perf: Fix free_event()
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68 int *count = this_cpu_ptr(pmu->pmu_disable_count);
69 if (!(*count)++)
70 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75 int *count = this_cpu_ptr(pmu->pmu_disable_count);
76 if (!--(*count))
77 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84 if (hrtimer_active(&cpuctx->timer))
85 return;
86
87 __hrtimer_start_range_ns(&cpuctx->timer,
88 ns_to_ktime(cpuctx->timer_interval), 0,
89 HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96 hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106 struct perf_event_context *ctx;
107
108 ctx = container_of(head, struct perf_event_context, rcu_head);
109 kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114 if (atomic_dec_and_test(&ctx->refcount)) {
115 if (ctx->parent_ctx)
116 put_ctx(ctx->parent_ctx);
117 if (ctx->task)
118 put_task_struct(ctx->task);
119 call_rcu(&ctx->rcu_head, free_ctx);
120 }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125 if (ctx->parent_ctx) {
126 put_ctx(ctx->parent_ctx);
127 ctx->parent_ctx = NULL;
128 }
129 }
130
131 /*
132 * If we inherit events we want to return the parent event id
133 * to userspace.
134 */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137 u64 id = event->id;
138
139 if (event->parent)
140 id = event->parent->id;
141
142 return id;
143 }
144
145 /*
146 * Get the perf_event_context for a task and lock it.
147 * This has to cope with with the fact that until it is locked,
148 * the context could get moved to another task.
149 */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152 {
153 struct perf_event_context *ctx;
154
155 rcu_read_lock();
156 retry:
157 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158 if (ctx) {
159 /*
160 * If this context is a clone of another, it might
161 * get swapped for another underneath us by
162 * perf_event_task_sched_out, though the
163 * rcu_read_lock() protects us from any context
164 * getting freed. Lock the context and check if it
165 * got swapped before we could get the lock, and retry
166 * if so. If we locked the right context, then it
167 * can't get swapped on us any more.
168 */
169 raw_spin_lock_irqsave(&ctx->lock, *flags);
170 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 goto retry;
173 }
174
175 if (!atomic_inc_not_zero(&ctx->refcount)) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 ctx = NULL;
178 }
179 }
180 rcu_read_unlock();
181 return ctx;
182 }
183
184 /*
185 * Get the context for a task and increment its pin_count so it
186 * can't get swapped to another task. This also increments its
187 * reference count so that the context can't get freed.
188 */
189 static struct perf_event_context *
190 perf_pin_task_context(struct task_struct *task, int ctxn)
191 {
192 struct perf_event_context *ctx;
193 unsigned long flags;
194
195 ctx = perf_lock_task_context(task, ctxn, &flags);
196 if (ctx) {
197 ++ctx->pin_count;
198 raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 }
200 return ctx;
201 }
202
203 static void perf_unpin_context(struct perf_event_context *ctx)
204 {
205 unsigned long flags;
206
207 raw_spin_lock_irqsave(&ctx->lock, flags);
208 --ctx->pin_count;
209 raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 put_ctx(ctx);
211 }
212
213 static inline u64 perf_clock(void)
214 {
215 return local_clock();
216 }
217
218 /*
219 * Update the record of the current time in a context.
220 */
221 static void update_context_time(struct perf_event_context *ctx)
222 {
223 u64 now = perf_clock();
224
225 ctx->time += now - ctx->timestamp;
226 ctx->timestamp = now;
227 }
228
229 /*
230 * Update the total_time_enabled and total_time_running fields for a event.
231 */
232 static void update_event_times(struct perf_event *event)
233 {
234 struct perf_event_context *ctx = event->ctx;
235 u64 run_end;
236
237 if (event->state < PERF_EVENT_STATE_INACTIVE ||
238 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
239 return;
240
241 if (ctx->is_active)
242 run_end = ctx->time;
243 else
244 run_end = event->tstamp_stopped;
245
246 event->total_time_enabled = run_end - event->tstamp_enabled;
247
248 if (event->state == PERF_EVENT_STATE_INACTIVE)
249 run_end = event->tstamp_stopped;
250 else
251 run_end = ctx->time;
252
253 event->total_time_running = run_end - event->tstamp_running;
254 }
255
256 /*
257 * Update total_time_enabled and total_time_running for all events in a group.
258 */
259 static void update_group_times(struct perf_event *leader)
260 {
261 struct perf_event *event;
262
263 update_event_times(leader);
264 list_for_each_entry(event, &leader->sibling_list, group_entry)
265 update_event_times(event);
266 }
267
268 static struct list_head *
269 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
270 {
271 if (event->attr.pinned)
272 return &ctx->pinned_groups;
273 else
274 return &ctx->flexible_groups;
275 }
276
277 /*
278 * Add a event from the lists for its context.
279 * Must be called with ctx->mutex and ctx->lock held.
280 */
281 static void
282 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283 {
284 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
285 event->attach_state |= PERF_ATTACH_CONTEXT;
286
287 /*
288 * If we're a stand alone event or group leader, we go to the context
289 * list, group events are kept attached to the group so that
290 * perf_group_detach can, at all times, locate all siblings.
291 */
292 if (event->group_leader == event) {
293 struct list_head *list;
294
295 if (is_software_event(event))
296 event->group_flags |= PERF_GROUP_SOFTWARE;
297
298 list = ctx_group_list(event, ctx);
299 list_add_tail(&event->group_entry, list);
300 }
301
302 list_add_rcu(&event->event_entry, &ctx->event_list);
303 if (!ctx->nr_events)
304 perf_pmu_rotate_start(ctx->pmu);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408 return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413 struct perf_cpu_context *cpuctx,
414 struct perf_event_context *ctx)
415 {
416 u64 delta;
417 /*
418 * An event which could not be activated because of
419 * filter mismatch still needs to have its timings
420 * maintained, otherwise bogus information is return
421 * via read() for time_enabled, time_running:
422 */
423 if (event->state == PERF_EVENT_STATE_INACTIVE
424 && !event_filter_match(event)) {
425 delta = ctx->time - event->tstamp_stopped;
426 event->tstamp_running += delta;
427 event->tstamp_stopped = ctx->time;
428 }
429
430 if (event->state != PERF_EVENT_STATE_ACTIVE)
431 return;
432
433 event->state = PERF_EVENT_STATE_INACTIVE;
434 if (event->pending_disable) {
435 event->pending_disable = 0;
436 event->state = PERF_EVENT_STATE_OFF;
437 }
438 event->tstamp_stopped = ctx->time;
439 event->pmu->del(event, 0);
440 event->oncpu = -1;
441
442 if (!is_software_event(event))
443 cpuctx->active_oncpu--;
444 ctx->nr_active--;
445 if (event->attr.exclusive || !cpuctx->active_oncpu)
446 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451 struct perf_cpu_context *cpuctx,
452 struct perf_event_context *ctx)
453 {
454 struct perf_event *event;
455 int state = group_event->state;
456
457 event_sched_out(group_event, cpuctx, ctx);
458
459 /*
460 * Schedule out siblings (if any):
461 */
462 list_for_each_entry(event, &group_event->sibling_list, group_entry)
463 event_sched_out(event, cpuctx, ctx);
464
465 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 cpuctx->exclusive = 0;
467 }
468
469 static inline struct perf_cpu_context *
470 __get_cpu_context(struct perf_event_context *ctx)
471 {
472 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
473 }
474
475 /*
476 * Cross CPU call to remove a performance event
477 *
478 * We disable the event on the hardware level first. After that we
479 * remove it from the context list.
480 */
481 static void __perf_event_remove_from_context(void *info)
482 {
483 struct perf_event *event = info;
484 struct perf_event_context *ctx = event->ctx;
485 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
486
487 /*
488 * If this is a task context, we need to check whether it is
489 * the current task context of this cpu. If not it has been
490 * scheduled out before the smp call arrived.
491 */
492 if (ctx->task && cpuctx->task_ctx != ctx)
493 return;
494
495 raw_spin_lock(&ctx->lock);
496
497 event_sched_out(event, cpuctx, ctx);
498
499 list_del_event(event, ctx);
500
501 raw_spin_unlock(&ctx->lock);
502 }
503
504
505 /*
506 * Remove the event from a task's (or a CPU's) list of events.
507 *
508 * Must be called with ctx->mutex held.
509 *
510 * CPU events are removed with a smp call. For task events we only
511 * call when the task is on a CPU.
512 *
513 * If event->ctx is a cloned context, callers must make sure that
514 * every task struct that event->ctx->task could possibly point to
515 * remains valid. This is OK when called from perf_release since
516 * that only calls us on the top-level context, which can't be a clone.
517 * When called from perf_event_exit_task, it's OK because the
518 * context has been detached from its task.
519 */
520 static void perf_event_remove_from_context(struct perf_event *event)
521 {
522 struct perf_event_context *ctx = event->ctx;
523 struct task_struct *task = ctx->task;
524
525 if (!task) {
526 /*
527 * Per cpu events are removed via an smp call and
528 * the removal is always successful.
529 */
530 smp_call_function_single(event->cpu,
531 __perf_event_remove_from_context,
532 event, 1);
533 return;
534 }
535
536 retry:
537 task_oncpu_function_call(task, __perf_event_remove_from_context,
538 event);
539
540 raw_spin_lock_irq(&ctx->lock);
541 /*
542 * If the context is active we need to retry the smp call.
543 */
544 if (ctx->nr_active && !list_empty(&event->group_entry)) {
545 raw_spin_unlock_irq(&ctx->lock);
546 goto retry;
547 }
548
549 /*
550 * The lock prevents that this context is scheduled in so we
551 * can remove the event safely, if the call above did not
552 * succeed.
553 */
554 if (!list_empty(&event->group_entry))
555 list_del_event(event, ctx);
556 raw_spin_unlock_irq(&ctx->lock);
557 }
558
559 /*
560 * Cross CPU call to disable a performance event
561 */
562 static void __perf_event_disable(void *info)
563 {
564 struct perf_event *event = info;
565 struct perf_event_context *ctx = event->ctx;
566 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567
568 /*
569 * If this is a per-task event, need to check whether this
570 * event's task is the current task on this cpu.
571 */
572 if (ctx->task && cpuctx->task_ctx != ctx)
573 return;
574
575 raw_spin_lock(&ctx->lock);
576
577 /*
578 * If the event is on, turn it off.
579 * If it is in error state, leave it in error state.
580 */
581 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582 update_context_time(ctx);
583 update_group_times(event);
584 if (event == event->group_leader)
585 group_sched_out(event, cpuctx, ctx);
586 else
587 event_sched_out(event, cpuctx, ctx);
588 event->state = PERF_EVENT_STATE_OFF;
589 }
590
591 raw_spin_unlock(&ctx->lock);
592 }
593
594 /*
595 * Disable a event.
596 *
597 * If event->ctx is a cloned context, callers must make sure that
598 * every task struct that event->ctx->task could possibly point to
599 * remains valid. This condition is satisifed when called through
600 * perf_event_for_each_child or perf_event_for_each because they
601 * hold the top-level event's child_mutex, so any descendant that
602 * goes to exit will block in sync_child_event.
603 * When called from perf_pending_event it's OK because event->ctx
604 * is the current context on this CPU and preemption is disabled,
605 * hence we can't get into perf_event_task_sched_out for this context.
606 */
607 void perf_event_disable(struct perf_event *event)
608 {
609 struct perf_event_context *ctx = event->ctx;
610 struct task_struct *task = ctx->task;
611
612 if (!task) {
613 /*
614 * Disable the event on the cpu that it's on
615 */
616 smp_call_function_single(event->cpu, __perf_event_disable,
617 event, 1);
618 return;
619 }
620
621 retry:
622 task_oncpu_function_call(task, __perf_event_disable, event);
623
624 raw_spin_lock_irq(&ctx->lock);
625 /*
626 * If the event is still active, we need to retry the cross-call.
627 */
628 if (event->state == PERF_EVENT_STATE_ACTIVE) {
629 raw_spin_unlock_irq(&ctx->lock);
630 goto retry;
631 }
632
633 /*
634 * Since we have the lock this context can't be scheduled
635 * in, so we can change the state safely.
636 */
637 if (event->state == PERF_EVENT_STATE_INACTIVE) {
638 update_group_times(event);
639 event->state = PERF_EVENT_STATE_OFF;
640 }
641
642 raw_spin_unlock_irq(&ctx->lock);
643 }
644
645 static int
646 event_sched_in(struct perf_event *event,
647 struct perf_cpu_context *cpuctx,
648 struct perf_event_context *ctx)
649 {
650 if (event->state <= PERF_EVENT_STATE_OFF)
651 return 0;
652
653 event->state = PERF_EVENT_STATE_ACTIVE;
654 event->oncpu = smp_processor_id();
655 /*
656 * The new state must be visible before we turn it on in the hardware:
657 */
658 smp_wmb();
659
660 if (event->pmu->add(event, PERF_EF_START)) {
661 event->state = PERF_EVENT_STATE_INACTIVE;
662 event->oncpu = -1;
663 return -EAGAIN;
664 }
665
666 event->tstamp_running += ctx->time - event->tstamp_stopped;
667
668 if (!is_software_event(event))
669 cpuctx->active_oncpu++;
670 ctx->nr_active++;
671
672 if (event->attr.exclusive)
673 cpuctx->exclusive = 1;
674
675 return 0;
676 }
677
678 static int
679 group_sched_in(struct perf_event *group_event,
680 struct perf_cpu_context *cpuctx,
681 struct perf_event_context *ctx)
682 {
683 struct perf_event *event, *partial_group = NULL;
684 struct pmu *pmu = group_event->pmu;
685
686 if (group_event->state == PERF_EVENT_STATE_OFF)
687 return 0;
688
689 pmu->start_txn(pmu);
690
691 if (event_sched_in(group_event, cpuctx, ctx)) {
692 pmu->cancel_txn(pmu);
693 return -EAGAIN;
694 }
695
696 /*
697 * Schedule in siblings as one group (if any):
698 */
699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700 if (event_sched_in(event, cpuctx, ctx)) {
701 partial_group = event;
702 goto group_error;
703 }
704 }
705
706 if (!pmu->commit_txn(pmu))
707 return 0;
708
709 group_error:
710 /*
711 * Groups can be scheduled in as one unit only, so undo any
712 * partial group before returning:
713 */
714 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
715 if (event == partial_group)
716 break;
717 event_sched_out(event, cpuctx, ctx);
718 }
719 event_sched_out(group_event, cpuctx, ctx);
720
721 pmu->cancel_txn(pmu);
722
723 return -EAGAIN;
724 }
725
726 /*
727 * Work out whether we can put this event group on the CPU now.
728 */
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
732 {
733 /*
734 * Groups consisting entirely of software events can always go on.
735 */
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
738 /*
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
741 */
742 if (cpuctx->exclusive)
743 return 0;
744 /*
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
747 */
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
750 /*
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
753 */
754 return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768 * Cross CPU call to install and enable a performance event
769 *
770 * Must be called with ctx->mutex held
771 */
772 static void __perf_install_in_context(void *info)
773 {
774 struct perf_event *event = info;
775 struct perf_event_context *ctx = event->ctx;
776 struct perf_event *leader = event->group_leader;
777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778 int err;
779
780 /*
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
786 */
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
791 }
792
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
796
797 add_event_to_ctx(event, ctx);
798
799 if (event->cpu != -1 && event->cpu != smp_processor_id())
800 goto unlock;
801
802 /*
803 * Don't put the event on if it is disabled or if
804 * it is in a group and the group isn't on.
805 */
806 if (event->state != PERF_EVENT_STATE_INACTIVE ||
807 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 goto unlock;
809
810 /*
811 * An exclusive event can't go on if there are already active
812 * hardware events, and no hardware event can go on if there
813 * is already an exclusive event on.
814 */
815 if (!group_can_go_on(event, cpuctx, 1))
816 err = -EEXIST;
817 else
818 err = event_sched_in(event, cpuctx, ctx);
819
820 if (err) {
821 /*
822 * This event couldn't go on. If it is in a group
823 * then we have to pull the whole group off.
824 * If the event group is pinned then put it in error state.
825 */
826 if (leader != event)
827 group_sched_out(leader, cpuctx, ctx);
828 if (leader->attr.pinned) {
829 update_group_times(leader);
830 leader->state = PERF_EVENT_STATE_ERROR;
831 }
832 }
833
834 unlock:
835 raw_spin_unlock(&ctx->lock);
836 }
837
838 /*
839 * Attach a performance event to a context
840 *
841 * First we add the event to the list with the hardware enable bit
842 * in event->hw_config cleared.
843 *
844 * If the event is attached to a task which is on a CPU we use a smp
845 * call to enable it in the task context. The task might have been
846 * scheduled away, but we check this in the smp call again.
847 *
848 * Must be called with ctx->mutex held.
849 */
850 static void
851 perf_install_in_context(struct perf_event_context *ctx,
852 struct perf_event *event,
853 int cpu)
854 {
855 struct task_struct *task = ctx->task;
856
857 event->ctx = ctx;
858
859 if (!task) {
860 /*
861 * Per cpu events are installed via an smp call and
862 * the install is always successful.
863 */
864 smp_call_function_single(cpu, __perf_install_in_context,
865 event, 1);
866 return;
867 }
868
869 retry:
870 task_oncpu_function_call(task, __perf_install_in_context,
871 event);
872
873 raw_spin_lock_irq(&ctx->lock);
874 /*
875 * we need to retry the smp call.
876 */
877 if (ctx->is_active && list_empty(&event->group_entry)) {
878 raw_spin_unlock_irq(&ctx->lock);
879 goto retry;
880 }
881
882 /*
883 * The lock prevents that this context is scheduled in so we
884 * can add the event safely, if it the call above did not
885 * succeed.
886 */
887 if (list_empty(&event->group_entry))
888 add_event_to_ctx(event, ctx);
889 raw_spin_unlock_irq(&ctx->lock);
890 }
891
892 /*
893 * Put a event into inactive state and update time fields.
894 * Enabling the leader of a group effectively enables all
895 * the group members that aren't explicitly disabled, so we
896 * have to update their ->tstamp_enabled also.
897 * Note: this works for group members as well as group leaders
898 * since the non-leader members' sibling_lists will be empty.
899 */
900 static void __perf_event_mark_enabled(struct perf_event *event,
901 struct perf_event_context *ctx)
902 {
903 struct perf_event *sub;
904
905 event->state = PERF_EVENT_STATE_INACTIVE;
906 event->tstamp_enabled = ctx->time - event->total_time_enabled;
907 list_for_each_entry(sub, &event->sibling_list, group_entry) {
908 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909 sub->tstamp_enabled =
910 ctx->time - sub->total_time_enabled;
911 }
912 }
913 }
914
915 /*
916 * Cross CPU call to enable a performance event
917 */
918 static void __perf_event_enable(void *info)
919 {
920 struct perf_event *event = info;
921 struct perf_event_context *ctx = event->ctx;
922 struct perf_event *leader = event->group_leader;
923 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924 int err;
925
926 /*
927 * If this is a per-task event, need to check whether this
928 * event's task is the current task on this cpu.
929 */
930 if (ctx->task && cpuctx->task_ctx != ctx) {
931 if (cpuctx->task_ctx || ctx->task != current)
932 return;
933 cpuctx->task_ctx = ctx;
934 }
935
936 raw_spin_lock(&ctx->lock);
937 ctx->is_active = 1;
938 update_context_time(ctx);
939
940 if (event->state >= PERF_EVENT_STATE_INACTIVE)
941 goto unlock;
942 __perf_event_mark_enabled(event, ctx);
943
944 if (event->cpu != -1 && event->cpu != smp_processor_id())
945 goto unlock;
946
947 /*
948 * If the event is in a group and isn't the group leader,
949 * then don't put it on unless the group is on.
950 */
951 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952 goto unlock;
953
954 if (!group_can_go_on(event, cpuctx, 1)) {
955 err = -EEXIST;
956 } else {
957 if (event == leader)
958 err = group_sched_in(event, cpuctx, ctx);
959 else
960 err = event_sched_in(event, cpuctx, ctx);
961 }
962
963 if (err) {
964 /*
965 * If this event can't go on and it's part of a
966 * group, then the whole group has to come off.
967 */
968 if (leader != event)
969 group_sched_out(leader, cpuctx, ctx);
970 if (leader->attr.pinned) {
971 update_group_times(leader);
972 leader->state = PERF_EVENT_STATE_ERROR;
973 }
974 }
975
976 unlock:
977 raw_spin_unlock(&ctx->lock);
978 }
979
980 /*
981 * Enable a event.
982 *
983 * If event->ctx is a cloned context, callers must make sure that
984 * every task struct that event->ctx->task could possibly point to
985 * remains valid. This condition is satisfied when called through
986 * perf_event_for_each_child or perf_event_for_each as described
987 * for perf_event_disable.
988 */
989 void perf_event_enable(struct perf_event *event)
990 {
991 struct perf_event_context *ctx = event->ctx;
992 struct task_struct *task = ctx->task;
993
994 if (!task) {
995 /*
996 * Enable the event on the cpu that it's on
997 */
998 smp_call_function_single(event->cpu, __perf_event_enable,
999 event, 1);
1000 return;
1001 }
1002
1003 raw_spin_lock_irq(&ctx->lock);
1004 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005 goto out;
1006
1007 /*
1008 * If the event is in error state, clear that first.
