perf_counter: Always schedule all software counters in
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23
24 /*
25 * Each CPU has a list of per CPU counters:
26 */
27 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
28
29 int perf_max_counters __read_mostly = 1;
30 static int perf_reserved_percpu __read_mostly;
31 static int perf_overcommit __read_mostly = 1;
32
33 /*
34 * Mutex for (sysadmin-configurable) counter reservations:
35 */
36 static DEFINE_MUTEX(perf_resource_mutex);
37
38 /*
39 * Architecture provided APIs - weak aliases:
40 */
41 extern __weak const struct hw_perf_counter_ops *
42 hw_perf_counter_init(struct perf_counter *counter)
43 {
44 return NULL;
45 }
46
47 u64 __weak hw_perf_save_disable(void) { return 0; }
48 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
49 void __weak hw_perf_counter_setup(void) { barrier(); }
50 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
51 struct perf_cpu_context *cpuctx,
52 struct perf_counter_context *ctx, int cpu)
53 {
54 return 0;
55 }
56
57 void __weak perf_counter_print_debug(void) { }
58
59 static void
60 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
61 {
62 struct perf_counter *group_leader = counter->group_leader;
63
64 /*
65 * Depending on whether it is a standalone or sibling counter,
66 * add it straight to the context's counter list, or to the group
67 * leader's sibling list:
68 */
69 if (counter->group_leader == counter)
70 list_add_tail(&counter->list_entry, &ctx->counter_list);
71 else
72 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
73 }
74
75 static void
76 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78 struct perf_counter *sibling, *tmp;
79
80 list_del_init(&counter->list_entry);
81
82 /*
83 * If this was a group counter with sibling counters then
84 * upgrade the siblings to singleton counters by adding them
85 * to the context list directly:
86 */
87 list_for_each_entry_safe(sibling, tmp,
88 &counter->sibling_list, list_entry) {
89
90 list_del_init(&sibling->list_entry);
91 list_add_tail(&sibling->list_entry, &ctx->counter_list);
92 sibling->group_leader = sibling;
93 }
94 }
95
96 /*
97 * Cross CPU call to remove a performance counter
98 *
99 * We disable the counter on the hardware level first. After that we
100 * remove it from the context list.
101 */
102 static void __perf_counter_remove_from_context(void *info)
103 {
104 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
105 struct perf_counter *counter = info;
106 struct perf_counter_context *ctx = counter->ctx;
107 unsigned long flags;
108 u64 perf_flags;
109
110 /*
111 * If this is a task context, we need to check whether it is
112 * the current task context of this cpu. If not it has been
113 * scheduled out before the smp call arrived.
114 */
115 if (ctx->task && cpuctx->task_ctx != ctx)
116 return;
117
118 curr_rq_lock_irq_save(&flags);
119 spin_lock(&ctx->lock);
120
121 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
122 counter->state = PERF_COUNTER_STATE_INACTIVE;
123 counter->hw_ops->disable(counter);
124 ctx->nr_active--;
125 cpuctx->active_oncpu--;
126 counter->task = NULL;
127 counter->oncpu = -1;
128 }
129 ctx->nr_counters--;
130
131 /*
132 * Protect the list operation against NMI by disabling the
133 * counters on a global level. NOP for non NMI based counters.
134 */
135 perf_flags = hw_perf_save_disable();
136 list_del_counter(counter, ctx);
137 hw_perf_restore(perf_flags);
138
139 if (!ctx->task) {
140 /*
141 * Allow more per task counters with respect to the
142 * reservation:
143 */
144 cpuctx->max_pertask =
145 min(perf_max_counters - ctx->nr_counters,
146 perf_max_counters - perf_reserved_percpu);
147 }
148
149 spin_unlock(&ctx->lock);
150 curr_rq_unlock_irq_restore(&flags);
151 }
152
153
154 /*
155 * Remove the counter from a task's (or a CPU's) list of counters.
156 *
157 * Must be called with counter->mutex held.
158 *
159 * CPU counters are removed with a smp call. For task counters we only
160 * call when the task is on a CPU.
161 */
162 static void perf_counter_remove_from_context(struct perf_counter *counter)
163 {
164 struct perf_counter_context *ctx = counter->ctx;
165 struct task_struct *task = ctx->task;
166
167 if (!task) {
168 /*
169 * Per cpu counters are removed via an smp call and
170 * the removal is always sucessful.
171 */
172 smp_call_function_single(counter->cpu,
173 __perf_counter_remove_from_context,
174 counter, 1);
175 return;
176 }
177
178 retry:
179 task_oncpu_function_call(task, __perf_counter_remove_from_context,
180 counter);
181
182 spin_lock_irq(&ctx->lock);
183 /*
184 * If the context is active we need to retry the smp call.
185 */
186 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
187 spin_unlock_irq(&ctx->lock);
188 goto retry;
189 }
190
191 /*
192 * The lock prevents that this context is scheduled in so we
193 * can remove the counter safely, if the call above did not
194 * succeed.
195 */
196 if (!list_empty(&counter->list_entry)) {
197 ctx->nr_counters--;
198 list_del_counter(counter, ctx);
199 counter->task = NULL;
200 }
201 spin_unlock_irq(&ctx->lock);
202 }
203
204 static int
205 counter_sched_in(struct perf_counter *counter,
206 struct perf_cpu_context *cpuctx,
207 struct perf_counter_context *ctx,
208 int cpu)
209 {
210 if (counter->state == PERF_COUNTER_STATE_OFF)
211 return 0;
212
213 counter->state = PERF_COUNTER_STATE_ACTIVE;
214 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
215 /*
216 * The new state must be visible before we turn it on in the hardware:
217 */
218 smp_wmb();
219
220 if (counter->hw_ops->enable(counter)) {
221 counter->state = PERF_COUNTER_STATE_INACTIVE;
222 counter->oncpu = -1;
223 return -EAGAIN;
224 }
225
226 cpuctx->active_oncpu++;
227 ctx->nr_active++;
228
229 return 0;
230 }
231
232 /*
233 * Cross CPU call to install and enable a performance counter
234 */
235 static void __perf_install_in_context(void *info)
236 {
237 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238 struct perf_counter *counter = info;
239 struct perf_counter_context *ctx = counter->ctx;
240 int cpu = smp_processor_id();
241 unsigned long flags;
242 u64 perf_flags;
243
244 /*
245 * If this is a task context, we need to check whether it is
246 * the current task context of this cpu. If not it has been
247 * scheduled out before the smp call arrived.
