Merge commit 'v2.6.37' into next
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59 * max perf event sample rate
60 */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void) { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69 return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 if (!(*count)++)
76 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81 int *count = this_cpu_ptr(pmu->pmu_disable_count);
82 if (!--(*count))
83 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
92 */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96 struct list_head *head = &__get_cpu_var(rotation_list);
97
98 WARN_ON(!irqs_disabled());
99
100 if (list_empty(&cpuctx->rotation_list))
101 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_event_context *ctx;
112
113 ctx = container_of(head, struct perf_event_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130 if (ctx->parent_ctx) {
131 put_ctx(ctx->parent_ctx);
132 ctx->parent_ctx = NULL;
133 }
134 }
135
136 /*
137 * If we inherit events we want to return the parent event id
138 * to userspace.
139 */
140 static u64 primary_event_id(struct perf_event *event)
141 {
142 u64 id = event->id;
143
144 if (event->parent)
145 id = event->parent->id;
146
147 return id;
148 }
149
150 /*
151 * Get the perf_event_context for a task and lock it.
152 * This has to cope with with the fact that until it is locked,
153 * the context could get moved to another task.
154 */
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 {
158 struct perf_event_context *ctx;
159
160 rcu_read_lock();
161 retry:
162 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163 if (ctx) {
164 /*
165 * If this context is a clone of another, it might
166 * get swapped for another underneath us by
167 * perf_event_task_sched_out, though the
168 * rcu_read_lock() protects us from any context
169 * getting freed. Lock the context and check if it
170 * got swapped before we could get the lock, and retry
171 * if so. If we locked the right context, then it
172 * can't get swapped on us any more.
173 */
174 raw_spin_lock_irqsave(&ctx->lock, *flags);
175 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 goto retry;
178 }
179
180 if (!atomic_inc_not_zero(&ctx->refcount)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 ctx = NULL;
183 }
184 }
185 rcu_read_unlock();
186 return ctx;
187 }
188
189 /*
190 * Get the context for a task and increment its pin_count so it
191 * can't get swapped to another task. This also increments its
192 * reference count so that the context can't get freed.
193 */
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
196 {
197 struct perf_event_context *ctx;
198 unsigned long flags;
199
200 ctx = perf_lock_task_context(task, ctxn, &flags);
201 if (ctx) {
202 ++ctx->pin_count;
203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204 }
205 return ctx;
206 }
207
208 static void perf_unpin_context(struct perf_event_context *ctx)
209 {
210 unsigned long flags;
211
212 raw_spin_lock_irqsave(&ctx->lock, flags);
213 --ctx->pin_count;
214 raw_spin_unlock_irqrestore(&ctx->lock, flags);
215 put_ctx(ctx);
216 }
217
218 static inline u64 perf_clock(void)
219 {
220 return local_clock();
221 }
222
223 /*
224 * Update the record of the current time in a context.
225 */
226 static void update_context_time(struct perf_event_context *ctx)
227 {
228 u64 now = perf_clock();
229
230 ctx->time += now - ctx->timestamp;
231 ctx->timestamp = now;
232 }
233
234 /*
235 * Update the total_time_enabled and total_time_running fields for a event.
236 */
237 static void update_event_times(struct perf_event *event)
238 {
239 struct perf_event_context *ctx = event->ctx;
240 u64 run_end;
241
242 if (event->state < PERF_EVENT_STATE_INACTIVE ||
243 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244 return;
245
246 if (ctx->is_active)
247 run_end = ctx->time;
248 else
249 run_end = event->tstamp_stopped;
250
251 event->total_time_enabled = run_end - event->tstamp_enabled;
252
253 if (event->state == PERF_EVENT_STATE_INACTIVE)
254 run_end = event->tstamp_stopped;
255 else
256 run_end = ctx->time;
257
258 event->total_time_running = run_end - event->tstamp_running;
259 }
260
261 /*
262 * Update total_time_enabled and total_time_running for all events in a group.
263 */
264 static void update_group_times(struct perf_event *leader)
265 {
266 struct perf_event *event;
267
268 update_event_times(leader);
269 list_for_each_entry(event, &leader->sibling_list, group_entry)
270 update_event_times(event);
271 }
272
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 {
276 if (event->attr.pinned)
277 return &ctx->pinned_groups;
278 else
279 return &ctx->flexible_groups;
280 }
281
282 /*
283 * Add a event from the lists for its context.
284 * Must be called with ctx->mutex and ctx->lock held.
285 */
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 {
289 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290 event->attach_state |= PERF_ATTACH_CONTEXT;
291
292 /*
293 * If we're a stand alone event or group leader, we go to the context
294 * list, group events are kept attached to the group so that
295 * perf_group_detach can, at all times, locate all siblings.
296 */
297 if (event->group_leader == event) {
298 struct list_head *list;
299
300 if (is_software_event(event))
301 event->group_flags |= PERF_GROUP_SOFTWARE;
302
303 list = ctx_group_list(event, ctx);
304 list_add_tail(&event->group_entry, list);
305 }
306
307 list_add_rcu(&event->event_entry, &ctx->event_list);
308 if (!ctx->nr_events)
309 perf_pmu_rotate_start(ctx->pmu);
310 ctx->nr_events++;
311 if (event->attr.inherit_stat)
312 ctx->nr_stat++;
313 }
314
315 static void perf_group_attach(struct perf_event *event)
316 {
317 struct perf_event *group_leader = event->group_leader;
318
319 /*
320 * We can have double attach due to group movement in perf_event_open.
321 */
322 if (event->attach_state & PERF_ATTACH_GROUP)
323 return;
324
325 event->attach_state |= PERF_ATTACH_GROUP;
326
327 if (group_leader == event)
328 return;
329
330 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331 !is_software_event(event))
332 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333
334 list_add_tail(&event->group_entry, &group_leader->sibling_list);
335 group_leader->nr_siblings++;
336 }
337
338 /*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342 static void
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344 {
345 /*
346 * We can have double detach due to exit/hot-unplug + close.
347 */
348 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349 return;
350
351 event->attach_state &= ~PERF_ATTACH_CONTEXT;
352
353 ctx->nr_events--;
354 if (event->attr.inherit_stat)
355 ctx->nr_stat--;
356
357 list_del_rcu(&event->event_entry);
358
359 if (event->group_leader == event)
360 list_del_init(&event->group_entry);
361
362 update_group_times(event);
363
364 /*
365 * If event was in error state, then keep it
366 * that way, otherwise bogus counts will be
367 * returned on read(). The only way to get out
368 * of error state is by explicit re-enabling
369 * of the event
370 */
371 if (event->state > PERF_EVENT_STATE_OFF)
372 event->state = PERF_EVENT_STATE_OFF;
373 }
374
375 static void perf_group_detach(struct perf_event *event)
376 {
377 struct perf_event *sibling, *tmp;
378 struct list_head *list = NULL;
379
380 /*
381 * We can have double detach due to exit/hot-unplug + close.
