perf_events: Move code around to prepare for cgroup
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 enum event_type_t {
42 EVENT_FLEXIBLE = 0x1,
43 EVENT_PINNED = 0x2,
44 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
45 };
46
47 atomic_t perf_task_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 static LIST_HEAD(pmus);
53 static DEFINE_MUTEX(pmus_lock);
54 static struct srcu_struct pmus_srcu;
55
56 /*
57 * perf event paranoia level:
58 * -1 - not paranoid at all
59 * 0 - disallow raw tracepoint access for unpriv
60 * 1 - disallow cpu events for unpriv
61 * 2 - disallow kernel profiling for unpriv
62 */
63 int sysctl_perf_event_paranoid __read_mostly = 1;
64
65 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf event sample rate
69 */
70 int sysctl_perf_event_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_event_id;
73
74 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
75 enum event_type_t event_type);
76
77 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
78 enum event_type_t event_type);
79
80 void __weak perf_event_print_debug(void) { }
81
82 extern __weak const char *perf_pmu_name(void)
83 {
84 return "pmu";
85 }
86
87 static inline u64 perf_clock(void)
88 {
89 return local_clock();
90 }
91
92 void perf_pmu_disable(struct pmu *pmu)
93 {
94 int *count = this_cpu_ptr(pmu->pmu_disable_count);
95 if (!(*count)++)
96 pmu->pmu_disable(pmu);
97 }
98
99 void perf_pmu_enable(struct pmu *pmu)
100 {
101 int *count = this_cpu_ptr(pmu->pmu_disable_count);
102 if (!--(*count))
103 pmu->pmu_enable(pmu);
104 }
105
106 static DEFINE_PER_CPU(struct list_head, rotation_list);
107
108 /*
109 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110 * because they're strictly cpu affine and rotate_start is called with IRQs
111 * disabled, while rotate_context is called from IRQ context.
112 */
113 static void perf_pmu_rotate_start(struct pmu *pmu)
114 {
115 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
116 struct list_head *head = &__get_cpu_var(rotation_list);
117
118 WARN_ON(!irqs_disabled());
119
120 if (list_empty(&cpuctx->rotation_list))
121 list_add(&cpuctx->rotation_list, head);
122 }
123
124 static void get_ctx(struct perf_event_context *ctx)
125 {
126 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
127 }
128
129 static void free_ctx(struct rcu_head *head)
130 {
131 struct perf_event_context *ctx;
132
133 ctx = container_of(head, struct perf_event_context, rcu_head);
134 kfree(ctx);
135 }
136
137 static void put_ctx(struct perf_event_context *ctx)
138 {
139 if (atomic_dec_and_test(&ctx->refcount)) {
140 if (ctx->parent_ctx)
141 put_ctx(ctx->parent_ctx);
142 if (ctx->task)
143 put_task_struct(ctx->task);
144 call_rcu(&ctx->rcu_head, free_ctx);
145 }
146 }
147
148 static void unclone_ctx(struct perf_event_context *ctx)
149 {
150 if (ctx->parent_ctx) {
151 put_ctx(ctx->parent_ctx);
152 ctx->parent_ctx = NULL;
153 }
154 }
155
156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
157 {
158 /*
159 * only top level events have the pid namespace they were created in
160 */
161 if (event->parent)
162 event = event->parent;
163
164 return task_tgid_nr_ns(p, event->ns);
165 }
166
167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
168 {
169 /*
170 * only top level events have the pid namespace they were created in
171 */
172 if (event->parent)
173 event = event->parent;
174
175 return task_pid_nr_ns(p, event->ns);
176 }
177
178 /*
179 * If we inherit events we want to return the parent event id
180 * to userspace.
181 */
182 static u64 primary_event_id(struct perf_event *event)
183 {
184 u64 id = event->id;
185
186 if (event->parent)
187 id = event->parent->id;
188
189 return id;
190 }
191
192 /*
193 * Get the perf_event_context for a task and lock it.
194 * This has to cope with with the fact that until it is locked,
195 * the context could get moved to another task.
196 */
197 static struct perf_event_context *
198 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
199 {
200 struct perf_event_context *ctx;
201
202 rcu_read_lock();
203 retry:
204 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
205 if (ctx) {
206 /*
207 * If this context is a clone of another, it might
208 * get swapped for another underneath us by
209 * perf_event_task_sched_out, though the
210 * rcu_read_lock() protects us from any context
211 * getting freed. Lock the context and check if it
212 * got swapped before we could get the lock, and retry
213 * if so. If we locked the right context, then it
214 * can't get swapped on us any more.
215 */
216 raw_spin_lock_irqsave(&ctx->lock, *flags);
217 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
218 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
219 goto retry;
220 }
221
222 if (!atomic_inc_not_zero(&ctx->refcount)) {
223 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
224 ctx = NULL;
225 }
226 }
227 rcu_read_unlock();
228 return ctx;
229 }
230
231 /*
232 * Get the context for a task and increment its pin_count so it
233 * can't get swapped to another task. This also increments its
234 * reference count so that the context can't get freed.
235 */
236 static struct perf_event_context *
237 perf_pin_task_context(struct task_struct *task, int ctxn)
238 {
239 struct perf_event_context *ctx;
240 unsigned long flags;
241
242 ctx = perf_lock_task_context(task, ctxn, &flags);
243 if (ctx) {
244 ++ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 }
247 return ctx;
248 }
249
250 static void perf_unpin_context(struct perf_event_context *ctx)
251 {
252 unsigned long flags;
253
254 raw_spin_lock_irqsave(&ctx->lock, flags);
255 --ctx->pin_count;
256 raw_spin_unlock_irqrestore(&ctx->lock, flags);
257 put_ctx(ctx);
258 }
259
260 /*
261 * Update the record of the current time in a context.
262 */
263 static void update_context_time(struct perf_event_context *ctx)
264 {
265 u64 now = perf_clock();
266
267 ctx->time += now - ctx->timestamp;
268 ctx->timestamp = now;
269 }
270
271 /*
272 * Update the total_time_enabled and total_time_running fields for a event.
273 */
274 static void update_event_times(struct perf_event *event)
275 {
276 struct perf_event_context *ctx = event->ctx;
277 u64 run_end;
278
279 if (event->state < PERF_EVENT_STATE_INACTIVE ||
280 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
281 return;
282
283 if (ctx->is_active)
284 run_end = ctx->time;
285 else
286 run_end = event->tstamp_stopped;
287
288 event->total_time_enabled = run_end - event->tstamp_enabled;
289
290 if (event->state == PERF_EVENT_STATE_INACTIVE)
291 run_end = event->tstamp_stopped;
292 else
293 run_end = ctx->time;
294
295 event->total_time_running = run_end - event->tstamp_running;
296 }
297
298 /*
299 * Update total_time_enabled and total_time_running for all events in a group.
300 */
301 static void update_group_times(struct perf_event *leader)
302 {
303 struct perf_event *event;
304
305 update_event_times(leader);
306 list_for_each_entry(event, &leader->sibling_list, group_entry)
307 update_event_times(event);
308 }
309
310 static struct list_head *
311 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
312 {
313 if (event->attr.pinned)
314 return &ctx->pinned_groups;
315 else
316 return &ctx->flexible_groups;
317 }
318
319 /*
320 * Add a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
322 */
323 static void
324 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
325 {
326 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
327 event->attach_state |= PERF_ATTACH_CONTEXT;
328
329 /*
330 * If we're a stand alone event or group leader, we go to the context
331 * list, group events are kept attached to the group so that
332 * perf_group_detach can, at all times, locate all siblings.
333 */
334 if (event->group_leader == event) {
335 struct list_head *list;
336
337 if (is_software_event(event))
338 event->group_flags |= PERF_GROUP_SOFTWARE;
339
340 list = ctx_group_list(event, ctx);
341 list_add_tail(&event->group_entry, list);
342 }
343
344 list_add_rcu(&event->event_entry, &ctx->event_list);
345 if (!ctx->nr_events)
346 perf_pmu_rotate_start(ctx->pmu);
347 ctx->nr_events++;
348 if (event->attr.inherit_stat)
349 ctx->nr_stat++;
350 }
351
352 /*
353 * Called at perf_event creation and when events are attached/detached from a
354 * group.
355 */
356 static void perf_event__read_size(struct perf_event *event)
357 {
358 int entry = sizeof(u64); /* value */
359 int size = 0;
360 int nr = 1;
361
362 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
363 size += sizeof(u64);
364
365 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
366 size += sizeof(u64);
367
368 if (event->attr.read_format & PERF_FORMAT_ID)
369 entry += sizeof(u64);
370
371 if (event->attr.read_format & PERF_FORMAT_GROUP) {
372 nr += event->group_leader->nr_siblings;
373 size += sizeof(u64);
374 }
375
376 size += entry * nr;
377 event->read_size = size;
378 }
379
380 static void perf_event__header_size(struct perf_event *event)
381 {
382 struct perf_sample_data *data;
383 u64 sample_type = event->attr.sample_type;
384 u16 size = 0;
385
386 perf_event__read_size(event);
387
388 if (sample_type & PERF_SAMPLE_IP)
389 size += sizeof(data->ip);
390
391 if (sample_type & PERF_SAMPLE_ADDR)
392 size += sizeof(data->addr);
393
394 if (sample_type & PERF_SAMPLE_PERIOD)
395 size += sizeof(data->period);
396
397 if (sample_type & PERF_SAMPLE_READ)
398 size += event->read_size;
399
400 event->header_size = size;
401 }
402
403 static void perf_event__id_header_size(struct perf_event *event)
404 {
405 struct perf_sample_data *data;
406 u64 sample_type = event->attr.sample_type;
407 u16 size = 0;
408
409 if (sample_type & PERF_SAMPLE_TID)
410 size += sizeof(data->tid_entry);
411
412 if (sample_type & PERF_SAMPLE_TIME)
413 size += sizeof(data->time);
414
415 if (sample_type & PERF_SAMPLE_ID)
416 size += sizeof(data->id);
417
418 if (sample_type & PERF_SAMPLE_STREAM_ID)
419 size += sizeof(data->stream_id);
420
421 if (sample_type & PERF_SAMPLE_CPU)
422 size += sizeof(data->cpu_entry);
423
424 event->id_header_size = size;
425 }
426
427 static void perf_group_attach(struct perf_event *event)
428 {
429 struct perf_event *group_leader = event->group_leader, *pos;
430
431 /*
432 * We can have double attach due to group movement in perf_event_open.
433 */
434 if (event->attach_state & PERF_ATTACH_GROUP)
435 return;
436
437 event->attach_state |= PERF_ATTACH_GROUP;
438
439 if (group_leader == event)
440 return;
441
442 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
443 !is_software_event(event))
444 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
445
446 list_add_tail(&event->group_entry, &group_leader->sibling_list);
447 group_leader->nr_siblings++;
448
449 perf_event__header_size(group_leader);
450
451 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
452 perf_event__header_size(pos);
453 }
454
455 /*
456 * Remove a event from the lists for its context.
457 * Must be called with ctx->mutex and ctx->lock held.
458 */
459 static void
460 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
461 {
462 /*
463 * We can have double detach due to exit/hot-unplug + close.
464 */
465 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
466 return;
467
468 event->attach_state &= ~PERF_ATTACH_CONTEXT;
469
470 ctx->nr_events--;
471 if (event->attr.inherit_stat)
472 ctx->nr_stat--;
473
474 list_del_rcu(&event->event_entry);
475
476 if (event->group_leader == event)
477 list_del_init(&event->group_entry);
478
479 update_group_times(event);
480
481 /*
482 * If event was in error state, then keep it
483 * that way, otherwise bogus counts will be
484 * returned on read(). The only way to get out
485 * of error state is by explicit re-enabling
486 * of the event
487 */
488 if (event->state > PERF_EVENT_STATE_OFF)
489 event->state = PERF_EVENT_STATE_OFF;
490 }
491
492 static void perf_group_detach(struct perf_event *event)
493 {
494 struct perf_event *sibling, *tmp;
495 struct list_head *list = NULL;
496
497 /*
498 * We can have double detach due to exit/hot-unplug + close.
499 */
500 if (!(event->attach_state & PERF_ATTACH_GROUP))
501 return;
502
503 event->attach_state &= ~PERF_ATTACH_GROUP;
504
505 /*
506 * If this is a sibling, remove it from its group.
507 */
508 if (event->group_leader != event) {
509 list_del_init(&event->group_entry);
510 event->group_leader->nr_siblings--;
511 goto out;
512 }
513
514 if (!list_empty(&event->group_entry))
515 list = &event->group_entry;
516
517 /*
518 * If this was a group event with sibling events then
519 * upgrade the siblings to singleton events by adding them
520 * to whatever list we are on.
521 */
522 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
523 if (list)
524 list_move_tail(&sibling->group_entry, list);
525 sibling->group_leader = sibling;
526
527 /* Inherit group flags from the previous leader */
528 sibling->group_flags = event->group_flags;
529 }
530
531 out:
532 perf_event__header_size(event->group_leader);
533
534 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
535 perf_event__header_size(tmp);
536 }
537
538 static inline int
539 event_filter_match(struct perf_event *event)
540 {
541 return event->cpu == -1 || event->cpu == smp_processor_id();
542 }
543
544 static void
545 event_sched_out(struct perf_event *event,
546 struct perf_cpu_context *cpuctx,
547 struct perf_event_context *ctx)
548 {
549 u64 delta;
550 /*
551 * An event which could not be activated because of
552 * filter mismatch still needs to have its timings
553 * maintained, otherwise bogus information is return
554 * via read() for time_enabled, time_running:
555 */
556 if (event->state == PERF_EVENT_STATE_INACTIVE
557 && !event_filter_match(event)) {
558 delta = ctx->time - event->tstamp_stopped;
559 event->tstamp_running += delta;
560 event->tstamp_stopped = ctx->time;
561 }
562
563 if (event->state != PERF_EVENT_STATE_ACTIVE)
564 return;
565
566 event->state = PERF_EVENT_STATE_INACTIVE;
567 if (event->pending_disable) {
568 event->pending_disable = 0;
569 event->state = PERF_EVENT_STATE_OFF;
570 }
571 event->tstamp_stopped = ctx->time;
572 event->pmu->del(event, 0);
573 event->oncpu = -1;
574
575 if (!is_software_event(event))
576 cpuctx->active_oncpu--;
577 ctx->nr_active--;
578 if (event->attr.exclusive || !cpuctx->active_oncpu)
579 cpuctx->exclusive = 0;
580 }
581
582 static void
583 group_sched_out(struct perf_event *group_event,
584 struct perf_cpu_context *cpuctx,
585 struct perf_event_context *ctx)
586 {
587 struct perf_event *event;
588 int state = group_event->state;
589
590 event_sched_out(group_event, cpuctx, ctx);
591
592 /*
593 * Schedule out siblings (if any):
594 */
595 list_for_each_entry(event, &group_event->sibling_list, group_entry)
596 event_sched_out(event, cpuctx, ctx);
597
598 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
599 cpuctx->exclusive = 0;
600 }
601
602 static inline struct perf_cpu_context *
603 __get_cpu_context(struct perf_event_context *ctx)
604 {
605 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
606 }
607
608 /*
609 * Cross CPU call to remove a performance event
610 *
611 * We disable the event on the hardware level first. After that we
612 * remove it from the context list.
613 */
614 static void __perf_event_remove_from_context(void *info)
615 {
616 struct perf_event *event = info;
617 struct perf_event_context *ctx = event->ctx;
618 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
619
620 /*
621 * If this is a task context, we need to check whether it is
622 * the current task context of this cpu. If not it has been
623 * scheduled out before the smp call arrived.
624 */
625 if (ctx->task && cpuctx->task_ctx != ctx)
626 return;
627
628 raw_spin_lock(&ctx->lock);
629
630 event_sched_out(event, cpuctx, ctx);
631
632 list_del_event(event, ctx);
633
634 raw_spin_unlock(&ctx->lock);
635 }
636
637
638 /*
639 * Remove the event from a task's (or a CPU's) list of events.
640 *
641 * Must be called with ctx->mutex held.
642 *
643 * CPU events are removed with a smp call. For task events we only
644 * call when the task is on a CPU.
645 *
646 * If event->ctx is a cloned context, callers must make sure that
647 * every task struct that event->ctx->task could possibly point to
648 * remains valid. This is OK when called from perf_release since
649 * that only calls us on the top-level context, which can't be a clone.
650 * When called from perf_event_exit_task, it's OK because the
651 * context has been detached from its task.
652 */
653 static void perf_event_remove_from_context(struct perf_event *event)
654 {
655 struct perf_event_context *ctx = event->ctx;
656 struct task_struct *task = ctx->task;
657
658 if (!task) {
659 /*
660 * Per cpu events are removed via an smp call and
661 * the removal is always successful.
662 */
663 smp_call_function_single(event->cpu,
664 __perf_event_remove_from_context,
665 event, 1);
666 return;
667 }
668
669 retry:
670 task_oncpu_function_call(task, __perf_event_remove_from_context,
671 event);
672
673 raw_spin_lock_irq(&ctx->lock);
674 /*
675 * If the context is active we need to retry the smp call.
676 */
677 if (ctx->nr_active && !list_empty(&event->group_entry)) {
678 raw_spin_unlock_irq(&ctx->lock);
679 goto retry;
680 }
681
682 /*
683 * The lock prevents that this context is scheduled in so we
684 * can remove the event safely, if the call above did not
685 * succeed.
686 */
687 if (!list_empty(&event->group_entry))
688 list_del_event(event, ctx);
689 raw_spin_unlock_irq(&ctx->lock);
690 }
691
692 /*
693 * Cross CPU call to disable a performance event
694 */
695 static void __perf_event_disable(void *info)
696 {
697 struct perf_event *event = info;
698 struct perf_event_context *ctx = event->ctx;
699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700
701 /*
702 * If this is a per-task event, need to check whether this
703 * event's task is the current task on this cpu.
704 */
705 if (ctx->task && cpuctx->task_ctx != ctx)
706 return;
707
708 raw_spin_lock(&ctx->lock);
709
710 /*
711 * If the event is on, turn it off.
712 * If it is in error state, leave it in error state.
713 */
714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
715 update_context_time(ctx);
716 update_group_times(event);
717 if (event == event->group_leader)
718 group_sched_out(event, cpuctx, ctx);
719 else
720 event_sched_out(event, cpuctx, ctx);
721 event->state = PERF_EVENT_STATE_OFF;
722 }
723
724 raw_spin_unlock(&ctx->lock);
725 }
726
727 /*
728 * Disable a event.
729 *
730 * If event->ctx is a cloned context, callers must make sure that
731 * every task struct that event->ctx->task could possibly point to
732 * remains valid. This condition is satisifed when called through
733 * perf_event_for_each_child or perf_event_for_each because they
734 * hold the top-level event's child_mutex, so any descendant that
735 * goes to exit will block in sync_child_event.
736 * When called from perf_pending_event it's OK because event->ctx
737 * is the current context on this CPU and preemption is disabled,
738 * hence we can't get into perf_event_task_sched_out for this context.
739 */
740 void perf_event_disable(struct perf_event *event)
741 {
742 struct perf_event_context *ctx = event->ctx;
743 struct task_struct *task = ctx->task;
744
745 if (!task) {
746 /*
747 * Disable the event on the cpu that it's on
748 */
749 smp_call_function_single(event->cpu, __perf_event_disable,
750 event, 1);
751 return;
752 }
753
754 retry:
755 task_oncpu_function_call(task, __perf_event_disable, event);
756
757 raw_spin_lock_irq(&ctx->lock);
758 /*
759 * If the event is still active, we need to retry the cross-call.
760 */
761 if (event->state == PERF_EVENT_STATE_ACTIVE) {
762 raw_spin_unlock_irq(&ctx->lock);
763 goto retry;
764 }
765
766 /*
767 * Since we have the lock this context can't be scheduled
768 * in, so we can change the state safely.
769 */
770 if (event->state == PERF_EVENT_STATE_INACTIVE) {
771 update_group_times(event);
772 event->state = PERF_EVENT_STATE_OFF;
773 }
774
775 raw_spin_unlock_irq(&ctx->lock);
776 }
777
778 static int
779 event_sched_in(struct perf_event *event,
780 struct perf_cpu_context *cpuctx,
781 struct perf_event_context *ctx)
782 {
783 if (event->state <= PERF_EVENT_STATE_OFF)
784 return 0;
785
786 event->state = PERF_EVENT_STATE_ACTIVE;
787 event->oncpu = smp_processor_id();
788 /*
789 * The new state must be visible before we turn it on in the hardware:
790 */
791 smp_wmb();
792
793 if (event->pmu->add(event, PERF_EF_START)) {
794 event->state = PERF_EVENT_STATE_INACTIVE;
795 event->oncpu = -1;
796 return -EAGAIN;
797 }
798
799 event->tstamp_running += ctx->time - event->tstamp_stopped;
800
801 event->shadow_ctx_time = ctx->time - ctx->timestamp;
802
803 if (!is_software_event(event))
804 cpuctx->active_oncpu++;
805 ctx->nr_active++;
806
807 if (event->attr.exclusive)
808 cpuctx->exclusive = 1;
809
810 return 0;
811 }
812
813 static int
814 group_sched_in(struct perf_event *group_event,
815 struct perf_cpu_context *cpuctx,
816 struct perf_event_context *ctx)
817 {
818 struct perf_event *event, *partial_group = NULL;
819 struct pmu *pmu = group_event->pmu;
820 u64 now = ctx->time;
821 bool simulate = false;
822
823 if (group_event->state == PERF_EVENT_STATE_OFF)
824 return 0;
825
826 pmu->start_txn(pmu);
827
828 if (event_sched_in(group_event, cpuctx, ctx)) {
829 pmu->cancel_txn(pmu);
830 return -EAGAIN;
831 }
832
833 /*
834 * Schedule in siblings as one group (if any):
835 */
836 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
837 if (event_sched_in(event, cpuctx, ctx)) {
838 partial_group = event;
839 goto group_error;
840 }
841 }
842
843 if (!pmu->commit_txn(pmu))
844 return 0;
845
846 group_error:
847 /*
848 * Groups can be scheduled in as one unit only, so undo any
849 * partial group before returning:
850 * The events up to the failed event are scheduled out normally,
851 * tstamp_stopped will be updated.
852 *
853 * The failed events and the remaining siblings need to have
854 * their timings updated as if they had gone thru event_sched_in()
855 * and event_sched_out(). This is required to get consistent timings
856 * across the group. This also takes care of the case where the group
857 * could never be scheduled by ensuring tstamp_stopped is set to mark
858 * the time the event was actually stopped, such that time delta
859 * calculation in update_event_times() is correct.
860 */
861 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
862 if (event == partial_group)
863 simulate = true;
864
865 if (simulate) {
866 event->tstamp_running += now - event->tstamp_stopped;
867 event->tstamp_stopped = now;
868 } else {
869 event_sched_out(event, cpuctx, ctx);
870 }
871 }
872 event_sched_out(group_event, cpuctx, ctx);
873
874 pmu->cancel_txn(pmu);
875
876 return -EAGAIN;
877 }
878
879 /*
880 * Work out whether we can put this event group on the CPU now.
881 */
882 static int group_can_go_on(struct perf_event *event,
883 struct perf_cpu_context *cpuctx,
884 int can_add_hw)
885 {
886 /*
887 * Groups consisting entirely of software events can always go on.
888 */
889 if (event->group_flags & PERF_GROUP_SOFTWARE)
890 return 1;
891 /*
892 * If an exclusive group is already on, no other hardware
893 * events can go on.
894 */
895 if (cpuctx->exclusive)
896 return 0;
897 /*
898 * If this group is exclusive and there are already
899 * events on the CPU, it can't go on.
