module: Remove stop_machine from module unloading
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /*
73 * Modules' sections will be aligned on page boundaries
74 * to ensure complete separation of code and data, but
75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76 */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82
83 /*
84 * Given BASE and SIZE this macro calculates the number of pages the
85 * memory regions occupies
86 */
87 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
88 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
89 PFN_DOWN((unsigned long)BASE) + 1) \
90 : (0UL))
91
92 /* If this is set, the section belongs in the init part of the module */
93 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
94
95 /*
96 * Mutex protects:
97 * 1) List of modules (also safely readable with preempt_disable),
98 * 2) module_use links,
99 * 3) module_addr_min/module_addr_max.
100 * (delete and add uses RCU list operations). */
101 DEFINE_MUTEX(module_mutex);
102 EXPORT_SYMBOL_GPL(module_mutex);
103 static LIST_HEAD(modules);
104 #ifdef CONFIG_KGDB_KDB
105 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
106 #endif /* CONFIG_KGDB_KDB */
107
108 #ifdef CONFIG_MODULE_SIG
109 #ifdef CONFIG_MODULE_SIG_FORCE
110 static bool sig_enforce = true;
111 #else
112 static bool sig_enforce = false;
113
114 static int param_set_bool_enable_only(const char *val,
115 const struct kernel_param *kp)
116 {
117 int err;
118 bool test;
119 struct kernel_param dummy_kp = *kp;
120
121 dummy_kp.arg = &test;
122
123 err = param_set_bool(val, &dummy_kp);
124 if (err)
125 return err;
126
127 /* Don't let them unset it once it's set! */
128 if (!test && sig_enforce)
129 return -EROFS;
130
131 if (test)
132 sig_enforce = true;
133 return 0;
134 }
135
136 static const struct kernel_param_ops param_ops_bool_enable_only = {
137 .flags = KERNEL_PARAM_OPS_FL_NOARG,
138 .set = param_set_bool_enable_only,
139 .get = param_get_bool,
140 };
141 #define param_check_bool_enable_only param_check_bool
142
143 module_param(sig_enforce, bool_enable_only, 0644);
144 #endif /* !CONFIG_MODULE_SIG_FORCE */
145 #endif /* CONFIG_MODULE_SIG */
146
147 /* Block module loading/unloading? */
148 int modules_disabled = 0;
149 core_param(nomodule, modules_disabled, bint, 0);
150
151 /* Waiting for a module to finish initializing? */
152 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
153
154 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
155
156 /* Bounds of module allocation, for speeding __module_address.
157 * Protected by module_mutex. */
158 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
159
160 int register_module_notifier(struct notifier_block * nb)
161 {
162 return blocking_notifier_chain_register(&module_notify_list, nb);
163 }
164 EXPORT_SYMBOL(register_module_notifier);
165
166 int unregister_module_notifier(struct notifier_block * nb)
167 {
168 return blocking_notifier_chain_unregister(&module_notify_list, nb);
169 }
170 EXPORT_SYMBOL(unregister_module_notifier);
171
172 struct load_info {
173 Elf_Ehdr *hdr;
174 unsigned long len;
175 Elf_Shdr *sechdrs;
176 char *secstrings, *strtab;
177 unsigned long symoffs, stroffs;
178 struct _ddebug *debug;
179 unsigned int num_debug;
180 bool sig_ok;
181 struct {
182 unsigned int sym, str, mod, vers, info, pcpu;
183 } index;
184 };
185
186 /* We require a truly strong try_module_get(): 0 means failure due to
187 ongoing or failed initialization etc. */
188 static inline int strong_try_module_get(struct module *mod)
189 {
190 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
191 if (mod && mod->state == MODULE_STATE_COMING)
192 return -EBUSY;
193 if (try_module_get(mod))
194 return 0;
195 else
196 return -ENOENT;
197 }
198
199 static inline void add_taint_module(struct module *mod, unsigned flag,
200 enum lockdep_ok lockdep_ok)
201 {
202 add_taint(flag, lockdep_ok);
203 mod->taints |= (1U << flag);
204 }
205
206 /*
207 * A thread that wants to hold a reference to a module only while it
208 * is running can call this to safely exit. nfsd and lockd use this.
209 */
210 void __module_put_and_exit(struct module *mod, long code)
211 {
212 module_put(mod);
213 do_exit(code);
214 }
215 EXPORT_SYMBOL(__module_put_and_exit);
216
217 /* Find a module section: 0 means not found. */
218 static unsigned int find_sec(const struct load_info *info, const char *name)
219 {
220 unsigned int i;
221
222 for (i = 1; i < info->hdr->e_shnum; i++) {
223 Elf_Shdr *shdr = &info->sechdrs[i];
224 /* Alloc bit cleared means "ignore it." */
225 if ((shdr->sh_flags & SHF_ALLOC)
226 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
227 return i;
228 }
229 return 0;
230 }
231
232 /* Find a module section, or NULL. */
233 static void *section_addr(const struct load_info *info, const char *name)
234 {
235 /* Section 0 has sh_addr 0. */
236 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
237 }
238
239 /* Find a module section, or NULL. Fill in number of "objects" in section. */
240 static void *section_objs(const struct load_info *info,
241 const char *name,
242 size_t object_size,
243 unsigned int *num)
244 {
245 unsigned int sec = find_sec(info, name);
246
247 /* Section 0 has sh_addr 0 and sh_size 0. */
248 *num = info->sechdrs[sec].sh_size / object_size;
249 return (void *)info->sechdrs[sec].sh_addr;
250 }
251
252 /* Provided by the linker */
253 extern const struct kernel_symbol __start___ksymtab[];
254 extern const struct kernel_symbol __stop___ksymtab[];
255 extern const struct kernel_symbol __start___ksymtab_gpl[];
256 extern const struct kernel_symbol __stop___ksymtab_gpl[];
257 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
258 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
259 extern const unsigned long __start___kcrctab[];
260 extern const unsigned long __start___kcrctab_gpl[];
261 extern const unsigned long __start___kcrctab_gpl_future[];
262 #ifdef CONFIG_UNUSED_SYMBOLS
263 extern const struct kernel_symbol __start___ksymtab_unused[];
264 extern const struct kernel_symbol __stop___ksymtab_unused[];
265 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
266 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
267 extern const unsigned long __start___kcrctab_unused[];
268 extern const unsigned long __start___kcrctab_unused_gpl[];
269 #endif
270
271 #ifndef CONFIG_MODVERSIONS
272 #define symversion(base, idx) NULL
273 #else
274 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
275 #endif
276
277 static bool each_symbol_in_section(const struct symsearch *arr,
278 unsigned int arrsize,
279 struct module *owner,
280 bool (*fn)(const struct symsearch *syms,
281 struct module *owner,
282 void *data),
283 void *data)
284 {
285 unsigned int j;
286
287 for (j = 0; j < arrsize; j++) {
288 if (fn(&arr[j], owner, data))
289 return true;
290 }
291
292 return false;
293 }
294
295 /* Returns true as soon as fn returns true, otherwise false. */
296 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
297 struct module *owner,
298 void *data),
299 void *data)
300 {
301 struct module *mod;
302 static const struct symsearch arr[] = {
303 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
304 NOT_GPL_ONLY, false },
305 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
306 __start___kcrctab_gpl,
307 GPL_ONLY, false },
308 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
309 __start___kcrctab_gpl_future,
310 WILL_BE_GPL_ONLY, false },
311 #ifdef CONFIG_UNUSED_SYMBOLS
312 { __start___ksymtab_unused, __stop___ksymtab_unused,
313 __start___kcrctab_unused,
314 NOT_GPL_ONLY, true },
315 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
316 __start___kcrctab_unused_gpl,
317 GPL_ONLY, true },
318 #endif
319 };
320
321 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
322 return true;
323
324 list_for_each_entry_rcu(mod, &modules, list) {
325 struct symsearch arr[] = {
326 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
327 NOT_GPL_ONLY, false },
328 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
329 mod->gpl_crcs,
330 GPL_ONLY, false },
331 { mod->gpl_future_syms,
332 mod->gpl_future_syms + mod->num_gpl_future_syms,
333 mod->gpl_future_crcs,
334 WILL_BE_GPL_ONLY, false },
335 #ifdef CONFIG_UNUSED_SYMBOLS
336 { mod->unused_syms,
337 mod->unused_syms + mod->num_unused_syms,
338 mod->unused_crcs,
339 NOT_GPL_ONLY, true },
340 { mod->unused_gpl_syms,
341 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
342 mod->unused_gpl_crcs,
343 GPL_ONLY, true },
344 #endif
345 };
346
347 if (mod->state == MODULE_STATE_UNFORMED)
348 continue;
349
350 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
351 return true;
352 }
353 return false;
354 }
355 EXPORT_SYMBOL_GPL(each_symbol_section);
356
357 struct find_symbol_arg {
358 /* Input */
359 const char *name;
360 bool gplok;
361 bool warn;
362
363 /* Output */
364 struct module *owner;
365 const unsigned long *crc;
366 const struct kernel_symbol *sym;
367 };
368
369 static bool check_symbol(const struct symsearch *syms,
370 struct module *owner,
371 unsigned int symnum, void *data)
372 {
373 struct find_symbol_arg *fsa = data;
374
375 if (!fsa->gplok) {
376 if (syms->licence == GPL_ONLY)
377 return false;
378 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
379 pr_warn("Symbol %s is being used by a non-GPL module, "
380 "which will not be allowed in the future\n",
381 fsa->name);
382 }
383 }
384
385 #ifdef CONFIG_UNUSED_SYMBOLS
386 if (syms->unused && fsa->warn) {
387 pr_warn("Symbol %s is marked as UNUSED, however this module is "
388 "using it.\n", fsa->name);
389 pr_warn("This symbol will go away in the future.\n");
390 pr_warn("Please evalute if this is the right api to use and if "
391 "it really is, submit a report the linux kernel "
392 "mailinglist together with submitting your code for "
393 "inclusion.\n");
394 }
395 #endif
396
397 fsa->owner = owner;
398 fsa->crc = symversion(syms->crcs, symnum);
399 fsa->sym = &syms->start[symnum];
400 return true;
401 }
402
403 static int cmp_name(const void *va, const void *vb)
404 {
405 const char *a;
406 const struct kernel_symbol *b;
407 a = va; b = vb;
408 return strcmp(a, b->name);
409 }
410
411 static bool find_symbol_in_section(const struct symsearch *syms,
412 struct module *owner,
413 void *data)
414 {
415 struct find_symbol_arg *fsa = data;
416 struct kernel_symbol *sym;
417
418 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
419 sizeof(struct kernel_symbol), cmp_name);
420
421 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
422 return true;
423
424 return false;
425 }
426
427 /* Find a symbol and return it, along with, (optional) crc and
428 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
429 const struct kernel_symbol *find_symbol(const char *name,
430 struct module **owner,
431 const unsigned long **crc,
432 bool gplok,
433 bool warn)
434 {
435 struct find_symbol_arg fsa;
436
437 fsa.name = name;
438 fsa.gplok = gplok;
439 fsa.warn = warn;
440
441 if (each_symbol_section(find_symbol_in_section, &fsa)) {
442 if (owner)
443 *owner = fsa.owner;
444 if (crc)
445 *crc = fsa.crc;
446 return fsa.sym;
447 }
448
449 pr_debug("Failed to find symbol %s\n", name);
450 return NULL;
451 }
452 EXPORT_SYMBOL_GPL(find_symbol);
453
454 /* Search for module by name: must hold module_mutex. */
455 static struct module *find_module_all(const char *name, size_t len,
456 bool even_unformed)
457 {
458 struct module *mod;
459
460 list_for_each_entry(mod, &modules, list) {
461 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
462 continue;
463 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
464 return mod;
465 }
466 return NULL;
467 }
468
469 struct module *find_module(const char *name)
470 {
471 return find_module_all(name, strlen(name), false);
472 }
473 EXPORT_SYMBOL_GPL(find_module);
474
475 #ifdef CONFIG_SMP
476
477 static inline void __percpu *mod_percpu(struct module *mod)
478 {
479 return mod->percpu;
480 }
481
482 static int percpu_modalloc(struct module *mod, struct load_info *info)
483 {
484 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
485 unsigned long align = pcpusec->sh_addralign;
486
487 if (!pcpusec->sh_size)
488 return 0;
489
490 if (align > PAGE_SIZE) {
491 pr_warn("%s: per-cpu alignment %li > %li\n",
492 mod->name, align, PAGE_SIZE);
493 align = PAGE_SIZE;
494 }
495
496 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
497 if (!mod->percpu) {
498 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
499 mod->name, (unsigned long)pcpusec->sh_size);
500 return -ENOMEM;
501 }
502 mod->percpu_size = pcpusec->sh_size;
503 return 0;
504 }
505
506 static void percpu_modfree(struct module *mod)
507 {
508 free_percpu(mod->percpu);
509 }
510
511 static unsigned int find_pcpusec(struct load_info *info)
512 {
513 return find_sec(info, ".data..percpu");
514 }
515
516 static void percpu_modcopy(struct module *mod,
517 const void *from, unsigned long size)
518 {
519 int cpu;
520
521 for_each_possible_cpu(cpu)
522 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
523 }
524
525 /**
526 * is_module_percpu_address - test whether address is from module static percpu
527 * @addr: address to test
528 *
529 * Test whether @addr belongs to module static percpu area.