382 */
383 if (!(event->attach_state & PERF_ATTACH_GROUP))
384 return;
385
386 event->attach_state &= ~PERF_ATTACH_GROUP;
387
388 /*
389 * If this is a sibling, remove it from its group.
390 */
391 if (event->group_leader != event) {
392 list_del_init(&event->group_entry);
393 event->group_leader->nr_siblings--;
394 return;
395 }
396
397 if (!list_empty(&event->group_entry))
398 list = &event->group_entry;
399
400 /*
401 * If this was a group event with sibling events then
402 * upgrade the siblings to singleton events by adding them
403 * to whatever list we are on.
404 */
405 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 if (list)
407 list_move_tail(&sibling->group_entry, list);
408 sibling->group_leader = sibling;
409
410 /* Inherit group flags from the previous leader */
411 sibling->group_flags = event->group_flags;
412 }
413 }
414
415 static inline int
416 event_filter_match(struct perf_event *event)
417 {
418 return event->cpu == -1 || event->cpu == smp_processor_id();
419 }
420
421 static void
422 event_sched_out(struct perf_event *event,
423 struct perf_cpu_context *cpuctx,
424 struct perf_event_context *ctx)
425 {
426 u64 delta;
427 /*
428 * An event which could not be activated because of
429 * filter mismatch still needs to have its timings
430 * maintained, otherwise bogus information is return
431 * via read() for time_enabled, time_running:
432 */
433 if (event->state == PERF_EVENT_STATE_INACTIVE
434 && !event_filter_match(event)) {
435 delta = ctx->time - event->tstamp_stopped;
436 event->tstamp_running += delta;
437 event->tstamp_stopped = ctx->time;
438 }
439
440 if (event->state != PERF_EVENT_STATE_ACTIVE)
441 return;
442
443 event->state = PERF_EVENT_STATE_INACTIVE;
444 if (event->pending_disable) {
445 event->pending_disable = 0;
446 event->state = PERF_EVENT_STATE_OFF;
447 }
448 event->tstamp_stopped = ctx->time;
449 event->pmu->del(event, 0);
450 event->oncpu = -1;
451
452 if (!is_software_event(event))
453 cpuctx->active_oncpu--;
454 ctx->nr_active--;
455 if (event->attr.exclusive || !cpuctx->active_oncpu)
456 cpuctx->exclusive = 0;
457 }
458
459 static void
460 group_sched_out(struct perf_event *group_event,
461 struct perf_cpu_context *cpuctx,
462 struct perf_event_context *ctx)
463 {
464 struct perf_event *event;
465 int state = group_event->state;
466
467 event_sched_out(group_event, cpuctx, ctx);
468
469 /*
470 * Schedule out siblings (if any):
471 */
472 list_for_each_entry(event, &group_event->sibling_list, group_entry)
473 event_sched_out(event, cpuctx, ctx);
474
475 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476 cpuctx->exclusive = 0;
477 }
478
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
481 {
482 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
483 }
484
485 /*
486 * Cross CPU call to remove a performance event
487 *
488 * We disable the event on the hardware level first. After that we
489 * remove it from the context list.
490 */
491 static void __perf_event_remove_from_context(void *info)
492 {
493 struct perf_event *event = info;
494 struct perf_event_context *ctx = event->ctx;
495 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
496
497 /*
498 * If this is a task context, we need to check whether it is
499 * the current task context of this cpu. If not it has been
500 * scheduled out before the smp call arrived.
501 */
502 if (ctx->task && cpuctx->task_ctx != ctx)
503 return;
504
505 raw_spin_lock(&ctx->lock);
506
507 event_sched_out(event, cpuctx, ctx);
508
509 list_del_event(event, ctx);
510
511 raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516 * Remove the event from a task's (or a CPU's) list of events.
517 *
518 * Must be called with ctx->mutex held.
519 *
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
522 *
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
529 */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
534
535 if (!task) {
536 /*
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
539 */
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
542 event, 1);
543 return;
544 }
545
546 retry:
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
548 event);
549
550 raw_spin_lock_irq(&ctx->lock);
551 /*
552 * If the context is active we need to retry the smp call.
553 */
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
556 goto retry;
557 }
558
559 /*
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
562 * succeed.
563 */
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570 * Cross CPU call to disable a performance event
571 */
572 static void __perf_event_disable(void *info)
573 {
574 struct perf_event *event = info;
575 struct perf_event_context *ctx = event->ctx;
576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
577
578 /*
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
581 */
582 if (ctx->task && cpuctx->task_ctx != ctx)
583 return;
584
585 raw_spin_lock(&ctx->lock);
586
587 /*
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
590 */
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
596 else
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
601 raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605 * Disable a event.
606 *
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
616 */
617 void perf_event_disable(struct perf_event *event)
618 {
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
621
622 if (!task) {
623 /*
624 * Disable the event on the cpu that it's on
625 */
626 smp_call_function_single(event->cpu, __perf_event_disable,
627 event, 1);
628 return;
629 }
630
631 retry:
632 task_oncpu_function_call(task, __perf_event_disable, event);
633
634 raw_spin_lock_irq(&ctx->lock);
635 /*
636 * If the event is still active, we need to retry the cross-call.
637 */
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
640 goto retry;
641 }
642
643 /*
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
646 */
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
650 }
651
652 raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
659 {
660 if (event->state <= PERF_EVENT_STATE_OFF)
661 return 0;
662
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
665 /*
666 * The new state must be visible before we turn it on in the hardware:
667 */
668 smp_wmb();
669
670 if (event->pmu->add(event, PERF_EF_START)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
672 event->oncpu = -1;
673 return -EAGAIN;
674 }
675
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678 event->shadow_ctx_time = ctx->time - ctx->timestamp;
679
680 if (!is_software_event(event))
681 cpuctx->active_oncpu++;
682 ctx->nr_active++;
683
684 if (event->attr.exclusive)
685 cpuctx->exclusive = 1;
686
687 return 0;
688 }
689
690 static int
691 group_sched_in(struct perf_event *group_event,
692 struct perf_cpu_context *cpuctx,
693 struct perf_event_context *ctx)
694 {
695 struct perf_event *event, *partial_group = NULL;
696 struct pmu *pmu = group_event->pmu;
697 u64 now = ctx->time;
698 bool simulate = false;
699
700 if (group_event->state == PERF_EVENT_STATE_OFF)
701 return 0;
702
703 pmu->start_txn(pmu);
704
705 if (event_sched_in(group_event, cpuctx, ctx)) {
706 pmu->cancel_txn(pmu);
707 return -EAGAIN;
708 }
709
710 /*
711 * Schedule in siblings as one group (if any):
712 */
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event_sched_in(event, cpuctx, ctx)) {
715 partial_group = event;
716 goto group_error;
717 }
718 }
719
720 if (!pmu->commit_txn(pmu))
721 return 0;
722
723 group_error:
724 /*
725 * Groups can be scheduled in as one unit only, so undo any
726 * partial group before returning:
727 * The events up to the failed event are scheduled out normally,
728 * tstamp_stopped will be updated.