900 */
901 if (event->attr.exclusive && cpuctx->active_oncpu)
902 return 0;
903 /*
904 * Otherwise, try to add it if all previous groups were able
905 * to go on.
906 */
907 return can_add_hw;
908 }
909
910 static void add_event_to_ctx(struct perf_event *event,
911 struct perf_event_context *ctx)
912 {
913 list_add_event(event, ctx);
914 perf_group_attach(event);
915 event->tstamp_enabled = ctx->time;
916 event->tstamp_running = ctx->time;
917 event->tstamp_stopped = ctx->time;
918 }
919
920 /*
921 * Cross CPU call to install and enable a performance event
922 *
923 * Must be called with ctx->mutex held
924 */
925 static void __perf_install_in_context(void *info)
926 {
927 struct perf_event *event = info;
928 struct perf_event_context *ctx = event->ctx;
929 struct perf_event *leader = event->group_leader;
930 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
931 int err;
932
933 /*
934 * If this is a task context, we need to check whether it is
935 * the current task context of this cpu. If not it has been
936 * scheduled out before the smp call arrived.
937 * Or possibly this is the right context but it isn't
938 * on this cpu because it had no events.
939 */
940 if (ctx->task && cpuctx->task_ctx != ctx) {
941 if (cpuctx->task_ctx || ctx->task != current)
942 return;
943 cpuctx->task_ctx = ctx;
944 }
945
946 raw_spin_lock(&ctx->lock);
947 ctx->is_active = 1;
948 update_context_time(ctx);
949
950 add_event_to_ctx(event, ctx);
951
952 if (event->cpu != -1 && event->cpu != smp_processor_id())
953 goto unlock;
954
955 /*
956 * Don't put the event on if it is disabled or if
957 * it is in a group and the group isn't on.
958 */
959 if (event->state != PERF_EVENT_STATE_INACTIVE ||
960 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
961 goto unlock;
962
963 /*
964 * An exclusive event can't go on if there are already active
965 * hardware events, and no hardware event can go on if there
966 * is already an exclusive event on.
967 */
968 if (!group_can_go_on(event, cpuctx, 1))
969 err = -EEXIST;
970 else
971 err = event_sched_in(event, cpuctx, ctx);
972
973 if (err) {
974 /*
975 * This event couldn't go on. If it is in a group
976 * then we have to pull the whole group off.
977 * If the event group is pinned then put it in error state.
978 */
979 if (leader != event)
980 group_sched_out(leader, cpuctx, ctx);
981 if (leader->attr.pinned) {
982 update_group_times(leader);
983 leader->state = PERF_EVENT_STATE_ERROR;
984 }
985 }
986
987 unlock:
988 raw_spin_unlock(&ctx->lock);
989 }
990
991 /*
992 * Attach a performance event to a context
993 *
994 * First we add the event to the list with the hardware enable bit
995 * in event->hw_config cleared.
996 *
997 * If the event is attached to a task which is on a CPU we use a smp
998 * call to enable it in the task context. The task might have been
999 * scheduled away, but we check this in the smp call again.
1000 *
1001 * Must be called with ctx->mutex held.
1002 */
1003 static void
1004 perf_install_in_context(struct perf_event_context *ctx,
1005 struct perf_event *event,
1006 int cpu)
1007 {
1008 struct task_struct *task = ctx->task;
1009
1010 event->ctx = ctx;
1011
1012 if (!task) {
1013 /*
1014 * Per cpu events are installed via an smp call and
1015 * the install is always successful.
1016 */
1017 smp_call_function_single(cpu, __perf_install_in_context,
1018 event, 1);
1019 return;
1020 }
1021
1022 retry:
1023 task_oncpu_function_call(task, __perf_install_in_context,
1024 event);
1025
1026 raw_spin_lock_irq(&ctx->lock);
1027 /*
1028 * we need to retry the smp call.
1029 */
1030 if (ctx->is_active && list_empty(&event->group_entry)) {
1031 raw_spin_unlock_irq(&ctx->lock);
1032 goto retry;
1033 }
1034
1035 /*
1036 * The lock prevents that this context is scheduled in so we
1037 * can add the event safely, if it the call above did not
1038 * succeed.
1039 */
1040 if (list_empty(&event->group_entry))
1041 add_event_to_ctx(event, ctx);
1042 raw_spin_unlock_irq(&ctx->lock);
1043 }
1044
1045 /*
1046 * Put a event into inactive state and update time fields.
1047 * Enabling the leader of a group effectively enables all
1048 * the group members that aren't explicitly disabled, so we
1049 * have to update their ->tstamp_enabled also.
1050 * Note: this works for group members as well as group leaders
1051 * since the non-leader members' sibling_lists will be empty.
1052 */
1053 static void __perf_event_mark_enabled(struct perf_event *event,
1054 struct perf_event_context *ctx)
1055 {
1056 struct perf_event *sub;
1057
1058 event->state = PERF_EVENT_STATE_INACTIVE;
1059 event->tstamp_enabled = ctx->time - event->total_time_enabled;
1060 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1061 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1062 sub->tstamp_enabled =
1063 ctx->time - sub->total_time_enabled;
1064 }
1065 }
1066 }
1067
1068 /*
1069 * Cross CPU call to enable a performance event
1070 */
1071 static void __perf_event_enable(void *info)
1072 {
1073 struct perf_event *event = info;
1074 struct perf_event_context *ctx = event->ctx;
1075 struct perf_event *leader = event->group_leader;
1076 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1077 int err;
1078
1079 /*
1080 * If this is a per-task event, need to check whether this
1081 * event's task is the current task on this cpu.
1082 */
1083 if (ctx->task && cpuctx->task_ctx != ctx) {
1084 if (cpuctx->task_ctx || ctx->task != current)
1085 return;
1086 cpuctx->task_ctx = ctx;
1087 }
1088
1089 raw_spin_lock(&ctx->lock);
1090 ctx->is_active = 1;
1091 update_context_time(ctx);
1092
1093 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1094 goto unlock;
1095 __perf_event_mark_enabled(event, ctx);
1096
1097 if (event->cpu != -1 && event->cpu != smp_processor_id())
1098 goto unlock;
1099
1100 /*
1101 * If the event is in a group and isn't the group leader,
1102 * then don't put it on unless the group is on.
1103 */
1104 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1105 goto unlock;
1106
1107 if (!group_can_go_on(event, cpuctx, 1)) {
1108 err = -EEXIST;
1109 } else {
1110 if (event == leader)
1111 err = group_sched_in(event, cpuctx, ctx);
1112 else
1113 err = event_sched_in(event, cpuctx, ctx);
1114 }
1115
1116 if (err) {
1117 /*
1118 * If this event can't go on and it's part of a
1119 * group, then the whole group has to come off.
1120 */
1121 if (leader != event)
1122 group_sched_out(leader, cpuctx, ctx);
1123 if (leader->attr.pinned) {
1124 update_group_times(leader);
1125 leader->state = PERF_EVENT_STATE_ERROR;
1126 }
1127 }
1128
1129 unlock:
1130 raw_spin_unlock(&ctx->lock);
1131 }
1132
1133 /*
1134 * Enable a event.
1135 *
1136 * If event->ctx is a cloned context, callers must make sure that
1137 * every task struct that event->ctx->task could possibly point to
1138 * remains valid. This condition is satisfied when called through
1139 * perf_event_for_each_child or perf_event_for_each as described
1140 * for perf_event_disable.
1141 */
1142 void perf_event_enable(struct perf_event *event)
1143 {
1144 struct perf_event_context *ctx = event->ctx;
1145 struct task_struct *task = ctx->task;
1146
1147 if (!task) {
1148 /*
1149 * Enable the event on the cpu that it's on
1150 */
1151 smp_call_function_single(event->cpu, __perf_event_enable,
1152 event, 1);
1153 return;
1154 }
1155
1156 raw_spin_lock_irq(&ctx->lock);
1157 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1158 goto out;
1159
1160 /*
1161 * If the event is in error state, clear that first.
1162 * That way, if we see the event in error state below, we
1163 * know that it has gone back into error state, as distinct
1164 * from the task having been scheduled away before the
1165 * cross-call arrived.
1166 */
1167 if (event->state == PERF_EVENT_STATE_ERROR)
1168 event->state = PERF_EVENT_STATE_OFF;
1169
1170 retry:
1171 raw_spin_unlock_irq(&ctx->lock);
1172 task_oncpu_function_call(task, __perf_event_enable, event);
1173
1174 raw_spin_lock_irq(&ctx->lock);
1175
1176 /*
1177 * If the context is active and the event is still off,
1178 * we need to retry the cross-call.
1179 */
1180 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1181 goto retry;
1182
1183 /*
1184 * Since we have the lock this context can't be scheduled
1185 * in, so we can change the state safely.
1186 */
1187 if (event->state == PERF_EVENT_STATE_OFF)
1188 __perf_event_mark_enabled(event, ctx);
1189
1190 out:
1191 raw_spin_unlock_irq(&ctx->lock);
1192 }
1193
1194 static int perf_event_refresh(struct perf_event *event, int refresh)
1195 {
1196 /*
1197 * not supported on inherited events
1198 */
1199 if (event->attr.inherit || !is_sampling_event(event))
1200 return -EINVAL;
1201
1202 atomic_add(refresh, &event->event_limit);
1203 perf_event_enable(event);
1204
1205 return 0;
1206 }
1207
1208 static void ctx_sched_out(struct perf_event_context *ctx,
1209 struct perf_cpu_context *cpuctx,
1210 enum event_type_t event_type)
1211 {
1212 struct perf_event *event;
1213
1214 raw_spin_lock(&ctx->lock);
1215 perf_pmu_disable(ctx->pmu);
1216 ctx->is_active = 0;
1217 if (likely(!ctx->nr_events))
1218 goto out;
1219 update_context_time(ctx);
1220
1221 if (!ctx->nr_active)
1222 goto out;
1223
1224 if (event_type & EVENT_PINNED) {
1225 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1226 group_sched_out(event, cpuctx, ctx);
1227 }
1228
1229 if (event_type & EVENT_FLEXIBLE) {
1230 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1231 group_sched_out(event, cpuctx, ctx);
1232 }
1233 out:
1234 perf_pmu_enable(ctx->pmu);
1235 raw_spin_unlock(&ctx->lock);
1236 }
1237
1238 /*
1239 * Test whether two contexts are equivalent, i.e. whether they
1240 * have both been cloned from the same version of the same context
1241 * and they both have the same number of enabled events.
1242 * If the number of enabled events is the same, then the set
1243 * of enabled events should be the same, because these are both
1244 * inherited contexts, therefore we can't access individual events
1245 * in them directly with an fd; we can only enable/disable all
1246 * events via prctl, or enable/disable all events in a family
1247 * via ioctl, which will have the same effect on both contexts.
1248 */
1249 static int context_equiv(struct perf_event_context *ctx1,
1250 struct perf_event_context *ctx2)
1251 {
1252 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1253 && ctx1->parent_gen == ctx2->parent_gen
1254 && !ctx1->pin_count && !ctx2->pin_count;
1255 }
1256
1257 static void __perf_event_sync_stat(struct perf_event *event,
1258 struct perf_event *next_event)
1259 {
1260 u64 value;
1261
1262 if (!event->attr.inherit_stat)
1263 return;
1264
1265 /*
1266 * Update the event value, we cannot use perf_event_read()
1267 * because we're in the middle of a context switch and have IRQs
1268 * disabled, which upsets smp_call_function_single(), however
1269 * we know the event must be on the current CPU, therefore we
1270 * don't need to use it.
1271 */
1272 switch (event->state) {
1273 case PERF_EVENT_STATE_ACTIVE:
1274 event->pmu->read(event);
1275 /* fall-through */
1276
1277 case PERF_EVENT_STATE_INACTIVE:
1278 update_event_times(event);
1279 break;
1280
1281 default:
1282 break;
1283 }
1284
1285 /*
1286 * In order to keep per-task stats reliable we need to flip the event
1287 * values when we flip the contexts.
1288 */
1289 value = local64_read(&next_event->count);
1290 value = local64_xchg(&event->count, value);
1291 local64_set(&next_event->count, value);
1292
1293 swap(event->total_time_enabled, next_event->total_time_enabled);
1294 swap(event->total_time_running, next_event->total_time_running);
1295
1296 /*
1297 * Since we swizzled the values, update the user visible data too.
1298 */
1299 perf_event_update_userpage(event);
1300 perf_event_update_userpage(next_event);
1301 }
1302
1303 #define list_next_entry(pos, member) \
1304 list_entry(pos->member.next, typeof(*pos), member)
1305
1306 static void perf_event_sync_stat(struct perf_event_context *ctx,
1307 struct perf_event_context *next_ctx)
1308 {
1309 struct perf_event *event, *next_event;
1310
1311 if (!ctx->nr_stat)
1312 return;
1313
1314 update_context_time(ctx);
1315
1316 event = list_first_entry(&ctx->event_list,
1317 struct perf_event, event_entry);
1318
1319 next_event = list_first_entry(&next_ctx->event_list,
1320 struct perf_event, event_entry);
1321
1322 while (&event->event_entry != &ctx->event_list &&
1323 &next_event->event_entry != &next_ctx->event_list) {
1324
1325 __perf_event_sync_stat(event, next_event);
1326
1327 event = list_next_entry(event, event_entry);
1328 next_event = list_next_entry(next_event, event_entry);
1329 }
1330 }
1331
1332 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1333 struct task_struct *next)
1334 {
1335 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1336 struct perf_event_context *next_ctx;
1337 struct perf_event_context *parent;
1338 struct perf_cpu_context *cpuctx;
1339 int do_switch = 1;
1340
1341 if (likely(!ctx))
1342 return;
1343
1344 cpuctx = __get_cpu_context(ctx);
1345 if (!cpuctx->task_ctx)
1346 return;
1347
1348 rcu_read_lock();
1349 parent = rcu_dereference(ctx->parent_ctx);
1350 next_ctx = next->perf_event_ctxp[ctxn];
1351 if (parent && next_ctx &&
1352 rcu_dereference(next_ctx->parent_ctx) == parent) {
1353 /*
1354 * Looks like the two contexts are clones, so we might be
1355 * able to optimize the context switch. We lock both
1356 * contexts and check that they are clones under the
1357 * lock (including re-checking that neither has been
1358 * uncloned in the meantime). It doesn't matter which
1359 * order we take the locks because no other cpu could
1360 * be trying to lock both of these tasks.
1361 */
1362 raw_spin_lock(&ctx->lock);
1363 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1364 if (context_equiv(ctx, next_ctx)) {
1365 /*
1366 * XXX do we need a memory barrier of sorts
1367 * wrt to rcu_dereference() of perf_event_ctxp
1368 */
1369 task->perf_event_ctxp[ctxn] = next_ctx;
1370 next->perf_event_ctxp[ctxn] = ctx;
1371 ctx->task = next;
1372 next_ctx->task = task;
1373 do_switch = 0;
1374
1375 perf_event_sync_stat(ctx, next_ctx);
1376 }
1377 raw_spin_unlock(&next_ctx->lock);
1378 raw_spin_unlock(&ctx->lock);
1379 }
1380 rcu_read_unlock();
1381
1382 if (do_switch) {
1383 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1384 cpuctx->task_ctx = NULL;
1385 }
1386 }
1387
1388 #define for_each_task_context_nr(ctxn) \
1389 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1390
1391 /*
1392 * Called from scheduler to remove the events of the current task,
1393 * with interrupts disabled.
1394 *
1395 * We stop each event and update the event value in event->count.
1396 *
1397 * This does not protect us against NMI, but disable()
1398 * sets the disabled bit in the control field of event _before_
1399 * accessing the event control register. If a NMI hits, then it will
1400 * not restart the event.
1401 */
1402 void __perf_event_task_sched_out(struct task_struct *task,
1403 struct task_struct *next)
1404 {
1405 int ctxn;
1406
1407 for_each_task_context_nr(ctxn)
1408 perf_event_context_sched_out(task, ctxn, next);
1409 }
1410
1411 static void task_ctx_sched_out(struct perf_event_context *ctx,
1412 enum event_type_t event_type)
1413 {
1414 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1415
1416 if (!cpuctx->task_ctx)
1417 return;
1418
1419 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1420 return;
1421
1422 ctx_sched_out(ctx, cpuctx, event_type);
1423 cpuctx->task_ctx = NULL;
1424 }
1425
1426 /*
1427 * Called with IRQs disabled
1428 */
1429 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1430 enum event_type_t event_type)
1431 {
1432 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1433 }
1434
1435 static void
1436 ctx_pinned_sched_in(struct perf_event_context *ctx,
1437 struct perf_cpu_context *cpuctx)
1438 {
1439 struct perf_event *event;
1440
1441 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1442 if (event->state <= PERF_EVENT_STATE_OFF)
1443 continue;
1444 if (event->cpu != -1 && event->cpu != smp_processor_id())
1445 continue;
1446
1447 if (group_can_go_on(event, cpuctx, 1))
1448 group_sched_in(event, cpuctx, ctx);
1449
1450 /*
1451 * If this pinned group hasn't been scheduled,
1452 * put it in error state.
1453 */
1454 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1455 update_group_times(event);
1456 event->state = PERF_EVENT_STATE_ERROR;
1457 }
1458 }
1459 }
1460
1461 static void
1462 ctx_flexible_sched_in(struct perf_event_context *ctx,
1463 struct perf_cpu_context *cpuctx)
1464 {
1465 struct perf_event *event;
1466 int can_add_hw = 1;
1467
1468 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1469 /* Ignore events in OFF or ERROR state */
1470 if (event->state <= PERF_EVENT_STATE_OFF)
1471 continue;
1472 /*
1473 * Listen to the 'cpu' scheduling filter constraint
1474 * of events:
1475 */
1476 if (event->cpu != -1 && event->cpu != smp_processor_id())
1477 continue;
1478
1479 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1480 if (group_sched_in(event, cpuctx, ctx))
1481 can_add_hw = 0;
1482 }
1483 }
1484 }
1485
1486 static void
1487 ctx_sched_in(struct perf_event_context *ctx,
1488 struct perf_cpu_context *cpuctx,
1489 enum event_type_t event_type)
1490 {
1491 raw_spin_lock(&ctx->lock);
1492 ctx->is_active = 1;
1493 if (likely(!ctx->nr_events))
1494 goto out;
1495
1496 ctx->timestamp = perf_clock();
1497
1498 /*
1499 * First go through the list and put on any pinned groups
1500 * in order to give them the best chance of going on.
1501 */
1502 if (event_type & EVENT_PINNED)
1503 ctx_pinned_sched_in(ctx, cpuctx);
1504
1505 /* Then walk through the lower prio flexible groups */
1506 if (event_type & EVENT_FLEXIBLE)
1507 ctx_flexible_sched_in(ctx, cpuctx);
1508
1509 out:
1510 raw_spin_unlock(&ctx->lock);
1511 }
1512
1513 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1514 enum event_type_t event_type)
1515 {
1516 struct perf_event_context *ctx = &cpuctx->ctx;
1517
1518 ctx_sched_in(ctx, cpuctx, event_type);
1519 }
1520
1521 static void task_ctx_sched_in(struct perf_event_context *ctx,
1522 enum event_type_t event_type)
1523 {
1524 struct perf_cpu_context *cpuctx;
1525
1526 cpuctx = __get_cpu_context(ctx);
1527 if (cpuctx->task_ctx == ctx)
1528 return;
1529
1530 ctx_sched_in(ctx, cpuctx, event_type);
1531 cpuctx->task_ctx = ctx;
1532 }
1533
1534 void perf_event_context_sched_in(struct perf_event_context *ctx)
1535 {
1536 struct perf_cpu_context *cpuctx;
1537
1538 cpuctx = __get_cpu_context(ctx);
1539 if (cpuctx->task_ctx == ctx)
1540 return;
1541
1542 perf_pmu_disable(ctx->pmu);
1543 /*
1544 * We want to keep the following priority order:
1545 * cpu pinned (that don't need to move), task pinned,
1546 * cpu flexible, task flexible.
1547 */
1548 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1549
1550 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1551 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1552 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1553
1554 cpuctx->task_ctx = ctx;
1555
1556 /*
1557 * Since these rotations are per-cpu, we need to ensure the
1558 * cpu-context we got scheduled on is actually rotating.
1559 */
1560 perf_pmu_rotate_start(ctx->pmu);
1561 perf_pmu_enable(ctx->pmu);
1562 }
1563
1564 /*
1565 * Called from scheduler to add the events of the current task
1566 * with interrupts disabled.
1567 *
1568 * We restore the event value and then enable it.
1569 *
1570 * This does not protect us against NMI, but enable()
1571 * sets the enabled bit in the control field of event _before_
1572 * accessing the event control register. If a NMI hits, then it will
1573 * keep the event running.
1574 */
1575 void __perf_event_task_sched_in(struct task_struct *task)
1576 {
1577 struct perf_event_context *ctx;
1578 int ctxn;
1579
1580 for_each_task_context_nr(ctxn) {
1581 ctx = task->perf_event_ctxp[ctxn];
1582 if (likely(!ctx))
1583 continue;
1584
1585 perf_event_context_sched_in(ctx);
1586 }
1587 }
1588
1589 #define MAX_INTERRUPTS (~0ULL)
1590
1591 static void perf_log_throttle(struct perf_event *event, int enable);
1592
1593 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1594 {
1595 u64 frequency = event->attr.sample_freq;
1596 u64 sec = NSEC_PER_SEC;
1597 u64 divisor, dividend;
1598
1599 int count_fls, nsec_fls, frequency_fls, sec_fls;
1600
1601 count_fls = fls64(count);
1602 nsec_fls = fls64(nsec);
1603 frequency_fls = fls64(frequency);
1604 sec_fls = 30;
1605
1606 /*
1607 * We got @count in @nsec, with a target of sample_freq HZ
1608 * the target period becomes:
1609 *
1610 * @count * 10^9
1611 * period = -------------------
1612 * @nsec * sample_freq
1613 *
1614 */
1615
1616 /*
1617 * Reduce accuracy by one bit such that @a and @b converge
1618 * to a similar magnitude.
1619 */
1620 #define REDUCE_FLS(a, b) \
1621 do { \
1622 if (a##_fls > b##_fls) { \
1623 a >>= 1; \
1624 a##_fls--; \
1625 } else { \
1626 b >>= 1; \
1627 b##_fls--; \
1628 } \
1629 } while (0)
1630
1631 /*
1632 * Reduce accuracy until either term fits in a u64, then proceed with
1633 * the other, so that finally we can do a u64/u64 division.
