Merge tag 'sound-3.15-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115
116 static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118 {
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136 }
137
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .flags = KERNEL_PARAM_FL_NOARG,
140 .set = param_set_bool_enable_only,
141 .get = param_get_bool,
142 };
143 #define param_check_bool_enable_only param_check_bool
144
145 module_param(sig_enforce, bool_enable_only, 0644);
146 #endif /* !CONFIG_MODULE_SIG_FORCE */
147 #endif /* CONFIG_MODULE_SIG */
148
149 /* Block module loading/unloading? */
150 int modules_disabled = 0;
151 core_param(nomodule, modules_disabled, bint, 0);
152
153 /* Waiting for a module to finish initializing? */
154 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
155
156 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
157
158 /* Bounds of module allocation, for speeding __module_address.
159 * Protected by module_mutex. */
160 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
161
162 int register_module_notifier(struct notifier_block * nb)
163 {
164 return blocking_notifier_chain_register(&module_notify_list, nb);
165 }
166 EXPORT_SYMBOL(register_module_notifier);
167
168 int unregister_module_notifier(struct notifier_block * nb)
169 {
170 return blocking_notifier_chain_unregister(&module_notify_list, nb);
171 }
172 EXPORT_SYMBOL(unregister_module_notifier);
173
174 struct load_info {
175 Elf_Ehdr *hdr;
176 unsigned long len;
177 Elf_Shdr *sechdrs;
178 char *secstrings, *strtab;
179 unsigned long symoffs, stroffs;
180 struct _ddebug *debug;
181 unsigned int num_debug;
182 bool sig_ok;
183 struct {
184 unsigned int sym, str, mod, vers, info, pcpu;
185 } index;
186 };
187
188 /* We require a truly strong try_module_get(): 0 means failure due to
189 ongoing or failed initialization etc. */
190 static inline int strong_try_module_get(struct module *mod)
191 {
192 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
193 if (mod && mod->state == MODULE_STATE_COMING)
194 return -EBUSY;
195 if (try_module_get(mod))
196 return 0;
197 else
198 return -ENOENT;
199 }
200
201 static inline void add_taint_module(struct module *mod, unsigned flag,
202 enum lockdep_ok lockdep_ok)
203 {
204 add_taint(flag, lockdep_ok);
205 mod->taints |= (1U << flag);
206 }
207
208 /*
209 * A thread that wants to hold a reference to a module only while it
210 * is running can call this to safely exit. nfsd and lockd use this.
211 */
212 void __module_put_and_exit(struct module *mod, long code)
213 {
214 module_put(mod);
215 do_exit(code);
216 }
217 EXPORT_SYMBOL(__module_put_and_exit);
218
219 /* Find a module section: 0 means not found. */
220 static unsigned int find_sec(const struct load_info *info, const char *name)
221 {
222 unsigned int i;
223
224 for (i = 1; i < info->hdr->e_shnum; i++) {
225 Elf_Shdr *shdr = &info->sechdrs[i];
226 /* Alloc bit cleared means "ignore it." */
227 if ((shdr->sh_flags & SHF_ALLOC)
228 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
229 return i;
230 }
231 return 0;
232 }
233
234 /* Find a module section, or NULL. */
235 static void *section_addr(const struct load_info *info, const char *name)
236 {
237 /* Section 0 has sh_addr 0. */
238 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
239 }
240
241 /* Find a module section, or NULL. Fill in number of "objects" in section. */
242 static void *section_objs(const struct load_info *info,
243 const char *name,
244 size_t object_size,
245 unsigned int *num)
246 {
247 unsigned int sec = find_sec(info, name);
248
249 /* Section 0 has sh_addr 0 and sh_size 0. */
250 *num = info->sechdrs[sec].sh_size / object_size;
251 return (void *)info->sechdrs[sec].sh_addr;
252 }
253
254 /* Provided by the linker */
255 extern const struct kernel_symbol __start___ksymtab[];
256 extern const struct kernel_symbol __stop___ksymtab[];
257 extern const struct kernel_symbol __start___ksymtab_gpl[];
258 extern const struct kernel_symbol __stop___ksymtab_gpl[];
259 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
260 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
261 extern const unsigned long __start___kcrctab[];
262 extern const unsigned long __start___kcrctab_gpl[];
263 extern const unsigned long __start___kcrctab_gpl_future[];
264 #ifdef CONFIG_UNUSED_SYMBOLS
265 extern const struct kernel_symbol __start___ksymtab_unused[];
266 extern const struct kernel_symbol __stop___ksymtab_unused[];
267 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
268 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
269 extern const unsigned long __start___kcrctab_unused[];
270 extern const unsigned long __start___kcrctab_unused_gpl[];
271 #endif
272
273 #ifndef CONFIG_MODVERSIONS
274 #define symversion(base, idx) NULL
275 #else
276 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
277 #endif
278
279 static bool each_symbol_in_section(const struct symsearch *arr,
280 unsigned int arrsize,
281 struct module *owner,
282 bool (*fn)(const struct symsearch *syms,
283 struct module *owner,
284 void *data),
285 void *data)
286 {
287 unsigned int j;
288
289 for (j = 0; j < arrsize; j++) {
290 if (fn(&arr[j], owner, data))
291 return true;
292 }
293
294 return false;
295 }
296
297 /* Returns true as soon as fn returns true, otherwise false. */
298 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
299 struct module *owner,
300 void *data),
301 void *data)
302 {
303 struct module *mod;
304 static const struct symsearch arr[] = {
305 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
306 NOT_GPL_ONLY, false },
307 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
308 __start___kcrctab_gpl,
309 GPL_ONLY, false },
310 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
311 __start___kcrctab_gpl_future,
312 WILL_BE_GPL_ONLY, false },
313 #ifdef CONFIG_UNUSED_SYMBOLS
314 { __start___ksymtab_unused, __stop___ksymtab_unused,
315 __start___kcrctab_unused,
316 NOT_GPL_ONLY, true },
317 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
318 __start___kcrctab_unused_gpl,
319 GPL_ONLY, true },
320 #endif
321 };
322
323 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
324 return true;
325
326 list_for_each_entry_rcu(mod, &modules, list) {
327 struct symsearch arr[] = {
328 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
329 NOT_GPL_ONLY, false },
330 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
331 mod->gpl_crcs,
332 GPL_ONLY, false },
333 { mod->gpl_future_syms,
334 mod->gpl_future_syms + mod->num_gpl_future_syms,
335 mod->gpl_future_crcs,
336 WILL_BE_GPL_ONLY, false },
337 #ifdef CONFIG_UNUSED_SYMBOLS
338 { mod->unused_syms,
339 mod->unused_syms + mod->num_unused_syms,
340 mod->unused_crcs,
341 NOT_GPL_ONLY, true },
342 { mod->unused_gpl_syms,
343 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
344 mod->unused_gpl_crcs,
345 GPL_ONLY, true },
346 #endif
347 };
348
349 if (mod->state == MODULE_STATE_UNFORMED)
350 continue;
351
352 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
353 return true;
354 }
355 return false;
356 }
357 EXPORT_SYMBOL_GPL(each_symbol_section);
358
359 struct find_symbol_arg {
360 /* Input */
361 const char *name;
362 bool gplok;
363 bool warn;
364
365 /* Output */
366 struct module *owner;
367 const unsigned long *crc;
368 const struct kernel_symbol *sym;
369 };
370
371 static bool check_symbol(const struct symsearch *syms,
372 struct module *owner,
373 unsigned int symnum, void *data)
374 {
375 struct find_symbol_arg *fsa = data;
376
377 if (!fsa->gplok) {
378 if (syms->licence == GPL_ONLY)
379 return false;
380 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
381 pr_warn("Symbol %s is being used by a non-GPL module, "
382 "which will not be allowed in the future\n",
383 fsa->name);
384 }
385 }
386
387 #ifdef CONFIG_UNUSED_SYMBOLS
388 if (syms->unused && fsa->warn) {
389 pr_warn("Symbol %s is marked as UNUSED, however this module is "
390 "using it.\n", fsa->name);
391 pr_warn("This symbol will go away in the future.\n");
392 pr_warn("Please evalute if this is the right api to use and if "
393 "it really is, submit a report the linux kernel "
394 "mailinglist together with submitting your code for "
395 "inclusion.\n");
396 }
397 #endif
398
399 fsa->owner = owner;
400 fsa->crc = symversion(syms->crcs, symnum);
401 fsa->sym = &syms->start[symnum];
402 return true;
403 }
404
405 static int cmp_name(const void *va, const void *vb)
406 {
407 const char *a;
408 const struct kernel_symbol *b;
409 a = va; b = vb;
410 return strcmp(a, b->name);
411 }
412
413 static bool find_symbol_in_section(const struct symsearch *syms,
414 struct module *owner,
415 void *data)
416 {
417 struct find_symbol_arg *fsa = data;
418 struct kernel_symbol *sym;
419
420 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
421 sizeof(struct kernel_symbol), cmp_name);
422
423 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
424 return true;
425
426 return false;
427 }
428
429 /* Find a symbol and return it, along with, (optional) crc and
430 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
431 const struct kernel_symbol *find_symbol(const char *name,
432 struct module **owner,
433 const unsigned long **crc,
434 bool gplok,
435 bool warn)
436 {
437 struct find_symbol_arg fsa;
438
439 fsa.name = name;
440 fsa.gplok = gplok;
441 fsa.warn = warn;
442
443 if (each_symbol_section(find_symbol_in_section, &fsa)) {
444 if (owner)
445 *owner = fsa.owner;
446 if (crc)
447 *crc = fsa.crc;
448 return fsa.sym;
449 }
450
451 pr_debug("Failed to find symbol %s\n", name);
452 return NULL;
453 }
454 EXPORT_SYMBOL_GPL(find_symbol);
455
456 /* Search for module by name: must hold module_mutex. */
457 static struct module *find_module_all(const char *name, size_t len,
458 bool even_unformed)
459 {
460 struct module *mod;
461
462 list_for_each_entry(mod, &modules, list) {
463 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
464 continue;
465 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
466 return mod;
467 }
468 return NULL;
469 }
470
471 struct module *find_module(const char *name)
472 {
473 return find_module_all(name, strlen(name), false);
474 }
475 EXPORT_SYMBOL_GPL(find_module);
476
477 #ifdef CONFIG_SMP
478
479 static inline void __percpu *mod_percpu(struct module *mod)
480 {
481 return mod->percpu;
482 }
483
484 static int percpu_modalloc(struct module *mod, struct load_info *info)
485 {
486 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
487 unsigned long align = pcpusec->sh_addralign;
488
489 if (!pcpusec->sh_size)
490 return 0;
491
492 if (align > PAGE_SIZE) {
493 pr_warn("%s: per-cpu alignment %li > %li\n",
494 mod->name, align, PAGE_SIZE);
495 align = PAGE_SIZE;
496 }
497
498 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
499 if (!mod->percpu) {
500 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
501 mod->name, (unsigned long)pcpusec->sh_size);
502 return -ENOMEM;
503 }
504 mod->percpu_size = pcpusec->sh_size;
505 return 0;
506 }
507
508 static void percpu_modfree(struct module *mod)
509 {
510 free_percpu(mod->percpu);
511 }
512
513 static unsigned int find_pcpusec(struct load_info *info)
514 {
515 return find_sec(info, ".data..percpu");
516 }
517
518 static void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520 {
521 int cpu;
522
523 for_each_possible_cpu(cpu)
524 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
525 }
526
527 /**
528 * is_module_percpu_address - test whether address is from module static percpu
529 * @addr: address to test
530 *
531 * Test whether @addr belongs to module static percpu area.
532 *
533 * RETURNS:
534 * %true if @addr is from module static percpu area
535 */
536 bool is_module_percpu_address(unsigned long addr)
537 {
538 struct module *mod;
539 unsigned int cpu;
540
541 preempt_disable();
542
543 list_for_each_entry_rcu(mod, &modules, list) {
544 if (mod->state == MODULE_STATE_UNFORMED)
545 continue;
546 if (!mod->percpu_size)
547 continue;
548 for_each_possible_cpu(cpu) {
549 void *start = per_cpu_ptr(mod->percpu, cpu);
550
551 if ((void *)addr >= start &&
552 (void *)addr < start + mod->percpu_size) {
553 preempt_enable();
554 return true;
555 }
556 }
557 }
558
559 preempt_enable();
560 return false;
561 }
562
563 #else /* ... !CONFIG_SMP */
564
565 static inline void __percpu *mod_percpu(struct module *mod)
566 {
567 return NULL;
568 }
569 static int percpu_modalloc(struct module *mod, struct load_info *info)
570 {
571 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
572 if (info->sechdrs[info->index.pcpu].sh_size != 0)
573 return -ENOMEM;
574 return 0;
575 }
576 static inline void percpu_modfree(struct module *mod)
577 {
578 }
579 static unsigned int find_pcpusec(struct load_info *info)
580 {
581 return 0;
582 }
583 static inline void percpu_modcopy(struct module *mod,
584 const void *from, unsigned long size)
585 {
586 /* pcpusec should be 0, and size of that section should be 0. */
587 BUG_ON(size != 0);
588 }
589 bool is_module_percpu_address(unsigned long addr)
590 {
591 return false;
592 }
593
594 #endif /* CONFIG_SMP */
595
596 #define MODINFO_ATTR(field) \
597 static void setup_modinfo_##field(struct module *mod, const char *s) \
598 { \
599 mod->field = kstrdup(s, GFP_KERNEL); \
600 } \
601 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
602 struct module_kobject *mk, char *buffer) \
603 { \
604 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
605 } \
606 static int modinfo_##field##_exists(struct module *mod) \
607 { \
608 return mod->field != NULL; \
609 } \
610 static void free_modinfo_##field(struct module *mod) \
611 { \
612 kfree(mod->field); \
613 mod->field = NULL; \
614 } \
615 static struct module_attribute modinfo_##field = { \
616 .attr = { .name = __stringify(field), .mode = 0444 }, \
617 .show = show_modinfo_##field, \
618 .setup = setup_modinfo_##field, \
619 .test = modinfo_##field##_exists, \
620 .free = free_modinfo_##field, \
621 };
622
623 MODINFO_ATTR(version);
624 MODINFO_ATTR(srcversion);
625
626 static char last_unloaded_module[MODULE_NAME_LEN+1];
627
628 #ifdef CONFIG_MODULE_UNLOAD
629
630 EXPORT_TRACEPOINT_SYMBOL(module_get);
631
632 /* Init the unload section of the module. */
633 static int module_unload_init(struct module *mod)
634 {
635 mod->refptr = alloc_percpu(struct module_ref);
636 if (!mod->refptr)
637 return -ENOMEM;
638
639 INIT_LIST_HEAD(&mod->source_list);
640 INIT_LIST_HEAD(&mod->target_list);
641
642 /* Hold reference count during initialization. */
643 raw_cpu_write(mod->refptr->incs, 1);
644
645 return 0;
646 }
647
648 /* Does a already use b? */
649 static int already_uses(struct module *a, struct module *b)
650 {
651 struct module_use *use;
652
653 list_for_each_entry(use, &b->source_list, source_list) {
654 if (use->source == a) {
655 pr_debug("%s uses %s!\n", a->name, b->name);
656 return 1;
657 }
658 }
659 pr_debug("%s does not use %s!\n", a->name, b->name);
660 return 0;
661 }
662
663 /*
664 * Module a uses b
665 * - we add 'a' as a "source", 'b' as a "target" of module use
666 * - the module_use is added to the list of 'b' sources (so
667 * 'b' can walk the list to see who sourced them), and of 'a'
668 * targets (so 'a' can see what modules it targets).