248 */
249 if (ctx->task && cpuctx->task_ctx != ctx)
250 return;
251
252 curr_rq_lock_irq_save(&flags);
253 spin_lock(&ctx->lock);
254
255 /*
256 * Protect the list operation against NMI by disabling the
257 * counters on a global level. NOP for non NMI based counters.
258 */
259 perf_flags = hw_perf_save_disable();
260
261 list_add_counter(counter, ctx);
262 ctx->nr_counters++;
263
264 counter_sched_in(counter, cpuctx, ctx, cpu);
265
266 if (!ctx->task && cpuctx->max_pertask)
267 cpuctx->max_pertask--;
268
269 hw_perf_restore(perf_flags);
270
271 spin_unlock(&ctx->lock);
272 curr_rq_unlock_irq_restore(&flags);
273 }
274
275 /*
276 * Attach a performance counter to a context
277 *
278 * First we add the counter to the list with the hardware enable bit
279 * in counter->hw_config cleared.
280 *
281 * If the counter is attached to a task which is on a CPU we use a smp
282 * call to enable it in the task context. The task might have been
283 * scheduled away, but we check this in the smp call again.
284 */
285 static void
286 perf_install_in_context(struct perf_counter_context *ctx,
287 struct perf_counter *counter,
288 int cpu)
289 {
290 struct task_struct *task = ctx->task;
291
292 counter->ctx = ctx;
293 if (!task) {
294 /*
295 * Per cpu counters are installed via an smp call and
296 * the install is always sucessful.
297 */
298 smp_call_function_single(cpu, __perf_install_in_context,
299 counter, 1);
300 return;
301 }
302
303 counter->task = task;
304 retry:
305 task_oncpu_function_call(task, __perf_install_in_context,
306 counter);
307
308 spin_lock_irq(&ctx->lock);
309 /*
310 * we need to retry the smp call.
311 */
312 if (ctx->nr_active && list_empty(&counter->list_entry)) {
313 spin_unlock_irq(&ctx->lock);
314 goto retry;
315 }
316
317 /*
318 * The lock prevents that this context is scheduled in so we
319 * can add the counter safely, if it the call above did not
320 * succeed.
321 */
322 if (list_empty(&counter->list_entry)) {
323 list_add_counter(counter, ctx);
324 ctx->nr_counters++;
325 }
326 spin_unlock_irq(&ctx->lock);
327 }
328
329 static void
330 counter_sched_out(struct perf_counter *counter,
331 struct perf_cpu_context *cpuctx,
332 struct perf_counter_context *ctx)
333 {
334 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
335 return;
336
337 counter->state = PERF_COUNTER_STATE_INACTIVE;
338 counter->hw_ops->disable(counter);
339 counter->oncpu = -1;
340
341 cpuctx->active_oncpu--;
342 ctx->nr_active--;
343 }
344
345 static void
346 group_sched_out(struct perf_counter *group_counter,
347 struct perf_cpu_context *cpuctx,
348 struct perf_counter_context *ctx)
349 {
350 struct perf_counter *counter;
351
352 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
353 return;
354
355 counter_sched_out(group_counter, cpuctx, ctx);
356
357 /*
358 * Schedule out siblings (if any):
359 */
360 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
361 counter_sched_out(counter, cpuctx, ctx);
362 }
363
364 void __perf_counter_sched_out(struct perf_counter_context *ctx,
365 struct perf_cpu_context *cpuctx)
366 {
367 struct perf_counter *counter;
368 u64 flags;
369
370 if (likely(!ctx->nr_counters))
371 return;
372
373 spin_lock(&ctx->lock);
374 flags = hw_perf_save_disable();
375 if (ctx->nr_active) {
376 list_for_each_entry(counter, &ctx->counter_list, list_entry)
377 group_sched_out(counter, cpuctx, ctx);
378 }
379 hw_perf_restore(flags);
380 spin_unlock(&ctx->lock);
381 }
382
383 /*
384 * Called from scheduler to remove the counters of the current task,
385 * with interrupts disabled.
386 *
387 * We stop each counter and update the counter value in counter->count.
388 *
389 * This does not protect us against NMI, but disable()
390 * sets the disabled bit in the control field of counter _before_
391 * accessing the counter control register. If a NMI hits, then it will
392 * not restart the counter.
393 */
394 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
395 {
396 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
397 struct perf_counter_context *ctx = &task->perf_counter_ctx;
398
399 if (likely(!cpuctx->task_ctx))
400 return;
401
402 __perf_counter_sched_out(ctx, cpuctx);
403
404 cpuctx->task_ctx = NULL;
405 }
406
407 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
408 {
409 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
410 }
411
412 static int
413 group_sched_in(struct perf_counter *group_counter,
414 struct perf_cpu_context *cpuctx,
415 struct perf_counter_context *ctx,
416 int cpu)
417 {
418 struct perf_counter *counter, *partial_group;
419 int ret;
420
421 if (group_counter->state == PERF_COUNTER_STATE_OFF)
422 return 0;
423
424 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
425 if (ret)
426 return ret < 0 ? ret : 0;
427
428 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
429 return -EAGAIN;
430
431 /*
432 * Schedule in siblings as one group (if any):
433 */
434 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
435 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
436 partial_group = counter;
437 goto group_error;
438 }
439 }
440
441 return 0;
442
443 group_error:
444 /*
445 * Groups can be scheduled in as one unit only, so undo any
446 * partial group before returning:
447 */
448 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
449 if (counter == partial_group)
450 break;
451 counter_sched_out(counter, cpuctx, ctx);
452 }
453 counter_sched_out(group_counter, cpuctx, ctx);
454
455 return -EAGAIN;
456 }
457
458 /*
459 * Return 1 for a software counter, 0 for a hardware counter
460 */
461 static inline int is_software_counter(struct perf_counter *counter)
462 {
463 return !counter->hw_event.raw && counter->hw_event.type < 0;
464 }
465
466 /*
467 * Return 1 for a group consisting entirely of software counters,
468 * 0 if the group contains any hardware counters.