1009 * That way, if we see the event in error state below, we
1010 * know that it has gone back into error state, as distinct
1011 * from the task having been scheduled away before the
1012 * cross-call arrived.
1013 */
1014 if (event->state == PERF_EVENT_STATE_ERROR)
1015 event->state = PERF_EVENT_STATE_OFF;
1016
1017 retry:
1018 raw_spin_unlock_irq(&ctx->lock);
1019 task_oncpu_function_call(task, __perf_event_enable, event);
1020
1021 raw_spin_lock_irq(&ctx->lock);
1022
1023 /*
1024 * If the context is active and the event is still off,
1025 * we need to retry the cross-call.
1026 */
1027 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028 goto retry;
1029
1030 /*
1031 * Since we have the lock this context can't be scheduled
1032 * in, so we can change the state safely.
1033 */
1034 if (event->state == PERF_EVENT_STATE_OFF)
1035 __perf_event_mark_enabled(event, ctx);
1036
1037 out:
1038 raw_spin_unlock_irq(&ctx->lock);
1039 }
1040
1041 static int perf_event_refresh(struct perf_event *event, int refresh)
1042 {
1043 /*
1044 * not supported on inherited events
1045 */
1046 if (event->attr.inherit)
1047 return -EINVAL;
1048
1049 atomic_add(refresh, &event->event_limit);
1050 perf_event_enable(event);
1051
1052 return 0;
1053 }
1054
1055 enum event_type_t {
1056 EVENT_FLEXIBLE = 0x1,
1057 EVENT_PINNED = 0x2,
1058 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1059 };
1060
1061 static void ctx_sched_out(struct perf_event_context *ctx,
1062 struct perf_cpu_context *cpuctx,
1063 enum event_type_t event_type)
1064 {
1065 struct perf_event *event;
1066
1067 raw_spin_lock(&ctx->lock);
1068 perf_pmu_disable(ctx->pmu);
1069 ctx->is_active = 0;
1070 if (likely(!ctx->nr_events))
1071 goto out;
1072 update_context_time(ctx);
1073
1074 if (!ctx->nr_active)
1075 goto out;
1076
1077 if (event_type & EVENT_PINNED) {
1078 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1079 group_sched_out(event, cpuctx, ctx);
1080 }
1081
1082 if (event_type & EVENT_FLEXIBLE) {
1083 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084 group_sched_out(event, cpuctx, ctx);
1085 }
1086 out:
1087 perf_pmu_enable(ctx->pmu);
1088 raw_spin_unlock(&ctx->lock);
1089 }
1090
1091 /*
1092 * Test whether two contexts are equivalent, i.e. whether they
1093 * have both been cloned from the same version of the same context
1094 * and they both have the same number of enabled events.
1095 * If the number of enabled events is the same, then the set
1096 * of enabled events should be the same, because these are both
1097 * inherited contexts, therefore we can't access individual events
1098 * in them directly with an fd; we can only enable/disable all
1099 * events via prctl, or enable/disable all events in a family
1100 * via ioctl, which will have the same effect on both contexts.
1101 */
1102 static int context_equiv(struct perf_event_context *ctx1,
1103 struct perf_event_context *ctx2)
1104 {
1105 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106 && ctx1->parent_gen == ctx2->parent_gen
1107 && !ctx1->pin_count && !ctx2->pin_count;
1108 }
1109
1110 static void __perf_event_sync_stat(struct perf_event *event,
1111 struct perf_event *next_event)
1112 {
1113 u64 value;
1114
1115 if (!event->attr.inherit_stat)
1116 return;
1117
1118 /*
1119 * Update the event value, we cannot use perf_event_read()
1120 * because we're in the middle of a context switch and have IRQs
1121 * disabled, which upsets smp_call_function_single(), however
1122 * we know the event must be on the current CPU, therefore we
1123 * don't need to use it.
1124 */
1125 switch (event->state) {
1126 case PERF_EVENT_STATE_ACTIVE:
1127 event->pmu->read(event);
1128 /* fall-through */
1129
1130 case PERF_EVENT_STATE_INACTIVE:
1131 update_event_times(event);
1132 break;
1133
1134 default:
1135 break;
1136 }
1137
1138 /*
1139 * In order to keep per-task stats reliable we need to flip the event
1140 * values when we flip the contexts.
1141 */
1142 value = local64_read(&next_event->count);
1143 value = local64_xchg(&event->count, value);
1144 local64_set(&next_event->count, value);
1145
1146 swap(event->total_time_enabled, next_event->total_time_enabled);
1147 swap(event->total_time_running, next_event->total_time_running);
1148
1149 /*
1150 * Since we swizzled the values, update the user visible data too.
1151 */
1152 perf_event_update_userpage(event);
1153 perf_event_update_userpage(next_event);
1154 }
1155
1156 #define list_next_entry(pos, member) \
1157 list_entry(pos->member.next, typeof(*pos), member)
1158
1159 static void perf_event_sync_stat(struct perf_event_context *ctx,
1160 struct perf_event_context *next_ctx)
1161 {
1162 struct perf_event *event, *next_event;
1163
1164 if (!ctx->nr_stat)
1165 return;
1166
1167 update_context_time(ctx);
1168
1169 event = list_first_entry(&ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 next_event = list_first_entry(&next_ctx->event_list,
1173 struct perf_event, event_entry);
1174
1175 while (&event->event_entry != &ctx->event_list &&
1176 &next_event->event_entry != &next_ctx->event_list) {
1177
1178 __perf_event_sync_stat(event, next_event);
1179
1180 event = list_next_entry(event, event_entry);
1181 next_event = list_next_entry(next_event, event_entry);
1182 }
1183 }
1184
1185 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1186 struct task_struct *next)
1187 {
1188 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189 struct perf_event_context *next_ctx;
1190 struct perf_event_context *parent;
1191 struct perf_cpu_context *cpuctx;
1192 int do_switch = 1;
1193
1194 if (likely(!ctx))
1195 return;
1196
1197 cpuctx = __get_cpu_context(ctx);
1198 if (!cpuctx->task_ctx)
1199 return;
1200
1201 rcu_read_lock();
1202 parent = rcu_dereference(ctx->parent_ctx);
1203 next_ctx = next->perf_event_ctxp[ctxn];
1204 if (parent && next_ctx &&
1205 rcu_dereference(next_ctx->parent_ctx) == parent) {
1206 /*
1207 * Looks like the two contexts are clones, so we might be
1208 * able to optimize the context switch. We lock both
1209 * contexts and check that they are clones under the
1210 * lock (including re-checking that neither has been
1211 * uncloned in the meantime). It doesn't matter which
1212 * order we take the locks because no other cpu could
1213 * be trying to lock both of these tasks.
1214 */
1215 raw_spin_lock(&ctx->lock);
1216 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217 if (context_equiv(ctx, next_ctx)) {
1218 /*
1219 * XXX do we need a memory barrier of sorts
1220 * wrt to rcu_dereference() of perf_event_ctxp
1221 */
1222 task->perf_event_ctxp[ctxn] = next_ctx;
1223 next->perf_event_ctxp[ctxn] = ctx;
1224 ctx->task = next;
1225 next_ctx->task = task;
1226 do_switch = 0;
1227
1228 perf_event_sync_stat(ctx, next_ctx);
1229 }
1230 raw_spin_unlock(&next_ctx->lock);
1231 raw_spin_unlock(&ctx->lock);
1232 }
1233 rcu_read_unlock();
1234
1235 if (do_switch) {
1236 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237 cpuctx->task_ctx = NULL;
1238 }
1239 }
1240
1241 #define for_each_task_context_nr(ctxn) \
1242 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1243
1244 /*
1245 * Called from scheduler to remove the events of the current task,
1246 * with interrupts disabled.
1247 *
1248 * We stop each event and update the event value in event->count.
1249 *
1250 * This does not protect us against NMI, but disable()
1251 * sets the disabled bit in the control field of event _before_
1252 * accessing the event control register. If a NMI hits, then it will
1253 * not restart the event.
1254 */
1255 void perf_event_task_sched_out(struct task_struct *task,
1256 struct task_struct *next)
1257 {
1258 int ctxn;
1259
1260 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1261
1262 for_each_task_context_nr(ctxn)
1263 perf_event_context_sched_out(task, ctxn, next);
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267 enum event_type_t event_type)
1268 {
1269 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270
1271 if (!cpuctx->task_ctx)
1272 return;
1273
1274 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275 return;
1276
1277 ctx_sched_out(ctx, cpuctx, event_type);
1278 cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282 * Called with IRQs disabled
1283 */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286 task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290 * Called with IRQs disabled
1291 */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293 enum event_type_t event_type)
1294 {
1295 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx)
1301 {
1302 struct perf_event *event;
1303
1304 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305 if (event->state <= PERF_EVENT_STATE_OFF)
1306 continue;
1307 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 continue;
1309
1310 if (group_can_go_on(event, cpuctx, 1))
1311 group_sched_in(event, cpuctx, ctx);
1312
1313 /*
1314 * If this pinned group hasn't been scheduled,
1315 * put it in error state.
1316 */
1317 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318 update_group_times(event);
1319 event->state = PERF_EVENT_STATE_ERROR;
1320 }
1321 }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326 struct perf_cpu_context *cpuctx)
1327 {
1328 struct perf_event *event;
1329 int can_add_hw = 1;
1330
1331 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332 /* Ignore events in OFF or ERROR state */
1333 if (event->state <= PERF_EVENT_STATE_OFF)
1334 continue;
1335 /*
1336 * Listen to the 'cpu' scheduling filter constraint
1337 * of events:
1338 */
1339 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340 continue;
1341
1342 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343 if (group_sched_in(event, cpuctx, ctx))
1344 can_add_hw = 0;
1345 }
1346 }
1347 }
1348
1349 static void
1350 ctx_sched_in(struct perf_event_context *ctx,
1351 struct perf_cpu_context *cpuctx,
1352 enum event_type_t event_type)
1353 {
1354 raw_spin_lock(&ctx->lock);
1355 ctx->is_active = 1;
1356 if (likely(!ctx->nr_events))
1357 goto out;
1358
1359 ctx->timestamp = perf_clock();
1360
1361 /*
1362 * First go through the list and put on any pinned groups
1363 * in order to give them the best chance of going on.
1364 */
1365 if (event_type & EVENT_PINNED)
1366 ctx_pinned_sched_in(ctx, cpuctx);
1367
1368 /* Then walk through the lower prio flexible groups */
1369 if (event_type & EVENT_FLEXIBLE)
1370 ctx_flexible_sched_in(ctx, cpuctx);
1371
1372 out:
1373 raw_spin_unlock(&ctx->lock);
1374 }
1375
1376 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1377 enum event_type_t event_type)
1378 {
1379 struct perf_event_context *ctx = &cpuctx->ctx;
1380
1381 ctx_sched_in(ctx, cpuctx, event_type);
1382 }
1383
1384 static void task_ctx_sched_in(struct perf_event_context *ctx,
1385 enum event_type_t event_type)
1386 {
1387 struct perf_cpu_context *cpuctx;
1388
1389 cpuctx = __get_cpu_context(ctx);
1390 if (cpuctx->task_ctx == ctx)
1391 return;
1392
1393 ctx_sched_in(ctx, cpuctx, event_type);
1394 cpuctx->task_ctx = ctx;
1395 }
1396
1397 void perf_event_context_sched_in(struct perf_event_context *ctx)
1398 {
1399 struct perf_cpu_context *cpuctx;
1400
1401 cpuctx = __get_cpu_context(ctx);
1402 if (cpuctx->task_ctx == ctx)
1403 return;
1404
1405 perf_pmu_disable(ctx->pmu);
1406 /*
1407 * We want to keep the following priority order:
1408 * cpu pinned (that don't need to move), task pinned,
1409 * cpu flexible, task flexible.
1410 */
1411 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1412
1413 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1414 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1415 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1416
1417 cpuctx->task_ctx = ctx;
1418
1419 /*
1420 * Since these rotations are per-cpu, we need to ensure the
1421 * cpu-context we got scheduled on is actually rotating.
1422 */
1423 perf_pmu_rotate_start(ctx->pmu);
1424 perf_pmu_enable(ctx->pmu);
1425 }
1426
1427 /*
1428 * Called from scheduler to add the events of the current task
1429 * with interrupts disabled.
1430 *
1431 * We restore the event value and then enable it.
1432 *
1433 * This does not protect us against NMI, but enable()
1434 * sets the enabled bit in the control field of event _before_
1435 * accessing the event control register. If a NMI hits, then it will
1436 * keep the event running.
1437 */
1438 void perf_event_task_sched_in(struct task_struct *task)
1439 {
1440 struct perf_event_context *ctx;
1441 int ctxn;
1442
1443 for_each_task_context_nr(ctxn) {
1444 ctx = task->perf_event_ctxp[ctxn];
1445 if (likely(!ctx))
1446 continue;
1447
1448 perf_event_context_sched_in(ctx);
1449 }
1450 }
1451
1452 #define MAX_INTERRUPTS (~0ULL)
1453
1454 static void perf_log_throttle(struct perf_event *event, int enable);
1455
1456 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1457 {
1458 u64 frequency = event->attr.sample_freq;
1459 u64 sec = NSEC_PER_SEC;
1460 u64 divisor, dividend;
1461
1462 int count_fls, nsec_fls, frequency_fls, sec_fls;
1463
1464 count_fls = fls64(count);
1465 nsec_fls = fls64(nsec);
1466 frequency_fls = fls64(frequency);
1467 sec_fls = 30;
1468
1469 /*
1470 * We got @count in @nsec, with a target of sample_freq HZ
1471 * the target period becomes:
1472 *
1473 * @count * 10^9
1474 * period = -------------------
1475 * @nsec * sample_freq
1476 *
1477 */
1478
1479 /*
1480 * Reduce accuracy by one bit such that @a and @b converge
1481 * to a similar magnitude.
1482 */
1483 #define REDUCE_FLS(a, b) \
1484 do { \
1485 if (a##_fls > b##_fls) { \
1486 a >>= 1; \
1487 a##_fls--; \
1488 } else { \
1489 b >>= 1; \
1490 b##_fls--; \
1491 } \
1492 } while (0)
1493
1494 /*
1495 * Reduce accuracy until either term fits in a u64, then proceed with
1496 * the other, so that finally we can do a u64/u64 division.
1497 */
1498 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1499 REDUCE_FLS(nsec, frequency);
1500 REDUCE_FLS(sec, count);
1501 }
1502
1503 if (count_fls + sec_fls > 64) {
1504 divisor = nsec * frequency;
1505
1506 while (count_fls + sec_fls > 64) {
1507 REDUCE_FLS(count, sec);
1508 divisor >>= 1;
1509 }
1510
1511 dividend = count * sec;
1512 } else {
1513 dividend = count * sec;
1514
1515 while (nsec_fls + frequency_fls > 64) {
1516 REDUCE_FLS(nsec, frequency);
1517 dividend >>= 1;
1518 }
1519
1520 divisor = nsec * frequency;
1521 }
1522
1523 if (!divisor)
1524 return dividend;
1525
1526 return div64_u64(dividend, divisor);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531 struct hw_perf_event *hwc = &event->hw;
1532 s64 period, sample_period;
1533 s64 delta;
1534
1535 period = perf_calculate_period(event, nsec, count);
1536
1537 delta = (s64)(period - hwc->sample_period);
1538 delta = (delta + 7) / 8; /* low pass filter */
1539
1540 sample_period = hwc->sample_period + delta;
1541
1542 if (!sample_period)
1543 sample_period = 1;
1544
1545 hwc->sample_period = sample_period;
1546
1547 if (local64_read(&hwc->period_left) > 8*sample_period) {
1548 event->pmu->stop(event, PERF_EF_UPDATE);
1549 local64_set(&hwc->period_left, 0);
1550 event->pmu->start(event, PERF_EF_RELOAD);
1551 }
1552 }
1553
1554 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555 {
1556 struct perf_event *event;
1557 struct hw_perf_event *hwc;
1558 u64 interrupts, now;
1559 s64 delta;
1560
1561 raw_spin_lock(&ctx->lock);
1562 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563 if (event->state != PERF_EVENT_STATE_ACTIVE)
1564 continue;
1565
1566 if (event->cpu != -1 && event->cpu != smp_processor_id())
1567 continue;
1568
1569 hwc = &event->hw;
1570
1571 interrupts = hwc->interrupts;
1572 hwc->interrupts = 0;
1573
1574 /*
1575 * unthrottle events on the tick
1576 */
1577 if (interrupts == MAX_INTERRUPTS) {
1578 perf_log_throttle(event, 1);
1579 event->pmu->start(event, 0);
1580 }
1581
1582 if (!event->attr.freq || !event->attr.sample_freq)
1583 continue;
1584
1585 event->pmu->read(event);
1586 now = local64_read(&event->count);
1587 delta = now - hwc->freq_count_stamp;
1588 hwc->freq_count_stamp = now;
1589
1590 if (delta > 0)
1591 perf_adjust_period(event, period, delta);
1592 }
1593 raw_spin_unlock(&ctx->lock);
1594 }
1595
1596 /*
1597 * Round-robin a context's events:
1598 */
1599 static void rotate_ctx(struct perf_event_context *ctx)
1600 {
1601 raw_spin_lock(&ctx->lock);
1602
1603 /* Rotate the first entry last of non-pinned groups */
1604 list_rotate_left(&ctx->flexible_groups);
1605
1606 raw_spin_unlock(&ctx->lock);
1607 }
1608
1609 /*
1610 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1611 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1612 * cpu affine, so there are no SMP races).
1613 */
1614 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615 {
1616 enum hrtimer_restart restart = HRTIMER_NORESTART;
1617 struct perf_cpu_context *cpuctx;
1618 struct perf_event_context *ctx = NULL;
1619 int rotate = 0;
1620
1621 cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622
1623 if (cpuctx->ctx.nr_events) {
1624 restart = HRTIMER_RESTART;
1625 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1626 rotate = 1;
1627 }
1628
1629 ctx = cpuctx->task_ctx;
1630 if (ctx && ctx->nr_events) {
1631 restart = HRTIMER_RESTART;
1632 if (ctx->nr_events != ctx->nr_active)
1633 rotate = 1;
1634 }
1635
1636 perf_pmu_disable(cpuctx->ctx.pmu);
1637 perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638 if (ctx)
1639 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640
1641 if (!rotate)
1642 goto done;
1643
1644 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645 if (ctx)
1646 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1647
1648 rotate_ctx(&cpuctx->ctx);
1649 if (ctx)
1650 rotate_ctx(ctx);
1651
1652 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653 if (ctx)
1654 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655
1656 done:
1657 perf_pmu_enable(cpuctx->ctx.pmu);
1658 hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1659
1660 return restart;
1661 }
1662
1663 static int event_enable_on_exec(struct perf_event *event,
1664 struct perf_event_context *ctx)
1665 {
1666 if (!event->attr.enable_on_exec)
1667 return 0;
1668
1669 event->attr.enable_on_exec = 0;
1670 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1671 return 0;
1672
1673 __perf_event_mark_enabled(event, ctx);
1674
1675 return 1;
1676 }
1677
1678 /*
1679 * Enable all of a task's events that have been marked enable-on-exec.
1680 * This expects task == current.
1681 */
1682 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683 {
1684 struct perf_event *event;
1685 unsigned long flags;
1686 int enabled = 0;
1687 int ret;
1688
1689 local_irq_save(flags);
1690 if (!ctx || !ctx->nr_events)
1691 goto out;
1692
1693 task_ctx_sched_out(ctx, EVENT_ALL);
1694
1695 raw_spin_lock(&ctx->lock);
1696
1697 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1698 ret = event_enable_on_exec(event, ctx);
1699 if (ret)
1700 enabled = 1;
1701 }
1702
1703 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1704 ret = event_enable_on_exec(event, ctx);
1705 if (ret)
1706 enabled = 1;
1707 }
1708
1709 /*
1710 * Unclone this context if we enabled any event.
1711 */
1712 if (enabled)
1713 unclone_ctx(ctx);
1714
1715 raw_spin_unlock(&ctx->lock);
1716
1717 perf_event_context_sched_in(ctx);
1718 out:
1719 local_irq_restore(flags);
1720 }
1721
1722 /*
1723 * Cross CPU call to read the hardware event
1724 */
1725 static void __perf_event_read(void *info)
1726 {
1727 struct perf_event *event = info;
1728 struct perf_event_context *ctx = event->ctx;
1729 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1730
1731 /*
1732 * If this is a task context, we need to check whether it is
1733 * the current task context of this cpu. If not it has been
1734 * scheduled out before the smp call arrived. In that case
1735 * event->count would have been updated to a recent sample
1736 * when the event was scheduled out.