669 */
670 static int add_module_usage(struct module *a, struct module *b)
671 {
672 struct module_use *use;
673
674 pr_debug("Allocating new usage for %s.\n", a->name);
675 use = kmalloc(sizeof(*use), GFP_ATOMIC);
676 if (!use) {
677 pr_warn("%s: out of memory loading\n", a->name);
678 return -ENOMEM;
679 }
680
681 use->source = a;
682 use->target = b;
683 list_add(&use->source_list, &b->source_list);
684 list_add(&use->target_list, &a->target_list);
685 return 0;
686 }
687
688 /* Module a uses b: caller needs module_mutex() */
689 int ref_module(struct module *a, struct module *b)
690 {
691 int err;
692
693 if (b == NULL || already_uses(a, b))
694 return 0;
695
696 /* If module isn't available, we fail. */
697 err = strong_try_module_get(b);
698 if (err)
699 return err;
700
701 err = add_module_usage(a, b);
702 if (err) {
703 module_put(b);
704 return err;
705 }
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(ref_module);
709
710 /* Clear the unload stuff of the module. */
711 static void module_unload_free(struct module *mod)
712 {
713 struct module_use *use, *tmp;
714
715 mutex_lock(&module_mutex);
716 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
717 struct module *i = use->target;
718 pr_debug("%s unusing %s\n", mod->name, i->name);
719 module_put(i);
720 list_del(&use->source_list);
721 list_del(&use->target_list);
722 kfree(use);
723 }
724 mutex_unlock(&module_mutex);
725
726 free_percpu(mod->refptr);
727 }
728
729 #ifdef CONFIG_MODULE_FORCE_UNLOAD
730 static inline int try_force_unload(unsigned int flags)
731 {
732 int ret = (flags & O_TRUNC);
733 if (ret)
734 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
735 return ret;
736 }
737 #else
738 static inline int try_force_unload(unsigned int flags)
739 {
740 return 0;
741 }
742 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
743
744 struct stopref
745 {
746 struct module *mod;
747 int flags;
748 int *forced;
749 };
750
751 /* Whole machine is stopped with interrupts off when this runs. */
752 static int __try_stop_module(void *_sref)
753 {
754 struct stopref *sref = _sref;
755
756 /* If it's not unused, quit unless we're forcing. */
757 if (module_refcount(sref->mod) != 0) {
758 if (!(*sref->forced = try_force_unload(sref->flags)))
759 return -EWOULDBLOCK;
760 }
761
762 /* Mark it as dying. */
763 sref->mod->state = MODULE_STATE_GOING;
764 return 0;
765 }
766
767 static int try_stop_module(struct module *mod, int flags, int *forced)
768 {
769 struct stopref sref = { mod, flags, forced };
770
771 return stop_machine(__try_stop_module, &sref, NULL);
772 }
773
774 unsigned long module_refcount(struct module *mod)
775 {
776 unsigned long incs = 0, decs = 0;
777 int cpu;
778
779 for_each_possible_cpu(cpu)
780 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
781 /*
782 * ensure the incs are added up after the decs.
783 * module_put ensures incs are visible before decs with smp_wmb.
784 *
785 * This 2-count scheme avoids the situation where the refcount
786 * for CPU0 is read, then CPU0 increments the module refcount,
787 * then CPU1 drops that refcount, then the refcount for CPU1 is
788 * read. We would record a decrement but not its corresponding
789 * increment so we would see a low count (disaster).
790 *
791 * Rare situation? But module_refcount can be preempted, and we
792 * might be tallying up 4096+ CPUs. So it is not impossible.
793 */
794 smp_rmb();
795 for_each_possible_cpu(cpu)
796 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
797 return incs - decs;
798 }
799 EXPORT_SYMBOL(module_refcount);
800
801 /* This exists whether we can unload or not */
802 static void free_module(struct module *mod);
803
804 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
805 unsigned int, flags)
806 {
807 struct module *mod;
808 char name[MODULE_NAME_LEN];
809 int ret, forced = 0;
810
811 if (!capable(CAP_SYS_MODULE) || modules_disabled)
812 return -EPERM;
813
814 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
815 return -EFAULT;
816 name[MODULE_NAME_LEN-1] = '\0';
817
818 if (mutex_lock_interruptible(&module_mutex) != 0)
819 return -EINTR;
820
821 mod = find_module(name);
822 if (!mod) {
823 ret = -ENOENT;
824 goto out;
825 }
826
827 if (!list_empty(&mod->source_list)) {
828 /* Other modules depend on us: get rid of them first. */
829 ret = -EWOULDBLOCK;
830 goto out;
831 }
832
833 /* Doing init or already dying? */
834 if (mod->state != MODULE_STATE_LIVE) {
835 /* FIXME: if (force), slam module count damn the torpedoes */
836 pr_debug("%s already dying\n", mod->name);
837 ret = -EBUSY;
838 goto out;
839 }
840
841 /* If it has an init func, it must have an exit func to unload */
842 if (mod->init && !mod->exit) {
843 forced = try_force_unload(flags);
844 if (!forced) {
845 /* This module can't be removed */
846 ret = -EBUSY;
847 goto out;
848 }
849 }
850
851 /* Stop the machine so refcounts can't move and disable module. */
852 ret = try_stop_module(mod, flags, &forced);
853 if (ret != 0)
854 goto out;
855
856 mutex_unlock(&module_mutex);
857 /* Final destruction now no one is using it. */
858 if (mod->exit != NULL)
859 mod->exit();
860 blocking_notifier_call_chain(&module_notify_list,
861 MODULE_STATE_GOING, mod);
862 async_synchronize_full();
863
864 /* Store the name of the last unloaded module for diagnostic purposes */
865 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
866
867 free_module(mod);
868 return 0;
869 out:
870 mutex_unlock(&module_mutex);
871 return ret;
872 }
873
874 static inline void print_unload_info(struct seq_file *m, struct module *mod)
875 {
876 struct module_use *use;
877 int printed_something = 0;
878
879 seq_printf(m, " %lu ", module_refcount(mod));
880
881 /* Always include a trailing , so userspace can differentiate
882 between this and the old multi-field proc format. */
883 list_for_each_entry(use, &mod->source_list, source_list) {
884 printed_something = 1;
885 seq_printf(m, "%s,", use->source->name);
886 }
887
888 if (mod->init != NULL && mod->exit == NULL) {
889 printed_something = 1;
890 seq_printf(m, "[permanent],");
891 }
892
893 if (!printed_something)
894 seq_printf(m, "-");
895 }
896
897 void __symbol_put(const char *symbol)
898 {
899 struct module *owner;
900
901 preempt_disable();
902 if (!find_symbol(symbol, &owner, NULL, true, false))
903 BUG();
904 module_put(owner);
905 preempt_enable();
906 }
907 EXPORT_SYMBOL(__symbol_put);
908
909 /* Note this assumes addr is a function, which it currently always is. */
910 void symbol_put_addr(void *addr)
911 {
912 struct module *modaddr;
913 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
914
915 if (core_kernel_text(a))
916 return;
917
918 /* module_text_address is safe here: we're supposed to have reference
919 * to module from symbol_get, so it can't go away. */
920 modaddr = __module_text_address(a);
921 BUG_ON(!modaddr);
922 module_put(modaddr);
923 }
924 EXPORT_SYMBOL_GPL(symbol_put_addr);
925
926 static ssize_t show_refcnt(struct module_attribute *mattr,
927 struct module_kobject *mk, char *buffer)
928 {
929 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
930 }
931
932 static struct module_attribute modinfo_refcnt =
933 __ATTR(refcnt, 0444, show_refcnt, NULL);
934
935 void __module_get(struct module *module)
936 {
937 if (module) {
938 preempt_disable();
939 __this_cpu_inc(module->refptr->incs);
940 trace_module_get(module, _RET_IP_);
941 preempt_enable();
942 }
943 }
944 EXPORT_SYMBOL(__module_get);
945
946 bool try_module_get(struct module *module)
947 {
948 bool ret = true;
949
950 if (module) {
951 preempt_disable();
952
953 if (likely(module_is_live(module))) {
954 __this_cpu_inc(module->refptr->incs);
955 trace_module_get(module, _RET_IP_);
956 } else
957 ret = false;
958
959 preempt_enable();
960 }
961 return ret;
962 }
963 EXPORT_SYMBOL(try_module_get);
964
965 void module_put(struct module *module)
966 {
967 if (module) {
968 preempt_disable();
969 smp_wmb(); /* see comment in module_refcount */
970 __this_cpu_inc(module->refptr->decs);
971
972 trace_module_put(module, _RET_IP_);
973 preempt_enable();
974 }
975 }
976 EXPORT_SYMBOL(module_put);
977
978 #else /* !CONFIG_MODULE_UNLOAD */
979 static inline void print_unload_info(struct seq_file *m, struct module *mod)
980 {
981 /* We don't know the usage count, or what modules are using. */
982 seq_printf(m, " - -");
983 }
984
985 static inline void module_unload_free(struct module *mod)
986 {
987 }
988
989 int ref_module(struct module *a, struct module *b)
990 {
991 return strong_try_module_get(b);
992 }
993 EXPORT_SYMBOL_GPL(ref_module);
994
995 static inline int module_unload_init(struct module *mod)
996 {
997 return 0;
998 }
999 #endif /* CONFIG_MODULE_UNLOAD */
1000
1001 static size_t module_flags_taint(struct module *mod, char *buf)
1002 {
1003 size_t l = 0;
1004
1005 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1006 buf[l++] = 'P';
1007 if (mod->taints & (1 << TAINT_OOT_MODULE))
1008 buf[l++] = 'O';
1009 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1010 buf[l++] = 'F';
1011 if (mod->taints & (1 << TAINT_CRAP))
1012 buf[l++] = 'C';
1013 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1014 buf[l++] = 'E';
1015 /*
1016 * TAINT_FORCED_RMMOD: could be added.
1017 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1018 * apply to modules.