469 */
470 static int is_software_only_group(struct perf_counter *leader)
471 {
472 struct perf_counter *counter;
473
474 if (!is_software_counter(leader))
475 return 0;
476 list_for_each_entry(counter, &leader->sibling_list, list_entry)
477 if (!is_software_counter(counter))
478 return 0;
479 return 1;
480 }
481
482 static void
483 __perf_counter_sched_in(struct perf_counter_context *ctx,
484 struct perf_cpu_context *cpuctx, int cpu)
485 {
486 struct perf_counter *counter;
487 u64 flags;
488 int can_add_hw = 1;
489
490 if (likely(!ctx->nr_counters))
491 return;
492
493 spin_lock(&ctx->lock);
494 flags = hw_perf_save_disable();
495 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
496 /*
497 * Listen to the 'cpu' scheduling filter constraint
498 * of counters:
499 */
500 if (counter->cpu != -1 && counter->cpu != cpu)
501 continue;
502
503 /*
504 * If we scheduled in a group atomically and exclusively,
505 * or if this group can't go on, don't add any more
506 * hardware counters.
507 */
508 if (can_add_hw || is_software_only_group(counter))
509 if (group_sched_in(counter, cpuctx, ctx, cpu))
510 can_add_hw = 0;
511 }
512 hw_perf_restore(flags);
513 spin_unlock(&ctx->lock);
514 }
515
516 /*
517 * Called from scheduler to add the counters of the current task
518 * with interrupts disabled.
519 *
520 * We restore the counter value and then enable it.
521 *
522 * This does not protect us against NMI, but enable()
523 * sets the enabled bit in the control field of counter _before_
524 * accessing the counter control register. If a NMI hits, then it will
525 * keep the counter running.
526 */
527 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
528 {
529 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
530 struct perf_counter_context *ctx = &task->perf_counter_ctx;
531
532 __perf_counter_sched_in(ctx, cpuctx, cpu);
533 cpuctx->task_ctx = ctx;
534 }
535
536 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
537 {
538 struct perf_counter_context *ctx = &cpuctx->ctx;
539
540 __perf_counter_sched_in(ctx, cpuctx, cpu);
541 }
542
543 int perf_counter_task_disable(void)
544 {
545 struct task_struct *curr = current;
546 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
547 struct perf_counter *counter;
548 unsigned long flags;
549 u64 perf_flags;
550 int cpu;
551
552 if (likely(!ctx->nr_counters))
553 return 0;
554
555 curr_rq_lock_irq_save(&flags);
556 cpu = smp_processor_id();
557
558 /* force the update of the task clock: */
559 __task_delta_exec(curr, 1);
560
561 perf_counter_task_sched_out(curr, cpu);
562
563 spin_lock(&ctx->lock);
564
565 /*
566 * Disable all the counters:
567 */
568 perf_flags = hw_perf_save_disable();
569
570 list_for_each_entry(counter, &ctx->counter_list, list_entry)
571 counter->state = PERF_COUNTER_STATE_OFF;
572
573 hw_perf_restore(perf_flags);
574
575 spin_unlock(&ctx->lock);
576
577 curr_rq_unlock_irq_restore(&flags);
578
579 return 0;
580 }
581
582 int perf_counter_task_enable(void)
583 {
584 struct task_struct *curr = current;
585 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
586 struct perf_counter *counter;
587 unsigned long flags;
588 u64 perf_flags;
589 int cpu;
590
591 if (likely(!ctx->nr_counters))
592 return 0;
593
594 curr_rq_lock_irq_save(&flags);
595 cpu = smp_processor_id();
596
597 /* force the update of the task clock: */
598 __task_delta_exec(curr, 1);
599
600 perf_counter_task_sched_out(curr, cpu);
601
602 spin_lock(&ctx->lock);
603
604 /*
605 * Disable all the counters:
606 */
607 perf_flags = hw_perf_save_disable();
608
609 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
610 if (counter->state != PERF_COUNTER_STATE_OFF)
611 continue;
612 counter->state = PERF_COUNTER_STATE_INACTIVE;
613 counter->hw_event.disabled = 0;
614 }
615 hw_perf_restore(perf_flags);
616
617 spin_unlock(&ctx->lock);
618
619 perf_counter_task_sched_in(curr, cpu);
620
621 curr_rq_unlock_irq_restore(&flags);
622
623 return 0;
624 }
625
626 /*
627 * Round-robin a context's counters:
628 */
629 static void rotate_ctx(struct perf_counter_context *ctx)
630 {
631 struct perf_counter *counter;
632 u64 perf_flags;
633
634 if (!ctx->nr_counters)
635 return;
636
637 spin_lock(&ctx->lock);
638 /*
639 * Rotate the first entry last (works just fine for group counters too):
640 */
641 perf_flags = hw_perf_save_disable();
642 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
643 list_del(&counter->list_entry);
644 list_add_tail(&counter->list_entry, &ctx->counter_list);
645 break;
646 }
647 hw_perf_restore(perf_flags);
648
649 spin_unlock(&ctx->lock);
650 }
651
652 void perf_counter_task_tick(struct task_struct *curr, int cpu)
653 {
654 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
655 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
656 const int rotate_percpu = 0;
657
658 if (rotate_percpu)
659 perf_counter_cpu_sched_out(cpuctx);
660 perf_counter_task_sched_out(curr, cpu);
661
662 if (rotate_percpu)
663 rotate_ctx(&cpuctx->ctx);
664 rotate_ctx(ctx);
665
666 if (rotate_percpu)
667 perf_counter_cpu_sched_in(cpuctx, cpu);
668 perf_counter_task_sched_in(curr, cpu);
669 }
670
671 /*
672 * Cross CPU call to read the hardware counter
673 */
674 static void __read(void *info)
675 {
676 struct perf_counter *counter = info;
677 unsigned long flags;
678
679 curr_rq_lock_irq_save(&flags);
680 counter->hw_ops->read(counter);
681 curr_rq_unlock_irq_restore(&flags);
682 }
683
684 static u64 perf_counter_read(struct perf_counter *counter)
685 {
686 /*
687 * If counter is enabled and currently active on a CPU, update the
688 * value in the counter structure:
689 */
690 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
691 smp_call_function_single(counter->oncpu,
692 __read, counter, 1);
693 }
694
695 return atomic64_read(&counter->count);
696 }
697
698 /*
699 * Cross CPU call to switch performance data pointers
700 */
701 static void __perf_switch_irq_data(void *info)
702 {
703 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
704 struct perf_counter *counter = info;
705 struct perf_counter_context *ctx = counter->ctx;
706 struct perf_data *oldirqdata = counter->irqdata;
707
708 /*
709 * If this is a task context, we need to check whether it is
710 * the current task context of this cpu. If not it has been
711 * scheduled out before the smp call arrived.