1634 */
1635 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1636 REDUCE_FLS(nsec, frequency);
1637 REDUCE_FLS(sec, count);
1638 }
1639
1640 if (count_fls + sec_fls > 64) {
1641 divisor = nsec * frequency;
1642
1643 while (count_fls + sec_fls > 64) {
1644 REDUCE_FLS(count, sec);
1645 divisor >>= 1;
1646 }
1647
1648 dividend = count * sec;
1649 } else {
1650 dividend = count * sec;
1651
1652 while (nsec_fls + frequency_fls > 64) {
1653 REDUCE_FLS(nsec, frequency);
1654 dividend >>= 1;
1655 }
1656
1657 divisor = nsec * frequency;
1658 }
1659
1660 if (!divisor)
1661 return dividend;
1662
1663 return div64_u64(dividend, divisor);
1664 }
1665
1666 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1667 {
1668 struct hw_perf_event *hwc = &event->hw;
1669 s64 period, sample_period;
1670 s64 delta;
1671
1672 period = perf_calculate_period(event, nsec, count);
1673
1674 delta = (s64)(period - hwc->sample_period);
1675 delta = (delta + 7) / 8; /* low pass filter */
1676
1677 sample_period = hwc->sample_period + delta;
1678
1679 if (!sample_period)
1680 sample_period = 1;
1681
1682 hwc->sample_period = sample_period;
1683
1684 if (local64_read(&hwc->period_left) > 8*sample_period) {
1685 event->pmu->stop(event, PERF_EF_UPDATE);
1686 local64_set(&hwc->period_left, 0);
1687 event->pmu->start(event, PERF_EF_RELOAD);
1688 }
1689 }
1690
1691 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1692 {
1693 struct perf_event *event;
1694 struct hw_perf_event *hwc;
1695 u64 interrupts, now;
1696 s64 delta;
1697
1698 raw_spin_lock(&ctx->lock);
1699 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1700 if (event->state != PERF_EVENT_STATE_ACTIVE)
1701 continue;
1702
1703 if (event->cpu != -1 && event->cpu != smp_processor_id())
1704 continue;
1705
1706 hwc = &event->hw;
1707
1708 interrupts = hwc->interrupts;
1709 hwc->interrupts = 0;
1710
1711 /*
1712 * unthrottle events on the tick
1713 */
1714 if (interrupts == MAX_INTERRUPTS) {
1715 perf_log_throttle(event, 1);
1716 event->pmu->start(event, 0);
1717 }
1718
1719 if (!event->attr.freq || !event->attr.sample_freq)
1720 continue;
1721
1722 event->pmu->read(event);
1723 now = local64_read(&event->count);
1724 delta = now - hwc->freq_count_stamp;
1725 hwc->freq_count_stamp = now;
1726
1727 if (delta > 0)
1728 perf_adjust_period(event, period, delta);
1729 }
1730 raw_spin_unlock(&ctx->lock);
1731 }
1732
1733 /*
1734 * Round-robin a context's events:
1735 */
1736 static void rotate_ctx(struct perf_event_context *ctx)
1737 {
1738 raw_spin_lock(&ctx->lock);
1739
1740 /*
1741 * Rotate the first entry last of non-pinned groups. Rotation might be
1742 * disabled by the inheritance code.
1743 */
1744 if (!ctx->rotate_disable)
1745 list_rotate_left(&ctx->flexible_groups);
1746
1747 raw_spin_unlock(&ctx->lock);
1748 }
1749
1750 /*
1751 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1752 * because they're strictly cpu affine and rotate_start is called with IRQs
1753 * disabled, while rotate_context is called from IRQ context.
1754 */
1755 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1756 {
1757 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1758 struct perf_event_context *ctx = NULL;
1759 int rotate = 0, remove = 1;
1760
1761 if (cpuctx->ctx.nr_events) {
1762 remove = 0;
1763 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1764 rotate = 1;
1765 }
1766
1767 ctx = cpuctx->task_ctx;
1768 if (ctx && ctx->nr_events) {
1769 remove = 0;
1770 if (ctx->nr_events != ctx->nr_active)
1771 rotate = 1;
1772 }
1773
1774 perf_pmu_disable(cpuctx->ctx.pmu);
1775 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1776 if (ctx)
1777 perf_ctx_adjust_freq(ctx, interval);
1778
1779 if (!rotate)
1780 goto done;
1781
1782 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1783 if (ctx)
1784 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1785
1786 rotate_ctx(&cpuctx->ctx);
1787 if (ctx)
1788 rotate_ctx(ctx);
1789
1790 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1791 if (ctx)
1792 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1793
1794 done:
1795 if (remove)
1796 list_del_init(&cpuctx->rotation_list);
1797
1798 perf_pmu_enable(cpuctx->ctx.pmu);
1799 }
1800
1801 void perf_event_task_tick(void)
1802 {
1803 struct list_head *head = &__get_cpu_var(rotation_list);
1804 struct perf_cpu_context *cpuctx, *tmp;
1805
1806 WARN_ON(!irqs_disabled());
1807
1808 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1809 if (cpuctx->jiffies_interval == 1 ||
1810 !(jiffies % cpuctx->jiffies_interval))
1811 perf_rotate_context(cpuctx);
1812 }
1813 }
1814
1815 static int event_enable_on_exec(struct perf_event *event,
1816 struct perf_event_context *ctx)
1817 {
1818 if (!event->attr.enable_on_exec)
1819 return 0;
1820
1821 event->attr.enable_on_exec = 0;
1822 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1823 return 0;
1824
1825 __perf_event_mark_enabled(event, ctx);
1826
1827 return 1;
1828 }
1829
1830 /*
1831 * Enable all of a task's events that have been marked enable-on-exec.
1832 * This expects task == current.
1833 */
1834 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1835 {
1836 struct perf_event *event;
1837 unsigned long flags;
1838 int enabled = 0;
1839 int ret;
1840
1841 local_irq_save(flags);
1842 if (!ctx || !ctx->nr_events)
1843 goto out;
1844
1845 task_ctx_sched_out(ctx, EVENT_ALL);
1846
1847 raw_spin_lock(&ctx->lock);
1848
1849 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1850 ret = event_enable_on_exec(event, ctx);
1851 if (ret)
1852 enabled = 1;
1853 }
1854
1855 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1856 ret = event_enable_on_exec(event, ctx);
1857 if (ret)
1858 enabled = 1;
1859 }
1860
1861 /*
1862 * Unclone this context if we enabled any event.
1863 */
1864 if (enabled)
1865 unclone_ctx(ctx);
1866
1867 raw_spin_unlock(&ctx->lock);
1868
1869 perf_event_context_sched_in(ctx);
1870 out:
1871 local_irq_restore(flags);
1872 }
1873
1874 /*
1875 * Cross CPU call to read the hardware event
1876 */
1877 static void __perf_event_read(void *info)
1878 {
1879 struct perf_event *event = info;
1880 struct perf_event_context *ctx = event->ctx;
1881 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1882
1883 /*
1884 * If this is a task context, we need to check whether it is
1885 * the current task context of this cpu. If not it has been
1886 * scheduled out before the smp call arrived. In that case
1887 * event->count would have been updated to a recent sample
1888 * when the event was scheduled out.
1889 */
1890 if (ctx->task && cpuctx->task_ctx != ctx)
1891 return;
1892
1893 raw_spin_lock(&ctx->lock);
1894 update_context_time(ctx);
1895 update_event_times(event);
1896 raw_spin_unlock(&ctx->lock);
1897
1898 event->pmu->read(event);
1899 }
1900
1901 static inline u64 perf_event_count(struct perf_event *event)
1902 {
1903 return local64_read(&event->count) + atomic64_read(&event->child_count);
1904 }
1905
1906 static u64 perf_event_read(struct perf_event *event)
1907 {
1908 /*
1909 * If event is enabled and currently active on a CPU, update the
1910 * value in the event structure:
1911 */
1912 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1913 smp_call_function_single(event->oncpu,
1914 __perf_event_read, event, 1);
1915 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1916 struct perf_event_context *ctx = event->ctx;
1917 unsigned long flags;
1918
1919 raw_spin_lock_irqsave(&ctx->lock, flags);
1920 /*
1921 * may read while context is not active
1922 * (e.g., thread is blocked), in that case
1923 * we cannot update context time
1924 */
1925 if (ctx->is_active)
1926 update_context_time(ctx);
1927 update_event_times(event);
1928 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1929 }
1930
1931 return perf_event_count(event);
1932 }
1933
1934 /*
1935 * Callchain support
1936 */
1937
1938 struct callchain_cpus_entries {
1939 struct rcu_head rcu_head;
1940 struct perf_callchain_entry *cpu_entries[0];
1941 };
1942
1943 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1944 static atomic_t nr_callchain_events;
1945 static DEFINE_MUTEX(callchain_mutex);
1946 struct callchain_cpus_entries *callchain_cpus_entries;
1947
1948
1949 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1950 struct pt_regs *regs)
1951 {
1952 }
1953
1954 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1955 struct pt_regs *regs)
1956 {
1957 }
1958
1959 static void release_callchain_buffers_rcu(struct rcu_head *head)
1960 {
1961 struct callchain_cpus_entries *entries;
1962 int cpu;
1963
1964 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1965
1966 for_each_possible_cpu(cpu)
1967 kfree(entries->cpu_entries[cpu]);
1968
1969 kfree(entries);
1970 }
1971
1972 static void release_callchain_buffers(void)
1973 {
1974 struct callchain_cpus_entries *entries;
1975
1976 entries = callchain_cpus_entries;
1977 rcu_assign_pointer(callchain_cpus_entries, NULL);
1978 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1979 }
1980
1981 static int alloc_callchain_buffers(void)
1982 {
1983 int cpu;
1984 int size;
1985 struct callchain_cpus_entries *entries;
1986
1987 /*
1988 * We can't use the percpu allocation API for data that can be
1989 * accessed from NMI. Use a temporary manual per cpu allocation
1990 * until that gets sorted out.
1991 */
1992 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1993 num_possible_cpus();
1994
1995 entries = kzalloc(size, GFP_KERNEL);
1996 if (!entries)
1997 return -ENOMEM;
1998
1999 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2000
2001 for_each_possible_cpu(cpu) {
2002 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2003 cpu_to_node(cpu));
2004 if (!entries->cpu_entries[cpu])
2005 goto fail;
2006 }
2007
2008 rcu_assign_pointer(callchain_cpus_entries, entries);
2009
2010 return 0;
2011
2012 fail:
2013 for_each_possible_cpu(cpu)
2014 kfree(entries->cpu_entries[cpu]);
2015 kfree(entries);
2016
2017 return -ENOMEM;
2018 }
2019
2020 static int get_callchain_buffers(void)
2021 {
2022 int err = 0;
2023 int count;
2024
2025 mutex_lock(&callchain_mutex);
2026
2027 count = atomic_inc_return(&nr_callchain_events);
2028 if (WARN_ON_ONCE(count < 1)) {
2029 err = -EINVAL;
2030 goto exit;
2031 }
2032
2033 if (count > 1) {
2034 /* If the allocation failed, give up */
2035 if (!callchain_cpus_entries)
2036 err = -ENOMEM;
2037 goto exit;
2038 }
2039
2040 err = alloc_callchain_buffers();
2041 if (err)
2042 release_callchain_buffers();
2043 exit:
2044 mutex_unlock(&callchain_mutex);
2045
2046 return err;
2047 }
2048
2049 static void put_callchain_buffers(void)
2050 {
2051 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2052 release_callchain_buffers();
2053 mutex_unlock(&callchain_mutex);
2054 }
2055 }
2056
2057 static int get_recursion_context(int *recursion)
2058 {
2059 int rctx;
2060
2061 if (in_nmi())
2062 rctx = 3;
2063 else if (in_irq())
2064 rctx = 2;
2065 else if (in_softirq())
2066 rctx = 1;
2067 else
2068 rctx = 0;
2069
2070 if (recursion[rctx])
2071 return -1;
2072
2073 recursion[rctx]++;
2074 barrier();
2075
2076 return rctx;
2077 }
2078
2079 static inline void put_recursion_context(int *recursion, int rctx)
2080 {
2081 barrier();
2082 recursion[rctx]--;
2083 }
2084
2085 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2086 {
2087 int cpu;
2088 struct callchain_cpus_entries *entries;
2089
2090 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2091 if (*rctx == -1)
2092 return NULL;
2093
2094 entries = rcu_dereference(callchain_cpus_entries);
2095 if (!entries)
2096 return NULL;
2097
2098 cpu = smp_processor_id();
2099
2100 return &entries->cpu_entries[cpu][*rctx];
2101 }
2102
2103 static void
2104 put_callchain_entry(int rctx)
2105 {
2106 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2107 }
2108
2109 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2110 {
2111 int rctx;
2112 struct perf_callchain_entry *entry;
2113
2114
2115 entry = get_callchain_entry(&rctx);
2116 if (rctx == -1)
2117 return NULL;
2118
2119 if (!entry)
2120 goto exit_put;
2121
2122 entry->nr = 0;
2123
2124 if (!user_mode(regs)) {
2125 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2126 perf_callchain_kernel(entry, regs);
2127 if (current->mm)
2128 regs = task_pt_regs(current);
2129 else
2130 regs = NULL;
2131 }
2132
2133 if (regs) {
2134 perf_callchain_store(entry, PERF_CONTEXT_USER);
2135 perf_callchain_user(entry, regs);
2136 }
2137
2138 exit_put:
2139 put_callchain_entry(rctx);
2140
2141 return entry;
2142 }
2143
2144 /*
2145 * Initialize the perf_event context in a task_struct:
2146 */
2147 static void __perf_event_init_context(struct perf_event_context *ctx)
2148 {
2149 raw_spin_lock_init(&ctx->lock);
2150 mutex_init(&ctx->mutex);
2151 INIT_LIST_HEAD(&ctx->pinned_groups);
2152 INIT_LIST_HEAD(&ctx->flexible_groups);
2153 INIT_LIST_HEAD(&ctx->event_list);
2154 atomic_set(&ctx->refcount, 1);
2155 }
2156
2157 static struct perf_event_context *
2158 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2159 {
2160 struct perf_event_context *ctx;
2161
2162 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2163 if (!ctx)
2164 return NULL;
2165
2166 __perf_event_init_context(ctx);
2167 if (task) {
2168 ctx->task = task;
2169 get_task_struct(task);
2170 }
2171 ctx->pmu = pmu;
2172
2173 return ctx;
2174 }
2175
2176 static struct task_struct *
2177 find_lively_task_by_vpid(pid_t vpid)
2178 {
2179 struct task_struct *task;
2180 int err;
2181
2182 rcu_read_lock();
2183 if (!vpid)
2184 task = current;
2185 else
2186 task = find_task_by_vpid(vpid);
2187 if (task)
2188 get_task_struct(task);
2189 rcu_read_unlock();
2190
2191 if (!task)
2192 return ERR_PTR(-ESRCH);
2193
2194 /*
2195 * Can't attach events to a dying task.
2196 */
2197 err = -ESRCH;
2198 if (task->flags & PF_EXITING)
2199 goto errout;
2200
2201 /* Reuse ptrace permission checks for now. */
2202 err = -EACCES;
2203 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2204 goto errout;
2205
2206 return task;
2207 errout:
2208 put_task_struct(task);
2209 return ERR_PTR(err);
2210
2211 }
2212
2213 static struct perf_event_context *
2214 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2215 {
2216 struct perf_event_context *ctx;
2217 struct perf_cpu_context *cpuctx;
2218 unsigned long flags;
2219 int ctxn, err;
2220
2221 if (!task && cpu != -1) {
2222 /* Must be root to operate on a CPU event: */
2223 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2224 return ERR_PTR(-EACCES);
2225
2226 if (cpu < 0 || cpu >= nr_cpumask_bits)
2227 return ERR_PTR(-EINVAL);
2228
2229 /*
2230 * We could be clever and allow to attach a event to an
2231 * offline CPU and activate it when the CPU comes up, but
2232 * that's for later.
2233 */
2234 if (!cpu_online(cpu))
2235 return ERR_PTR(-ENODEV);
2236
2237 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2238 ctx = &cpuctx->ctx;
2239 get_ctx(ctx);
2240
2241 return ctx;
2242 }
2243
2244 err = -EINVAL;
2245 ctxn = pmu->task_ctx_nr;
2246 if (ctxn < 0)
2247 goto errout;
2248
2249 retry:
2250 ctx = perf_lock_task_context(task, ctxn, &flags);
2251 if (ctx) {
2252 unclone_ctx(ctx);
2253 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2254 }
2255
2256 if (!ctx) {
2257 ctx = alloc_perf_context(pmu, task);
2258 err = -ENOMEM;
2259 if (!ctx)
2260 goto errout;
2261
2262 get_ctx(ctx);
2263
2264 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2265 /*
2266 * We raced with some other task; use
2267 * the context they set.
2268 */
2269 put_task_struct(task);
2270 kfree(ctx);
2271 goto retry;
2272 }
2273 }
2274
2275 return ctx;
2276
2277 errout:
2278 return ERR_PTR(err);
2279 }
2280
2281 static void perf_event_free_filter(struct perf_event *event);
2282
2283 static void free_event_rcu(struct rcu_head *head)
2284 {
2285 struct perf_event *event;
2286
2287 event = container_of(head, struct perf_event, rcu_head);
2288 if (event->ns)
2289 put_pid_ns(event->ns);
2290 perf_event_free_filter(event);
2291 kfree(event);
2292 }
2293
2294 static void perf_buffer_put(struct perf_buffer *buffer);
2295
2296 static void free_event(struct perf_event *event)
2297 {
2298 irq_work_sync(&event->pending);
2299
2300 if (!event->parent) {
2301 if (event->attach_state & PERF_ATTACH_TASK)
2302 jump_label_dec(&perf_task_events);
2303 if (event->attr.mmap || event->attr.mmap_data)
2304 atomic_dec(&nr_mmap_events);
2305 if (event->attr.comm)
2306 atomic_dec(&nr_comm_events);
2307 if (event->attr.task)
2308 atomic_dec(&nr_task_events);
2309 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2310 put_callchain_buffers();
2311 }
2312
2313 if (event->buffer) {
2314 perf_buffer_put(event->buffer);
2315 event->buffer = NULL;
2316 }
2317
2318 if (event->destroy)
2319 event->destroy(event);
2320
2321 if (event->ctx)
2322 put_ctx(event->ctx);
2323
2324 call_rcu(&event->rcu_head, free_event_rcu);
2325 }
2326
2327 int perf_event_release_kernel(struct perf_event *event)
2328 {
2329 struct perf_event_context *ctx = event->ctx;
2330
2331 /*
2332 * Remove from the PMU, can't get re-enabled since we got
2333 * here because the last ref went.
2334 */
2335 perf_event_disable(event);
2336
2337 WARN_ON_ONCE(ctx->parent_ctx);
2338 /*
2339 * There are two ways this annotation is useful:
2340 *
2341 * 1) there is a lock recursion from perf_event_exit_task
2342 * see the comment there.
2343 *
2344 * 2) there is a lock-inversion with mmap_sem through
2345 * perf_event_read_group(), which takes faults while
2346 * holding ctx->mutex, however this is called after
2347 * the last filedesc died, so there is no possibility
2348 * to trigger the AB-BA case.
2349 */
2350 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2351 raw_spin_lock_irq(&ctx->lock);
2352 perf_group_detach(event);
2353 list_del_event(event, ctx);
2354 raw_spin_unlock_irq(&ctx->lock);
2355 mutex_unlock(&ctx->mutex);
2356
2357 free_event(event);
2358
2359 return 0;
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2362
2363 /*
2364 * Called when the last reference to the file is gone.
2365 */
2366 static int perf_release(struct inode *inode, struct file *file)
2367 {
2368 struct perf_event *event = file->private_data;
2369 struct task_struct *owner;
2370
2371 file->private_data = NULL;
2372
2373 rcu_read_lock();
2374 owner = ACCESS_ONCE(event->owner);
2375 /*
2376 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2377 * !owner it means the list deletion is complete and we can indeed
2378 * free this event, otherwise we need to serialize on
2379 * owner->perf_event_mutex.
2380 */
2381 smp_read_barrier_depends();
2382 if (owner) {
2383 /*
2384 * Since delayed_put_task_struct() also drops the last
2385 * task reference we can safely take a new reference
2386 * while holding the rcu_read_lock().
2387 */
2388 get_task_struct(owner);
2389 }
2390 rcu_read_unlock();
2391
2392 if (owner) {
2393 mutex_lock(&owner->perf_event_mutex);
2394 /*
2395 * We have to re-check the event->owner field, if it is cleared
2396 * we raced with perf_event_exit_task(), acquiring the mutex
2397 * ensured they're done, and we can proceed with freeing the
2398 * event.
2399 */
2400 if (event->owner)
2401 list_del_init(&event->owner_entry);
2402 mutex_unlock(&owner->perf_event_mutex);
2403 put_task_struct(owner);
2404 }
2405
2406 return perf_event_release_kernel(event);
2407 }
2408
2409 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2410 {
2411 struct perf_event *child;
2412 u64 total = 0;
2413
2414 *enabled = 0;
2415 *running = 0;
2416
2417 mutex_lock(&event->child_mutex);
2418 total += perf_event_read(event);
2419 *enabled += event->total_time_enabled +
2420 atomic64_read(&event->child_total_time_enabled);
2421 *running += event->total_time_running +
2422 atomic64_read(&event->child_total_time_running);
2423
2424 list_for_each_entry(child, &event->child_list, child_list) {
2425 total += perf_event_read(child);
2426 *enabled += child->total_time_enabled;
2427 *running += child->total_time_running;
2428 }
2429 mutex_unlock(&event->child_mutex);
2430
2431 return total;
2432 }
2433 EXPORT_SYMBOL_GPL(perf_event_read_value);
2434
2435 static int perf_event_read_group(struct perf_event *event,
2436 u64 read_format, char __user *buf)
2437 {
2438 struct perf_event *leader = event->group_leader, *sub;
2439 int n = 0, size = 0, ret = -EFAULT;
2440 struct perf_event_context *ctx = leader->ctx;
2441 u64 values[5];
2442 u64 count, enabled, running;
2443
2444 mutex_lock(&ctx->mutex);
2445 count = perf_event_read_value(leader, &enabled, &running);
2446
2447 values[n++] = 1 + leader->nr_siblings;
2448 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2449 values[n++] = enabled;
2450 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2451 values[n++] = running;
2452 values[n++] = count;
2453 if (read_format & PERF_FORMAT_ID)
2454 values[n++] = primary_event_id(leader);
2455
2456 size = n * sizeof(u64);
2457
2458 if (copy_to_user(buf, values, size))
2459 goto unlock;
2460
2461 ret = size;
2462
2463 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2464 n = 0;
2465
2466 values[n++] = perf_event_read_value(sub, &enabled, &running);
2467 if (read_format & PERF_FORMAT_ID)
2468 values[n++] = primary_event_id(sub);
2469
2470 size = n * sizeof(u64);
2471
2472 if (copy_to_user(buf + ret, values, size)) {
2473 ret = -EFAULT;
2474 goto unlock;
2475 }
2476
2477 ret += size;
2478 }
2479 unlock:
2480 mutex_unlock(&ctx->mutex);
2481
2482 return ret;
2483 }
2484
2485 static int perf_event_read_one(struct perf_event *event,
2486 u64 read_format, char __user *buf)
2487 {
2488 u64 enabled, running;
2489 u64 values[4];
2490 int n = 0;
2491
2492 values[n++] = perf_event_read_value(event, &enabled, &running);
2493 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2494 values[n++] = enabled;
2495 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2496 values[n++] = running;
2497 if (read_format & PERF_FORMAT_ID)
2498 values[n++] = primary_event_id(event);
2499
2500 if (copy_to_user(buf, values, n * sizeof(u64)))
2501 return -EFAULT;
2502
2503 return n * sizeof(u64);
2504 }
2505
2506 /*
2507 * Read the performance event - simple non blocking version for now
2508 */
2509 static ssize_t
2510 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2511 {
2512 u64 read_format = event->attr.read_format;
2513 int ret;
2514
2515 /*
2516 * Return end-of-file for a read on a event that is in
2517 * error state (i.e. because it was pinned but it couldn't be
2518 * scheduled on to the CPU at some point).
2519 */
2520 if (event->state == PERF_EVENT_STATE_ERROR)
2521 return 0;
2522
2523 if (count < event->read_size)
2524 return -ENOSPC;
2525
2526 WARN_ON_ONCE(event->ctx->parent_ctx);
2527 if (read_format & PERF_FORMAT_GROUP)
2528 ret = perf_event_read_group(event, read_format, buf);
2529 else
2530 ret = perf_event_read_one(event, read_format, buf);
2531
2532 return ret;
2533 }
2534
2535 static ssize_t
2536 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2537 {
2538 struct perf_event *event = file->private_data;
2539
2540 return perf_read_hw(event, buf, count);
2541 }
2542
2543 static unsigned int perf_poll(struct file *file, poll_table *wait)
2544 {
2545 struct perf_event *event = file->private_data;
2546 struct perf_buffer *buffer;
2547 unsigned int events = POLL_HUP;
2548
2549 rcu_read_lock();
2550 buffer = rcu_dereference(event->buffer);
2551 if (buffer)
2552 events = atomic_xchg(&buffer->poll, 0);
2553 rcu_read_unlock();
2554
2555 poll_wait(file, &event->waitq, wait);
2556
2557 return events;
2558 }
2559
2560 static void perf_event_reset(struct perf_event *event)
2561 {
2562 (void)perf_event_read(event);
2563 local64_set(&event->count, 0);
2564 perf_event_update_userpage(event);
2565 }
2566
2567 /*
2568 * Holding the top-level event's child_mutex means that any
2569 * descendant process that has inherited this event will block
2570 * in sync_child_event if it goes to exit, thus satisfying the
2571 * task existence requirements of perf_event_enable/disable.