1019 */
1020 return l;
1021 }
1022
1023 static ssize_t show_initstate(struct module_attribute *mattr,
1024 struct module_kobject *mk, char *buffer)
1025 {
1026 const char *state = "unknown";
1027
1028 switch (mk->mod->state) {
1029 case MODULE_STATE_LIVE:
1030 state = "live";
1031 break;
1032 case MODULE_STATE_COMING:
1033 state = "coming";
1034 break;
1035 case MODULE_STATE_GOING:
1036 state = "going";
1037 break;
1038 default:
1039 BUG();
1040 }
1041 return sprintf(buffer, "%s\n", state);
1042 }
1043
1044 static struct module_attribute modinfo_initstate =
1045 __ATTR(initstate, 0444, show_initstate, NULL);
1046
1047 static ssize_t store_uevent(struct module_attribute *mattr,
1048 struct module_kobject *mk,
1049 const char *buffer, size_t count)
1050 {
1051 enum kobject_action action;
1052
1053 if (kobject_action_type(buffer, count, &action) == 0)
1054 kobject_uevent(&mk->kobj, action);
1055 return count;
1056 }
1057
1058 struct module_attribute module_uevent =
1059 __ATTR(uevent, 0200, NULL, store_uevent);
1060
1061 static ssize_t show_coresize(struct module_attribute *mattr,
1062 struct module_kobject *mk, char *buffer)
1063 {
1064 return sprintf(buffer, "%u\n", mk->mod->core_size);
1065 }
1066
1067 static struct module_attribute modinfo_coresize =
1068 __ATTR(coresize, 0444, show_coresize, NULL);
1069
1070 static ssize_t show_initsize(struct module_attribute *mattr,
1071 struct module_kobject *mk, char *buffer)
1072 {
1073 return sprintf(buffer, "%u\n", mk->mod->init_size);
1074 }
1075
1076 static struct module_attribute modinfo_initsize =
1077 __ATTR(initsize, 0444, show_initsize, NULL);
1078
1079 static ssize_t show_taint(struct module_attribute *mattr,
1080 struct module_kobject *mk, char *buffer)
1081 {
1082 size_t l;
1083
1084 l = module_flags_taint(mk->mod, buffer);
1085 buffer[l++] = '\n';
1086 return l;
1087 }
1088
1089 static struct module_attribute modinfo_taint =
1090 __ATTR(taint, 0444, show_taint, NULL);
1091
1092 static struct module_attribute *modinfo_attrs[] = {
1093 &module_uevent,
1094 &modinfo_version,
1095 &modinfo_srcversion,
1096 &modinfo_initstate,
1097 &modinfo_coresize,
1098 &modinfo_initsize,
1099 &modinfo_taint,
1100 #ifdef CONFIG_MODULE_UNLOAD
1101 &modinfo_refcnt,
1102 #endif
1103 NULL,
1104 };
1105
1106 static const char vermagic[] = VERMAGIC_STRING;
1107
1108 static int try_to_force_load(struct module *mod, const char *reason)
1109 {
1110 #ifdef CONFIG_MODULE_FORCE_LOAD
1111 if (!test_taint(TAINT_FORCED_MODULE))
1112 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1113 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1114 return 0;
1115 #else
1116 return -ENOEXEC;
1117 #endif
1118 }
1119
1120 #ifdef CONFIG_MODVERSIONS
1121 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1122 static unsigned long maybe_relocated(unsigned long crc,
1123 const struct module *crc_owner)
1124 {
1125 #ifdef ARCH_RELOCATES_KCRCTAB
1126 if (crc_owner == NULL)
1127 return crc - (unsigned long)reloc_start;
1128 #endif
1129 return crc;
1130 }
1131
1132 static int check_version(Elf_Shdr *sechdrs,
1133 unsigned int versindex,
1134 const char *symname,
1135 struct module *mod,
1136 const unsigned long *crc,
1137 const struct module *crc_owner)
1138 {
1139 unsigned int i, num_versions;
1140 struct modversion_info *versions;
1141
1142 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1143 if (!crc)
1144 return 1;
1145
1146 /* No versions at all? modprobe --force does this. */
1147 if (versindex == 0)
1148 return try_to_force_load(mod, symname) == 0;
1149
1150 versions = (void *) sechdrs[versindex].sh_addr;
1151 num_versions = sechdrs[versindex].sh_size
1152 / sizeof(struct modversion_info);
1153
1154 for (i = 0; i < num_versions; i++) {
1155 if (strcmp(versions[i].name, symname) != 0)
1156 continue;
1157
1158 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1159 return 1;
1160 pr_debug("Found checksum %lX vs module %lX\n",
1161 maybe_relocated(*crc, crc_owner), versions[i].crc);
1162 goto bad_version;
1163 }
1164
1165 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1166 return 0;
1167
1168 bad_version:
1169 printk("%s: disagrees about version of symbol %s\n",
1170 mod->name, symname);
1171 return 0;
1172 }
1173
1174 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1175 unsigned int versindex,
1176 struct module *mod)
1177 {
1178 const unsigned long *crc;
1179
1180 /* Since this should be found in kernel (which can't be removed),
1181 * no locking is necessary. */
1182 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1183 &crc, true, false))
1184 BUG();
1185 return check_version(sechdrs, versindex,
1186 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1187 NULL);
1188 }
1189
1190 /* First part is kernel version, which we ignore if module has crcs. */
1191 static inline int same_magic(const char *amagic, const char *bmagic,
1192 bool has_crcs)
1193 {
1194 if (has_crcs) {
1195 amagic += strcspn(amagic, " ");
1196 bmagic += strcspn(bmagic, " ");
1197 }
1198 return strcmp(amagic, bmagic) == 0;
1199 }
1200 #else
1201 static inline int check_version(Elf_Shdr *sechdrs,
1202 unsigned int versindex,
1203 const char *symname,
1204 struct module *mod,
1205 const unsigned long *crc,
1206 const struct module *crc_owner)
1207 {
1208 return 1;
1209 }
1210
1211 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1212 unsigned int versindex,
1213 struct module *mod)
1214 {
1215 return 1;
1216 }
1217
1218 static inline int same_magic(const char *amagic, const char *bmagic,
1219 bool has_crcs)
1220 {
1221 return strcmp(amagic, bmagic) == 0;
1222 }
1223 #endif /* CONFIG_MODVERSIONS */
1224
1225 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1226 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1227 const struct load_info *info,
1228 const char *name,
1229 char ownername[])
1230 {
1231 struct module *owner;
1232 const struct kernel_symbol *sym;
1233 const unsigned long *crc;
1234 int err;
1235
1236 mutex_lock(&module_mutex);
1237 sym = find_symbol(name, &owner, &crc,
1238 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1239 if (!sym)
1240 goto unlock;
1241
1242 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1243 owner)) {
1244 sym = ERR_PTR(-EINVAL);
1245 goto getname;
1246 }
1247
1248 err = ref_module(mod, owner);
1249 if (err) {
1250 sym = ERR_PTR(err);
1251 goto getname;
1252 }
1253
1254 getname:
1255 /* We must make copy under the lock if we failed to get ref. */
1256 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1257 unlock:
1258 mutex_unlock(&module_mutex);
1259 return sym;
1260 }
1261
1262 static const struct kernel_symbol *
1263 resolve_symbol_wait(struct module *mod,
1264 const struct load_info *info,
1265 const char *name)
1266 {
1267 const struct kernel_symbol *ksym;
1268 char owner[MODULE_NAME_LEN];
1269
1270 if (wait_event_interruptible_timeout(module_wq,
1271 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1272 || PTR_ERR(ksym) != -EBUSY,
1273 30 * HZ) <= 0) {
1274 pr_warn("%s: gave up waiting for init of module %s.\n",
1275 mod->name, owner);
1276 }
1277 return ksym;
1278 }
1279
1280 /*
1281 * /sys/module/foo/sections stuff
1282 * J. Corbet <corbet@lwn.net>
1283 */
1284 #ifdef CONFIG_SYSFS
1285
1286 #ifdef CONFIG_KALLSYMS
1287 static inline bool sect_empty(const Elf_Shdr *sect)
1288 {
1289 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1290 }
1291
1292 struct module_sect_attr
1293 {
1294 struct module_attribute mattr;
1295 char *name;
1296 unsigned long address;
1297 };
1298
1299 struct module_sect_attrs
1300 {
1301 struct attribute_group grp;
1302 unsigned int nsections;
1303 struct module_sect_attr attrs[0];
1304 };
1305
1306 static ssize_t module_sect_show(struct module_attribute *mattr,
1307 struct module_kobject *mk, char *buf)
1308 {
1309 struct module_sect_attr *sattr =
1310 container_of(mattr, struct module_sect_attr, mattr);
1311 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1312 }
1313
1314 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1315 {
1316 unsigned int section;
1317
1318 for (section = 0; section < sect_attrs->nsections; section++)
1319 kfree(sect_attrs->attrs[section].name);
1320 kfree(sect_attrs);
1321 }
1322
1323 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1324 {
1325 unsigned int nloaded = 0, i, size[2];
1326 struct module_sect_attrs *sect_attrs;
1327 struct module_sect_attr *sattr;
1328 struct attribute **gattr;
1329
1330 /* Count loaded sections and allocate structures */
1331 for (i = 0; i < info->hdr->e_shnum; i++)
1332 if (!sect_empty(&info->sechdrs[i]))
1333 nloaded++;
1334 size[0] = ALIGN(sizeof(*sect_attrs)
1335 + nloaded * sizeof(sect_attrs->attrs[0]),
1336 sizeof(sect_attrs->grp.attrs[0]));
1337 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1338 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1339 if (sect_attrs == NULL)
1340 return;
1341
1342 /* Setup section attributes. */
1343 sect_attrs->grp.name = "sections";
1344 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1345
1346 sect_attrs->nsections = 0;
1347 sattr = &sect_attrs->attrs[0];
1348 gattr = &sect_attrs->grp.attrs[0];
1349 for (i = 0; i < info->hdr->e_shnum; i++) {
1350 Elf_Shdr *sec = &info->sechdrs[i];
1351 if (sect_empty(sec))
1352 continue;
1353 sattr->address = sec->sh_addr;
1354 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1355 GFP_KERNEL);
1356 if (sattr->name == NULL)
1357 goto out;
1358 sect_attrs->nsections++;
1359 sysfs_attr_init(&sattr->mattr.attr);
1360 sattr->mattr.show = module_sect_show;
1361 sattr->mattr.store = NULL;
1362 sattr->mattr.attr.name = sattr->name;
1363 sattr->mattr.attr.mode = S_IRUGO;
1364 *(gattr++) = &(sattr++)->mattr.attr;
1365 }
1366 *gattr = NULL;
1367
1368 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1369 goto out;
1370
1371 mod->sect_attrs = sect_attrs;
1372 return;
1373 out:
1374 free_sect_attrs(sect_attrs);
1375 }
1376
1377 static void remove_sect_attrs(struct module *mod)
1378 {
1379 if (mod->sect_attrs) {
1380 sysfs_remove_group(&mod->mkobj.kobj,
1381 &mod->sect_attrs->grp);
1382 /* We are positive that no one is using any sect attrs
1383 * at this point. Deallocate immediately. */
1384 free_sect_attrs(mod->sect_attrs);
1385 mod->sect_attrs = NULL;
1386 }
1387 }
1388
1389 /*
1390 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1391 */
1392
1393 struct module_notes_attrs {
1394 struct kobject *dir;
1395 unsigned int notes;
1396 struct bin_attribute attrs[0];
1397 };
1398
1399 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1400 struct bin_attribute *bin_attr,
1401 char *buf, loff_t pos, size_t count)
1402 {
1403 /*
1404 * The caller checked the pos and count against our size.
1405 */
1406 memcpy(buf, bin_attr->private + pos, count);
1407 return count;
1408 }
1409
1410 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1411 unsigned int i)
1412 {
1413 if (notes_attrs->dir) {
1414 while (i-- > 0)
1415 sysfs_remove_bin_file(notes_attrs->dir,
1416 &notes_attrs->attrs[i]);
1417 kobject_put(notes_attrs->dir);
1418 }
1419 kfree(notes_attrs);
1420 }
1421
1422 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1423 {
1424 unsigned int notes, loaded, i;
1425 struct module_notes_attrs *notes_attrs;
1426 struct bin_attribute *nattr;
1427
1428 /* failed to create section attributes, so can't create notes */
1429 if (!mod->sect_attrs)
1430 return;
1431
1432 /* Count notes sections and allocate structures. */
1433 notes = 0;
1434 for (i = 0; i < info->hdr->e_shnum; i++)
1435 if (!sect_empty(&info->sechdrs[i]) &&
1436 (info->sechdrs[i].sh_type == SHT_NOTE))
1437 ++notes;
1438
1439 if (notes == 0)
1440 return;
1441
1442 notes_attrs = kzalloc(sizeof(*notes_attrs)
1443 + notes * sizeof(notes_attrs->attrs[0]),
1444 GFP_KERNEL);
1445 if (notes_attrs == NULL)
1446 return;
1447
1448 notes_attrs->notes = notes;
1449 nattr = &notes_attrs->attrs[0];
1450 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1451 if (sect_empty(&info->sechdrs[i]))
1452 continue;
1453 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1454 sysfs_bin_attr_init(nattr);
