIG_MODULE_SIG
2431 static int module_sig_check(struct load_info *info)
2432 {
2433 int err = -ENOKEY;
2434 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2435 const void *mod = info->hdr;
2436
2437 if (info->len > markerlen &&
2438 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2439 /* We truncate the module to discard the signature */
2440 info->len -= markerlen;
2441 err = mod_verify_sig(mod, &info->len);
2442 }
2443
2444 if (!err) {
2445 info->sig_ok = true;
2446 return 0;
2447 }
2448
2449 /* Not having a signature is only an error if we're strict. */
2450 if (err == -ENOKEY && !sig_enforce)
2451 err = 0;
2452
2453 return err;
2454 }
2455 #else /* !CONFIG_MODULE_SIG */
2456 static int module_sig_check(struct load_info *info)
2457 {
2458 return 0;
2459 }
2460 #endif /* !CONFIG_MODULE_SIG */
2461
2462 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2463 static int elf_header_check(struct load_info *info)
2464 {
2465 if (info->len < sizeof(*(info->hdr)))
2466 return -ENOEXEC;
2467
2468 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2469 || info->hdr->e_type != ET_REL
2470 || !elf_check_arch(info->hdr)
2471 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2472 return -ENOEXEC;
2473
2474 if (info->hdr->e_shoff >= info->len
2475 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2476 info->len - info->hdr->e_shoff))
2477 return -ENOEXEC;
2478
2479 return 0;
2480 }
2481
2482 /* Sets info->hdr and info->len. */
2483 static int copy_module_from_user(const void __user *umod, unsigned long len,
2484 struct load_info *info)
2485 {
2486 int err;
2487
2488 info->len = len;
2489 if (info->len < sizeof(*(info->hdr)))
2490 return -ENOEXEC;
2491
2492 err = security_kernel_module_from_file(NULL);
2493 if (err)
2494 return err;
2495
2496 /* Suck in entire file: we'll want most of it. */
2497 info->hdr = vmalloc(info->len);
2498 if (!info->hdr)
2499 return -ENOMEM;
2500
2501 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2502 vfree(info->hdr);
2503 return -EFAULT;
2504 }
2505
2506 return 0;
2507 }
2508
2509 /* Sets info->hdr and info->len. */
2510 static int copy_module_from_fd(int fd, struct load_info *info)
2511 {
2512 struct fd f = fdget(fd);
2513 int err;
2514 struct kstat stat;
2515 loff_t pos;
2516 ssize_t bytes = 0;
2517
2518 if (!f.file)
2519 return -ENOEXEC;
2520
2521 err = security_kernel_module_from_file(f.file);
2522 if (err)
2523 goto out;
2524
2525 err = vfs_getattr(&f.file->f_path, &stat);
2526 if (err)
2527 goto out;
2528
2529 if (stat.size > INT_MAX) {
2530 err = -EFBIG;
2531 goto out;
2532 }
2533
2534 /* Don't hand 0 to vmalloc, it whines. */
2535 if (stat.size == 0) {
2536 err = -EINVAL;
2537 goto out;
2538 }
2539
2540 info->hdr = vmalloc(stat.size);
2541 if (!info->hdr) {
2542 err = -ENOMEM;
2543 goto out;
2544 }
2545
2546 pos = 0;
2547 while (pos < stat.size) {
2548 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2549 stat.size - pos);
2550 if (bytes < 0) {
2551 vfree(info->hdr);
2552 err = bytes;
2553 goto out;
2554 }
2555 if (bytes == 0)
2556 break;
2557 pos += bytes;
2558 }
2559 info->len = pos;
2560
2561 out:
2562 fdput(f);
2563 return err;
2564 }
2565
2566 static void free_copy(struct load_info *info)
2567 {
2568 vfree(info->hdr);
2569 }
2570
2571 static int rewrite_section_headers(struct load_info *info, int flags)
2572 {
2573 unsigned int i;
2574
2575 /* This should always be true, but let's be sure. */
2576 info->sechdrs[0].sh_addr = 0;
2577
2578 for (i = 1; i < info->hdr->e_shnum; i++) {
2579 Elf_Shdr *shdr = &info->sechdrs[i];
2580 if (shdr->sh_type != SHT_NOBITS
2581 && info->len < shdr->sh_offset + shdr->sh_size) {
2582 pr_err("Module len %lu truncated\n", info->len);
2583 return -ENOEXEC;
2584 }
2585
2586 /* Mark all sections sh_addr with their address in the
2587 temporary image. */
2588 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2589
2590 #ifndef CONFIG_MODULE_UNLOAD
2591 /* Don't load .exit sections */
2592 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2593 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2594 #endif
2595 }
2596
2597 /* Track but don't keep modinfo and version sections. */
2598 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2599 info->index.vers = 0; /* Pretend no __versions section! */
2600 else
2601 info->index.vers = find_sec(info, "__versions");
2602 info->index.info = find_sec(info, ".modinfo");
2603 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2604 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2605 return 0;
2606 }
2607
2608 /*
2609 * Set up our basic convenience variables (pointers to section headers,
2610 * search for module section index etc), and do some basic section
2611 * verification.
2612 *
2613 * Return the temporary module pointer (we'll replace it with the final
2614 * one when we move the module sections around).