1737 */
1738 if (ctx->task && cpuctx->task_ctx != ctx)
1739 return;
1740
1741 raw_spin_lock(&ctx->lock);
1742 update_context_time(ctx);
1743 update_event_times(event);
1744 raw_spin_unlock(&ctx->lock);
1745
1746 event->pmu->read(event);
1747 }
1748
1749 static inline u64 perf_event_count(struct perf_event *event)
1750 {
1751 return local64_read(&event->count) + atomic64_read(&event->child_count);
1752 }
1753
1754 static u64 perf_event_read(struct perf_event *event)
1755 {
1756 /*
1757 * If event is enabled and currently active on a CPU, update the
1758 * value in the event structure:
1759 */
1760 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1761 smp_call_function_single(event->oncpu,
1762 __perf_event_read, event, 1);
1763 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1764 struct perf_event_context *ctx = event->ctx;
1765 unsigned long flags;
1766
1767 raw_spin_lock_irqsave(&ctx->lock, flags);
1768 update_context_time(ctx);
1769 update_event_times(event);
1770 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1771 }
1772
1773 return perf_event_count(event);
1774 }
1775
1776 /*
1777 * Callchain support
1778 */
1779
1780 struct callchain_cpus_entries {
1781 struct rcu_head rcu_head;
1782 struct perf_callchain_entry *cpu_entries[0];
1783 };
1784
1785 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 static atomic_t nr_callchain_events;
1787 static DEFINE_MUTEX(callchain_mutex);
1788 struct callchain_cpus_entries *callchain_cpus_entries;
1789
1790
1791 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1792 struct pt_regs *regs)
1793 {
1794 }
1795
1796 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1797 struct pt_regs *regs)
1798 {
1799 }
1800
1801 static void release_callchain_buffers_rcu(struct rcu_head *head)
1802 {
1803 struct callchain_cpus_entries *entries;
1804 int cpu;
1805
1806 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1807
1808 for_each_possible_cpu(cpu)
1809 kfree(entries->cpu_entries[cpu]);
1810
1811 kfree(entries);
1812 }
1813
1814 static void release_callchain_buffers(void)
1815 {
1816 struct callchain_cpus_entries *entries;
1817
1818 entries = callchain_cpus_entries;
1819 rcu_assign_pointer(callchain_cpus_entries, NULL);
1820 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1821 }
1822
1823 static int alloc_callchain_buffers(void)
1824 {
1825 int cpu;
1826 int size;
1827 struct callchain_cpus_entries *entries;
1828
1829 /*
1830 * We can't use the percpu allocation API for data that can be
1831 * accessed from NMI. Use a temporary manual per cpu allocation
1832 * until that gets sorted out.
1833 */
1834 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1835 num_possible_cpus();
1836
1837 entries = kzalloc(size, GFP_KERNEL);
1838 if (!entries)
1839 return -ENOMEM;
1840
1841 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842
1843 for_each_possible_cpu(cpu) {
1844 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1845 cpu_to_node(cpu));
1846 if (!entries->cpu_entries[cpu])
1847 goto fail;
1848 }
1849
1850 rcu_assign_pointer(callchain_cpus_entries, entries);
1851
1852 return 0;
1853
1854 fail:
1855 for_each_possible_cpu(cpu)
1856 kfree(entries->cpu_entries[cpu]);
1857 kfree(entries);
1858
1859 return -ENOMEM;
1860 }
1861
1862 static int get_callchain_buffers(void)
1863 {
1864 int err = 0;
1865 int count;
1866
1867 mutex_lock(&callchain_mutex);
1868
1869 count = atomic_inc_return(&nr_callchain_events);
1870 if (WARN_ON_ONCE(count < 1)) {
1871 err = -EINVAL;
1872 goto exit;
1873 }
1874
1875 if (count > 1) {
1876 /* If the allocation failed, give up */
1877 if (!callchain_cpus_entries)
1878 err = -ENOMEM;
1879 goto exit;
1880 }
1881
1882 err = alloc_callchain_buffers();
1883 if (err)
1884 release_callchain_buffers();
1885 exit:
1886 mutex_unlock(&callchain_mutex);
1887
1888 return err;
1889 }
1890
1891 static void put_callchain_buffers(void)
1892 {
1893 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1894 release_callchain_buffers();
1895 mutex_unlock(&callchain_mutex);
1896 }
1897 }
1898
1899 static int get_recursion_context(int *recursion)
1900 {
1901 int rctx;
1902
1903 if (in_nmi())
1904 rctx = 3;
1905 else if (in_irq())
1906 rctx = 2;
1907 else if (in_softirq())
1908 rctx = 1;
1909 else
1910 rctx = 0;
1911
1912 if (recursion[rctx])
1913 return -1;
1914
1915 recursion[rctx]++;
1916 barrier();
1917
1918 return rctx;
1919 }
1920
1921 static inline void put_recursion_context(int *recursion, int rctx)
1922 {
1923 barrier();
1924 recursion[rctx]--;
1925 }
1926
1927 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1928 {
1929 int cpu;
1930 struct callchain_cpus_entries *entries;
1931
1932 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1933 if (*rctx == -1)
1934 return NULL;
1935
1936 entries = rcu_dereference(callchain_cpus_entries);
1937 if (!entries)
1938 return NULL;
1939
1940 cpu = smp_processor_id();
1941
1942 return &entries->cpu_entries[cpu][*rctx];
1943 }
1944
1945 static void
1946 put_callchain_entry(int rctx)
1947 {
1948 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1949 }
1950
1951 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953 int rctx;
1954 struct perf_callchain_entry *entry;
1955
1956
1957 entry = get_callchain_entry(&rctx);
1958 if (rctx == -1)
1959 return NULL;
1960
1961 if (!entry)
1962 goto exit_put;
1963
1964 entry->nr = 0;
1965
1966 if (!user_mode(regs)) {
1967 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1968 perf_callchain_kernel(entry, regs);
1969 if (current->mm)
1970 regs = task_pt_regs(current);
1971 else
1972 regs = NULL;
1973 }
1974
1975 if (regs) {
1976 perf_callchain_store(entry, PERF_CONTEXT_USER);
1977 perf_callchain_user(entry, regs);
1978 }
1979
1980 exit_put:
1981 put_callchain_entry(rctx);
1982
1983 return entry;
1984 }
1985
1986 /*
1987 * Initialize the perf_event context in a task_struct:
1988 */
1989 static void __perf_event_init_context(struct perf_event_context *ctx)
1990 {
1991 raw_spin_lock_init(&ctx->lock);
1992 mutex_init(&ctx->mutex);
1993 INIT_LIST_HEAD(&ctx->pinned_groups);
1994 INIT_LIST_HEAD(&ctx->flexible_groups);
1995 INIT_LIST_HEAD(&ctx->event_list);
1996 atomic_set(&ctx->refcount, 1);
1997 }
1998
1999 static struct perf_event_context *
2000 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2001 {
2002 struct perf_event_context *ctx;
2003
2004 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2005 if (!ctx)
2006 return NULL;
2007
2008 __perf_event_init_context(ctx);
2009 if (task) {
2010 ctx->task = task;
2011 get_task_struct(task);
2012 }
2013 ctx->pmu = pmu;
2014
2015 return ctx;
2016 }
2017
2018 static struct perf_event_context *
2019 find_get_context(struct pmu *pmu, pid_t pid, int cpu)
2020 {
2021 struct perf_event_context *ctx;
2022 struct perf_cpu_context *cpuctx;
2023 struct task_struct *task;
2024 unsigned long flags;
2025 int ctxn, err;
2026
2027 if (pid == -1 && cpu != -1) {
2028 /* Must be root to operate on a CPU event: */
2029 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2030 return ERR_PTR(-EACCES);
2031
2032 if (cpu < 0 || cpu >= nr_cpumask_bits)
2033 return ERR_PTR(-EINVAL);
2034
2035 /*
2036 * We could be clever and allow to attach a event to an
2037 * offline CPU and activate it when the CPU comes up, but
2038 * that's for later.
2039 */
2040 if (!cpu_online(cpu))
2041 return ERR_PTR(-ENODEV);
2042
2043 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2044 ctx = &cpuctx->ctx;
2045 get_ctx(ctx);
2046
2047 return ctx;
2048 }
2049
2050 rcu_read_lock();
2051 if (!pid)
2052 task = current;
2053 else
2054 task = find_task_by_vpid(pid);
2055 if (task)
2056 get_task_struct(task);
2057 rcu_read_unlock();
2058
2059 if (!task)
2060 return ERR_PTR(-ESRCH);
2061
2062 /*
2063 * Can't attach events to a dying task.
2064 */
2065 err = -ESRCH;
2066 if (task->flags & PF_EXITING)
2067 goto errout;
2068
2069 /* Reuse ptrace permission checks for now. */
2070 err = -EACCES;
2071 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2072 goto errout;
2073
2074 err = -EINVAL;
2075 ctxn = pmu->task_ctx_nr;
2076 if (ctxn < 0)
2077 goto errout;
2078
2079 retry:
2080 ctx = perf_lock_task_context(task, ctxn, &flags);
2081 if (ctx) {
2082 unclone_ctx(ctx);
2083 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2084 }
2085
2086 if (!ctx) {
2087 ctx = alloc_perf_context(pmu, task);
2088 err = -ENOMEM;
2089 if (!ctx)
2090 goto errout;
2091
2092 get_ctx(ctx);
2093
2094 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2095 /*
2096 * We raced with some other task; use
2097 * the context they set.
2098 */
2099 put_task_struct(task);
2100 kfree(ctx);
2101 goto retry;
2102 }
2103 }
2104
2105 put_task_struct(task);
2106 return ctx;
2107
2108 errout:
2109 put_task_struct(task);
2110 return ERR_PTR(err);
2111 }
2112
2113 static void perf_event_free_filter(struct perf_event *event);
2114
2115 static void free_event_rcu(struct rcu_head *head)
2116 {
2117 struct perf_event *event;
2118
2119 event = container_of(head, struct perf_event, rcu_head);
2120 if (event->ns)
2121 put_pid_ns(event->ns);
2122 perf_event_free_filter(event);
2123 kfree(event);
2124 }
2125
2126 static void perf_pending_sync(struct perf_event *event);
2127 static void perf_buffer_put(struct perf_buffer *buffer);
2128
2129 static void free_event(struct perf_event *event)
2130 {
2131 perf_pending_sync(event);
2132
2133 if (!event->parent) {
2134 atomic_dec(&nr_events);
2135 if (event->attr.mmap || event->attr.mmap_data)
2136 atomic_dec(&nr_mmap_events);
2137 if (event->attr.comm)
2138 atomic_dec(&nr_comm_events);
2139 if (event->attr.task)
2140 atomic_dec(&nr_task_events);
2141 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2142 put_callchain_buffers();
2143 }
2144
2145 if (event->buffer) {
2146 perf_buffer_put(event->buffer);
2147 event->buffer = NULL;
2148 }
2149
2150 if (event->destroy)
2151 event->destroy(event);
2152
2153 if (event->ctx)
2154 put_ctx(event->ctx);
2155
2156 call_rcu(&event->rcu_head, free_event_rcu);
2157 }
2158
2159 int perf_event_release_kernel(struct perf_event *event)
2160 {
2161 struct perf_event_context *ctx = event->ctx;
2162
2163 /*
2164 * Remove from the PMU, can't get re-enabled since we got
2165 * here because the last ref went.
2166 */
2167 perf_event_disable(event);
2168
2169 WARN_ON_ONCE(ctx->parent_ctx);
2170 /*
2171 * There are two ways this annotation is useful:
2172 *
2173 * 1) there is a lock recursion from perf_event_exit_task
2174 * see the comment there.
2175 *
2176 * 2) there is a lock-inversion with mmap_sem through
2177 * perf_event_read_group(), which takes faults while
2178 * holding ctx->mutex, however this is called after
2179 * the last filedesc died, so there is no possibility
2180 * to trigger the AB-BA case.
2181 */
2182 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2183 raw_spin_lock_irq(&ctx->lock);
2184 perf_group_detach(event);
2185 list_del_event(event, ctx);
2186 raw_spin_unlock_irq(&ctx->lock);
2187 mutex_unlock(&ctx->mutex);
2188
2189 mutex_lock(&event->owner->perf_event_mutex);
2190 list_del_init(&event->owner_entry);
2191 mutex_unlock(&event->owner->perf_event_mutex);
2192 put_task_struct(event->owner);
2193
2194 free_event(event);
2195
2196 return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2199
2200 /*
2201 * Called when the last reference to the file is gone.
2202 */
2203 static int perf_release(struct inode *inode, struct file *file)
2204 {
2205 struct perf_event *event = file->private_data;
2206
2207 file->private_data = NULL;
2208
2209 return perf_event_release_kernel(event);
2210 }
2211
2212 static int perf_event_read_size(struct perf_event *event)
2213 {
2214 int entry = sizeof(u64); /* value */
2215 int size = 0;
2216 int nr = 1;
2217
2218 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2219 size += sizeof(u64);
2220
2221 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2222 size += sizeof(u64);
2223
2224 if (event->attr.read_format & PERF_FORMAT_ID)
2225 entry += sizeof(u64);
2226
2227 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2228 nr += event->group_leader->nr_siblings;
2229 size += sizeof(u64);
2230 }
2231
2232 size += entry * nr;
2233
2234 return size;
2235 }
2236
2237 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2238 {
2239 struct perf_event *child;
2240 u64 total = 0;
2241
2242 *enabled = 0;
2243 *running = 0;
2244
2245 mutex_lock(&event->child_mutex);
2246 total += perf_event_read(event);
2247 *enabled += event->total_time_enabled +
2248 atomic64_read(&event->child_total_time_enabled);
2249 *running += event->total_time_running +
2250 atomic64_read(&event->child_total_time_running);
2251
2252 list_for_each_entry(child, &event->child_list, child_list) {
2253 total += perf_event_read(child);
2254 *enabled += child->total_time_enabled;
2255 *running += child->total_time_running;
2256 }
2257 mutex_unlock(&event->child_mutex);
2258
2259 return total;
2260 }
2261 EXPORT_SYMBOL_GPL(perf_event_read_value);
2262
2263 static int perf_event_read_group(struct perf_event *event,
2264 u64 read_format, char __user *buf)
2265 {
2266 struct perf_event *leader = event->group_leader, *sub;
2267 int n = 0, size = 0, ret = -EFAULT;
2268 struct perf_event_context *ctx = leader->ctx;
2269 u64 values[5];
2270 u64 count, enabled, running;
2271
2272 mutex_lock(&ctx->mutex);
2273 count = perf_event_read_value(leader, &enabled, &running);
2274
2275 values[n++] = 1 + leader->nr_siblings;
2276 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2277 values[n++] = enabled;
2278 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2279 values[n++] = running;
2280 values[n++] = count;
2281 if (read_format & PERF_FORMAT_ID)
2282 values[n++] = primary_event_id(leader);
2283
2284 size = n * sizeof(u64);
2285
2286 if (copy_to_user(buf, values, size))
2287 goto unlock;
2288
2289 ret = size;
2290
2291 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2292 n = 0;
2293
2294 values[n++] = perf_event_read_value(sub, &enabled, &running);
2295 if (read_format & PERF_FORMAT_ID)
2296 values[n++] = primary_event_id(sub);
2297
2298 size = n * sizeof(u64);
2299
2300 if (copy_to_user(buf + ret, values, size)) {
2301 ret = -EFAULT;
2302 goto unlock;
2303 }
2304
2305 ret += size;
2306 }
2307 unlock:
2308 mutex_unlock(&ctx->mutex);
2309
2310 return ret;
2311 }
2312
2313 static int perf_event_read_one(struct perf_event *event,
2314 u64 read_format, char __user *buf)
2315 {
2316 u64 enabled, running;
2317 u64 values[4];
2318 int n = 0;
2319
2320 values[n++] = perf_event_read_value(event, &enabled, &running);
2321 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2322 values[n++] = enabled;
2323 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2324 values[n++] = running;
2325 if (read_format & PERF_FORMAT_ID)
2326 values[n++] = primary_event_id(event);
2327
2328 if (copy_to_user(buf, values, n * sizeof(u64)))
2329 return -EFAULT;
2330
2331 return n * sizeof(u64);
2332 }
2333
2334 /*
2335 * Read the performance event - simple non blocking version for now
2336 */
2337 static ssize_t
2338 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2339 {
2340 u64 read_format = event->attr.read_format;
2341 int ret;
2342
2343 /*
2344 * Return end-of-file for a read on a event that is in
2345 * error state (i.e. because it was pinned but it couldn't be
2346 * scheduled on to the CPU at some point).
2347 */
2348 if (event->state == PERF_EVENT_STATE_ERROR)
2349 return 0;
2350
2351 if (count < perf_event_read_size(event))
2352 return -ENOSPC;
2353
2354 WARN_ON_ONCE(event->ctx->parent_ctx);
2355 if (read_format & PERF_FORMAT_GROUP)
2356 ret = perf_event_read_group(event, read_format, buf);
2357 else
2358 ret = perf_event_read_one(event, read_format, buf);
2359
2360 return ret;
2361 }
2362
2363 static ssize_t
2364 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2365 {
2366 struct perf_event *event = file->private_data;
2367
2368 return perf_read_hw(event, buf, count);
2369 }
2370
2371 static unsigned int perf_poll(struct file *file, poll_table *wait)
2372 {
2373 struct perf_event *event = file->private_data;
2374 struct perf_buffer *buffer;
2375 unsigned int events = POLL_HUP;
2376
2377 rcu_read_lock();
2378 buffer = rcu_dereference(event->buffer);
2379 if (buffer)
2380 events = atomic_xchg(&buffer->poll, 0);
2381 rcu_read_unlock();
2382
2383 poll_wait(file, &event->waitq, wait);
2384
2385 return events;
2386 }
2387
2388 static void perf_event_reset(struct perf_event *event)
2389 {
2390 (void)perf_event_read(event);
2391 local64_set(&event->count, 0);
2392 perf_event_update_userpage(event);
2393 }
2394
2395 /*
2396 * Holding the top-level event's child_mutex means that any
2397 * descendant process that has inherited this event will block
2398 * in sync_child_event if it goes to exit, thus satisfying the
2399 * task existence requirements of perf_event_enable/disable.
2400 */
2401 static void perf_event_for_each_child(struct perf_event *event,
2402 void (*func)(struct perf_event *))
2403 {
2404 struct perf_event *child;
2405
2406 WARN_ON_ONCE(event->ctx->parent_ctx);
2407 mutex_lock(&event->child_mutex);
2408 func(event);
2409 list_for_each_entry(child, &event->child_list, child_list)
2410 func(child);
2411 mutex_unlock(&event->child_mutex);
2412 }
2413
2414 static void perf_event_for_each(struct perf_event *event,
2415 void (*func)(struct perf_event *))
2416 {
2417 struct perf_event_context *ctx = event->ctx;
2418 struct perf_event *sibling;
2419
2420 WARN_ON_ONCE(ctx->parent_ctx);
2421 mutex_lock(&ctx->mutex);
2422 event = event->group_leader;
2423
2424 perf_event_for_each_child(event, func);
2425 func(event);
2426 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2427 perf_event_for_each_child(event, func);
2428 mutex_unlock(&ctx->mutex);
2429 }
2430
2431 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2432 {
2433 struct perf_event_context *ctx = event->ctx;
2434 unsigned long size;
2435 int ret = 0;
2436 u64 value;
2437
2438 if (!event->attr.sample_period)
2439 return -EINVAL;
2440
2441 size = copy_from_user(&value, arg, sizeof(value));
2442 if (size != sizeof(value))
2443 return -EFAULT;
2444
2445 if (!value)
2446 return -EINVAL;
2447
2448 raw_spin_lock_irq(&ctx->lock);
2449 if (event->attr.freq) {
2450 if (value > sysctl_perf_event_sample_rate) {
2451 ret = -EINVAL;
2452 goto unlock;
2453 }
2454
2455 event->attr.sample_freq = value;
2456 } else {
2457 event->attr.sample_period = value;
2458 event->hw.sample_period = value;
2459 }
2460 unlock:
2461 raw_spin_unlock_irq(&ctx->lock);
2462
2463 return ret;
2464 }
2465
2466 static const struct file_operations perf_fops;
2467
2468 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2469 {
2470 struct file *file;
2471
2472 file = fget_light(fd, fput_needed);
2473 if (!file)
2474 return ERR_PTR(-EBADF);
2475
2476 if (file->f_op != &perf_fops) {
2477 fput_light(file, *fput_needed);
2478 *fput_needed = 0;
2479 return ERR_PTR(-EBADF);
2480 }
2481
2482 return file->private_data;
2483 }
2484
2485 static int perf_event_set_output(struct perf_event *event,
2486 struct perf_event *output_event);
2487 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2488
2489 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2490 {
2491 struct perf_event *event = file->private_data;
2492 void (*func)(struct perf_event *);
2493 u32 flags = arg;
2494
2495 switch (cmd) {
2496 case PERF_EVENT_IOC_ENABLE:
2497 func = perf_event_enable;
2498 break;
2499 case PERF_EVENT_IOC_DISABLE:
2500 func = perf_event_disable;
2501 break;
2502 case PERF_EVENT_IOC_RESET:
2503 func = perf_event_reset;
2504 break;
2505
2506 case PERF_EVENT_IOC_REFRESH:
2507 return perf_event_refresh(event, arg);
2508
2509 case PERF_EVENT_IOC_PERIOD:
2510 return perf_event_period(event, (u64 __user *)arg);
2511
2512 case PERF_EVENT_IOC_SET_OUTPUT:
2513 {
2514 struct perf_event *output_event = NULL;
2515 int fput_needed = 0;
2516 int ret;
2517
2518 if (arg != -1) {
2519 output_event = perf_fget_light(arg, &fput_needed);
2520 if (IS_ERR(output_event))
2521 return PTR_ERR(output_event);
2522 }
2523
2524 ret = perf_event_set_output(event, output_event);
2525 if (output_event)
2526 fput_light(output_event->filp, fput_needed);
2527
2528 return ret;
2529 }
2530
2531 case PERF_EVENT_IOC_SET_FILTER:
2532 return perf_event_set_filter(event, (void __user *)arg);
2533
2534 default:
2535 return -ENOTTY;
2536 }
2537
2538 if (flags & PERF_IOC_FLAG_GROUP)
2539 perf_event_for_each(event, func);
2540 else
2541 perf_event_for_each_child(event, func);
2542
2543 return 0;
2544 }
2545
2546 int perf_event_task_enable(void)
2547 {
2548 struct perf_event *event;
2549
2550 mutex_lock(&current->perf_event_mutex);
2551 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2552 perf_event_for_each_child(event, perf_event_enable);
2553 mutex_unlock(&current->perf_event_mutex);
2554
2555 return 0;
2556 }
2557
2558 int perf_event_task_disable(void)
2559 {
2560 struct perf_event *event;
2561
2562 mutex_lock(&current->perf_event_mutex);
2563 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2564 perf_event_for_each_child(event, perf_event_disable);
2565 mutex_unlock(&current->perf_event_mutex);
2566
2567 return 0;
2568 }
2569
2570 #ifndef PERF_EVENT_INDEX_OFFSET
2571 # define PERF_EVENT_INDEX_OFFSET 0
2572 #endif
2573
2574 static int perf_event_index(struct perf_event *event)
2575 {
2576 if (event->hw.state & PERF_HES_STOPPED)
2577 return 0;
2578
2579 if (event->state != PERF_EVENT_STATE_ACTIVE)
2580 return 0;
2581
2582 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2583 }
2584
2585 /*
2586 * Callers need to ensure there can be no nesting of this function, otherwise
2587 * the seqlock logic goes bad. We can not serialize this because the arch
2588 * code calls this from NMI context.