2572 */
2573 static void perf_event_for_each_child(struct perf_event *event,
2574 void (*func)(struct perf_event *))
2575 {
2576 struct perf_event *child;
2577
2578 WARN_ON_ONCE(event->ctx->parent_ctx);
2579 mutex_lock(&event->child_mutex);
2580 func(event);
2581 list_for_each_entry(child, &event->child_list, child_list)
2582 func(child);
2583 mutex_unlock(&event->child_mutex);
2584 }
2585
2586 static void perf_event_for_each(struct perf_event *event,
2587 void (*func)(struct perf_event *))
2588 {
2589 struct perf_event_context *ctx = event->ctx;
2590 struct perf_event *sibling;
2591
2592 WARN_ON_ONCE(ctx->parent_ctx);
2593 mutex_lock(&ctx->mutex);
2594 event = event->group_leader;
2595
2596 perf_event_for_each_child(event, func);
2597 func(event);
2598 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2599 perf_event_for_each_child(event, func);
2600 mutex_unlock(&ctx->mutex);
2601 }
2602
2603 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2604 {
2605 struct perf_event_context *ctx = event->ctx;
2606 int ret = 0;
2607 u64 value;
2608
2609 if (!is_sampling_event(event))
2610 return -EINVAL;
2611
2612 if (copy_from_user(&value, arg, sizeof(value)))
2613 return -EFAULT;
2614
2615 if (!value)
2616 return -EINVAL;
2617
2618 raw_spin_lock_irq(&ctx->lock);
2619 if (event->attr.freq) {
2620 if (value > sysctl_perf_event_sample_rate) {
2621 ret = -EINVAL;
2622 goto unlock;
2623 }
2624
2625 event->attr.sample_freq = value;
2626 } else {
2627 event->attr.sample_period = value;
2628 event->hw.sample_period = value;
2629 }
2630 unlock:
2631 raw_spin_unlock_irq(&ctx->lock);
2632
2633 return ret;
2634 }
2635
2636 static const struct file_operations perf_fops;
2637
2638 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2639 {
2640 struct file *file;
2641
2642 file = fget_light(fd, fput_needed);
2643 if (!file)
2644 return ERR_PTR(-EBADF);
2645
2646 if (file->f_op != &perf_fops) {
2647 fput_light(file, *fput_needed);
2648 *fput_needed = 0;
2649 return ERR_PTR(-EBADF);
2650 }
2651
2652 return file->private_data;
2653 }
2654
2655 static int perf_event_set_output(struct perf_event *event,
2656 struct perf_event *output_event);
2657 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2658
2659 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2660 {
2661 struct perf_event *event = file->private_data;
2662 void (*func)(struct perf_event *);
2663 u32 flags = arg;
2664
2665 switch (cmd) {
2666 case PERF_EVENT_IOC_ENABLE:
2667 func = perf_event_enable;
2668 break;
2669 case PERF_EVENT_IOC_DISABLE:
2670 func = perf_event_disable;
2671 break;
2672 case PERF_EVENT_IOC_RESET:
2673 func = perf_event_reset;
2674 break;
2675
2676 case PERF_EVENT_IOC_REFRESH:
2677 return perf_event_refresh(event, arg);
2678
2679 case PERF_EVENT_IOC_PERIOD:
2680 return perf_event_period(event, (u64 __user *)arg);
2681
2682 case PERF_EVENT_IOC_SET_OUTPUT:
2683 {
2684 struct perf_event *output_event = NULL;
2685 int fput_needed = 0;
2686 int ret;
2687
2688 if (arg != -1) {
2689 output_event = perf_fget_light(arg, &fput_needed);
2690 if (IS_ERR(output_event))
2691 return PTR_ERR(output_event);
2692 }
2693
2694 ret = perf_event_set_output(event, output_event);
2695 if (output_event)
2696 fput_light(output_event->filp, fput_needed);
2697
2698 return ret;
2699 }
2700
2701 case PERF_EVENT_IOC_SET_FILTER:
2702 return perf_event_set_filter(event, (void __user *)arg);
2703
2704 default:
2705 return -ENOTTY;
2706 }
2707
2708 if (flags & PERF_IOC_FLAG_GROUP)
2709 perf_event_for_each(event, func);
2710 else
2711 perf_event_for_each_child(event, func);
2712
2713 return 0;
2714 }
2715
2716 int perf_event_task_enable(void)
2717 {
2718 struct perf_event *event;
2719
2720 mutex_lock(&current->perf_event_mutex);
2721 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2722 perf_event_for_each_child(event, perf_event_enable);
2723 mutex_unlock(&current->perf_event_mutex);
2724
2725 return 0;
2726 }
2727
2728 int perf_event_task_disable(void)
2729 {
2730 struct perf_event *event;
2731
2732 mutex_lock(&current->perf_event_mutex);
2733 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2734 perf_event_for_each_child(event, perf_event_disable);
2735 mutex_unlock(&current->perf_event_mutex);
2736
2737 return 0;
2738 }
2739
2740 #ifndef PERF_EVENT_INDEX_OFFSET
2741 # define PERF_EVENT_INDEX_OFFSET 0
2742 #endif
2743
2744 static int perf_event_index(struct perf_event *event)
2745 {
2746 if (event->hw.state & PERF_HES_STOPPED)
2747 return 0;
2748
2749 if (event->state != PERF_EVENT_STATE_ACTIVE)
2750 return 0;
2751
2752 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2753 }
2754
2755 /*
2756 * Callers need to ensure there can be no nesting of this function, otherwise
2757 * the seqlock logic goes bad. We can not serialize this because the arch
2758 * code calls this from NMI context.
2759 */
2760 void perf_event_update_userpage(struct perf_event *event)
2761 {
2762 struct perf_event_mmap_page *userpg;
2763 struct perf_buffer *buffer;
2764
2765 rcu_read_lock();
2766 buffer = rcu_dereference(event->buffer);
2767 if (!buffer)
2768 goto unlock;
2769
2770 userpg = buffer->user_page;
2771
2772 /*
2773 * Disable preemption so as to not let the corresponding user-space
2774 * spin too long if we get preempted.
2775 */
2776 preempt_disable();
2777 ++userpg->lock;
2778 barrier();
2779 userpg->index = perf_event_index(event);
2780 userpg->offset = perf_event_count(event);
2781 if (event->state == PERF_EVENT_STATE_ACTIVE)
2782 userpg->offset -= local64_read(&event->hw.prev_count);
2783
2784 userpg->time_enabled = event->total_time_enabled +
2785 atomic64_read(&event->child_total_time_enabled);
2786
2787 userpg->time_running = event->total_time_running +
2788 atomic64_read(&event->child_total_time_running);
2789
2790 barrier();
2791 ++userpg->lock;
2792 preempt_enable();
2793 unlock:
2794 rcu_read_unlock();
2795 }
2796
2797 static unsigned long perf_data_size(struct perf_buffer *buffer);
2798
2799 static void
2800 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2801 {
2802 long max_size = perf_data_size(buffer);
2803
2804 if (watermark)
2805 buffer->watermark = min(max_size, watermark);
2806
2807 if (!buffer->watermark)
2808 buffer->watermark = max_size / 2;
2809
2810 if (flags & PERF_BUFFER_WRITABLE)
2811 buffer->writable = 1;
2812
2813 atomic_set(&buffer->refcount, 1);
2814 }
2815
2816 #ifndef CONFIG_PERF_USE_VMALLOC
2817
2818 /*
2819 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2820 */
2821
2822 static struct page *
2823 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2824 {
2825 if (pgoff > buffer->nr_pages)
2826 return NULL;
2827
2828 if (pgoff == 0)
2829 return virt_to_page(buffer->user_page);
2830
2831 return virt_to_page(buffer->data_pages[pgoff - 1]);
2832 }
2833
2834 static void *perf_mmap_alloc_page(int cpu)
2835 {
2836 struct page *page;
2837 int node;
2838
2839 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2840 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2841 if (!page)
2842 return NULL;
2843
2844 return page_address(page);
2845 }
2846
2847 static struct perf_buffer *
2848 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2849 {
2850 struct perf_buffer *buffer;
2851 unsigned long size;
2852 int i;
2853
2854 size = sizeof(struct perf_buffer);
2855 size += nr_pages * sizeof(void *);
2856
2857 buffer = kzalloc(size, GFP_KERNEL);
2858 if (!buffer)
2859 goto fail;
2860
2861 buffer->user_page = perf_mmap_alloc_page(cpu);
2862 if (!buffer->user_page)
2863 goto fail_user_page;
2864
2865 for (i = 0; i < nr_pages; i++) {
2866 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2867 if (!buffer->data_pages[i])
2868 goto fail_data_pages;
2869 }
2870
2871 buffer->nr_pages = nr_pages;
2872
2873 perf_buffer_init(buffer, watermark, flags);
2874
2875 return buffer;
2876
2877 fail_data_pages:
2878 for (i--; i >= 0; i--)
2879 free_page((unsigned long)buffer->data_pages[i]);
2880
2881 free_page((unsigned long)buffer->user_page);
2882
2883 fail_user_page:
2884 kfree(buffer);
2885
2886 fail:
2887 return NULL;
2888 }
2889
2890 static void perf_mmap_free_page(unsigned long addr)
2891 {
2892 struct page *page = virt_to_page((void *)addr);
2893
2894 page->mapping = NULL;
2895 __free_page(page);
2896 }
2897
2898 static void perf_buffer_free(struct perf_buffer *buffer)
2899 {
2900 int i;
2901
2902 perf_mmap_free_page((unsigned long)buffer->user_page);
2903 for (i = 0; i < buffer->nr_pages; i++)
2904 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2905 kfree(buffer);
2906 }
2907
2908 static inline int page_order(struct perf_buffer *buffer)
2909 {
2910 return 0;
2911 }
2912
2913 #else
2914
2915 /*
2916 * Back perf_mmap() with vmalloc memory.
2917 *
2918 * Required for architectures that have d-cache aliasing issues.
2919 */
2920
2921 static inline int page_order(struct perf_buffer *buffer)
2922 {
2923 return buffer->page_order;
2924 }
2925
2926 static struct page *
2927 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2928 {
2929 if (pgoff > (1UL << page_order(buffer)))
2930 return NULL;
2931
2932 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2933 }
2934
2935 static void perf_mmap_unmark_page(void *addr)
2936 {
2937 struct page *page = vmalloc_to_page(addr);
2938
2939 page->mapping = NULL;
2940 }
2941
2942 static void perf_buffer_free_work(struct work_struct *work)
2943 {
2944 struct perf_buffer *buffer;
2945 void *base;
2946 int i, nr;
2947
2948 buffer = container_of(work, struct perf_buffer, work);
2949 nr = 1 << page_order(buffer);
2950
2951 base = buffer->user_page;
2952 for (i = 0; i < nr + 1; i++)
2953 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2954
2955 vfree(base);
2956 kfree(buffer);
2957 }
2958
2959 static void perf_buffer_free(struct perf_buffer *buffer)
2960 {
2961 schedule_work(&buffer->work);
2962 }
2963
2964 static struct perf_buffer *
2965 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2966 {
2967 struct perf_buffer *buffer;
2968 unsigned long size;
2969 void *all_buf;
2970
2971 size = sizeof(struct perf_buffer);
2972 size += sizeof(void *);
2973
2974 buffer = kzalloc(size, GFP_KERNEL);
2975 if (!buffer)
2976 goto fail;
2977
2978 INIT_WORK(&buffer->work, perf_buffer_free_work);
2979
2980 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2981 if (!all_buf)
2982 goto fail_all_buf;
2983
2984 buffer->user_page = all_buf;
2985 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2986 buffer->page_order = ilog2(nr_pages);
2987 buffer->nr_pages = 1;
2988
2989 perf_buffer_init(buffer, watermark, flags);
2990
2991 return buffer;
2992
2993 fail_all_buf:
2994 kfree(buffer);
2995
2996 fail:
2997 return NULL;
2998 }
2999
3000 #endif
3001
3002 static unsigned long perf_data_size(struct perf_buffer *buffer)
3003 {
3004 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3005 }
3006
3007 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3008 {
3009 struct perf_event *event = vma->vm_file->private_data;
3010 struct perf_buffer *buffer;
3011 int ret = VM_FAULT_SIGBUS;
3012
3013 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3014 if (vmf->pgoff == 0)
3015 ret = 0;
3016 return ret;
3017 }
3018
3019 rcu_read_lock();
3020 buffer = rcu_dereference(event->buffer);
3021 if (!buffer)
3022 goto unlock;
3023
3024 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3025 goto unlock;
3026
3027 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3028 if (!vmf->page)
3029 goto unlock;
3030
3031 get_page(vmf->page);
3032 vmf->page->mapping = vma->vm_file->f_mapping;
3033 vmf->page->index = vmf->pgoff;
3034
3035 ret = 0;
3036 unlock:
3037 rcu_read_unlock();
3038
3039 return ret;
3040 }
3041
3042 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3043 {
3044 struct perf_buffer *buffer;
3045
3046 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3047 perf_buffer_free(buffer);
3048 }
3049
3050 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3051 {
3052 struct perf_buffer *buffer;
3053
3054 rcu_read_lock();
3055 buffer = rcu_dereference(event->buffer);
3056 if (buffer) {
3057 if (!atomic_inc_not_zero(&buffer->refcount))
3058 buffer = NULL;
3059 }
3060 rcu_read_unlock();
3061
3062 return buffer;
3063 }
3064
3065 static void perf_buffer_put(struct perf_buffer *buffer)
3066 {
3067 if (!atomic_dec_and_test(&buffer->refcount))
3068 return;
3069
3070 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3071 }
3072
3073 static void perf_mmap_open(struct vm_area_struct *vma)
3074 {
3075 struct perf_event *event = vma->vm_file->private_data;
3076
3077 atomic_inc(&event->mmap_count);
3078 }
3079
3080 static void perf_mmap_close(struct vm_area_struct *vma)
3081 {
3082 struct perf_event *event = vma->vm_file->private_data;
3083
3084 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3085 unsigned long size = perf_data_size(event->buffer);
3086 struct user_struct *user = event->mmap_user;
3087 struct perf_buffer *buffer = event->buffer;
3088
3089 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3090 vma->vm_mm->locked_vm -= event->mmap_locked;
3091 rcu_assign_pointer(event->buffer, NULL);
3092 mutex_unlock(&event->mmap_mutex);
3093
3094 perf_buffer_put(buffer);
3095 free_uid(user);
3096 }
3097 }
3098
3099 static const struct vm_operations_struct perf_mmap_vmops = {
3100 .open = perf_mmap_open,
3101 .close = perf_mmap_close,
3102 .fault = perf_mmap_fault,
3103 .page_mkwrite = perf_mmap_fault,
3104 };
3105
3106 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3107 {
3108 struct perf_event *event = file->private_data;
3109 unsigned long user_locked, user_lock_limit;
3110 struct user_struct *user = current_user();
3111 unsigned long locked, lock_limit;
3112 struct perf_buffer *buffer;
3113 unsigned long vma_size;
3114 unsigned long nr_pages;
3115 long user_extra, extra;
3116 int ret = 0, flags = 0;
3117
3118 /*
3119 * Don't allow mmap() of inherited per-task counters. This would
3120 * create a performance issue due to all children writing to the
3121 * same buffer.
3122 */
3123 if (event->cpu == -1 && event->attr.inherit)
3124 return -EINVAL;
3125
3126 if (!(vma->vm_flags & VM_SHARED))
3127 return -EINVAL;
3128
3129 vma_size = vma->vm_end - vma->vm_start;
3130 nr_pages = (vma_size / PAGE_SIZE) - 1;
3131
3132 /*
3133 * If we have buffer pages ensure they're a power-of-two number, so we
3134 * can do bitmasks instead of modulo.
3135 */
3136 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3137 return -EINVAL;
3138
3139 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3140 return -EINVAL;
3141
3142 if (vma->vm_pgoff != 0)
3143 return -EINVAL;
3144
3145 WARN_ON_ONCE(event->ctx->parent_ctx);
3146 mutex_lock(&event->mmap_mutex);
3147 if (event->buffer) {
3148 if (event->buffer->nr_pages == nr_pages)
3149 atomic_inc(&event->buffer->refcount);
3150 else
3151 ret = -EINVAL;
3152 goto unlock;
3153 }
3154
3155 user_extra = nr_pages + 1;
3156 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3157
3158 /*
3159 * Increase the limit linearly with more CPUs:
3160 */
3161 user_lock_limit *= num_online_cpus();
3162
3163 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3164
3165 extra = 0;
3166 if (user_locked > user_lock_limit)
3167 extra = user_locked - user_lock_limit;
3168
3169 lock_limit = rlimit(RLIMIT_MEMLOCK);
3170 lock_limit >>= PAGE_SHIFT;
3171 locked = vma->vm_mm->locked_vm + extra;
3172
3173 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3174 !capable(CAP_IPC_LOCK)) {
3175 ret = -EPERM;
3176 goto unlock;
3177 }
3178
3179 WARN_ON(event->buffer);
3180
3181 if (vma->vm_flags & VM_WRITE)
3182 flags |= PERF_BUFFER_WRITABLE;
3183
3184 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3185 event->cpu, flags);
3186 if (!buffer) {
3187 ret = -ENOMEM;
3188 goto unlock;
3189 }
3190 rcu_assign_pointer(event->buffer, buffer);
3191
3192 atomic_long_add(user_extra, &user->locked_vm);
3193 event->mmap_locked = extra;
3194 event->mmap_user = get_current_user();
3195 vma->vm_mm->locked_vm += event->mmap_locked;
3196
3197 unlock:
3198 if (!ret)
3199 atomic_inc(&event->mmap_count);
3200 mutex_unlock(&event->mmap_mutex);
3201
3202 vma->vm_flags |= VM_RESERVED;
3203 vma->vm_ops = &perf_mmap_vmops;
3204
3205 return ret;
3206 }
3207
3208 static int perf_fasync(int fd, struct file *filp, int on)
3209 {
3210 struct inode *inode = filp->f_path.dentry->d_inode;
3211 struct perf_event *event = filp->private_data;
3212 int retval;
3213
3214 mutex_lock(&inode->i_mutex);
3215 retval = fasync_helper(fd, filp, on, &event->fasync);
3216 mutex_unlock(&inode->i_mutex);
3217
3218 if (retval < 0)
3219 return retval;
3220
3221 return 0;
3222 }
3223
3224 static const struct file_operations perf_fops = {
3225 .llseek = no_llseek,
3226 .release = perf_release,
3227 .read = perf_read,
3228 .poll = perf_poll,
3229 .unlocked_ioctl = perf_ioctl,
3230 .compat_ioctl = perf_ioctl,
3231 .mmap = perf_mmap,
3232 .fasync = perf_fasync,
3233 };
3234
3235 /*
3236 * Perf event wakeup
3237 *
3238 * If there's data, ensure we set the poll() state and publish everything
3239 * to user-space before waking everybody up.
3240 */
3241
3242 void perf_event_wakeup(struct perf_event *event)
3243 {
3244 wake_up_all(&event->waitq);
3245
3246 if (event->pending_kill) {
3247 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3248 event->pending_kill = 0;
3249 }
3250 }
3251
3252 static void perf_pending_event(struct irq_work *entry)
3253 {
3254 struct perf_event *event = container_of(entry,
3255 struct perf_event, pending);
3256
3257 if (event->pending_disable) {
3258 event->pending_disable = 0;
3259 __perf_event_disable(event);
3260 }
3261
3262 if (event->pending_wakeup) {
3263 event->pending_wakeup = 0;
3264 perf_event_wakeup(event);
3265 }
3266 }
3267
3268 /*
3269 * We assume there is only KVM supporting the callbacks.
3270 * Later on, we might change it to a list if there is
3271 * another virtualization implementation supporting the callbacks.
3272 */
3273 struct perf_guest_info_callbacks *perf_guest_cbs;
3274
3275 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3276 {
3277 perf_guest_cbs = cbs;
3278 return 0;
3279 }
3280 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3281
3282 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3283 {
3284 perf_guest_cbs = NULL;
3285 return 0;
3286 }
3287 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3288
3289 /*
3290 * Output
3291 */
3292 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3293 unsigned long offset, unsigned long head)
3294 {
3295 unsigned long mask;
3296
3297 if (!buffer->writable)
3298 return true;
3299
3300 mask = perf_data_size(buffer) - 1;
3301
3302 offset = (offset - tail) & mask;
3303 head = (head - tail) & mask;
3304
3305 if ((int)(head - offset) < 0)
3306 return false;
3307
3308 return true;
3309 }
3310
3311 static void perf_output_wakeup(struct perf_output_handle *handle)
3312 {
3313 atomic_set(&handle->buffer->poll, POLL_IN);
3314
3315 if (handle->nmi) {
3316 handle->event->pending_wakeup = 1;
3317 irq_work_queue(&handle->event->pending);
3318 } else
3319 perf_event_wakeup(handle->event);
3320 }
3321
3322 /*
3323 * We need to ensure a later event_id doesn't publish a head when a former
3324 * event isn't done writing. However since we need to deal with NMIs we
3325 * cannot fully serialize things.
3326 *
3327 * We only publish the head (and generate a wakeup) when the outer-most
3328 * event completes.
3329 */
3330 static void perf_output_get_handle(struct perf_output_handle *handle)
3331 {
3332 struct perf_buffer *buffer = handle->buffer;
3333
3334 preempt_disable();
3335 local_inc(&buffer->nest);
3336 handle->wakeup = local_read(&buffer->wakeup);
3337 }
3338
3339 static void perf_output_put_handle(struct perf_output_handle *handle)
3340 {
3341 struct perf_buffer *buffer = handle->buffer;
3342 unsigned long head;
3343
3344 again:
3345 head = local_read(&buffer->head);
3346
3347 /*
3348 * IRQ/NMI can happen here, which means we can miss a head update.
3349 */
3350
3351 if (!local_dec_and_test(&buffer->nest))
3352 goto out;
3353
3354 /*
3355 * Publish the known good head. Rely on the full barrier implied
3356 * by atomic_dec_and_test() order the buffer->head read and this
3357 * write.
3358 */
3359 buffer->user_page->data_head = head;
3360
3361 /*
3362 * Now check if we missed an update, rely on the (compiler)
3363 * barrier in atomic_dec_and_test() to re-read buffer->head.