729 *
730 * The failed events and the remaining siblings need to have
731 * their timings updated as if they had gone thru event_sched_in()
732 * and event_sched_out(). This is required to get consistent timings
733 * across the group. This also takes care of the case where the group
734 * could never be scheduled by ensuring tstamp_stopped is set to mark
735 * the time the event was actually stopped, such that time delta
736 * calculation in update_event_times() is correct.
737 */
738 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739 if (event == partial_group)
740 simulate = true;
741
742 if (simulate) {
743 event->tstamp_running += now - event->tstamp_stopped;
744 event->tstamp_stopped = now;
745 } else {
746 event_sched_out(event, cpuctx, ctx);
747 }
748 }
749 event_sched_out(group_event, cpuctx, ctx);
750
751 pmu->cancel_txn(pmu);
752
753 return -EAGAIN;
754 }
755
756 /*
757 * Work out whether we can put this event group on the CPU now.
758 */
759 static int group_can_go_on(struct perf_event *event,
760 struct perf_cpu_context *cpuctx,
761 int can_add_hw)
762 {
763 /*
764 * Groups consisting entirely of software events can always go on.
765 */
766 if (event->group_flags & PERF_GROUP_SOFTWARE)
767 return 1;
768 /*
769 * If an exclusive group is already on, no other hardware
770 * events can go on.
771 */
772 if (cpuctx->exclusive)
773 return 0;
774 /*
775 * If this group is exclusive and there are already
776 * events on the CPU, it can't go on.
777 */
778 if (event->attr.exclusive && cpuctx->active_oncpu)
779 return 0;
780 /*
781 * Otherwise, try to add it if all previous groups were able
782 * to go on.
783 */
784 return can_add_hw;
785 }
786
787 static void add_event_to_ctx(struct perf_event *event,
788 struct perf_event_context *ctx)
789 {
790 list_add_event(event, ctx);
791 perf_group_attach(event);
792 event->tstamp_enabled = ctx->time;
793 event->tstamp_running = ctx->time;
794 event->tstamp_stopped = ctx->time;
795 }
796
797 /*
798 * Cross CPU call to install and enable a performance event
799 *
800 * Must be called with ctx->mutex held
801 */
802 static void __perf_install_in_context(void *info)
803 {
804 struct perf_event *event = info;
805 struct perf_event_context *ctx = event->ctx;
806 struct perf_event *leader = event->group_leader;
807 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808 int err;
809
810 /*
811 * If this is a task context, we need to check whether it is
812 * the current task context of this cpu. If not it has been
813 * scheduled out before the smp call arrived.
814 * Or possibly this is the right context but it isn't
815 * on this cpu because it had no events.
816 */
817 if (ctx->task && cpuctx->task_ctx != ctx) {
818 if (cpuctx->task_ctx || ctx->task != current)
819 return;
820 cpuctx->task_ctx = ctx;
821 }
822
823 raw_spin_lock(&ctx->lock);
824 ctx->is_active = 1;
825 update_context_time(ctx);
826
827 add_event_to_ctx(event, ctx);
828
829 if (event->cpu != -1 && event->cpu != smp_processor_id())
830 goto unlock;
831
832 /*
833 * Don't put the event on if it is disabled or if
834 * it is in a group and the group isn't on.
835 */
836 if (event->state != PERF_EVENT_STATE_INACTIVE ||
837 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838 goto unlock;
839
840 /*
841 * An exclusive event can't go on if there are already active
842 * hardware events, and no hardware event can go on if there
843 * is already an exclusive event on.
844 */
845 if (!group_can_go_on(event, cpuctx, 1))
846 err = -EEXIST;
847 else
848 err = event_sched_in(event, cpuctx, ctx);
849
850 if (err) {
851 /*
852 * This event couldn't go on. If it is in a group
853 * then we have to pull the whole group off.
854 * If the event group is pinned then put it in error state.
855 */
856 if (leader != event)
857 group_sched_out(leader, cpuctx, ctx);
858 if (leader->attr.pinned) {
859 update_group_times(leader);
860 leader->state = PERF_EVENT_STATE_ERROR;
861 }
862 }
863
864 unlock:
865 raw_spin_unlock(&ctx->lock);
866 }
867
868 /*
869 * Attach a performance event to a context
870 *
871 * First we add the event to the list with the hardware enable bit
872 * in event->hw_config cleared.
873 *
874 * If the event is attached to a task which is on a CPU we use a smp
875 * call to enable it in the task context. The task might have been
876 * scheduled away, but we check this in the smp call again.
877 *
878 * Must be called with ctx->mutex held.
879 */
880 static void
881 perf_install_in_context(struct perf_event_context *ctx,
882 struct perf_event *event,
883 int cpu)
884 {
885 struct task_struct *task = ctx->task;
886
887 event->ctx = ctx;
888
889 if (!task) {
890 /*
891 * Per cpu events are installed via an smp call and
892 * the install is always successful.
893 */
894 smp_call_function_single(cpu, __perf_install_in_context,
895 event, 1);
896 return;
897 }
898
899 retry:
900 task_oncpu_function_call(task, __perf_install_in_context,
901 event);
902
903 raw_spin_lock_irq(&ctx->lock);
904 /*
905 * we need to retry the smp call.
906 */
907 if (ctx->is_active && list_empty(&event->group_entry)) {
908 raw_spin_unlock_irq(&ctx->lock);
909 goto retry;
910 }
911
912 /*
913 * The lock prevents that this context is scheduled in so we
914 * can add the event safely, if it the call above did not
915 * succeed.
916 */
917 if (list_empty(&event->group_entry))
918 add_event_to_ctx(event, ctx);
919 raw_spin_unlock_irq(&ctx->lock);
920 }
921
922 /*
923 * Put a event into inactive state and update time fields.
924 * Enabling the leader of a group effectively enables all
925 * the group members that aren't explicitly disabled, so we
926 * have to update their ->tstamp_enabled also.