2615 */
2616 static struct module *setup_load_info(struct load_info *info, int flags)
2617 {
2618 unsigned int i;
2619 int err;
2620 struct module *mod;
2621
2622 /* Set up the convenience variables */
2623 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2624 info->secstrings = (void *)info->hdr
2625 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2626
2627 err = rewrite_section_headers(info, flags);
2628 if (err)
2629 return ERR_PTR(err);
2630
2631 /* Find internal symbols and strings. */
2632 for (i = 1; i < info->hdr->e_shnum; i++) {
2633 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2634 info->index.sym = i;
2635 info->index.str = info->sechdrs[i].sh_link;
2636 info->strtab = (char *)info->hdr
2637 + info->sechdrs[info->index.str].sh_offset;
2638 break;
2639 }
2640 }
2641
2642 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2643 if (!info->index.mod) {
2644 pr_warn("No module found in object\n");
2645 return ERR_PTR(-ENOEXEC);
2646 }
2647 /* This is temporary: point mod into copy of data. */
2648 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2649
2650 if (info->index.sym == 0) {
2651 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2652 return ERR_PTR(-ENOEXEC);
2653 }
2654
2655 info->index.pcpu = find_pcpusec(info);
2656
2657 /* Check module struct version now, before we try to use module. */
2658 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2659 return ERR_PTR(-ENOEXEC);
2660
2661 return mod;
2662 }
2663
2664 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2665 {
2666 const char *modmagic = get_modinfo(info, "vermagic");
2667 int err;
2668
2669 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2670 modmagic = NULL;
2671
2672 /* This is allowed: modprobe --force will invalidate it. */
2673 if (!modmagic) {
2674 err = try_to_force_load(mod, "bad vermagic");
2675 if (err)
2676 return err;
2677 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2678 pr_err("%s: version magic '%s' should be '%s'\n",
2679 mod->name, modmagic, vermagic);
2680 return -ENOEXEC;
2681 }
2682
2683 if (!get_modinfo(info, "intree"))
2684 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2685
2686 if (get_modinfo(info, "staging")) {
2687 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2688 pr_warn("%s: module is from the staging directory, the quality "
2689 "is unknown, you have been warned.\n", mod->name);
2690 }
2691
2692 /* Set up license info based on the info section */
2693 set_license(mod, get_modinfo(info, "license"));
2694
2695 return 0;
2696 }
2697
2698 static int find_module_sections(struct module *mod, struct load_info *info)
2699 {
2700 mod->kp = section_objs(info, "__param",
2701 sizeof(*mod->kp), &mod->num_kp);
2702 mod->syms = section_objs(info, "__ksymtab",
2703 sizeof(*mod->syms), &mod->num_syms);
2704 mod->crcs = section_addr(info, "__kcrctab");
2705 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2706 sizeof(*mod->gpl_syms),
2707 &mod->num_gpl_syms);
2708 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2709 mod->gpl_future_syms = section_objs(info,
2710 "__ksymtab_gpl_future",
2711 sizeof(*mod->gpl_future_syms),
2712 &mod->num_gpl_future_syms);
2713 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2714
2715 #ifdef CONFIG_UNUSED_SYMBOLS
2716 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2717 sizeof(*mod->unused_syms),
2718 &mod->num_unused_syms);
2719 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2720 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2721 sizeof(*mod->unused_gpl_syms),
2722 &mod->num_unused_gpl_syms);
2723 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2724 #endif
2725 #ifdef CONFIG_CONSTRUCTORS
2726 mod->ctors = section_objs(info, ".ctors",
2727 sizeof(*mod->ctors), &mod->num_ctors);
2728 if (!mod->ctors)
2729 mod->ctors = section_objs(info, ".init_array",
2730 sizeof(*mod->ctors), &mod->num_ctors);
2731 else if (find_sec(info, ".init_array")) {
2732 /*
2733 * This shouldn't happen with same compiler and binutils
2734 * building all parts of the module.
2735 */
2736 printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
2737 mod->name);
2738 return -EINVAL;
2739 }
2740 #endif
2741
2742 #ifdef CONFIG_TRACEPOINTS
2743 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2744 sizeof(*mod->tracepoints_ptrs),
2745 &mod->num_tracepoints);
2746 #endif
2747 #ifdef HAVE_JUMP_LABEL
2748 mod->jump_entries = section_objs(info, "__jump_table",
2749 sizeof(*mod->jump_entries),
2750 &mod->num_jump_entries);
2751 #endif
2752 #ifdef CONFIG_EVENT_TRACING
2753 mod->trace_events = section_objs(info, "_ftrace_events",
2754 sizeof(*mod->trace_events),
2755 &mod->num_trace_events);
2756 #endif
2757 #ifdef CONFIG_TRACING
2758 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2759 sizeof(*mod->trace_bprintk_fmt_start),
2760 &mod->num_trace_bprintk_fmt);
2761 #endif
2762 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2763 /* sechdrs[0].sh_size is always zero */
2764 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2765 sizeof(*mod->ftrace_callsites),
2766 &mod->num_ftrace_callsites);
2767 #endif
2768
2769 mod->extable = section_objs(info, "__ex_table",
2770 sizeof(*mod->extable), &mod->num_exentries);
2771
2772 if (section_addr(info, "__obsparm"))
2773 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2774
2775 info->debug = section_objs(info, "__verbose",
2776 sizeof(*info->debug), &info->num_debug);
2777
2778 return 0;
2779 }
2780
2781 static int move_module(struct module *mod, struct load_info *info)
2782 {
2783 int i;
2784 void *ptr;
2785
2786 /* Do the allocs. */
2787 ptr = module_alloc_update_bounds(mod->core_size);
2788 /*
2789 * The pointer to this block is stored in the module structure
2790 * which is inside the block. Just mark it as not being a
2791 * leak.