530 *
531 * RETURNS:
532 * %true if @addr is from module static percpu area
533 */
534 bool is_module_percpu_address(unsigned long addr)
535 {
536 struct module *mod;
537 unsigned int cpu;
538
539 preempt_disable();
540
541 list_for_each_entry_rcu(mod, &modules, list) {
542 if (mod->state == MODULE_STATE_UNFORMED)
543 continue;
544 if (!mod->percpu_size)
545 continue;
546 for_each_possible_cpu(cpu) {
547 void *start = per_cpu_ptr(mod->percpu, cpu);
548
549 if ((void *)addr >= start &&
550 (void *)addr < start + mod->percpu_size) {
551 preempt_enable();
552 return true;
553 }
554 }
555 }
556
557 preempt_enable();
558 return false;
559 }
560
561 #else /* ... !CONFIG_SMP */
562
563 static inline void __percpu *mod_percpu(struct module *mod)
564 {
565 return NULL;
566 }
567 static int percpu_modalloc(struct module *mod, struct load_info *info)
568 {
569 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
570 if (info->sechdrs[info->index.pcpu].sh_size != 0)
571 return -ENOMEM;
572 return 0;
573 }
574 static inline void percpu_modfree(struct module *mod)
575 {
576 }
577 static unsigned int find_pcpusec(struct load_info *info)
578 {
579 return 0;
580 }
581 static inline void percpu_modcopy(struct module *mod,
582 const void *from, unsigned long size)
583 {
584 /* pcpusec should be 0, and size of that section should be 0. */
585 BUG_ON(size != 0);
586 }
587 bool is_module_percpu_address(unsigned long addr)
588 {
589 return false;
590 }
591
592 #endif /* CONFIG_SMP */
593
594 #define MODINFO_ATTR(field) \
595 static void setup_modinfo_##field(struct module *mod, const char *s) \
596 { \
597 mod->field = kstrdup(s, GFP_KERNEL); \
598 } \
599 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
600 struct module_kobject *mk, char *buffer) \
601 { \
602 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
603 } \
604 static int modinfo_##field##_exists(struct module *mod) \
605 { \
606 return mod->field != NULL; \
607 } \
608 static void free_modinfo_##field(struct module *mod) \
609 { \
610 kfree(mod->field); \
611 mod->field = NULL; \
612 } \
613 static struct module_attribute modinfo_##field = { \
614 .attr = { .name = __stringify(field), .mode = 0444 }, \
615 .show = show_modinfo_##field, \
616 .setup = setup_modinfo_##field, \
617 .test = modinfo_##field##_exists, \
618 .free = free_modinfo_##field, \
619 };
620
621 MODINFO_ATTR(version);
622 MODINFO_ATTR(srcversion);
623
624 static char last_unloaded_module[MODULE_NAME_LEN+1];
625
626 #ifdef CONFIG_MODULE_UNLOAD
627
628 EXPORT_TRACEPOINT_SYMBOL(module_get);
629
630 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
631 #define MODULE_REF_BASE 1
632
633 /* Init the unload section of the module. */
634 static int module_unload_init(struct module *mod)
635 {
636 /*
637 * Initialize reference counter to MODULE_REF_BASE.
638 * refcnt == 0 means module is going.
639 */
640 atomic_set(&mod->refcnt, MODULE_REF_BASE);
641
642 INIT_LIST_HEAD(&mod->source_list);
643 INIT_LIST_HEAD(&mod->target_list);
644
645 /* Hold reference count during initialization. */
646 atomic_inc(&mod->refcnt);
647
648 return 0;
649 }
650
651 /* Does a already use b? */
652 static int already_uses(struct module *a, struct module *b)
653 {
654 struct module_use *use;
655
656 list_for_each_entry(use, &b->source_list, source_list) {
657 if (use->source == a) {
658 pr_debug("%s uses %s!\n", a->name, b->name);
659 return 1;
660 }
661 }
662 pr_debug("%s does not use %s!\n", a->name, b->name);
663 return 0;
664 }
665
666 /*
667 * Module a uses b
668 * - we add 'a' as a "source", 'b' as a "target" of module use
669 * - the module_use is added to the list of 'b' sources (so
670 * 'b' can walk the list to see who sourced them), and of 'a'
671 * targets (so 'a' can see what modules it targets).
672 */
673 static int add_module_usage(struct module *a, struct module *b)
674 {
675 struct module_use *use;
676
677 pr_debug("Allocating new usage for %s.\n", a->name);
678 use = kmalloc(sizeof(*use), GFP_ATOMIC);
679 if (!use) {
680 pr_warn("%s: out of memory loading\n", a->name);
681 return -ENOMEM;
682 }
683
684 use->source = a;
685 use->target = b;
686 list_add(&use->source_list, &b->source_list);
687 list_add(&use->target_list, &a->target_list);
688 return 0;
689 }
690
691 /* Module a uses b: caller needs module_mutex() */
692 int ref_module(struct module *a, struct module *b)
693 {
694 int err;
695
696 if (b == NULL || already_uses(a, b))
697 return 0;
698
699 /* If module isn't available, we fail. */
700 err = strong_try_module_get(b);
701 if (err)
702 return err;
703
704 err = add_module_usage(a, b);
705 if (err) {
706 module_put(b);
707 return err;
708 }
709 return 0;
710 }
711 EXPORT_SYMBOL_GPL(ref_module);
712
713 /* Clear the unload stuff of the module. */
714 static void module_unload_free(struct module *mod)
715 {
716 struct module_use *use, *tmp;
717
718 mutex_lock(&module_mutex);
719 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
720 struct module *i = use->target;
721 pr_debug("%s unusing %s\n", mod->name, i->name);
722 module_put(i);
723 list_del(&use->source_list);
724 list_del(&use->target_list);
725 kfree(use);
726 }
727 mutex_unlock(&module_mutex);
728 }
729
730 #ifdef CONFIG_MODULE_FORCE_UNLOAD
731 static inline int try_force_unload(unsigned int flags)
732 {
733 int ret = (flags & O_TRUNC);
734 if (ret)
735 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
736 return ret;
737 }
738 #else
739 static inline int try_force_unload(unsigned int flags)
740 {
741 return 0;
742 }
743 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
744
745 /* Try to release refcount of module, 0 means success. */
746 static int try_release_module_ref(struct module *mod)
747 {
748 int ret;
749
750 /* Try to decrement refcnt which we set at loading */
751 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
752 BUG_ON(ret < 0);
753 if (ret)
754 /* Someone can put this right now, recover with checking */
755 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
756
757 return ret;
758 }
759
760 static int try_stop_module(struct module *mod, int flags, int *forced)
761 {
762 /* If it's not unused, quit unless we're forcing. */
763 if (try_release_module_ref(mod) != 0) {
764 *forced = try_force_unload(flags);
765 if (!(*forced))
766 return -EWOULDBLOCK;
767 }
768
769 /* Mark it as dying. */
770 mod->state = MODULE_STATE_GOING;
771
772 return 0;
773 }
774
775 unsigned long module_refcount(struct module *mod)
776 {
777 return (unsigned long)atomic_read(&mod->refcnt) - MODULE_REF_BASE;
778 }
779 EXPORT_SYMBOL(module_refcount);
780
781 /* This exists whether we can unload or not */
782 static void free_module(struct module *mod);
783
784 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
785 unsigned int, flags)
786 {
787 struct module *mod;
788 char name[MODULE_NAME_LEN];
789 int ret, forced = 0;
790
791 if (!capable(CAP_SYS_MODULE) || modules_disabled)
792 return -EPERM;
793
794 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
795 return -EFAULT;
796 name[MODULE_NAME_LEN-1] = '\0';
797
798 if (mutex_lock_interruptible(&module_mutex) != 0)
799 return -EINTR;
800
801 mod = find_module(name);
802 if (!mod) {
803 ret = -ENOENT;
804 goto out;
805 }
806
807 if (!list_empty(&mod->source_list)) {
808 /* Other modules depend on us: get rid of them first. */
809 ret = -EWOULDBLOCK;
810 goto out;
811 }
812
813 /* Doing init or already dying? */
814 if (mod->state != MODULE_STATE_LIVE) {
815 /* FIXME: if (force), slam module count damn the torpedoes */
816 pr_debug("%s already dying\n", mod->name);
817 ret = -EBUSY;
818 goto out;
819 }
820
821 /* If it has an init func, it must have an exit func to unload */
822 if (mod->init && !mod->exit) {
823 forced = try_force_unload(flags);
824 if (!forced) {
825 /* This module can't be removed */
826 ret = -EBUSY;
827 goto out;
828 }
829 }
830
831 /* Stop the machine so refcounts can't move and disable module. */
832 ret = try_stop_module(mod, flags, &forced);
833 if (ret != 0)
834 goto out;
835
836 mutex_unlock(&module_mutex);
837 /* Final destruction now no one is using it. */
838 if (mod->exit != NULL)
839 mod->exit();
840 blocking_notifier_call_chain(&module_notify_list,
841 MODULE_STATE_GOING, mod);
842 async_synchronize_full();
843
844 /* Store the name of the last unloaded module for diagnostic purposes */
845 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
846
847 free_module(mod);
848 return 0;
849 out:
850 mutex_unlock(&module_mutex);
851 return ret;
852 }
853
854 static inline void print_unload_info(struct seq_file *m, struct module *mod)
855 {
856 struct module_use *use;
857 int printed_something = 0;
858
859 seq_printf(m, " %lu ", module_refcount(mod));
860
861 /* Always include a trailing , so userspace can differentiate
862 between this and the old multi-field proc format. */
863 list_for_each_entry(use, &mod->source_list, source_list) {
864 printed_something = 1;
865 seq_printf(m, "%s,", use->source->name);
866 }
867
868 if (mod->init != NULL && mod->exit == NULL) {
869 printed_something = 1;
870 seq_printf(m, "[permanent],");
871 }
872
873 if (!printed_something)
874 seq_printf(m, "-");
875 }
876
877 void __symbol_put(const char *symbol)
878 {
879 struct module *owner;
880
881 preempt_disable();
882 if (!find_symbol(symbol, &owner, NULL, true, false))
883 BUG();
884 module_put(owner);
885 preempt_enable();
886 }
887 EXPORT_SYMBOL(__symbol_put);
888
889 /* Note this assumes addr is a function, which it currently always is. */
890 void symbol_put_addr(void *addr)
891 {
892 struct module *modaddr;
893 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
894
895 if (core_kernel_text(a))
896 return;
897
898 /* module_text_address is safe here: we're supposed to have reference
899 * to module from symbol_get, so it can't go away. */
900 modaddr = __module_text_address(a);
901 BUG_ON(!modaddr);
902 module_put(modaddr);
903 }
904 EXPORT_SYMBOL_GPL(symbol_put_addr);
905
906 static ssize_t show_refcnt(struct module_attribute *mattr,
907 struct module_kobject *mk, char *buffer)
908 {
909 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
910 }
911
912 static struct module_attribute modinfo_refcnt =
913 __ATTR(refcnt, 0444, show_refcnt, NULL);
914
915 void __module_get(struct module *module)
916 {
917 if (module) {
918 preempt_disable();
919 atomic_inc(&module->refcnt);
920 trace_module_get(module, _RET_IP_);
921 preempt_enable();
922 }
923 }
924 EXPORT_SYMBOL(__module_get);
925
926 bool try_module_get(struct module *module)
927 {
928 bool ret = true;
929
930 if (module) {
931 preempt_disable();
932 /* Note: here, we can fail to get a reference */
933 if (likely(module_is_live(module) &&
934 atomic_inc_not_zero(&module->refcnt) != 0))
935 trace_module_get(module, _RET_IP_);
936 else
937 ret = false;
938
939 preempt_enable();
940 }
941 return ret;
942 }
943 EXPORT_SYMBOL(try_module_get);
944
945 void module_put(struct module *module)
946 {
947 int ret;
948
949 if (module) {
950 preempt_disable();
951 ret = atomic_dec_if_positive(&module->refcnt);
952 WARN_ON(ret < 0); /* Failed to put refcount */
953 trace_module_put(module, _RET_IP_);
954 preempt_enable();
955 }
956 }
957 EXPORT_SYMBOL(module_put);
958
959 #else /* !CONFIG_MODULE_UNLOAD */
960 static inline void print_unload_info(struct seq_file *m, struct module *mod)
961 {
962 /* We don't know the usage count, or what modules are using. */
963 seq_printf(m, " - -");
964 }
965
966 static inline void module_unload_free(struct module *mod)
967 {
968 }
969
970 int ref_module(struct module *a, struct module *b)
971 {
972 return strong_try_module_get(b);
973 }
974 EXPORT_SYMBOL_GPL(ref_module);
975
976 static inline int module_unload_init(struct module *mod)
977 {
978 return 0;
979 }
980 #endif /* CONFIG_MODULE_UNLOAD */
981
982 static size_t module_flags_taint(struct module *mod, char *buf)
983 {
984 size_t l = 0;
985
986 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
987 buf[l++] = 'P';
988 if (mod->taints & (1 << TAINT_OOT_MODULE))
989 buf[l++] = 'O';
990 if (mod->taints & (1 << TAINT_FORCED_MODULE))
991 buf[l++] = 'F';
992 if (mod->taints & (1 << TAINT_CRAP))
993 buf[l++] = 'C';
994 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
995 buf[l++] = 'E';
996 /*
997 * TAINT_FORCED_RMMOD: could be added.
998 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
999 * apply to modules.