927 * Note: this works for group members as well as group leaders
928 * since the non-leader members' sibling_lists will be empty.
929 */
930 static void __perf_event_mark_enabled(struct perf_event *event,
931 struct perf_event_context *ctx)
932 {
933 struct perf_event *sub;
934
935 event->state = PERF_EVENT_STATE_INACTIVE;
936 event->tstamp_enabled = ctx->time - event->total_time_enabled;
937 list_for_each_entry(sub, &event->sibling_list, group_entry) {
938 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939 sub->tstamp_enabled =
940 ctx->time - sub->total_time_enabled;
941 }
942 }
943 }
944
945 /*
946 * Cross CPU call to enable a performance event
947 */
948 static void __perf_event_enable(void *info)
949 {
950 struct perf_event *event = info;
951 struct perf_event_context *ctx = event->ctx;
952 struct perf_event *leader = event->group_leader;
953 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954 int err;
955
956 /*
957 * If this is a per-task event, need to check whether this
958 * event's task is the current task on this cpu.
959 */
960 if (ctx->task && cpuctx->task_ctx != ctx) {
961 if (cpuctx->task_ctx || ctx->task != current)
962 return;
963 cpuctx->task_ctx = ctx;
964 }
965
966 raw_spin_lock(&ctx->lock);
967 ctx->is_active = 1;
968 update_context_time(ctx);
969
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto unlock;
972 __perf_event_mark_enabled(event, ctx);
973
974 if (event->cpu != -1 && event->cpu != smp_processor_id())
975 goto unlock;
976
977 /*
978 * If the event is in a group and isn't the group leader,
979 * then don't put it on unless the group is on.
980 */
981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982 goto unlock;
983
984 if (!group_can_go_on(event, cpuctx, 1)) {
985 err = -EEXIST;
986 } else {
987 if (event == leader)
988 err = group_sched_in(event, cpuctx, ctx);
989 else
990 err = event_sched_in(event, cpuctx, ctx);
991 }
992
993 if (err) {
994 /*
995 * If this event can't go on and it's part of a
996 * group, then the whole group has to come off.
997 */
998 if (leader != event)
999 group_sched_out(leader, cpuctx, ctx);
1000 if (leader->attr.pinned) {
1001 update_group_times(leader);
1002 leader->state = PERF_EVENT_STATE_ERROR;
1003 }
1004 }
1005
1006 unlock:
1007 raw_spin_unlock(&ctx->lock);
1008 }
1009
1010 /*
1011 * Enable a event.
1012 *
1013 * If event->ctx is a cloned context, callers must make sure that
1014 * every task struct that event->ctx->task could possibly point to
1015 * remains valid. This condition is satisfied when called through
1016 * perf_event_for_each_child or perf_event_for_each as described
1017 * for perf_event_disable.
1018 */
1019 void perf_event_enable(struct perf_event *event)
1020 {
1021 struct perf_event_context *ctx = event->ctx;
1022 struct task_struct *task = ctx->task;
1023
1024 if (!task) {
1025 /*
1026 * Enable the event on the cpu that it's on
1027 */
1028 smp_call_function_single(event->cpu, __perf_event_enable,
1029 event, 1);
1030 return;
1031 }
1032
1033 raw_spin_lock_irq(&ctx->lock);
1034 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035 goto out;
1036
1037 /*
1038 * If the event is in error state, clear that first.
1039 * That way, if we see the event in error state below, we
1040 * know that it has gone back into error state, as distinct
1041 * from the task having been scheduled away before the
1042 * cross-call arrived.
1043 */
1044 if (event->state == PERF_EVENT_STATE_ERROR)
1045 event->state = PERF_EVENT_STATE_OFF;
1046
1047 retry:
1048 raw_spin_unlock_irq(&ctx->lock);
1049 task_oncpu_function_call(task, __perf_event_enable, event);
1050
1051 raw_spin_lock_irq(&ctx->lock);
1052
1053 /*
1054 * If the context is active and the event is still off,
1055 * we need to retry the cross-call.
1056 */
1057 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058 goto retry;
1059
1060 /*
1061 * Since we have the lock this context can't be scheduled
1062 * in, so we can change the state safely.
1063 */
1064 if (event->state == PERF_EVENT_STATE_OFF)
1065 __perf_event_mark_enabled(event, ctx);
1066
1067 out:
1068 raw_spin_unlock_irq(&ctx->lock);
1069 }
1070
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1072 {
1073 /*
1074 * not supported on inherited events
1075 */
1076 if (event->attr.inherit)
1077 return -EINVAL;
1078
1079 atomic_add(refresh, &event->event_limit);
1080 perf_event_enable(event);
1081
1082 return 0;
1083 }
1084
1085 enum event_type_t {
1086 EVENT_FLEXIBLE = 0x1,
1087 EVENT_PINNED = 0x2,
1088 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1089 };
1090
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092 struct perf_cpu_context *cpuctx,
1093 enum event_type_t event_type)
1094 {
1095 struct perf_event *event;
1096
1097 raw_spin_lock(&ctx->lock);
1098 perf_pmu_disable(ctx->pmu);
1099 ctx->is_active = 0;
1100 if (likely(!ctx->nr_events))
1101 goto out;
1102 update_context_time(ctx);
1103
1104 if (!ctx->nr_active)
1105 goto out;
1106
1107 if (event_type & EVENT_PINNED) {
1108 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109 group_sched_out(event, cpuctx, ctx);
1110 }
1111
1112 if (event_type & EVENT_FLEXIBLE) {
1113 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114 group_sched_out(event, cpuctx, ctx);
1115 }
1116 out:
1117 perf_pmu_enable(ctx->pmu);
1118 raw_spin_unlock(&ctx->lock);
1119 }
1120
1121 /*
1122 * Test whether two contexts are equivalent, i.e. whether they
1123 * have both been cloned from the same version of the same context
1124 * and they both have the same number of enabled events.
1125 * If the number of enabled events is the same, then the set
1126 * of enabled events should be the same, because these are both
1127 * inherited contexts, therefore we can't access individual events
1128 * in them directly with an fd; we can only enable/disable all
1129 * events via prctl, or enable/disable all events in a family
1130 * via ioctl, which will have the same effect on both contexts.
1131 */
1132 static int context_equiv(struct perf_event_context *ctx1,
1133 struct perf_event_context *ctx2)
1134 {
1135 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136 && ctx1->parent_gen == ctx2->parent_gen
1137 && !ctx1->pin_count && !ctx2->pin_count;
1138 }
1139
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141 struct perf_event *next_event)
1142 {
1143 u64 value;
1144
1145 if (!event->attr.inherit_stat)
1146 return;
1147
1148 /*
1149 * Update the event value, we cannot use perf_event_read()
1150 * because we're in the middle of a context switch and have IRQs
1151 * disabled, which upsets smp_call_function_single(), however
1152 * we know the event must be on the current CPU, therefore we
1153 * don't need to use it.