1455 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1456 nattr->attr.mode = S_IRUGO;
1457 nattr->size = info->sechdrs[i].sh_size;
1458 nattr->private = (void *) info->sechdrs[i].sh_addr;
1459 nattr->read = module_notes_read;
1460 ++nattr;
1461 }
1462 ++loaded;
1463 }
1464
1465 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1466 if (!notes_attrs->dir)
1467 goto out;
1468
1469 for (i = 0; i < notes; ++i)
1470 if (sysfs_create_bin_file(notes_attrs->dir,
1471 &notes_attrs->attrs[i]))
1472 goto out;
1473
1474 mod->notes_attrs = notes_attrs;
1475 return;
1476
1477 out:
1478 free_notes_attrs(notes_attrs, i);
1479 }
1480
1481 static void remove_notes_attrs(struct module *mod)
1482 {
1483 if (mod->notes_attrs)
1484 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1485 }
1486
1487 #else
1488
1489 static inline void add_sect_attrs(struct module *mod,
1490 const struct load_info *info)
1491 {
1492 }
1493
1494 static inline void remove_sect_attrs(struct module *mod)
1495 {
1496 }
1497
1498 static inline void add_notes_attrs(struct module *mod,
1499 const struct load_info *info)
1500 {
1501 }
1502
1503 static inline void remove_notes_attrs(struct module *mod)
1504 {
1505 }
1506 #endif /* CONFIG_KALLSYMS */
1507
1508 static void add_usage_links(struct module *mod)
1509 {
1510 #ifdef CONFIG_MODULE_UNLOAD
1511 struct module_use *use;
1512 int nowarn;
1513
1514 mutex_lock(&module_mutex);
1515 list_for_each_entry(use, &mod->target_list, target_list) {
1516 nowarn = sysfs_create_link(use->target->holders_dir,
1517 &mod->mkobj.kobj, mod->name);
1518 }
1519 mutex_unlock(&module_mutex);
1520 #endif
1521 }
1522
1523 static void del_usage_links(struct module *mod)
1524 {
1525 #ifdef CONFIG_MODULE_UNLOAD
1526 struct module_use *use;
1527
1528 mutex_lock(&module_mutex);
1529 list_for_each_entry(use, &mod->target_list, target_list)
1530 sysfs_remove_link(use->target->holders_dir, mod->name);
1531 mutex_unlock(&module_mutex);
1532 #endif
1533 }
1534
1535 static int module_add_modinfo_attrs(struct module *mod)
1536 {
1537 struct module_attribute *attr;
1538 struct module_attribute *temp_attr;
1539 int error = 0;
1540 int i;
1541
1542 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1543 (ARRAY_SIZE(modinfo_attrs) + 1)),
1544 GFP_KERNEL);
1545 if (!mod->modinfo_attrs)
1546 return -ENOMEM;
1547
1548 temp_attr = mod->modinfo_attrs;
1549 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1550 if (!attr->test ||
1551 (attr->test && attr->test(mod))) {
1552 memcpy(temp_attr, attr, sizeof(*temp_attr));
1553 sysfs_attr_init(&temp_attr->attr);
1554 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1555 ++temp_attr;
1556 }
1557 }
1558 return error;
1559 }
1560
1561 static void module_remove_modinfo_attrs(struct module *mod)
1562 {
1563 struct module_attribute *attr;
1564 int i;
1565
1566 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1567 /* pick a field to test for end of list */
1568 if (!attr->attr.name)
1569 break;
1570 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1571 if (attr->free)
1572 attr->free(mod);
1573 }
1574 kfree(mod->modinfo_attrs);
1575 }
1576
1577 static void mod_kobject_put(struct module *mod)
1578 {
1579 DECLARE_COMPLETION_ONSTACK(c);
1580 mod->mkobj.kobj_completion = &c;
1581 kobject_put(&mod->mkobj.kobj);
1582 wait_for_completion(&c);
1583 }
1584
1585 static int mod_sysfs_init(struct module *mod)
1586 {
1587 int err;
1588 struct kobject *kobj;
1589
1590 if (!module_sysfs_initialized) {
1591 pr_err("%s: module sysfs not initialized\n", mod->name);
1592 err = -EINVAL;
1593 goto out;
1594 }
1595
1596 kobj = kset_find_obj(module_kset, mod->name);
1597 if (kobj) {
1598 pr_err("%s: module is already loaded\n", mod->name);
1599 kobject_put(kobj);
1600 err = -EINVAL;
1601 goto out;
1602 }
1603
1604 mod->mkobj.mod = mod;
1605
1606 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1607 mod->mkobj.kobj.kset = module_kset;
1608 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1609 "%s", mod->name);
1610 if (err)
1611 mod_kobject_put(mod);
1612
1613 /* delay uevent until full sysfs population */
1614 out:
1615 return err;
1616 }
1617
1618 static int mod_sysfs_setup(struct module *mod,
1619 const struct load_info *info,
1620 struct kernel_param *kparam,
1621 unsigned int num_params)
1622 {
1623 int err;
1624
1625 err = mod_sysfs_init(mod);
1626 if (err)
1627 goto out;
1628
1629 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1630 if (!mod->holders_dir) {
1631 err = -ENOMEM;
1632 goto out_unreg;
1633 }
1634
1635 err = module_param_sysfs_setup(mod, kparam, num_params);
1636 if (err)
1637 goto out_unreg_holders;
1638
1639 err = module_add_modinfo_attrs(mod);
1640 if (err)
1641 goto out_unreg_param;
1642
1643 add_usage_links(mod);
1644 add_sect_attrs(mod, info);
1645 add_notes_attrs(mod, info);
1646
1647 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1648 return 0;
1649
1650 out_unreg_param:
1651 module_param_sysfs_remove(mod);
1652 out_unreg_holders:
1653 kobject_put(mod->holders_dir);
1654 out_unreg:
1655 mod_kobject_put(mod);
1656 out:
1657 return err;
1658 }
1659
1660 static void mod_sysfs_fini(struct module *mod)
1661 {
1662 remove_notes_attrs(mod);
1663 remove_sect_attrs(mod);
1664 mod_kobject_put(mod);
1665 }
1666
1667 #else /* !CONFIG_SYSFS */
1668
1669 static int mod_sysfs_setup(struct module *mod,
1670 const struct load_info *info,
1671 struct kernel_param *kparam,
1672 unsigned int num_params)
1673 {
1674 return 0;
1675 }
1676
1677 static void mod_sysfs_fini(struct module *mod)
1678 {
1679 }
1680
1681 static void module_remove_modinfo_attrs(struct module *mod)
1682 {
1683 }
1684
1685 static void del_usage_links(struct module *mod)
1686 {
1687 }
1688
1689 #endif /* CONFIG_SYSFS */
1690
1691 static void mod_sysfs_teardown(struct module *mod)
1692 {
1693 del_usage_links(mod);
1694 module_remove_modinfo_attrs(mod);
1695 module_param_sysfs_remove(mod);
1696 kobject_put(mod->mkobj.drivers_dir);
1697 kobject_put(mod->holders_dir);
1698 mod_sysfs_fini(mod);
1699 }
1700
1701 /*
1702 * unlink the module with the whole machine is stopped with interrupts off
1703 * - this defends against kallsyms not taking locks
1704 */
1705 static int __unlink_module(void *_mod)
1706 {
1707 struct module *mod = _mod;
1708 list_del(&mod->list);
1709 module_bug_cleanup(mod);
1710 return 0;
1711 }
1712
1713 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1714 /*
1715 * LKM RO/NX protection: protect module's text/ro-data
1716 * from modification and any data from execution.
1717 */
1718 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1719 {
1720 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1721 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1722
1723 if (end_pfn > begin_pfn)
1724 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1725 }
1726
1727 static void set_section_ro_nx(void *base,
1728 unsigned long text_size,
1729 unsigned long ro_size,
1730 unsigned long total_size)
1731 {
1732 /* begin and end PFNs of the current subsection */
1733 unsigned long begin_pfn;
1734 unsigned long end_pfn;
1735
1736 /*
1737 * Set RO for module text and RO-data:
1738 * - Always protect first page.
1739 * - Do not protect last partial page.
1740 */
1741 if (ro_size > 0)
1742 set_page_attributes(base, base + ro_size, set_memory_ro);
1743
1744 /*
1745 * Set NX permissions for module data:
1746 * - Do not protect first partial page.
1747 * - Always protect last page.
1748 */
1749 if (total_size > text_size) {
1750 begin_pfn = PFN_UP((unsigned long)base + text_size);
1751 end_pfn = PFN_UP((unsigned long)base + total_size);
1752 if (end_pfn > begin_pfn)
1753 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1754 }
1755 }
1756
1757 static void unset_module_core_ro_nx(struct module *mod)
1758 {
1759 set_page_attributes(mod->module_core + mod->core_text_size,
1760 mod->module_core + mod->core_size,
1761 set_memory_x);
1762 set_page_attributes(mod->module_core,
1763 mod->module_core + mod->core_ro_size,
1764 set_memory_rw);
1765 }
1766
1767 static void unset_module_init_ro_nx(struct module *mod)
1768 {
1769 set_page_attributes(mod->module_init + mod->init_text_size,
1770 mod->module_init + mod->init_size,
1771 set_memory_x);
1772 set_page_attributes(mod->module_init,
1773 mod->module_init + mod->init_ro_size,
1774 set_memory_rw);
1775 }
1776
1777 /* Iterate through all modules and set each module's text as RW */
1778 void set_all_modules_text_rw(void)
1779 {
1780 struct module *mod;
1781
1782 mutex_lock(&module_mutex);
1783 list_for_each_entry_rcu(mod, &modules, list) {
1784 if (mod->state == MODULE_STATE_UNFORMED)
1785 continue;
1786 if ((mod->module_core) && (mod->core_text_size)) {
1787 set_page_attributes(mod->module_core,
1788 mod->module_core + mod->core_text_size,
1789 set_memory_rw);
1790 }
1791 if ((mod->module_init) && (mod->init_text_size)) {
1792 set_page_attributes(mod->module_init,
1793 mod->module_init + mod->init_text_size,
1794 set_memory_rw);
1795 }
1796 }
1797 mutex_unlock(&module_mutex);
1798 }
1799
1800 /* Iterate through all modules and set each module's text as RO */
1801 void set_all_modules_text_ro(void)
1802 {
1803 struct module *mod;
1804
1805 mutex_lock(&module_mutex);
1806 list_for_each_entry_rcu(mod, &modules, list) {
1807 if (mod->state == MODULE_STATE_UNFORMED)
1808 continue;
1809 if ((mod->module_core) && (mod->core_text_size)) {
1810 set_page_attributes(mod->module_core,
1811 mod->module_core + mod->core_text_size,
1812 set_memory_ro);
1813 }
1814 if ((mod->module_init) && (mod->init_text_size)) {
1815 set_page_attributes(mod->module_init,
1816 mod->module_init + mod->init_text_size,
1817 set_memory_ro);
1818 }
1819 }
1820 mutex_unlock(&module_mutex);
1821 }
1822 #else
1823 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1824 static void unset_module_core_ro_nx(struct module *mod) { }
1825 static void unset_module_init_ro_nx(struct module *mod) { }
1826 #endif
1827
1828 void __weak module_free(struct module *mod, void *module_region)
1829 {
1830 vfree(module_region);
1831 }
1832
1833 void __weak module_arch_cleanup(struct module *mod)
1834 {
1835 }
1836
1837 /* Free a module, remove from lists, etc. */
1838 static void free_module(struct module *mod)
1839 {
1840 trace_module_free(mod);
1841
1842 mod_sysfs_teardown(mod);
1843
1844 /* We leave it in list to prevent duplicate loads, but make sure
1845 * that noone uses it while it's being deconstructed. */
1846 mod->state = MODULE_STATE_UNFORMED;
1847
1848 /* Remove dynamic debug info */
1849 ddebug_remove_module(mod->name);
1850
1851 /* Arch-specific cleanup. */
1852 module_arch_cleanup(mod);
1853
1854 /* Module unload stuff */
1855 module_unload_free(mod);
1856
1857 /* Free any allocated parameters. */
1858 destroy_params(mod->kp, mod->num_kp);
1859
1860 /* Now we can delete it from the lists */
1861 mutex_lock(&module_mutex);
1862 stop_machine(__unlink_module, mod, NULL);
1863 mutex_unlock(&module_mutex);
1864
1865 /* This may be NULL, but that's OK */
1866 unset_module_init_ro_nx(mod);
1867 module_free(mod, mod->module_init);
1868 kfree(mod->args);
1869 percpu_modfree(mod);
1870
1871 /* Free lock-classes: */
1872 lockdep_free_key_range(mod->module_core, mod->core_size);
1873
1874 /* Finally, free the core (containing the module structure) */
1875 unset_module_core_ro_nx(mod);
1876 module_free(mod, mod->module_core);
1877
1878 #ifdef CONFIG_MPU
1879 update_protections(current->mm);
1880 #endif
1881 }
1882
1883 void *__symbol_get(const char *symbol)
1884 {
1885 struct module *owner;
1886 const struct kernel_symbol *sym;
1887
1888 preempt_disable();
1889 sym = find_symbol(symbol, &owner, NULL, true, true);
1890 if (sym && strong_try_module_get(owner))
1891 sym = NULL;
1892 preempt_enable();
1893
1894 return sym ? (void *)sym->value : NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(__symbol_get);
1897
1898 /*
1899 * Ensure that an exported symbol [global namespace] does not already exist
1900 * in the kernel or in some other module's exported symbol table.
1901 *
1902 * You must hold the module_mutex.