2792 */
2793 kmemleak_not_leak(ptr);
2794 if (!ptr)
2795 return -ENOMEM;
2796
2797 memset(ptr, 0, mod->core_size);
2798 mod->module_core = ptr;
2799
2800 if (mod->init_size) {
2801 ptr = module_alloc_update_bounds(mod->init_size);
2802 /*
2803 * The pointer to this block is stored in the module structure
2804 * which is inside the block. This block doesn't need to be
2805 * scanned as it contains data and code that will be freed
2806 * after the module is initialized.
2807 */
2808 kmemleak_ignore(ptr);
2809 if (!ptr) {
2810 module_free(mod, mod->module_core);
2811 return -ENOMEM;
2812 }
2813 memset(ptr, 0, mod->init_size);
2814 mod->module_init = ptr;
2815 } else
2816 mod->module_init = NULL;
2817
2818 /* Transfer each section which specifies SHF_ALLOC */
2819 pr_debug("final section addresses:\n");
2820 for (i = 0; i < info->hdr->e_shnum; i++) {
2821 void *dest;
2822 Elf_Shdr *shdr = &info->sechdrs[i];
2823
2824 if (!(shdr->sh_flags & SHF_ALLOC))
2825 continue;
2826
2827 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2828 dest = mod->module_init
2829 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2830 else
2831 dest = mod->module_core + shdr->sh_entsize;
2832
2833 if (shdr->sh_type != SHT_NOBITS)
2834 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2835 /* Update sh_addr to point to copy in image. */
2836 shdr->sh_addr = (unsigned long)dest;
2837 pr_debug("\t0x%lx %s\n",
2838 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2839 }
2840
2841 return 0;
2842 }
2843
2844 static int check_module_license_and_versions(struct module *mod)
2845 {
2846 /*
2847 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2848 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2849 * using GPL-only symbols it needs.
2850 */
2851 if (strcmp(mod->name, "ndiswrapper") == 0)
2852 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2853
2854 /* driverloader was caught wrongly pretending to be under GPL */
2855 if (strcmp(mod->name, "driverloader") == 0)
2856 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2857 LOCKDEP_NOW_UNRELIABLE);
2858
2859 /* lve claims to be GPL but upstream won't provide source */
2860 if (strcmp(mod->name, "lve") == 0)
2861 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2862 LOCKDEP_NOW_UNRELIABLE);
2863
2864 #ifdef CONFIG_MODVERSIONS
2865 if ((mod->num_syms && !mod->crcs)
2866 || (mod->num_gpl_syms && !mod->gpl_crcs)
2867 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2868 #ifdef CONFIG_UNUSED_SYMBOLS
2869 || (mod->num_unused_syms && !mod->unused_crcs)
2870 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2871 #endif
2872 ) {
2873 return try_to_force_load(mod,
2874 "no versions for exported symbols");
2875 }
2876 #endif
2877 return 0;
2878 }
2879
2880 static void flush_module_icache(const struct module *mod)
2881 {
2882 mm_segment_t old_fs;
2883
2884 /* flush the icache in correct context */
2885 old_fs = get_fs();
2886 set_fs(KERNEL_DS);
2887
2888 /*
2889 * Flush the instruction cache, since we've played with text.
2890 * Do it before processing of module parameters, so the module
2891 * can provide parameter accessor functions of its own.
2892 */
2893 if (mod->module_init)
2894 flush_icache_range((unsigned long)mod->module_init,
2895 (unsigned long)mod->module_init
2896 + mod->init_size);
2897 flush_icache_range((unsigned long)mod->module_core,
2898 (unsigned long)mod->module_core + mod->core_size);
2899
2900 set_fs(old_fs);
2901 }
2902
2903 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2904 Elf_Shdr *sechdrs,
2905 char *secstrings,
2906 struct module *mod)
2907 {
2908 return 0;
2909 }
2910
2911 static struct module *layout_and_allocate(struct load_info *info, int flags)
2912 {
2913 /* Module within temporary copy. */
2914 struct module *mod;
2915 int err;
2916
2917 mod = setup_load_info(info, flags);
2918 if (IS_ERR(mod))
2919 return mod;
2920
2921 err = check_modinfo(mod, info, flags);
2922 if (err)
2923 return ERR_PTR(err);
2924
2925 /* Allow arches to frob section contents and sizes. */
2926 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2927 info->secstrings, mod);
2928 if (err < 0)
2929 return ERR_PTR(err);
2930
2931 /* We will do a special allocation for per-cpu sections later. */
2932 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2933
2934 /* Determine total sizes, and put offsets in sh_entsize. For now
2935 this is done generically; there doesn't appear to be any
2936 special cases for the architectures. */
2937 layout_sections(mod, info);
2938 layout_symtab(mod, info);
2939
2940 /* Allocate and move to the final place */
2941 err = move_module(mod, info);
2942 if (err)
2943 return ERR_PTR(err);
2944
2945 /* Module has been copied to its final place now: return it. */
2946 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2947 kmemleak_load_module(mod, info);
2948 return mod;
2949 }
2950
2951 /* mod is no longer valid after this! */
2952 static void module_deallocate(struct module *mod, struct load_info *info)
2953 {
2954 percpu_modfree(mod);
2955 module_free(mod, mod->module_init);
2956 module_free(mod, mod->module_core);
2957 }
2958
2959 int __weak module_finalize(const Elf_Ehdr *hdr,
2960 const Elf_Shdr *sechdrs,
2961 struct module *me)
2962 {
2963 return 0;
2964 }
2965
2966 static int post_relocation(struct module *mod, const struct load_info *info)
2967 {
2968 /* Sort exception table now relocations are done. */
2969 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2970
2971 /* Copy relocated percpu area over. */
2972 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2973 info->sechdrs[info->index.pcpu].sh_size);
2974
2975 /* Setup kallsyms-specific fields. */
2976 add_kallsyms(mod, info);
2977
2978 /* Arch-specific module finalizing. */
2979 return module_finalize(info->hdr, info->sechdrs, mod);
2980 }
2981
2982 /* Is this module of this name done loading? No locks held. */
2983 static bool finished_loading(const char *name)
2984 {
2985 struct module *mod;
2986 bool ret;
2987
2988 mutex_lock(&module_mutex);
2989 mod = find_module_all(name, strlen(name), true);
2990 ret = !mod || mod->state == MODULE_STATE_LIVE
2991 || mod->state == MODULE_STATE_GOING;
2992 mutex_unlock(&module_mutex);
2993
2994 return ret;
2995 }
2996
2997 /* Call module constructors. */
2998 static void do_mod_ctors(struct module *mod)
2999 {
3000 #ifdef CONFIG_CONSTRUCTORS
3001 unsigned long i;
3002
3003 for (i = 0; i < mod->num_ctors; i++)
3004 mod->ctors[i]();
3005 #endif
3006 }
3007
3008 /* This is where the real work happens */
3009 static int do_init_module(struct module *mod)
3010 {
3011 int ret = 0;
3012
3013 /*
3014 * We want to find out whether @mod uses async during init. Clear
3015 * PF_USED_ASYNC. async_schedule*() will set it.