712 */
713 if (ctx->task) {
714 if (cpuctx->task_ctx != ctx)
715 return;
716 spin_lock(&ctx->lock);
717 }
718
719 /* Change the pointer NMI safe */
720 atomic_long_set((atomic_long_t *)&counter->irqdata,
721 (unsigned long) counter->usrdata);
722 counter->usrdata = oldirqdata;
723
724 if (ctx->task)
725 spin_unlock(&ctx->lock);
726 }
727
728 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
729 {
730 struct perf_counter_context *ctx = counter->ctx;
731 struct perf_data *oldirqdata = counter->irqdata;
732 struct task_struct *task = ctx->task;
733
734 if (!task) {
735 smp_call_function_single(counter->cpu,
736 __perf_switch_irq_data,
737 counter, 1);
738 return counter->usrdata;
739 }
740
741 retry:
742 spin_lock_irq(&ctx->lock);
743 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
744 counter->irqdata = counter->usrdata;
745 counter->usrdata = oldirqdata;
746 spin_unlock_irq(&ctx->lock);
747 return oldirqdata;
748 }
749 spin_unlock_irq(&ctx->lock);
750 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
751 /* Might have failed, because task was scheduled out */
752 if (counter->irqdata == oldirqdata)
753 goto retry;
754
755 return counter->usrdata;
756 }
757
758 static void put_context(struct perf_counter_context *ctx)
759 {
760 if (ctx->task)
761 put_task_struct(ctx->task);
762 }
763
764 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
765 {
766 struct perf_cpu_context *cpuctx;
767 struct perf_counter_context *ctx;
768 struct task_struct *task;
769
770 /*
771 * If cpu is not a wildcard then this is a percpu counter:
772 */
773 if (cpu != -1) {
774 /* Must be root to operate on a CPU counter: */
775 if (!capable(CAP_SYS_ADMIN))
776 return ERR_PTR(-EACCES);
777
778 if (cpu < 0 || cpu > num_possible_cpus())
779 return ERR_PTR(-EINVAL);
780
781 /*
782 * We could be clever and allow to attach a counter to an
783 * offline CPU and activate it when the CPU comes up, but
784 * that's for later.
785 */
786 if (!cpu_isset(cpu, cpu_online_map))
787 return ERR_PTR(-ENODEV);
788
789 cpuctx = &per_cpu(perf_cpu_context, cpu);
790 ctx = &cpuctx->ctx;
791
792 return ctx;
793 }
794
795 rcu_read_lock();
796 if (!pid)
797 task = current;
798 else
799 task = find_task_by_vpid(pid);
800 if (task)
801 get_task_struct(task);
802 rcu_read_unlock();
803
804 if (!task)
805 return ERR_PTR(-ESRCH);
806
807 ctx = &task->perf_counter_ctx;
808 ctx->task = task;
809
810 /* Reuse ptrace permission checks for now. */
811 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
812 put_context(ctx);
813 return ERR_PTR(-EACCES);
814 }
815
816 return ctx;
817 }
818
819 /*
820 * Called when the last reference to the file is gone.
821 */
822 static int perf_release(struct inode *inode, struct file *file)
823 {
824 struct perf_counter *counter = file->private_data;
825 struct perf_counter_context *ctx = counter->ctx;
826
827 file->private_data = NULL;
828
829 mutex_lock(&counter->mutex);
830
831 perf_counter_remove_from_context(counter);
832 put_context(ctx);
833
834 mutex_unlock(&counter->mutex);
835
836 kfree(counter);
837
838 return 0;
839 }
840
841 /*
842 * Read the performance counter - simple non blocking version for now
843 */
844 static ssize_t
845 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
846 {
847 u64 cntval;
848
849 if (count != sizeof(cntval))
850 return -EINVAL;
851
852 mutex_lock(&counter->mutex);
853 cntval = perf_counter_read(counter);
854 mutex_unlock(&counter->mutex);
855
856 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
857 }
858
859 static ssize_t
860 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
861 {
862 if (!usrdata->len)
863 return 0;
864
865 count = min(count, (size_t)usrdata->len);
866 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
867 return -EFAULT;
868
869 /* Adjust the counters */
870 usrdata->len -= count;
871 if (!usrdata->len)
872 usrdata->rd_idx = 0;
873 else
874 usrdata->rd_idx += count;
875
876 return count;
877 }
878
879 static ssize_t
880 perf_read_irq_data(struct perf_counter *counter,
881 char __user *buf,
882 size_t count,
883 int nonblocking)
884 {
885 struct perf_data *irqdata, *usrdata;
886 DECLARE_WAITQUEUE(wait, current);
887 ssize_t res;
888
889 irqdata = counter->irqdata;
890 usrdata = counter->usrdata;
891
892 if (usrdata->len + irqdata->len >= count)
893 goto read_pending;
894
895 if (nonblocking)
896 return -EAGAIN;
897
898 spin_lock_irq(&counter->waitq.lock);
899 __add_wait_queue(&counter->waitq, &wait);
900 for (;;) {
901 set_current_state(TASK_INTERRUPTIBLE);
902 if (usrdata->len + irqdata->len >= count)
903 break;
904
905 if (signal_pending(current))
906 break;
907
908 spin_unlock_irq(&counter->waitq.lock);
909 schedule();
910 spin_lock_irq(&counter->waitq.lock);
911 }
912 __remove_wait_queue(&counter->waitq, &wait);
913 __set_current_state(TASK_RUNNING);
914 spin_unlock_irq(&counter->waitq.lock);
915
916 if (usrdata->len + irqdata->len < count)
917 return -ERESTARTSYS;
918 read_pending:
919 mutex_lock(&counter->mutex);
920
921 /* Drain pending data first: */
922 res = perf_copy_usrdata(usrdata, buf, count);
923 if (res < 0 || res == count)
924 goto out;
925
926 /* Switch irq buffer: */
927 usrdata = perf_switch_irq_data(counter);
928 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
929 if (!res)
930 res = -EFAULT;
931 } else {
932 res = count;
933 }
934 out:
935 mutex_unlock(&counter->mutex);
936
937 return res;
938 }
939
940 static ssize_t
941 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