2589 */
2590 void perf_event_update_userpage(struct perf_event *event)
2591 {
2592 struct perf_event_mmap_page *userpg;
2593 struct perf_buffer *buffer;
2594
2595 rcu_read_lock();
2596 buffer = rcu_dereference(event->buffer);
2597 if (!buffer)
2598 goto unlock;
2599
2600 userpg = buffer->user_page;
2601
2602 /*
2603 * Disable preemption so as to not let the corresponding user-space
2604 * spin too long if we get preempted.
2605 */
2606 preempt_disable();
2607 ++userpg->lock;
2608 barrier();
2609 userpg->index = perf_event_index(event);
2610 userpg->offset = perf_event_count(event);
2611 if (event->state == PERF_EVENT_STATE_ACTIVE)
2612 userpg->offset -= local64_read(&event->hw.prev_count);
2613
2614 userpg->time_enabled = event->total_time_enabled +
2615 atomic64_read(&event->child_total_time_enabled);
2616
2617 userpg->time_running = event->total_time_running +
2618 atomic64_read(&event->child_total_time_running);
2619
2620 barrier();
2621 ++userpg->lock;
2622 preempt_enable();
2623 unlock:
2624 rcu_read_unlock();
2625 }
2626
2627 static unsigned long perf_data_size(struct perf_buffer *buffer);
2628
2629 static void
2630 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2631 {
2632 long max_size = perf_data_size(buffer);
2633
2634 if (watermark)
2635 buffer->watermark = min(max_size, watermark);
2636
2637 if (!buffer->watermark)
2638 buffer->watermark = max_size / 2;
2639
2640 if (flags & PERF_BUFFER_WRITABLE)
2641 buffer->writable = 1;
2642
2643 atomic_set(&buffer->refcount, 1);
2644 }
2645
2646 #ifndef CONFIG_PERF_USE_VMALLOC
2647
2648 /*
2649 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2650 */
2651
2652 static struct page *
2653 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2654 {
2655 if (pgoff > buffer->nr_pages)
2656 return NULL;
2657
2658 if (pgoff == 0)
2659 return virt_to_page(buffer->user_page);
2660
2661 return virt_to_page(buffer->data_pages[pgoff - 1]);
2662 }
2663
2664 static void *perf_mmap_alloc_page(int cpu)
2665 {
2666 struct page *page;
2667 int node;
2668
2669 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2670 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2671 if (!page)
2672 return NULL;
2673
2674 return page_address(page);
2675 }
2676
2677 static struct perf_buffer *
2678 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2679 {
2680 struct perf_buffer *buffer;
2681 unsigned long size;
2682 int i;
2683
2684 size = sizeof(struct perf_buffer);
2685 size += nr_pages * sizeof(void *);
2686
2687 buffer = kzalloc(size, GFP_KERNEL);
2688 if (!buffer)
2689 goto fail;
2690
2691 buffer->user_page = perf_mmap_alloc_page(cpu);
2692 if (!buffer->user_page)
2693 goto fail_user_page;
2694
2695 for (i = 0; i < nr_pages; i++) {
2696 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2697 if (!buffer->data_pages[i])
2698 goto fail_data_pages;
2699 }
2700
2701 buffer->nr_pages = nr_pages;
2702
2703 perf_buffer_init(buffer, watermark, flags);
2704
2705 return buffer;
2706
2707 fail_data_pages:
2708 for (i--; i >= 0; i--)
2709 free_page((unsigned long)buffer->data_pages[i]);
2710
2711 free_page((unsigned long)buffer->user_page);
2712
2713 fail_user_page:
2714 kfree(buffer);
2715
2716 fail:
2717 return NULL;
2718 }
2719
2720 static void perf_mmap_free_page(unsigned long addr)
2721 {
2722 struct page *page = virt_to_page((void *)addr);
2723
2724 page->mapping = NULL;
2725 __free_page(page);
2726 }
2727
2728 static void perf_buffer_free(struct perf_buffer *buffer)
2729 {
2730 int i;
2731
2732 perf_mmap_free_page((unsigned long)buffer->user_page);
2733 for (i = 0; i < buffer->nr_pages; i++)
2734 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2735 kfree(buffer);
2736 }
2737
2738 static inline int page_order(struct perf_buffer *buffer)
2739 {
2740 return 0;
2741 }
2742
2743 #else
2744
2745 /*
2746 * Back perf_mmap() with vmalloc memory.
2747 *
2748 * Required for architectures that have d-cache aliasing issues.
2749 */
2750
2751 static inline int page_order(struct perf_buffer *buffer)
2752 {
2753 return buffer->page_order;
2754 }
2755
2756 static struct page *
2757 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2758 {
2759 if (pgoff > (1UL << page_order(buffer)))
2760 return NULL;
2761
2762 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2763 }
2764
2765 static void perf_mmap_unmark_page(void *addr)
2766 {
2767 struct page *page = vmalloc_to_page(addr);
2768
2769 page->mapping = NULL;
2770 }
2771
2772 static void perf_buffer_free_work(struct work_struct *work)
2773 {
2774 struct perf_buffer *buffer;
2775 void *base;
2776 int i, nr;
2777
2778 buffer = container_of(work, struct perf_buffer, work);
2779 nr = 1 << page_order(buffer);
2780
2781 base = buffer->user_page;
2782 for (i = 0; i < nr + 1; i++)
2783 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2784
2785 vfree(base);
2786 kfree(buffer);
2787 }
2788
2789 static void perf_buffer_free(struct perf_buffer *buffer)
2790 {
2791 schedule_work(&buffer->work);
2792 }
2793
2794 static struct perf_buffer *
2795 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2796 {
2797 struct perf_buffer *buffer;
2798 unsigned long size;
2799 void *all_buf;
2800
2801 size = sizeof(struct perf_buffer);
2802 size += sizeof(void *);
2803
2804 buffer = kzalloc(size, GFP_KERNEL);
2805 if (!buffer)
2806 goto fail;
2807
2808 INIT_WORK(&buffer->work, perf_buffer_free_work);
2809
2810 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2811 if (!all_buf)
2812 goto fail_all_buf;
2813
2814 buffer->user_page = all_buf;
2815 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2816 buffer->page_order = ilog2(nr_pages);
2817 buffer->nr_pages = 1;
2818
2819 perf_buffer_init(buffer, watermark, flags);
2820
2821 return buffer;
2822
2823 fail_all_buf:
2824 kfree(buffer);
2825
2826 fail:
2827 return NULL;
2828 }
2829
2830 #endif
2831
2832 static unsigned long perf_data_size(struct perf_buffer *buffer)
2833 {
2834 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2835 }
2836
2837 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2838 {
2839 struct perf_event *event = vma->vm_file->private_data;
2840 struct perf_buffer *buffer;
2841 int ret = VM_FAULT_SIGBUS;
2842
2843 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2844 if (vmf->pgoff == 0)
2845 ret = 0;
2846 return ret;
2847 }
2848
2849 rcu_read_lock();
2850 buffer = rcu_dereference(event->buffer);
2851 if (!buffer)
2852 goto unlock;
2853
2854 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2855 goto unlock;
2856
2857 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2858 if (!vmf->page)
2859 goto unlock;
2860
2861 get_page(vmf->page);
2862 vmf->page->mapping = vma->vm_file->f_mapping;
2863 vmf->page->index = vmf->pgoff;
2864
2865 ret = 0;
2866 unlock:
2867 rcu_read_unlock();
2868
2869 return ret;
2870 }
2871
2872 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2873 {
2874 struct perf_buffer *buffer;
2875
2876 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2877 perf_buffer_free(buffer);
2878 }
2879
2880 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2881 {
2882 struct perf_buffer *buffer;
2883
2884 rcu_read_lock();
2885 buffer = rcu_dereference(event->buffer);
2886 if (buffer) {
2887 if (!atomic_inc_not_zero(&buffer->refcount))
2888 buffer = NULL;
2889 }
2890 rcu_read_unlock();
2891
2892 return buffer;
2893 }
2894
2895 static void perf_buffer_put(struct perf_buffer *buffer)
2896 {
2897 if (!atomic_dec_and_test(&buffer->refcount))
2898 return;
2899
2900 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2901 }
2902
2903 static void perf_mmap_open(struct vm_area_struct *vma)
2904 {
2905 struct perf_event *event = vma->vm_file->private_data;
2906
2907 atomic_inc(&event->mmap_count);
2908 }
2909
2910 static void perf_mmap_close(struct vm_area_struct *vma)
2911 {
2912 struct perf_event *event = vma->vm_file->private_data;
2913
2914 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2915 unsigned long size = perf_data_size(event->buffer);
2916 struct user_struct *user = event->mmap_user;
2917 struct perf_buffer *buffer = event->buffer;
2918
2919 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2920 vma->vm_mm->locked_vm -= event->mmap_locked;
2921 rcu_assign_pointer(event->buffer, NULL);
2922 mutex_unlock(&event->mmap_mutex);
2923
2924 perf_buffer_put(buffer);
2925 free_uid(user);
2926 }
2927 }
2928
2929 static const struct vm_operations_struct perf_mmap_vmops = {
2930 .open = perf_mmap_open,
2931 .close = perf_mmap_close,
2932 .fault = perf_mmap_fault,
2933 .page_mkwrite = perf_mmap_fault,
2934 };
2935
2936 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2937 {
2938 struct perf_event *event = file->private_data;
2939 unsigned long user_locked, user_lock_limit;
2940 struct user_struct *user = current_user();
2941 unsigned long locked, lock_limit;
2942 struct perf_buffer *buffer;
2943 unsigned long vma_size;
2944 unsigned long nr_pages;
2945 long user_extra, extra;
2946 int ret = 0, flags = 0;
2947
2948 /*
2949 * Don't allow mmap() of inherited per-task counters. This would
2950 * create a performance issue due to all children writing to the
2951 * same buffer.
2952 */
2953 if (event->cpu == -1 && event->attr.inherit)
2954 return -EINVAL;
2955
2956 if (!(vma->vm_flags & VM_SHARED))
2957 return -EINVAL;
2958
2959 vma_size = vma->vm_end - vma->vm_start;
2960 nr_pages = (vma_size / PAGE_SIZE) - 1;
2961
2962 /*
2963 * If we have buffer pages ensure they're a power-of-two number, so we
2964 * can do bitmasks instead of modulo.
2965 */
2966 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2967 return -EINVAL;
2968
2969 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2970 return -EINVAL;
2971
2972 if (vma->vm_pgoff != 0)
2973 return -EINVAL;
2974
2975 WARN_ON_ONCE(event->ctx->parent_ctx);
2976 mutex_lock(&event->mmap_mutex);
2977 if (event->buffer) {
2978 if (event->buffer->nr_pages == nr_pages)
2979 atomic_inc(&event->buffer->refcount);
2980 else
2981 ret = -EINVAL;
2982 goto unlock;
2983 }
2984
2985 user_extra = nr_pages + 1;
2986 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2987
2988 /*
2989 * Increase the limit linearly with more CPUs:
2990 */
2991 user_lock_limit *= num_online_cpus();
2992
2993 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2994
2995 extra = 0;
2996 if (user_locked > user_lock_limit)
2997 extra = user_locked - user_lock_limit;
2998
2999 lock_limit = rlimit(RLIMIT_MEMLOCK);
3000 lock_limit >>= PAGE_SHIFT;
3001 locked = vma->vm_mm->locked_vm + extra;
3002
3003 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3004 !capable(CAP_IPC_LOCK)) {
3005 ret = -EPERM;
3006 goto unlock;
3007 }
3008
3009 WARN_ON(event->buffer);
3010
3011 if (vma->vm_flags & VM_WRITE)
3012 flags |= PERF_BUFFER_WRITABLE;
3013
3014 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3015 event->cpu, flags);
3016 if (!buffer) {
3017 ret = -ENOMEM;
3018 goto unlock;
3019 }
3020 rcu_assign_pointer(event->buffer, buffer);
3021
3022 atomic_long_add(user_extra, &user->locked_vm);
3023 event->mmap_locked = extra;
3024 event->mmap_user = get_current_user();
3025 vma->vm_mm->locked_vm += event->mmap_locked;
3026
3027 unlock:
3028 if (!ret)
3029 atomic_inc(&event->mmap_count);
3030 mutex_unlock(&event->mmap_mutex);
3031
3032 vma->vm_flags |= VM_RESERVED;
3033 vma->vm_ops = &perf_mmap_vmops;
3034
3035 return ret;
3036 }
3037
3038 static int perf_fasync(int fd, struct file *filp, int on)
3039 {
3040 struct inode *inode = filp->f_path.dentry->d_inode;
3041 struct perf_event *event = filp->private_data;
3042 int retval;
3043
3044 mutex_lock(&inode->i_mutex);
3045 retval = fasync_helper(fd, filp, on, &event->fasync);
3046 mutex_unlock(&inode->i_mutex);
3047
3048 if (retval < 0)
3049 return retval;
3050
3051 return 0;
3052 }
3053
3054 static const struct file_operations perf_fops = {
3055 .llseek = no_llseek,
3056 .release = perf_release,
3057 .read = perf_read,
3058 .poll = perf_poll,
3059 .unlocked_ioctl = perf_ioctl,
3060 .compat_ioctl = perf_ioctl,
3061 .mmap = perf_mmap,
3062 .fasync = perf_fasync,
3063 };
3064
3065 /*
3066 * Perf event wakeup
3067 *
3068 * If there's data, ensure we set the poll() state and publish everything
3069 * to user-space before waking everybody up.
3070 */
3071
3072 void perf_event_wakeup(struct perf_event *event)
3073 {
3074 wake_up_all(&event->waitq);
3075
3076 if (event->pending_kill) {
3077 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3078 event->pending_kill = 0;
3079 }
3080 }
3081
3082 /*
3083 * Pending wakeups
3084 *
3085 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3086 *
3087 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3088 * single linked list and use cmpxchg() to add entries lockless.
3089 */
3090
3091 static void perf_pending_event(struct perf_pending_entry *entry)
3092 {
3093 struct perf_event *event = container_of(entry,
3094 struct perf_event, pending);
3095
3096 if (event->pending_disable) {
3097 event->pending_disable = 0;
3098 __perf_event_disable(event);
3099 }
3100
3101 if (event->pending_wakeup) {
3102 event->pending_wakeup = 0;
3103 perf_event_wakeup(event);
3104 }
3105 }
3106
3107 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3108
3109 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3110 PENDING_TAIL,
3111 };
3112
3113 static void perf_pending_queue(struct perf_pending_entry *entry,
3114 void (*func)(struct perf_pending_entry *))
3115 {
3116 struct perf_pending_entry **head;
3117
3118 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3119 return;
3120
3121 entry->func = func;
3122
3123 head = &get_cpu_var(perf_pending_head);
3124
3125 do {
3126 entry->next = *head;
3127 } while (cmpxchg(head, entry->next, entry) != entry->next);
3128
3129 set_perf_event_pending();
3130
3131 put_cpu_var(perf_pending_head);
3132 }
3133
3134 static int __perf_pending_run(void)
3135 {
3136 struct perf_pending_entry *list;
3137 int nr = 0;
3138
3139 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3140 while (list != PENDING_TAIL) {
3141 void (*func)(struct perf_pending_entry *);
3142 struct perf_pending_entry *entry = list;
3143
3144 list = list->next;
3145
3146 func = entry->func;
3147 entry->next = NULL;
3148 /*
3149 * Ensure we observe the unqueue before we issue the wakeup,
3150 * so that we won't be waiting forever.
3151 * -- see perf_not_pending().
3152 */
3153 smp_wmb();
3154
3155 func(entry);
3156 nr++;
3157 }
3158
3159 return nr;
3160 }
3161
3162 static inline int perf_not_pending(struct perf_event *event)
3163 {
3164 /*
3165 * If we flush on whatever cpu we run, there is a chance we don't
3166 * need to wait.
3167 */
3168 get_cpu();
3169 __perf_pending_run();
3170 put_cpu();
3171
3172 /*
3173 * Ensure we see the proper queue state before going to sleep
3174 * so that we do not miss the wakeup. -- see perf_pending_handle()
3175 */
3176 smp_rmb();
3177 return event->pending.next == NULL;
3178 }
3179
3180 static void perf_pending_sync(struct perf_event *event)
3181 {
3182 wait_event(event->waitq, perf_not_pending(event));
3183 }
3184
3185 void perf_event_do_pending(void)
3186 {
3187 __perf_pending_run();
3188 }
3189
3190 /*
3191 * We assume there is only KVM supporting the callbacks.
3192 * Later on, we might change it to a list if there is
3193 * another virtualization implementation supporting the callbacks.
3194 */
3195 struct perf_guest_info_callbacks *perf_guest_cbs;
3196
3197 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3198 {
3199 perf_guest_cbs = cbs;
3200 return 0;
3201 }
3202 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3203
3204 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3205 {
3206 perf_guest_cbs = NULL;
3207 return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3210
3211 /*
3212 * Output
3213 */
3214 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3215 unsigned long offset, unsigned long head)
3216 {
3217 unsigned long mask;
3218
3219 if (!buffer->writable)
3220 return true;
3221
3222 mask = perf_data_size(buffer) - 1;
3223
3224 offset = (offset - tail) & mask;
3225 head = (head - tail) & mask;
3226
3227 if ((int)(head - offset) < 0)
3228 return false;
3229
3230 return true;
3231 }
3232
3233 static void perf_output_wakeup(struct perf_output_handle *handle)
3234 {
3235 atomic_set(&handle->buffer->poll, POLL_IN);
3236
3237 if (handle->nmi) {
3238 handle->event->pending_wakeup = 1;
3239 perf_pending_queue(&handle->event->pending,
3240 perf_pending_event);
3241 } else
3242 perf_event_wakeup(handle->event);
3243 }
3244
3245 /*
3246 * We need to ensure a later event_id doesn't publish a head when a former
3247 * event isn't done writing. However since we need to deal with NMIs we
3248 * cannot fully serialize things.
3249 *
3250 * We only publish the head (and generate a wakeup) when the outer-most
3251 * event completes.
3252 */
3253 static void perf_output_get_handle(struct perf_output_handle *handle)
3254 {
3255 struct perf_buffer *buffer = handle->buffer;
3256
3257 preempt_disable();
3258 local_inc(&buffer->nest);
3259 handle->wakeup = local_read(&buffer->wakeup);
3260 }
3261
3262 static void perf_output_put_handle(struct perf_output_handle *handle)
3263 {
3264 struct perf_buffer *buffer = handle->buffer;
3265 unsigned long head;
3266
3267 again:
3268 head = local_read(&buffer->head);
3269
3270 /*
3271 * IRQ/NMI can happen here, which means we can miss a head update.
3272 */
3273
3274 if (!local_dec_and_test(&buffer->nest))
3275 goto out;
3276
3277 /*
3278 * Publish the known good head. Rely on the full barrier implied
3279 * by atomic_dec_and_test() order the buffer->head read and this
3280 * write.
3281 */
3282 buffer->user_page->data_head = head;
3283
3284 /*
3285 * Now check if we missed an update, rely on the (compiler)
3286 * barrier in atomic_dec_and_test() to re-read buffer->head.