1000 */
1001 return l;
1002 }
1003
1004 static ssize_t show_initstate(struct module_attribute *mattr,
1005 struct module_kobject *mk, char *buffer)
1006 {
1007 const char *state = "unknown";
1008
1009 switch (mk->mod->state) {
1010 case MODULE_STATE_LIVE:
1011 state = "live";
1012 break;
1013 case MODULE_STATE_COMING:
1014 state = "coming";
1015 break;
1016 case MODULE_STATE_GOING:
1017 state = "going";
1018 break;
1019 default:
1020 BUG();
1021 }
1022 return sprintf(buffer, "%s\n", state);
1023 }
1024
1025 static struct module_attribute modinfo_initstate =
1026 __ATTR(initstate, 0444, show_initstate, NULL);
1027
1028 static ssize_t store_uevent(struct module_attribute *mattr,
1029 struct module_kobject *mk,
1030 const char *buffer, size_t count)
1031 {
1032 enum kobject_action action;
1033
1034 if (kobject_action_type(buffer, count, &action) == 0)
1035 kobject_uevent(&mk->kobj, action);
1036 return count;
1037 }
1038
1039 struct module_attribute module_uevent =
1040 __ATTR(uevent, 0200, NULL, store_uevent);
1041
1042 static ssize_t show_coresize(struct module_attribute *mattr,
1043 struct module_kobject *mk, char *buffer)
1044 {
1045 return sprintf(buffer, "%u\n", mk->mod->core_size);
1046 }
1047
1048 static struct module_attribute modinfo_coresize =
1049 __ATTR(coresize, 0444, show_coresize, NULL);
1050
1051 static ssize_t show_initsize(struct module_attribute *mattr,
1052 struct module_kobject *mk, char *buffer)
1053 {
1054 return sprintf(buffer, "%u\n", mk->mod->init_size);
1055 }
1056
1057 static struct module_attribute modinfo_initsize =
1058 __ATTR(initsize, 0444, show_initsize, NULL);
1059
1060 static ssize_t show_taint(struct module_attribute *mattr,
1061 struct module_kobject *mk, char *buffer)
1062 {
1063 size_t l;
1064
1065 l = module_flags_taint(mk->mod, buffer);
1066 buffer[l++] = '\n';
1067 return l;
1068 }
1069
1070 static struct module_attribute modinfo_taint =
1071 __ATTR(taint, 0444, show_taint, NULL);
1072
1073 static struct module_attribute *modinfo_attrs[] = {
1074 &module_uevent,
1075 &modinfo_version,
1076 &modinfo_srcversion,
1077 &modinfo_initstate,
1078 &modinfo_coresize,
1079 &modinfo_initsize,
1080 &modinfo_taint,
1081 #ifdef CONFIG_MODULE_UNLOAD
1082 &modinfo_refcnt,
1083 #endif
1084 NULL,
1085 };
1086
1087 static const char vermagic[] = VERMAGIC_STRING;
1088
1089 static int try_to_force_load(struct module *mod, const char *reason)
1090 {
1091 #ifdef CONFIG_MODULE_FORCE_LOAD
1092 if (!test_taint(TAINT_FORCED_MODULE))
1093 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1094 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1095 return 0;
1096 #else
1097 return -ENOEXEC;
1098 #endif
1099 }
1100
1101 #ifdef CONFIG_MODVERSIONS
1102 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1103 static unsigned long maybe_relocated(unsigned long crc,
1104 const struct module *crc_owner)
1105 {
1106 #ifdef ARCH_RELOCATES_KCRCTAB
1107 if (crc_owner == NULL)
1108 return crc - (unsigned long)reloc_start;
1109 #endif
1110 return crc;
1111 }
1112
1113 static int check_version(Elf_Shdr *sechdrs,
1114 unsigned int versindex,
1115 const char *symname,
1116 struct module *mod,
1117 const unsigned long *crc,
1118 const struct module *crc_owner)
1119 {
1120 unsigned int i, num_versions;
1121 struct modversion_info *versions;
1122
1123 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1124 if (!crc)
1125 return 1;
1126
1127 /* No versions at all? modprobe --force does this. */
1128 if (versindex == 0)
1129 return try_to_force_load(mod, symname) == 0;
1130
1131 versions = (void *) sechdrs[versindex].sh_addr;
1132 num_versions = sechdrs[versindex].sh_size
1133 / sizeof(struct modversion_info);
1134
1135 for (i = 0; i < num_versions; i++) {
1136 if (strcmp(versions[i].name, symname) != 0)
1137 continue;
1138
1139 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1140 return 1;
1141 pr_debug("Found checksum %lX vs module %lX\n",
1142 maybe_relocated(*crc, crc_owner), versions[i].crc);
1143 goto bad_version;
1144 }
1145
1146 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1147 return 0;
1148
1149 bad_version:
1150 printk("%s: disagrees about version of symbol %s\n",
1151 mod->name, symname);
1152 return 0;
1153 }
1154
1155 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1156 unsigned int versindex,
1157 struct module *mod)
1158 {
1159 const unsigned long *crc;
1160
1161 /* Since this should be found in kernel (which can't be removed),
1162 * no locking is necessary. */
1163 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1164 &crc, true, false))
1165 BUG();
1166 return check_version(sechdrs, versindex,
1167 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1168 NULL);
1169 }
1170
1171 /* First part is kernel version, which we ignore if module has crcs. */
1172 static inline int same_magic(const char *amagic, const char *bmagic,
1173 bool has_crcs)
1174 {
1175 if (has_crcs) {
1176 amagic += strcspn(amagic, " ");
1177 bmagic += strcspn(bmagic, " ");
1178 }
1179 return strcmp(amagic, bmagic) == 0;
1180 }
1181 #else
1182 static inline int check_version(Elf_Shdr *sechdrs,
1183 unsigned int versindex,
1184 const char *symname,
1185 struct module *mod,
1186 const unsigned long *crc,
1187 const struct module *crc_owner)
1188 {
1189 return 1;
1190 }
1191
1192 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1193 unsigned int versindex,
1194 struct module *mod)
1195 {
1196 return 1;
1197 }
1198
1199 static inline int same_magic(const char *amagic, const char *bmagic,
1200 bool has_crcs)
1201 {
1202 return strcmp(amagic, bmagic) == 0;
1203 }
1204 #endif /* CONFIG_MODVERSIONS */
1205
1206 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1207 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1208 const struct load_info *info,
1209 const char *name,
1210 char ownername[])
1211 {
1212 struct module *owner;
1213 const struct kernel_symbol *sym;
1214 const unsigned long *crc;
1215 int err;
1216
1217 mutex_lock(&module_mutex);
1218 sym = find_symbol(name, &owner, &crc,
1219 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1220 if (!sym)
1221 goto unlock;
1222
1223 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1224 owner)) {
1225 sym = ERR_PTR(-EINVAL);
1226 goto getname;
1227 }
1228
1229 err = ref_module(mod, owner);
1230 if (err) {
1231 sym = ERR_PTR(err);
1232 goto getname;
1233 }
1234
1235 getname:
1236 /* We must make copy under the lock if we failed to get ref. */
1237 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1238 unlock:
1239 mutex_unlock(&module_mutex);
1240 return sym;
1241 }
1242
1243 static const struct kernel_symbol *
1244 resolve_symbol_wait(struct module *mod,
1245 const struct load_info *info,
1246 const char *name)
1247 {
1248 const struct kernel_symbol *ksym;
1249 char owner[MODULE_NAME_LEN];
1250
1251 if (wait_event_interruptible_timeout(module_wq,
1252 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1253 || PTR_ERR(ksym) != -EBUSY,
1254 30 * HZ) <= 0) {
1255 pr_warn("%s: gave up waiting for init of module %s.\n",
1256 mod->name, owner);
1257 }
1258 return ksym;
1259 }
1260
1261 /*
1262 * /sys/module/foo/sections stuff
1263 * J. Corbet <corbet@lwn.net>
1264 */
1265 #ifdef CONFIG_SYSFS
1266
1267 #ifdef CONFIG_KALLSYMS
1268 static inline bool sect_empty(const Elf_Shdr *sect)
1269 {
1270 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1271 }
1272
1273 struct module_sect_attr
1274 {
1275 struct module_attribute mattr;
1276 char *name;
1277 unsigned long address;
1278 };
1279
1280 struct module_sect_attrs
1281 {
1282 struct attribute_group grp;
1283 unsigned int nsections;
1284 struct module_sect_attr attrs[0];
1285 };
1286
1287 static ssize_t module_sect_show(struct module_attribute *mattr,
1288 struct module_kobject *mk, char *buf)
1289 {
1290 struct module_sect_attr *sattr =
1291 container_of(mattr, struct module_sect_attr, mattr);
1292 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1293 }
1294
1295 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1296 {
1297 unsigned int section;
1298
1299 for (section = 0; section < sect_attrs->nsections; section++)
1300 kfree(sect_attrs->attrs[section].name);
1301 kfree(sect_attrs);
1302 }
1303
1304 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1305 {
1306 unsigned int nloaded = 0, i, size[2];
1307 struct module_sect_attrs *sect_attrs;
1308 struct module_sect_attr *sattr;
1309 struct attribute **gattr;
1310
1311 /* Count loaded sections and allocate structures */
1312 for (i = 0; i < info->hdr->e_shnum; i++)
1313 if (!sect_empty(&info->sechdrs[i]))
1314 nloaded++;
1315 size[0] = ALIGN(sizeof(*sect_attrs)
1316 + nloaded * sizeof(sect_attrs->attrs[0]),
1317 sizeof(sect_attrs->grp.attrs[0]));
1318 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1319 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1320 if (sect_attrs == NULL)
1321 return;
1322
1323 /* Setup section attributes. */
1324 sect_attrs->grp.name = "sections";
1325 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1326
1327 sect_attrs->nsections = 0;
1328 sattr = &sect_attrs->attrs[0];
1329 gattr = &sect_attrs->grp.attrs[0];
1330 for (i = 0; i < info->hdr->e_shnum; i++) {
1331 Elf_Shdr *sec = &info->sechdrs[i];
1332 if (sect_empty(sec))
1333 continue;
1334 sattr->address = sec->sh_addr;
1335 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1336 GFP_KERNEL);
1337 if (sattr->name == NULL)
1338 goto out;
1339 sect_attrs->nsections++;
1340 sysfs_attr_init(&sattr->mattr.attr);
1341 sattr->mattr.show = module_sect_show;
1342 sattr->mattr.store = NULL;
1343 sattr->mattr.attr.name = sattr->name;
1344 sattr->mattr.attr.mode = S_IRUGO;
1345 *(gattr++) = &(sattr++)->mattr.attr;
1346 }
1347 *gattr = NULL;
1348
1349 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1350 goto out;
1351
1352 mod->sect_attrs = sect_attrs;
1353 return;
1354 out:
1355 free_sect_attrs(sect_attrs);
1356 }
1357
1358 static void remove_sect_attrs(struct module *mod)
1359 {
1360 if (mod->sect_attrs) {
1361 sysfs_remove_group(&mod->mkobj.kobj,
1362 &mod->sect_attrs->grp);
1363 /* We are positive that no one is using any sect attrs
1364 * at this point. Deallocate immediately. */
1365 free_sect_attrs(mod->sect_attrs);
1366 mod->sect_attrs = NULL;
1367 }
1368 }
1369
1370 /*
1371 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1372 */
1373
1374 struct module_notes_attrs {
1375 struct kobject *dir;
1376 unsigned int notes;
1377 struct bin_attribute attrs[0];
1378 };
1379
1380 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1381 struct bin_attribute *bin_attr,
1382 char *buf, loff_t pos, size_t count)
1383 {
1384 /*
1385 * The caller checked the pos and count against our size.