3016 */
3017 current->flags &= ~PF_USED_ASYNC;
3018
3019 do_mod_ctors(mod);
3020 /* Start the module */
3021 if (mod->init != NULL)
3022 ret = do_one_initcall(mod->init);
3023 if (ret < 0) {
3024 /* Init routine failed: abort. Try to protect us from
3025 buggy refcounters. */
3026 mod->state = MODULE_STATE_GOING;
3027 synchronize_sched();
3028 module_put(mod);
3029 blocking_notifier_call_chain(&module_notify_list,
3030 MODULE_STATE_GOING, mod);
3031 free_module(mod);
3032 wake_up_all(&module_wq);
3033 return ret;
3034 }
3035 if (ret > 0) {
3036 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3037 "follow 0/-E convention\n"
3038 "%s: loading module anyway...\n",
3039 __func__, mod->name, ret, __func__);
3040 dump_stack();
3041 }
3042
3043 /* Now it's a first class citizen! */
3044 mod->state = MODULE_STATE_LIVE;
3045 blocking_notifier_call_chain(&module_notify_list,
3046 MODULE_STATE_LIVE, mod);
3047
3048 /*
3049 * We need to finish all async code before the module init sequence
3050 * is done. This has potential to deadlock. For example, a newly
3051 * detected block device can trigger request_module() of the
3052 * default iosched from async probing task. Once userland helper
3053 * reaches here, async_synchronize_full() will wait on the async
3054 * task waiting on request_module() and deadlock.
3055 *
3056 * This deadlock is avoided by perfomring async_synchronize_full()
3057 * iff module init queued any async jobs. This isn't a full
3058 * solution as it will deadlock the same if module loading from
3059 * async jobs nests more than once; however, due to the various
3060 * constraints, this hack seems to be the best option for now.
3061 * Please refer to the following thread for details.
3062 *
3063 * http://thread.gmane.org/gmane.linux.kernel/1420814
3064 */
3065 if (current->flags & PF_USED_ASYNC)
3066 async_synchronize_full();
3067
3068 mutex_lock(&module_mutex);
3069 /* Drop initial reference. */
3070 module_put(mod);
3071 trim_init_extable(mod);
3072 #ifdef CONFIG_KALLSYMS
3073 mod->num_symtab = mod->core_num_syms;
3074 mod->symtab = mod->core_symtab;
3075 mod->strtab = mod->core_strtab;
3076 #endif
3077 unset_module_init_ro_nx(mod);
3078 module_free(mod, mod->module_init);
3079 mod->module_init = NULL;
3080 mod->init_size = 0;
3081 mod->init_ro_size = 0;
3082 mod->init_text_size = 0;
3083 mutex_unlock(&module_mutex);
3084 wake_up_all(&module_wq);
3085
3086 return 0;
3087 }
3088
3089 static int may_init_module(void)
3090 {
3091 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3092 return -EPERM;
3093
3094 return 0;
3095 }
3096
3097 /*
3098 * We try to place it in the list now to make sure it's unique before
3099 * we dedicate too many resources. In particular, temporary percpu
3100 * memory exhaustion.