3287 */
3288 if (unlikely(head != local_read(&buffer->head))) {
3289 local_inc(&buffer->nest);
3290 goto again;
3291 }
3292
3293 if (handle->wakeup != local_read(&buffer->wakeup))
3294 perf_output_wakeup(handle);
3295
3296 out:
3297 preempt_enable();
3298 }
3299
3300 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3301 const void *buf, unsigned int len)
3302 {
3303 do {
3304 unsigned long size = min_t(unsigned long, handle->size, len);
3305
3306 memcpy(handle->addr, buf, size);
3307
3308 len -= size;
3309 handle->addr += size;
3310 buf += size;
3311 handle->size -= size;
3312 if (!handle->size) {
3313 struct perf_buffer *buffer = handle->buffer;
3314
3315 handle->page++;
3316 handle->page &= buffer->nr_pages - 1;
3317 handle->addr = buffer->data_pages[handle->page];
3318 handle->size = PAGE_SIZE << page_order(buffer);
3319 }
3320 } while (len);
3321 }
3322
3323 int perf_output_begin(struct perf_output_handle *handle,
3324 struct perf_event *event, unsigned int size,
3325 int nmi, int sample)
3326 {
3327 struct perf_buffer *buffer;
3328 unsigned long tail, offset, head;
3329 int have_lost;
3330 struct {
3331 struct perf_event_header header;
3332 u64 id;
3333 u64 lost;
3334 } lost_event;
3335
3336 rcu_read_lock();
3337 /*
3338 * For inherited events we send all the output towards the parent.
3339 */
3340 if (event->parent)
3341 event = event->parent;
3342
3343 buffer = rcu_dereference(event->buffer);
3344 if (!buffer)
3345 goto out;
3346
3347 handle->buffer = buffer;
3348 handle->event = event;
3349 handle->nmi = nmi;
3350 handle->sample = sample;
3351
3352 if (!buffer->nr_pages)
3353 goto out;
3354
3355 have_lost = local_read(&buffer->lost);
3356 if (have_lost)
3357 size += sizeof(lost_event);
3358
3359 perf_output_get_handle(handle);
3360
3361 do {
3362 /*
3363 * Userspace could choose to issue a mb() before updating the
3364 * tail pointer. So that all reads will be completed before the
3365 * write is issued.
3366 */
3367 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3368 smp_rmb();
3369 offset = head = local_read(&buffer->head);
3370 head += size;
3371 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3372 goto fail;
3373 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3374
3375 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3376 local_add(buffer->watermark, &buffer->wakeup);
3377
3378 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3379 handle->page &= buffer->nr_pages - 1;
3380 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3381 handle->addr = buffer->data_pages[handle->page];
3382 handle->addr += handle->size;
3383 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3384
3385 if (have_lost) {
3386 lost_event.header.type = PERF_RECORD_LOST;
3387 lost_event.header.misc = 0;
3388 lost_event.header.size = sizeof(lost_event);
3389 lost_event.id = event->id;
3390 lost_event.lost = local_xchg(&buffer->lost, 0);
3391
3392 perf_output_put(handle, lost_event);
3393 }
3394
3395 return 0;
3396
3397 fail:
3398 local_inc(&buffer->lost);
3399 perf_output_put_handle(handle);
3400 out:
3401 rcu_read_unlock();
3402
3403 return -ENOSPC;
3404 }
3405
3406 void perf_output_end(struct perf_output_handle *handle)
3407 {
3408 struct perf_event *event = handle->event;
3409 struct perf_buffer *buffer = handle->buffer;
3410
3411 int wakeup_events = event->attr.wakeup_events;
3412
3413 if (handle->sample && wakeup_events) {
3414 int events = local_inc_return(&buffer->events);
3415 if (events >= wakeup_events) {
3416 local_sub(wakeup_events, &buffer->events);
3417 local_inc(&buffer->wakeup);
3418 }
3419 }
3420
3421 perf_output_put_handle(handle);
3422 rcu_read_unlock();
3423 }
3424
3425 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3426 {
3427 /*
3428 * only top level events have the pid namespace they were created in
3429 */
3430 if (event->parent)
3431 event = event->parent;
3432
3433 return task_tgid_nr_ns(p, event->ns);
3434 }
3435
3436 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3437 {
3438 /*
3439 * only top level events have the pid namespace they were created in
3440 */
3441 if (event->parent)
3442 event = event->parent;
3443
3444 return task_pid_nr_ns(p, event->ns);
3445 }
3446
3447 static void perf_output_read_one(struct perf_output_handle *handle,
3448 struct perf_event *event)
3449 {
3450 u64 read_format = event->attr.read_format;
3451 u64 values[4];
3452 int n = 0;
3453
3454 values[n++] = perf_event_count(event);
3455 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3456 values[n++] = event->total_time_enabled +
3457 atomic64_read(&event->child_total_time_enabled);
3458 }
3459 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3460 values[n++] = event->total_time_running +
3461 atomic64_read(&event->child_total_time_running);
3462 }
3463 if (read_format & PERF_FORMAT_ID)
3464 values[n++] = primary_event_id(event);
3465
3466 perf_output_copy(handle, values, n * sizeof(u64));
3467 }
3468
3469 /*
3470 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3471 */
3472 static void perf_output_read_group(struct perf_output_handle *handle,
3473 struct perf_event *event)
3474 {
3475 struct perf_event *leader = event->group_leader, *sub;
3476 u64 read_format = event->attr.read_format;
3477 u64 values[5];
3478 int n = 0;
3479
3480 values[n++] = 1 + leader->nr_siblings;
3481
3482 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3483 values[n++] = leader->total_time_enabled;
3484
3485 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3486 values[n++] = leader->total_time_running;
3487
3488 if (leader != event)
3489 leader->pmu->read(leader);
3490
3491 values[n++] = perf_event_count(leader);
3492 if (read_format & PERF_FORMAT_ID)
3493 values[n++] = primary_event_id(leader);
3494
3495 perf_output_copy(handle, values, n * sizeof(u64));
3496
3497 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3498 n = 0;
3499
3500 if (sub != event)
3501 sub->pmu->read(sub);
3502
3503 values[n++] = perf_event_count(sub);
3504 if (read_format & PERF_FORMAT_ID)
3505 values[n++] = primary_event_id(sub);
3506
3507 perf_output_copy(handle, values, n * sizeof(u64));
3508 }
3509 }
3510
3511 static void perf_output_read(struct perf_output_handle *handle,
3512 struct perf_event *event)
3513 {
3514 if (event->attr.read_format & PERF_FORMAT_GROUP)
3515 perf_output_read_group(handle, event);
3516 else
3517 perf_output_read_one(handle, event);
3518 }
3519
3520 void perf_output_sample(struct perf_output_handle *handle,
3521 struct perf_event_header *header,
3522 struct perf_sample_data *data,
3523 struct perf_event *event)
3524 {
3525 u64 sample_type = data->type;
3526
3527 perf_output_put(handle, *header);
3528
3529 if (sample_type & PERF_SAMPLE_IP)
3530 perf_output_put(handle, data->ip);
3531
3532 if (sample_type & PERF_SAMPLE_TID)
3533 perf_output_put(handle, data->tid_entry);
3534
3535 if (sample_type & PERF_SAMPLE_TIME)
3536 perf_output_put(handle, data->time);
3537
3538 if (sample_type & PERF_SAMPLE_ADDR)
3539 perf_output_put(handle, data->addr);
3540
3541 if (sample_type & PERF_SAMPLE_ID)
3542 perf_output_put(handle, data->id);
3543
3544 if (sample_type & PERF_SAMPLE_STREAM_ID)
3545 perf_output_put(handle, data->stream_id);
3546
3547 if (sample_type & PERF_SAMPLE_CPU)
3548 perf_output_put(handle, data->cpu_entry);
3549
3550 if (sample_type & PERF_SAMPLE_PERIOD)
3551 perf_output_put(handle, data->period);
3552
3553 if (sample_type & PERF_SAMPLE_READ)
3554 perf_output_read(handle, event);
3555
3556 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3557 if (data->callchain) {
3558 int size = 1;
3559
3560 if (data->callchain)
3561 size += data->callchain->nr;
3562
3563 size *= sizeof(u64);
3564
3565 perf_output_copy(handle, data->callchain, size);
3566 } else {
3567 u64 nr = 0;
3568 perf_output_put(handle, nr);
3569 }
3570 }
3571
3572 if (sample_type & PERF_SAMPLE_RAW) {
3573 if (data->raw) {
3574 perf_output_put(handle, data->raw->size);
3575 perf_output_copy(handle, data->raw->data,
3576 data->raw->size);
3577 } else {
3578 struct {
3579 u32 size;
3580 u32 data;
3581 } raw = {
3582 .size = sizeof(u32),
3583 .data = 0,
3584 };
3585 perf_output_put(handle, raw);
3586 }
3587 }
3588 }
3589
3590 void perf_prepare_sample(struct perf_event_header *header,
3591 struct perf_sample_data *data,
3592 struct perf_event *event,
3593 struct pt_regs *regs)
3594 {
3595 u64 sample_type = event->attr.sample_type;
3596
3597 data->type = sample_type;
3598
3599 header->type = PERF_RECORD_SAMPLE;
3600 header->size = sizeof(*header);
3601
3602 header->misc = 0;
3603 header->misc |= perf_misc_flags(regs);
3604
3605 if (sample_type & PERF_SAMPLE_IP) {
3606 data->ip = perf_instruction_pointer(regs);
3607
3608 header->size += sizeof(data->ip);
3609 }
3610
3611 if (sample_type & PERF_SAMPLE_TID) {
3612 /* namespace issues */
3613 data->tid_entry.pid = perf_event_pid(event, current);
3614 data->tid_entry.tid = perf_event_tid(event, current);
3615
3616 header->size += sizeof(data->tid_entry);
3617 }
3618
3619 if (sample_type & PERF_SAMPLE_TIME) {
3620 data->time = perf_clock();
3621
3622 header->size += sizeof(data->time);
3623 }
3624
3625 if (sample_type & PERF_SAMPLE_ADDR)
3626 header->size += sizeof(data->addr);
3627
3628 if (sample_type & PERF_SAMPLE_ID) {
3629 data->id = primary_event_id(event);
3630
3631 header->size += sizeof(data->id);
3632 }
3633
3634 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3635 data->stream_id = event->id;
3636
3637 header->size += sizeof(data->stream_id);
3638 }
3639
3640 if (sample_type & PERF_SAMPLE_CPU) {
3641 data->cpu_entry.cpu = raw_smp_processor_id();
3642 data->cpu_entry.reserved = 0;
3643
3644 header->size += sizeof(data->cpu_entry);
3645 }
3646
3647 if (sample_type & PERF_SAMPLE_PERIOD)
3648 header->size += sizeof(data->period);
3649
3650 if (sample_type & PERF_SAMPLE_READ)
3651 header->size += perf_event_read_size(event);
3652
3653 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3654 int size = 1;
3655
3656 data->callchain = perf_callchain(regs);
3657
3658 if (data->callchain)
3659 size += data->callchain->nr;
3660
3661 header->size += size * sizeof(u64);
3662 }
3663
3664 if (sample_type & PERF_SAMPLE_RAW) {
3665 int size = sizeof(u32);
3666
3667 if (data->raw)
3668 size += data->raw->size;
3669 else
3670 size += sizeof(u32);
3671
3672 WARN_ON_ONCE(size & (sizeof(u64)-1));
3673 header->size += size;
3674 }
3675 }
3676
3677 static void perf_event_output(struct perf_event *event, int nmi,
3678 struct perf_sample_data *data,
3679 struct pt_regs *regs)
3680 {
3681 struct perf_output_handle handle;
3682 struct perf_event_header header;
3683
3684 /* protect the callchain buffers */
3685 rcu_read_lock();
3686
3687 perf_prepare_sample(&header, data, event, regs);
3688
3689 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3690 goto exit;
3691
3692 perf_output_sample(&handle, &header, data, event);
3693
3694 perf_output_end(&handle);
3695
3696 exit:
3697 rcu_read_unlock();
3698 }
3699
3700 /*
3701 * read event_id
3702 */
3703
3704 struct perf_read_event {
3705 struct perf_event_header header;
3706
3707 u32 pid;
3708 u32 tid;
3709 };
3710
3711 static void
3712 perf_event_read_event(struct perf_event *event,
3713 struct task_struct *task)
3714 {
3715 struct perf_output_handle handle;
3716 struct perf_read_event read_event = {
3717 .header = {
3718 .type = PERF_RECORD_READ,
3719 .misc = 0,
3720 .size = sizeof(read_event) + perf_event_read_size(event),
3721 },
3722 .pid = perf_event_pid(event, task),
3723 .tid = perf_event_tid(event, task),
3724 };
3725 int ret;
3726
3727 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3728 if (ret)
3729 return;
3730
3731 perf_output_put(&handle, read_event);
3732 perf_output_read(&handle, event);
3733
3734 perf_output_end(&handle);
3735 }
3736
3737 /*
3738 * task tracking -- fork/exit
3739 *
3740 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3741 */
3742
3743 struct perf_task_event {
3744 struct task_struct *task;
3745 struct perf_event_context *task_ctx;
3746
3747 struct {
3748 struct perf_event_header header;
3749
3750 u32 pid;
3751 u32 ppid;
3752 u32 tid;
3753 u32 ptid;
3754 u64 time;
3755 } event_id;
3756 };
3757
3758 static void perf_event_task_output(struct perf_event *event,
3759 struct perf_task_event *task_event)
3760 {
3761 struct perf_output_handle handle;
3762 struct task_struct *task = task_event->task;
3763 int size, ret;
3764
3765 size = task_event->event_id.header.size;
3766 ret = perf_output_begin(&handle, event, size, 0, 0);
3767
3768 if (ret)
3769 return;
3770
3771 task_event->event_id.pid = perf_event_pid(event, task);
3772 task_event->event_id.ppid = perf_event_pid(event, current);
3773
3774 task_event->event_id.tid = perf_event_tid(event, task);
3775 task_event->event_id.ptid = perf_event_tid(event, current);
3776
3777 perf_output_put(&handle, task_event->event_id);
3778
3779 perf_output_end(&handle);
3780 }
3781
3782 static int perf_event_task_match(struct perf_event *event)
3783 {
3784 if (event->state < PERF_EVENT_STATE_INACTIVE)
3785 return 0;
3786
3787 if (event->cpu != -1 && event->cpu != smp_processor_id())
3788 return 0;
3789
3790 if (event->attr.comm || event->attr.mmap ||
3791 event->attr.mmap_data || event->attr.task)
3792 return 1;
3793
3794 return 0;
3795 }
3796
3797 static void perf_event_task_ctx(struct perf_event_context *ctx,
3798 struct perf_task_event *task_event)
3799 {
3800 struct perf_event *event;
3801
3802 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3803 if (perf_event_task_match(event))
3804 perf_event_task_output(event, task_event);
3805 }
3806 }
3807
3808 static void perf_event_task_event(struct perf_task_event *task_event)
3809 {
3810 struct perf_cpu_context *cpuctx;
3811 struct perf_event_context *ctx;
3812 struct pmu *pmu;
3813 int ctxn;
3814
3815 rcu_read_lock();
3816 list_for_each_entry_rcu(pmu, &pmus, entry) {
3817 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3818 perf_event_task_ctx(&cpuctx->ctx, task_event);
3819
3820 ctx = task_event->task_ctx;
3821 if (!ctx) {
3822 ctxn = pmu->task_ctx_nr;
3823 if (ctxn < 0)
3824 continue;
3825 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3826 }
3827 if (ctx)
3828 perf_event_task_ctx(ctx, task_event);
3829 }
3830 rcu_read_unlock();
3831 }
3832
3833 static void perf_event_task(struct task_struct *task,
3834 struct perf_event_context *task_ctx,
3835 int new)
3836 {
3837 struct perf_task_event task_event;
3838
3839 if (!atomic_read(&nr_comm_events) &&
3840 !atomic_read(&nr_mmap_events) &&
3841 !atomic_read(&nr_task_events))
3842 return;
3843
3844 task_event = (struct perf_task_event){
3845 .task = task,
3846 .task_ctx = task_ctx,
3847 .event_id = {
3848 .header = {
3849 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3850 .misc = 0,
3851 .size = sizeof(task_event.event_id),
3852 },
3853 /* .pid */
3854 /* .ppid */
3855 /* .tid */
3856 /* .ptid */
3857 .time = perf_clock(),
3858 },
3859 };
3860
3861 perf_event_task_event(&task_event);
3862 }
3863
3864 void perf_event_fork(struct task_struct *task)
3865 {
3866 perf_event_task(task, NULL, 1);
3867 }
3868
3869 /*
3870 * comm tracking
3871 */
3872
3873 struct perf_comm_event {
3874 struct task_struct *task;
3875 char *comm;
3876 int comm_size;
3877
3878 struct {
3879 struct perf_event_header header;
3880
3881 u32 pid;
3882 u32 tid;
3883 } event_id;
3884 };
3885
3886 static void perf_event_comm_output(struct perf_event *event,
3887 struct perf_comm_event *comm_event)
3888 {
3889 struct perf_output_handle handle;
3890 int size = comm_event->event_id.header.size;
3891 int ret = perf_output_begin(&handle, event, size, 0, 0);
3892
3893 if (ret)
3894 return;
3895
3896 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3897 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3898
3899 perf_output_put(&handle, comm_event->event_id);
3900 perf_output_copy(&handle, comm_event->comm,
3901 comm_event->comm_size);
3902 perf_output_end(&handle);
3903 }
3904
3905 static int perf_event_comm_match(struct perf_event *event)
3906 {
3907 if (event->state < PERF_EVENT_STATE_INACTIVE)
3908 return 0;
3909
3910 if (event->cpu != -1 && event->cpu != smp_processor_id())
3911 return 0;
3912
3913 if (event->attr.comm)
3914 return 1;
3915
3916 return 0;
3917 }
3918
3919 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3920 struct perf_comm_event *comm_event)
3921 {
3922 struct perf_event *event;
3923
3924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3925 if (perf_event_comm_match(event))
3926 perf_event_comm_output(event, comm_event);
3927 }
3928 }
3929
3930 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3931 {
3932 struct perf_cpu_context *cpuctx;
3933 struct perf_event_context *ctx;
3934 char comm[TASK_COMM_LEN];
3935 unsigned int size;
3936 struct pmu *pmu;
3937 int ctxn;
3938
3939 memset(comm, 0, sizeof(comm));
3940 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3941 size = ALIGN(strlen(comm)+1, sizeof(u64));
3942
3943 comm_event->comm = comm;
3944 comm_event->comm_size = size;
3945
3946 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3947
3948 rcu_read_lock();
3949 list_for_each_entry_rcu(pmu, &pmus, entry) {
3950 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3951 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3952
3953 ctxn = pmu->task_ctx_nr;
3954 if (ctxn < 0)
3955 continue;
3956
3957 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3958 if (ctx)
3959 perf_event_comm_ctx(ctx, comm_event);
3960 }
3961 rcu_read_unlock();
3962 }
3963
3964 void perf_event_comm(struct task_struct *task)
3965 {
3966 struct perf_comm_event comm_event;
3967 struct perf_event_context *ctx;
3968 int ctxn;
3969
3970 for_each_task_context_nr(ctxn) {
3971 ctx = task->perf_event_ctxp[ctxn];
3972 if (!ctx)
3973 continue;
3974
3975 perf_event_enable_on_exec(ctx);
3976 }
3977
3978 if (!atomic_read(&nr_comm_events))
3979 return;
3980
3981 comm_event = (struct perf_comm_event){
3982 .task = task,
3983 /* .comm */
3984 /* .comm_size */
3985 .event_id = {
3986 .header = {
3987 .type = PERF_RECORD_COMM,
3988 .misc = 0,
3989 /* .size */
3990 },
3991 /* .pid */
3992 /* .tid */
3993 },
3994 };
3995
3996 perf_event_comm_event(&comm_event);
3997 }
3998
3999 /*
4000 * mmap tracking
4001 */
4002
4003 struct perf_mmap_event {
4004 struct vm_area_struct *vma;
4005
4006 const char *file_name;
4007 int file_size;
4008
4009 struct {
4010 struct perf_event_header header;
4011
4012 u32 pid;
4013 u32 tid;
4014 u64 start;
4015 u64 len;
4016 u64 pgoff;
4017 } event_id;
4018 };
4019
4020 static void perf_event_mmap_output(struct perf_event *event,
4021 struct perf_mmap_event *mmap_event)
4022 {
4023 struct perf_output_handle handle;
4024 int size = mmap_event->event_id.header.size;
4025 int ret = perf_output_begin(&handle, event, size, 0, 0);
4026
4027 if (ret)
4028 return;
4029
4030 mmap_event->event_id.pid = perf_event_pid(event, current);
4031 mmap_event->event_id.tid = perf_event_tid(event, current);
4032
4033 perf_output_put(&handle, mmap_event->event_id);
4034 perf_output_copy(&handle, mmap_event->file_name,
4035 mmap_event->file_size);
4036 perf_output_end(&handle);
4037 }
4038
4039 static int perf_event_mmap_match(struct perf_event *event,
4040 struct perf_mmap_event *mmap_event,
4041 int executable)
4042 {
4043 if (event->state < PERF_EVENT_STATE_INACTIVE)
4044 return 0;
4045
4046 if (event->cpu != -1 && event->cpu != smp_processor_id())
4047 return 0;
4048
4049 if ((!executable && event->attr.mmap_data) ||
4050 (executable && event->attr.mmap))
4051 return 1;
4052
4053 return 0;
4054 }
4055
4056 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4057 struct perf_mmap_event *mmap_event,
4058 int executable)
4059 {
4060 struct perf_event *event;
4061
4062 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4063 if (perf_event_mmap_match(event, mmap_event, executable))
4064 perf_event_mmap_output(event, mmap_event);
4065 }
4066 }
4067
4068 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4069 {
4070 struct perf_cpu_context *cpuctx;
4071 struct perf_event_context *ctx;
4072 struct vm_area_struct *vma = mmap_event->vma;
4073 struct file *file = vma->vm_file;
4074 unsigned int size;
4075 char tmp[16];
4076 char *buf = NULL;
4077 const char *name;
4078 struct pmu *pmu;
4079 int ctxn;
4080
4081 memset(tmp, 0, sizeof(tmp));
4082
4083 if (file) {
4084 /*
4085 * d_path works from the end of the buffer backwards, so we
4086 * need to add enough zero bytes after the string to handle
4087 * the 64bit alignment we do later.