1386 */
1387 memcpy(buf, bin_attr->private + pos, count);
1388 return count;
1389 }
1390
1391 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1392 unsigned int i)
1393 {
1394 if (notes_attrs->dir) {
1395 while (i-- > 0)
1396 sysfs_remove_bin_file(notes_attrs->dir,
1397 &notes_attrs->attrs[i]);
1398 kobject_put(notes_attrs->dir);
1399 }
1400 kfree(notes_attrs);
1401 }
1402
1403 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1404 {
1405 unsigned int notes, loaded, i;
1406 struct module_notes_attrs *notes_attrs;
1407 struct bin_attribute *nattr;
1408
1409 /* failed to create section attributes, so can't create notes */
1410 if (!mod->sect_attrs)
1411 return;
1412
1413 /* Count notes sections and allocate structures. */
1414 notes = 0;
1415 for (i = 0; i < info->hdr->e_shnum; i++)
1416 if (!sect_empty(&info->sechdrs[i]) &&
1417 (info->sechdrs[i].sh_type == SHT_NOTE))
1418 ++notes;
1419
1420 if (notes == 0)
1421 return;
1422
1423 notes_attrs = kzalloc(sizeof(*notes_attrs)
1424 + notes * sizeof(notes_attrs->attrs[0]),
1425 GFP_KERNEL);
1426 if (notes_attrs == NULL)
1427 return;
1428
1429 notes_attrs->notes = notes;
1430 nattr = &notes_attrs->attrs[0];
1431 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1432 if (sect_empty(&info->sechdrs[i]))
1433 continue;
1434 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1435 sysfs_bin_attr_init(nattr);
1436 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1437 nattr->attr.mode = S_IRUGO;
1438 nattr->size = info->sechdrs[i].sh_size;
1439 nattr->private = (void *) info->sechdrs[i].sh_addr;
1440 nattr->read = module_notes_read;
1441 ++nattr;
1442 }
1443 ++loaded;
1444 }
1445
1446 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1447 if (!notes_attrs->dir)
1448 goto out;
1449
1450 for (i = 0; i < notes; ++i)
1451 if (sysfs_create_bin_file(notes_attrs->dir,
1452 &notes_attrs->attrs[i]))
1453 goto out;
1454
1455 mod->notes_attrs = notes_attrs;
1456 return;
1457
1458 out:
1459 free_notes_attrs(notes_attrs, i);
1460 }
1461
1462 static void remove_notes_attrs(struct module *mod)
1463 {
1464 if (mod->notes_attrs)
1465 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1466 }
1467
1468 #else
1469
1470 static inline void add_sect_attrs(struct module *mod,
1471 const struct load_info *info)
1472 {
1473 }
1474
1475 static inline void remove_sect_attrs(struct module *mod)
1476 {
1477 }
1478
1479 static inline void add_notes_attrs(struct module *mod,
1480 const struct load_info *info)
1481 {
1482 }
1483
1484 static inline void remove_notes_attrs(struct module *mod)
1485 {
1486 }
1487 #endif /* CONFIG_KALLSYMS */
1488
1489 static void add_usage_links(struct module *mod)
1490 {
1491 #ifdef CONFIG_MODULE_UNLOAD
1492 struct module_use *use;
1493 int nowarn;
1494
1495 mutex_lock(&module_mutex);
1496 list_for_each_entry(use, &mod->target_list, target_list) {
1497 nowarn = sysfs_create_link(use->target->holders_dir,
1498 &mod->mkobj.kobj, mod->name);
1499 }
1500 mutex_unlock(&module_mutex);
1501 #endif
1502 }
1503
1504 static void del_usage_links(struct module *mod)
1505 {
1506 #ifdef CONFIG_MODULE_UNLOAD
1507 struct module_use *use;
1508
1509 mutex_lock(&module_mutex);
1510 list_for_each_entry(use, &mod->target_list, target_list)
1511 sysfs_remove_link(use->target->holders_dir, mod->name);
1512 mutex_unlock(&module_mutex);
1513 #endif
1514 }
1515
1516 static int module_add_modinfo_attrs(struct module *mod)
1517 {
1518 struct module_attribute *attr;
1519 struct module_attribute *temp_attr;
1520 int error = 0;
1521 int i;
1522
1523 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1524 (ARRAY_SIZE(modinfo_attrs) + 1)),
1525 GFP_KERNEL);
1526 if (!mod->modinfo_attrs)
1527 return -ENOMEM;
1528
1529 temp_attr = mod->modinfo_attrs;
1530 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1531 if (!attr->test ||
1532 (attr->test && attr->test(mod))) {
1533 memcpy(temp_attr, attr, sizeof(*temp_attr));
1534 sysfs_attr_init(&temp_attr->attr);
1535 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1536 ++temp_attr;
1537 }
1538 }
1539 return error;
1540 }
1541
1542 static void module_remove_modinfo_attrs(struct module *mod)
1543 {
1544 struct module_attribute *attr;
1545 int i;
1546
1547 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1548 /* pick a field to test for end of list */
1549 if (!attr->attr.name)
1550 break;
1551 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1552 if (attr->free)
1553 attr->free(mod);
1554 }
1555 kfree(mod->modinfo_attrs);
1556 }
1557
1558 static void mod_kobject_put(struct module *mod)
1559 {
1560 DECLARE_COMPLETION_ONSTACK(c);
1561 mod->mkobj.kobj_completion = &c;
1562 kobject_put(&mod->mkobj.kobj);
1563 wait_for_completion(&c);
1564 }
1565
1566 static int mod_sysfs_init(struct module *mod)
1567 {
1568 int err;
1569 struct kobject *kobj;
1570
1571 if (!module_sysfs_initialized) {
1572 pr_err("%s: module sysfs not initialized\n", mod->name);
1573 err = -EINVAL;
1574 goto out;
1575 }
1576
1577 kobj = kset_find_obj(module_kset, mod->name);
1578 if (kobj) {
1579 pr_err("%s: module is already loaded\n", mod->name);
1580 kobject_put(kobj);
1581 err = -EINVAL;
1582 goto out;
1583 }
1584
1585 mod->mkobj.mod = mod;
1586
1587 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1588 mod->mkobj.kobj.kset = module_kset;
1589 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1590 "%s", mod->name);
1591 if (err)
1592 mod_kobject_put(mod);
1593
1594 /* delay uevent until full sysfs population */
1595 out:
1596 return err;
1597 }
1598
1599 static int mod_sysfs_setup(struct module *mod,
1600 const struct load_info *info,
1601 struct kernel_param *kparam,
1602 unsigned int num_params)
1603 {
1604 int err;
1605
1606 err = mod_sysfs_init(mod);
1607 if (err)
1608 goto out;
1609
1610 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1611 if (!mod->holders_dir) {
1612 err = -ENOMEM;
1613 goto out_unreg;
1614 }
1615
1616 err = module_param_sysfs_setup(mod, kparam, num_params);
1617 if (err)
1618 goto out_unreg_holders;
1619
1620 err = module_add_modinfo_attrs(mod);
1621 if (err)
1622 goto out_unreg_param;
1623
1624 add_usage_links(mod);
1625 add_sect_attrs(mod, info);
1626 add_notes_attrs(mod, info);
1627
1628 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1629 return 0;
1630
1631 out_unreg_param:
1632 module_param_sysfs_remove(mod);
1633 out_unreg_holders:
1634 kobject_put(mod->holders_dir);
1635 out_unreg:
1636 mod_kobject_put(mod);
1637 out:
1638 return err;
1639 }
1640
1641 static void mod_sysfs_fini(struct module *mod)
1642 {
1643 remove_notes_attrs(mod);
1644 remove_sect_attrs(mod);
1645 mod_kobject_put(mod);
1646 }
1647
1648 #else /* !CONFIG_SYSFS */
1649
1650 static int mod_sysfs_setup(struct module *mod,
1651 const struct load_info *info,
1652 struct kernel_param *kparam,
1653 unsigned int num_params)
1654 {
1655 return 0;
1656 }
1657
1658 static void mod_sysfs_fini(struct module *mod)
1659 {
1660 }
1661
1662 static void module_remove_modinfo_attrs(struct module *mod)
1663 {
1664 }
1665
1666 static void del_usage_links(struct module *mod)
1667 {
1668 }
1669
1670 #endif /* CONFIG_SYSFS */
1671
1672 static void mod_sysfs_teardown(struct module *mod)
1673 {
1674 del_usage_links(mod);
1675 module_remove_modinfo_attrs(mod);
1676 module_param_sysfs_remove(mod);
1677 kobject_put(mod->mkobj.drivers_dir);
1678 kobject_put(mod->holders_dir);
1679 mod_sysfs_fini(mod);
1680 }
1681
1682 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1683 /*
1684 * LKM RO/NX protection: protect module's text/ro-data
1685 * from modification and any data from execution.
1686 */
1687 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1688 {
1689 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1690 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1691
1692 if (end_pfn > begin_pfn)
1693 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1694 }
1695
1696 static void set_section_ro_nx(void *base,
1697 unsigned long text_size,
1698 unsigned long ro_size,
1699 unsigned long total_size)
1700 {
1701 /* begin and end PFNs of the current subsection */
1702 unsigned long begin_pfn;
1703 unsigned long end_pfn;
1704
1705 /*
1706 * Set RO for module text and RO-data:
1707 * - Always protect first page.
1708 * - Do not protect last partial page.
1709 */
1710 if (ro_size > 0)
1711 set_page_attributes(base, base + ro_size, set_memory_ro);
1712
1713 /*
1714 * Set NX permissions for module data:
1715 * - Do not protect first partial page.
1716 * - Always protect last page.
1717 */
1718 if (total_size > text_size) {
1719 begin_pfn = PFN_UP((unsigned long)base + text_size);
1720 end_pfn = PFN_UP((unsigned long)base + total_size);
1721 if (end_pfn > begin_pfn)
1722 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1723 }
1724 }
1725
1726 static void unset_module_core_ro_nx(struct module *mod)
1727 {
1728 set_page_attributes(mod->module_core + mod->core_text_size,
1729 mod->module_core + mod->core_size,
1730 set_memory_x);
1731 set_page_attributes(mod->module_core,
1732 mod->module_core + mod->core_ro_size,
1733 set_memory_rw);
1734 }
1735
1736 static void unset_module_init_ro_nx(struct module *mod)
1737 {
1738 set_page_attributes(mod->module_init + mod->init_text_size,
1739 mod->module_init + mod->init_size,
1740 set_memory_x);
1741 set_page_attributes(mod->module_init,
1742 mod->module_init + mod->init_ro_size,
1743 set_memory_rw);
1744 }
1745
1746 /* Iterate through all modules and set each module's text as RW */
1747 void set_all_modules_text_rw(void)
1748 {
1749 struct module *mod;
1750
1751 mutex_lock(&module_mutex);
1752 list_for_each_entry_rcu(mod, &modules, list) {
1753 if (mod->state == MODULE_STATE_UNFORMED)
1754 continue;
1755 if ((mod->module_core) && (mod->core_text_size)) {
1756 set_page_attributes(mod->module_core,
1757 mod->module_core + mod->core_text_size,
1758 set_memory_rw);
1759 }
1760 if ((mod->module_init) && (mod->init_text_size)) {
1761 set_page_attributes(mod->module_init,
1762 mod->module_init + mod->init_text_size,
1763 set_memory_rw);
1764 }
1765 }
1766 mutex_unlock(&module_mutex);
1767 }
1768
1769 /* Iterate through all modules and set each module's text as RO */
1770 void set_all_modules_text_ro(void)
1771 {
1772 struct module *mod;
1773
1774 mutex_lock(&module_mutex);
1775 list_for_each_entry_rcu(mod, &modules, list) {
1776 if (mod->state == MODULE_STATE_UNFORMED)
1777 continue;
1778 if ((mod->module_core) && (mod->core_text_size)) {
1779 set_page_attributes(mod->module_core,
1780 mod->module_core + mod->core_text_size,
1781 set_memory_ro);
1782 }
1783 if ((mod->module_init) && (mod->init_text_size)) {
1784 set_page_attributes(mod->module_init,
1785 mod->module_init + mod->init_text_size,
1786 set_memory_ro);
1787 }
1788 }
1789 mutex_unlock(&module_mutex);
1790 }
1791 #else
1792 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1793 static void unset_module_core_ro_nx(struct module *mod) { }
1794 static void unset_module_init_ro_nx(struct module *mod) { }
1795 #endif
1796
1797 void __weak module_free(struct module *mod, void *module_region)
1798 {
1799 vfree(module_region);
1800 }
1801
1802 void __weak module_arch_cleanup(struct module *mod)
1803 {
1804 }
1805
1806 /* Free a module, remove from lists, etc. */
1807 static void free_module(struct module *mod)
1808 {
1809 trace_module_free(mod);
1810
1811 mod_sysfs_teardown(mod);
1812
1813 /* We leave it in list to prevent duplicate loads, but make sure
1814 * that noone uses it while it's being deconstructed. */
1815 mutex_lock(&module_mutex);
1816 mod->state = MODULE_STATE_UNFORMED;
1817 mutex_unlock(&module_mutex);
1818
1819 /* Remove dynamic debug info */
1820 ddebug_remove_module(mod->name);
1821
1822 /* Arch-specific cleanup. */
1823 module_arch_cleanup(mod);
1824
1825 /* Module unload stuff */
1826 module_unload_free(mod);
1827
1828 /* Free any allocated parameters. */
1829 destroy_params(mod->kp, mod->num_kp);
1830
1831 /* Now we can delete it from the lists */
1832 mutex_lock(&module_mutex);
1833 /* Unlink carefully: kallsyms could be walking list. */
1834 list_del_rcu(&mod->list);
1835 /* Remove this module from bug list, this uses list_del_rcu */
1836 module_bug_cleanup(mod);
1837 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1838 synchronize_rcu();
1839 mutex_unlock(&module_mutex);
1840
1841 /* This may be NULL, but that's OK */
1842 unset_module_init_ro_nx(mod);
1843 module_free(mod, mod->module_init);
1844 kfree(mod->args);
1845 percpu_modfree(mod);
1846
1847 /* Free lock-classes: */
1848 lockdep_free_key_range(mod->module_core, mod->core_size);
1849
1850 /* Finally, free the core (containing the module structure) */
1851 unset_module_core_ro_nx(mod);
1852 module_free(mod, mod->module_core);
1853
1854 #ifdef CONFIG_MPU
1855 update_protections(current->mm);
1856 #endif
1857 }
1858
1859 void *__symbol_get(const char *symbol)
1860 {
1861 struct module *owner;
1862 const struct kernel_symbol *sym;
1863
1864 preempt_disable();
1865 sym = find_symbol(symbol, &owner, NULL, true, true);
1866 if (sym && strong_try_module_get(owner))
1867 sym = NULL;
1868 preempt_enable();
1869
1870 return sym ? (void *)sym->value : NULL;
1871 }
1872 EXPORT_SYMBOL_GPL(__symbol_get);
1873
1874 /*
1875 * Ensure that an exported symbol [global namespace] does not already exist
1876 * in the kernel or in some other module's exported symbol table.
1877 *
1878 * You must hold the module_mutex.