3101 */
3102 static int add_unformed_module(struct module *mod)
3103 {
3104 int err;
3105 struct module *old;
3106
3107 mod->state = MODULE_STATE_UNFORMED;
3108
3109 again:
3110 mutex_lock(&module_mutex);
3111 old = find_module_all(mod->name, strlen(mod->name), true);
3112 if (old != NULL) {
3113 if (old->state == MODULE_STATE_COMING
3114 || old->state == MODULE_STATE_UNFORMED) {
3115 /* Wait in case it fails to load. */
3116 mutex_unlock(&module_mutex);
3117 err = wait_event_interruptible(module_wq,
3118 finished_loading(mod->name));
3119 if (err)
3120 goto out_unlocked;
3121 goto again;
3122 }
3123 err = -EEXIST;
3124 goto out;
3125 }
3126 list_add_rcu(&mod->list, &modules);
3127 err = 0;
3128
3129 out:
3130 mutex_unlock(&module_mutex);
3131 out_unlocked:
3132 return err;
3133 }
3134
3135 static int complete_formation(struct module *mod, struct load_info *info)
3136 {
3137 int err;
3138
3139 mutex_lock(&module_mutex);
3140
3141 /* Find duplicate symbols (must be called under lock). */
3142 err = verify_export_symbols(mod);
3143 if (err < 0)
3144 goto out;
3145
3146 /* This relies on module_mutex for list integrity. */
3147 module_bug_finalize(info->hdr, info->sechdrs, mod);
3148
3149 /* Set RO and NX regions for core */
3150 set_section_ro_nx(mod->module_core,
3151 mod->core_text_size,
3152 mod->core_ro_size,
3153 mod->core_size);
3154
3155 /* Set RO and NX regions for init */
3156 set_section_ro_nx(mod->module_init,
3157 mod->init_text_size,
3158 mod->init_ro_size,
3159 mod->init_size);
3160
3161 /* Mark state as coming so strong_try_module_get() ignores us,
3162 * but kallsyms etc. can see us. */
3163 mod->state = MODULE_STATE_COMING;
3164 mutex_unlock(&module_mutex);
3165
3166 blocking_notifier_call_chain(&module_notify_list,
3167 MODULE_STATE_COMING, mod);
3168 return 0;
3169
3170 out:
3171 mutex_unlock(&module_mutex);
3172 return err;
3173 }
3174
3175 static int unknown_module_param_cb(char *param, char *val, const char *modname)
3176 {
3177 /* Check for magic 'dyndbg' arg */
3178 int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3179 if (ret != 0)
3180 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3181 return 0;
3182 }
3183
3184 /* Allocate and load the module: note that size of section 0 is always
3185 zero, and we rely on this for optional sections. */
3186 static int load_module(struct load_info *info, const char __user *uargs,
3187 int flags)
3188 {
3189 struct module *mod;
3190 long err;
3191 char *after_dashes;
3192
3193 err = module_sig_check(info);
3194 if (err)
3195 goto free_copy;
3196
3197 err = elf_header_check(info);
3198 if (err)
3199 goto free_copy;
3200
3201 /* Figure out module layout, and allocate all the memory. */
3202 mod = layout_and_allocate(info, flags);
3203 if (IS_ERR(mod)) {
3204 err = PTR_ERR(mod);
3205 goto free_copy;
3206 }
3207
3208 /* Reserve our place in the list. */
3209 err = add_unformed_module(mod);
3210 if (err)
3211 goto free_module;
3212
3213 #ifdef CONFIG_MODULE_SIG
3214 mod->sig_ok = info->sig_ok;
3215 if (!mod->sig_ok) {
3216 pr_notice_once("%s: module verification failed: signature "
3217 "and/or required key missing - tainting "
3218 "kernel\n", mod->name);
3219 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3220 }
3221 #endif
3222
3223 /* To avoid stressing percpu allocator, do this once we're unique. */
3224 err = percpu_modalloc(mod, info);
3225 if (err)
3226 goto unlink_mod;
3227
3228 /* Now module is in final location, initialize linked lists, etc. */
3229 err = module_unload_init(mod);
3230 if (err)
3231 goto unlink_mod;
3232
3233 /* Now we've got everything in the final locations, we can
3234 * find optional sections. */
3235 err = find_module_sections(mod, info);
3236 if (err)
3237 goto free_unload;
3238
3239 err = check_module_license_and_versions(mod);
3240 if (err)
3241 goto free_unload;
3242
3243 /* Set up MODINFO_ATTR fields */
3244 setup_modinfo(mod, info);
3245
3246 /* Fix up syms, so that st_value is a pointer to location. */
3247 err = simplify_symbols(mod, info);
3248 if (err < 0)
3249 goto free_modinfo;
3250
3251 err = apply_relocations(mod, info);
3252 if (err < 0)
3253 goto free_modinfo;
3254
3255 err = post_relocation(mod, info);
3256 if (err < 0)
3257 goto free_modinfo;
3258
3259 flush_module_icache(mod);
3260
3261 /* Now copy in args */
3262 mod->args = strndup_user(uargs, ~0UL >> 1);
3263 if (IS_ERR(mod->args)) {
3264 err = PTR_ERR(mod->args);
3265 goto free_arch_cleanup;
3266 }
3267
3268 dynamic_debug_setup(info->debug, info->num_debug);
3269
3270 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3271 ftrace_module_init(mod);
3272
3273 /* Finally it's fully formed, ready to start executing. */
3274 err = complete_formation(mod, info);
3275 if (err)
3276 goto ddebug_cleanup;
3277
3278 /* Module is ready to execute: parsing args may do that. */
3279 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3280 -32768, 32767, unknown_module_param_cb);
3281 if (IS_ERR(after_dashes)) {
3282 err = PTR_ERR(after_dashes);
3283 goto bug_cleanup;
3284 } else if (after_dashes) {
3285 pr_warn("%s: parameters '%s' after `--' ignored\n",
3286 mod->name, after_dashes);
3287 }
3288
3289 /* Link in to syfs. */
3290 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3291 if (err < 0)