1903 */
1904 static int verify_export_symbols(struct module *mod)
1905 {
1906 unsigned int i;
1907 struct module *owner;
1908 const struct kernel_symbol *s;
1909 struct {
1910 const struct kernel_symbol *sym;
1911 unsigned int num;
1912 } arr[] = {
1913 { mod->syms, mod->num_syms },
1914 { mod->gpl_syms, mod->num_gpl_syms },
1915 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1916 #ifdef CONFIG_UNUSED_SYMBOLS
1917 { mod->unused_syms, mod->num_unused_syms },
1918 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1919 #endif
1920 };
1921
1922 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1923 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1924 if (find_symbol(s->name, &owner, NULL, true, false)) {
1925 pr_err("%s: exports duplicate symbol %s"
1926 " (owned by %s)\n",
1927 mod->name, s->name, module_name(owner));
1928 return -ENOEXEC;
1929 }
1930 }
1931 }
1932 return 0;
1933 }
1934
1935 /* Change all symbols so that st_value encodes the pointer directly. */
1936 static int simplify_symbols(struct module *mod, const struct load_info *info)
1937 {
1938 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1939 Elf_Sym *sym = (void *)symsec->sh_addr;
1940 unsigned long secbase;
1941 unsigned int i;
1942 int ret = 0;
1943 const struct kernel_symbol *ksym;
1944
1945 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1946 const char *name = info->strtab + sym[i].st_name;
1947
1948 switch (sym[i].st_shndx) {
1949 case SHN_COMMON:
1950 /* Ignore common symbols */
1951 if (!strncmp(name, "__gnu_lto", 9))
1952 break;
1953
1954 /* We compiled with -fno-common. These are not
1955 supposed to happen. */
1956 pr_debug("Common symbol: %s\n", name);
1957 printk("%s: please compile with -fno-common\n",
1958 mod->name);
1959 ret = -ENOEXEC;
1960 break;
1961
1962 case SHN_ABS:
1963 /* Don't need to do anything */
1964 pr_debug("Absolute symbol: 0x%08lx\n",
1965 (long)sym[i].st_value);
1966 break;
1967
1968 case SHN_UNDEF:
1969 ksym = resolve_symbol_wait(mod, info, name);
1970 /* Ok if resolved. */
1971 if (ksym && !IS_ERR(ksym)) {
1972 sym[i].st_value = ksym->value;
1973 break;
1974 }
1975
1976 /* Ok if weak. */
1977 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1978 break;
1979
1980 pr_warn("%s: Unknown symbol %s (err %li)\n",
1981 mod->name, name, PTR_ERR(ksym));
1982 ret = PTR_ERR(ksym) ?: -ENOENT;
1983 break;
1984
1985 default:
1986 /* Divert to percpu allocation if a percpu var. */
1987 if (sym[i].st_shndx == info->index.pcpu)
1988 secbase = (unsigned long)mod_percpu(mod);
1989 else
1990 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1991 sym[i].st_value += secbase;
1992 break;
1993 }
1994 }
1995
1996 return ret;
1997 }
1998
1999 static int apply_relocations(struct module *mod, const struct load_info *info)
2000 {
2001 unsigned int i;
2002 int err = 0;
2003
2004 /* Now do relocations. */
2005 for (i = 1; i < info->hdr->e_shnum; i++) {
2006 unsigned int infosec = info->sechdrs[i].sh_info;
2007
2008 /* Not a valid relocation section? */
2009 if (infosec >= info->hdr->e_shnum)
2010 continue;
2011
2012 /* Don't bother with non-allocated sections */
2013 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2014 continue;
2015
2016 if (info->sechdrs[i].sh_type == SHT_REL)
2017 err = apply_relocate(info->sechdrs, info->strtab,
2018 info->index.sym, i, mod);
2019 else if (info->sechdrs[i].sh_type == SHT_RELA)
2020 err = apply_relocate_add(info->sechdrs, info->strtab,
2021 info->index.sym, i, mod);
2022 if (err < 0)
2023 break;
2024 }
2025 return err;
2026 }
2027
2028 /* Additional bytes needed by arch in front of individual sections */
2029 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2030 unsigned int section)
2031 {
2032 /* default implementation just returns zero */
2033 return 0;
2034 }
2035
2036 /* Update size with this section: return offset. */
2037 static long get_offset(struct module *mod, unsigned int *size,
2038 Elf_Shdr *sechdr, unsigned int section)
2039 {
2040 long ret;
2041
2042 *size += arch_mod_section_prepend(mod, section);
2043 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2044 *size = ret + sechdr->sh_size;
2045 return ret;
2046 }
2047
2048 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2049 might -- code, read-only data, read-write data, small data. Tally
2050 sizes, and place the offsets into sh_entsize fields: high bit means it
2051 belongs in init. */
2052 static void layout_sections(struct module *mod, struct load_info *info)
2053 {
2054 static unsigned long const masks[][2] = {
2055 /* NOTE: all executable code must be the first section
2056 * in this array; otherwise modify the text_size
2057 * finder in the two loops below */
2058 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2059 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2060 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2061 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2062 };
2063 unsigned int m, i;
2064
2065 for (i = 0; i < info->hdr->e_shnum; i++)
2066 info->sechdrs[i].sh_entsize = ~0UL;
2067
2068 pr_debug("Core section allocation order:\n");
2069 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2070 for (i = 0; i < info->hdr->e_shnum; ++i) {
2071 Elf_Shdr *s = &info->sechdrs[i];
2072 const char *sname = info->secstrings + s->sh_name;
2073
2074 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2075 || (s->sh_flags & masks[m][1])
2076 || s->sh_entsize != ~0UL
2077 || strstarts(sname, ".init"))
2078 continue;
2079 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2080 pr_debug("\t%s\n", sname);
2081 }
2082 switch (m) {
2083 case 0: /* executable */
2084 mod->core_size = debug_align(mod->core_size);
2085 mod->core_text_size = mod->core_size;
2086 break;
2087 case 1: /* RO: text and ro-data */
2088 mod->core_size = debug_align(mod->core_size);
2089 mod->core_ro_size = mod->core_size;
2090 break;
2091 case 3: /* whole core */
2092 mod->core_size = debug_align(mod->core_size);
2093 break;
2094 }
2095 }
2096
2097 pr_debug("Init section allocation order:\n");
2098 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2099 for (i = 0; i < info->hdr->e_shnum; ++i) {
2100 Elf_Shdr *s = &info->sechdrs[i];
2101 const char *sname = info->secstrings + s->sh_name;
2102
2103 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2104 || (s->sh_flags & masks[m][1])
2105 || s->sh_entsize != ~0UL
2106 || !strstarts(sname, ".init"))
2107 continue;
2108 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2109 | INIT_OFFSET_MASK);
2110 pr_debug("\t%s\n", sname);
2111 }
2112 switch (m) {
2113 case 0: /* executable */
2114 mod->init_size = debug_align(mod->init_size);
2115 mod->init_text_size = mod->init_size;
2116 break;
2117 case 1: /* RO: text and ro-data */
2118 mod->init_size = debug_align(mod->init_size);
2119 mod->init_ro_size = mod->init_size;
2120 break;
2121 case 3: /* whole init */
2122 mod->init_size = debug_align(mod->init_size);
2123 break;
2124 }
2125 }
2126 }
2127
2128 static void set_license(struct module *mod, const char *license)
2129 {
2130 if (!license)
2131 license = "unspecified";
2132
2133 if (!license_is_gpl_compatible(license)) {
2134 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2135 pr_warn("%s: module license '%s' taints kernel.\n",
2136 mod->name, license);
2137 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2138 LOCKDEP_NOW_UNRELIABLE);
2139 }
2140 }
2141
2142 /* Parse tag=value strings from .modinfo section */
2143 static char *next_string(char *string, unsigned long *secsize)
2144 {
2145 /* Skip non-zero chars */
2146 while (string[0]) {
2147 string++;
2148 if ((*secsize)-- <= 1)
2149 return NULL;
2150 }
2151
2152 /* Skip any zero padding. */
2153 while (!string[0]) {
2154 string++;
2155 if ((*secsize)-- <= 1)
2156 return NULL;
2157 }
2158 return string;
2159 }
2160
2161 static char *get_modinfo(struct load_info *info, const char *tag)
2162 {
2163 char *p;
2164 unsigned int taglen = strlen(tag);
2165 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2166 unsigned long size = infosec->sh_size;
2167
2168 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2169 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2170 return p + taglen + 1;
2171 }
2172 return NULL;
2173 }
2174
2175 static void setup_modinfo(struct module *mod, struct load_info *info)
2176 {
2177 struct module_attribute *attr;
2178 int i;
2179
2180 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2181 if (attr->setup)
2182 attr->setup(mod, get_modinfo(info, attr->attr.name));
2183 }
2184 }
2185
2186 static void free_modinfo(struct module *mod)
2187 {
2188 struct module_attribute *attr;
2189 int i;
2190
2191 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2192 if (attr->free)
2193 attr->free(mod);
2194 }
2195 }
2196
2197 #ifdef CONFIG_KALLSYMS
2198
2199 /* lookup symbol in given range of kernel_symbols */
2200 static const struct kernel_symbol *lookup_symbol(const char *name,
2201 const struct kernel_symbol *start,
2202 const struct kernel_symbol *stop)
2203 {
2204 return bsearch(name, start, stop - start,
2205 sizeof(struct kernel_symbol), cmp_name);
2206 }
2207
2208 static int is_exported(const char *name, unsigned long value,
2209 const struct module *mod)
2210 {
2211 const struct kernel_symbol *ks;
2212 if (!mod)
2213 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2214 else
2215 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2216 return ks != NULL && ks->value == value;
2217 }
2218
2219 /* As per nm */
2220 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2221 {
2222 const Elf_Shdr *sechdrs = info->sechdrs;
2223
2224 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2225 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2226 return 'v';
2227 else
2228 return 'w';
2229 }
2230 if (sym->st_shndx == SHN_UNDEF)
2231 return 'U';
2232 if (sym->st_shndx == SHN_ABS)
2233 return 'a';
2234 if (sym->st_shndx >= SHN_LORESERVE)
2235 return '?';
2236 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2237 return 't';
2238 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2239 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2240 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2241 return 'r';
2242 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2243 return 'g';
2244 else
2245 return 'd';
2246 }
2247 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2248 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2249 return 's';
2250 else
2251 return 'b';
2252 }
2253 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2254 ".debug")) {
2255 return 'n';
2256 }
2257 return '?';
2258 }
2259
2260 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2261 unsigned int shnum)
2262 {
2263 const Elf_Shdr *sec;
2264
2265 if (src->st_shndx == SHN_UNDEF
2266 || src->st_shndx >= shnum
2267 || !src->st_name)
2268 return false;
2269
2270 sec = sechdrs + src->st_shndx;
2271 if (!(sec->sh_flags & SHF_ALLOC)
2272 #ifndef CONFIG_KALLSYMS_ALL
2273 || !(sec->sh_flags & SHF_EXECINSTR)
2274 #endif
2275 || (sec->sh_entsize & INIT_OFFSET_MASK))
2276 return false;
2277
2278 return true;
2279 }
2280
2281 /*
2282 * We only allocate and copy the strings needed by the parts of symtab
2283 * we keep. This is simple, but has the effect of making multiple
2284 * copies of duplicates. We could be more sophisticated, see
2285 * linux-kernel thread starting with
2286 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2287 */
2288 static void layout_symtab(struct module *mod, struct load_info *info)
2289 {
2290 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2291 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2292 const Elf_Sym *src;
2293 unsigned int i, nsrc, ndst, strtab_size = 0;
2294
2295 /* Put symbol section at end of init part of module. */
2296 symsect->sh_flags |= SHF_ALLOC;
2297 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2298 info->index.sym) | INIT_OFFSET_MASK;
2299 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2300
2301 src = (void *)info->hdr + symsect->sh_offset;
2302 nsrc = symsect->sh_size / sizeof(*src);
2303
2304 /* Compute total space required for the core symbols' strtab. */
2305 for (ndst = i = 0; i < nsrc; i++) {
2306 if (i == 0 ||
2307 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2308 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2309 ndst++;
2310 }
2311 }
2312
2313 /* Append room for core symbols at end of core part. */
2314 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2315 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2316 mod->core_size += strtab_size;
2317
2318 /* Put string table section at end of init part of module. */
2319 strsect->sh_flags |= SHF_ALLOC;
2320 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2321 info->index.str) | INIT_OFFSET_MASK;
2322 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2323 }
2324
2325 static void add_kallsyms(struct module *mod, const struct load_info *info)
2326 {
2327 unsigned int i, ndst;
2328 const Elf_Sym *src;
2329 Elf_Sym *dst;
2330 char *s;
2331 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2332
2333 mod->symtab = (void *)symsec->sh_addr;
2334 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2335 /* Make sure we get permanent strtab: don't use info->strtab. */
2336 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2337
2338 /* Set types up while we still have access to sections. */
2339 for (i = 0; i < mod->num_symtab; i++)
2340 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2341
2342 mod->core_symtab = dst = mod->module_core + info->symoffs;
2343 mod->core_strtab = s = mod->module_core + info->stroffs;
2344 src = mod->symtab;
2345 for (ndst = i = 0; i < mod->num_symtab; i++) {
2346 if (i == 0 ||
2347 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2348 dst[ndst] = src[i];
2349 dst[ndst++].st_name = s - mod->core_strtab;
2350 s += strlcpy(s, &mod->strtab[src[i].st_name],
2351 KSYM_NAME_LEN) + 1;
2352 }
2353 }
2354 mod->core_num_syms = ndst;
2355 }
2356 #else
2357 static inline void layout_symtab(struct module *mod, struct load_info *info)
2358 {
2359 }
2360
2361 static void add_kallsyms(struct module *mod, const struct load_info *info)
2362 {
2363 }
2364 #endif /* CONFIG_KALLSYMS */
2365
2366 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2367 {
2368 if (!debug)
2369 return;
2370 #ifdef CONFIG_DYNAMIC_DEBUG
2371 if (ddebug_add_module(debug, num, debug->modname))
2372 pr_err("dynamic debug error adding module: %s\n",
2373 debug->modname);
2374 #endif
2375 }
2376
2377 static void dynamic_debug_remove(struct _ddebug *debug)
2378 {
2379 if (debug)
2380 ddebug_remove_module(debug->modname);
2381 }
2382
2383 void * __weak module_alloc(unsigned long size)
2384 {
2385 return vmalloc_exec(size);
2386 }
2387
2388 static void *module_alloc_update_bounds(unsigned long size)
2389 {
2390 void *ret = module_alloc(size);
2391
2392 if (ret) {
2393 mutex_lock(&module_mutex);
2394 /* Update module bounds. */
2395 if ((unsigned long)ret < module_addr_min)
2396 module_addr_min = (unsigned long)ret;
2397 if ((unsigned long)ret + size > module_addr_max)
2398 module_addr_max = (unsigned long)ret + size;
2399 mutex_unlock(&module_mutex);
2400 }
2401 return ret;
2402 }
2403
2404 #ifdef CONFIG_DEBUG_KMEMLEAK
2405 static void kmemleak_load_module(const struct module *mod,
2406 const struct load_info *info)
2407 {
2408 unsigned int i;
2409
2410 /* only scan the sections containing data */
2411 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2412
2413 for (i = 1; i < info->hdr->e_shnum; i++) {
2414 /* Scan all writable sections that's not executable */
2415 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2416 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2417 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2418 continue;
2419
2420 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2421 info->sechdrs[i].sh_size, GFP_KERNEL);
2422 }
2423 }
2424 #else
2425 static inline void kmemleak_load_module(const struct module *mod,
2426 const struct load_info *info)
2427 {
2428 }
2429 #endif
2430
2431 #ifdef CONFIG_MODULE_SIG
2432 static int module_sig_check(struct load_info *info)
2433 {
2434 int err = -ENOKEY;
2435 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2436 const void *mod = info->hdr;
2437
2438 if (info->len > markerlen &&
2439 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2440 /* We truncate the module to discard the signature */
2441 info->len -= markerlen;
2442 err = mod_verify_sig(mod, &info->len);
2443 }
2444
2445 if (!err) {
2446 info->sig_ok = true;
2447 return 0;
2448 }
2449
2450 /* Not having a signature is only an error if we're strict. */
2451 if (err < 0 && fips_enabled)
2452 panic("Module verification failed with error %d in FIPS mode\n",
2453 err);
2454 if (err == -ENOKEY && !sig_enforce)
2455 err = 0;
2456
2457 return err;
2458 }
2459 #else /* !CONFIG_MODULE_SIG */
2460 static int module_sig_check(struct load_info *info)
2461 {
2462 return 0;
2463 }
2464 #endif /* !CONFIG_MODULE_SIG */
2465
2466 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2467 static int elf_header_check(struct load_info *info)
2468 {
2469 if (info->len < sizeof(*(info->hdr)))
2470 return -ENOEXEC;
2471
2472 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2473 || info->hdr->e_type != ET_REL
2474 || !elf_check_arch(info->hdr)
2475 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2476 return -ENOEXEC;
2477
2478 if (info->hdr->e_shoff >= info->len
2479 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2480 info->len - info->hdr->e_shoff))
2481 return -ENOEXEC;
2482
2483 return 0;
2484 }
2485
2486 /* Sets info->hdr and info->len. */
2487 static int copy_module_from_user(const void __user *umod, unsigned long len,
2488 struct load_info *info)
2489 {
2490 int err;
2491
2492 info->len = len;
2493 if (info->len < sizeof(*(info->hdr)))
2494 return -ENOEXEC;
2495
2496 err = security_kernel_module_from_file(NULL);
2497 if (err)
2498 return err;
2499
2500 /* Suck in entire file: we'll want most of it. */
2501 info->hdr = vmalloc(info->len);
2502 if (!info->hdr)
2503 return -ENOMEM;
2504
2505 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2506 vfree(info->hdr);
2507 return -EFAULT;
2508 }
2509
2510 return 0;
2511 }
2512
2513 /* Sets info->hdr and info->len. */
2514 static int copy_module_from_fd(int fd, struct load_info *info)
2515 {
2516 struct fd f = fdget(fd);
2517 int err;
2518 struct kstat stat;
2519 loff_t pos;
2520 ssize_t bytes = 0;
2521
2522 if (!f.file)
2523 return -ENOEXEC;
2524
2525 err = security_kernel_module_from_file(f.file);
2526 if (err)
2527 goto out;
2528
2529 err = vfs_getattr(&f.file->f_path, &stat);
2530 if (err)
2531 goto out;
2532
2533 if (stat.size > INT_MAX) {
2534 err = -EFBIG;
2535 goto out;
2536 }
2537
2538 /* Don't hand 0 to vmalloc, it whines. */
2539 if (stat.size == 0) {
2540 err = -EINVAL;
2541 goto out;
2542 }
2543
2544 info->hdr = vmalloc(stat.size);
2545 if (!info->hdr) {
2546 err = -ENOMEM;
2547 goto out;
2548 }
2549
2550 pos = 0;
2551 while (pos < stat.size) {
2552 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2553 stat.size - pos);
2554 if (bytes < 0) {
2555 vfree(info->hdr);
2556 err = bytes;
2557 goto out;
2558 }
2559 if (bytes == 0)
2560 break;
2561 pos += bytes;
2562 }
2563 info->len = pos;
2564
2565 out:
2566 fdput(f);
2567 return err;
2568 }
2569
2570 static void free_copy(struct load_info *info)
2571 {
2572 vfree(info->hdr);
2573 }
2574
2575 static int rewrite_section_headers(struct load_info *info, int flags)
2576 {
2577 unsigned int i;
2578
2579 /* This should always be true, but let's be sure. */
2580 info->sechdrs[0].sh_addr = 0;
2581
2582 for (i = 1; i < info->hdr->e_shnum; i++) {
2583 Elf_Shdr *shdr = &info->sechdrs[i];
2584 if (shdr->sh_type != SHT_NOBITS
2585 && info->len < shdr->sh_offset + shdr->sh_size) {
2586 pr_err("Module len %lu truncated\n", info->len);
2587 return -ENOEXEC;
2588 }
2589
2590 /* Mark all sections sh_addr with their address in the
2591 temporary image. */
2592 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2593
2594 #ifndef CONFIG_MODULE_UNLOAD
2595 /* Don't load .exit sections */
2596 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2597 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2598 #endif
2599 }
2600
2601 /* Track but don't keep modinfo and version sections. */
2602 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2603 info->index.vers = 0; /* Pretend no __versions section! */
2604 else
2605 info->index.vers = find_sec(info, "__versions");
2606 info->index.info = find_sec(info, ".modinfo");
2607 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2608 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2609 return 0;
2610 }
2611
2612 /*
2613 * Set up our basic convenience variables (pointers to section headers,
2614 * search for module section index etc), and do some basic section
2615 * verification.