1879 */
1880 static int verify_export_symbols(struct module *mod)
1881 {
1882 unsigned int i;
1883 struct module *owner;
1884 const struct kernel_symbol *s;
1885 struct {
1886 const struct kernel_symbol *sym;
1887 unsigned int num;
1888 } arr[] = {
1889 { mod->syms, mod->num_syms },
1890 { mod->gpl_syms, mod->num_gpl_syms },
1891 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1892 #ifdef CONFIG_UNUSED_SYMBOLS
1893 { mod->unused_syms, mod->num_unused_syms },
1894 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1895 #endif
1896 };
1897
1898 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1899 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1900 if (find_symbol(s->name, &owner, NULL, true, false)) {
1901 pr_err("%s: exports duplicate symbol %s"
1902 " (owned by %s)\n",
1903 mod->name, s->name, module_name(owner));
1904 return -ENOEXEC;
1905 }
1906 }
1907 }
1908 return 0;
1909 }
1910
1911 /* Change all symbols so that st_value encodes the pointer directly. */
1912 static int simplify_symbols(struct module *mod, const struct load_info *info)
1913 {
1914 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1915 Elf_Sym *sym = (void *)symsec->sh_addr;
1916 unsigned long secbase;
1917 unsigned int i;
1918 int ret = 0;
1919 const struct kernel_symbol *ksym;
1920
1921 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1922 const char *name = info->strtab + sym[i].st_name;
1923
1924 switch (sym[i].st_shndx) {
1925 case SHN_COMMON:
1926 /* Ignore common symbols */
1927 if (!strncmp(name, "__gnu_lto", 9))
1928 break;
1929
1930 /* We compiled with -fno-common. These are not
1931 supposed to happen. */
1932 pr_debug("Common symbol: %s\n", name);
1933 printk("%s: please compile with -fno-common\n",
1934 mod->name);
1935 ret = -ENOEXEC;
1936 break;
1937
1938 case SHN_ABS:
1939 /* Don't need to do anything */
1940 pr_debug("Absolute symbol: 0x%08lx\n",
1941 (long)sym[i].st_value);
1942 break;
1943
1944 case SHN_UNDEF:
1945 ksym = resolve_symbol_wait(mod, info, name);
1946 /* Ok if resolved. */
1947 if (ksym && !IS_ERR(ksym)) {
1948 sym[i].st_value = ksym->value;
1949 break;
1950 }
1951
1952 /* Ok if weak. */
1953 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1954 break;
1955
1956 pr_warn("%s: Unknown symbol %s (err %li)\n",
1957 mod->name, name, PTR_ERR(ksym));
1958 ret = PTR_ERR(ksym) ?: -ENOENT;
1959 break;
1960
1961 default:
1962 /* Divert to percpu allocation if a percpu var. */
1963 if (sym[i].st_shndx == info->index.pcpu)
1964 secbase = (unsigned long)mod_percpu(mod);
1965 else
1966 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1967 sym[i].st_value += secbase;
1968 break;
1969 }
1970 }
1971
1972 return ret;
1973 }
1974
1975 static int apply_relocations(struct module *mod, const struct load_info *info)
1976 {
1977 unsigned int i;
1978 int err = 0;
1979
1980 /* Now do relocations. */
1981 for (i = 1; i < info->hdr->e_shnum; i++) {
1982 unsigned int infosec = info->sechdrs[i].sh_info;
1983
1984 /* Not a valid relocation section? */
1985 if (infosec >= info->hdr->e_shnum)
1986 continue;
1987
1988 /* Don't bother with non-allocated sections */
1989 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1990 continue;
1991
1992 if (info->sechdrs[i].sh_type == SHT_REL)
1993 err = apply_relocate(info->sechdrs, info->strtab,
1994 info->index.sym, i, mod);
1995 else if (info->sechdrs[i].sh_type == SHT_RELA)
1996 err = apply_relocate_add(info->sechdrs, info->strtab,
1997 info->index.sym, i, mod);
1998 if (err < 0)
1999 break;
2000 }
2001 return err;
2002 }
2003
2004 /* Additional bytes needed by arch in front of individual sections */
2005 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2006 unsigned int section)
2007 {
2008 /* default implementation just returns zero */
2009 return 0;
2010 }
2011
2012 /* Update size with this section: return offset. */
2013 static long get_offset(struct module *mod, unsigned int *size,
2014 Elf_Shdr *sechdr, unsigned int section)
2015 {
2016 long ret;
2017
2018 *size += arch_mod_section_prepend(mod, section);
2019 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2020 *size = ret + sechdr->sh_size;
2021 return ret;
2022 }
2023
2024 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2025 might -- code, read-only data, read-write data, small data. Tally
2026 sizes, and place the offsets into sh_entsize fields: high bit means it
2027 belongs in init. */
2028 static void layout_sections(struct module *mod, struct load_info *info)
2029 {
2030 static unsigned long const masks[][2] = {
2031 /* NOTE: all executable code must be the first section
2032 * in this array; otherwise modify the text_size
2033 * finder in the two loops below */
2034 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2035 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2036 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2037 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2038 };
2039 unsigned int m, i;
2040
2041 for (i = 0; i < info->hdr->e_shnum; i++)
2042 info->sechdrs[i].sh_entsize = ~0UL;
2043
2044 pr_debug("Core section allocation order:\n");
2045 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2046 for (i = 0; i < info->hdr->e_shnum; ++i) {
2047 Elf_Shdr *s = &info->sechdrs[i];
2048 const char *sname = info->secstrings + s->sh_name;
2049
2050 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2051 || (s->sh_flags & masks[m][1])
2052 || s->sh_entsize != ~0UL
2053 || strstarts(sname, ".init"))
2054 continue;
2055 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2056 pr_debug("\t%s\n", sname);
2057 }
2058 switch (m) {
2059 case 0: /* executable */
2060 mod->core_size = debug_align(mod->core_size);
2061 mod->core_text_size = mod->core_size;
2062 break;
2063 case 1: /* RO: text and ro-data */
2064 mod->core_size = debug_align(mod->core_size);
2065 mod->core_ro_size = mod->core_size;
2066 break;
2067 case 3: /* whole core */
2068 mod->core_size = debug_align(mod->core_size);
2069 break;
2070 }
2071 }
2072
2073 pr_debug("Init section allocation order:\n");
2074 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2075 for (i = 0; i < info->hdr->e_shnum; ++i) {
2076 Elf_Shdr *s = &info->sechdrs[i];
2077 const char *sname = info->secstrings + s->sh_name;
2078
2079 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2080 || (s->sh_flags & masks[m][1])
2081 || s->sh_entsize != ~0UL
2082 || !strstarts(sname, ".init"))
2083 continue;
2084 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2085 | INIT_OFFSET_MASK);
2086 pr_debug("\t%s\n", sname);
2087 }
2088 switch (m) {
2089 case 0: /* executable */
2090 mod->init_size = debug_align(mod->init_size);
2091 mod->init_text_size = mod->init_size;
2092 break;
2093 case 1: /* RO: text and ro-data */
2094 mod->init_size = debug_align(mod->init_size);
2095 mod->init_ro_size = mod->init_size;
2096 break;
2097 case 3: /* whole init */
2098 mod->init_size = debug_align(mod->init_size);
2099 break;
2100 }
2101 }
2102 }
2103
2104 static void set_license(struct module *mod, const char *license)
2105 {
2106 if (!license)
2107 license = "unspecified";
2108
2109 if (!license_is_gpl_compatible(license)) {
2110 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2111 pr_warn("%s: module license '%s' taints kernel.\n",
2112 mod->name, license);
2113 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2114 LOCKDEP_NOW_UNRELIABLE);
2115 }
2116 }
2117
2118 /* Parse tag=value strings from .modinfo section */
2119 static char *next_string(char *string, unsigned long *secsize)
2120 {
2121 /* Skip non-zero chars */
2122 while (string[0]) {
2123 string++;
2124 if ((*secsize)-- <= 1)
2125 return NULL;
2126 }
2127
2128 /* Skip any zero padding. */
2129 while (!string[0]) {
2130 string++;
2131 if ((*secsize)-- <= 1)
2132 return NULL;
2133 }
2134 return string;
2135 }
2136
2137 static char *get_modinfo(struct load_info *info, const char *tag)
2138 {
2139 char *p;
2140 unsigned int taglen = strlen(tag);
2141 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2142 unsigned long size = infosec->sh_size;
2143
2144 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2145 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2146 return p + taglen + 1;
2147 }
2148 return NULL;
2149 }
2150
2151 static void setup_modinfo(struct module *mod, struct load_info *info)
2152 {
2153 struct module_attribute *attr;
2154 int i;
2155
2156 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2157 if (attr->setup)
2158 attr->setup(mod, get_modinfo(info, attr->attr.name));
2159 }
2160 }
2161
2162 static void free_modinfo(struct module *mod)
2163 {
2164 struct module_attribute *attr;
2165 int i;
2166
2167 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2168 if (attr->free)
2169 attr->free(mod);
2170 }
2171 }
2172
2173 #ifdef CONFIG_KALLSYMS
2174
2175 /* lookup symbol in given range of kernel_symbols */
2176 static const struct kernel_symbol *lookup_symbol(const char *name,
2177 const struct kernel_symbol *start,
2178 const struct kernel_symbol *stop)
2179 {
2180 return bsearch(name, start, stop - start,
2181 sizeof(struct kernel_symbol), cmp_name);
2182 }
2183
2184 static int is_exported(const char *name, unsigned long value,
2185 const struct module *mod)
2186 {
2187 const struct kernel_symbol *ks;
2188 if (!mod)
2189 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2190 else
2191 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2192 return ks != NULL && ks->value == value;
2193 }
2194
2195 /* As per nm */
2196 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2197 {
2198 const Elf_Shdr *sechdrs = info->sechdrs;
2199
2200 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2201 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2202 return 'v';
2203 else
2204 return 'w';
2205 }
2206 if (sym->st_shndx == SHN_UNDEF)
2207 return 'U';
2208 if (sym->st_shndx == SHN_ABS)
2209 return 'a';
2210 if (sym->st_shndx >= SHN_LORESERVE)
2211 return '?';
2212 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2213 return 't';
2214 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2215 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2216 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2217 return 'r';
2218 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2219 return 'g';
2220 else
2221 return 'd';
2222 }
2223 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2224 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2225 return 's';
2226 else
2227 return 'b';
2228 }
2229 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2230 ".debug")) {
2231 return 'n';
2232 }
2233 return '?';
2234 }
2235
2236 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2237 unsigned int shnum)
2238 {
2239 const Elf_Shdr *sec;
2240
2241 if (src->st_shndx == SHN_UNDEF
2242 || src->st_shndx >= shnum
2243 || !src->st_name)
2244 return false;
2245
2246 sec = sechdrs + src->st_shndx;
2247 if (!(sec->sh_flags & SHF_ALLOC)
2248 #ifndef CONFIG_KALLSYMS_ALL
2249 || !(sec->sh_flags & SHF_EXECINSTR)
2250 #endif
2251 || (sec->sh_entsize & INIT_OFFSET_MASK))
2252 return false;
2253
2254 return true;
2255 }
2256
2257 /*
2258 * We only allocate and copy the strings needed by the parts of symtab
2259 * we keep. This is simple, but has the effect of making multiple
2260 * copies of duplicates. We could be more sophisticated, see
2261 * linux-kernel thread starting with
2262 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2263 */
2264 static void layout_symtab(struct module *mod, struct load_info *info)
2265 {
2266 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2267 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2268 const Elf_Sym *src;
2269 unsigned int i, nsrc, ndst, strtab_size = 0;
2270
2271 /* Put symbol section at end of init part of module. */
2272 symsect->sh_flags |= SHF_ALLOC;
2273 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2274 info->index.sym) | INIT_OFFSET_MASK;
2275 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2276
2277 src = (void *)info->hdr + symsect->sh_offset;
2278 nsrc = symsect->sh_size / sizeof(*src);
2279
2280 /* Compute total space required for the core symbols' strtab. */
2281 for (ndst = i = 0; i < nsrc; i++) {
2282 if (i == 0 ||
2283 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2284 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2285 ndst++;
2286 }
2287 }
2288
2289 /* Append room for core symbols at end of core part. */
2290 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2291 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2292 mod->core_size += strtab_size;
2293
2294 /* Put string table section at end of init part of module. */
2295 strsect->sh_flags |= SHF_ALLOC;
2296 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2297 info->index.str) | INIT_OFFSET_MASK;
2298 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2299 }
2300
2301 static void add_kallsyms(struct module *mod, const struct load_info *info)
2302 {
2303 unsigned int i, ndst;
2304 const Elf_Sym *src;
2305 Elf_Sym *dst;
2306 char *s;
2307 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2308
2309 mod->symtab = (void *)symsec->sh_addr;
2310 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2311 /* Make sure we get permanent strtab: don't use info->strtab. */
2312 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2313
2314 /* Set types up while we still have access to sections. */
2315 for (i = 0; i < mod->num_symtab; i++)
2316 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2317
2318 mod->core_symtab = dst = mod->module_core + info->symoffs;
2319 mod->core_strtab = s = mod->module_core + info->stroffs;
2320 src = mod->symtab;
2321 for (ndst = i = 0; i < mod->num_symtab; i++) {
2322 if (i == 0 ||
2323 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2324 dst[ndst] = src[i];
2325 dst[ndst++].st_name = s - mod->core_strtab;
2326 s += strlcpy(s, &mod->strtab[src[i].st_name],
2327 KSYM_NAME_LEN) + 1;
2328 }
2329 }
2330 mod->core_num_syms = ndst;
2331 }
2332 #else
2333 static inline void layout_symtab(struct module *mod, struct load_info *info)
2334 {
2335 }
2336
2337 static void add_kallsyms(struct module *mod, const struct load_info *info)
2338 {
2339 }
2340 #endif /* CONFIG_KALLSYMS */
2341
2342 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2343 {
2344 if (!debug)
2345 return;
2346 #ifdef CONFIG_DYNAMIC_DEBUG
2347 if (ddebug_add_module(debug, num, debug->modname))
2348 pr_err("dynamic debug error adding module: %s\n",
2349 debug->modname);
2350 #endif
2351 }
2352
2353 static void dynamic_debug_remove(struct _ddebug *debug)
2354 {
2355 if (debug)
2356 ddebug_remove_module(debug->modname);
2357 }
2358
2359 void * __weak module_alloc(unsigned long size)
2360 {
2361 return vmalloc_exec(size);
2362 }
2363
2364 static void *module_alloc_update_bounds(unsigned long size)
2365 {
2366 void *ret = module_alloc(size);
2367
2368 if (ret) {
2369 mutex_lock(&module_mutex);
2370 /* Update module bounds. */
2371 if ((unsigned long)ret < module_addr_min)
2372 module_addr_min = (unsigned long)ret;
2373 if ((unsigned long)ret + size > module_addr_max)
2374 module_addr_max = (unsigned long)ret + size;
2375 mutex_unlock(&module_mutex);
2376 }
2377 return ret;
2378 }
2379
2380 #ifdef CONFIG_DEBUG_KMEMLEAK
2381 static void kmemleak_load_module(const struct module *mod,
2382 const struct load_info *info)
2383 {
2384 unsigned int i;
2385
2386 /* only scan the sections containing data */
2387 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2388
2389 for (i = 1; i < info->hdr->e_shnum; i++) {
2390 /* Scan all writable sections that's not executable */
2391 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2392 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2393 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2394 continue;
2395
2396 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2397 info->sechdrs[i].sh_size, GFP_KERNEL);
2398 }
2399 }
2400 #else
2401 static inline void kmemleak_load_module(const struct module *mod,
2402 const struct load_info *info)
2403 {
2404 }
2405 #endif
2406
2407 #ifdef CONFIG_MODULE_SIG
2408 static int module_sig_check(struct load_info *info)
2409 {
2410 int err = -ENOKEY;
2411 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2412 const void *mod = info->hdr;
2413
2414 if (info->len > markerlen &&
2415 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2416 /* We truncate the module to discard the signature */
2417 info->len -= markerlen;
2418 err = mod_verify_sig(mod, &info->len);
2419 }
2420
2421 if (!err) {
2422 info->sig_ok = true;
2423 return 0;
2424 }
2425
2426 /* Not having a signature is only an error if we're strict. */
2427 if (err == -ENOKEY && !sig_enforce)
2428 err = 0;
2429
2430 return err;
2431 }
2432 #else /* !CONFIG_MODULE_SIG */
2433 static int module_sig_check(struct load_info *info)
2434 {
2435 return 0;
2436 }
2437 #endif /* !CONFIG_MODULE_SIG */
2438
2439 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2440 static int elf_header_check(struct load_info *info)
2441 {
2442 if (info->len < sizeof(*(info->hdr)))
2443 return -ENOEXEC;
2444
2445 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2446 || info->hdr->e_type != ET_REL
2447 || !elf_check_arch(info->hdr)
2448 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2449 return -ENOEXEC;
2450
2451 if (info->hdr->e_shoff >= info->len
2452 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2453 info->len - info->hdr->e_shoff))
2454 return -ENOEXEC;
2455
2456 return 0;
2457 }
2458
2459 /* Sets info->hdr and info->len. */
2460 static int copy_module_from_user(const void __user *umod, unsigned long len,
2461 struct load_info *info)
2462 {
2463 int err;
2464
2465 info->len = len;
2466 if (info->len < sizeof(*(info->hdr)))
2467 return -ENOEXEC;
2468
2469 err = security_kernel_module_from_file(NULL);
2470 if (err)
2471 return err;
2472
2473 /* Suck in entire file: we'll want most of it. */
2474 info->hdr = vmalloc(info->len);
2475 if (!info->hdr)
2476 return -ENOMEM;
2477
2478 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2479 vfree(info->hdr);
2480 return -EFAULT;
2481 }
2482
2483 return 0;
2484 }
2485
2486 /* Sets info->hdr and info->len. */
2487 static int copy_module_from_fd(int fd, struct load_info *info)
2488 {
2489 struct fd f = fdget(fd);
2490 int err;
2491 struct kstat stat;
2492 loff_t pos;
2493 ssize_t bytes = 0;
2494
2495 if (!f.file)
2496 return -ENOEXEC;
2497
2498 err = security_kernel_module_from_file(f.file);
2499 if (err)
2500 goto out;
2501
2502 err = vfs_getattr(&f.file->f_path, &stat);
2503 if (err)
2504 goto out;
2505
2506 if (stat.size > INT_MAX) {
2507 err = -EFBIG;
2508 goto out;
2509 }
2510
2511 /* Don't hand 0 to vmalloc, it whines. */
2512 if (stat.size == 0) {
2513 err = -EINVAL;
2514 goto out;
2515 }
2516
2517 info->hdr = vmalloc(stat.size);
2518 if (!info->hdr) {
2519 err = -ENOMEM;
2520 goto out;
2521 }
2522
2523 pos = 0;
2524 while (pos < stat.size) {
2525 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2526 stat.size - pos);
2527 if (bytes < 0) {
2528 vfree(info->hdr);
2529 err = bytes;
2530 goto out;
2531 }
2532 if (bytes == 0)
2533 break;
2534 pos += bytes;
2535 }
2536 info->len = pos;
2537
2538 out:
2539 fdput(f);
2540 return err;
2541 }
2542
2543 static void free_copy(struct load_info *info)
2544 {
2545 vfree(info->hdr);
2546 }
2547
2548 static int rewrite_section_headers(struct load_info *info, int flags)
2549 {
2550 unsigned int i;
2551
2552 /* This should always be true, but let's be sure. */
2553 info->sechdrs[0].sh_addr = 0;
2554
2555 for (i = 1; i < info->hdr->e_shnum; i++) {
2556 Elf_Shdr *shdr = &info->sechdrs[i];
2557 if (shdr->sh_type != SHT_NOBITS
2558 && info->len < shdr->sh_offset + shdr->sh_size) {
2559 pr_err("Module len %lu truncated\n", info->len);
2560 return -ENOEXEC;
2561 }
2562
2563 /* Mark all sections sh_addr with their address in the
2564 temporary image. */
2565 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2566
2567 #ifndef CONFIG_MODULE_UNLOAD
2568 /* Don't load .exit sections */
2569 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2570 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2571 #endif
2572 }
2573
2574 /* Track but don't keep modinfo and version sections. */
2575 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2576 info->index.vers = 0; /* Pretend no __versions section! */
2577 else
2578 info->index.vers = find_sec(info, "__versions");
2579 info->index.info = find_sec(info, ".modinfo");
2580 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2581 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2582 return 0;
2583 }
2584
2585 /*
2586 * Set up our basic convenience variables (pointers to section headers,
2587 * search for module section index etc), and do some basic section
2588 * verification.