3292 goto bug_cleanup;
3293
3294 /* Get rid of temporary copy. */
3295 free_copy(info);
3296
3297 /* Done! */
3298 trace_module_load(mod);
3299
3300 return do_init_module(mod);
3301
3302 bug_cleanup:
3303 /* module_bug_cleanup needs module_mutex protection */
3304 mutex_lock(&module_mutex);
3305 module_bug_cleanup(mod);
3306 mutex_unlock(&module_mutex);
3307
3308 /* we can't deallocate the module until we clear memory protection */
3309 unset_module_init_ro_nx(mod);
3310 unset_module_core_ro_nx(mod);
3311
3312 ddebug_cleanup:
3313 dynamic_debug_remove(info->debug);
3314 synchronize_sched();
3315 kfree(mod->args);
3316 free_arch_cleanup:
3317 module_arch_cleanup(mod);
3318 free_modinfo:
3319 free_modinfo(mod);
3320 free_unload:
3321 module_unload_free(mod);
3322 unlink_mod:
3323 mutex_lock(&module_mutex);
3324 /* Unlink carefully: kallsyms could be walking list. */
3325 list_del_rcu(&mod->list);
3326 wake_up_all(&module_wq);
3327 mutex_unlock(&module_mutex);
3328 free_module:
3329 module_deallocate(mod, info);
3330 free_copy:
3331 free_copy(info);
3332 return err;
3333 }
3334
3335 SYSCALL_DEFINE3(init_module, void __user *, umod,
3336 unsigned long, len, const char __user *, uargs)
3337 {
3338 int err;
3339 struct load_info info = { };
3340
3341 err = may_init_module();
3342 if (err)
3343 return err;
3344
3345 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3346 umod, len, uargs);
3347
3348 err = copy_module_from_user(umod, len, &info);
3349 if (err)
3350 return err;
3351
3352 return load_module(&info, uargs, 0);
3353 }
3354
3355 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3356 {
3357 int err;
3358 struct load_info info = { };
3359
3360 err = may_init_module();
3361 if (err)
3362 return err;
3363
3364 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3365
3366 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3367 |MODULE_INIT_IGNORE_VERMAGIC))
3368 return -EINVAL;
3369
3370 err = copy_module_from_fd(fd, &info);
3371 if (err)
3372 return err;
3373
3374 return load_module(&info, uargs, flags);
3375 }
3376
3377 static inline int within(unsigned long addr, void *start, unsigned long size)
3378 {
3379 return ((void *)addr >= start && (void *)addr < start + size);
3380 }
3381
3382 #ifdef CONFIG_KALLSYMS
3383 /*
3384 * This ignores the intensely annoying "mapping symbols" found
3385 * in ARM ELF files: $a, $t and $d.
3386 */
3387 static inline int is_arm_mapping_symbol(const char *str)
3388 {
3389 if (str[0] == '.' && str[1] == 'L')
3390 return true;
3391 return str[0] == '$' && strchr("atd", str[1])
3392 && (str[2] == '\0' || str[2] == '.');
3393 }
3394
3395 static const char *get_ksymbol(struct module *mod,
3396 unsigned long addr,
3397 unsigned long *size,
3398 unsigned long *offset)
3399 {
3400 unsigned int i, best = 0;
3401 unsigned long nextval;
3402
3403 /* At worse, next value is at end of module */
3404 if (within_module_init(addr, mod))
3405 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3406 else
3407 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3408
3409 /* Scan for closest preceding symbol, and next symbol. (ELF
3410 starts real symbols at 1). */
3411 for (i = 1; i < mod->num_symtab; i++) {
3412 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3413 continue;
3414
3415 /* We ignore unnamed symbols: they're uninformative
3416 * and inserted at a whim. */
3417 if (mod->symtab[i].st_value <= addr
3418 && mod->symtab[i].st_value > mod->symtab[best].st_value
3419 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3420 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3421 best = i;
3422 if (mod->symtab[i].st_value > addr
3423 && mod->symtab[i].st_value < nextval
3424 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3425 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3426 nextval = mod->symtab[i].st_value;
3427 }
3428
3429 if (!best)
3430 return NULL;
3431
3432 if (size)
3433 *size = nextval - mod->symtab[best].st_value;
3434 if (offset)
3435 *offset = addr - mod->symtab[best].st_value;
3436 return mod->strtab + mod->symtab[best].st_name;
3437 }
3438
3439 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3440 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3441 const char *module_address_lookup(unsigned long addr,
3442 unsigned long *size,
3443 unsigned long *offset,
3444 char **modname,
3445 char *namebuf)
3446 {
3447 struct module *mod;
3448 const char *ret = NULL;
3449
3450 preempt_disable();
3451 list_for_each_entry_rcu(mod, &modules, list) {
3452 if (mod->state == MODULE_STATE_UNFORMED)
3453 continue;
3454 if (within_module(addr, mod)) {
3455 if (modname)
3456 *modname = mod->name;
3457 ret = get_ksymbol(mod, addr, size, offset);
3458 break;
3459 }
3460 }
3461 /* Make a copy in here where it's safe */
3462 if (ret) {
3463 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3464 ret = namebuf;
3465 }
3466 preempt_enable();
3467 return ret;
3468 }
3469
3470 int lookup_module_symbol_name(unsigned long addr, char *symname)
3471 {
3472 struct module *mod;
3473
3474 preempt_disable();
3475 list_for_each_entry_rcu(mod, &modules, list) {
3476 if (mod->state == MODULE_STATE_UNFORMED)
3477 continue;
3478 if (within_module(addr, mod)) {
3479 const char *sym;
3480
3481 sym = get_ksymbol(mod, addr, NULL, NULL);