3364 */
3365 if (unlikely(head != local_read(&buffer->head))) {
3366 local_inc(&buffer->nest);
3367 goto again;
3368 }
3369
3370 if (handle->wakeup != local_read(&buffer->wakeup))
3371 perf_output_wakeup(handle);
3372
3373 out:
3374 preempt_enable();
3375 }
3376
3377 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3378 const void *buf, unsigned int len)
3379 {
3380 do {
3381 unsigned long size = min_t(unsigned long, handle->size, len);
3382
3383 memcpy(handle->addr, buf, size);
3384
3385 len -= size;
3386 handle->addr += size;
3387 buf += size;
3388 handle->size -= size;
3389 if (!handle->size) {
3390 struct perf_buffer *buffer = handle->buffer;
3391
3392 handle->page++;
3393 handle->page &= buffer->nr_pages - 1;
3394 handle->addr = buffer->data_pages[handle->page];
3395 handle->size = PAGE_SIZE << page_order(buffer);
3396 }
3397 } while (len);
3398 }
3399
3400 static void __perf_event_header__init_id(struct perf_event_header *header,
3401 struct perf_sample_data *data,
3402 struct perf_event *event)
3403 {
3404 u64 sample_type = event->attr.sample_type;
3405
3406 data->type = sample_type;
3407 header->size += event->id_header_size;
3408
3409 if (sample_type & PERF_SAMPLE_TID) {
3410 /* namespace issues */
3411 data->tid_entry.pid = perf_event_pid(event, current);
3412 data->tid_entry.tid = perf_event_tid(event, current);
3413 }
3414
3415 if (sample_type & PERF_SAMPLE_TIME)
3416 data->time = perf_clock();
3417
3418 if (sample_type & PERF_SAMPLE_ID)
3419 data->id = primary_event_id(event);
3420
3421 if (sample_type & PERF_SAMPLE_STREAM_ID)
3422 data->stream_id = event->id;
3423
3424 if (sample_type & PERF_SAMPLE_CPU) {
3425 data->cpu_entry.cpu = raw_smp_processor_id();
3426 data->cpu_entry.reserved = 0;
3427 }
3428 }
3429
3430 static void perf_event_header__init_id(struct perf_event_header *header,
3431 struct perf_sample_data *data,
3432 struct perf_event *event)
3433 {
3434 if (event->attr.sample_id_all)
3435 __perf_event_header__init_id(header, data, event);
3436 }
3437
3438 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3439 struct perf_sample_data *data)
3440 {
3441 u64 sample_type = data->type;
3442
3443 if (sample_type & PERF_SAMPLE_TID)
3444 perf_output_put(handle, data->tid_entry);
3445
3446 if (sample_type & PERF_SAMPLE_TIME)
3447 perf_output_put(handle, data->time);
3448
3449 if (sample_type & PERF_SAMPLE_ID)
3450 perf_output_put(handle, data->id);
3451
3452 if (sample_type & PERF_SAMPLE_STREAM_ID)
3453 perf_output_put(handle, data->stream_id);
3454
3455 if (sample_type & PERF_SAMPLE_CPU)
3456 perf_output_put(handle, data->cpu_entry);
3457 }
3458
3459 static void perf_event__output_id_sample(struct perf_event *event,
3460 struct perf_output_handle *handle,
3461 struct perf_sample_data *sample)
3462 {
3463 if (event->attr.sample_id_all)
3464 __perf_event__output_id_sample(handle, sample);
3465 }
3466
3467 int perf_output_begin(struct perf_output_handle *handle,
3468 struct perf_event *event, unsigned int size,
3469 int nmi, int sample)
3470 {
3471 struct perf_buffer *buffer;
3472 unsigned long tail, offset, head;
3473 int have_lost;
3474 struct perf_sample_data sample_data;
3475 struct {
3476 struct perf_event_header header;
3477 u64 id;
3478 u64 lost;
3479 } lost_event;
3480
3481 rcu_read_lock();
3482 /*
3483 * For inherited events we send all the output towards the parent.
3484 */
3485 if (event->parent)
3486 event = event->parent;
3487
3488 buffer = rcu_dereference(event->buffer);
3489 if (!buffer)
3490 goto out;
3491
3492 handle->buffer = buffer;
3493 handle->event = event;
3494 handle->nmi = nmi;
3495 handle->sample = sample;
3496
3497 if (!buffer->nr_pages)
3498 goto out;
3499
3500 have_lost = local_read(&buffer->lost);
3501 if (have_lost) {
3502 lost_event.header.size = sizeof(lost_event);
3503 perf_event_header__init_id(&lost_event.header, &sample_data,
3504 event);
3505 size += lost_event.header.size;
3506 }
3507
3508 perf_output_get_handle(handle);
3509
3510 do {
3511 /*
3512 * Userspace could choose to issue a mb() before updating the
3513 * tail pointer. So that all reads will be completed before the
3514 * write is issued.
3515 */
3516 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3517 smp_rmb();
3518 offset = head = local_read(&buffer->head);
3519 head += size;
3520 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3521 goto fail;
3522 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3523
3524 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3525 local_add(buffer->watermark, &buffer->wakeup);
3526
3527 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3528 handle->page &= buffer->nr_pages - 1;
3529 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3530 handle->addr = buffer->data_pages[handle->page];
3531 handle->addr += handle->size;
3532 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3533
3534 if (have_lost) {
3535 lost_event.header.type = PERF_RECORD_LOST;
3536 lost_event.header.misc = 0;
3537 lost_event.id = event->id;
3538 lost_event.lost = local_xchg(&buffer->lost, 0);
3539
3540 perf_output_put(handle, lost_event);
3541 perf_event__output_id_sample(event, handle, &sample_data);
3542 }
3543
3544 return 0;
3545
3546 fail:
3547 local_inc(&buffer->lost);
3548 perf_output_put_handle(handle);
3549 out:
3550 rcu_read_unlock();
3551
3552 return -ENOSPC;
3553 }
3554
3555 void perf_output_end(struct perf_output_handle *handle)
3556 {
3557 struct perf_event *event = handle->event;
3558 struct perf_buffer *buffer = handle->buffer;
3559
3560 int wakeup_events = event->attr.wakeup_events;
3561
3562 if (handle->sample && wakeup_events) {
3563 int events = local_inc_return(&buffer->events);
3564 if (events >= wakeup_events) {
3565 local_sub(wakeup_events, &buffer->events);
3566 local_inc(&buffer->wakeup);
3567 }
3568 }
3569
3570 perf_output_put_handle(handle);
3571 rcu_read_unlock();
3572 }
3573
3574 static void perf_output_read_one(struct perf_output_handle *handle,
3575 struct perf_event *event,
3576 u64 enabled, u64 running)
3577 {
3578 u64 read_format = event->attr.read_format;
3579 u64 values[4];
3580 int n = 0;
3581
3582 values[n++] = perf_event_count(event);
3583 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3584 values[n++] = enabled +
3585 atomic64_read(&event->child_total_time_enabled);
3586 }
3587 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3588 values[n++] = running +
3589 atomic64_read(&event->child_total_time_running);
3590 }
3591 if (read_format & PERF_FORMAT_ID)
3592 values[n++] = primary_event_id(event);
3593
3594 perf_output_copy(handle, values, n * sizeof(u64));
3595 }
3596
3597 /*
3598 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3599 */
3600 static void perf_output_read_group(struct perf_output_handle *handle,
3601 struct perf_event *event,
3602 u64 enabled, u64 running)
3603 {
3604 struct perf_event *leader = event->group_leader, *sub;
3605 u64 read_format = event->attr.read_format;
3606 u64 values[5];
3607 int n = 0;
3608
3609 values[n++] = 1 + leader->nr_siblings;
3610
3611 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3612 values[n++] = enabled;
3613
3614 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3615 values[n++] = running;
3616
3617 if (leader != event)
3618 leader->pmu->read(leader);
3619
3620 values[n++] = perf_event_count(leader);
3621 if (read_format & PERF_FORMAT_ID)
3622 values[n++] = primary_event_id(leader);
3623
3624 perf_output_copy(handle, values, n * sizeof(u64));
3625
3626 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3627 n = 0;
3628
3629 if (sub != event)
3630 sub->pmu->read(sub);
3631
3632 values[n++] = perf_event_count(sub);
3633 if (read_format & PERF_FORMAT_ID)
3634 values[n++] = primary_event_id(sub);
3635
3636 perf_output_copy(handle, values, n * sizeof(u64));
3637 }
3638 }
3639
3640 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3641 PERF_FORMAT_TOTAL_TIME_RUNNING)
3642
3643 static void perf_output_read(struct perf_output_handle *handle,
3644 struct perf_event *event)
3645 {
3646 u64 enabled = 0, running = 0, now, ctx_time;
3647 u64 read_format = event->attr.read_format;
3648
3649 /*
3650 * compute total_time_enabled, total_time_running
3651 * based on snapshot values taken when the event
3652 * was last scheduled in.
3653 *
3654 * we cannot simply called update_context_time()
3655 * because of locking issue as we are called in
3656 * NMI context
3657 */
3658 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3659 now = perf_clock();
3660 ctx_time = event->shadow_ctx_time + now;
3661 enabled = ctx_time - event->tstamp_enabled;
3662 running = ctx_time - event->tstamp_running;
3663 }
3664
3665 if (event->attr.read_format & PERF_FORMAT_GROUP)
3666 perf_output_read_group(handle, event, enabled, running);
3667 else
3668 perf_output_read_one(handle, event, enabled, running);
3669 }
3670
3671 void perf_output_sample(struct perf_output_handle *handle,
3672 struct perf_event_header *header,
3673 struct perf_sample_data *data,
3674 struct perf_event *event)
3675 {
3676 u64 sample_type = data->type;
3677
3678 perf_output_put(handle, *header);
3679
3680 if (sample_type & PERF_SAMPLE_IP)
3681 perf_output_put(handle, data->ip);
3682
3683 if (sample_type & PERF_SAMPLE_TID)
3684 perf_output_put(handle, data->tid_entry);
3685
3686 if (sample_type & PERF_SAMPLE_TIME)
3687 perf_output_put(handle, data->time);
3688
3689 if (sample_type & PERF_SAMPLE_ADDR)
3690 perf_output_put(handle, data->addr);
3691
3692 if (sample_type & PERF_SAMPLE_ID)
3693 perf_output_put(handle, data->id);
3694
3695 if (sample_type & PERF_SAMPLE_STREAM_ID)
3696 perf_output_put(handle, data->stream_id);
3697
3698 if (sample_type & PERF_SAMPLE_CPU)
3699 perf_output_put(handle, data->cpu_entry);
3700
3701 if (sample_type & PERF_SAMPLE_PERIOD)
3702 perf_output_put(handle, data->period);
3703
3704 if (sample_type & PERF_SAMPLE_READ)
3705 perf_output_read(handle, event);
3706
3707 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3708 if (data->callchain) {
3709 int size = 1;
3710
3711 if (data->callchain)
3712 size += data->callchain->nr;
3713
3714 size *= sizeof(u64);
3715
3716 perf_output_copy(handle, data->callchain, size);
3717 } else {
3718 u64 nr = 0;
3719 perf_output_put(handle, nr);
3720 }
3721 }
3722
3723 if (sample_type & PERF_SAMPLE_RAW) {
3724 if (data->raw) {
3725 perf_output_put(handle, data->raw->size);
3726 perf_output_copy(handle, data->raw->data,
3727 data->raw->size);
3728 } else {
3729 struct {
3730 u32 size;
3731 u32 data;
3732 } raw = {
3733 .size = sizeof(u32),
3734 .data = 0,
3735 };
3736 perf_output_put(handle, raw);
3737 }
3738 }
3739 }
3740
3741 void perf_prepare_sample(struct perf_event_header *header,
3742 struct perf_sample_data *data,
3743 struct perf_event *event,
3744 struct pt_regs *regs)
3745 {
3746 u64 sample_type = event->attr.sample_type;
3747
3748 header->type = PERF_RECORD_SAMPLE;
3749 header->size = sizeof(*header) + event->header_size;
3750
3751 header->misc = 0;
3752 header->misc |= perf_misc_flags(regs);
3753
3754 __perf_event_header__init_id(header, data, event);
3755
3756 if (sample_type & PERF_SAMPLE_IP)
3757 data->ip = perf_instruction_pointer(regs);
3758
3759 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3760 int size = 1;
3761
3762 data->callchain = perf_callchain(regs);
3763
3764 if (data->callchain)
3765 size += data->callchain->nr;
3766
3767 header->size += size * sizeof(u64);
3768 }
3769
3770 if (sample_type & PERF_SAMPLE_RAW) {
3771 int size = sizeof(u32);
3772
3773 if (data->raw)
3774 size += data->raw->size;
3775 else
3776 size += sizeof(u32);
3777
3778 WARN_ON_ONCE(size & (sizeof(u64)-1));
3779 header->size += size;
3780 }
3781 }
3782
3783 static void perf_event_output(struct perf_event *event, int nmi,
3784 struct perf_sample_data *data,
3785 struct pt_regs *regs)
3786 {
3787 struct perf_output_handle handle;
3788 struct perf_event_header header;
3789
3790 /* protect the callchain buffers */
3791 rcu_read_lock();
3792
3793 perf_prepare_sample(&header, data, event, regs);
3794
3795 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3796 goto exit;
3797
3798 perf_output_sample(&handle, &header, data, event);
3799
3800 perf_output_end(&handle);
3801
3802 exit:
3803 rcu_read_unlock();
3804 }
3805
3806 /*
3807 * read event_id
3808 */
3809
3810 struct perf_read_event {
3811 struct perf_event_header header;
3812
3813 u32 pid;
3814 u32 tid;
3815 };
3816
3817 static void
3818 perf_event_read_event(struct perf_event *event,
3819 struct task_struct *task)
3820 {
3821 struct perf_output_handle handle;
3822 struct perf_sample_data sample;
3823 struct perf_read_event read_event = {
3824 .header = {
3825 .type = PERF_RECORD_READ,
3826 .misc = 0,
3827 .size = sizeof(read_event) + event->read_size,
3828 },
3829 .pid = perf_event_pid(event, task),
3830 .tid = perf_event_tid(event, task),
3831 };
3832 int ret;
3833
3834 perf_event_header__init_id(&read_event.header, &sample, event);
3835 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3836 if (ret)
3837 return;
3838
3839 perf_output_put(&handle, read_event);
3840 perf_output_read(&handle, event);
3841 perf_event__output_id_sample(event, &handle, &sample);
3842
3843 perf_output_end(&handle);
3844 }
3845
3846 /*
3847 * task tracking -- fork/exit
3848 *
3849 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3850 */
3851
3852 struct perf_task_event {
3853 struct task_struct *task;
3854 struct perf_event_context *task_ctx;
3855
3856 struct {
3857 struct perf_event_header header;
3858
3859 u32 pid;
3860 u32 ppid;
3861 u32 tid;
3862 u32 ptid;
3863 u64 time;
3864 } event_id;
3865 };
3866
3867 static void perf_event_task_output(struct perf_event *event,
3868 struct perf_task_event *task_event)
3869 {
3870 struct perf_output_handle handle;
3871 struct perf_sample_data sample;
3872 struct task_struct *task = task_event->task;
3873 int ret, size = task_event->event_id.header.size;
3874
3875 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3876
3877 ret = perf_output_begin(&handle, event,
3878 task_event->event_id.header.size, 0, 0);
3879 if (ret)
3880 goto out;
3881
3882 task_event->event_id.pid = perf_event_pid(event, task);
3883 task_event->event_id.ppid = perf_event_pid(event, current);
3884
3885 task_event->event_id.tid = perf_event_tid(event, task);
3886 task_event->event_id.ptid = perf_event_tid(event, current);
3887
3888 perf_output_put(&handle, task_event->event_id);
3889
3890 perf_event__output_id_sample(event, &handle, &sample);
3891
3892 perf_output_end(&handle);
3893 out:
3894 task_event->event_id.header.size = size;
3895 }
3896
3897 static int perf_event_task_match(struct perf_event *event)
3898 {
3899 if (event->state < PERF_EVENT_STATE_INACTIVE)
3900 return 0;
3901
3902 if (event->cpu != -1 && event->cpu != smp_processor_id())
3903 return 0;
3904
3905 if (event->attr.comm || event->attr.mmap ||
3906 event->attr.mmap_data || event->attr.task)
3907 return 1;
3908
3909 return 0;
3910 }
3911
3912 static void perf_event_task_ctx(struct perf_event_context *ctx,
3913 struct perf_task_event *task_event)
3914 {
3915 struct perf_event *event;
3916
3917 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3918 if (perf_event_task_match(event))
3919 perf_event_task_output(event, task_event);
3920 }
3921 }
3922
3923 static void perf_event_task_event(struct perf_task_event *task_event)
3924 {
3925 struct perf_cpu_context *cpuctx;
3926 struct perf_event_context *ctx;
3927 struct pmu *pmu;
3928 int ctxn;
3929
3930 rcu_read_lock();
3931 list_for_each_entry_rcu(pmu, &pmus, entry) {
3932 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3933 if (cpuctx->active_pmu != pmu)
3934 goto next;
3935 perf_event_task_ctx(&cpuctx->ctx, task_event);
3936
3937 ctx = task_event->task_ctx;
3938 if (!ctx) {
3939 ctxn = pmu->task_ctx_nr;
3940 if (ctxn < 0)
3941 goto next;
3942 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3943 }
3944 if (ctx)
3945 perf_event_task_ctx(ctx, task_event);
3946 next:
3947 put_cpu_ptr(pmu->pmu_cpu_context);
3948 }
3949 rcu_read_unlock();
3950 }
3951
3952 static void perf_event_task(struct task_struct *task,
3953 struct perf_event_context *task_ctx,
3954 int new)
3955 {
3956 struct perf_task_event task_event;
3957
3958 if (!atomic_read(&nr_comm_events) &&
3959 !atomic_read(&nr_mmap_events) &&
3960 !atomic_read(&nr_task_events))
3961 return;
3962
3963 task_event = (struct perf_task_event){
3964 .task = task,
3965 .task_ctx = task_ctx,
3966 .event_id = {
3967 .header = {
3968 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3969 .misc = 0,
3970 .size = sizeof(task_event.event_id),
3971 },
3972 /* .pid */
3973 /* .ppid */
3974 /* .tid */
3975 /* .ptid */
3976 .time = perf_clock(),
3977 },
3978 };
3979
3980 perf_event_task_event(&task_event);
3981 }
3982
3983 void perf_event_fork(struct task_struct *task)
3984 {
3985 perf_event_task(task, NULL, 1);
3986 }
3987
3988 /*
3989 * comm tracking
3990 */
3991
3992 struct perf_comm_event {
3993 struct task_struct *task;
3994 char *comm;
3995 int comm_size;
3996
3997 struct {
3998 struct perf_event_header header;
3999
4000 u32 pid;
4001 u32 tid;
4002 } event_id;
4003 };
4004
4005 static void perf_event_comm_output(struct perf_event *event,
4006 struct perf_comm_event *comm_event)
4007 {
4008 struct perf_output_handle handle;
4009 struct perf_sample_data sample;
4010 int size = comm_event->event_id.header.size;
4011 int ret;
4012
4013 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4014 ret = perf_output_begin(&handle, event,
4015 comm_event->event_id.header.size, 0, 0);
4016
4017 if (ret)
4018 goto out;
4019
4020 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4021 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4022
4023 perf_output_put(&handle, comm_event->event_id);
4024 perf_output_copy(&handle, comm_event->comm,
4025 comm_event->comm_size);
4026
4027 perf_event__output_id_sample(event, &handle, &sample);
4028
4029 perf_output_end(&handle);
4030 out:
4031 comm_event->event_id.header.size = size;
4032 }
4033
4034 static int perf_event_comm_match(struct perf_event *event)
4035 {
4036 if (event->state < PERF_EVENT_STATE_INACTIVE)
4037 return 0;
4038
4039 if (event->cpu != -1 && event->cpu != smp_processor_id())
4040 return 0;
4041
4042 if (event->attr.comm)
4043 return 1;
4044
4045 return 0;
4046 }
4047
4048 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4049 struct perf_comm_event *comm_event)
4050 {
4051 struct perf_event *event;
4052
4053 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4054 if (perf_event_comm_match(event))
4055 perf_event_comm_output(event, comm_event);
4056 }
4057 }
4058
4059 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4060 {
4061 struct perf_cpu_context *cpuctx;
4062 struct perf_event_context *ctx;
4063 char comm[TASK_COMM_LEN];
4064 unsigned int size;
4065 struct pmu *pmu;
4066 int ctxn;
4067
4068 memset(comm, 0, sizeof(comm));
4069 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4070 size = ALIGN(strlen(comm)+1, sizeof(u64));
4071
4072 comm_event->comm = comm;
4073 comm_event->comm_size = size;
4074
4075 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4076 rcu_read_lock();
4077 list_for_each_entry_rcu(pmu, &pmus, entry) {
4078 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4079 if (cpuctx->active_pmu != pmu)
4080 goto next;
4081 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4082
4083 ctxn = pmu->task_ctx_nr;
4084 if (ctxn < 0)
4085 goto next;
4086
4087 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4088 if (ctx)
4089 perf_event_comm_ctx(ctx, comm_event);
4090 next:
4091 put_cpu_ptr(pmu->pmu_cpu_context);
4092 }
4093 rcu_read_unlock();
4094 }
4095
4096 void perf_event_comm(struct task_struct *task)
4097 {
4098 struct perf_comm_event comm_event;
4099 struct perf_event_context *ctx;
4100 int ctxn;
4101
4102 for_each_task_context_nr(ctxn) {
4103 ctx = task->perf_event_ctxp[ctxn];
4104 if (!ctx)
4105 continue;
4106
4107 perf_event_enable_on_exec(ctx);
4108 }
4109
4110 if (!atomic_read(&nr_comm_events))
4111 return;
4112
4113 comm_event = (struct perf_comm_event){
4114 .task = task,
4115 /* .comm */
4116 /* .comm_size */
4117 .event_id = {
4118 .header = {
4119 .type = PERF_RECORD_COMM,
4120 .misc = 0,
4121 /* .size */
4122 },
4123 /* .pid */
4124 /* .tid */
4125 },
4126 };
4127
4128 perf_event_comm_event(&comm_event);
4129 }
4130
4131 /*
4132 * mmap tracking
4133 */
4134
4135 struct perf_mmap_event {
4136 struct vm_area_struct *vma;
4137
4138 const char *file_name;
4139 int file_size;
4140
4141 struct {
4142 struct perf_event_header header;
4143
4144 u32 pid;
4145 u32 tid;
4146 u64 start;
4147 u64 len;
4148 u64 pgoff;
4149 } event_id;
4150 };
4151
4152 static void perf_event_mmap_output(struct perf_event *event,
4153 struct perf_mmap_event *mmap_event)
4154 {
4155 struct perf_output_handle handle;
4156 struct perf_sample_data sample;
4157 int size = mmap_event->event_id.header.size;
4158 int ret;
4159
4160 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4161 ret = perf_output_begin(&handle, event,
4162 mmap_event->event_id.header.size, 0, 0);
4163 if (ret)
4164 goto out;
4165
4166 mmap_event->event_id.pid = perf_event_pid(event, current);
4167 mmap_event->event_id.tid = perf_event_tid(event, current);
4168
4169 perf_output_put(&handle, mmap_event->event_id);
4170 perf_output_copy(&handle, mmap_event->file_name,
4171 mmap_event->file_size);
4172
4173 perf_event__output_id_sample(event, &handle, &sample);
4174
4175 perf_output_end(&handle);
4176 out:
4177 mmap_event->event_id.header.size = size;
4178 }
4179
4180 static int perf_event_mmap_match(struct perf_event *event,
4181 struct perf_mmap_event *mmap_event,
4182 int executable)
4183 {
4184 if (event->state < PERF_EVENT_STATE_INACTIVE)
4185 return 0;
4186
4187 if (event->cpu != -1 && event->cpu != smp_processor_id())
4188 return 0;
4189
4190 if ((!executable && event->attr.mmap_data) ||
4191 (executable && event->attr.mmap))
4192 return 1;
4193
4194 return 0;
4195 }
4196
4197 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4198 struct perf_mmap_event *mmap_event,
4199 int executable)
4200 {
4201 struct perf_event *event;
4202
4203 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4204 if (perf_event_mmap_match(event, mmap_event, executable))
4205 perf_event_mmap_output(event, mmap_event);
4206 }
4207 }
4208
4209 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4210 {
4211 struct perf_cpu_context *cpuctx;
4212 struct perf_event_context *ctx;
4213 struct vm_area_struct *vma = mmap_event->vma;
4214 struct file *file = vma->vm_file;
4215 unsigned int size;
4216 char tmp[16];
4217 char *buf = NULL;
4218 const char *name;
4219 struct pmu *pmu;
4220 int ctxn;
4221
4222 memset(tmp, 0, sizeof(tmp));
4223
4224 if (file) {
4225 /*
4226 * d_path works from the end of the buffer backwards, so we
4227 * need to add enough zero bytes after the string to handle
4228 * the 64bit alignment we do later.