4088 */
4089 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4090 if (!buf) {
4091 name = strncpy(tmp, "//enomem", sizeof(tmp));
4092 goto got_name;
4093 }
4094 name = d_path(&file->f_path, buf, PATH_MAX);
4095 if (IS_ERR(name)) {
4096 name = strncpy(tmp, "//toolong", sizeof(tmp));
4097 goto got_name;
4098 }
4099 } else {
4100 if (arch_vma_name(mmap_event->vma)) {
4101 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4102 sizeof(tmp));
4103 goto got_name;
4104 }
4105
4106 if (!vma->vm_mm) {
4107 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4108 goto got_name;
4109 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4110 vma->vm_end >= vma->vm_mm->brk) {
4111 name = strncpy(tmp, "[heap]", sizeof(tmp));
4112 goto got_name;
4113 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4114 vma->vm_end >= vma->vm_mm->start_stack) {
4115 name = strncpy(tmp, "[stack]", sizeof(tmp));
4116 goto got_name;
4117 }
4118
4119 name = strncpy(tmp, "//anon", sizeof(tmp));
4120 goto got_name;
4121 }
4122
4123 got_name:
4124 size = ALIGN(strlen(name)+1, sizeof(u64));
4125
4126 mmap_event->file_name = name;
4127 mmap_event->file_size = size;
4128
4129 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4130
4131 rcu_read_lock();
4132 list_for_each_entry_rcu(pmu, &pmus, entry) {
4133 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4134 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4135 vma->vm_flags & VM_EXEC);
4136
4137 ctxn = pmu->task_ctx_nr;
4138 if (ctxn < 0)
4139 continue;
4140
4141 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4142 if (ctx) {
4143 perf_event_mmap_ctx(ctx, mmap_event,
4144 vma->vm_flags & VM_EXEC);
4145 }
4146 }
4147 rcu_read_unlock();
4148
4149 kfree(buf);
4150 }
4151
4152 void perf_event_mmap(struct vm_area_struct *vma)
4153 {
4154 struct perf_mmap_event mmap_event;
4155
4156 if (!atomic_read(&nr_mmap_events))
4157 return;
4158
4159 mmap_event = (struct perf_mmap_event){
4160 .vma = vma,
4161 /* .file_name */
4162 /* .file_size */
4163 .event_id = {
4164 .header = {
4165 .type = PERF_RECORD_MMAP,
4166 .misc = PERF_RECORD_MISC_USER,
4167 /* .size */
4168 },
4169 /* .pid */
4170 /* .tid */
4171 .start = vma->vm_start,
4172 .len = vma->vm_end - vma->vm_start,
4173 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4174 },
4175 };
4176
4177 perf_event_mmap_event(&mmap_event);
4178 }
4179
4180 /*
4181 * IRQ throttle logging
4182 */
4183
4184 static void perf_log_throttle(struct perf_event *event, int enable)
4185 {
4186 struct perf_output_handle handle;
4187 int ret;
4188
4189 struct {
4190 struct perf_event_header header;
4191 u64 time;
4192 u64 id;
4193 u64 stream_id;
4194 } throttle_event = {
4195 .header = {
4196 .type = PERF_RECORD_THROTTLE,
4197 .misc = 0,
4198 .size = sizeof(throttle_event),
4199 },
4200 .time = perf_clock(),
4201 .id = primary_event_id(event),
4202 .stream_id = event->id,
4203 };
4204
4205 if (enable)
4206 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4207
4208 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4209 if (ret)
4210 return;
4211
4212 perf_output_put(&handle, throttle_event);
4213 perf_output_end(&handle);
4214 }
4215
4216 /*
4217 * Generic event overflow handling, sampling.
4218 */
4219
4220 static int __perf_event_overflow(struct perf_event *event, int nmi,
4221 int throttle, struct perf_sample_data *data,
4222 struct pt_regs *regs)
4223 {
4224 int events = atomic_read(&event->event_limit);
4225 struct hw_perf_event *hwc = &event->hw;
4226 int ret = 0;
4227
4228 if (!throttle) {
4229 hwc->interrupts++;
4230 } else {
4231 if (hwc->interrupts != MAX_INTERRUPTS) {
4232 hwc->interrupts++;
4233 if (HZ * hwc->interrupts >
4234 (u64)sysctl_perf_event_sample_rate) {
4235 hwc->interrupts = MAX_INTERRUPTS;
4236 perf_log_throttle(event, 0);
4237 ret = 1;
4238 }
4239 } else {
4240 /*
4241 * Keep re-disabling events even though on the previous
4242 * pass we disabled it - just in case we raced with a
4243 * sched-in and the event got enabled again:
4244 */
4245 ret = 1;
4246 }
4247 }
4248
4249 if (event->attr.freq) {
4250 u64 now = perf_clock();
4251 s64 delta = now - hwc->freq_time_stamp;
4252
4253 hwc->freq_time_stamp = now;
4254
4255 if (delta > 0 && delta < 2*TICK_NSEC)
4256 perf_adjust_period(event, delta, hwc->last_period);
4257 }
4258
4259 /*
4260 * XXX event_limit might not quite work as expected on inherited
4261 * events
4262 */
4263
4264 event->pending_kill = POLL_IN;
4265 if (events && atomic_dec_and_test(&event->event_limit)) {
4266 ret = 1;
4267 event->pending_kill = POLL_HUP;
4268 if (nmi) {
4269 event->pending_disable = 1;
4270 perf_pending_queue(&event->pending,
4271 perf_pending_event);
4272 } else
4273 perf_event_disable(event);
4274 }
4275
4276 if (event->overflow_handler)
4277 event->overflow_handler(event, nmi, data, regs);
4278 else
4279 perf_event_output(event, nmi, data, regs);
4280
4281 return ret;
4282 }
4283
4284 int perf_event_overflow(struct perf_event *event, int nmi,
4285 struct perf_sample_data *data,
4286 struct pt_regs *regs)
4287 {
4288 return __perf_event_overflow(event, nmi, 1, data, regs);
4289 }
4290
4291 /*
4292 * Generic software event infrastructure
4293 */
4294
4295 struct swevent_htable {
4296 struct swevent_hlist *swevent_hlist;
4297 struct mutex hlist_mutex;
4298 int hlist_refcount;
4299
4300 /* Recursion avoidance in each contexts */
4301 int recursion[PERF_NR_CONTEXTS];
4302 };
4303
4304 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4305
4306 /*
4307 * We directly increment event->count and keep a second value in
4308 * event->hw.period_left to count intervals. This period event
4309 * is kept in the range [-sample_period, 0] so that we can use the
4310 * sign as trigger.
4311 */
4312
4313 static u64 perf_swevent_set_period(struct perf_event *event)
4314 {
4315 struct hw_perf_event *hwc = &event->hw;
4316 u64 period = hwc->last_period;
4317 u64 nr, offset;
4318 s64 old, val;
4319
4320 hwc->last_period = hwc->sample_period;
4321
4322 again:
4323 old = val = local64_read(&hwc->period_left);
4324 if (val < 0)
4325 return 0;
4326
4327 nr = div64_u64(period + val, period);
4328 offset = nr * period;
4329 val -= offset;
4330 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4331 goto again;
4332
4333 return nr;
4334 }
4335
4336 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4337 int nmi, struct perf_sample_data *data,
4338 struct pt_regs *regs)
4339 {
4340 struct hw_perf_event *hwc = &event->hw;
4341 int throttle = 0;
4342
4343 data->period = event->hw.last_period;
4344 if (!overflow)
4345 overflow = perf_swevent_set_period(event);
4346
4347 if (hwc->interrupts == MAX_INTERRUPTS)
4348 return;
4349
4350 for (; overflow; overflow--) {
4351 if (__perf_event_overflow(event, nmi, throttle,
4352 data, regs)) {
4353 /*
4354 * We inhibit the overflow from happening when
4355 * hwc->interrupts == MAX_INTERRUPTS.
4356 */
4357 break;
4358 }
4359 throttle = 1;
4360 }
4361 }
4362
4363 static void perf_swevent_event(struct perf_event *event, u64 nr,
4364 int nmi, struct perf_sample_data *data,
4365 struct pt_regs *regs)
4366 {
4367 struct hw_perf_event *hwc = &event->hw;
4368
4369 local64_add(nr, &event->count);
4370
4371 if (!regs)
4372 return;
4373
4374 if (!hwc->sample_period)
4375 return;
4376
4377 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4378 return perf_swevent_overflow(event, 1, nmi, data, regs);
4379
4380 if (local64_add_negative(nr, &hwc->period_left))
4381 return;
4382
4383 perf_swevent_overflow(event, 0, nmi, data, regs);
4384 }
4385
4386 static int perf_exclude_event(struct perf_event *event,
4387 struct pt_regs *regs)
4388 {
4389 if (event->hw.state & PERF_HES_STOPPED)
4390 return 0;
4391
4392 if (regs) {
4393 if (event->attr.exclude_user && user_mode(regs))
4394 return 1;
4395
4396 if (event->attr.exclude_kernel && !user_mode(regs))
4397 return 1;
4398 }
4399
4400 return 0;
4401 }
4402
4403 static int perf_swevent_match(struct perf_event *event,
4404 enum perf_type_id type,
4405 u32 event_id,
4406 struct perf_sample_data *data,
4407 struct pt_regs *regs)
4408 {
4409 if (event->attr.type != type)
4410 return 0;
4411
4412 if (event->attr.config != event_id)
4413 return 0;
4414
4415 if (perf_exclude_event(event, regs))
4416 return 0;
4417
4418 return 1;
4419 }
4420
4421 static inline u64 swevent_hash(u64 type, u32 event_id)
4422 {
4423 u64 val = event_id | (type << 32);
4424
4425 return hash_64(val, SWEVENT_HLIST_BITS);
4426 }
4427
4428 static inline struct hlist_head *
4429 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4430 {
4431 u64 hash = swevent_hash(type, event_id);
4432
4433 return &hlist->heads[hash];
4434 }
4435
4436 /* For the read side: events when they trigger */
4437 static inline struct hlist_head *
4438 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4439 {
4440 struct swevent_hlist *hlist;
4441
4442 hlist = rcu_dereference(swhash->swevent_hlist);
4443 if (!hlist)
4444 return NULL;
4445
4446 return __find_swevent_head(hlist, type, event_id);
4447 }
4448
4449 /* For the event head insertion and removal in the hlist */
4450 static inline struct hlist_head *
4451 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4452 {
4453 struct swevent_hlist *hlist;
4454 u32 event_id = event->attr.config;
4455 u64 type = event->attr.type;
4456
4457 /*
4458 * Event scheduling is always serialized against hlist allocation
4459 * and release. Which makes the protected version suitable here.
4460 * The context lock guarantees that.
4461 */
4462 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4463 lockdep_is_held(&event->ctx->lock));
4464 if (!hlist)
4465 return NULL;
4466
4467 return __find_swevent_head(hlist, type, event_id);
4468 }
4469
4470 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4471 u64 nr, int nmi,
4472 struct perf_sample_data *data,
4473 struct pt_regs *regs)
4474 {
4475 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4476 struct perf_event *event;
4477 struct hlist_node *node;
4478 struct hlist_head *head;
4479
4480 rcu_read_lock();
4481 head = find_swevent_head_rcu(swhash, type, event_id);
4482 if (!head)
4483 goto end;
4484
4485 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4486 if (perf_swevent_match(event, type, event_id, data, regs))
4487 perf_swevent_event(event, nr, nmi, data, regs);
4488 }
4489 end:
4490 rcu_read_unlock();
4491 }
4492
4493 int perf_swevent_get_recursion_context(void)
4494 {
4495 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4496
4497 return get_recursion_context(swhash->recursion);
4498 }
4499 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4500
4501 void inline perf_swevent_put_recursion_context(int rctx)
4502 {
4503 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4504
4505 put_recursion_context(swhash->recursion, rctx);
4506 }
4507
4508 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4509 struct pt_regs *regs, u64 addr)
4510 {
4511 struct perf_sample_data data;
4512 int rctx;
4513
4514 preempt_disable_notrace();
4515 rctx = perf_swevent_get_recursion_context();
4516 if (rctx < 0)
4517 return;
4518
4519 perf_sample_data_init(&data, addr);
4520
4521 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4522
4523 perf_swevent_put_recursion_context(rctx);
4524 preempt_enable_notrace();
4525 }
4526
4527 static void perf_swevent_read(struct perf_event *event)
4528 {
4529 }
4530
4531 static int perf_swevent_add(struct perf_event *event, int flags)
4532 {
4533 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4534 struct hw_perf_event *hwc = &event->hw;
4535 struct hlist_head *head;
4536
4537 if (hwc->sample_period) {
4538 hwc->last_period = hwc->sample_period;
4539 perf_swevent_set_period(event);
4540 }
4541
4542 hwc->state = !(flags & PERF_EF_START);
4543
4544 head = find_swevent_head(swhash, event);
4545 if (WARN_ON_ONCE(!head))
4546 return -EINVAL;
4547
4548 hlist_add_head_rcu(&event->hlist_entry, head);
4549
4550 return 0;
4551 }
4552
4553 static void perf_swevent_del(struct perf_event *event, int flags)
4554 {
4555 hlist_del_rcu(&event->hlist_entry);
4556 }
4557
4558 static void perf_swevent_start(struct perf_event *event, int flags)
4559 {
4560 event->hw.state = 0;
4561 }
4562
4563 static void perf_swevent_stop(struct perf_event *event, int flags)
4564 {
4565 event->hw.state = PERF_HES_STOPPED;
4566 }
4567
4568 /* Deref the hlist from the update side */
4569 static inline struct swevent_hlist *
4570 swevent_hlist_deref(struct swevent_htable *swhash)
4571 {
4572 return rcu_dereference_protected(swhash->swevent_hlist,
4573 lockdep_is_held(&swhash->hlist_mutex));
4574 }
4575
4576 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4577 {
4578 struct swevent_hlist *hlist;
4579
4580 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4581 kfree(hlist);
4582 }
4583
4584 static void swevent_hlist_release(struct swevent_htable *swhash)
4585 {
4586 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4587
4588 if (!hlist)
4589 return;
4590
4591 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4592 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4593 }
4594
4595 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4596 {
4597 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4598
4599 mutex_lock(&swhash->hlist_mutex);
4600
4601 if (!--swhash->hlist_refcount)
4602 swevent_hlist_release(swhash);
4603
4604 mutex_unlock(&swhash->hlist_mutex);
4605 }
4606
4607 static void swevent_hlist_put(struct perf_event *event)
4608 {
4609 int cpu;
4610
4611 if (event->cpu != -1) {
4612 swevent_hlist_put_cpu(event, event->cpu);
4613 return;
4614 }
4615
4616 for_each_possible_cpu(cpu)
4617 swevent_hlist_put_cpu(event, cpu);
4618 }
4619
4620 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4621 {
4622 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4623 int err = 0;
4624
4625 mutex_lock(&swhash->hlist_mutex);
4626
4627 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4628 struct swevent_hlist *hlist;
4629
4630 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4631 if (!hlist) {
4632 err = -ENOMEM;
4633 goto exit;
4634 }
4635 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4636 }
4637 swhash->hlist_refcount++;
4638 exit:
4639 mutex_unlock(&swhash->hlist_mutex);
4640
4641 return err;
4642 }
4643
4644 static int swevent_hlist_get(struct perf_event *event)
4645 {
4646 int err;
4647 int cpu, failed_cpu;
4648
4649 if (event->cpu != -1)
4650 return swevent_hlist_get_cpu(event, event->cpu);
4651
4652 get_online_cpus();
4653 for_each_possible_cpu(cpu) {
4654 err = swevent_hlist_get_cpu(event, cpu);
4655 if (err) {
4656 failed_cpu = cpu;
4657 goto fail;
4658 }
4659 }
4660 put_online_cpus();
4661
4662 return 0;
4663 fail:
4664 for_each_possible_cpu(cpu) {
4665 if (cpu == failed_cpu)
4666 break;
4667 swevent_hlist_put_cpu(event, cpu);
4668 }
4669
4670 put_online_cpus();
4671 return err;
4672 }
4673
4674 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4675
4676 static void sw_perf_event_destroy(struct perf_event *event)
4677 {
4678 u64 event_id = event->attr.config;
4679
4680 WARN_ON(event->parent);
4681
4682 atomic_dec(&perf_swevent_enabled[event_id]);
4683 swevent_hlist_put(event);
4684 }
4685
4686 static int perf_swevent_init(struct perf_event *event)
4687 {
4688 int event_id = event->attr.config;
4689
4690 if (event->attr.type != PERF_TYPE_SOFTWARE)
4691 return -ENOENT;
4692
4693 switch (event_id) {
4694 case PERF_COUNT_SW_CPU_CLOCK:
4695 case PERF_COUNT_SW_TASK_CLOCK:
4696 return -ENOENT;
4697
4698 default:
4699 break;
4700 }
4701
4702 if (event_id > PERF_COUNT_SW_MAX)
4703 return -ENOENT;
4704
4705 if (!event->parent) {
4706 int err;
4707
4708 err = swevent_hlist_get(event);
4709 if (err)
4710 return err;
4711
4712 atomic_inc(&perf_swevent_enabled[event_id]);
4713 event->destroy = sw_perf_event_destroy;
4714 }
4715
4716 return 0;
4717 }
4718
4719 static struct pmu perf_swevent = {
4720 .task_ctx_nr = perf_sw_context,
4721
4722 .event_init = perf_swevent_init,
4723 .add = perf_swevent_add,
4724 .del = perf_swevent_del,
4725 .start = perf_swevent_start,
4726 .stop = perf_swevent_stop,
4727 .read = perf_swevent_read,
4728 };
4729
4730 #ifdef CONFIG_EVENT_TRACING
4731
4732 static int perf_tp_filter_match(struct perf_event *event,
4733 struct perf_sample_data *data)
4734 {
4735 void *record = data->raw->data;
4736
4737 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4738 return 1;
4739 return 0;
4740 }
4741
4742 static int perf_tp_event_match(struct perf_event *event,
4743 struct perf_sample_data *data,
4744 struct pt_regs *regs)
4745 {
4746 /*
4747 * All tracepoints are from kernel-space.
4748 */
4749 if (event->attr.exclude_kernel)
4750 return 0;
4751
4752 if (!perf_tp_filter_match(event, data))
4753 return 0;
4754
4755 return 1;
4756 }
4757
4758 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4759 struct pt_regs *regs, struct hlist_head *head, int rctx)
4760 {
4761 struct perf_sample_data data;
4762 struct perf_event *event;
4763 struct hlist_node *node;
4764
4765 struct perf_raw_record raw = {
4766 .size = entry_size,
4767 .data = record,
4768 };
4769
4770 perf_sample_data_init(&data, addr);
4771 data.raw = &raw;
4772
4773 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4774 if (perf_tp_event_match(event, &data, regs))
4775 perf_swevent_event(event, count, 1, &data, regs);
4776 }
4777
4778 perf_swevent_put_recursion_context(rctx);
4779 }
4780 EXPORT_SYMBOL_GPL(perf_tp_event);
4781
4782 static void tp_perf_event_destroy(struct perf_event *event)
4783 {
4784 perf_trace_destroy(event);
4785 }
4786
4787 static int perf_tp_event_init(struct perf_event *event)
4788 {
4789 int err;
4790
4791 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4792 return -ENOENT;
4793
4794 /*
4795 * Raw tracepoint data is a severe data leak, only allow root to
4796 * have these.