3482 if (!sym)
3483 goto out;
3484 strlcpy(symname, sym, KSYM_NAME_LEN);
3485 preempt_enable();
3486 return 0;
3487 }
3488 }
3489 out:
3490 preempt_enable();
3491 return -ERANGE;
3492 }
3493
3494 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3495 unsigned long *offset, char *modname, char *name)
3496 {
3497 struct module *mod;
3498
3499 preempt_disable();
3500 list_for_each_entry_rcu(mod, &modules, list) {
3501 if (mod->state == MODULE_STATE_UNFORMED)
3502 continue;
3503 if (within_module(addr, mod)) {
3504 const char *sym;
3505
3506 sym = get_ksymbol(mod, addr, size, offset);
3507 if (!sym)
3508 goto out;
3509 if (modname)
3510 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3511 if (name)
3512 strlcpy(name, sym, KSYM_NAME_LEN);
3513 preempt_enable();
3514 return 0;
3515 }
3516 }
3517 out:
3518 preempt_enable();
3519 return -ERANGE;
3520 }
3521
3522 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3523 char *name, char *module_name, int *exported)
3524 {
3525 struct module *mod;
3526
3527 preempt_disable();
3528 list_for_each_entry_rcu(mod, &modules, list) {
3529 if (mod->state == MODULE_STATE_UNFORMED)
3530 continue;
3531 if (symnum < mod->num_symtab) {
3532 *value = mod->symtab[symnum].st_value;
3533 *type = mod->symtab[symnum].st_info;
3534 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3535 KSYM_NAME_LEN);
3536 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3537 *exported = is_exported(name, *value, mod);
3538 preempt_enable();
3539 return 0;
3540 }
3541 symnum -= mod->num_symtab;
3542 }
3543 preempt_enable();
3544 return -ERANGE;
3545 }
3546
3547 static unsigned long mod_find_symname(struct module *mod, const char *name)
3548 {
3549 unsigned int i;
3550
3551 for (i = 0; i < mod->num_symtab; i++)
3552 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3553 mod->symtab[i].st_info != 'U')
3554 return mod->symtab[i].st_value;
3555 return 0;
3556 }
3557
3558 /* Look for this name: can be of form module:name. */
3559 unsigned long module_kallsyms_lookup_name(const char *name)
3560 {
3561 struct module *mod;
3562 char *colon;
3563 unsigned long ret = 0;
3564
3565 /* Don't lock: we're in enough trouble already. */
3566 preempt_disable();
3567 if ((colon = strchr(name, ':')) != NULL) {
3568 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3569 ret = mod_find_symname(mod, colon+1);
3570 } else {
3571 list_for_each_entry_rcu(mod, &modules, list) {
3572 if (mod->state == MODULE_STATE_UNFORMED)
3573 continue;
3574 if ((ret = mod_find_symname(mod, name)) != 0)
3575 break;
3576 }
3577 }
3578 preempt_enable();
3579 return ret;
3580 }
3581
3582 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3583 struct module *, unsigned long),
3584 void *data)
3585 {
3586 struct module *mod;
3587 unsigned int i;
3588 int ret;
3589
3590 list_for_each_entry(mod, &modules, list) {
3591 if (mod->state == MODULE_STATE_UNFORMED)
3592 continue;
3593 for (i = 0; i < mod->num_symtab; i++) {
3594 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3595 mod, mod->symtab[i].st_value);
3596 if (ret != 0)
3597 return ret;
3598 }
3599 }
3600 return 0;
3601 }
3602 #endif /* CONFIG_KALLSYMS */
3603
3604 static char *module_flags(struct module *mod, char *buf)
3605 {
3606 int bx = 0;
3607
3608 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3609 if (mod->taints ||
3610 mod->state == MODULE_STATE_GOING ||
3611 mod->state == MODULE_STATE_COMING) {
3612 buf[bx++] = '(';
3613 bx += module_flags_taint(mod, buf + bx);
3614 /* Show a - for module-is-being-unloaded */
3615 if (mod->state == MODULE_STATE_GOING)
3616 buf[bx++] = '-';
3617 /* Show a + for module-is-being-loaded */
3618 if (mod->state == MODULE_STATE_COMING)
3619 buf[bx++] = '+';
3620 buf[bx++] = ')';
3621 }
3622 buf[bx] = '\0';
3623
3624 return buf;
3625 }
3626
3627 #ifdef CONFIG_PROC_FS
3628 /* Called by the /proc file system to return a list of modules. */
3629 static void *m_start(struct seq_file *m, loff_t *pos)
3630 {
3631 mutex_lock(&module_mutex);
3632 return seq_list_start(&modules, *pos);
3633 }
3634
3635 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3636 {
3637 return seq_list_next(p, &modules, pos);
3638 }
3639
3640 static void m_stop(struct seq_file *m, void *p)
3641 {
3642 mutex_unlock(&module_mutex);
3643 }
3644
3645 static int m_show(struct seq_file *m, void *p)
3646 {
3647 struct module *mod = list_entry(p, struct module, list);
3648 char buf[8];
3649
3650 /* We always ignore unformed modules. */
3651 if (mod->state == MODULE_STATE_UNFORMED)
3652 return 0;
3653
3654 seq_printf(m, "%s %u",
3655 mod->name, mod->init_size + mod->core_size);
3656 print_unload_info(m, mod);
3657
3658 /* Informative for users. */
3659 seq_printf(m, " %s",
3660 mod->state == MODULE_STATE_GOING ? "Unloading":
3661 mod->state == MODULE_STATE_COMING ? "Loading":
3662 "Live");
3663 /* Used by oprofile and other similar tools. */
3664 seq_printf(m, " 0x%pK", mod->module_core);
3665
3666 /* Taints info */
3667 if (mod->taints)
3668 seq_printf(m, " %s", module_flags(mod, buf));
3669
3670 seq_printf(m, "\n");
3671 return 0;
3672 }
3673
3674 /* Format: modulename size refcount deps address
3675
3676 Where refcount is a number or -, and deps is a comma-separated list
3677 of depends or -.