4229 */
4230 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4231 if (!buf) {
4232 name = strncpy(tmp, "//enomem", sizeof(tmp));
4233 goto got_name;
4234 }
4235 name = d_path(&file->f_path, buf, PATH_MAX);
4236 if (IS_ERR(name)) {
4237 name = strncpy(tmp, "//toolong", sizeof(tmp));
4238 goto got_name;
4239 }
4240 } else {
4241 if (arch_vma_name(mmap_event->vma)) {
4242 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4243 sizeof(tmp));
4244 goto got_name;
4245 }
4246
4247 if (!vma->vm_mm) {
4248 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4249 goto got_name;
4250 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4251 vma->vm_end >= vma->vm_mm->brk) {
4252 name = strncpy(tmp, "[heap]", sizeof(tmp));
4253 goto got_name;
4254 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4255 vma->vm_end >= vma->vm_mm->start_stack) {
4256 name = strncpy(tmp, "[stack]", sizeof(tmp));
4257 goto got_name;
4258 }
4259
4260 name = strncpy(tmp, "//anon", sizeof(tmp));
4261 goto got_name;
4262 }
4263
4264 got_name:
4265 size = ALIGN(strlen(name)+1, sizeof(u64));
4266
4267 mmap_event->file_name = name;
4268 mmap_event->file_size = size;
4269
4270 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4271
4272 rcu_read_lock();
4273 list_for_each_entry_rcu(pmu, &pmus, entry) {
4274 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4275 if (cpuctx->active_pmu != pmu)
4276 goto next;
4277 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4278 vma->vm_flags & VM_EXEC);
4279
4280 ctxn = pmu->task_ctx_nr;
4281 if (ctxn < 0)
4282 goto next;
4283
4284 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4285 if (ctx) {
4286 perf_event_mmap_ctx(ctx, mmap_event,
4287 vma->vm_flags & VM_EXEC);
4288 }
4289 next:
4290 put_cpu_ptr(pmu->pmu_cpu_context);
4291 }
4292 rcu_read_unlock();
4293
4294 kfree(buf);
4295 }
4296
4297 void perf_event_mmap(struct vm_area_struct *vma)
4298 {
4299 struct perf_mmap_event mmap_event;
4300
4301 if (!atomic_read(&nr_mmap_events))
4302 return;
4303
4304 mmap_event = (struct perf_mmap_event){
4305 .vma = vma,
4306 /* .file_name */
4307 /* .file_size */
4308 .event_id = {
4309 .header = {
4310 .type = PERF_RECORD_MMAP,
4311 .misc = PERF_RECORD_MISC_USER,
4312 /* .size */
4313 },
4314 /* .pid */
4315 /* .tid */
4316 .start = vma->vm_start,
4317 .len = vma->vm_end - vma->vm_start,
4318 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4319 },
4320 };
4321
4322 perf_event_mmap_event(&mmap_event);
4323 }
4324
4325 /*
4326 * IRQ throttle logging
4327 */
4328
4329 static void perf_log_throttle(struct perf_event *event, int enable)
4330 {
4331 struct perf_output_handle handle;
4332 struct perf_sample_data sample;
4333 int ret;
4334
4335 struct {
4336 struct perf_event_header header;
4337 u64 time;
4338 u64 id;
4339 u64 stream_id;
4340 } throttle_event = {
4341 .header = {
4342 .type = PERF_RECORD_THROTTLE,
4343 .misc = 0,
4344 .size = sizeof(throttle_event),
4345 },
4346 .time = perf_clock(),
4347 .id = primary_event_id(event),
4348 .stream_id = event->id,
4349 };
4350
4351 if (enable)
4352 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4353
4354 perf_event_header__init_id(&throttle_event.header, &sample, event);
4355
4356 ret = perf_output_begin(&handle, event,
4357 throttle_event.header.size, 1, 0);
4358 if (ret)
4359 return;
4360
4361 perf_output_put(&handle, throttle_event);
4362 perf_event__output_id_sample(event, &handle, &sample);
4363 perf_output_end(&handle);
4364 }
4365
4366 /*
4367 * Generic event overflow handling, sampling.
4368 */
4369
4370 static int __perf_event_overflow(struct perf_event *event, int nmi,
4371 int throttle, struct perf_sample_data *data,
4372 struct pt_regs *regs)
4373 {
4374 int events = atomic_read(&event->event_limit);
4375 struct hw_perf_event *hwc = &event->hw;
4376 int ret = 0;
4377
4378 /*
4379 * Non-sampling counters might still use the PMI to fold short
4380 * hardware counters, ignore those.
4381 */
4382 if (unlikely(!is_sampling_event(event)))
4383 return 0;
4384
4385 if (!throttle) {
4386 hwc->interrupts++;
4387 } else {
4388 if (hwc->interrupts != MAX_INTERRUPTS) {
4389 hwc->interrupts++;
4390 if (HZ * hwc->interrupts >
4391 (u64)sysctl_perf_event_sample_rate) {
4392 hwc->interrupts = MAX_INTERRUPTS;
4393 perf_log_throttle(event, 0);
4394 ret = 1;
4395 }
4396 } else {
4397 /*
4398 * Keep re-disabling events even though on the previous
4399 * pass we disabled it - just in case we raced with a
4400 * sched-in and the event got enabled again:
4401 */
4402 ret = 1;
4403 }
4404 }
4405
4406 if (event->attr.freq) {
4407 u64 now = perf_clock();
4408 s64 delta = now - hwc->freq_time_stamp;
4409
4410 hwc->freq_time_stamp = now;
4411
4412 if (delta > 0 && delta < 2*TICK_NSEC)
4413 perf_adjust_period(event, delta, hwc->last_period);
4414 }
4415
4416 /*
4417 * XXX event_limit might not quite work as expected on inherited
4418 * events
4419 */
4420
4421 event->pending_kill = POLL_IN;
4422 if (events && atomic_dec_and_test(&event->event_limit)) {
4423 ret = 1;
4424 event->pending_kill = POLL_HUP;
4425 if (nmi) {
4426 event->pending_disable = 1;
4427 irq_work_queue(&event->pending);
4428 } else
4429 perf_event_disable(event);
4430 }
4431
4432 if (event->overflow_handler)
4433 event->overflow_handler(event, nmi, data, regs);
4434 else
4435 perf_event_output(event, nmi, data, regs);
4436
4437 return ret;
4438 }
4439
4440 int perf_event_overflow(struct perf_event *event, int nmi,
4441 struct perf_sample_data *data,
4442 struct pt_regs *regs)
4443 {
4444 return __perf_event_overflow(event, nmi, 1, data, regs);
4445 }
4446
4447 /*
4448 * Generic software event infrastructure
4449 */
4450
4451 struct swevent_htable {
4452 struct swevent_hlist *swevent_hlist;
4453 struct mutex hlist_mutex;
4454 int hlist_refcount;
4455
4456 /* Recursion avoidance in each contexts */
4457 int recursion[PERF_NR_CONTEXTS];
4458 };
4459
4460 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4461
4462 /*
4463 * We directly increment event->count and keep a second value in
4464 * event->hw.period_left to count intervals. This period event
4465 * is kept in the range [-sample_period, 0] so that we can use the
4466 * sign as trigger.
4467 */
4468
4469 static u64 perf_swevent_set_period(struct perf_event *event)
4470 {
4471 struct hw_perf_event *hwc = &event->hw;
4472 u64 period = hwc->last_period;
4473 u64 nr, offset;
4474 s64 old, val;
4475
4476 hwc->last_period = hwc->sample_period;
4477
4478 again:
4479 old = val = local64_read(&hwc->period_left);
4480 if (val < 0)
4481 return 0;
4482
4483 nr = div64_u64(period + val, period);
4484 offset = nr * period;
4485 val -= offset;
4486 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4487 goto again;
4488
4489 return nr;
4490 }
4491
4492 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4493 int nmi, struct perf_sample_data *data,
4494 struct pt_regs *regs)
4495 {
4496 struct hw_perf_event *hwc = &event->hw;
4497 int throttle = 0;
4498
4499 data->period = event->hw.last_period;
4500 if (!overflow)
4501 overflow = perf_swevent_set_period(event);
4502
4503 if (hwc->interrupts == MAX_INTERRUPTS)
4504 return;
4505
4506 for (; overflow; overflow--) {
4507 if (__perf_event_overflow(event, nmi, throttle,
4508 data, regs)) {
4509 /*
4510 * We inhibit the overflow from happening when
4511 * hwc->interrupts == MAX_INTERRUPTS.
4512 */
4513 break;
4514 }
4515 throttle = 1;
4516 }
4517 }
4518
4519 static void perf_swevent_event(struct perf_event *event, u64 nr,
4520 int nmi, struct perf_sample_data *data,
4521 struct pt_regs *regs)
4522 {
4523 struct hw_perf_event *hwc = &event->hw;
4524
4525 local64_add(nr, &event->count);
4526
4527 if (!regs)
4528 return;
4529
4530 if (!is_sampling_event(event))
4531 return;
4532
4533 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4534 return perf_swevent_overflow(event, 1, nmi, data, regs);
4535
4536 if (local64_add_negative(nr, &hwc->period_left))
4537 return;
4538
4539 perf_swevent_overflow(event, 0, nmi, data, regs);
4540 }
4541
4542 static int perf_exclude_event(struct perf_event *event,
4543 struct pt_regs *regs)
4544 {
4545 if (event->hw.state & PERF_HES_STOPPED)
4546 return 0;
4547
4548 if (regs) {
4549 if (event->attr.exclude_user && user_mode(regs))
4550 return 1;
4551
4552 if (event->attr.exclude_kernel && !user_mode(regs))
4553 return 1;
4554 }
4555
4556 return 0;
4557 }
4558
4559 static int perf_swevent_match(struct perf_event *event,
4560 enum perf_type_id type,
4561 u32 event_id,
4562 struct perf_sample_data *data,
4563 struct pt_regs *regs)
4564 {
4565 if (event->attr.type != type)
4566 return 0;
4567
4568 if (event->attr.config != event_id)
4569 return 0;
4570
4571 if (perf_exclude_event(event, regs))
4572 return 0;
4573
4574 return 1;
4575 }
4576
4577 static inline u64 swevent_hash(u64 type, u32 event_id)
4578 {
4579 u64 val = event_id | (type << 32);
4580
4581 return hash_64(val, SWEVENT_HLIST_BITS);
4582 }
4583
4584 static inline struct hlist_head *
4585 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4586 {
4587 u64 hash = swevent_hash(type, event_id);
4588
4589 return &hlist->heads[hash];
4590 }
4591
4592 /* For the read side: events when they trigger */
4593 static inline struct hlist_head *
4594 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4595 {
4596 struct swevent_hlist *hlist;
4597
4598 hlist = rcu_dereference(swhash->swevent_hlist);
4599 if (!hlist)
4600 return NULL;
4601
4602 return __find_swevent_head(hlist, type, event_id);
4603 }
4604
4605 /* For the event head insertion and removal in the hlist */
4606 static inline struct hlist_head *
4607 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4608 {
4609 struct swevent_hlist *hlist;
4610 u32 event_id = event->attr.config;
4611 u64 type = event->attr.type;
4612
4613 /*
4614 * Event scheduling is always serialized against hlist allocation
4615 * and release. Which makes the protected version suitable here.
4616 * The context lock guarantees that.
4617 */
4618 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4619 lockdep_is_held(&event->ctx->lock));
4620 if (!hlist)
4621 return NULL;
4622
4623 return __find_swevent_head(hlist, type, event_id);
4624 }
4625
4626 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4627 u64 nr, int nmi,
4628 struct perf_sample_data *data,
4629 struct pt_regs *regs)
4630 {
4631 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4632 struct perf_event *event;
4633 struct hlist_node *node;
4634 struct hlist_head *head;
4635
4636 rcu_read_lock();
4637 head = find_swevent_head_rcu(swhash, type, event_id);
4638 if (!head)
4639 goto end;
4640
4641 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4642 if (perf_swevent_match(event, type, event_id, data, regs))
4643 perf_swevent_event(event, nr, nmi, data, regs);
4644 }
4645 end:
4646 rcu_read_unlock();
4647 }
4648
4649 int perf_swevent_get_recursion_context(void)
4650 {
4651 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4652
4653 return get_recursion_context(swhash->recursion);
4654 }
4655 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4656
4657 void inline perf_swevent_put_recursion_context(int rctx)
4658 {
4659 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4660
4661 put_recursion_context(swhash->recursion, rctx);
4662 }
4663
4664 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4665 struct pt_regs *regs, u64 addr)
4666 {
4667 struct perf_sample_data data;
4668 int rctx;
4669
4670 preempt_disable_notrace();
4671 rctx = perf_swevent_get_recursion_context();
4672 if (rctx < 0)
4673 return;
4674
4675 perf_sample_data_init(&data, addr);
4676
4677 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4678
4679 perf_swevent_put_recursion_context(rctx);
4680 preempt_enable_notrace();
4681 }
4682
4683 static void perf_swevent_read(struct perf_event *event)
4684 {
4685 }
4686
4687 static int perf_swevent_add(struct perf_event *event, int flags)
4688 {
4689 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4690 struct hw_perf_event *hwc = &event->hw;
4691 struct hlist_head *head;
4692
4693 if (is_sampling_event(event)) {
4694 hwc->last_period = hwc->sample_period;
4695 perf_swevent_set_period(event);
4696 }
4697
4698 hwc->state = !(flags & PERF_EF_START);
4699
4700 head = find_swevent_head(swhash, event);
4701 if (WARN_ON_ONCE(!head))
4702 return -EINVAL;
4703
4704 hlist_add_head_rcu(&event->hlist_entry, head);
4705
4706 return 0;
4707 }
4708
4709 static void perf_swevent_del(struct perf_event *event, int flags)
4710 {
4711 hlist_del_rcu(&event->hlist_entry);
4712 }
4713
4714 static void perf_swevent_start(struct perf_event *event, int flags)
4715 {
4716 event->hw.state = 0;
4717 }
4718
4719 static void perf_swevent_stop(struct perf_event *event, int flags)
4720 {
4721 event->hw.state = PERF_HES_STOPPED;
4722 }
4723
4724 /* Deref the hlist from the update side */
4725 static inline struct swevent_hlist *
4726 swevent_hlist_deref(struct swevent_htable *swhash)
4727 {
4728 return rcu_dereference_protected(swhash->swevent_hlist,
4729 lockdep_is_held(&swhash->hlist_mutex));
4730 }
4731
4732 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4733 {
4734 struct swevent_hlist *hlist;
4735
4736 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4737 kfree(hlist);
4738 }
4739
4740 static void swevent_hlist_release(struct swevent_htable *swhash)
4741 {
4742 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4743
4744 if (!hlist)
4745 return;
4746
4747 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4748 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4749 }
4750
4751 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4752 {
4753 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4754
4755 mutex_lock(&swhash->hlist_mutex);
4756
4757 if (!--swhash->hlist_refcount)
4758 swevent_hlist_release(swhash);
4759
4760 mutex_unlock(&swhash->hlist_mutex);
4761 }
4762
4763 static void swevent_hlist_put(struct perf_event *event)
4764 {
4765 int cpu;
4766
4767 if (event->cpu != -1) {
4768 swevent_hlist_put_cpu(event, event->cpu);
4769 return;
4770 }
4771
4772 for_each_possible_cpu(cpu)
4773 swevent_hlist_put_cpu(event, cpu);
4774 }
4775
4776 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4777 {
4778 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4779 int err = 0;
4780
4781 mutex_lock(&swhash->hlist_mutex);
4782
4783 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4784 struct swevent_hlist *hlist;
4785
4786 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4787 if (!hlist) {
4788 err = -ENOMEM;
4789 goto exit;
4790 }
4791 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4792 }
4793 swhash->hlist_refcount++;
4794 exit:
4795 mutex_unlock(&swhash->hlist_mutex);
4796
4797 return err;
4798 }
4799
4800 static int swevent_hlist_get(struct perf_event *event)
4801 {
4802 int err;
4803 int cpu, failed_cpu;
4804
4805 if (event->cpu != -1)
4806 return swevent_hlist_get_cpu(event, event->cpu);
4807
4808 get_online_cpus();
4809 for_each_possible_cpu(cpu) {
4810 err = swevent_hlist_get_cpu(event, cpu);
4811 if (err) {
4812 failed_cpu = cpu;
4813 goto fail;
4814 }
4815 }
4816 put_online_cpus();
4817
4818 return 0;
4819 fail:
4820 for_each_possible_cpu(cpu) {
4821 if (cpu == failed_cpu)
4822 break;
4823 swevent_hlist_put_cpu(event, cpu);
4824 }
4825
4826 put_online_cpus();
4827 return err;
4828 }
4829
4830 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4831
4832 static void sw_perf_event_destroy(struct perf_event *event)
4833 {
4834 u64 event_id = event->attr.config;
4835
4836 WARN_ON(event->parent);
4837
4838 jump_label_dec(&perf_swevent_enabled[event_id]);
4839 swevent_hlist_put(event);
4840 }
4841
4842 static int perf_swevent_init(struct perf_event *event)
4843 {
4844 int event_id = event->attr.config;
4845
4846 if (event->attr.type != PERF_TYPE_SOFTWARE)
4847 return -ENOENT;
4848
4849 switch (event_id) {
4850 case PERF_COUNT_SW_CPU_CLOCK:
4851 case PERF_COUNT_SW_TASK_CLOCK:
4852 return -ENOENT;
4853
4854 default:
4855 break;
4856 }
4857
4858 if (event_id >= PERF_COUNT_SW_MAX)
4859 return -ENOENT;
4860
4861 if (!event->parent) {
4862 int err;
4863
4864 err = swevent_hlist_get(event);
4865 if (err)
4866 return err;
4867
4868 jump_label_inc(&perf_swevent_enabled[event_id]);
4869 event->destroy = sw_perf_event_destroy;
4870 }
4871
4872 return 0;
4873 }
4874
4875 static struct pmu perf_swevent = {
4876 .task_ctx_nr = perf_sw_context,
4877
4878 .event_init = perf_swevent_init,
4879 .add = perf_swevent_add,
4880 .del = perf_swevent_del,
4881 .start = perf_swevent_start,
4882 .stop = perf_swevent_stop,
4883 .read = perf_swevent_read,
4884 };
4885
4886 #ifdef CONFIG_EVENT_TRACING
4887
4888 static int perf_tp_filter_match(struct perf_event *event,
4889 struct perf_sample_data *data)
4890 {
4891 void *record = data->raw->data;
4892
4893 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4894 return 1;
4895 return 0;
4896 }
4897
4898 static int perf_tp_event_match(struct perf_event *event,
4899 struct perf_sample_data *data,
4900 struct pt_regs *regs)
4901 {
4902 /*
4903 * All tracepoints are from kernel-space.