2616 *
2617 * Return the temporary module pointer (we'll replace it with the final
2618 * one when we move the module sections around).
2619 */
2620 static struct module *setup_load_info(struct load_info *info, int flags)
2621 {
2622 unsigned int i;
2623 int err;
2624 struct module *mod;
2625
2626 /* Set up the convenience variables */
2627 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2628 info->secstrings = (void *)info->hdr
2629 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2630
2631 err = rewrite_section_headers(info, flags);
2632 if (err)
2633 return ERR_PTR(err);
2634
2635 /* Find internal symbols and strings. */
2636 for (i = 1; i < info->hdr->e_shnum; i++) {
2637 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2638 info->index.sym = i;
2639 info->index.str = info->sechdrs[i].sh_link;
2640 info->strtab = (char *)info->hdr
2641 + info->sechdrs[info->index.str].sh_offset;
2642 break;
2643 }
2644 }
2645
2646 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2647 if (!info->index.mod) {
2648 pr_warn("No module found in object\n");
2649 return ERR_PTR(-ENOEXEC);
2650 }
2651 /* This is temporary: point mod into copy of data. */
2652 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2653
2654 if (info->index.sym == 0) {
2655 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2656 return ERR_PTR(-ENOEXEC);
2657 }
2658
2659 info->index.pcpu = find_pcpusec(info);
2660
2661 /* Check module struct version now, before we try to use module. */
2662 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2663 return ERR_PTR(-ENOEXEC);
2664
2665 return mod;
2666 }
2667
2668 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2669 {
2670 const char *modmagic = get_modinfo(info, "vermagic");
2671 int err;
2672
2673 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2674 modmagic = NULL;
2675
2676 /* This is allowed: modprobe --force will invalidate it. */
2677 if (!modmagic) {
2678 err = try_to_force_load(mod, "bad vermagic");
2679 if (err)
2680 return err;
2681 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2682 pr_err("%s: version magic '%s' should be '%s'\n",
2683 mod->name, modmagic, vermagic);
2684 return -ENOEXEC;
2685 }
2686
2687 if (!get_modinfo(info, "intree"))
2688 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2689
2690 if (get_modinfo(info, "staging")) {
2691 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2692 pr_warn("%s: module is from the staging directory, the quality "
2693 "is unknown, you have been warned.\n", mod->name);
2694 }
2695
2696 /* Set up license info based on the info section */
2697 set_license(mod, get_modinfo(info, "license"));
2698
2699 return 0;
2700 }
2701
2702 static int find_module_sections(struct module *mod, struct load_info *info)
2703 {
2704 mod->kp = section_objs(info, "__param",
2705 sizeof(*mod->kp), &mod->num_kp);
2706 mod->syms = section_objs(info, "__ksymtab",
2707 sizeof(*mod->syms), &mod->num_syms);
2708 mod->crcs = section_addr(info, "__kcrctab");
2709 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2710 sizeof(*mod->gpl_syms),
2711 &mod->num_gpl_syms);
2712 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2713 mod->gpl_future_syms = section_objs(info,
2714 "__ksymtab_gpl_future",
2715 sizeof(*mod->gpl_future_syms),
2716 &mod->num_gpl_future_syms);
2717 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2718
2719 #ifdef CONFIG_UNUSED_SYMBOLS
2720 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2721 sizeof(*mod->unused_syms),
2722 &mod->num_unused_syms);
2723 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2724 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2725 sizeof(*mod->unused_gpl_syms),
2726 &mod->num_unused_gpl_syms);
2727 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2728 #endif
2729 #ifdef CONFIG_CONSTRUCTORS
2730 mod->ctors = section_objs(info, ".ctors",
2731 sizeof(*mod->ctors), &mod->num_ctors);
2732 if (!mod->ctors)
2733 mod->ctors = section_objs(info, ".init_array",
2734 sizeof(*mod->ctors), &mod->num_ctors);
2735 else if (find_sec(info, ".init_array")) {
2736 /*
2737 * This shouldn't happen with same compiler and binutils
2738 * building all parts of the module.
2739 */
2740 printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
2741 mod->name);
2742 return -EINVAL;
2743 }
2744 #endif
2745
2746 #ifdef CONFIG_TRACEPOINTS
2747 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2748 sizeof(*mod->tracepoints_ptrs),
2749 &mod->num_tracepoints);
2750 #endif
2751 #ifdef HAVE_JUMP_LABEL
2752 mod->jump_entries = section_objs(info, "__jump_table",
2753 sizeof(*mod->jump_entries),
2754 &mod->num_jump_entries);
2755 #endif
2756 #ifdef CONFIG_EVENT_TRACING
2757 mod->trace_events = section_objs(info, "_ftrace_events",
2758 sizeof(*mod->trace_events),
2759 &mod->num_trace_events);
2760 #endif
2761 #ifdef CONFIG_TRACING
2762 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2763 sizeof(*mod->trace_bprintk_fmt_start),
2764 &mod->num_trace_bprintk_fmt);
2765 #endif
2766 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2767 /* sechdrs[0].sh_size is always zero */
2768 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2769 sizeof(*mod->ftrace_callsites),
2770 &mod->num_ftrace_callsites);
2771 #endif
2772
2773 mod->extable = section_objs(info, "__ex_table",
2774 sizeof(*mod->extable), &mod->num_exentries);
2775
2776 if (section_addr(info, "__obsparm"))
2777 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2778
2779 info->debug = section_objs(info, "__verbose",
2780 sizeof(*info->debug), &info->num_debug);
2781
2782 return 0;
2783 }
2784
2785 static int move_module(struct module *mod, struct load_info *info)
2786 {
2787 int i;
2788 void *ptr;
2789
2790 /* Do the allocs. */
2791 ptr = module_alloc_update_bounds(mod->core_size);
2792 /*
2793 * The pointer to this block is stored in the module structure
2794 * which is inside the block. Just mark it as not being a
2795 * leak.
2796 */
2797 kmemleak_not_leak(ptr);
2798 if (!ptr)
2799 return -ENOMEM;
2800
2801 memset(ptr, 0, mod->core_size);
2802 mod->module_core = ptr;
2803
2804 if (mod->init_size) {
2805 ptr = module_alloc_update_bounds(mod->init_size);
2806 /*
2807 * The pointer to this block is stored in the module structure
2808 * which is inside the block. This block doesn't need to be
2809 * scanned as it contains data and code that will be freed
2810 * after the module is initialized.
2811 */
2812 kmemleak_ignore(ptr);
2813 if (!ptr) {
2814 module_free(mod, mod->module_core);
2815 return -ENOMEM;
2816 }
2817 memset(ptr, 0, mod->init_size);
2818 mod->module_init = ptr;
2819 } else
2820 mod->module_init = NULL;
2821
2822 /* Transfer each section which specifies SHF_ALLOC */
2823 pr_debug("final section addresses:\n");
2824 for (i = 0; i < info->hdr->e_shnum; i++) {
2825 void *dest;
2826 Elf_Shdr *shdr = &info->sechdrs[i];
2827
2828 if (!(shdr->sh_flags & SHF_ALLOC))
2829 continue;
2830
2831 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2832 dest = mod->module_init
2833 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2834 else
2835 dest = mod->module_core + shdr->sh_entsize;
2836
2837 if (shdr->sh_type != SHT_NOBITS)
2838 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2839 /* Update sh_addr to point to copy in image. */
2840 shdr->sh_addr = (unsigned long)dest;
2841 pr_debug("\t0x%lx %s\n",
2842 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2843 }
2844
2845 return 0;
2846 }
2847
2848 static int check_module_license_and_versions(struct module *mod)
2849 {
2850 /*
2851 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2852 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2853 * using GPL-only symbols it needs.
2854 */
2855 if (strcmp(mod->name, "ndiswrapper") == 0)
2856 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2857
2858 /* driverloader was caught wrongly pretending to be under GPL */
2859 if (strcmp(mod->name, "driverloader") == 0)
2860 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2861 LOCKDEP_NOW_UNRELIABLE);
2862
2863 /* lve claims to be GPL but upstream won't provide source */
2864 if (strcmp(mod->name, "lve") == 0)
2865 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2866 LOCKDEP_NOW_UNRELIABLE);
2867
2868 #ifdef CONFIG_MODVERSIONS
2869 if ((mod->num_syms && !mod->crcs)
2870 || (mod->num_gpl_syms && !mod->gpl_crcs)
2871 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2872 #ifdef CONFIG_UNUSED_SYMBOLS
2873 || (mod->num_unused_syms && !mod->unused_crcs)
2874 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2875 #endif
2876 ) {
2877 return try_to_force_load(mod,
2878 "no versions for exported symbols");
2879 }
2880 #endif
2881 return 0;
2882 }
2883
2884 static void flush_module_icache(const struct module *mod)
2885 {
2886 mm_segment_t old_fs;
2887
2888 /* flush the icache in correct context */
2889 old_fs = get_fs();
2890 set_fs(KERNEL_DS);
2891
2892 /*
2893 * Flush the instruction cache, since we've played with text.
2894 * Do it before processing of module parameters, so the module
2895 * can provide parameter accessor functions of its own.