3678 */
3679 static const struct seq_operations modules_op = {
3680 .start = m_start,
3681 .next = m_next,
3682 .stop = m_stop,
3683 .show = m_show
3684 };
3685
3686 static int modules_open(struct inode *inode, struct file *file)
3687 {
3688 return seq_open(file, &modules_op);
3689 }
3690
3691 static const struct file_operations proc_modules_operations = {
3692 .open = modules_open,
3693 .read = seq_read,
3694 .llseek = seq_lseek,
3695 .release = seq_release,
3696 };
3697
3698 static int __init proc_modules_init(void)
3699 {
3700 proc_create("modules", 0, NULL, &proc_modules_operations);
3701 return 0;
3702 }
3703 module_init(proc_modules_init);
3704 #endif
3705
3706 /* Given an address, look for it in the module exception tables. */
3707 const struct exception_table_entry *search_module_extables(unsigned long addr)
3708 {
3709 const struct exception_table_entry *e = NULL;
3710 struct module *mod;
3711
3712 preempt_disable();
3713 list_for_each_entry_rcu(mod, &modules, list) {
3714 if (mod->state == MODULE_STATE_UNFORMED)
3715 continue;
3716 if (mod->num_exentries == 0)
3717 continue;
3718
3719 e = search_extable(mod->extable,
3720 mod->extable + mod->num_exentries - 1,
3721 addr);
3722 if (e)
3723 break;
3724 }
3725 preempt_enable();
3726
3727 /* Now, if we found one, we are running inside it now, hence
3728 we cannot unload the module, hence no refcnt needed. */
3729 return e;
3730 }
3731
3732 /*
3733 * is_module_address - is this address inside a module?
3734 * @addr: the address to check.
3735 *
3736 * See is_module_text_address() if you simply want to see if the address
3737 * is code (not data).
3738 */
3739 bool is_module_address(unsigned long addr)
3740 {
3741 bool ret;
3742
3743 preempt_disable();
3744 ret = __module_address(addr) != NULL;
3745 preempt_enable();
3746
3747 return ret;
3748 }
3749
3750 /*
3751 * __module_address - get the module which contains an address.
3752 * @addr: the address.
3753 *
3754 * Must be called with preempt disabled or module mutex held so that
3755 * module doesn't get freed during this.
3756 */
3757 struct module *__module_address(unsigned long addr)
3758 {
3759 struct module *mod;
3760
3761 if (addr < module_addr_min || addr > module_addr_max)
3762 return NULL;
3763
3764 list_for_each_entry_rcu(mod, &modules, list) {
3765 if (mod->state == MODULE_STATE_UNFORMED)
3766 continue;
3767 if (within_module(addr, mod))
3768 return mod;
3769 }
3770 return NULL;
3771 }
3772 EXPORT_SYMBOL_GPL(__module_address);
3773
3774 /*
3775 * is_module_text_address - is this address inside module code?
3776 * @addr: the address to check.
3777 *
3778 * See is_module_address() if you simply want to see if the address is
3779 * anywhere in a module. See kernel_text_address() for testing if an
3780 * address corresponds to kernel or module code.
3781 */
3782 bool is_module_text_address(unsigned long addr)
3783 {
3784 bool ret;
3785
3786 preempt_disable();
3787 ret = __module_text_address(addr) != NULL;
3788 preempt_enable();
3789
3790 return ret;
3791 }
3792
3793 /*
3794 * __module_text_address - get the module whose code contains an address.
3795 * @addr: the address.
3796 *
3797 * Must be called with preempt disabled or module mutex held so that
3798 * module doesn't get freed during this.
3799 */
3800 struct module *__module_text_address(unsigned long addr)
3801 {
3802 struct module *mod = __module_address(addr);
3803 if (mod) {
3804 /* Make sure it's within the text section. */
3805 if (!within(addr, mod->module_init, mod->init_text_size)
3806 && !within(addr, mod->module_core, mod->core_text_size))
3807 mod = NULL;
3808 }
3809 return mod;
3810 }
3811 EXPORT_SYMBOL_GPL(__module_text_address);
3812
3813 /* Don't grab lock, we're oopsing. */
3814 void print_modules(void)
3815 {
3816 struct module *mod;
3817 char buf[8];
3818
3819 printk(KERN_DEFAULT "Modules linked in:");
3820 /* Most callers should already have preempt disabled, but make sure */
3821 preempt_disable();
3822 list_for_each_entry_rcu(mod, &modules, list) {
3823 if (mod->state == MODULE_STATE_UNFORMED)
3824 continue;
3825 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
3826 }
3827 preempt_enable();
3828 if (last_unloaded_module[0])
3829 pr_cont(" [last unloaded: %s]", last_unloaded_module);
3830 pr_cont("\n");
3831 }
3832
3833 #ifdef CONFIG_MODVERSIONS
3834 /* Generate the signature for all relevant module structures here.
3835 * If these change, we don't want to try to parse the module. */
3836 void module_layout(struct module *mod,
3837 struct modversion_info *ver,
3838 struct kernel_param *kp,
3839 struct kernel_symbol *ks,
3840 struct tracepoint * const *tp)
3841 {
3842 }
3843 EXPORT_SYMBOL(module_layout);
3844 #endif
This page took 0.121562 seconds and 5 git commands to generate.