942 {
943 struct perf_counter *counter = file->private_data;
944
945 switch (counter->hw_event.record_type) {
946 case PERF_RECORD_SIMPLE:
947 return perf_read_hw(counter, buf, count);
948
949 case PERF_RECORD_IRQ:
950 case PERF_RECORD_GROUP:
951 return perf_read_irq_data(counter, buf, count,
952 file->f_flags & O_NONBLOCK);
953 }
954 return -EINVAL;
955 }
956
957 static unsigned int perf_poll(struct file *file, poll_table *wait)
958 {
959 struct perf_counter *counter = file->private_data;
960 unsigned int events = 0;
961 unsigned long flags;
962
963 poll_wait(file, &counter->waitq, wait);
964
965 spin_lock_irqsave(&counter->waitq.lock, flags);
966 if (counter->usrdata->len || counter->irqdata->len)
967 events |= POLLIN;
968 spin_unlock_irqrestore(&counter->waitq.lock, flags);
969
970 return events;
971 }
972
973 static const struct file_operations perf_fops = {
974 .release = perf_release,
975 .read = perf_read,
976 .poll = perf_poll,
977 };
978
979 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
980 {
981 int cpu = raw_smp_processor_id();
982
983 atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
984 return 0;
985 }
986
987 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
988 {
989 int cpu = raw_smp_processor_id();
990 s64 prev;
991 u64 now;
992
993 now = cpu_clock(cpu);
994 prev = atomic64_read(&counter->hw.prev_count);
995 atomic64_set(&counter->hw.prev_count, now);
996 atomic64_add(now - prev, &counter->count);
997 }
998
999 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1000 {
1001 cpu_clock_perf_counter_update(counter);
1002 }
1003
1004 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1005 {
1006 cpu_clock_perf_counter_update(counter);
1007 }
1008
1009 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1010 .enable = cpu_clock_perf_counter_enable,
1011 .disable = cpu_clock_perf_counter_disable,
1012 .read = cpu_clock_perf_counter_read,
1013 };
1014
1015 /*
1016 * Called from within the scheduler:
1017 */
1018 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1019 {
1020 struct task_struct *curr = counter->task;
1021 u64 delta;
1022
1023 delta = __task_delta_exec(curr, update);
1024
1025 return curr->se.sum_exec_runtime + delta;
1026 }
1027
1028 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1029 {
1030 u64 prev;
1031 s64 delta;
1032
1033 prev = atomic64_read(&counter->hw.prev_count);
1034
1035 atomic64_set(&counter->hw.prev_count, now);
1036
1037 delta = now - prev;
1038
1039 atomic64_add(delta, &counter->count);
1040 }
1041
1042 static void task_clock_perf_counter_read(struct perf_counter *counter)
1043 {
1044 u64 now = task_clock_perf_counter_val(counter, 1);
1045
1046 task_clock_perf_counter_update(counter, now);
1047 }
1048
1049 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1050 {
1051 u64 now = task_clock_perf_counter_val(counter, 0);
1052
1053 atomic64_set(&counter->hw.prev_count, now);
1054
1055 return 0;
1056 }
1057
1058 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1059 {
1060 u64 now = task_clock_perf_counter_val(counter, 0);
1061
1062 task_clock_perf_counter_update(counter, now);
1063 }
1064
1065 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1066 .enable = task_clock_perf_counter_enable,
1067 .disable = task_clock_perf_counter_disable,
1068 .read = task_clock_perf_counter_read,
1069 };
1070
1071 static u64 get_page_faults(void)
1072 {
1073 struct task_struct *curr = current;
1074
1075 return curr->maj_flt + curr->min_flt;
1076 }
1077
1078 static void page_faults_perf_counter_update(struct perf_counter *counter)
1079 {
1080 u64 prev, now;
1081 s64 delta;
1082
1083 prev = atomic64_read(&counter->hw.prev_count);
1084 now = get_page_faults();
1085
1086 atomic64_set(&counter->hw.prev_count, now);
1087
1088 delta = now - prev;
1089
1090 atomic64_add(delta, &counter->count);
1091 }
1092
1093 static void page_faults_perf_counter_read(struct perf_counter *counter)
1094 {
1095 page_faults_perf_counter_update(counter);
1096 }
1097
1098 static int page_faults_perf_counter_enable(struct perf_counter *counter)
1099 {
1100 /*
1101 * page-faults is a per-task value already,
1102 * so we dont have to clear it on switch-in.
1103 */
1104
1105 return 0;
1106 }
1107
1108 static void page_faults_perf_counter_disable(struct perf_counter *counter)
1109 {
1110 page_faults_perf_counter_update(counter);
1111 }
1112
1113 static const struct hw_perf_counter_ops perf_ops_page_faults = {
1114 .enable = page_faults_perf_counter_enable,
1115 .disable = page_faults_perf_counter_disable,
1116 .read = page_faults_perf_counter_read,
1117 };
1118
1119 static u64 get_context_switches(void)
1120 {
1121 struct task_struct *curr = current;
1122
1123 return curr->nvcsw + curr->nivcsw;
1124 }
1125
1126 static void context_switches_perf_counter_update(struct perf_counter *counter)
1127 {
1128 u64 prev, now;
1129 s64 delta;
1130
1131 prev = atomic64_read(&counter->hw.prev_count);
1132 now = get_context_switches();
1133
1134 atomic64_set(&counter->hw.prev_count, now);
1135
1136 delta = now - prev;
1137
1138 atomic64_add(delta, &counter->count);
1139 }
1140
1141 static void context_switches_perf_counter_read(struct perf_counter *counter)
1142 {
1143 context_switches_perf_counter_update(counter);
1144 }
1145
1146 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1147 {
1148 /*
1149 * ->nvcsw + curr->nivcsw is a per-task value already,
1150 * so we dont have to clear it on switch-in.