4797 */
4798 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4799 perf_paranoid_tracepoint_raw() &&
4800 !capable(CAP_SYS_ADMIN))
4801 return -EPERM;
4802
4803 err = perf_trace_init(event);
4804 if (err)
4805 return err;
4806
4807 event->destroy = tp_perf_event_destroy;
4808
4809 return 0;
4810 }
4811
4812 static struct pmu perf_tracepoint = {
4813 .task_ctx_nr = perf_sw_context,
4814
4815 .event_init = perf_tp_event_init,
4816 .add = perf_trace_add,
4817 .del = perf_trace_del,
4818 .start = perf_swevent_start,
4819 .stop = perf_swevent_stop,
4820 .read = perf_swevent_read,
4821 };
4822
4823 static inline void perf_tp_register(void)
4824 {
4825 perf_pmu_register(&perf_tracepoint);
4826 }
4827
4828 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4829 {
4830 char *filter_str;
4831 int ret;
4832
4833 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4834 return -EINVAL;
4835
4836 filter_str = strndup_user(arg, PAGE_SIZE);
4837 if (IS_ERR(filter_str))
4838 return PTR_ERR(filter_str);
4839
4840 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4841
4842 kfree(filter_str);
4843 return ret;
4844 }
4845
4846 static void perf_event_free_filter(struct perf_event *event)
4847 {
4848 ftrace_profile_free_filter(event);
4849 }
4850
4851 #else
4852
4853 static inline void perf_tp_register(void)
4854 {
4855 }
4856
4857 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4858 {
4859 return -ENOENT;
4860 }
4861
4862 static void perf_event_free_filter(struct perf_event *event)
4863 {
4864 }
4865
4866 #endif /* CONFIG_EVENT_TRACING */
4867
4868 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4869 void perf_bp_event(struct perf_event *bp, void *data)
4870 {
4871 struct perf_sample_data sample;
4872 struct pt_regs *regs = data;
4873
4874 perf_sample_data_init(&sample, bp->attr.bp_addr);
4875
4876 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4877 perf_swevent_event(bp, 1, 1, &sample, regs);
4878 }
4879 #endif
4880
4881 /*
4882 * hrtimer based swevent callback
4883 */
4884
4885 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4886 {
4887 enum hrtimer_restart ret = HRTIMER_RESTART;
4888 struct perf_sample_data data;
4889 struct pt_regs *regs;
4890 struct perf_event *event;
4891 u64 period;
4892
4893 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4894 event->pmu->read(event);
4895
4896 perf_sample_data_init(&data, 0);
4897 data.period = event->hw.last_period;
4898 regs = get_irq_regs();
4899
4900 if (regs && !perf_exclude_event(event, regs)) {
4901 if (!(event->attr.exclude_idle && current->pid == 0))
4902 if (perf_event_overflow(event, 0, &data, regs))
4903 ret = HRTIMER_NORESTART;
4904 }
4905
4906 period = max_t(u64, 10000, event->hw.sample_period);
4907 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4908
4909 return ret;
4910 }
4911
4912 static void perf_swevent_start_hrtimer(struct perf_event *event)
4913 {
4914 struct hw_perf_event *hwc = &event->hw;
4915
4916 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4917 hwc->hrtimer.function = perf_swevent_hrtimer;
4918 if (hwc->sample_period) {
4919 s64 period = local64_read(&hwc->period_left);
4920
4921 if (period) {
4922 if (period < 0)
4923 period = 10000;
4924
4925 local64_set(&hwc->period_left, 0);
4926 } else {
4927 period = max_t(u64, 10000, hwc->sample_period);
4928 }
4929 __hrtimer_start_range_ns(&hwc->hrtimer,
4930 ns_to_ktime(period), 0,
4931 HRTIMER_MODE_REL_PINNED, 0);
4932 }
4933 }
4934
4935 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4936 {
4937 struct hw_perf_event *hwc = &event->hw;
4938
4939 if (hwc->sample_period) {
4940 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4941 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4942
4943 hrtimer_cancel(&hwc->hrtimer);
4944 }
4945 }
4946
4947 /*
4948 * Software event: cpu wall time clock
4949 */
4950
4951 static void cpu_clock_event_update(struct perf_event *event)
4952 {
4953 s64 prev;
4954 u64 now;
4955
4956 now = local_clock();
4957 prev = local64_xchg(&event->hw.prev_count, now);
4958 local64_add(now - prev, &event->count);
4959 }
4960
4961 static void cpu_clock_event_start(struct perf_event *event, int flags)
4962 {
4963 local64_set(&event->hw.prev_count, local_clock());
4964 perf_swevent_start_hrtimer(event);
4965 }
4966
4967 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4968 {
4969 perf_swevent_cancel_hrtimer(event);
4970 cpu_clock_event_update(event);
4971 }
4972
4973 static int cpu_clock_event_add(struct perf_event *event, int flags)
4974 {
4975 if (flags & PERF_EF_START)
4976 cpu_clock_event_start(event, flags);
4977
4978 return 0;
4979 }
4980
4981 static void cpu_clock_event_del(struct perf_event *event, int flags)
4982 {
4983 cpu_clock_event_stop(event, flags);
4984 }
4985
4986 static void cpu_clock_event_read(struct perf_event *event)
4987 {
4988 cpu_clock_event_update(event);
4989 }
4990
4991 static int cpu_clock_event_init(struct perf_event *event)
4992 {
4993 if (event->attr.type != PERF_TYPE_SOFTWARE)
4994 return -ENOENT;
4995
4996 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4997 return -ENOENT;
4998
4999 return 0;
5000 }
5001
5002 static struct pmu perf_cpu_clock = {
5003 .task_ctx_nr = perf_sw_context,
5004
5005 .event_init = cpu_clock_event_init,
5006 .add = cpu_clock_event_add,
5007 .del = cpu_clock_event_del,
5008 .start = cpu_clock_event_start,
5009 .stop = cpu_clock_event_stop,
5010 .read = cpu_clock_event_read,
5011 };
5012
5013 /*
5014 * Software event: task time clock
5015 */
5016
5017 static void task_clock_event_update(struct perf_event *event, u64 now)
5018 {
5019 u64 prev;
5020 s64 delta;
5021
5022 prev = local64_xchg(&event->hw.prev_count, now);
5023 delta = now - prev;
5024 local64_add(delta, &event->count);
5025 }
5026
5027 static void task_clock_event_start(struct perf_event *event, int flags)
5028 {
5029 local64_set(&event->hw.prev_count, event->ctx->time);
5030 perf_swevent_start_hrtimer(event);
5031 }
5032
5033 static void task_clock_event_stop(struct perf_event *event, int flags)
5034 {
5035 perf_swevent_cancel_hrtimer(event);
5036 task_clock_event_update(event, event->ctx->time);
5037 }
5038
5039 static int task_clock_event_add(struct perf_event *event, int flags)
5040 {
5041 if (flags & PERF_EF_START)
5042 task_clock_event_start(event, flags);
5043
5044 return 0;
5045 }
5046
5047 static void task_clock_event_del(struct perf_event *event, int flags)
5048 {
5049 task_clock_event_stop(event, PERF_EF_UPDATE);
5050 }
5051
5052 static void task_clock_event_read(struct perf_event *event)
5053 {
5054 u64 time;
5055
5056 if (!in_nmi()) {
5057 update_context_time(event->ctx);
5058 time = event->ctx->time;
5059 } else {
5060 u64 now = perf_clock();
5061 u64 delta = now - event->ctx->timestamp;
5062 time = event->ctx->time + delta;
5063 }
5064
5065 task_clock_event_update(event, time);
5066 }
5067
5068 static int task_clock_event_init(struct perf_event *event)
5069 {
5070 if (event->attr.type != PERF_TYPE_SOFTWARE)
5071 return -ENOENT;
5072
5073 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5074 return -ENOENT;
5075
5076 return 0;
5077 }
5078
5079 static struct pmu perf_task_clock = {
5080 .task_ctx_nr = perf_sw_context,
5081
5082 .event_init = task_clock_event_init,
5083 .add = task_clock_event_add,
5084 .del = task_clock_event_del,
5085 .start = task_clock_event_start,
5086 .stop = task_clock_event_stop,
5087 .read = task_clock_event_read,
5088 };
5089
5090 static void perf_pmu_nop_void(struct pmu *pmu)
5091 {
5092 }
5093
5094 static int perf_pmu_nop_int(struct pmu *pmu)
5095 {
5096 return 0;
5097 }
5098
5099 static void perf_pmu_start_txn(struct pmu *pmu)
5100 {
5101 perf_pmu_disable(pmu);
5102 }
5103
5104 static int perf_pmu_commit_txn(struct pmu *pmu)
5105 {
5106 perf_pmu_enable(pmu);
5107 return 0;
5108 }
5109
5110 static void perf_pmu_cancel_txn(struct pmu *pmu)
5111 {
5112 perf_pmu_enable(pmu);
5113 }
5114
5115 /*
5116 * Ensures all contexts with the same task_ctx_nr have the same
5117 * pmu_cpu_context too.
5118 */
5119 static void *find_pmu_context(int ctxn)
5120 {
5121 struct pmu *pmu;
5122
5123 if (ctxn < 0)
5124 return NULL;
5125
5126 list_for_each_entry(pmu, &pmus, entry) {
5127 if (pmu->task_ctx_nr == ctxn)
5128 return pmu->pmu_cpu_context;
5129 }
5130
5131 return NULL;
5132 }
5133
5134 static void free_pmu_context(void * __percpu cpu_context)
5135 {
5136 struct pmu *pmu;
5137
5138 mutex_lock(&pmus_lock);
5139 /*
5140 * Like a real lame refcount.
5141 */
5142 list_for_each_entry(pmu, &pmus, entry) {
5143 if (pmu->pmu_cpu_context == cpu_context)
5144 goto out;
5145 }
5146
5147 free_percpu(cpu_context);
5148 out:
5149 mutex_unlock(&pmus_lock);
5150 }
5151
5152 int perf_pmu_register(struct pmu *pmu)
5153 {
5154 int cpu, ret;
5155
5156 mutex_lock(&pmus_lock);
5157 ret = -ENOMEM;
5158 pmu->pmu_disable_count = alloc_percpu(int);
5159 if (!pmu->pmu_disable_count)
5160 goto unlock;
5161
5162 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5163 if (pmu->pmu_cpu_context)
5164 goto got_cpu_context;
5165
5166 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5167 if (!pmu->pmu_cpu_context)
5168 goto free_pdc;
5169
5170 for_each_possible_cpu(cpu) {
5171 struct perf_cpu_context *cpuctx;
5172
5173 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5174 __perf_event_init_context(&cpuctx->ctx);
5175 cpuctx->ctx.pmu = pmu;
5176 cpuctx->timer_interval = TICK_NSEC;
5177 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5178 cpuctx->timer.function = perf_event_context_tick;
5179 }
5180
5181 got_cpu_context:
5182 if (!pmu->start_txn) {
5183 if (pmu->pmu_enable) {
5184 /*
5185 * If we have pmu_enable/pmu_disable calls, install
5186 * transaction stubs that use that to try and batch
5187 * hardware accesses.
5188 */
5189 pmu->start_txn = perf_pmu_start_txn;
5190 pmu->commit_txn = perf_pmu_commit_txn;
5191 pmu->cancel_txn = perf_pmu_cancel_txn;
5192 } else {
5193 pmu->start_txn = perf_pmu_nop_void;
5194 pmu->commit_txn = perf_pmu_nop_int;
5195 pmu->cancel_txn = perf_pmu_nop_void;
5196 }
5197 }
5198
5199 if (!pmu->pmu_enable) {
5200 pmu->pmu_enable = perf_pmu_nop_void;
5201 pmu->pmu_disable = perf_pmu_nop_void;
5202 }
5203
5204 list_add_rcu(&pmu->entry, &pmus);
5205 ret = 0;
5206 unlock:
5207 mutex_unlock(&pmus_lock);
5208
5209 return ret;
5210
5211 free_pdc:
5212 free_percpu(pmu->pmu_disable_count);
5213 goto unlock;
5214 }
5215
5216 void perf_pmu_unregister(struct pmu *pmu)
5217 {
5218 mutex_lock(&pmus_lock);
5219 list_del_rcu(&pmu->entry);
5220 mutex_unlock(&pmus_lock);
5221
5222 /*
5223 * We dereference the pmu list under both SRCU and regular RCU, so
5224 * synchronize against both of those.
5225 */
5226 synchronize_srcu(&pmus_srcu);
5227 synchronize_rcu();
5228
5229 free_percpu(pmu->pmu_disable_count);
5230 free_pmu_context(pmu->pmu_cpu_context);
5231 }
5232
5233 struct pmu *perf_init_event(struct perf_event *event)
5234 {
5235 struct pmu *pmu = NULL;
5236 int idx;
5237
5238 idx = srcu_read_lock(&pmus_srcu);
5239 list_for_each_entry_rcu(pmu, &pmus, entry) {
5240 int ret = pmu->event_init(event);
5241 if (!ret)
5242 goto unlock;
5243
5244 if (ret != -ENOENT) {
5245 pmu = ERR_PTR(ret);
5246 goto unlock;
5247 }
5248 }
5249 pmu = ERR_PTR(-ENOENT);
5250 unlock:
5251 srcu_read_unlock(&pmus_srcu, idx);
5252
5253 return pmu;
5254 }
5255
5256 /*
5257 * Allocate and initialize a event structure
5258 */
5259 static struct perf_event *
5260 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5261 struct perf_event *group_leader,
5262 struct perf_event *parent_event,
5263 perf_overflow_handler_t overflow_handler)
5264 {
5265 struct pmu *pmu;
5266 struct perf_event *event;
5267 struct hw_perf_event *hwc;
5268 long err;
5269
5270 event = kzalloc(sizeof(*event), GFP_KERNEL);
5271 if (!event)
5272 return ERR_PTR(-ENOMEM);
5273
5274 /*
5275 * Single events are their own group leaders, with an
5276 * empty sibling list:
5277 */
5278 if (!group_leader)
5279 group_leader = event;
5280
5281 mutex_init(&event->child_mutex);
5282 INIT_LIST_HEAD(&event->child_list);
5283
5284 INIT_LIST_HEAD(&event->group_entry);
5285 INIT_LIST_HEAD(&event->event_entry);
5286 INIT_LIST_HEAD(&event->sibling_list);
5287 init_waitqueue_head(&event->waitq);
5288
5289 mutex_init(&event->mmap_mutex);
5290
5291 event->cpu = cpu;
5292 event->attr = *attr;
5293 event->group_leader = group_leader;
5294 event->pmu = NULL;
5295 event->oncpu = -1;
5296
5297 event->parent = parent_event;
5298
5299 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5300 event->id = atomic64_inc_return(&perf_event_id);
5301
5302 event->state = PERF_EVENT_STATE_INACTIVE;
5303
5304 if (!overflow_handler && parent_event)
5305 overflow_handler = parent_event->overflow_handler;
5306
5307 event->overflow_handler = overflow_handler;
5308
5309 if (attr->disabled)
5310 event->state = PERF_EVENT_STATE_OFF;
5311
5312 pmu = NULL;
5313
5314 hwc = &event->hw;
5315 hwc->sample_period = attr->sample_period;
5316 if (attr->freq && attr->sample_freq)
5317 hwc->sample_period = 1;
5318 hwc->last_period = hwc->sample_period;
5319
5320 local64_set(&hwc->period_left, hwc->sample_period);
5321
5322 /*
5323 * we currently do not support PERF_FORMAT_GROUP on inherited events
5324 */
5325 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5326 goto done;
5327
5328 pmu = perf_init_event(event);
5329
5330 done:
5331 err = 0;
5332 if (!pmu)
5333 err = -EINVAL;
5334 else if (IS_ERR(pmu))
5335 err = PTR_ERR(pmu);
5336
5337 if (err) {
5338 if (event->ns)
5339 put_pid_ns(event->ns);
5340 kfree(event);
5341 return ERR_PTR(err);
5342 }
5343
5344 event->pmu = pmu;
5345
5346 if (!event->parent) {
5347 atomic_inc(&nr_events);
5348 if (event->attr.mmap || event->attr.mmap_data)
5349 atomic_inc(&nr_mmap_events);
5350 if (event->attr.comm)
5351 atomic_inc(&nr_comm_events);
5352 if (event->attr.task)
5353 atomic_inc(&nr_task_events);
5354 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5355 err = get_callchain_buffers();
5356 if (err) {
5357 free_event(event);
5358 return ERR_PTR(err);
5359 }
5360 }
5361 }
5362
5363 return event;
5364 }
5365
5366 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5367 struct perf_event_attr *attr)
5368 {
5369 u32 size;
5370 int ret;
5371
5372 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5373 return -EFAULT;
5374
5375 /*
5376 * zero the full structure, so that a short copy will be nice.
5377 */
5378 memset(attr, 0, sizeof(*attr));
5379
5380 ret = get_user(size, &uattr->size);
5381 if (ret)
5382 return ret;
5383
5384 if (size > PAGE_SIZE) /* silly large */
5385 goto err_size;
5386
5387 if (!size) /* abi compat */
5388 size = PERF_ATTR_SIZE_VER0;
5389
5390 if (size < PERF_ATTR_SIZE_VER0)
5391 goto err_size;
5392
5393 /*
5394 * If we're handed a bigger struct than we know of,
5395 * ensure all the unknown bits are 0 - i.e. new
5396 * user-space does not rely on any kernel feature
5397 * extensions we dont know about yet.
5398 */
5399 if (size > sizeof(*attr)) {
5400 unsigned char __user *addr;
5401 unsigned char __user *end;
5402 unsigned char val;
5403
5404 addr = (void __user *)uattr + sizeof(*attr);
5405 end = (void __user *)uattr + size;
5406
5407 for (; addr < end; addr++) {
5408 ret = get_user(val, addr);
5409 if (ret)
5410 return ret;
5411 if (val)
5412 goto err_size;
5413 }
5414 size = sizeof(*attr);
5415 }
5416
5417 ret = copy_from_user(attr, uattr, size);
5418 if (ret)
5419 return -EFAULT;
5420
5421 /*
5422 * If the type exists, the corresponding creation will verify
5423 * the attr->config.
5424 */
5425 if (attr->type >= PERF_TYPE_MAX)
5426 return -EINVAL;
5427
5428 if (attr->__reserved_1)
5429 return -EINVAL;
5430
5431 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5432 return -EINVAL;
5433
5434 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5435 return -EINVAL;
5436
5437 out:
5438 return ret;
5439
5440 err_size:
5441 put_user(sizeof(*attr), &uattr->size);
5442 ret = -E2BIG;
5443 goto out;
5444 }
5445
5446 static int
5447 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5448 {
5449 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5450 int ret = -EINVAL;
5451
5452 if (!output_event)
5453 goto set;
5454
5455 /* don't allow circular references */
5456 if (event == output_event)
5457 goto out;
5458
5459 /*
5460 * Don't allow cross-cpu buffers
5461 */
5462 if (output_event->cpu != event->cpu)
5463 goto out;
5464
5465 /*
5466 * If its not a per-cpu buffer, it must be the same task.
5467 */
5468 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5469 goto out;
5470
5471 set:
5472 mutex_lock(&event->mmap_mutex);
5473 /* Can't redirect output if we've got an active mmap() */
5474 if (atomic_read(&event->mmap_count))
5475 goto unlock;
5476
5477 if (output_event) {
5478 /* get the buffer we want to redirect to */
5479 buffer = perf_buffer_get(output_event);
5480 if (!buffer)
5481 goto unlock;
5482 }
5483
5484 old_buffer = event->buffer;
5485 rcu_assign_pointer(event->buffer, buffer);
5486 ret = 0;
5487 unlock:
5488 mutex_unlock(&event->mmap_mutex);
5489
5490 if (old_buffer)
5491 perf_buffer_put(old_buffer);
5492 out:
5493 return ret;
5494 }
5495
5496 /**
5497 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5498 *
5499 * @attr_uptr: event_id type attributes for monitoring/sampling
5500 * @pid: target pid
5501 * @cpu: target cpu
5502 * @group_fd: group leader event fd
5503 */
5504 SYSCALL_DEFINE5(perf_event_open,
5505 struct perf_event_attr __user *, attr_uptr,
5506 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5507 {
5508 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5509 struct perf_event_attr attr;
5510 struct perf_event_context *ctx;
5511 struct file *event_file = NULL;
5512 struct file *group_file = NULL;
5513 struct pmu *pmu;
5514 int event_fd;
5515 int fput_needed = 0;
5516 int err;
5517
5518 /* for future expandability... */
5519 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5520 return -EINVAL;
5521
5522 err = perf_copy_attr(attr_uptr, &attr);
5523 if (err)
5524 return err;
5525
5526 if (!attr.exclude_kernel) {
5527 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5528 return -EACCES;
5529 }
5530
5531 if (attr.freq) {
5532 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5533 return -EINVAL;
5534 }
5535
5536 event_fd = get_unused_fd_flags(O_RDWR);
5537 if (event_fd < 0)
5538 return event_fd;
5539
5540 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5541 if (IS_ERR(event)) {
5542 err = PTR_ERR(event);
5543 goto err_fd;
5544 }
5545
5546 if (group_fd != -1) {
5547 group_leader = perf_fget_light(group_fd, &fput_needed);
5548 if (IS_ERR(group_leader)) {
5549 err = PTR_ERR(group_leader);
5550 goto err_alloc;
5551 }
5552 group_file = group_leader->filp;
5553 if (flags & PERF_FLAG_FD_OUTPUT)
5554 output_event = group_leader;
5555 if (flags & PERF_FLAG_FD_NO_GROUP)
5556 group_leader = NULL;
5557 }
5558
5559 /*
5560 * Special case software events and allow them to be part of
5561 * any hardware group.