1154 */
1155 switch (event->state) {
1156 case PERF_EVENT_STATE_ACTIVE:
1157 event->pmu->read(event);
1158 /* fall-through */
1159
1160 case PERF_EVENT_STATE_INACTIVE:
1161 update_event_times(event);
1162 break;
1163
1164 default:
1165 break;
1166 }
1167
1168 /*
1169 * In order to keep per-task stats reliable we need to flip the event
1170 * values when we flip the contexts.
1171 */
1172 value = local64_read(&next_event->count);
1173 value = local64_xchg(&event->count, value);
1174 local64_set(&next_event->count, value);
1175
1176 swap(event->total_time_enabled, next_event->total_time_enabled);
1177 swap(event->total_time_running, next_event->total_time_running);
1178
1179 /*
1180 * Since we swizzled the values, update the user visible data too.
1181 */
1182 perf_event_update_userpage(event);
1183 perf_event_update_userpage(next_event);
1184 }
1185
1186 #define list_next_entry(pos, member) \
1187 list_entry(pos->member.next, typeof(*pos), member)
1188
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190 struct perf_event_context *next_ctx)
1191 {
1192 struct perf_event *event, *next_event;
1193
1194 if (!ctx->nr_stat)
1195 return;
1196
1197 update_context_time(ctx);
1198
1199 event = list_first_entry(&ctx->event_list,
1200 struct perf_event, event_entry);
1201
1202 next_event = list_first_entry(&next_ctx->event_list,
1203 struct perf_event, event_entry);
1204
1205 while (&event->event_entry != &ctx->event_list &&
1206 &next_event->event_entry != &next_ctx->event_list) {
1207
1208 __perf_event_sync_stat(event, next_event);
1209
1210 event = list_next_entry(event, event_entry);
1211 next_event = list_next_entry(next_event, event_entry);
1212 }
1213 }
1214
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216 struct task_struct *next)
1217 {
1218 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219 struct perf_event_context *next_ctx;
1220 struct perf_event_context *parent;
1221 struct perf_cpu_context *cpuctx;
1222 int do_switch = 1;
1223
1224 if (likely(!ctx))
1225 return;
1226
1227 cpuctx = __get_cpu_context(ctx);
1228 if (!cpuctx->task_ctx)
1229 return;
1230
1231 rcu_read_lock();
1232 parent = rcu_dereference(ctx->parent_ctx);
1233 next_ctx = next->perf_event_ctxp[ctxn];
1234 if (parent && next_ctx &&
1235 rcu_dereference(next_ctx->parent_ctx) == parent) {
1236 /*
1237 * Looks like the two contexts are clones, so we might be
1238 * able to optimize the context switch. We lock both
1239 * contexts and check that they are clones under the
1240 * lock (including re-checking that neither has been
1241 * uncloned in the meantime). It doesn't matter which
1242 * order we take the locks because no other cpu could
1243 * be trying to lock both of these tasks.
1244 */
1245 raw_spin_lock(&ctx->lock);
1246 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247 if (context_equiv(ctx, next_ctx)) {
1248 /*
1249 * XXX do we need a memory barrier of sorts
1250 * wrt to rcu_dereference() of perf_event_ctxp
1251 */
1252 task->perf_event_ctxp[ctxn] = next_ctx;
1253 next->perf_event_ctxp[ctxn] = ctx;
1254 ctx->task = next;
1255 next_ctx->task = task;
1256 do_switch = 0;
1257
1258 perf_event_sync_stat(ctx, next_ctx);
1259 }
1260 raw_spin_unlock(&next_ctx->lock);
1261 raw_spin_unlock(&ctx->lock);
1262 }
1263 rcu_read_unlock();
1264
1265 if (do_switch) {
1266 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267 cpuctx->task_ctx = NULL;
1268 }
1269 }
1270
1271 #define for_each_task_context_nr(ctxn) \
1272 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1273
1274 /*
1275 * Called from scheduler to remove the events of the current task,
1276 * with interrupts disabled.
1277 *
1278 * We stop each event and update the event value in event->count.
1279 *
1280 * This does not protect us against NMI, but disable()
1281 * sets the disabled bit in the control field of event _before_
1282 * accessing the event control register. If a NMI hits, then it will
1283 * not restart the event.
1284 */
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286 struct task_struct *next)
1287 {
1288 int ctxn;
1289
1290 for_each_task_context_nr(ctxn)
1291 perf_event_context_sched_out(task, ctxn, next);
1292 }
1293
1294 static void task_ctx_sched_out(struct perf_event_context *ctx,
1295 enum event_type_t event_type)
1296 {
1297 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1298
1299 if (!cpuctx->task_ctx)
1300 return;
1301
1302 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1303 return;
1304
1305 ctx_sched_out(ctx, cpuctx, event_type);
1306 cpuctx->task_ctx = NULL;
1307 }
1308
1309 /*
1310 * Called with IRQs disabled
1311 */
1312 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1313 enum event_type_t event_type)
1314 {
1315 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1316 }
1317
1318 static void
1319 ctx_pinned_sched_in(struct perf_event_context *ctx,
1320 struct perf_cpu_context *cpuctx)
1321 {
1322 struct perf_event *event;
1323
1324 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1325 if (event->state <= PERF_EVENT_STATE_OFF)
1326 continue;
1327 if (event->cpu != -1 && event->cpu != smp_processor_id())
1328 continue;
1329
1330 if (group_can_go_on(event, cpuctx, 1))
1331 group_sched_in(event, cpuctx, ctx);
1332
1333 /*
1334 * If this pinned group hasn't been scheduled,
1335 * put it in error state.
1336 */
1337 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1338 update_group_times(event);
1339 event->state = PERF_EVENT_STATE_ERROR;
1340 }
1341 }
1342 }
1343
1344 static void
1345 ctx_flexible_sched_in(struct perf_event_context *ctx,
1346 struct perf_cpu_context *cpuctx)
1347 {
1348 struct perf_event *event;
1349 int can_add_hw = 1;
1350
1351 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1352 /* Ignore events in OFF or ERROR state */
1353 if (event->state <= PERF_EVENT_STATE_OFF)
1354 continue;
1355 /*
1356 * Listen to the 'cpu' scheduling filter constraint
1357 * of events:
1358 */
1359 if (event->cpu != -1 && event->cpu != smp_processor_id())
1360 continue;
1361
1362 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1363 if (group_sched_in(event, cpuctx, ctx))
1364 can_add_hw = 0;
1365 }
1366 }
1367 }
1368
1369 static void
1370 ctx_sched_in(struct perf_event_context *ctx,
1371 struct perf_cpu_context *cpuctx,
1372 enum event_type_t event_type)
1373 {
1374 raw_spin_lock(&ctx->lock);
1375 ctx->is_active = 1;
1376 if (likely(!ctx->nr_events))
1377 goto out;
1378
1379 ctx->timestamp = perf_clock();
1380
1381 /*
1382 * First go through the list and put on any pinned groups
1383 * in order to give them the best chance of going on.