2896 */
2897 if (mod->module_init)
2898 flush_icache_range((unsigned long)mod->module_init,
2899 (unsigned long)mod->module_init
2900 + mod->init_size);
2901 flush_icache_range((unsigned long)mod->module_core,
2902 (unsigned long)mod->module_core + mod->core_size);
2903
2904 set_fs(old_fs);
2905 }
2906
2907 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2908 Elf_Shdr *sechdrs,
2909 char *secstrings,
2910 struct module *mod)
2911 {
2912 return 0;
2913 }
2914
2915 static struct module *layout_and_allocate(struct load_info *info, int flags)
2916 {
2917 /* Module within temporary copy. */
2918 struct module *mod;
2919 int err;
2920
2921 mod = setup_load_info(info, flags);
2922 if (IS_ERR(mod))
2923 return mod;
2924
2925 err = check_modinfo(mod, info, flags);
2926 if (err)
2927 return ERR_PTR(err);
2928
2929 /* Allow arches to frob section contents and sizes. */
2930 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2931 info->secstrings, mod);
2932 if (err < 0)
2933 return ERR_PTR(err);
2934
2935 /* We will do a special allocation for per-cpu sections later. */
2936 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2937
2938 /* Determine total sizes, and put offsets in sh_entsize. For now
2939 this is done generically; there doesn't appear to be any
2940 special cases for the architectures. */
2941 layout_sections(mod, info);
2942 layout_symtab(mod, info);
2943
2944 /* Allocate and move to the final place */
2945 err = move_module(mod, info);
2946 if (err)
2947 return ERR_PTR(err);
2948
2949 /* Module has been copied to its final place now: return it. */
2950 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2951 kmemleak_load_module(mod, info);
2952 return mod;
2953 }
2954
2955 /* mod is no longer valid after this! */
2956 static void module_deallocate(struct module *mod, struct load_info *info)
2957 {
2958 percpu_modfree(mod);
2959 module_free(mod, mod->module_init);
2960 module_free(mod, mod->module_core);
2961 }
2962
2963 int __weak module_finalize(const Elf_Ehdr *hdr,
2964 const Elf_Shdr *sechdrs,
2965 struct module *me)
2966 {
2967 return 0;
2968 }
2969
2970 static int post_relocation(struct module *mod, const struct load_info *info)
2971 {
2972 /* Sort exception table now relocations are done. */
2973 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2974
2975 /* Copy relocated percpu area over. */
2976 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2977 info->sechdrs[info->index.pcpu].sh_size);
2978
2979 /* Setup kallsyms-specific fields. */
2980 add_kallsyms(mod, info);
2981
2982 /* Arch-specific module finalizing. */
2983 return module_finalize(info->hdr, info->sechdrs, mod);
2984 }
2985
2986 /* Is this module of this name done loading? No locks held. */
2987 static bool finished_loading(const char *name)
2988 {
2989 struct module *mod;
2990 bool ret;
2991
2992 mutex_lock(&module_mutex);
2993 mod = find_module_all(name, strlen(name), true);
2994 ret = !mod || mod->state == MODULE_STATE_LIVE
2995 || mod->state == MODULE_STATE_GOING;
2996 mutex_unlock(&module_mutex);
2997
2998 return ret;
2999 }
3000
3001 /* Call module constructors. */
3002 static void do_mod_ctors(struct module *mod)
3003 {
3004 #ifdef CONFIG_CONSTRUCTORS
3005 unsigned long i;
3006
3007 for (i = 0; i < mod->num_ctors; i++)
3008 mod->ctors[i]();
3009 #endif
3010 }
3011
3012 /* This is where the real work happens */
3013 static int do_init_module(struct module *mod)
3014 {
3015 int ret = 0;
3016
3017 /*
3018 * We want to find out whether @mod uses async during init. Clear
3019 * PF_USED_ASYNC. async_schedule*() will set it.
3020 */
3021 current->flags &= ~PF_USED_ASYNC;
3022
3023 blocking_notifier_call_chain(&module_notify_list,
3024 MODULE_STATE_COMING, mod);
3025
3026 /* Set RO and NX regions for core */
3027 set_section_ro_nx(mod->module_core,
3028 mod->core_text_size,
3029 mod->core_ro_size,
3030 mod->core_size);
3031
3032 /* Set RO and NX regions for init */
3033 set_section_ro_nx(mod->module_init,
3034 mod->init_text_size,
3035 mod->init_ro_size,
3036 mod->init_size);
3037
3038 do_mod_ctors(mod);
3039 /* Start the module */
3040 if (mod->init != NULL)
3041 ret = do_one_initcall(mod->init);
3042 if (ret < 0) {
3043 /* Init routine failed: abort. Try to protect us from
3044 buggy refcounters. */
3045 mod->state = MODULE_STATE_GOING;
3046 synchronize_sched();
3047 module_put(mod);
3048 blocking_notifier_call_chain(&module_notify_list,
3049 MODULE_STATE_GOING, mod);
3050 free_module(mod);
3051 wake_up_all(&module_wq);
3052 return ret;
3053 }
3054 if (ret > 0) {
3055 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3056 "follow 0/-E convention\n"
3057 "%s: loading module anyway...\n",
3058 __func__, mod->name, ret, __func__);
3059 dump_stack();
3060 }
3061
3062 /* Now it's a first class citizen! */
3063 mod->state = MODULE_STATE_LIVE;
3064 blocking_notifier_call_chain(&module_notify_list,
3065 MODULE_STATE_LIVE, mod);
3066
3067 /*
3068 * We need to finish all async code before the module init sequence
3069 * is done. This has potential to deadlock. For example, a newly
3070 * detected block device can trigger request_module() of the
3071 * default iosched from async probing task. Once userland helper
3072 * reaches here, async_synchronize_full() will wait on the async
3073 * task waiting on request_module() and deadlock.
3074 *
3075 * This deadlock is avoided by perfomring async_synchronize_full()
3076 * iff module init queued any async jobs. This isn't a full
3077 * solution as it will deadlock the same if module loading from
3078 * async jobs nests more than once; however, due to the various
3079 * constraints, this hack seems to be the best option for now.
3080 * Please refer to the following thread for details.
3081 *
3082 * http://thread.gmane.org/gmane.linux.kernel/1420814
3083 */
3084 if (current->flags & PF_USED_ASYNC)
3085 async_synchronize_full();
3086
3087 mutex_lock(&module_mutex);
3088 /* Drop initial reference. */
3089 module_put(mod);
3090 trim_init_extable(mod);
3091 #ifdef CONFIG_KALLSYMS
3092 mod->num_symtab = mod->core_num_syms;
3093 mod->symtab = mod->core_symtab;
3094 mod->strtab = mod->core_strtab;
3095 #endif
3096 unset_module_init_ro_nx(mod);
3097 module_free(mod, mod->module_init);
3098 mod->module_init = NULL;
3099 mod->init_size = 0;
3100 mod->init_ro_size = 0;
3101 mod->init_text_size = 0;
3102 mutex_unlock(&module_mutex);
3103 wake_up_all(&module_wq);
3104
3105 return 0;
3106 }
3107
3108 static int may_init_module(void)
3109 {
3110 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3111 return -EPERM;
3112
3113 return 0;
3114 }
3115
3116 /*
3117 * We try to place it in the list now to make sure it's unique before
3118 * we dedicate too many resources. In particular, temporary percpu
3119 * memory exhaustion.
3120 */
3121 static int add_unformed_module(struct module *mod)
3122 {
3123 int err;
3124 struct module *old;
3125
3126 mod->state = MODULE_STATE_UNFORMED;
3127
3128 again:
3129 mutex_lock(&module_mutex);
3130 old = find_module_all(mod->name, strlen(mod->name), true);
3131 if (old != NULL) {
3132 if (old->state == MODULE_STATE_COMING
3133 || old->state == MODULE_STATE_UNFORMED) {
3134 /* Wait in case it fails to load. */
3135 mutex_unlock(&module_mutex);
3136 err = wait_event_interruptible(module_wq,
3137 finished_loading(mod->name));
3138 if (err)
3139 goto out_unlocked;
3140 goto again;
3141 }
3142 err = -EEXIST;
3143 goto out;
3144 }
3145 list_add_rcu(&mod->list, &modules);
3146 err = 0;
3147
3148 out:
3149 mutex_unlock(&module_mutex);
3150 out_unlocked:
3151 return err;
3152 }
3153
3154 static int complete_formation(struct module *mod, struct load_info *info)
3155 {
3156 int err;
3157
3158 mutex_lock(&module_mutex);
3159
3160 /* Find duplicate symbols (must be called under lock). */
3161 err = verify_export_symbols(mod);
3162 if (err < 0)
3163 goto out;
3164
3165 /* This relies on module_mutex for list integrity. */
3166 module_bug_finalize(info->hdr, info->sechdrs, mod);
3167
3168 /* Mark state as coming so strong_try_module_get() ignores us,
3169 * but kallsyms etc. can see us. */
3170 mod->state = MODULE_STATE_COMING;
3171
3172 out:
3173 mutex_unlock(&module_mutex);
3174 return err;
3175 }
3176
3177 static int unknown_module_param_cb(char *param, char *val, const char *modname)
3178 {
3179 /* Check for magic 'dyndbg' arg */
3180 int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3181 if (ret != 0)
3182 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3183 return 0;
3184 }
3185
3186 /* Allocate and load the module: note that size of section 0 is always
3187 zero, and we rely on this for optional sections. */
3188 static int load_module(struct load_info *info, const char __user *uargs,
3189 int flags)
3190 {
3191 struct module *mod;
3192 long err;
3193
3194 err = module_sig_check(info);
3195 if (err)
3196 goto free_copy;
3197
3198 err = elf_header_check(info);
3199 if (err)
3200 goto free_copy;
3201
3202 /* Figure out module layout, and allocate all the memory. */
3203 mod = layout_and_allocate(info, flags);
3204 if (IS_ERR(mod)) {
3205 err = PTR_ERR(mod);
3206 goto free_copy;
3207 }
3208
3209 /* Reserve our place in the list. */
3210 err = add_unformed_module(mod);
3211 if (err)
3212 goto free_module;
3213
3214 #ifdef CONFIG_MODULE_SIG
3215 mod->sig_ok = info->sig_ok;
3216 if (!mod->sig_ok) {
3217 pr_notice_once("%s: module verification failed: signature "
3218 "and/or required key missing - tainting "
3219 "kernel\n", mod->name);
3220 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3221 }
3222 #endif
3223
3224 /* To avoid stressing percpu allocator, do this once we're unique. */
3225 err = percpu_modalloc(mod, info);
3226 if (err)
3227 goto unlink_mod;
3228
3229 /* Now module is in final location, initialize linked lists, etc. */
3230 err = module_unload_init(mod);
3231 if (err)
3232 goto unlink_mod;
3233
3234 /* Now we've got everything in the final locations, we can
3235 * find optional sections. */
3236 err = find_module_sections(mod, info);
3237 if (err)
3238 goto free_unload;
3239
3240 err = check_module_license_and_versions(mod);
3241 if (err)
3242 goto free_unload;
3243
3244 /* Set up MODINFO_ATTR fields */
3245 setup_modinfo(mod, info);
3246
3247 /* Fix up syms, so that st_value is a pointer to location. */
3248 err = simplify_symbols(mod, info);
3249 if (err < 0)
3250 goto free_modinfo;
3251
3252 err = apply_relocations(mod, info);
3253 if (err < 0)
3254 goto free_modinfo;
3255
3256 err = post_relocation(mod, info);
3257 if (err < 0)
3258 goto free_modinfo;
3259
3260 flush_module_icache(mod);
3261
3262 /* Now copy in args */
3263 mod->args = strndup_user(uargs, ~0UL >> 1);
3264 if (IS_ERR(mod->args)) {
3265 err = PTR_ERR(mod->args);
3266 goto free_arch_cleanup;
3267 }
3268
3269 dynamic_debug_setup(info->debug, info->num_debug);
3270
3271 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3272 ftrace_module_init(mod);
3273
3274 /* Finally it's fully formed, ready to start executing. */
3275 err = complete_formation(mod, info);
3276 if (err)
3277 goto ddebug_cleanup;
3278
3279 /* Module is ready to execute: parsing args may do that. */
3280 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3281 -32768, 32767, unknown_module_param_cb);
3282 if (err < 0)
3283 goto bug_cleanup;
3284
3285 /* Link in to syfs. */
3286 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3287 if (err < 0)
3288 goto bug_cleanup;
3289
3290 /* Get rid of temporary copy. */
3291 free_copy(info);
3292
3293 /* Done! */
3294 trace_module_load(mod);
3295
3296 return do_init_module(mod);
3297
3298 bug_cleanup:
3299 /* module_bug_cleanup needs module_mutex protection */
3300 mutex_lock(&module_mutex);
3301 module_bug_cleanup(mod);
3302 mutex_unlock(&module_mutex);
3303 ddebug_cleanup:
3304 dynamic_debug_remove(info->debug);
3305 synchronize_sched();
3306 kfree(mod->args);
3307 free_arch_cleanup:
3308 module_arch_cleanup(mod);
3309 free_modinfo:
3310 free_modinfo(mod);
3311 free_unload:
3312 module_unload_free(mod);
3313 unlink_mod:
3314 mutex_lock(&module_mutex);
3315 /* Unlink carefully: kallsyms could be walking list. */
3316 list_del_rcu(&mod->list);
3317 wake_up_all(&module_wq);
3318 mutex_unlock(&module_mutex);
3319 free_module:
3320 module_deallocate(mod, info);
3321 free_copy:
3322 free_copy(info);
3323 return err;
3324 }
3325
3326 SYSCALL_DEFINE3(init_module, void __user *, umod,
3327 unsigned long, len, const char __user *, uargs)
3328 {
3329 int err;
3330 struct load_info info = { };
3331
3332 err = may_init_module();
3333 if (err)
3334 return err;
3335
3336 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3337 umod, len, uargs);
3338
3339 err = copy_module_from_user(umod, len, &info);
3340 if (err)
3341 return err;
3342
3343 return load_module(&info, uargs, 0);
3344 }
3345
3346 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3347 {
3348 int err;
3349 struct load_info info = { };
3350
3351 err = may_init_module();
3352 if (err)
3353 return err;
3354
3355 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3356
3357 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3358 |MODULE_INIT_IGNORE_VERMAGIC))
3359 return -EINVAL;
3360
3361 err = copy_module_from_fd(fd, &info);
3362 if (err)
3363 return err;
3364
3365 return load_module(&info, uargs, flags);
3366 }
3367
3368 static inline int within(unsigned long addr, void *start, unsigned long size)
3369 {
3370 return ((void *)addr >= start && (void *)addr < start + size);
3371 }
3372
3373 #ifdef CONFIG_KALLSYMS
3374 /*
3375 * This ignores the intensely annoying "mapping symbols" found
3376 * in ARM ELF files: $a, $t and $d.