4904 */
4905 if (event->attr.exclude_kernel)
4906 return 0;
4907
4908 if (!perf_tp_filter_match(event, data))
4909 return 0;
4910
4911 return 1;
4912 }
4913
4914 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4915 struct pt_regs *regs, struct hlist_head *head, int rctx)
4916 {
4917 struct perf_sample_data data;
4918 struct perf_event *event;
4919 struct hlist_node *node;
4920
4921 struct perf_raw_record raw = {
4922 .size = entry_size,
4923 .data = record,
4924 };
4925
4926 perf_sample_data_init(&data, addr);
4927 data.raw = &raw;
4928
4929 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4930 if (perf_tp_event_match(event, &data, regs))
4931 perf_swevent_event(event, count, 1, &data, regs);
4932 }
4933
4934 perf_swevent_put_recursion_context(rctx);
4935 }
4936 EXPORT_SYMBOL_GPL(perf_tp_event);
4937
4938 static void tp_perf_event_destroy(struct perf_event *event)
4939 {
4940 perf_trace_destroy(event);
4941 }
4942
4943 static int perf_tp_event_init(struct perf_event *event)
4944 {
4945 int err;
4946
4947 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4948 return -ENOENT;
4949
4950 err = perf_trace_init(event);
4951 if (err)
4952 return err;
4953
4954 event->destroy = tp_perf_event_destroy;
4955
4956 return 0;
4957 }
4958
4959 static struct pmu perf_tracepoint = {
4960 .task_ctx_nr = perf_sw_context,
4961
4962 .event_init = perf_tp_event_init,
4963 .add = perf_trace_add,
4964 .del = perf_trace_del,
4965 .start = perf_swevent_start,
4966 .stop = perf_swevent_stop,
4967 .read = perf_swevent_read,
4968 };
4969
4970 static inline void perf_tp_register(void)
4971 {
4972 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4973 }
4974
4975 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4976 {
4977 char *filter_str;
4978 int ret;
4979
4980 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4981 return -EINVAL;
4982
4983 filter_str = strndup_user(arg, PAGE_SIZE);
4984 if (IS_ERR(filter_str))
4985 return PTR_ERR(filter_str);
4986
4987 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4988
4989 kfree(filter_str);
4990 return ret;
4991 }
4992
4993 static void perf_event_free_filter(struct perf_event *event)
4994 {
4995 ftrace_profile_free_filter(event);
4996 }
4997
4998 #else
4999
5000 static inline void perf_tp_register(void)
5001 {
5002 }
5003
5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5005 {
5006 return -ENOENT;
5007 }
5008
5009 static void perf_event_free_filter(struct perf_event *event)
5010 {
5011 }
5012
5013 #endif /* CONFIG_EVENT_TRACING */
5014
5015 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5016 void perf_bp_event(struct perf_event *bp, void *data)
5017 {
5018 struct perf_sample_data sample;
5019 struct pt_regs *regs = data;
5020
5021 perf_sample_data_init(&sample, bp->attr.bp_addr);
5022
5023 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5024 perf_swevent_event(bp, 1, 1, &sample, regs);
5025 }
5026 #endif
5027
5028 /*
5029 * hrtimer based swevent callback
5030 */
5031
5032 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5033 {
5034 enum hrtimer_restart ret = HRTIMER_RESTART;
5035 struct perf_sample_data data;
5036 struct pt_regs *regs;
5037 struct perf_event *event;
5038 u64 period;
5039
5040 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5041 event->pmu->read(event);
5042
5043 perf_sample_data_init(&data, 0);
5044 data.period = event->hw.last_period;
5045 regs = get_irq_regs();
5046
5047 if (regs && !perf_exclude_event(event, regs)) {
5048 if (!(event->attr.exclude_idle && current->pid == 0))
5049 if (perf_event_overflow(event, 0, &data, regs))
5050 ret = HRTIMER_NORESTART;
5051 }
5052
5053 period = max_t(u64, 10000, event->hw.sample_period);
5054 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5055
5056 return ret;
5057 }
5058
5059 static void perf_swevent_start_hrtimer(struct perf_event *event)
5060 {
5061 struct hw_perf_event *hwc = &event->hw;
5062 s64 period;
5063
5064 if (!is_sampling_event(event))
5065 return;
5066
5067 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5068 hwc->hrtimer.function = perf_swevent_hrtimer;
5069
5070 period = local64_read(&hwc->period_left);
5071 if (period) {
5072 if (period < 0)
5073 period = 10000;
5074
5075 local64_set(&hwc->period_left, 0);
5076 } else {
5077 period = max_t(u64, 10000, hwc->sample_period);
5078 }
5079 __hrtimer_start_range_ns(&hwc->hrtimer,
5080 ns_to_ktime(period), 0,
5081 HRTIMER_MODE_REL_PINNED, 0);
5082 }
5083
5084 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5085 {
5086 struct hw_perf_event *hwc = &event->hw;
5087
5088 if (is_sampling_event(event)) {
5089 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5090 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5091
5092 hrtimer_cancel(&hwc->hrtimer);
5093 }
5094 }
5095
5096 /*
5097 * Software event: cpu wall time clock
5098 */
5099
5100 static void cpu_clock_event_update(struct perf_event *event)
5101 {
5102 s64 prev;
5103 u64 now;
5104
5105 now = local_clock();
5106 prev = local64_xchg(&event->hw.prev_count, now);
5107 local64_add(now - prev, &event->count);
5108 }
5109
5110 static void cpu_clock_event_start(struct perf_event *event, int flags)
5111 {
5112 local64_set(&event->hw.prev_count, local_clock());
5113 perf_swevent_start_hrtimer(event);
5114 }
5115
5116 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5117 {
5118 perf_swevent_cancel_hrtimer(event);
5119 cpu_clock_event_update(event);
5120 }
5121
5122 static int cpu_clock_event_add(struct perf_event *event, int flags)
5123 {
5124 if (flags & PERF_EF_START)
5125 cpu_clock_event_start(event, flags);
5126
5127 return 0;
5128 }
5129
5130 static void cpu_clock_event_del(struct perf_event *event, int flags)
5131 {
5132 cpu_clock_event_stop(event, flags);
5133 }
5134
5135 static void cpu_clock_event_read(struct perf_event *event)
5136 {
5137 cpu_clock_event_update(event);
5138 }
5139
5140 static int cpu_clock_event_init(struct perf_event *event)
5141 {
5142 if (event->attr.type != PERF_TYPE_SOFTWARE)
5143 return -ENOENT;
5144
5145 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5146 return -ENOENT;
5147
5148 return 0;
5149 }
5150
5151 static struct pmu perf_cpu_clock = {
5152 .task_ctx_nr = perf_sw_context,
5153
5154 .event_init = cpu_clock_event_init,
5155 .add = cpu_clock_event_add,
5156 .del = cpu_clock_event_del,
5157 .start = cpu_clock_event_start,
5158 .stop = cpu_clock_event_stop,
5159 .read = cpu_clock_event_read,
5160 };
5161
5162 /*
5163 * Software event: task time clock
5164 */
5165
5166 static void task_clock_event_update(struct perf_event *event, u64 now)
5167 {
5168 u64 prev;
5169 s64 delta;
5170
5171 prev = local64_xchg(&event->hw.prev_count, now);
5172 delta = now - prev;
5173 local64_add(delta, &event->count);
5174 }
5175
5176 static void task_clock_event_start(struct perf_event *event, int flags)
5177 {
5178 local64_set(&event->hw.prev_count, event->ctx->time);
5179 perf_swevent_start_hrtimer(event);
5180 }
5181
5182 static void task_clock_event_stop(struct perf_event *event, int flags)
5183 {
5184 perf_swevent_cancel_hrtimer(event);
5185 task_clock_event_update(event, event->ctx->time);
5186 }
5187
5188 static int task_clock_event_add(struct perf_event *event, int flags)
5189 {
5190 if (flags & PERF_EF_START)
5191 task_clock_event_start(event, flags);
5192
5193 return 0;
5194 }
5195
5196 static void task_clock_event_del(struct perf_event *event, int flags)
5197 {
5198 task_clock_event_stop(event, PERF_EF_UPDATE);
5199 }
5200
5201 static void task_clock_event_read(struct perf_event *event)
5202 {
5203 u64 time;
5204
5205 if (!in_nmi()) {
5206 update_context_time(event->ctx);
5207 time = event->ctx->time;
5208 } else {
5209 u64 now = perf_clock();
5210 u64 delta = now - event->ctx->timestamp;
5211 time = event->ctx->time + delta;
5212 }
5213
5214 task_clock_event_update(event, time);
5215 }
5216
5217 static int task_clock_event_init(struct perf_event *event)
5218 {
5219 if (event->attr.type != PERF_TYPE_SOFTWARE)
5220 return -ENOENT;
5221
5222 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5223 return -ENOENT;
5224
5225 return 0;
5226 }
5227
5228 static struct pmu perf_task_clock = {
5229 .task_ctx_nr = perf_sw_context,
5230
5231 .event_init = task_clock_event_init,
5232 .add = task_clock_event_add,
5233 .del = task_clock_event_del,
5234 .start = task_clock_event_start,
5235 .stop = task_clock_event_stop,
5236 .read = task_clock_event_read,
5237 };
5238
5239 static void perf_pmu_nop_void(struct pmu *pmu)
5240 {
5241 }
5242
5243 static int perf_pmu_nop_int(struct pmu *pmu)
5244 {
5245 return 0;
5246 }
5247
5248 static void perf_pmu_start_txn(struct pmu *pmu)
5249 {
5250 perf_pmu_disable(pmu);
5251 }
5252
5253 static int perf_pmu_commit_txn(struct pmu *pmu)
5254 {
5255 perf_pmu_enable(pmu);
5256 return 0;
5257 }
5258
5259 static void perf_pmu_cancel_txn(struct pmu *pmu)
5260 {
5261 perf_pmu_enable(pmu);
5262 }
5263
5264 /*
5265 * Ensures all contexts with the same task_ctx_nr have the same
5266 * pmu_cpu_context too.
5267 */
5268 static void *find_pmu_context(int ctxn)
5269 {
5270 struct pmu *pmu;
5271
5272 if (ctxn < 0)
5273 return NULL;
5274
5275 list_for_each_entry(pmu, &pmus, entry) {
5276 if (pmu->task_ctx_nr == ctxn)
5277 return pmu->pmu_cpu_context;
5278 }
5279
5280 return NULL;
5281 }
5282
5283 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5284 {
5285 int cpu;
5286
5287 for_each_possible_cpu(cpu) {
5288 struct perf_cpu_context *cpuctx;
5289
5290 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5291
5292 if (cpuctx->active_pmu == old_pmu)
5293 cpuctx->active_pmu = pmu;
5294 }
5295 }
5296
5297 static void free_pmu_context(struct pmu *pmu)
5298 {
5299 struct pmu *i;
5300
5301 mutex_lock(&pmus_lock);
5302 /*
5303 * Like a real lame refcount.
5304 */
5305 list_for_each_entry(i, &pmus, entry) {
5306 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5307 update_pmu_context(i, pmu);
5308 goto out;
5309 }
5310 }
5311
5312 free_percpu(pmu->pmu_cpu_context);
5313 out:
5314 mutex_unlock(&pmus_lock);
5315 }
5316 static struct idr pmu_idr;
5317
5318 static ssize_t
5319 type_show(struct device *dev, struct device_attribute *attr, char *page)
5320 {
5321 struct pmu *pmu = dev_get_drvdata(dev);
5322
5323 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5324 }
5325
5326 static struct device_attribute pmu_dev_attrs[] = {
5327 __ATTR_RO(type),
5328 __ATTR_NULL,
5329 };
5330
5331 static int pmu_bus_running;
5332 static struct bus_type pmu_bus = {
5333 .name = "event_source",
5334 .dev_attrs = pmu_dev_attrs,
5335 };
5336
5337 static void pmu_dev_release(struct device *dev)
5338 {
5339 kfree(dev);
5340 }
5341
5342 static int pmu_dev_alloc(struct pmu *pmu)
5343 {
5344 int ret = -ENOMEM;
5345
5346 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5347 if (!pmu->dev)
5348 goto out;
5349
5350 device_initialize(pmu->dev);
5351 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5352 if (ret)
5353 goto free_dev;
5354
5355 dev_set_drvdata(pmu->dev, pmu);
5356 pmu->dev->bus = &pmu_bus;
5357 pmu->dev->release = pmu_dev_release;
5358 ret = device_add(pmu->dev);
5359 if (ret)
5360 goto free_dev;
5361
5362 out:
5363 return ret;
5364
5365 free_dev:
5366 put_device(pmu->dev);
5367 goto out;
5368 }
5369
5370 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5371 {
5372 int cpu, ret;
5373
5374 mutex_lock(&pmus_lock);
5375 ret = -ENOMEM;
5376 pmu->pmu_disable_count = alloc_percpu(int);
5377 if (!pmu->pmu_disable_count)
5378 goto unlock;
5379
5380 pmu->type = -1;
5381 if (!name)
5382 goto skip_type;
5383 pmu->name = name;
5384
5385 if (type < 0) {
5386 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5387 if (!err)
5388 goto free_pdc;
5389
5390 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5391 if (err) {
5392 ret = err;
5393 goto free_pdc;
5394 }
5395 }
5396 pmu->type = type;
5397
5398 if (pmu_bus_running) {
5399 ret = pmu_dev_alloc(pmu);
5400 if (ret)
5401 goto free_idr;
5402 }
5403
5404 skip_type:
5405 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5406 if (pmu->pmu_cpu_context)
5407 goto got_cpu_context;
5408
5409 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5410 if (!pmu->pmu_cpu_context)
5411 goto free_dev;
5412
5413 for_each_possible_cpu(cpu) {
5414 struct perf_cpu_context *cpuctx;
5415
5416 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5417 __perf_event_init_context(&cpuctx->ctx);
5418 cpuctx->ctx.type = cpu_context;
5419 cpuctx->ctx.pmu = pmu;
5420 cpuctx->jiffies_interval = 1;
5421 INIT_LIST_HEAD(&cpuctx->rotation_list);
5422 cpuctx->active_pmu = pmu;
5423 }
5424
5425 got_cpu_context:
5426 if (!pmu->start_txn) {
5427 if (pmu->pmu_enable) {
5428 /*
5429 * If we have pmu_enable/pmu_disable calls, install
5430 * transaction stubs that use that to try and batch
5431 * hardware accesses.
5432 */
5433 pmu->start_txn = perf_pmu_start_txn;
5434 pmu->commit_txn = perf_pmu_commit_txn;
5435 pmu->cancel_txn = perf_pmu_cancel_txn;
5436 } else {
5437 pmu->start_txn = perf_pmu_nop_void;
5438 pmu->commit_txn = perf_pmu_nop_int;
5439 pmu->cancel_txn = perf_pmu_nop_void;
5440 }
5441 }
5442
5443 if (!pmu->pmu_enable) {
5444 pmu->pmu_enable = perf_pmu_nop_void;
5445 pmu->pmu_disable = perf_pmu_nop_void;
5446 }
5447
5448 list_add_rcu(&pmu->entry, &pmus);
5449 ret = 0;
5450 unlock:
5451 mutex_unlock(&pmus_lock);
5452
5453 return ret;
5454
5455 free_dev:
5456 device_del(pmu->dev);
5457 put_device(pmu->dev);
5458
5459 free_idr:
5460 if (pmu->type >= PERF_TYPE_MAX)
5461 idr_remove(&pmu_idr, pmu->type);
5462
5463 free_pdc:
5464 free_percpu(pmu->pmu_disable_count);
5465 goto unlock;
5466 }
5467
5468 void perf_pmu_unregister(struct pmu *pmu)
5469 {
5470 mutex_lock(&pmus_lock);
5471 list_del_rcu(&pmu->entry);
5472 mutex_unlock(&pmus_lock);
5473
5474 /*
5475 * We dereference the pmu list under both SRCU and regular RCU, so
5476 * synchronize against both of those.
5477 */
5478 synchronize_srcu(&pmus_srcu);
5479 synchronize_rcu();
5480
5481 free_percpu(pmu->pmu_disable_count);
5482 if (pmu->type >= PERF_TYPE_MAX)
5483 idr_remove(&pmu_idr, pmu->type);
5484 device_del(pmu->dev);
5485 put_device(pmu->dev);
5486 free_pmu_context(pmu);
5487 }
5488
5489 struct pmu *perf_init_event(struct perf_event *event)
5490 {
5491 struct pmu *pmu = NULL;
5492 int idx;
5493
5494 idx = srcu_read_lock(&pmus_srcu);
5495
5496 rcu_read_lock();
5497 pmu = idr_find(&pmu_idr, event->attr.type);
5498 rcu_read_unlock();
5499 if (pmu)
5500 goto unlock;
5501
5502 list_for_each_entry_rcu(pmu, &pmus, entry) {
5503 int ret = pmu->event_init(event);
5504 if (!ret)
5505 goto unlock;
5506
5507 if (ret != -ENOENT) {
5508 pmu = ERR_PTR(ret);
5509 goto unlock;
5510 }
5511 }
5512 pmu = ERR_PTR(-ENOENT);
5513 unlock:
5514 srcu_read_unlock(&pmus_srcu, idx);
5515
5516 return pmu;
5517 }
5518
5519 /*
5520 * Allocate and initialize a event structure
5521 */
5522 static struct perf_event *
5523 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5524 struct task_struct *task,
5525 struct perf_event *group_leader,
5526 struct perf_event *parent_event,
5527 perf_overflow_handler_t overflow_handler)
5528 {
5529 struct pmu *pmu;
5530 struct perf_event *event;
5531 struct hw_perf_event *hwc;
5532 long err;
5533
5534 event = kzalloc(sizeof(*event), GFP_KERNEL);
5535 if (!event)
5536 return ERR_PTR(-ENOMEM);
5537
5538 /*
5539 * Single events are their own group leaders, with an
5540 * empty sibling list:
5541 */
5542 if (!group_leader)
5543 group_leader = event;
5544
5545 mutex_init(&event->child_mutex);
5546 INIT_LIST_HEAD(&event->child_list);
5547
5548 INIT_LIST_HEAD(&event->group_entry);
5549 INIT_LIST_HEAD(&event->event_entry);
5550 INIT_LIST_HEAD(&event->sibling_list);
5551 init_waitqueue_head(&event->waitq);
5552 init_irq_work(&event->pending, perf_pending_event);
5553
5554 mutex_init(&event->mmap_mutex);
5555
5556 event->cpu = cpu;
5557 event->attr = *attr;
5558 event->group_leader = group_leader;
5559 event->pmu = NULL;
5560 event->oncpu = -1;
5561
5562 event->parent = parent_event;
5563
5564 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5565 event->id = atomic64_inc_return(&perf_event_id);
5566
5567 event->state = PERF_EVENT_STATE_INACTIVE;
5568
5569 if (task) {
5570 event->attach_state = PERF_ATTACH_TASK;
5571 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5572 /*
5573 * hw_breakpoint is a bit difficult here..
5574 */
5575 if (attr->type == PERF_TYPE_BREAKPOINT)
5576 event->hw.bp_target = task;
5577 #endif
5578 }
5579
5580 if (!overflow_handler && parent_event)
5581 overflow_handler = parent_event->overflow_handler;
5582
5583 event->overflow_handler = overflow_handler;
5584
5585 if (attr->disabled)
5586 event->state = PERF_EVENT_STATE_OFF;
5587
5588 pmu = NULL;
5589
5590 hwc = &event->hw;
5591 hwc->sample_period = attr->sample_period;
5592 if (attr->freq && attr->sample_freq)
5593 hwc->sample_period = 1;
5594 hwc->last_period = hwc->sample_period;
5595
5596 local64_set(&hwc->period_left, hwc->sample_period);
5597
5598 /*
5599 * we currently do not support PERF_FORMAT_GROUP on inherited events
5600 */
5601 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5602 goto done;
5603
5604 pmu = perf_init_event(event);
5605
5606 done:
5607 err = 0;
5608 if (!pmu)
5609 err = -EINVAL;
5610 else if (IS_ERR(pmu))
5611 err = PTR_ERR(pmu);
5612
5613 if (err) {
5614 if (event->ns)
5615 put_pid_ns(event->ns);
5616 kfree(event);
5617 return ERR_PTR(err);
5618 }
5619
5620 event->pmu = pmu;
5621
5622 if (!event->parent) {
5623 if (event->attach_state & PERF_ATTACH_TASK)
5624 jump_label_inc(&perf_task_events);
5625 if (event->attr.mmap || event->attr.mmap_data)
5626 atomic_inc(&nr_mmap_events);
5627 if (event->attr.comm)
5628 atomic_inc(&nr_comm_events);
5629 if (event->attr.task)
5630 atomic_inc(&nr_task_events);
5631 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5632 err = get_callchain_buffers();
5633 if (err) {
5634 free_event(event);
5635 return ERR_PTR(err);
5636 }
5637 }
5638 }
5639
5640 return event;
5641 }
5642
5643 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5644 struct perf_event_attr *attr)
5645 {
5646 u32 size;
5647 int ret;
5648
5649 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5650 return -EFAULT;
5651
5652 /*
5653 * zero the full structure, so that a short copy will be nice.
5654 */
5655 memset(attr, 0, sizeof(*attr));
5656
5657 ret = get_user(size, &uattr->size);
5658 if (ret)
5659 return ret;
5660
5661 if (size > PAGE_SIZE) /* silly large */
5662 goto err_size;
5663
5664 if (!size) /* abi compat */
5665 size = PERF_ATTR_SIZE_VER0;
5666
5667 if (size < PERF_ATTR_SIZE_VER0)
5668 goto err_size;
5669
5670 /*
5671 * If we're handed a bigger struct than we know of,
5672 * ensure all the unknown bits are 0 - i.e. new
5673 * user-space does not rely on any kernel feature
5674 * extensions we dont know about yet.
5675 */
5676 if (size > sizeof(*attr)) {
5677 unsigned char __user *addr;
5678 unsigned char __user *end;
5679 unsigned char val;
5680
5681 addr = (void __user *)uattr + sizeof(*attr);
5682 end = (void __user *)uattr + size;
5683
5684 for (; addr < end; addr++) {
5685 ret = get_user(val, addr);
5686 if (ret)
5687 return ret;
5688 if (val)
5689 goto err_size;
5690 }
5691 size = sizeof(*attr);
5692 }
5693
5694 ret = copy_from_user(attr, uattr, size);
5695 if (ret)
5696 return -EFAULT;
5697
5698 /*
5699 * If the type exists, the corresponding creation will verify
5700 * the attr->config.
5701 */
5702 if (attr->type >= PERF_TYPE_MAX)
5703 return -EINVAL;
5704
5705 if (attr->__reserved_1)
5706 return -EINVAL;
5707
5708 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5709 return -EINVAL;
5710
5711 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5712 return -EINVAL;
5713
5714 out:
5715 return ret;
5716
5717 err_size:
5718 put_user(sizeof(*attr), &uattr->size);
5719 ret = -E2BIG;
5720 goto out;
5721 }
5722
5723 static int
5724 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5725 {
5726 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5727 int ret = -EINVAL;
5728
5729 if (!output_event)
5730 goto set;
5731
5732 /* don't allow circular references */
5733 if (event == output_event)
5734 goto out;
5735
5736 /*
5737 * Don't allow cross-cpu buffers
5738 */
5739 if (output_event->cpu != event->cpu)
5740 goto out;
5741
5742 /*
5743 * If its not a per-cpu buffer, it must be the same task.
5744 */
5745 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5746 goto out;
5747
5748 set:
5749 mutex_lock(&event->mmap_mutex);
5750 /* Can't redirect output if we've got an active mmap() */
5751 if (atomic_read(&event->mmap_count))
5752 goto unlock;
5753
5754 if (output_event) {
5755 /* get the buffer we want to redirect to */
5756 buffer = perf_buffer_get(output_event);
5757 if (!buffer)
5758 goto unlock;
5759 }
5760
5761 old_buffer = event->buffer;
5762 rcu_assign_pointer(event->buffer, buffer);
5763 ret = 0;
5764 unlock:
5765 mutex_unlock(&event->mmap_mutex);
5766
5767 if (old_buffer)
5768 perf_buffer_put(old_buffer);
5769 out:
5770 return ret;
5771 }
5772
5773 /**
5774 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5775 *
5776 * @attr_uptr: event_id type attributes for monitoring/sampling
5777 * @pid: target pid
5778 * @cpu: target cpu
5779 * @group_fd: group leader event fd
5780 */
5781 SYSCALL_DEFINE5(perf_event_open,
5782 struct perf_event_attr __user *, attr_uptr,
5783 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5784 {
5785 struct perf_event *group_leader = NULL, *output_event = NULL;
5786 struct perf_event *event, *sibling;
5787 struct perf_event_attr attr;
5788 struct perf_event_context *ctx;
5789 struct file *event_file = NULL;
5790 struct file *group_file = NULL;
5791 struct task_struct *task = NULL;
5792 struct pmu *pmu;
5793 int event_fd;
5794 int move_group = 0;
5795 int fput_needed = 0;
5796 int err;
5797
5798 /* for future expandability... */
5799 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5800 return -EINVAL;
5801
5802 err = perf_copy_attr(attr_uptr, &attr);
5803 if (err)
5804 return err;
5805
5806 if (!attr.exclude_kernel) {
5807 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5808 return -EACCES;
5809 }
5810
5811 if (attr.freq) {
5812 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5813 return -EINVAL;
5814 }
5815
5816 event_fd = get_unused_fd_flags(O_RDWR);
5817 if (event_fd < 0)
5818 return event_fd;
5819
5820 if (group_fd != -1) {
5821 group_leader = perf_fget_light(group_fd, &fput_needed);
5822 if (IS_ERR(group_leader)) {
5823 err = PTR_ERR(group_leader);
5824 goto err_fd;
5825 }
5826 group_file = group_leader->filp;
5827 if (flags & PERF_FLAG_FD_OUTPUT)
5828 output_event = group_leader;
5829 if (flags & PERF_FLAG_FD_NO_GROUP)
5830 group_leader = NULL;
5831 }
5832
5833 if (pid != -1) {
5834 task = find_lively_task_by_vpid(pid);
5835 if (IS_ERR(task)) {
5836 err = PTR_ERR(task);
5837 goto err_group_fd;
5838 }
5839 }
5840
5841 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5842 if (IS_ERR(event)) {
5843 err = PTR_ERR(event);
5844 goto err_task;
5845 }
5846
5847 /*
5848 * Special case software events and allow them to be part of
5849 * any hardware group.
5850 */
5851 pmu = event->pmu;
5852
5853 if (group_leader &&
5854 (is_software_event(event) != is_software_event(group_leader))) {
5855 if (is_software_event(event)) {
5856 /*
5857 * If event and group_leader are not both a software
5858 * event, and event is, then group leader is not.
5859 *
5860 * Allow the addition of software events to !software
5861 * groups, this is safe because software events never
5862 * fail to schedule.
5863 */
5864 pmu = group_leader->pmu;
5865 } else if (is_software_event(group_leader) &&
5866 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5867 /*
5868 * In case the group is a pure software group, and we
5869 * try to add a hardware event, move the whole group to
5870 * the hardware context.