5562 */
5563 pmu = event->pmu;
5564 if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
5565 pmu = group_leader->pmu;
5566
5567 /*
5568 * Get the target context (task or percpu):
5569 */
5570 ctx = find_get_context(pmu, pid, cpu);
5571 if (IS_ERR(ctx)) {
5572 err = PTR_ERR(ctx);
5573 goto err_group_fd;
5574 }
5575
5576 /*
5577 * Look up the group leader (we will attach this event to it):
5578 */
5579 if (group_leader) {
5580 err = -EINVAL;
5581
5582 /*
5583 * Do not allow a recursive hierarchy (this new sibling
5584 * becoming part of another group-sibling):
5585 */
5586 if (group_leader->group_leader != group_leader)
5587 goto err_context;
5588 /*
5589 * Do not allow to attach to a group in a different
5590 * task or CPU context:
5591 */
5592 if (group_leader->ctx != ctx)
5593 goto err_context;
5594 /*
5595 * Only a group leader can be exclusive or pinned
5596 */
5597 if (attr.exclusive || attr.pinned)
5598 goto err_context;
5599 }
5600
5601 if (output_event) {
5602 err = perf_event_set_output(event, output_event);
5603 if (err)
5604 goto err_context;
5605 }
5606
5607 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5608 if (IS_ERR(event_file)) {
5609 err = PTR_ERR(event_file);
5610 goto err_context;
5611 }
5612
5613 event->filp = event_file;
5614 WARN_ON_ONCE(ctx->parent_ctx);
5615 mutex_lock(&ctx->mutex);
5616 perf_install_in_context(ctx, event, cpu);
5617 ++ctx->generation;
5618 mutex_unlock(&ctx->mutex);
5619
5620 event->owner = current;
5621 get_task_struct(current);
5622 mutex_lock(&current->perf_event_mutex);
5623 list_add_tail(&event->owner_entry, &current->perf_event_list);
5624 mutex_unlock(&current->perf_event_mutex);
5625
5626 /*
5627 * Drop the reference on the group_event after placing the
5628 * new event on the sibling_list. This ensures destruction
5629 * of the group leader will find the pointer to itself in
5630 * perf_group_detach().
5631 */
5632 fput_light(group_file, fput_needed);
5633 fd_install(event_fd, event_file);
5634 return event_fd;
5635
5636 err_context:
5637 put_ctx(ctx);
5638 err_group_fd:
5639 fput_light(group_file, fput_needed);
5640 err_alloc:
5641 free_event(event);
5642 err_fd:
5643 put_unused_fd(event_fd);
5644 return err;
5645 }
5646
5647 /**
5648 * perf_event_create_kernel_counter
5649 *
5650 * @attr: attributes of the counter to create
5651 * @cpu: cpu in which the counter is bound
5652 * @pid: task to profile
5653 */
5654 struct perf_event *
5655 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5656 pid_t pid,
5657 perf_overflow_handler_t overflow_handler)
5658 {
5659 struct perf_event_context *ctx;
5660 struct perf_event *event;
5661 int err;
5662
5663 /*
5664 * Get the target context (task or percpu):
5665 */
5666
5667 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5668 if (IS_ERR(event)) {
5669 err = PTR_ERR(event);
5670 goto err;
5671 }
5672
5673 ctx = find_get_context(event->pmu, pid, cpu);
5674 if (IS_ERR(ctx)) {
5675 err = PTR_ERR(ctx);
5676 goto err_free;
5677 }
5678
5679 event->filp = NULL;
5680 WARN_ON_ONCE(ctx->parent_ctx);
5681 mutex_lock(&ctx->mutex);
5682 perf_install_in_context(ctx, event, cpu);
5683 ++ctx->generation;
5684 mutex_unlock(&ctx->mutex);
5685
5686 event->owner = current;
5687 get_task_struct(current);
5688 mutex_lock(&current->perf_event_mutex);
5689 list_add_tail(&event->owner_entry, &current->perf_event_list);
5690 mutex_unlock(&current->perf_event_mutex);
5691
5692 return event;
5693
5694 err_free:
5695 free_event(event);
5696 err:
5697 return ERR_PTR(err);
5698 }
5699 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5700
5701 static void sync_child_event(struct perf_event *child_event,
5702 struct task_struct *child)
5703 {
5704 struct perf_event *parent_event = child_event->parent;
5705 u64 child_val;
5706
5707 if (child_event->attr.inherit_stat)
5708 perf_event_read_event(child_event, child);
5709
5710 child_val = perf_event_count(child_event);
5711
5712 /*
5713 * Add back the child's count to the parent's count:
5714 */
5715 atomic64_add(child_val, &parent_event->child_count);
5716 atomic64_add(child_event->total_time_enabled,
5717 &parent_event->child_total_time_enabled);
5718 atomic64_add(child_event->total_time_running,
5719 &parent_event->child_total_time_running);
5720
5721 /*
5722 * Remove this event from the parent's list
5723 */
5724 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5725 mutex_lock(&parent_event->child_mutex);
5726 list_del_init(&child_event->child_list);
5727 mutex_unlock(&parent_event->child_mutex);
5728
5729 /*
5730 * Release the parent event, if this was the last
5731 * reference to it.
5732 */
5733 fput(parent_event->filp);
5734 }
5735
5736 static void
5737 __perf_event_exit_task(struct perf_event *child_event,
5738 struct perf_event_context *child_ctx,
5739 struct task_struct *child)
5740 {
5741 struct perf_event *parent_event;
5742
5743 perf_event_remove_from_context(child_event);
5744
5745 parent_event = child_event->parent;
5746 /*
5747 * It can happen that parent exits first, and has events
5748 * that are still around due to the child reference. These
5749 * events need to be zapped - but otherwise linger.
5750 */
5751 if (parent_event) {
5752 sync_child_event(child_event, child);
5753 free_event(child_event);
5754 }
5755 }
5756
5757 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5758 {
5759 struct perf_event *child_event, *tmp;
5760 struct perf_event_context *child_ctx;
5761 unsigned long flags;
5762
5763 if (likely(!child->perf_event_ctxp[ctxn])) {
5764 perf_event_task(child, NULL, 0);
5765 return;
5766 }
5767
5768 local_irq_save(flags);
5769 /*
5770 * We can't reschedule here because interrupts are disabled,
5771 * and either child is current or it is a task that can't be
5772 * scheduled, so we are now safe from rescheduling changing
5773 * our context.
5774 */
5775 child_ctx = child->perf_event_ctxp[ctxn];
5776 __perf_event_task_sched_out(child_ctx);
5777
5778 /*
5779 * Take the context lock here so that if find_get_context is
5780 * reading child->perf_event_ctxp, we wait until it has
5781 * incremented the context's refcount before we do put_ctx below.
5782 */
5783 raw_spin_lock(&child_ctx->lock);
5784 child->perf_event_ctxp[ctxn] = NULL;
5785 /*
5786 * If this context is a clone; unclone it so it can't get
5787 * swapped to another process while we're removing all
5788 * the events from it.
5789 */
5790 unclone_ctx(child_ctx);
5791 update_context_time(child_ctx);
5792 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5793
5794 /*
5795 * Report the task dead after unscheduling the events so that we
5796 * won't get any samples after PERF_RECORD_EXIT. We can however still
5797 * get a few PERF_RECORD_READ events.
5798 */
5799 perf_event_task(child, child_ctx, 0);
5800
5801 /*
5802 * We can recurse on the same lock type through:
5803 *
5804 * __perf_event_exit_task()
5805 * sync_child_event()
5806 * fput(parent_event->filp)
5807 * perf_release()
5808 * mutex_lock(&ctx->mutex)
5809 *
5810 * But since its the parent context it won't be the same instance.
5811 */
5812 mutex_lock(&child_ctx->mutex);
5813
5814 again:
5815 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5816 group_entry)
5817 __perf_event_exit_task(child_event, child_ctx, child);
5818
5819 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5820 group_entry)
5821 __perf_event_exit_task(child_event, child_ctx, child);
5822
5823 /*
5824 * If the last event was a group event, it will have appended all
5825 * its siblings to the list, but we obtained 'tmp' before that which
5826 * will still point to the list head terminating the iteration.
5827 */
5828 if (!list_empty(&child_ctx->pinned_groups) ||
5829 !list_empty(&child_ctx->flexible_groups))
5830 goto again;
5831
5832 mutex_unlock(&child_ctx->mutex);
5833
5834 put_ctx(child_ctx);
5835 }
5836
5837 /*
5838 * When a child task exits, feed back event values to parent events.
5839 */
5840 void perf_event_exit_task(struct task_struct *child)
5841 {
5842 int ctxn;
5843
5844 for_each_task_context_nr(ctxn)
5845 perf_event_exit_task_context(child, ctxn);
5846 }
5847
5848 static void perf_free_event(struct perf_event *event,
5849 struct perf_event_context *ctx)
5850 {
5851 struct perf_event *parent = event->parent;
5852
5853 if (WARN_ON_ONCE(!parent))
5854 return;
5855
5856 mutex_lock(&parent->child_mutex);
5857 list_del_init(&event->child_list);
5858 mutex_unlock(&parent->child_mutex);
5859
5860 fput(parent->filp);
5861
5862 perf_group_detach(event);
5863 list_del_event(event, ctx);
5864 free_event(event);
5865 }
5866
5867 /*
5868 * free an unexposed, unused context as created by inheritance by
5869 * perf_event_init_task below, used by fork() in case of fail.
5870 */
5871 void perf_event_free_task(struct task_struct *task)
5872 {
5873 struct perf_event_context *ctx;
5874 struct perf_event *event, *tmp;
5875 int ctxn;
5876
5877 for_each_task_context_nr(ctxn) {
5878 ctx = task->perf_event_ctxp[ctxn];
5879 if (!ctx)
5880 continue;
5881
5882 mutex_lock(&ctx->mutex);
5883 again:
5884 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5885 group_entry)
5886 perf_free_event(event, ctx);
5887
5888 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5889 group_entry)
5890 perf_free_event(event, ctx);
5891
5892 if (!list_empty(&ctx->pinned_groups) ||
5893 !list_empty(&ctx->flexible_groups))
5894 goto again;
5895
5896 mutex_unlock(&ctx->mutex);
5897
5898 put_ctx(ctx);
5899 }
5900 }
5901
5902 void perf_event_delayed_put(struct task_struct *task)
5903 {
5904 int ctxn;
5905
5906 for_each_task_context_nr(ctxn)
5907 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5908 }
5909
5910 /*
5911 * inherit a event from parent task to child task:
5912 */
5913 static struct perf_event *
5914 inherit_event(struct perf_event *parent_event,
5915 struct task_struct *parent,
5916 struct perf_event_context *parent_ctx,
5917 struct task_struct *child,
5918 struct perf_event *group_leader,
5919 struct perf_event_context *child_ctx)
5920 {
5921 struct perf_event *child_event;
5922 unsigned long flags;
5923
5924 /*
5925 * Instead of creating recursive hierarchies of events,
5926 * we link inherited events back to the original parent,
5927 * which has a filp for sure, which we use as the reference
5928 * count:
5929 */
5930 if (parent_event->parent)
5931 parent_event = parent_event->parent;
5932
5933 child_event = perf_event_alloc(&parent_event->attr,
5934 parent_event->cpu,
5935 group_leader, parent_event,
5936 NULL);
5937 if (IS_ERR(child_event))
5938 return child_event;
5939 get_ctx(child_ctx);
5940
5941 /*
5942 * Make the child state follow the state of the parent event,
5943 * not its attr.disabled bit. We hold the parent's mutex,
5944 * so we won't race with perf_event_{en, dis}able_family.
5945 */
5946 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5947 child_event->state = PERF_EVENT_STATE_INACTIVE;
5948 else
5949 child_event->state = PERF_EVENT_STATE_OFF;
5950
5951 if (parent_event->attr.freq) {
5952 u64 sample_period = parent_event->hw.sample_period;
5953 struct hw_perf_event *hwc = &child_event->hw;
5954
5955 hwc->sample_period = sample_period;
5956 hwc->last_period = sample_period;
5957
5958 local64_set(&hwc->period_left, sample_period);
5959 }
5960
5961 child_event->ctx = child_ctx;
5962 child_event->overflow_handler = parent_event->overflow_handler;
5963
5964 /*
5965 * Link it up in the child's context:
5966 */
5967 raw_spin_lock_irqsave(&child_ctx->lock, flags);
5968 add_event_to_ctx(child_event, child_ctx);
5969 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5970
5971 /*
5972 * Get a reference to the parent filp - we will fput it
5973 * when the child event exits. This is safe to do because
5974 * we are in the parent and we know that the filp still
5975 * exists and has a nonzero count:
5976 */
5977 atomic_long_inc(&parent_event->filp->f_count);
5978
5979 /*
5980 * Link this into the parent event's child list
5981 */
5982 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5983 mutex_lock(&parent_event->child_mutex);
5984 list_add_tail(&child_event->child_list, &parent_event->child_list);
5985 mutex_unlock(&parent_event->child_mutex);
5986
5987 return child_event;
5988 }
5989
5990 static int inherit_group(struct perf_event *parent_event,
5991 struct task_struct *parent,
5992 struct perf_event_context *parent_ctx,
5993 struct task_struct *child,
5994 struct perf_event_context *child_ctx)
5995 {
5996 struct perf_event *leader;
5997 struct perf_event *sub;
5998 struct perf_event *child_ctr;
5999
6000 leader = inherit_event(parent_event, parent, parent_ctx,
6001 child, NULL, child_ctx);
6002 if (IS_ERR(leader))
6003 return PTR_ERR(leader);
6004 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6005 child_ctr = inherit_event(sub, parent, parent_ctx,
6006 child, leader, child_ctx);
6007 if (IS_ERR(child_ctr))
6008 return PTR_ERR(child_ctr);
6009 }
6010 return 0;
6011 }
6012
6013 static int
6014 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6015 struct perf_event_context *parent_ctx,
6016 struct task_struct *child, int ctxn,
6017 int *inherited_all)
6018 {
6019 int ret;
6020 struct perf_event_context *child_ctx;
6021
6022 if (!event->attr.inherit) {
6023 *inherited_all = 0;
6024 return 0;
6025 }
6026
6027 child_ctx = child->perf_event_ctxp[ctxn];
6028 if (!child_ctx) {
6029 /*
6030 * This is executed from the parent task context, so
6031 * inherit events that have been marked for cloning.
6032 * First allocate and initialize a context for the
6033 * child.
6034 */
6035
6036 child_ctx = alloc_perf_context(event->pmu, child);
6037 if (!child_ctx)
6038 return -ENOMEM;
6039
6040 child->perf_event_ctxp[ctxn] = child_ctx;
6041 }
6042
6043 ret = inherit_group(event, parent, parent_ctx,
6044 child, child_ctx);
6045
6046 if (ret)
6047 *inherited_all = 0;
6048
6049 return ret;
6050 }
6051
6052 /*
6053 * Initialize the perf_event context in task_struct
6054 */
6055 int perf_event_init_context(struct task_struct *child, int ctxn)
6056 {
6057 struct perf_event_context *child_ctx, *parent_ctx;
6058 struct perf_event_context *cloned_ctx;
6059 struct perf_event *event;
6060 struct task_struct *parent = current;
6061 int inherited_all = 1;
6062 int ret = 0;
6063
6064 child->perf_event_ctxp[ctxn] = NULL;
6065
6066 mutex_init(&child->perf_event_mutex);
6067 INIT_LIST_HEAD(&child->perf_event_list);
6068
6069 if (likely(!parent->perf_event_ctxp[ctxn]))
6070 return 0;
6071
6072 /*
6073 * If the parent's context is a clone, pin it so it won't get
6074 * swapped under us.
6075 */
6076 parent_ctx = perf_pin_task_context(parent, ctxn);
6077
6078 /*
6079 * No need to check if parent_ctx != NULL here; since we saw
6080 * it non-NULL earlier, the only reason for it to become NULL
6081 * is if we exit, and since we're currently in the middle of
6082 * a fork we can't be exiting at the same time.
6083 */
6084
6085 /*
6086 * Lock the parent list. No need to lock the child - not PID
6087 * hashed yet and not running, so nobody can access it.
6088 */
6089 mutex_lock(&parent_ctx->mutex);
6090
6091 /*
6092 * We dont have to disable NMIs - we are only looking at
6093 * the list, not manipulating it:
6094 */
6095 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6096 ret = inherit_task_group(event, parent, parent_ctx,
6097 child, ctxn, &inherited_all);
6098 if (ret)
6099 break;
6100 }
6101
6102 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6103 ret = inherit_task_group(event, parent, parent_ctx,
6104 child, ctxn, &inherited_all);
6105 if (ret)
6106 break;
6107 }
6108
6109 child_ctx = child->perf_event_ctxp[ctxn];
6110
6111 if (child_ctx && inherited_all) {
6112 /*
6113 * Mark the child context as a clone of the parent
6114 * context, or of whatever the parent is a clone of.
6115 * Note that if the parent is a clone, it could get
6116 * uncloned at any point, but that doesn't matter
6117 * because the list of events and the generation
6118 * count can't have changed since we took the mutex.
6119 */
6120 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6121 if (cloned_ctx) {
6122 child_ctx->parent_ctx = cloned_ctx;
6123 child_ctx->parent_gen = parent_ctx->parent_gen;
6124 } else {
6125 child_ctx->parent_ctx = parent_ctx;
6126 child_ctx->parent_gen = parent_ctx->generation;
6127 }
6128 get_ctx(child_ctx->parent_ctx);
6129 }
6130
6131 mutex_unlock(&parent_ctx->mutex);
6132
6133 perf_unpin_context(parent_ctx);
6134
6135 return ret;
6136 }
6137
6138 /*
6139 * Initialize the perf_event context in task_struct
6140 */
6141 int perf_event_init_task(struct task_struct *child)
6142 {
6143 int ctxn, ret;
6144
6145 for_each_task_context_nr(ctxn) {
6146 ret = perf_event_init_context(child, ctxn);
6147 if (ret)
6148 return ret;
6149 }
6150
6151 return 0;
6152 }
6153
6154 static void __init perf_event_init_all_cpus(void)
6155 {
6156 struct swevent_htable *swhash;
6157 int cpu;
6158
6159 for_each_possible_cpu(cpu) {
6160 swhash = &per_cpu(swevent_htable, cpu);
6161 mutex_init(&swhash->hlist_mutex);
6162 }
6163 }
6164
6165 static void __cpuinit perf_event_init_cpu(int cpu)
6166 {
6167 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6168
6169 mutex_lock(&swhash->hlist_mutex);
6170 if (swhash->hlist_refcount > 0) {
6171 struct swevent_hlist *hlist;
6172
6173 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6174 WARN_ON(!hlist);
6175 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6176 }
6177 mutex_unlock(&swhash->hlist_mutex);
6178 }
6179
6180 #ifdef CONFIG_HOTPLUG_CPU
6181 static void __perf_event_exit_context(void *__info)
6182 {
6183 struct perf_event_context *ctx = __info;
6184 struct perf_event *event, *tmp;
6185
6186 perf_pmu_rotate_stop(ctx->pmu);
6187
6188 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6189 __perf_event_remove_from_context(event);
6190 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6191 __perf_event_remove_from_context(event);
6192 }
6193
6194 static void perf_event_exit_cpu_context(int cpu)
6195 {
6196 struct perf_event_context *ctx;
6197 struct pmu *pmu;
6198 int idx;
6199
6200 idx = srcu_read_lock(&pmus_srcu);
6201 list_for_each_entry_rcu(pmu, &pmus, entry) {
6202 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6203
6204 mutex_lock(&ctx->mutex);
6205 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6206 mutex_unlock(&ctx->mutex);
6207 }
6208 srcu_read_unlock(&pmus_srcu, idx);
6209
6210 }
6211
6212 static void perf_event_exit_cpu(int cpu)
6213 {
6214 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6215
6216 mutex_lock(&swhash->hlist_mutex);
6217 swevent_hlist_release(swhash);
6218 mutex_unlock(&swhash->hlist_mutex);
6219
6220 perf_event_exit_cpu_context(cpu);
6221 }
6222 #else
6223 static inline void perf_event_exit_cpu(int cpu) { }
6224 #endif
6225
6226 static int __cpuinit
6227 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6228 {
6229 unsigned int cpu = (long)hcpu;
6230
6231 switch (action & ~CPU_TASKS_FROZEN) {
6232
6233 case CPU_UP_PREPARE:
6234 case CPU_DOWN_FAILED:
6235 perf_event_init_cpu(cpu);
6236 break;
6237
6238 case CPU_UP_CANCELED:
6239 case CPU_DOWN_PREPARE:
6240 perf_event_exit_cpu(cpu);
6241 break;
6242
6243 default:
6244 break;
6245 }
6246
6247 return NOTIFY_OK;
6248 }
6249
6250 void __init perf_event_init(void)
6251 {
6252 perf_event_init_all_cpus();
6253 init_srcu_struct(&pmus_srcu);
6254 perf_pmu_register(&perf_swevent);
6255 perf_pmu_register(&perf_cpu_clock);
6256 perf_pmu_register(&perf_task_clock);
6257 perf_tp_register();
6258 perf_cpu_notifier(perf_cpu_notify);
6259 }
This page took 0.649477 seconds and 6 git commands to generate.