3377 */
3378 static inline int is_arm_mapping_symbol(const char *str)
3379 {
3380 return str[0] == '$' && strchr("atd", str[1])
3381 && (str[2] == '\0' || str[2] == '.');
3382 }
3383
3384 static const char *get_ksymbol(struct module *mod,
3385 unsigned long addr,
3386 unsigned long *size,
3387 unsigned long *offset)
3388 {
3389 unsigned int i, best = 0;
3390 unsigned long nextval;
3391
3392 /* At worse, next value is at end of module */
3393 if (within_module_init(addr, mod))
3394 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3395 else
3396 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3397
3398 /* Scan for closest preceding symbol, and next symbol. (ELF
3399 starts real symbols at 1). */
3400 for (i = 1; i < mod->num_symtab; i++) {
3401 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3402 continue;
3403
3404 /* We ignore unnamed symbols: they're uninformative
3405 * and inserted at a whim. */
3406 if (mod->symtab[i].st_value <= addr
3407 && mod->symtab[i].st_value > mod->symtab[best].st_value
3408 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3409 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3410 best = i;
3411 if (mod->symtab[i].st_value > addr
3412 && mod->symtab[i].st_value < nextval
3413 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3414 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3415 nextval = mod->symtab[i].st_value;
3416 }
3417
3418 if (!best)
3419 return NULL;
3420
3421 if (size)
3422 *size = nextval - mod->symtab[best].st_value;
3423 if (offset)
3424 *offset = addr - mod->symtab[best].st_value;
3425 return mod->strtab + mod->symtab[best].st_name;
3426 }
3427
3428 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3429 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3430 const char *module_address_lookup(unsigned long addr,
3431 unsigned long *size,
3432 unsigned long *offset,
3433 char **modname,
3434 char *namebuf)
3435 {
3436 struct module *mod;
3437 const char *ret = NULL;
3438
3439 preempt_disable();
3440 list_for_each_entry_rcu(mod, &modules, list) {
3441 if (mod->state == MODULE_STATE_UNFORMED)
3442 continue;
3443 if (within_module_init(addr, mod) ||
3444 within_module_core(addr, mod)) {
3445 if (modname)
3446 *modname = mod->name;
3447 ret = get_ksymbol(mod, addr, size, offset);
3448 break;
3449 }
3450 }
3451 /* Make a copy in here where it's safe */
3452 if (ret) {
3453 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3454 ret = namebuf;
3455 }
3456 preempt_enable();
3457 return ret;
3458 }
3459
3460 int lookup_module_symbol_name(unsigned long addr, char *symname)
3461 {
3462 struct module *mod;
3463
3464 preempt_disable();
3465 list_for_each_entry_rcu(mod, &modules, list) {
3466 if (mod->state == MODULE_STATE_UNFORMED)
3467 continue;
3468 if (within_module_init(addr, mod) ||
3469 within_module_core(addr, mod)) {
3470 const char *sym;
3471
3472 sym = get_ksymbol(mod, addr, NULL, NULL);
3473 if (!sym)
3474 goto out;
3475 strlcpy(symname, sym, KSYM_NAME_LEN);
3476 preempt_enable();
3477 return 0;
3478 }
3479 }
3480 out:
3481 preempt_enable();
3482 return -ERANGE;
3483 }
3484
3485 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3486 unsigned long *offset, char *modname, char *name)
3487 {
3488 struct module *mod;
3489
3490 preempt_disable();
3491 list_for_each_entry_rcu(mod, &modules, list) {
3492 if (mod->state == MODULE_STATE_UNFORMED)
3493 continue;
3494 if (within_module_init(addr, mod) ||
3495 within_module_core(addr, mod)) {
3496 const char *sym;
3497
3498 sym = get_ksymbol(mod, addr, size, offset);
3499 if (!sym)
3500 goto out;
3501 if (modname)
3502 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3503 if (name)
3504 strlcpy(name, sym, KSYM_NAME_LEN);
3505 preempt_enable();
3506 return 0;
3507 }
3508 }
3509 out:
3510 preempt_enable();
3511 return -ERANGE;
3512 }
3513
3514 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3515 char *name, char *module_name, int *exported)
3516 {
3517 struct module *mod;
3518
3519 preempt_disable();
3520 list_for_each_entry_rcu(mod, &modules, list) {
3521 if (mod->state == MODULE_STATE_UNFORMED)
3522 continue;
3523 if (symnum < mod->num_symtab) {
3524 *value = mod->symtab[symnum].st_value;
3525 *type = mod->symtab[symnum].st_info;
3526 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3527 KSYM_NAME_LEN);
3528 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3529 *exported = is_exported(name, *value, mod);
3530 preempt_enable();
3531 return 0;
3532 }
3533 symnum -= mod->num_symtab;
3534 }
3535 preempt_enable();
3536 return -ERANGE;
3537 }
3538
3539 static unsigned long mod_find_symname(struct module *mod, const char *name)
3540 {
3541 unsigned int i;
3542
3543 for (i = 0; i < mod->num_symtab; i++)
3544 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3545 mod->symtab[i].st_info != 'U')
3546 return mod->symtab[i].st_value;
3547 return 0;
3548 }
3549
3550 /* Look for this name: can be of form module:name. */
3551 unsigned long module_kallsyms_lookup_name(const char *name)
3552 {
3553 struct module *mod;
3554 char *colon;
3555 unsigned long ret = 0;
3556
3557 /* Don't lock: we're in enough trouble already. */
3558 preempt_disable();
3559 if ((colon = strchr(name, ':')) != NULL) {
3560 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3561 ret = mod_find_symname(mod, colon+1);
3562 } else {
3563 list_for_each_entry_rcu(mod, &modules, list) {
3564 if (mod->state == MODULE_STATE_UNFORMED)
3565 continue;
3566 if ((ret = mod_find_symname(mod, name)) != 0)
3567 break;
3568 }
3569 }
3570 preempt_enable();
3571 return ret;
3572 }
3573
3574 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3575 struct module *, unsigned long),
3576 void *data)
3577 {
3578 struct module *mod;
3579 unsigned int i;
3580 int ret;
3581
3582 list_for_each_entry(mod, &modules, list) {
3583 if (mod->state == MODULE_STATE_UNFORMED)
3584 continue;
3585 for (i = 0; i < mod->num_symtab; i++) {
3586 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3587 mod, mod->symtab[i].st_value);
3588 if (ret != 0)
3589 return ret;
3590 }
3591 }
3592 return 0;
3593 }
3594 #endif /* CONFIG_KALLSYMS */
3595
3596 static char *module_flags(struct module *mod, char *buf)
3597 {
3598 int bx = 0;
3599
3600 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3601 if (mod->taints ||
3602 mod->state == MODULE_STATE_GOING ||
3603 mod->state == MODULE_STATE_COMING) {
3604 buf[bx++] = '(';
3605 bx += module_flags_taint(mod, buf + bx);
3606 /* Show a - for module-is-being-unloaded */
3607 if (mod->state == MODULE_STATE_GOING)
3608 buf[bx++] = '-';
3609 /* Show a + for module-is-being-loaded */
3610 if (mod->state == MODULE_STATE_COMING)
3611 buf[bx++] = '+';
3612 buf[bx++] = ')';
3613 }
3614 buf[bx] = '\0';
3615
3616 return buf;
3617 }
3618
3619 #ifdef CONFIG_PROC_FS
3620 /* Called by the /proc file system to return a list of modules. */
3621 static void *m_start(struct seq_file *m, loff_t *pos)
3622 {
3623 mutex_lock(&module_mutex);
3624 return seq_list_start(&modules, *pos);
3625 }
3626
3627 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3628 {
3629 return seq_list_next(p, &modules, pos);
3630 }
3631
3632 static void m_stop(struct seq_file *m, void *p)
3633 {
3634 mutex_unlock(&module_mutex);
3635 }
3636
3637 static int m_show(struct seq_file *m, void *p)
3638 {
3639 struct module *mod = list_entry(p, struct module, list);
3640 char buf[8];
3641
3642 /* We always ignore unformed modules. */
3643 if (mod->state == MODULE_STATE_UNFORMED)
3644 return 0;
3645
3646 seq_printf(m, "%s %u",
3647 mod->name, mod->init_size + mod->core_size);
3648 print_unload_info(m, mod);
3649
3650 /* Informative for users. */
3651 seq_printf(m, " %s",
3652 mod->state == MODULE_STATE_GOING ? "Unloading":
3653 mod->state == MODULE_STATE_COMING ? "Loading":
3654 "Live");
3655 /* Used by oprofile and other similar tools. */
3656 seq_printf(m, " 0x%pK", mod->module_core);
3657
3658 /* Taints info */
3659 if (mod->taints)
3660 seq_printf(m, " %s", module_flags(mod, buf));
3661
3662 seq_printf(m, "\n");
3663 return 0;
3664 }
3665
3666 /* Format: modulename size refcount deps address
3667
3668 Where refcount is a number or -, and deps is a comma-separated list
3669 of depends or -.
3670 */
3671 static const struct seq_operations modules_op = {
3672 .start = m_start,
3673 .next = m_next,
3674 .stop = m_stop,
3675 .show = m_show
3676 };
3677
3678 static int modules_open(struct inode *inode, struct file *file)
3679 {
3680 return seq_open(file, &modules_op);
3681 }
3682
3683 static const struct file_operations proc_modules_operations = {
3684 .open = modules_open,
3685 .read = seq_read,
3686 .llseek = seq_lseek,
3687 .release = seq_release,
3688 };
3689
3690 static int __init proc_modules_init(void)
3691 {
3692 proc_create("modules", 0, NULL, &proc_modules_operations);
3693 return 0;
3694 }
3695 module_init(proc_modules_init);
3696 #endif
3697
3698 /* Given an address, look for it in the module exception tables. */
3699 const struct exception_table_entry *search_module_extables(unsigned long addr)
3700 {
3701 const struct exception_table_entry *e = NULL;
3702 struct module *mod;
3703
3704 preempt_disable();
3705 list_for_each_entry_rcu(mod, &modules, list) {
3706 if (mod->state == MODULE_STATE_UNFORMED)
3707 continue;
3708 if (mod->num_exentries == 0)
3709 continue;
3710
3711 e = search_extable(mod->extable,
3712 mod->extable + mod->num_exentries - 1,
3713 addr);
3714 if (e)
3715 break;
3716 }
3717 preempt_enable();
3718
3719 /* Now, if we found one, we are running inside it now, hence
3720 we cannot unload the module, hence no refcnt needed. */
3721 return e;
3722 }
3723
3724 /*
3725 * is_module_address - is this address inside a module?
3726 * @addr: the address to check.
3727 *
3728 * See is_module_text_address() if you simply want to see if the address
3729 * is code (not data).
3730 */
3731 bool is_module_address(unsigned long addr)
3732 {
3733 bool ret;
3734
3735 preempt_disable();
3736 ret = __module_address(addr) != NULL;
3737 preempt_enable();
3738
3739 return ret;
3740 }
3741
3742 /*
3743 * __module_address - get the module which contains an address.
3744 * @addr: the address.
3745 *
3746 * Must be called with preempt disabled or module mutex held so that
3747 * module doesn't get freed during this.
3748 */
3749 struct module *__module_address(unsigned long addr)
3750 {
3751 struct module *mod;
3752
3753 if (addr < module_addr_min || addr > module_addr_max)
3754 return NULL;
3755
3756 list_for_each_entry_rcu(mod, &modules, list) {
3757 if (mod->state == MODULE_STATE_UNFORMED)
3758 continue;
3759 if (within_module_core(addr, mod)
3760 || within_module_init(addr, mod))
3761 return mod;
3762 }
3763 return NULL;
3764 }
3765 EXPORT_SYMBOL_GPL(__module_address);
3766
3767 /*
3768 * is_module_text_address - is this address inside module code?
3769 * @addr: the address to check.
3770 *
3771 * See is_module_address() if you simply want to see if the address is
3772 * anywhere in a module. See kernel_text_address() for testing if an
3773 * address corresponds to kernel or module code.
3774 */
3775 bool is_module_text_address(unsigned long addr)
3776 {
3777 bool ret;
3778
3779 preempt_disable();
3780 ret = __module_text_address(addr) != NULL;
3781 preempt_enable();
3782
3783 return ret;
3784 }
3785
3786 /*
3787 * __module_text_address - get the module whose code contains an address.
3788 * @addr: the address.
3789 *
3790 * Must be called with preempt disabled or module mutex held so that
3791 * module doesn't get freed during this.
3792 */
3793 struct module *__module_text_address(unsigned long addr)
3794 {
3795 struct module *mod = __module_address(addr);
3796 if (mod) {
3797 /* Make sure it's within the text section. */
3798 if (!within(addr, mod->module_init, mod->init_text_size)
3799 && !within(addr, mod->module_core, mod->core_text_size))
3800 mod = NULL;
3801 }
3802 return mod;
3803 }
3804 EXPORT_SYMBOL_GPL(__module_text_address);
3805
3806 /* Don't grab lock, we're oopsing. */
3807 void print_modules(void)
3808 {
3809 struct module *mod;
3810 char buf[8];
3811
3812 printk(KERN_DEFAULT "Modules linked in:");
3813 /* Most callers should already have preempt disabled, but make sure */
3814 preempt_disable();
3815 list_for_each_entry_rcu(mod, &modules, list) {
3816 if (mod->state == MODULE_STATE_UNFORMED)
3817 continue;
3818 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
3819 }
3820 preempt_enable();
3821 if (last_unloaded_module[0])
3822 pr_cont(" [last unloaded: %s]", last_unloaded_module);
3823 pr_cont("\n");
3824 }
3825
3826 #ifdef CONFIG_MODVERSIONS
3827 /* Generate the signature for all relevant module structures here.
3828 * If these change, we don't want to try to parse the module. */
3829 void module_layout(struct module *mod,
3830 struct modversion_info *ver,
3831 struct kernel_param *kp,
3832 struct kernel_symbol *ks,
3833 struct tracepoint * const *tp)
3834 {
3835 }
3836 EXPORT_SYMBOL(module_layout);
3837 #endif
This page took 0.16713 seconds and 6 git commands to generate.