1384 */
1385 if (event_type & EVENT_PINNED)
1386 ctx_pinned_sched_in(ctx, cpuctx);
1387
1388 /* Then walk through the lower prio flexible groups */
1389 if (event_type & EVENT_FLEXIBLE)
1390 ctx_flexible_sched_in(ctx, cpuctx);
1391
1392 out:
1393 raw_spin_unlock(&ctx->lock);
1394 }
1395
1396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1397 enum event_type_t event_type)
1398 {
1399 struct perf_event_context *ctx = &cpuctx->ctx;
1400
1401 ctx_sched_in(ctx, cpuctx, event_type);
1402 }
1403
1404 static void task_ctx_sched_in(struct perf_event_context *ctx,
1405 enum event_type_t event_type)
1406 {
1407 struct perf_cpu_context *cpuctx;
1408
1409 cpuctx = __get_cpu_context(ctx);
1410 if (cpuctx->task_ctx == ctx)
1411 return;
1412
1413 ctx_sched_in(ctx, cpuctx, event_type);
1414 cpuctx->task_ctx = ctx;
1415 }
1416
1417 void perf_event_context_sched_in(struct perf_event_context *ctx)
1418 {
1419 struct perf_cpu_context *cpuctx;
1420
1421 cpuctx = __get_cpu_context(ctx);
1422 if (cpuctx->task_ctx == ctx)
1423 return;
1424
1425 perf_pmu_disable(ctx->pmu);
1426 /*
1427 * We want to keep the following priority order:
1428 * cpu pinned (that don't need to move), task pinned,
1429 * cpu flexible, task flexible.
1430 */
1431 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1432
1433 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1434 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1435 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1436
1437 cpuctx->task_ctx = ctx;
1438
1439 /*
1440 * Since these rotations are per-cpu, we need to ensure the
1441 * cpu-context we got scheduled on is actually rotating.
1442 */
1443 perf_pmu_rotate_start(ctx->pmu);
1444 perf_pmu_enable(ctx->pmu);
1445 }
1446
1447 /*
1448 * Called from scheduler to add the events of the current task
1449 * with interrupts disabled.
1450 *
1451 * We restore the event value and then enable it.
1452 *
1453 * This does not protect us against NMI, but enable()
1454 * sets the enabled bit in the control field of event _before_
1455 * accessing the event control register. If a NMI hits, then it will
1456 * keep the event running.
1457 */
1458 void __perf_event_task_sched_in(struct task_struct *task)
1459 {
1460 struct perf_event_context *ctx;
1461 int ctxn;
1462
1463 for_each_task_context_nr(ctxn) {
1464 ctx = task->perf_event_ctxp[ctxn];
1465 if (likely(!ctx))
1466 continue;
1467
1468 perf_event_context_sched_in(ctx);
1469 }
1470 }
1471
1472 #define MAX_INTERRUPTS (~0ULL)
1473
1474 static void perf_log_throttle(struct perf_event *event, int enable);
1475
1476 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1477 {
1478 u64 frequency = event->attr.sample_freq;
1479 u64 sec = NSEC_PER_SEC;
1480 u64 divisor, dividend;
1481
1482 int count_fls, nsec_fls, frequency_fls, sec_fls;
1483
1484 count_fls = fls64(count);
1485 nsec_fls = fls64(nsec);
1486 frequency_fls = fls64(frequency);
1487 sec_fls = 30;
1488
1489 /*
1490 * We got @count in @nsec, with a target of sample_freq HZ
1491 * the target period becomes:
1492 *
1493 * @count * 10^9
1494 * period = -------------------
1495 * @nsec * sample_freq
1496 *
1497 */
1498
1499 /*
1500 * Reduce accuracy by one bit such that @a and @b converge
1501 * to a similar magnitude.
1502 */
1503 #define REDUCE_FLS(a, b) \
1504 do { \
1505 if (a##_fls > b##_fls) { \
1506 a >>= 1; \
1507 a##_fls--; \
1508 } else { \
1509 b >>= 1; \
1510 b##_fls--; \
1511 } \
1512 } while (0)
1513
1514 /*
1515 * Reduce accuracy until either term fits in a u64, then proceed with
1516 * the other, so that finally we can do a u64/u64 division.
1517 */
1518 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1519 REDUCE_FLS(nsec, frequency);
1520 REDUCE_FLS(sec, count);
1521 }
1522
1523 if (count_fls + sec_fls > 64) {
1524 divisor = nsec * frequency;
1525
1526 while (count_fls + sec_fls > 64) {
1527 REDUCE_FLS(count, sec);
1528 divisor >>= 1;
1529 }
1530
1531 dividend = count * sec;
1532 } else {
1533 dividend = count * sec;
1534
1535 while (nsec_fls + frequency_fls > 64) {
1536 REDUCE_FLS(nsec, frequency);
1537 dividend >>= 1;
1538 }
1539
1540 divisor = nsec * frequency;
1541 }
1542
1543 if (!divisor)
1544 return dividend;
1545
1546 return div64_u64(dividend, divisor);
1547 }
1548
1549 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1550 {
1551 struct hw_perf_event *hwc = &event->hw;
1552 s64 period, sample_period;
1553 s64 delta;
1554
1555 period = perf_calculate_period(event, nsec, count);
1556
1557 delta = (s64)(period - hwc->sample_period);
1558 delta = (delta + 7) / 8; /* low pass filter */
1559
1560 sample_period = hwc->sample_period + delta;
1561
1562 if (!sample_period)
1563 sample_period = 1;
1564
1565 hwc->sample_period = sample_period;
1566
1567 if (local64_read(&hwc->period_left) > 8*sample_period) {
1568 event->pmu->stop(event, PERF_EF_UPDATE);
1569 local64_set(&hwc->period_left, 0);
1570 event->pmu->start(event, PERF_EF_RELOAD);
1571 }
1572 }
1573
1574 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1575 {
1576 struct perf_event *event;
1577 struct hw_perf_event *hwc;
1578 u64 interrupts, now;
1579 s64 delta;
1580
1581 raw_spin_lock(&ctx->lock);
1582 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1583 if (event->state != PERF_EVENT_STATE_ACTIVE)
1584 continue;
1585
1586 if (event->cpu != -1 && event->cpu != smp_processor_id())
1587 continue;
1588
1589 hwc = &event->hw;
1590
1591 interrupts = hwc->interrupts;
1592 hwc->interrupts = 0;
1593
1594 /*
1595 * unthrottle events on the tick
1596 */
1597 if (interrupts == MAX_INTERRUPTS) {
1598 perf_log_throttle(event, 1);
1599 event->pmu->start(event, 0);
1600 }
1601
1602 if (!event->attr.freq || !event->attr.sample_freq)
1603 continue;
1604
1605 event->pmu->read(event);
1606 now = local64_read(&event->count);
1607 delta = now - hwc->freq_count_stamp;
1608 hwc->freq_count_stamp = now;
1609
1610 if (delta > 0)
1611 perf_adjust_period(event, period, delta);
1612 }
1613 raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 /*
1617 * Round-robin a context's events:
1618 */
1619 static void rotate_ctx(struct perf_event_context *ctx)
1620 {
1621 raw_spin_lock(&ctx->lock);
1622
1623 /*
1624 * Rotate the first entry last of non-pinned groups. Rotation might be
1625 * disabled by the inheritance code.