2589 *
2590 * Return the temporary module pointer (we'll replace it with the final
2591 * one when we move the module sections around).
2592 */
2593 static struct module *setup_load_info(struct load_info *info, int flags)
2594 {
2595 unsigned int i;
2596 int err;
2597 struct module *mod;
2598
2599 /* Set up the convenience variables */
2600 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2601 info->secstrings = (void *)info->hdr
2602 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2603
2604 err = rewrite_section_headers(info, flags);
2605 if (err)
2606 return ERR_PTR(err);
2607
2608 /* Find internal symbols and strings. */
2609 for (i = 1; i < info->hdr->e_shnum; i++) {
2610 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2611 info->index.sym = i;
2612 info->index.str = info->sechdrs[i].sh_link;
2613 info->strtab = (char *)info->hdr
2614 + info->sechdrs[info->index.str].sh_offset;
2615 break;
2616 }
2617 }
2618
2619 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2620 if (!info->index.mod) {
2621 pr_warn("No module found in object\n");
2622 return ERR_PTR(-ENOEXEC);
2623 }
2624 /* This is temporary: point mod into copy of data. */
2625 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2626
2627 if (info->index.sym == 0) {
2628 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2629 return ERR_PTR(-ENOEXEC);
2630 }
2631
2632 info->index.pcpu = find_pcpusec(info);
2633
2634 /* Check module struct version now, before we try to use module. */
2635 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2636 return ERR_PTR(-ENOEXEC);
2637
2638 return mod;
2639 }
2640
2641 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2642 {
2643 const char *modmagic = get_modinfo(info, "vermagic");
2644 int err;
2645
2646 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2647 modmagic = NULL;
2648
2649 /* This is allowed: modprobe --force will invalidate it. */
2650 if (!modmagic) {
2651 err = try_to_force_load(mod, "bad vermagic");
2652 if (err)
2653 return err;
2654 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2655 pr_err("%s: version magic '%s' should be '%s'\n",
2656 mod->name, modmagic, vermagic);
2657 return -ENOEXEC;
2658 }
2659
2660 if (!get_modinfo(info, "intree"))
2661 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2662
2663 if (get_modinfo(info, "staging")) {
2664 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2665 pr_warn("%s: module is from the staging directory, the quality "
2666 "is unknown, you have been warned.\n", mod->name);
2667 }
2668
2669 /* Set up license info based on the info section */
2670 set_license(mod, get_modinfo(info, "license"));
2671
2672 return 0;
2673 }
2674
2675 static int find_module_sections(struct module *mod, struct load_info *info)
2676 {
2677 mod->kp = section_objs(info, "__param",
2678 sizeof(*mod->kp), &mod->num_kp);
2679 mod->syms = section_objs(info, "__ksymtab",
2680 sizeof(*mod->syms), &mod->num_syms);
2681 mod->crcs = section_addr(info, "__kcrctab");
2682 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2683 sizeof(*mod->gpl_syms),
2684 &mod->num_gpl_syms);
2685 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2686 mod->gpl_future_syms = section_objs(info,
2687 "__ksymtab_gpl_future",
2688 sizeof(*mod->gpl_future_syms),
2689 &mod->num_gpl_future_syms);
2690 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2691
2692 #ifdef CONFIG_UNUSED_SYMBOLS
2693 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2694 sizeof(*mod->unused_syms),
2695 &mod->num_unused_syms);
2696 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2697 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2698 sizeof(*mod->unused_gpl_syms),
2699 &mod->num_unused_gpl_syms);
2700 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2701 #endif
2702 #ifdef CONFIG_CONSTRUCTORS
2703 mod->ctors = section_objs(info, ".ctors",
2704 sizeof(*mod->ctors), &mod->num_ctors);
2705 if (!mod->ctors)
2706 mod->ctors = section_objs(info, ".init_array",
2707 sizeof(*mod->ctors), &mod->num_ctors);
2708 else if (find_sec(info, ".init_array")) {
2709 /*
2710 * This shouldn't happen with same compiler and binutils
2711 * building all parts of the module.
2712 */
2713 printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
2714 mod->name);
2715 return -EINVAL;
2716 }
2717 #endif
2718
2719 #ifdef CONFIG_TRACEPOINTS
2720 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2721 sizeof(*mod->tracepoints_ptrs),
2722 &mod->num_tracepoints);
2723 #endif
2724 #ifdef HAVE_JUMP_LABEL
2725 mod->jump_entries = section_objs(info, "__jump_table",
2726 sizeof(*mod->jump_entries),
2727 &mod->num_jump_entries);
2728 #endif
2729 #ifdef CONFIG_EVENT_TRACING
2730 mod->trace_events = section_objs(info, "_ftrace_events",
2731 sizeof(*mod->trace_events),
2732 &mod->num_trace_events);
2733 #endif
2734 #ifdef CONFIG_TRACING
2735 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2736 sizeof(*mod->trace_bprintk_fmt_start),
2737 &mod->num_trace_bprintk_fmt);
2738 #endif
2739 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2740 /* sechdrs[0].sh_size is always zero */
2741 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2742 sizeof(*mod->ftrace_callsites),
2743 &mod->num_ftrace_callsites);
2744 #endif
2745
2746 mod->extable = section_objs(info, "__ex_table",
2747 sizeof(*mod->extable), &mod->num_exentries);
2748
2749 if (section_addr(info, "__obsparm"))
2750 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2751
2752 info->debug = section_objs(info, "__verbose",
2753 sizeof(*info->debug), &info->num_debug);
2754
2755 return 0;
2756 }
2757
2758 static int move_module(struct module *mod, struct load_info *info)
2759 {
2760 int i;
2761 void *ptr;
2762
2763 /* Do the allocs. */
2764 ptr = module_alloc_update_bounds(mod->core_size);
2765 /*
2766 * The pointer to this block is stored in the module structure
2767 * which is inside the block. Just mark it as not being a
2768 * leak.
2769 */
2770 kmemleak_not_leak(ptr);
2771 if (!ptr)
2772 return -ENOMEM;
2773
2774 memset(ptr, 0, mod->core_size);
2775 mod->module_core = ptr;
2776
2777 if (mod->init_size) {
2778 ptr = module_alloc_update_bounds(mod->init_size);
2779 /*
2780 * The pointer to this block is stored in the module structure
2781 * which is inside the block. This block doesn't need to be
2782 * scanned as it contains data and code that will be freed
2783 * after the module is initialized.
2784 */
2785 kmemleak_ignore(ptr);
2786 if (!ptr) {
2787 module_free(mod, mod->module_core);
2788 return -ENOMEM;
2789 }
2790 memset(ptr, 0, mod->init_size);
2791 mod->module_init = ptr;
2792 } else
2793 mod->module_init = NULL;
2794
2795 /* Transfer each section which specifies SHF_ALLOC */
2796 pr_debug("final section addresses:\n");
2797 for (i = 0; i < info->hdr->e_shnum; i++) {
2798 void *dest;
2799 Elf_Shdr *shdr = &info->sechdrs[i];
2800
2801 if (!(shdr->sh_flags & SHF_ALLOC))
2802 continue;
2803
2804 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2805 dest = mod->module_init
2806 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2807 else
2808 dest = mod->module_core + shdr->sh_entsize;
2809
2810 if (shdr->sh_type != SHT_NOBITS)
2811 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2812 /* Update sh_addr to point to copy in image. */
2813 shdr->sh_addr = (unsigned long)dest;
2814 pr_debug("\t0x%lx %s\n",
2815 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2816 }
2817
2818 return 0;
2819 }
2820
2821 static int check_module_license_and_versions(struct module *mod)
2822 {
2823 /*
2824 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2825 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2826 * using GPL-only symbols it needs.
2827 */
2828 if (strcmp(mod->name, "ndiswrapper") == 0)
2829 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2830
2831 /* driverloader was caught wrongly pretending to be under GPL */
2832 if (strcmp(mod->name, "driverloader") == 0)
2833 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2834 LOCKDEP_NOW_UNRELIABLE);
2835
2836 /* lve claims to be GPL but upstream won't provide source */
2837 if (strcmp(mod->name, "lve") == 0)
2838 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2839 LOCKDEP_NOW_UNRELIABLE);
2840
2841 #ifdef CONFIG_MODVERSIONS
2842 if ((mod->num_syms && !mod->crcs)
2843 || (mod->num_gpl_syms && !mod->gpl_crcs)
2844 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2845 #ifdef CONFIG_UNUSED_SYMBOLS
2846 || (mod->num_unused_syms && !mod->unused_crcs)
2847 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2848 #endif
2849 ) {
2850 return try_to_force_load(mod,
2851 "no versions for exported symbols");
2852 }
2853 #endif
2854 return 0;
2855 }
2856
2857 static void flush_module_icache(const struct module *mod)
2858 {
2859 mm_segment_t old_fs;
2860
2861 /* flush the icache in correct context */
2862 old_fs = get_fs();
2863 set_fs(KERNEL_DS);
2864
2865 /*
2866 * Flush the instruction cache, since we've played with text.
2867 * Do it before processing of module parameters, so the module
2868 * can provide parameter accessor functions of its own.