1151 */
1152
1153 return 0;
1154 }
1155
1156 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1157 {
1158 context_switches_perf_counter_update(counter);
1159 }
1160
1161 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1162 .enable = context_switches_perf_counter_enable,
1163 .disable = context_switches_perf_counter_disable,
1164 .read = context_switches_perf_counter_read,
1165 };
1166
1167 static inline u64 get_cpu_migrations(void)
1168 {
1169 return current->se.nr_migrations;
1170 }
1171
1172 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1173 {
1174 u64 prev, now;
1175 s64 delta;
1176
1177 prev = atomic64_read(&counter->hw.prev_count);
1178 now = get_cpu_migrations();
1179
1180 atomic64_set(&counter->hw.prev_count, now);
1181
1182 delta = now - prev;
1183
1184 atomic64_add(delta, &counter->count);
1185 }
1186
1187 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1188 {
1189 cpu_migrations_perf_counter_update(counter);
1190 }
1191
1192 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1193 {
1194 /*
1195 * se.nr_migrations is a per-task value already,
1196 * so we dont have to clear it on switch-in.
1197 */
1198
1199 return 0;
1200 }
1201
1202 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1203 {
1204 cpu_migrations_perf_counter_update(counter);
1205 }
1206
1207 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1208 .enable = cpu_migrations_perf_counter_enable,
1209 .disable = cpu_migrations_perf_counter_disable,
1210 .read = cpu_migrations_perf_counter_read,
1211 };
1212
1213 static const struct hw_perf_counter_ops *
1214 sw_perf_counter_init(struct perf_counter *counter)
1215 {
1216 const struct hw_perf_counter_ops *hw_ops = NULL;
1217
1218 switch (counter->hw_event.type) {
1219 case PERF_COUNT_CPU_CLOCK:
1220 hw_ops = &perf_ops_cpu_clock;
1221 break;
1222 case PERF_COUNT_TASK_CLOCK:
1223 hw_ops = &perf_ops_task_clock;
1224 break;
1225 case PERF_COUNT_PAGE_FAULTS:
1226 hw_ops = &perf_ops_page_faults;
1227 break;
1228 case PERF_COUNT_CONTEXT_SWITCHES:
1229 hw_ops = &perf_ops_context_switches;
1230 break;
1231 case PERF_COUNT_CPU_MIGRATIONS:
1232 hw_ops = &perf_ops_cpu_migrations;
1233 break;
1234 default:
1235 break;
1236 }
1237 return hw_ops;
1238 }
1239
1240 /*
1241 * Allocate and initialize a counter structure
1242 */
1243 static struct perf_counter *
1244 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1245 int cpu,
1246 struct perf_counter *group_leader,
1247 gfp_t gfpflags)
1248 {
1249 const struct hw_perf_counter_ops *hw_ops;
1250 struct perf_counter *counter;
1251
1252 counter = kzalloc(sizeof(*counter), gfpflags);
1253 if (!counter)
1254 return NULL;
1255
1256 /*
1257 * Single counters are their own group leaders, with an
1258 * empty sibling list:
1259 */
1260 if (!group_leader)
1261 group_leader = counter;
1262
1263 mutex_init(&counter->mutex);
1264 INIT_LIST_HEAD(&counter->list_entry);
1265 INIT_LIST_HEAD(&counter->sibling_list);
1266 init_waitqueue_head(&counter->waitq);
1267
1268 counter->irqdata = &counter->data[0];
1269 counter->usrdata = &counter->data[1];
1270 counter->cpu = cpu;
1271 counter->hw_event = *hw_event;
1272 counter->wakeup_pending = 0;
1273 counter->group_leader = group_leader;
1274 counter->hw_ops = NULL;
1275
1276 counter->state = PERF_COUNTER_STATE_INACTIVE;
1277 if (hw_event->disabled)
1278 counter->state = PERF_COUNTER_STATE_OFF;
1279
1280 hw_ops = NULL;
1281 if (!hw_event->raw && hw_event->type < 0)
1282 hw_ops = sw_perf_counter_init(counter);
1283 if (!hw_ops)
1284 hw_ops = hw_perf_counter_init(counter);
1285
1286 if (!hw_ops) {
1287 kfree(counter);
1288 return NULL;
1289 }
1290 counter->hw_ops = hw_ops;
1291
1292 return counter;
1293 }
1294
1295 /**
1296 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
1297 *
1298 * @hw_event_uptr: event type attributes for monitoring/sampling
1299 * @pid: target pid
1300 * @cpu: target cpu
1301 * @group_fd: group leader counter fd
1302 */
1303 asmlinkage int
1304 sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
1305 pid_t pid, int cpu, int group_fd)
1306 {
1307 struct perf_counter *counter, *group_leader;
1308 struct perf_counter_hw_event hw_event;
1309 struct perf_counter_context *ctx;
1310 struct file *counter_file = NULL;
1311 struct file *group_file = NULL;
1312 int fput_needed = 0;
1313 int fput_needed2 = 0;
1314 int ret;
1315
1316 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1317 return -EFAULT;
1318
1319 /*
1320 * Get the target context (task or percpu):
1321 */
1322 ctx = find_get_context(pid, cpu);
1323 if (IS_ERR(ctx))
1324 return PTR_ERR(ctx);
1325
1326 /*
1327 * Look up the group leader (we will attach this counter to it):
1328 */
1329 group_leader = NULL;
1330 if (group_fd != -1) {
1331 ret = -EINVAL;
1332 group_file = fget_light(group_fd, &fput_needed);
1333 if (!group_file)
1334 goto err_put_context;
1335 if (group_file->f_op != &perf_fops)
1336 goto err_put_context;
1337
1338 group_leader = group_file->private_data;
1339 /*
1340 * Do not allow a recursive hierarchy (this new sibling
1341 * becoming part of another group-sibling):
1342 */
1343 if (group_leader->group_leader != group_leader)
1344 goto err_put_context;
1345 /*
1346 * Do not allow to attach to a group in a different
1347 * task or CPU context:
1348 */
1349 if (group_leader->ctx != ctx)
1350 goto err_put_context;
1351 }
1352
1353 ret = -EINVAL;
1354 counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
1355 if (!counter)
1356 goto err_put_context;
1357
1358 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1359 if (ret < 0)
1360 goto err_free_put_context;
1361
1362 counter_file = fget_light(ret, &fput_needed2);