1626 */
1627 if (!ctx->rotate_disable)
1628 list_rotate_left(&ctx->flexible_groups);
1629
1630 raw_spin_unlock(&ctx->lock);
1631 }
1632
1633 /*
1634 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1635 * because they're strictly cpu affine and rotate_start is called with IRQs
1636 * disabled, while rotate_context is called from IRQ context.
1637 */
1638 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1639 {
1640 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1641 struct perf_event_context *ctx = NULL;
1642 int rotate = 0, remove = 1;
1643
1644 if (cpuctx->ctx.nr_events) {
1645 remove = 0;
1646 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1647 rotate = 1;
1648 }
1649
1650 ctx = cpuctx->task_ctx;
1651 if (ctx && ctx->nr_events) {
1652 remove = 0;
1653 if (ctx->nr_events != ctx->nr_active)
1654 rotate = 1;
1655 }
1656
1657 perf_pmu_disable(cpuctx->ctx.pmu);
1658 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1659 if (ctx)
1660 perf_ctx_adjust_freq(ctx, interval);
1661
1662 if (!rotate)
1663 goto done;
1664
1665 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1666 if (ctx)
1667 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1668
1669 rotate_ctx(&cpuctx->ctx);
1670 if (ctx)
1671 rotate_ctx(ctx);
1672
1673 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1674 if (ctx)
1675 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1676
1677 done:
1678 if (remove)
1679 list_del_init(&cpuctx->rotation_list);
1680
1681 perf_pmu_enable(cpuctx->ctx.pmu);
1682 }
1683
1684 void perf_event_task_tick(void)
1685 {
1686 struct list_head *head = &__get_cpu_var(rotation_list);
1687 struct perf_cpu_context *cpuctx, *tmp;
1688
1689 WARN_ON(!irqs_disabled());
1690
1691 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1692 if (cpuctx->jiffies_interval == 1 ||
1693 !(jiffies % cpuctx->jiffies_interval))
1694 perf_rotate_context(cpuctx);
1695 }
1696 }
1697
1698 static int event_enable_on_exec(struct perf_event *event,
1699 struct perf_event_context *ctx)
1700 {
1701 if (!event->attr.enable_on_exec)
1702 return 0;
1703
1704 event->attr.enable_on_exec = 0;
1705 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1706 return 0;
1707
1708 __perf_event_mark_enabled(event, ctx);
1709
1710 return 1;
1711 }
1712
1713 /*
1714 * Enable all of a task's events that have been marked enable-on-exec.
1715 * This expects task == current.
1716 */
1717 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1718 {
1719 struct perf_event *event;
1720 unsigned long flags;
1721 int enabled = 0;
1722 int ret;
1723
1724 local_irq_save(flags);
1725 if (!ctx || !ctx->nr_events)
1726 goto out;
1727
1728 task_ctx_sched_out(ctx, EVENT_ALL);
1729
1730 raw_spin_lock(&ctx->lock);
1731
1732 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1733 ret = event_enable_on_exec(event, ctx);
1734 if (ret)
1735 enabled = 1;
1736 }
1737
1738 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1739 ret = event_enable_on_exec(event, ctx);
1740 if (ret)
1741 enabled = 1;
1742 }
1743
1744 /*
1745 * Unclone this context if we enabled any event.
1746 */
1747 if (enabled)
1748 unclone_ctx(ctx);
1749
1750 raw_spin_unlock(&ctx->lock);
1751
1752 perf_event_context_sched_in(ctx);
1753 out:
1754 local_irq_restore(flags);
1755 }
1756
1757 /*
1758 * Cross CPU call to read the hardware event
1759 */
1760 static void __perf_event_read(void *info)
1761 {
1762 struct perf_event *event = info;
1763 struct perf_event_context *ctx = event->ctx;
1764 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765
1766 /*
1767 * If this is a task context, we need to check whether it is
1768 * the current task context of this cpu. If not it has been
1769 * scheduled out before the smp call arrived. In that case
1770 * event->count would have been updated to a recent sample
1771 * when the event was scheduled out.