2869 */
2870 if (mod->module_init)
2871 flush_icache_range((unsigned long)mod->module_init,
2872 (unsigned long)mod->module_init
2873 + mod->init_size);
2874 flush_icache_range((unsigned long)mod->module_core,
2875 (unsigned long)mod->module_core + mod->core_size);
2876
2877 set_fs(old_fs);
2878 }
2879
2880 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2881 Elf_Shdr *sechdrs,
2882 char *secstrings,
2883 struct module *mod)
2884 {
2885 return 0;
2886 }
2887
2888 static struct module *layout_and_allocate(struct load_info *info, int flags)
2889 {
2890 /* Module within temporary copy. */
2891 struct module *mod;
2892 int err;
2893
2894 mod = setup_load_info(info, flags);
2895 if (IS_ERR(mod))
2896 return mod;
2897
2898 err = check_modinfo(mod, info, flags);
2899 if (err)
2900 return ERR_PTR(err);
2901
2902 /* Allow arches to frob section contents and sizes. */
2903 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2904 info->secstrings, mod);
2905 if (err < 0)
2906 return ERR_PTR(err);
2907
2908 /* We will do a special allocation for per-cpu sections later. */
2909 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2910
2911 /* Determine total sizes, and put offsets in sh_entsize. For now
2912 this is done generically; there doesn't appear to be any
2913 special cases for the architectures. */
2914 layout_sections(mod, info);
2915 layout_symtab(mod, info);
2916
2917 /* Allocate and move to the final place */
2918 err = move_module(mod, info);
2919 if (err)
2920 return ERR_PTR(err);
2921
2922 /* Module has been copied to its final place now: return it. */
2923 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2924 kmemleak_load_module(mod, info);
2925 return mod;
2926 }
2927
2928 /* mod is no longer valid after this! */
2929 static void module_deallocate(struct module *mod, struct load_info *info)
2930 {
2931 percpu_modfree(mod);
2932 module_free(mod, mod->module_init);
2933 module_free(mod, mod->module_core);
2934 }
2935
2936 int __weak module_finalize(const Elf_Ehdr *hdr,
2937 const Elf_Shdr *sechdrs,
2938 struct module *me)
2939 {
2940 return 0;
2941 }
2942
2943 static int post_relocation(struct module *mod, const struct load_info *info)
2944 {
2945 /* Sort exception table now relocations are done. */
2946 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2947
2948 /* Copy relocated percpu area over. */
2949 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2950 info->sechdrs[info->index.pcpu].sh_size);
2951
2952 /* Setup kallsyms-specific fields. */
2953 add_kallsyms(mod, info);
2954
2955 /* Arch-specific module finalizing. */
2956 return module_finalize(info->hdr, info->sechdrs, mod);
2957 }
2958
2959 /* Is this module of this name done loading? No locks held. */
2960 static bool finished_loading(const char *name)
2961 {
2962 struct module *mod;
2963 bool ret;
2964
2965 mutex_lock(&module_mutex);
2966 mod = find_module_all(name, strlen(name), true);
2967 ret = !mod || mod->state == MODULE_STATE_LIVE
2968 || mod->state == MODULE_STATE_GOING;
2969 mutex_unlock(&module_mutex);
2970
2971 return ret;
2972 }
2973
2974 /* Call module constructors. */
2975 static void do_mod_ctors(struct module *mod)
2976 {
2977 #ifdef CONFIG_CONSTRUCTORS
2978 unsigned long i;
2979
2980 for (i = 0; i < mod->num_ctors; i++)
2981 mod->ctors[i]();
2982 #endif
2983 }
2984
2985 /* This is where the real work happens */
2986 static int do_init_module(struct module *mod)
2987 {
2988 int ret = 0;
2989
2990 /*
2991 * We want to find out whether @mod uses async during init. Clear
2992 * PF_USED_ASYNC. async_schedule*() will set it.
2993 */
2994 current->flags &= ~PF_USED_ASYNC;
2995
2996 do_mod_ctors(mod);
2997 /* Start the module */
2998 if (mod->init != NULL)
2999 ret = do_one_initcall(mod->init);
3000 if (ret < 0) {
3001 /* Init routine failed: abort. Try to protect us from
3002 buggy refcounters. */
3003 mod->state = MODULE_STATE_GOING;
3004 synchronize_sched();
3005 module_put(mod);
3006 blocking_notifier_call_chain(&module_notify_list,
3007 MODULE_STATE_GOING, mod);
3008 free_module(mod);
3009 wake_up_all(&module_wq);
3010 return ret;
3011 }
3012 if (ret > 0) {
3013 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3014 "follow 0/-E convention\n"
3015 "%s: loading module anyway...\n",
3016 __func__, mod->name, ret, __func__);
3017 dump_stack();
3018 }
3019
3020 /* Now it's a first class citizen! */
3021 mod->state = MODULE_STATE_LIVE;
3022 blocking_notifier_call_chain(&module_notify_list,
3023 MODULE_STATE_LIVE, mod);
3024
3025 /*
3026 * We need to finish all async code before the module init sequence
3027 * is done. This has potential to deadlock. For example, a newly
3028 * detected block device can trigger request_module() of the
3029 * default iosched from async probing task. Once userland helper
3030 * reaches here, async_synchronize_full() will wait on the async
3031 * task waiting on request_module() and deadlock.
3032 *
3033 * This deadlock is avoided by perfomring async_synchronize_full()
3034 * iff module init queued any async jobs. This isn't a full
3035 * solution as it will deadlock the same if module loading from
3036 * async jobs nests more than once; however, due to the various
3037 * constraints, this hack seems to be the best option for now.
3038 * Please refer to the following thread for details.
3039 *
3040 * http://thread.gmane.org/gmane.linux.kernel/1420814
3041 */
3042 if (current->flags & PF_USED_ASYNC)
3043 async_synchronize_full();
3044
3045 mutex_lock(&module_mutex);
3046 /* Drop initial reference. */
3047 module_put(mod);
3048 trim_init_extable(mod);
3049 #ifdef CONFIG_KALLSYMS
3050 mod->num_symtab = mod->core_num_syms;
3051 mod->symtab = mod->core_symtab;
3052 mod->strtab = mod->core_strtab;
3053 #endif
3054 unset_module_init_ro_nx(mod);
3055 module_free(mod, mod->module_init);
3056 mod->module_init = NULL;
3057 mod->init_size = 0;
3058 mod->init_ro_size = 0;
3059 mod->init_text_size = 0;
3060 mutex_unlock(&module_mutex);
3061 wake_up_all(&module_wq);
3062
3063 return 0;
3064 }
3065
3066 static int may_init_module(void)
3067 {
3068 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3069 return -EPERM;
3070
3071 return 0;
3072 }
3073
3074 /*
3075 * We try to place it in the list now to make sure it's unique before
3076 * we dedicate too many resources. In particular, temporary percpu
3077 * memory exhaustion.
3078 */
3079 static int add_unformed_module(struct module *mod)
3080 {
3081 int err;
3082 struct module *old;
3083
3084 mod->state = MODULE_STATE_UNFORMED;
3085
3086 again:
3087 mutex_lock(&module_mutex);
3088 old = find_module_all(mod->name, strlen(mod->name), true);
3089 if (old != NULL) {
3090 if (old->state == MODULE_STATE_COMING
3091 || old->state == MODULE_STATE_UNFORMED) {
3092 /* Wait in case it fails to load. */
3093 mutex_unlock(&module_mutex);
3094 err = wait_event_interruptible(module_wq,
3095 finished_loading(mod->name));
3096 if (err)
3097 goto out_unlocked;
3098 goto again;
3099 }
3100 err = -EEXIST;
3101 goto out;
3102 }
3103 list_add_rcu(&mod->list, &modules);
3104 err = 0;
3105
3106 out:
3107 mutex_unlock(&module_mutex);
3108 out_unlocked:
3109 return err;
3110 }
3111
3112 static int complete_formation(struct module *mod, struct load_info *info)
3113 {
3114 int err;
3115
3116 mutex_lock(&module_mutex);
3117
3118 /* Find duplicate symbols (must be called under lock). */
3119 err = verify_export_symbols(mod);
3120 if (err < 0)
3121 goto out;
3122
3123 /* This relies on module_mutex for list integrity. */
3124 module_bug_finalize(info->hdr, info->sechdrs, mod);
3125
3126 /* Set RO and NX regions for core */
3127 set_section_ro_nx(mod->module_core,
3128 mod->core_text_size,
3129 mod->core_ro_size,
3130 mod->core_size);
3131
3132 /* Set RO and NX regions for init */
3133 set_section_ro_nx(mod->module_init,
3134 mod->init_text_size,
3135 mod->init_ro_size,
3136 mod->init_size);
3137
3138 /* Mark state as coming so strong_try_module_get() ignores us,
3139 * but kallsyms etc. can see us. */
3140 mod->state = MODULE_STATE_COMING;
3141 mutex_unlock(&module_mutex);
3142
3143 blocking_notifier_call_chain(&module_notify_list,
3144 MODULE_STATE_COMING, mod);
3145 return 0;
3146
3147 out:
3148 mutex_unlock(&module_mutex);
3149 return err;
3150 }
3151
3152 static int unknown_module_param_cb(char *param, char *val, const char *modname)
3153 {
3154 /* Check for magic 'dyndbg' arg */
3155 int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3156 if (ret != 0)
3157 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3158 return 0;
3159 }
3160
3161 /* Allocate and load the module: note that size of section 0 is always
3162 zero, and we rely on this for optional sections. */
3163 static int load_module(struct load_info *info, const char __user *uargs,
3164 int flags)
3165 {
3166 struct module *mod;
3167 long err;
3168 char *after_dashes;
3169
3170 err = module_sig_check(info);
3171 if (err)
3172 goto free_copy;
3173
3174 err = elf_header_check(info);
3175 if (err)
3176 goto free_copy;
3177
3178 /* Figure out module layout, and allocate all the memory. */
3179 mod = layout_and_allocate(info, flags);
3180 if (IS_ERR(mod)) {
3181 err = PTR_ERR(mod);
3182 goto free_copy;
3183 }
3184
3185 /* Reserve our place in the list. */
3186 err = add_unformed_module(mod);
3187 if (err)
3188 goto free_module;
3189
3190 #ifdef CONFIG_MODULE_SIG
3191 mod->sig_ok = info->sig_ok;
3192 if (!mod->sig_ok) {
3193 pr_notice_once("%s: module verification failed: signature "
3194 "and/or required key missing - tainting "
3195 "kernel\n", mod->name);
3196 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3197 }
3198 #endif
3199
3200 /* To avoid stressing percpu allocator, do this once we're unique. */
3201 err = percpu_modalloc(mod, info);
3202 if (err)
3203 goto unlink_mod;
3204
3205 /* Now module is in final location, initialize linked lists, etc. */
3206 err = module_unload_init(mod);
3207 if (err)
3208 goto unlink_mod;
3209
3210 /* Now we've got everything in the final locations, we can
3211 * find optional sections. */
3212 err = find_module_sections(mod, info);
3213 if (err)
3214 goto free_unload;
3215
3216 err = check_module_license_and_versions(mod);
3217 if (err)
3218 goto free_unload;
3219
3220 /* Set up MODINFO_ATTR fields */
3221 setup_modinfo(mod, info);
3222
3223 /* Fix up syms, so that st_value is a pointer to location. */
3224 err = simplify_symbols(mod, info);
3225 if (err < 0)
3226 goto free_modinfo;
3227
3228 err = apply_relocations(mod, info);
3229 if (err < 0)
3230 goto free_modinfo;
3231
3232 err = post_relocation(mod, info);
3233 if (err < 0)
3234 goto free_modinfo;
3235
3236 flush_module_icache(mod);
3237
3238 /* Now copy in args */
3239 mod->args = strndup_user(uargs, ~0UL >> 1);
3240 if (IS_ERR(mod->args)) {
3241 err = PTR_ERR(mod->args);
3242 goto free_arch_cleanup;
3243 }
3244
3245 dynamic_debug_setup(info->debug, info->num_debug);
3246
3247 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3248 ftrace_module_init(mod);
3249
3250 /* Finally it's fully formed, ready to start executing. */
3251 err = complete_formation(mod, info);
3252 if (err)
3253 goto ddebug_cleanup;
3254
3255 /* Module is ready to execute: parsing args may do that. */
3256 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3257 -32768, 32767, unknown_module_param_cb);
3258 if (IS_ERR(after_dashes)) {
3259 err = PTR_ERR(after_dashes);
3260 goto bug_cleanup;
3261 } else if (after_dashes) {
3262 pr_warn("%s: parameters '%s' after `--' ignored\n",
3263 mod->name, after_dashes);
3264 }
3265
3266 /* Link in to syfs. */
3267 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3268 if (err < 0)
3269 goto bug_cleanup;
3270
3271 /* Get rid of temporary copy. */
3272 free_copy(info);
3273
3274 /* Done! */
3275 trace_module_load(mod);
3276
3277 return do_init_module(mod);
3278
3279 bug_cleanup:
3280 /* module_bug_cleanup needs module_mutex protection */
3281 mutex_lock(&module_mutex);
3282 module_bug_cleanup(mod);
3283 mutex_unlock(&module_mutex);
3284
3285 /* we can't deallocate the module until we clear memory protection */
3286 unset_module_init_ro_nx(mod);
3287 unset_module_core_ro_nx(mod);
3288
3289 ddebug_cleanup:
3290 dynamic_debug_remove(info->debug);
3291 synchronize_sched();
3292 kfree(mod->args);
3293 free_arch_cleanup:
3294 module_arch_cleanup(mod);
3295 free_modinfo:
3296 free_modinfo(mod);
3297 free_unload:
3298 module_unload_free(mod);
3299 unlink_mod:
3300 mutex_lock(&module_mutex);
3301 /* Unlink carefully: kallsyms could be walking list. */
3302 list_del_rcu(&mod->list);
3303 wake_up_all(&module_wq);
3304 /* Wait for RCU synchronizing before releasing mod->list. */
3305 synchronize_rcu();
3306 mutex_unlock(&module_mutex);
3307 free_module:
3308 module_deallocate(mod, info);
3309 free_copy:
3310 free_copy(info);
3311 return err;
3312 }
3313
3314 SYSCALL_DEFINE3(init_module, void __user *, umod,
3315 unsigned long, len, const char __user *, uargs)
3316 {
3317 int err;
3318 struct load_info info = { };
3319
3320 err = may_init_module();
3321 if (err)
3322 return err;
3323
3324 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3325 umod, len, uargs);
3326
3327 err = copy_module_from_user(umod, len, &info);
3328 if (err)
3329 return err;
3330
3331 return load_module(&info, uargs, 0);
3332 }
3333
3334 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3335 {
3336 int err;
3337 struct load_info info = { };
3338
3339 err = may_init_module();
3340 if (err)
3341 return err;
3342
3343 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3344
3345 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3346 |MODULE_INIT_IGNORE_VERMAGIC))
3347 return -EINVAL;
3348
3349 err = copy_module_from_fd(fd, &info);
3350 if (err)
3351 return err;
3352
3353 return load_module(&info, uargs, flags);
3354 }
3355
3356 static inline int within(unsigned long addr, void *start, unsigned long size)
3357 {
3358 return ((void *)addr >= start && (void *)addr < start + size);
3359 }
3360
3361 #ifdef CONFIG_KALLSYMS
3362 /*
3363 * This ignores the intensely annoying "mapping symbols" found
3364 * in ARM ELF files: $a, $t and $d.