1363 if (!counter_file)
1364 goto err_free_put_context;
1365
1366 counter->filp = counter_file;
1367 perf_install_in_context(ctx, counter, cpu);
1368
1369 fput_light(counter_file, fput_needed2);
1370
1371 out_fput:
1372 fput_light(group_file, fput_needed);
1373
1374 return ret;
1375
1376 err_free_put_context:
1377 kfree(counter);
1378
1379 err_put_context:
1380 put_context(ctx);
1381
1382 goto out_fput;
1383 }
1384
1385 /*
1386 * Initialize the perf_counter context in a task_struct:
1387 */
1388 static void
1389 __perf_counter_init_context(struct perf_counter_context *ctx,
1390 struct task_struct *task)
1391 {
1392 memset(ctx, 0, sizeof(*ctx));
1393 spin_lock_init(&ctx->lock);
1394 INIT_LIST_HEAD(&ctx->counter_list);
1395 ctx->task = task;
1396 }
1397
1398 /*
1399 * inherit a counter from parent task to child task:
1400 */
1401 static int
1402 inherit_counter(struct perf_counter *parent_counter,
1403 struct task_struct *parent,
1404 struct perf_counter_context *parent_ctx,
1405 struct task_struct *child,
1406 struct perf_counter_context *child_ctx)
1407 {
1408 struct perf_counter *child_counter;
1409
1410 child_counter = perf_counter_alloc(&parent_counter->hw_event,
1411 parent_counter->cpu, NULL,
1412 GFP_ATOMIC);
1413 if (!child_counter)
1414 return -ENOMEM;
1415
1416 /*
1417 * Link it up in the child's context:
1418 */
1419 child_counter->ctx = child_ctx;
1420 child_counter->task = child;
1421 list_add_counter(child_counter, child_ctx);
1422 child_ctx->nr_counters++;
1423
1424 child_counter->parent = parent_counter;
1425 /*
1426 * inherit into child's child as well:
1427 */
1428 child_counter->hw_event.inherit = 1;
1429
1430 /*
1431 * Get a reference to the parent filp - we will fput it
1432 * when the child counter exits. This is safe to do because
1433 * we are in the parent and we know that the filp still
1434 * exists and has a nonzero count:
1435 */
1436 atomic_long_inc(&parent_counter->filp->f_count);
1437
1438 return 0;
1439 }
1440
1441 static void
1442 __perf_counter_exit_task(struct task_struct *child,
1443 struct perf_counter *child_counter,
1444 struct perf_counter_context *child_ctx)
1445 {
1446 struct perf_counter *parent_counter;
1447 u64 parent_val, child_val;
1448
1449 /*
1450 * If we do not self-reap then we have to wait for the
1451 * child task to unschedule (it will happen for sure),
1452 * so that its counter is at its final count. (This
1453 * condition triggers rarely - child tasks usually get
1454 * off their CPU before the parent has a chance to
1455 * get this far into the reaping action)
1456 */
1457 if (child != current) {
1458 wait_task_inactive(child, 0);
1459 list_del_init(&child_counter->list_entry);
1460 } else {
1461 struct perf_cpu_context *cpuctx;
1462 unsigned long flags;
1463 u64 perf_flags;
1464
1465 /*
1466 * Disable and unlink this counter.
1467 *
1468 * Be careful about zapping the list - IRQ/NMI context
1469 * could still be processing it:
1470 */
1471 curr_rq_lock_irq_save(&flags);
1472 perf_flags = hw_perf_save_disable();
1473
1474 cpuctx = &__get_cpu_var(perf_cpu_context);
1475
1476 if (child_counter->state == PERF_COUNTER_STATE_ACTIVE) {
1477 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
1478 child_counter->hw_ops->disable(child_counter);
1479 cpuctx->active_oncpu--;
1480 child_ctx->nr_active--;
1481 child_counter->oncpu = -1;
1482 }
1483
1484 list_del_init(&child_counter->list_entry);
1485
1486 child_ctx->nr_counters--;
1487
1488 hw_perf_restore(perf_flags);
1489 curr_rq_unlock_irq_restore(&flags);
1490 }
1491
1492 parent_counter = child_counter->parent;
1493 /*
1494 * It can happen that parent exits first, and has counters
1495 * that are still around due to the child reference. These
1496 * counters need to be zapped - but otherwise linger.
1497 */
1498 if (!parent_counter)
1499 return;
1500
1501 parent_val = atomic64_read(&parent_counter->count);
1502 child_val = atomic64_read(&child_counter->count);
1503
1504 /*
1505 * Add back the child's count to the parent's count:
1506 */
1507 atomic64_add(child_val, &parent_counter->count);
1508
1509 fput(parent_counter->filp);
1510
1511 kfree(child_counter);
1512 }
1513
1514 /*
1515 * When a child task exist, feed back counter values to parent counters.
1516 *
1517 * Note: we are running in child context, but the PID is not hashed
1518 * anymore so new counters will not be added.
1519 */
1520 void perf_counter_exit_task(struct task_struct *child)
1521 {
1522 struct perf_counter *child_counter, *tmp;
1523 struct perf_counter_context *child_ctx;
1524
1525 child_ctx = &child->perf_counter_ctx;
1526
1527 if (likely(!child_ctx->nr_counters))
1528 return;
1529
1530 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
1531 list_entry)
1532 __perf_counter_exit_task(child, child_counter, child_ctx);
1533 }
1534
1535 /*
1536 * Initialize the perf_counter context in task_struct
1537 */
1538 void perf_counter_init_task(struct task_struct *child)
1539 {
1540 struct perf_counter_context *child_ctx, *parent_ctx;
1541 struct perf_counter *counter, *parent_counter;
1542 struct task_struct *parent = current;
1543 unsigned long flags;
1544
1545 child_ctx = &child->perf_counter_ctx;
1546 parent_ctx = &parent->perf_counter_ctx;
1547
1548 __perf_counter_init_context(child_ctx, child);
1549
1550 /*
1551 * This is executed from the parent task context, so inherit
1552 * counters that have been marked for cloning:
1553 */
1554
1555 if (likely(!parent_ctx->nr_counters))
1556 return;
1557
1558 /*
1559 * Lock the parent list. No need to lock the child - not PID
1560 * hashed yet and not running, so nobody can access it.