5871 */
5872 move_group = 1;
5873 }
5874 }
5875
5876 /*
5877 * Get the target context (task or percpu):
5878 */
5879 ctx = find_get_context(pmu, task, cpu);
5880 if (IS_ERR(ctx)) {
5881 err = PTR_ERR(ctx);
5882 goto err_alloc;
5883 }
5884
5885 /*
5886 * Look up the group leader (we will attach this event to it):
5887 */
5888 if (group_leader) {
5889 err = -EINVAL;
5890
5891 /*
5892 * Do not allow a recursive hierarchy (this new sibling
5893 * becoming part of another group-sibling):
5894 */
5895 if (group_leader->group_leader != group_leader)
5896 goto err_context;
5897 /*
5898 * Do not allow to attach to a group in a different
5899 * task or CPU context:
5900 */
5901 if (move_group) {
5902 if (group_leader->ctx->type != ctx->type)
5903 goto err_context;
5904 } else {
5905 if (group_leader->ctx != ctx)
5906 goto err_context;
5907 }
5908
5909 /*
5910 * Only a group leader can be exclusive or pinned
5911 */
5912 if (attr.exclusive || attr.pinned)
5913 goto err_context;
5914 }
5915
5916 if (output_event) {
5917 err = perf_event_set_output(event, output_event);
5918 if (err)
5919 goto err_context;
5920 }
5921
5922 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5923 if (IS_ERR(event_file)) {
5924 err = PTR_ERR(event_file);
5925 goto err_context;
5926 }
5927
5928 if (move_group) {
5929 struct perf_event_context *gctx = group_leader->ctx;
5930
5931 mutex_lock(&gctx->mutex);
5932 perf_event_remove_from_context(group_leader);
5933 list_for_each_entry(sibling, &group_leader->sibling_list,
5934 group_entry) {
5935 perf_event_remove_from_context(sibling);
5936 put_ctx(gctx);
5937 }
5938 mutex_unlock(&gctx->mutex);
5939 put_ctx(gctx);
5940 }
5941
5942 event->filp = event_file;
5943 WARN_ON_ONCE(ctx->parent_ctx);
5944 mutex_lock(&ctx->mutex);
5945
5946 if (move_group) {
5947 perf_install_in_context(ctx, group_leader, cpu);
5948 get_ctx(ctx);
5949 list_for_each_entry(sibling, &group_leader->sibling_list,
5950 group_entry) {
5951 perf_install_in_context(ctx, sibling, cpu);
5952 get_ctx(ctx);
5953 }
5954 }
5955
5956 perf_install_in_context(ctx, event, cpu);
5957 ++ctx->generation;
5958 mutex_unlock(&ctx->mutex);
5959
5960 event->owner = current;
5961
5962 mutex_lock(&current->perf_event_mutex);
5963 list_add_tail(&event->owner_entry, &current->perf_event_list);
5964 mutex_unlock(&current->perf_event_mutex);
5965
5966 /*
5967 * Precalculate sample_data sizes
5968 */
5969 perf_event__header_size(event);
5970 perf_event__id_header_size(event);
5971
5972 /*
5973 * Drop the reference on the group_event after placing the
5974 * new event on the sibling_list. This ensures destruction
5975 * of the group leader will find the pointer to itself in
5976 * perf_group_detach().
5977 */
5978 fput_light(group_file, fput_needed);
5979 fd_install(event_fd, event_file);
5980 return event_fd;
5981
5982 err_context:
5983 put_ctx(ctx);
5984 err_alloc:
5985 free_event(event);
5986 err_task:
5987 if (task)
5988 put_task_struct(task);
5989 err_group_fd:
5990 fput_light(group_file, fput_needed);
5991 err_fd:
5992 put_unused_fd(event_fd);
5993 return err;
5994 }
5995
5996 /**
5997 * perf_event_create_kernel_counter
5998 *
5999 * @attr: attributes of the counter to create
6000 * @cpu: cpu in which the counter is bound
6001 * @task: task to profile (NULL for percpu)
6002 */
6003 struct perf_event *
6004 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6005 struct task_struct *task,
6006 perf_overflow_handler_t overflow_handler)
6007 {
6008 struct perf_event_context *ctx;
6009 struct perf_event *event;
6010 int err;
6011
6012 /*
6013 * Get the target context (task or percpu):
6014 */
6015
6016 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6017 if (IS_ERR(event)) {
6018 err = PTR_ERR(event);
6019 goto err;
6020 }
6021
6022 ctx = find_get_context(event->pmu, task, cpu);
6023 if (IS_ERR(ctx)) {
6024 err = PTR_ERR(ctx);
6025 goto err_free;
6026 }
6027
6028 event->filp = NULL;
6029 WARN_ON_ONCE(ctx->parent_ctx);
6030 mutex_lock(&ctx->mutex);
6031 perf_install_in_context(ctx, event, cpu);
6032 ++ctx->generation;
6033 mutex_unlock(&ctx->mutex);
6034
6035 return event;
6036
6037 err_free:
6038 free_event(event);
6039 err:
6040 return ERR_PTR(err);
6041 }
6042 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6043
6044 static void sync_child_event(struct perf_event *child_event,
6045 struct task_struct *child)
6046 {
6047 struct perf_event *parent_event = child_event->parent;
6048 u64 child_val;
6049
6050 if (child_event->attr.inherit_stat)
6051 perf_event_read_event(child_event, child);
6052
6053 child_val = perf_event_count(child_event);
6054
6055 /*
6056 * Add back the child's count to the parent's count:
6057 */
6058 atomic64_add(child_val, &parent_event->child_count);
6059 atomic64_add(child_event->total_time_enabled,
6060 &parent_event->child_total_time_enabled);
6061 atomic64_add(child_event->total_time_running,
6062 &parent_event->child_total_time_running);
6063
6064 /*
6065 * Remove this event from the parent's list
6066 */
6067 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6068 mutex_lock(&parent_event->child_mutex);
6069 list_del_init(&child_event->child_list);
6070 mutex_unlock(&parent_event->child_mutex);
6071
6072 /*
6073 * Release the parent event, if this was the last
6074 * reference to it.
6075 */
6076 fput(parent_event->filp);
6077 }
6078
6079 static void
6080 __perf_event_exit_task(struct perf_event *child_event,
6081 struct perf_event_context *child_ctx,
6082 struct task_struct *child)
6083 {
6084 struct perf_event *parent_event;
6085
6086 perf_event_remove_from_context(child_event);
6087
6088 parent_event = child_event->parent;
6089 /*
6090 * It can happen that parent exits first, and has events
6091 * that are still around due to the child reference. These
6092 * events need to be zapped - but otherwise linger.
6093 */
6094 if (parent_event) {
6095 sync_child_event(child_event, child);
6096 free_event(child_event);
6097 }
6098 }
6099
6100 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6101 {
6102 struct perf_event *child_event, *tmp;
6103 struct perf_event_context *child_ctx;
6104 unsigned long flags;
6105
6106 if (likely(!child->perf_event_ctxp[ctxn])) {
6107 perf_event_task(child, NULL, 0);
6108 return;
6109 }
6110
6111 local_irq_save(flags);
6112 /*
6113 * We can't reschedule here because interrupts are disabled,
6114 * and either child is current or it is a task that can't be
6115 * scheduled, so we are now safe from rescheduling changing
6116 * our context.
6117 */
6118 child_ctx = child->perf_event_ctxp[ctxn];
6119 task_ctx_sched_out(child_ctx, EVENT_ALL);
6120
6121 /*
6122 * Take the context lock here so that if find_get_context is
6123 * reading child->perf_event_ctxp, we wait until it has
6124 * incremented the context's refcount before we do put_ctx below.
6125 */
6126 raw_spin_lock(&child_ctx->lock);
6127 child->perf_event_ctxp[ctxn] = NULL;
6128 /*
6129 * If this context is a clone; unclone it so it can't get
6130 * swapped to another process while we're removing all
6131 * the events from it.
6132 */
6133 unclone_ctx(child_ctx);
6134 update_context_time(child_ctx);
6135 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6136
6137 /*
6138 * Report the task dead after unscheduling the events so that we
6139 * won't get any samples after PERF_RECORD_EXIT. We can however still
6140 * get a few PERF_RECORD_READ events.
6141 */
6142 perf_event_task(child, child_ctx, 0);
6143
6144 /*
6145 * We can recurse on the same lock type through:
6146 *
6147 * __perf_event_exit_task()
6148 * sync_child_event()
6149 * fput(parent_event->filp)
6150 * perf_release()
6151 * mutex_lock(&ctx->mutex)
6152 *
6153 * But since its the parent context it won't be the same instance.
6154 */
6155 mutex_lock(&child_ctx->mutex);
6156
6157 again:
6158 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6159 group_entry)
6160 __perf_event_exit_task(child_event, child_ctx, child);
6161
6162 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6163 group_entry)
6164 __perf_event_exit_task(child_event, child_ctx, child);
6165
6166 /*
6167 * If the last event was a group event, it will have appended all
6168 * its siblings to the list, but we obtained 'tmp' before that which
6169 * will still point to the list head terminating the iteration.
6170 */
6171 if (!list_empty(&child_ctx->pinned_groups) ||
6172 !list_empty(&child_ctx->flexible_groups))
6173 goto again;
6174
6175 mutex_unlock(&child_ctx->mutex);
6176
6177 put_ctx(child_ctx);
6178 }
6179
6180 /*
6181 * When a child task exits, feed back event values to parent events.
6182 */
6183 void perf_event_exit_task(struct task_struct *child)
6184 {
6185 struct perf_event *event, *tmp;
6186 int ctxn;
6187
6188 mutex_lock(&child->perf_event_mutex);
6189 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6190 owner_entry) {
6191 list_del_init(&event->owner_entry);
6192
6193 /*
6194 * Ensure the list deletion is visible before we clear
6195 * the owner, closes a race against perf_release() where
6196 * we need to serialize on the owner->perf_event_mutex.
6197 */
6198 smp_wmb();
6199 event->owner = NULL;
6200 }
6201 mutex_unlock(&child->perf_event_mutex);
6202
6203 for_each_task_context_nr(ctxn)
6204 perf_event_exit_task_context(child, ctxn);
6205 }
6206
6207 static void perf_free_event(struct perf_event *event,
6208 struct perf_event_context *ctx)
6209 {
6210 struct perf_event *parent = event->parent;
6211
6212 if (WARN_ON_ONCE(!parent))
6213 return;
6214
6215 mutex_lock(&parent->child_mutex);
6216 list_del_init(&event->child_list);
6217 mutex_unlock(&parent->child_mutex);
6218
6219 fput(parent->filp);
6220
6221 perf_group_detach(event);
6222 list_del_event(event, ctx);
6223 free_event(event);
6224 }
6225
6226 /*
6227 * free an unexposed, unused context as created by inheritance by
6228 * perf_event_init_task below, used by fork() in case of fail.
6229 */
6230 void perf_event_free_task(struct task_struct *task)
6231 {
6232 struct perf_event_context *ctx;
6233 struct perf_event *event, *tmp;
6234 int ctxn;
6235
6236 for_each_task_context_nr(ctxn) {
6237 ctx = task->perf_event_ctxp[ctxn];
6238 if (!ctx)
6239 continue;
6240
6241 mutex_lock(&ctx->mutex);
6242 again:
6243 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6244 group_entry)
6245 perf_free_event(event, ctx);
6246
6247 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6248 group_entry)
6249 perf_free_event(event, ctx);
6250
6251 if (!list_empty(&ctx->pinned_groups) ||
6252 !list_empty(&ctx->flexible_groups))
6253 goto again;
6254
6255 mutex_unlock(&ctx->mutex);
6256
6257 put_ctx(ctx);
6258 }
6259 }
6260
6261 void perf_event_delayed_put(struct task_struct *task)
6262 {
6263 int ctxn;
6264
6265 for_each_task_context_nr(ctxn)
6266 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6267 }
6268
6269 /*
6270 * inherit a event from parent task to child task:
6271 */
6272 static struct perf_event *
6273 inherit_event(struct perf_event *parent_event,
6274 struct task_struct *parent,
6275 struct perf_event_context *parent_ctx,
6276 struct task_struct *child,
6277 struct perf_event *group_leader,
6278 struct perf_event_context *child_ctx)
6279 {
6280 struct perf_event *child_event;
6281 unsigned long flags;
6282
6283 /*
6284 * Instead of creating recursive hierarchies of events,
6285 * we link inherited events back to the original parent,
6286 * which has a filp for sure, which we use as the reference
6287 * count:
6288 */
6289 if (parent_event->parent)
6290 parent_event = parent_event->parent;
6291
6292 child_event = perf_event_alloc(&parent_event->attr,
6293 parent_event->cpu,
6294 child,
6295 group_leader, parent_event,
6296 NULL);
6297 if (IS_ERR(child_event))
6298 return child_event;
6299 get_ctx(child_ctx);
6300
6301 /*
6302 * Make the child state follow the state of the parent event,
6303 * not its attr.disabled bit. We hold the parent's mutex,
6304 * so we won't race with perf_event_{en, dis}able_family.
6305 */
6306 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6307 child_event->state = PERF_EVENT_STATE_INACTIVE;
6308 else
6309 child_event->state = PERF_EVENT_STATE_OFF;
6310
6311 if (parent_event->attr.freq) {
6312 u64 sample_period = parent_event->hw.sample_period;
6313 struct hw_perf_event *hwc = &child_event->hw;
6314
6315 hwc->sample_period = sample_period;
6316 hwc->last_period = sample_period;
6317
6318 local64_set(&hwc->period_left, sample_period);
6319 }
6320
6321 child_event->ctx = child_ctx;
6322 child_event->overflow_handler = parent_event->overflow_handler;
6323
6324 /*
6325 * Precalculate sample_data sizes
6326 */
6327 perf_event__header_size(child_event);
6328 perf_event__id_header_size(child_event);
6329
6330 /*
6331 * Link it up in the child's context:
6332 */
6333 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6334 add_event_to_ctx(child_event, child_ctx);
6335 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6336
6337 /*
6338 * Get a reference to the parent filp - we will fput it
6339 * when the child event exits. This is safe to do because
6340 * we are in the parent and we know that the filp still
6341 * exists and has a nonzero count:
6342 */
6343 atomic_long_inc(&parent_event->filp->f_count);
6344
6345 /*
6346 * Link this into the parent event's child list
6347 */
6348 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6349 mutex_lock(&parent_event->child_mutex);
6350 list_add_tail(&child_event->child_list, &parent_event->child_list);
6351 mutex_unlock(&parent_event->child_mutex);
6352
6353 return child_event;
6354 }
6355
6356 static int inherit_group(struct perf_event *parent_event,
6357 struct task_struct *parent,
6358 struct perf_event_context *parent_ctx,
6359 struct task_struct *child,
6360 struct perf_event_context *child_ctx)
6361 {
6362 struct perf_event *leader;
6363 struct perf_event *sub;
6364 struct perf_event *child_ctr;
6365
6366 leader = inherit_event(parent_event, parent, parent_ctx,
6367 child, NULL, child_ctx);
6368 if (IS_ERR(leader))
6369 return PTR_ERR(leader);
6370 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6371 child_ctr = inherit_event(sub, parent, parent_ctx,
6372 child, leader, child_ctx);
6373 if (IS_ERR(child_ctr))
6374 return PTR_ERR(child_ctr);
6375 }
6376 return 0;
6377 }
6378
6379 static int
6380 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6381 struct perf_event_context *parent_ctx,
6382 struct task_struct *child, int ctxn,
6383 int *inherited_all)
6384 {
6385 int ret;
6386 struct perf_event_context *child_ctx;
6387
6388 if (!event->attr.inherit) {
6389 *inherited_all = 0;
6390 return 0;
6391 }
6392
6393 child_ctx = child->perf_event_ctxp[ctxn];
6394 if (!child_ctx) {
6395 /*
6396 * This is executed from the parent task context, so
6397 * inherit events that have been marked for cloning.
6398 * First allocate and initialize a context for the
6399 * child.
6400 */
6401
6402 child_ctx = alloc_perf_context(event->pmu, child);
6403 if (!child_ctx)
6404 return -ENOMEM;
6405
6406 child->perf_event_ctxp[ctxn] = child_ctx;
6407 }
6408
6409 ret = inherit_group(event, parent, parent_ctx,
6410 child, child_ctx);
6411
6412 if (ret)
6413 *inherited_all = 0;
6414
6415 return ret;
6416 }
6417
6418 /*
6419 * Initialize the perf_event context in task_struct
6420 */
6421 int perf_event_init_context(struct task_struct *child, int ctxn)
6422 {
6423 struct perf_event_context *child_ctx, *parent_ctx;
6424 struct perf_event_context *cloned_ctx;
6425 struct perf_event *event;
6426 struct task_struct *parent = current;
6427 int inherited_all = 1;
6428 unsigned long flags;
6429 int ret = 0;
6430
6431 child->perf_event_ctxp[ctxn] = NULL;
6432
6433 mutex_init(&child->perf_event_mutex);
6434 INIT_LIST_HEAD(&child->perf_event_list);
6435
6436 if (likely(!parent->perf_event_ctxp[ctxn]))
6437 return 0;
6438
6439 /*
6440 * If the parent's context is a clone, pin it so it won't get
6441 * swapped under us.
6442 */
6443 parent_ctx = perf_pin_task_context(parent, ctxn);
6444
6445 /*
6446 * No need to check if parent_ctx != NULL here; since we saw
6447 * it non-NULL earlier, the only reason for it to become NULL
6448 * is if we exit, and since we're currently in the middle of
6449 * a fork we can't be exiting at the same time.
6450 */
6451
6452 /*
6453 * Lock the parent list. No need to lock the child - not PID
6454 * hashed yet and not running, so nobody can access it.
6455 */
6456 mutex_lock(&parent_ctx->mutex);
6457
6458 /*
6459 * We dont have to disable NMIs - we are only looking at
6460 * the list, not manipulating it:
6461 */
6462 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6463 ret = inherit_task_group(event, parent, parent_ctx,
6464 child, ctxn, &inherited_all);
6465 if (ret)
6466 break;
6467 }
6468
6469 /*
6470 * We can't hold ctx->lock when iterating the ->flexible_group list due
6471 * to allocations, but we need to prevent rotation because
6472 * rotate_ctx() will change the list from interrupt context.
6473 */
6474 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6475 parent_ctx->rotate_disable = 1;
6476 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6477
6478 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6479 ret = inherit_task_group(event, parent, parent_ctx,
6480 child, ctxn, &inherited_all);
6481 if (ret)
6482 break;
6483 }
6484
6485 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6486 parent_ctx->rotate_disable = 0;
6487 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6488
6489 child_ctx = child->perf_event_ctxp[ctxn];
6490
6491 if (child_ctx && inherited_all) {
6492 /*
6493 * Mark the child context as a clone of the parent
6494 * context, or of whatever the parent is a clone of.
6495 * Note that if the parent is a clone, it could get
6496 * uncloned at any point, but that doesn't matter
6497 * because the list of events and the generation
6498 * count can't have changed since we took the mutex.
6499 */
6500 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6501 if (cloned_ctx) {
6502 child_ctx->parent_ctx = cloned_ctx;
6503 child_ctx->parent_gen = parent_ctx->parent_gen;
6504 } else {
6505 child_ctx->parent_ctx = parent_ctx;
6506 child_ctx->parent_gen = parent_ctx->generation;
6507 }
6508 get_ctx(child_ctx->parent_ctx);
6509 }
6510
6511 mutex_unlock(&parent_ctx->mutex);
6512
6513 perf_unpin_context(parent_ctx);
6514
6515 return ret;
6516 }
6517
6518 /*
6519 * Initialize the perf_event context in task_struct
6520 */
6521 int perf_event_init_task(struct task_struct *child)
6522 {
6523 int ctxn, ret;
6524
6525 for_each_task_context_nr(ctxn) {
6526 ret = perf_event_init_context(child, ctxn);
6527 if (ret)
6528 return ret;
6529 }
6530
6531 return 0;
6532 }
6533
6534 static void __init perf_event_init_all_cpus(void)
6535 {
6536 struct swevent_htable *swhash;
6537 int cpu;
6538
6539 for_each_possible_cpu(cpu) {
6540 swhash = &per_cpu(swevent_htable, cpu);
6541 mutex_init(&swhash->hlist_mutex);
6542 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6543 }
6544 }
6545
6546 static void __cpuinit perf_event_init_cpu(int cpu)
6547 {
6548 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6549
6550 mutex_lock(&swhash->hlist_mutex);
6551 if (swhash->hlist_refcount > 0) {
6552 struct swevent_hlist *hlist;
6553
6554 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6555 WARN_ON(!hlist);
6556 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6557 }
6558 mutex_unlock(&swhash->hlist_mutex);
6559 }
6560
6561 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6562 static void perf_pmu_rotate_stop(struct pmu *pmu)
6563 {
6564 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6565
6566 WARN_ON(!irqs_disabled());
6567
6568 list_del_init(&cpuctx->rotation_list);
6569 }
6570
6571 static void __perf_event_exit_context(void *__info)
6572 {
6573 struct perf_event_context *ctx = __info;
6574 struct perf_event *event, *tmp;
6575
6576 perf_pmu_rotate_stop(ctx->pmu);
6577
6578 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6579 __perf_event_remove_from_context(event);
6580 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6581 __perf_event_remove_from_context(event);
6582 }
6583
6584 static void perf_event_exit_cpu_context(int cpu)
6585 {
6586 struct perf_event_context *ctx;
6587 struct pmu *pmu;
6588 int idx;
6589
6590 idx = srcu_read_lock(&pmus_srcu);
6591 list_for_each_entry_rcu(pmu, &pmus, entry) {
6592 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6593
6594 mutex_lock(&ctx->mutex);
6595 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6596 mutex_unlock(&ctx->mutex);
6597 }
6598 srcu_read_unlock(&pmus_srcu, idx);
6599 }
6600
6601 static void perf_event_exit_cpu(int cpu)
6602 {
6603 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6604
6605 mutex_lock(&swhash->hlist_mutex);
6606 swevent_hlist_release(swhash);
6607 mutex_unlock(&swhash->hlist_mutex);
6608
6609 perf_event_exit_cpu_context(cpu);
6610 }
6611 #else
6612 static inline void perf_event_exit_cpu(int cpu) { }
6613 #endif
6614
6615 static int
6616 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6617 {
6618 int cpu;
6619
6620 for_each_online_cpu(cpu)
6621 perf_event_exit_cpu(cpu);
6622
6623 return NOTIFY_OK;
6624 }
6625
6626 /*
6627 * Run the perf reboot notifier at the very last possible moment so that
6628 * the generic watchdog code runs as long as possible.
6629 */
6630 static struct notifier_block perf_reboot_notifier = {
6631 .notifier_call = perf_reboot,
6632 .priority = INT_MIN,
6633 };
6634
6635 static int __cpuinit
6636 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6637 {
6638 unsigned int cpu = (long)hcpu;
6639
6640 switch (action & ~CPU_TASKS_FROZEN) {
6641
6642 case CPU_UP_PREPARE:
6643 case CPU_DOWN_FAILED:
6644 perf_event_init_cpu(cpu);
6645 break;
6646
6647 case CPU_UP_CANCELED:
6648 case CPU_DOWN_PREPARE:
6649 perf_event_exit_cpu(cpu);
6650 break;
6651
6652 default:
6653 break;
6654 }
6655
6656 return NOTIFY_OK;
6657 }
6658
6659 void __init perf_event_init(void)
6660 {
6661 int ret;
6662
6663 idr_init(&pmu_idr);
6664
6665 perf_event_init_all_cpus();
6666 init_srcu_struct(&pmus_srcu);
6667 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6668 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6669 perf_pmu_register(&perf_task_clock, NULL, -1);
6670 perf_tp_register();
6671 perf_cpu_notifier(perf_cpu_notify);
6672 register_reboot_notifier(&perf_reboot_notifier);
6673
6674 ret = init_hw_breakpoint();
6675 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6676 }
6677
6678 static int __init perf_event_sysfs_init(void)
6679 {
6680 struct pmu *pmu;
6681 int ret;
6682
6683 mutex_lock(&pmus_lock);
6684
6685 ret = bus_register(&pmu_bus);
6686 if (ret)
6687 goto unlock;
6688
6689 list_for_each_entry(pmu, &pmus, entry) {
6690 if (!pmu->name || pmu->type < 0)
6691 continue;
6692
6693 ret = pmu_dev_alloc(pmu);
6694 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6695 }
6696 pmu_bus_running = 1;
6697 ret = 0;
6698
6699 unlock:
6700 mutex_unlock(&pmus_lock);
6701
6702 return ret;
6703 }
6704 device_initcall(perf_event_sysfs_init);
This page took 0.198421 seconds and 6 git commands to generate.