3365 */
3366 static inline int is_arm_mapping_symbol(const char *str)
3367 {
3368 if (str[0] == '.' && str[1] == 'L')
3369 return true;
3370 return str[0] == '$' && strchr("axtd", str[1])
3371 && (str[2] == '\0' || str[2] == '.');
3372 }
3373
3374 static const char *get_ksymbol(struct module *mod,
3375 unsigned long addr,
3376 unsigned long *size,
3377 unsigned long *offset)
3378 {
3379 unsigned int i, best = 0;
3380 unsigned long nextval;
3381
3382 /* At worse, next value is at end of module */
3383 if (within_module_init(addr, mod))
3384 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3385 else
3386 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3387
3388 /* Scan for closest preceding symbol, and next symbol. (ELF
3389 starts real symbols at 1). */
3390 for (i = 1; i < mod->num_symtab; i++) {
3391 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3392 continue;
3393
3394 /* We ignore unnamed symbols: they're uninformative
3395 * and inserted at a whim. */
3396 if (mod->symtab[i].st_value <= addr
3397 && mod->symtab[i].st_value > mod->symtab[best].st_value
3398 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3399 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3400 best = i;
3401 if (mod->symtab[i].st_value > addr
3402 && mod->symtab[i].st_value < nextval
3403 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3404 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3405 nextval = mod->symtab[i].st_value;
3406 }
3407
3408 if (!best)
3409 return NULL;
3410
3411 if (size)
3412 *size = nextval - mod->symtab[best].st_value;
3413 if (offset)
3414 *offset = addr - mod->symtab[best].st_value;
3415 return mod->strtab + mod->symtab[best].st_name;
3416 }
3417
3418 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3419 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3420 const char *module_address_lookup(unsigned long addr,
3421 unsigned long *size,
3422 unsigned long *offset,
3423 char **modname,
3424 char *namebuf)
3425 {
3426 struct module *mod;
3427 const char *ret = NULL;
3428
3429 preempt_disable();
3430 list_for_each_entry_rcu(mod, &modules, list) {
3431 if (mod->state == MODULE_STATE_UNFORMED)
3432 continue;
3433 if (within_module(addr, mod)) {
3434 if (modname)
3435 *modname = mod->name;
3436 ret = get_ksymbol(mod, addr, size, offset);
3437 break;
3438 }
3439 }
3440 /* Make a copy in here where it's safe */
3441 if (ret) {
3442 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3443 ret = namebuf;
3444 }
3445 preempt_enable();
3446 return ret;
3447 }
3448
3449 int lookup_module_symbol_name(unsigned long addr, char *symname)
3450 {
3451 struct module *mod;
3452
3453 preempt_disable();
3454 list_for_each_entry_rcu(mod, &modules, list) {
3455 if (mod->state == MODULE_STATE_UNFORMED)
3456 continue;
3457 if (within_module(addr, mod)) {
3458 const char *sym;
3459
3460 sym = get_ksymbol(mod, addr, NULL, NULL);
3461 if (!sym)
3462 goto out;
3463 strlcpy(symname, sym, KSYM_NAME_LEN);
3464 preempt_enable();
3465 return 0;
3466 }
3467 }
3468 out:
3469 preempt_enable();
3470 return -ERANGE;
3471 }
3472
3473 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3474 unsigned long *offset, char *modname, char *name)
3475 {
3476 struct module *mod;
3477
3478 preempt_disable();
3479 list_for_each_entry_rcu(mod, &modules, list) {
3480 if (mod->state == MODULE_STATE_UNFORMED)
3481 continue;
3482 if (within_module(addr, mod)) {
3483 const char *sym;
3484
3485 sym = get_ksymbol(mod, addr, size, offset);
3486 if (!sym)
3487 goto out;
3488 if (modname)
3489 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3490 if (name)
3491 strlcpy(name, sym, KSYM_NAME_LEN);
3492 preempt_enable();
3493 return 0;
3494 }
3495 }
3496 out:
3497 preempt_enable();
3498 return -ERANGE;
3499 }
3500
3501 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3502 char *name, char *module_name, int *exported)
3503 {
3504 struct module *mod;
3505
3506 preempt_disable();
3507 list_for_each_entry_rcu(mod, &modules, list) {
3508 if (mod->state == MODULE_STATE_UNFORMED)
3509 continue;
3510 if (symnum < mod->num_symtab) {
3511 *value = mod->symtab[symnum].st_value;
3512 *type = mod->symtab[symnum].st_info;
3513 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3514 KSYM_NAME_LEN);
3515 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3516 *exported = is_exported(name, *value, mod);
3517 preempt_enable();
3518 return 0;
3519 }
3520 symnum -= mod->num_symtab;
3521 }
3522 preempt_enable();
3523 return -ERANGE;
3524 }
3525
3526 static unsigned long mod_find_symname(struct module *mod, const char *name)
3527 {
3528 unsigned int i;
3529
3530 for (i = 0; i < mod->num_symtab; i++)
3531 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3532 mod->symtab[i].st_info != 'U')
3533 return mod->symtab[i].st_value;
3534 return 0;
3535 }
3536
3537 /* Look for this name: can be of form module:name. */
3538 unsigned long module_kallsyms_lookup_name(const char *name)
3539 {
3540 struct module *mod;
3541 char *colon;
3542 unsigned long ret = 0;
3543
3544 /* Don't lock: we're in enough trouble already. */
3545 preempt_disable();
3546 if ((colon = strchr(name, ':')) != NULL) {
3547 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3548 ret = mod_find_symname(mod, colon+1);
3549 } else {
3550 list_for_each_entry_rcu(mod, &modules, list) {
3551 if (mod->state == MODULE_STATE_UNFORMED)
3552 continue;
3553 if ((ret = mod_find_symname(mod, name)) != 0)
3554 break;
3555 }
3556 }
3557 preempt_enable();
3558 return ret;
3559 }
3560
3561 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3562 struct module *, unsigned long),
3563 void *data)
3564 {
3565 struct module *mod;
3566 unsigned int i;
3567 int ret;
3568
3569 list_for_each_entry(mod, &modules, list) {
3570 if (mod->state == MODULE_STATE_UNFORMED)
3571 continue;
3572 for (i = 0; i < mod->num_symtab; i++) {
3573 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3574 mod, mod->symtab[i].st_value);
3575 if (ret != 0)
3576 return ret;
3577 }
3578 }
3579 return 0;
3580 }
3581 #endif /* CONFIG_KALLSYMS */
3582
3583 static char *module_flags(struct module *mod, char *buf)
3584 {
3585 int bx = 0;
3586
3587 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3588 if (mod->taints ||
3589 mod->state == MODULE_STATE_GOING ||
3590 mod->state == MODULE_STATE_COMING) {
3591 buf[bx++] = '(';
3592 bx += module_flags_taint(mod, buf + bx);
3593 /* Show a - for module-is-being-unloaded */
3594 if (mod->state == MODULE_STATE_GOING)
3595 buf[bx++] = '-';
3596 /* Show a + for module-is-being-loaded */
3597 if (mod->state == MODULE_STATE_COMING)
3598 buf[bx++] = '+';
3599 buf[bx++] = ')';
3600 }
3601 buf[bx] = '\0';
3602
3603 return buf;
3604 }
3605
3606 #ifdef CONFIG_PROC_FS
3607 /* Called by the /proc file system to return a list of modules. */
3608 static void *m_start(struct seq_file *m, loff_t *pos)
3609 {
3610 mutex_lock(&module_mutex);
3611 return seq_list_start(&modules, *pos);
3612 }
3613
3614 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3615 {
3616 return seq_list_next(p, &modules, pos);
3617 }
3618
3619 static void m_stop(struct seq_file *m, void *p)
3620 {
3621 mutex_unlock(&module_mutex);
3622 }
3623
3624 static int m_show(struct seq_file *m, void *p)
3625 {
3626 struct module *mod = list_entry(p, struct module, list);
3627 char buf[8];
3628
3629 /* We always ignore unformed modules. */
3630 if (mod->state == MODULE_STATE_UNFORMED)
3631 return 0;
3632
3633 seq_printf(m, "%s %u",
3634 mod->name, mod->init_size + mod->core_size);
3635 print_unload_info(m, mod);
3636
3637 /* Informative for users. */
3638 seq_printf(m, " %s",
3639 mod->state == MODULE_STATE_GOING ? "Unloading":
3640 mod->state == MODULE_STATE_COMING ? "Loading":
3641 "Live");
3642 /* Used by oprofile and other similar tools. */
3643 seq_printf(m, " 0x%pK", mod->module_core);
3644
3645 /* Taints info */
3646 if (mod->taints)
3647 seq_printf(m, " %s", module_flags(mod, buf));
3648
3649 seq_printf(m, "\n");
3650 return 0;
3651 }
3652
3653 /* Format: modulename size refcount deps address
3654
3655 Where refcount is a number or -, and deps is a comma-separated list
3656 of depends or -.
3657 */
3658 static const struct seq_operations modules_op = {
3659 .start = m_start,
3660 .next = m_next,
3661 .stop = m_stop,
3662 .show = m_show
3663 };
3664
3665 static int modules_open(struct inode *inode, struct file *file)
3666 {
3667 return seq_open(file, &modules_op);
3668 }
3669
3670 static const struct file_operations proc_modules_operations = {
3671 .open = modules_open,
3672 .read = seq_read,
3673 .llseek = seq_lseek,
3674 .release = seq_release,
3675 };
3676
3677 static int __init proc_modules_init(void)
3678 {
3679 proc_create("modules", 0, NULL, &proc_modules_operations);
3680 return 0;
3681 }
3682 module_init(proc_modules_init);
3683 #endif
3684
3685 /* Given an address, look for it in the module exception tables. */
3686 const struct exception_table_entry *search_module_extables(unsigned long addr)
3687 {
3688 const struct exception_table_entry *e = NULL;
3689 struct module *mod;
3690
3691 preempt_disable();
3692 list_for_each_entry_rcu(mod, &modules, list) {
3693 if (mod->state == MODULE_STATE_UNFORMED)
3694 continue;
3695 if (mod->num_exentries == 0)
3696 continue;
3697
3698 e = search_extable(mod->extable,
3699 mod->extable + mod->num_exentries - 1,
3700 addr);
3701 if (e)
3702 break;
3703 }
3704 preempt_enable();
3705
3706 /* Now, if we found one, we are running inside it now, hence
3707 we cannot unload the module, hence no refcnt needed. */
3708 return e;
3709 }
3710
3711 /*
3712 * is_module_address - is this address inside a module?
3713 * @addr: the address to check.
3714 *
3715 * See is_module_text_address() if you simply want to see if the address
3716 * is code (not data).
3717 */
3718 bool is_module_address(unsigned long addr)
3719 {
3720 bool ret;
3721
3722 preempt_disable();
3723 ret = __module_address(addr) != NULL;
3724 preempt_enable();
3725
3726 return ret;
3727 }
3728
3729 /*
3730 * __module_address - get the module which contains an address.
3731 * @addr: the address.
3732 *
3733 * Must be called with preempt disabled or module mutex held so that
3734 * module doesn't get freed during this.
3735 */
3736 struct module *__module_address(unsigned long addr)
3737 {
3738 struct module *mod;
3739
3740 if (addr < module_addr_min || addr > module_addr_max)
3741 return NULL;
3742
3743 list_for_each_entry_rcu(mod, &modules, list) {
3744 if (mod->state == MODULE_STATE_UNFORMED)
3745 continue;
3746 if (within_module(addr, mod))
3747 return mod;
3748 }
3749 return NULL;
3750 }
3751 EXPORT_SYMBOL_GPL(__module_address);
3752
3753 /*
3754 * is_module_text_address - is this address inside module code?
3755 * @addr: the address to check.
3756 *
3757 * See is_module_address() if you simply want to see if the address is
3758 * anywhere in a module. See kernel_text_address() for testing if an
3759 * address corresponds to kernel or module code.
3760 */
3761 bool is_module_text_address(unsigned long addr)
3762 {
3763 bool ret;
3764
3765 preempt_disable();
3766 ret = __module_text_address(addr) != NULL;
3767 preempt_enable();
3768
3769 return ret;
3770 }
3771
3772 /*
3773 * __module_text_address - get the module whose code contains an address.
3774 * @addr: the address.
3775 *
3776 * Must be called with preempt disabled or module mutex held so that
3777 * module doesn't get freed during this.
3778 */
3779 struct module *__module_text_address(unsigned long addr)
3780 {
3781 struct module *mod = __module_address(addr);
3782 if (mod) {
3783 /* Make sure it's within the text section. */
3784 if (!within(addr, mod->module_init, mod->init_text_size)
3785 && !within(addr, mod->module_core, mod->core_text_size))
3786 mod = NULL;
3787 }
3788 return mod;
3789 }
3790 EXPORT_SYMBOL_GPL(__module_text_address);
3791
3792 /* Don't grab lock, we're oopsing. */
3793 void print_modules(void)
3794 {
3795 struct module *mod;
3796 char buf[8];
3797
3798 printk(KERN_DEFAULT "Modules linked in:");
3799 /* Most callers should already have preempt disabled, but make sure */
3800 preempt_disable();
3801 list_for_each_entry_rcu(mod, &modules, list) {
3802 if (mod->state == MODULE_STATE_UNFORMED)
3803 continue;
3804 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
3805 }
3806 preempt_enable();
3807 if (last_unloaded_module[0])
3808 pr_cont(" [last unloaded: %s]", last_unloaded_module);
3809 pr_cont("\n");
3810 }
3811
3812 #ifdef CONFIG_MODVERSIONS
3813 /* Generate the signature for all relevant module structures here.
3814 * If these change, we don't want to try to parse the module. */
3815 void module_layout(struct module *mod,
3816 struct modversion_info *ver,
3817 struct kernel_param *kp,
3818 struct kernel_symbol *ks,
3819 struct tracepoint * const *tp)
3820 {
3821 }
3822 EXPORT_SYMBOL(module_layout);
3823 #endif
This page took 0.138316 seconds and 5 git commands to generate.