1561 */
1562 spin_lock_irqsave(&parent_ctx->lock, flags);
1563
1564 /*
1565 * We dont have to disable NMIs - we are only looking at
1566 * the list, not manipulating it:
1567 */
1568 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
1569 if (!counter->hw_event.inherit || counter->group_leader != counter)
1570 continue;
1571
1572 /*
1573 * Instead of creating recursive hierarchies of counters,
1574 * we link inheritd counters back to the original parent,
1575 * which has a filp for sure, which we use as the reference
1576 * count:
1577 */
1578 parent_counter = counter;
1579 if (counter->parent)
1580 parent_counter = counter->parent;
1581
1582 if (inherit_counter(parent_counter, parent,
1583 parent_ctx, child, child_ctx))
1584 break;
1585 }
1586
1587 spin_unlock_irqrestore(&parent_ctx->lock, flags);
1588 }
1589
1590 static void __cpuinit perf_counter_init_cpu(int cpu)
1591 {
1592 struct perf_cpu_context *cpuctx;
1593
1594 cpuctx = &per_cpu(perf_cpu_context, cpu);
1595 __perf_counter_init_context(&cpuctx->ctx, NULL);
1596
1597 mutex_lock(&perf_resource_mutex);
1598 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
1599 mutex_unlock(&perf_resource_mutex);
1600
1601 hw_perf_counter_setup();
1602 }
1603
1604 #ifdef CONFIG_HOTPLUG_CPU
1605 static void __perf_counter_exit_cpu(void *info)
1606 {
1607 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1608 struct perf_counter_context *ctx = &cpuctx->ctx;
1609 struct perf_counter *counter, *tmp;
1610
1611 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
1612 __perf_counter_remove_from_context(counter);
1613
1614 }
1615 static void perf_counter_exit_cpu(int cpu)
1616 {
1617 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
1618 }
1619 #else
1620 static inline void perf_counter_exit_cpu(int cpu) { }
1621 #endif
1622
1623 static int __cpuinit
1624 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
1625 {
1626 unsigned int cpu = (long)hcpu;
1627
1628 switch (action) {
1629
1630 case CPU_UP_PREPARE:
1631 case CPU_UP_PREPARE_FROZEN:
1632 perf_counter_init_cpu(cpu);
1633 break;
1634
1635 case CPU_DOWN_PREPARE:
1636 case CPU_DOWN_PREPARE_FROZEN:
1637 perf_counter_exit_cpu(cpu);
1638 break;
1639
1640 default:
1641 break;
1642 }
1643
1644 return NOTIFY_OK;
1645 }
1646
1647 static struct notifier_block __cpuinitdata perf_cpu_nb = {
1648 .notifier_call = perf_cpu_notify,
1649 };
1650
1651 static int __init perf_counter_init(void)
1652 {
1653 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1654 (void *)(long)smp_processor_id());
1655 register_cpu_notifier(&perf_cpu_nb);
1656
1657 return 0;
1658 }
1659 early_initcall(perf_counter_init);
1660
1661 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1662 {
1663 return sprintf(buf, "%d\n", perf_reserved_percpu);
1664 }
1665
1666 static ssize_t
1667 perf_set_reserve_percpu(struct sysdev_class *class,
1668 const char *buf,
1669 size_t count)
1670 {
1671 struct perf_cpu_context *cpuctx;
1672 unsigned long val;
1673 int err, cpu, mpt;
1674
1675 err = strict_strtoul(buf, 10, &val);
1676 if (err)
1677 return err;
1678 if (val > perf_max_counters)
1679 return -EINVAL;
1680
1681 mutex_lock(&perf_resource_mutex);
1682 perf_reserved_percpu = val;
1683 for_each_online_cpu(cpu) {
1684 cpuctx = &per_cpu(perf_cpu_context, cpu);
1685 spin_lock_irq(&cpuctx->ctx.lock);
1686 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1687 perf_max_counters - perf_reserved_percpu);
1688 cpuctx->max_pertask = mpt;
1689 spin_unlock_irq(&cpuctx->ctx.lock);
1690 }
1691 mutex_unlock(&perf_resource_mutex);
1692
1693 return count;
1694 }
1695
1696 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1697 {
1698 return sprintf(buf, "%d\n", perf_overcommit);
1699 }
1700
1701 static ssize_t
1702 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1703 {
1704 unsigned long val;
1705 int err;
1706
1707 err = strict_strtoul(buf, 10, &val);
1708 if (err)
1709 return err;
1710 if (val > 1)
1711 return -EINVAL;
1712
1713 mutex_lock(&perf_resource_mutex);
1714 perf_overcommit = val;
1715 mutex_unlock(&perf_resource_mutex);
1716
1717 return count;
1718 }
1719
1720 static SYSDEV_CLASS_ATTR(
1721 reserve_percpu,
1722 0644,
1723 perf_show_reserve_percpu,
1724 perf_set_reserve_percpu
1725 );
1726
1727 static SYSDEV_CLASS_ATTR(
1728 overcommit,
1729 0644,
1730 perf_show_overcommit,
1731 perf_set_overcommit
1732 );
1733
1734 static struct attribute *perfclass_attrs[] = {
1735 &attr_reserve_percpu.attr,
1736 &attr_overcommit.attr,
1737 NULL
1738 };
1739
1740 static struct attribute_group perfclass_attr_group = {
1741 .attrs = perfclass_attrs,
1742 .name = "perf_counters",
1743 };
1744
1745 static int __init perf_counter_sysfs_init(void)
1746 {
1747 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1748 &perfclass_attr_group);
1749 }
1750 device_initcall(perf_counter_sysfs_init);
This page took 0.08934 seconds and 5 git commands to generate.