1772 */
1773 if (ctx->task && cpuctx->task_ctx != ctx)
1774 return;
1775
1776 raw_spin_lock(&ctx->lock);
1777 update_context_time(ctx);
1778 update_event_times(event);
1779 raw_spin_unlock(&ctx->lock);
1780
1781 event->pmu->read(event);
1782 }
1783
1784 static inline u64 perf_event_count(struct perf_event *event)
1785 {
1786 return local64_read(&event->count) + atomic64_read(&event->child_count);
1787 }
1788
1789 static u64 perf_event_read(struct perf_event *event)
1790 {
1791 /*
1792 * If event is enabled and currently active on a CPU, update the
1793 * value in the event structure:
1794 */
1795 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1796 smp_call_function_single(event->oncpu,
1797 __perf_event_read, event, 1);
1798 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1799 struct perf_event_context *ctx = event->ctx;
1800 unsigned long flags;
1801
1802 raw_spin_lock_irqsave(&ctx->lock, flags);
1803 /*
1804 * may read while context is not active
1805 * (e.g., thread is blocked), in that case
1806 * we cannot update context time
1807 */
1808 if (ctx->is_active)
1809 update_context_time(ctx);
1810 update_event_times(event);
1811 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1812 }
1813
1814 return perf_event_count(event);
1815 }
1816
1817 /*
1818 * Callchain support
1819 */
1820
1821 struct callchain_cpus_entries {
1822 struct rcu_head rcu_head;
1823 struct perf_callchain_entry *cpu_entries[0];
1824 };
1825
1826 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1827 static atomic_t nr_callchain_events;
1828 static DEFINE_MUTEX(callchain_mutex);
1829 struct callchain_cpus_entries *callchain_cpus_entries;
1830
1831
1832 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1833 struct pt_regs *regs)
1834 {
1835 }
1836
1837 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1838 struct pt_regs *regs)
1839 {
1840 }
1841
1842 static void release_callchain_buffers_rcu(struct rcu_head *head)
1843 {
1844 struct callchain_cpus_entries *entries;
1845 int cpu;
1846
1847 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1848
1849 for_each_possible_cpu(cpu)
1850 kfree(entries->cpu_entries[cpu]);
1851
1852 kfree(entries);
1853 }
1854
1855 static void release_callchain_buffers(void)
1856 {
1857 struct callchain_cpus_entries *entries;
1858
1859 entries = callchain_cpus_entries;
1860 rcu_assign_pointer(callchain_cpus_entries, NULL);
1861 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1862 }
1863
1864 static int alloc_callchain_buffers(void)
1865 {
1866 int cpu;
1867 int size;
1868 struct callchain_cpus_entries *entries;
1869
1870 /*
1871 * We can't use the percpu allocation API for data that can be
1872 * accessed from NMI. Use a temporary manual per cpu allocation
1873 * until that gets sorted out.
1874 */
1875 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1876 num_possible_cpus();
1877
1878 entries = kzalloc(size, GFP_KERNEL);
1879 if (!entries)
1880 return -ENOMEM;
1881
1882 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1883
1884 for_each_possible_cpu(cpu) {
1885 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1886 cpu_to_node(cpu));
1887 if (!entries->cpu_entries[cpu])
1888 goto fail;
1889 }
1890
1891 rcu_assign_pointer(callchain_cpus_entries, entries);
1892
1893 return 0;
1894
1895 fail:
1896 for_each_possible_cpu(cpu)
1897 kfree(entries->cpu_entries[cpu]);
1898 kfree(entries);
1899
1900 return -ENOMEM;
1901 }
1902
1903 static int get_callchain_buffers(void)
1904 {
1905 int err = 0;
1906 int count;
1907
1908 mutex_lock(&callchain_mutex);
1909
1910 count = atomic_inc_return(&nr_callchain_events);
1911 if (WARN_ON_ONCE(count < 1)) {
1912 err = -EINVAL;
1913 goto exit;
1914 }
1915
1916 if (count > 1) {
1917 /* If the allocation failed, give up */
1918 if (!callchain_cpus_entries)
1919 err = -ENOMEM;
1920 goto exit;
1921 }
1922
1923 err = alloc_callchain_buffers();
1924 if (err)
1925 release_callchain_buffers();
1926 exit:
1927 mutex_unlock(&callchain_mutex);
1928
1929 return err;
1930 }
1931
1932 static void put_callchain_buffers(void)
1933 {
1934 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1935 release_callchain_buffers();
1936 mutex_unlock(&callchain_mutex);
1937 }
1938 }
1939
1940 static int get_recursion_context(int *recursion)
1941 {
1942 int rctx;
1943
1944 if (in_nmi())
1945 rctx = 3;
1946 else if (in_irq())
1947 rctx = 2;
1948 else if (in_softirq())
1949 rctx = 1;
1950 else
1951 rctx = 0;
1952
1953 if (recursion[rctx])
1954 return -1;
1955
1956 recursion[rctx]++;
1957 barrier();
1958
1959 return rctx;
1960 }
1961
1962 static inline void put_recursion_context(int *recursion, int rctx)
1963 {
1964 barrier();
1965 recursion[rctx]--;
1966 }
1967
1968 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1969 {
1970 int cpu;
1971 struct callchain_cpus_entries *entries;
1972
1973 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1974 if (*rctx == -1)
1975 return NULL;
1976
1977 entries = rcu_dereference(callchain_cpus_entries);
1978 if (!entries)
1979 return NULL;
1980
1981 cpu = smp_processor_id();
1982
1983 return &entries->cpu_entries[cpu][*rctx];
1984 }
1985
1986 static void
1987 put_callchain_entry(int rctx)
1988 {
1989 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1990 }
1991
1992 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1993 {
1994 int rctx;
1995 struct perf_callchain_entry *entry;
1996
1997
1998 entry = get_callchain_entry(&rctx);
1999 if (rctx == -1)
2000 return NULL;
2001
2002 if (!entry)
2003 goto exit_put;
2004
2005 entry->nr = 0;
2006
2007 if (!user_mode(regs)) {
2008 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2009 perf_callchain_kernel(entry, regs);
2010 if (current->mm)
2011 regs = task_pt_regs(current);
2012 else
2013 regs = NULL;
2014 }
2015
2016 if (regs) {
2017 perf_callchain_store(entry, PERF_CONTEXT_USER);
2018 perf_callchain_user(entry, regs);
2019 }
2020
2021 exit_put:
2022 put_callchain_entry(rctx);
2023
2024 return entry;
2025 }
2026
2027 /*
2028 * Initialize the perf_event context in a task_struct:
2029 */
2030 static void __perf_event_init_context(struct perf_event_context *ctx)
2031 {
2032 raw_spin_lock_init(&ctx->lock);
2033 mutex_init(&ctx->mutex);
2034 INIT_LIST_HEAD(&ctx->pinned_groups);
2035 INIT_LIST_HEAD(&ctx->flexible_groups);
2036 INIT_LIST_HEAD(&ctx->event_list);
2037 atomic_set(&ctx->refcount, 1);
2038 }
2039
2040 static struct perf_event_context *
2041 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2042 {
2043 struct perf_event_context *ctx;
2044
2045 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2046 if (!ctx)
2047 return NULL;
2048
2049 __perf_event_init_context(ctx);
2050 if (task) {
2051 ctx->task = task;
2052 get_task_struct(task);
2053 }
2054 ctx->pmu = pmu;
2055
2056 return ctx;
2057 }
2058
2059 static struct task_struct *
2060 find_lively_task_by_vpid(pid_t vpid)
2061 {
2062 struct task_struct *task;
2063 int err;
2064
2065 rcu_read_lock();
2066 if (!vpid)
2067 task = current;
2068 else
2069 task = find_task_by_vpid(vpid);
2070 if (task)
2071 get_task_struct(task);
2072 rcu_read_unlock();
2073
2074 if (!task)
2075 return ERR_PTR(-ESRCH);
2076
2077 /*
2078 * Can't attach events to a dying task.
2079 */
2080 err = -ESRCH;
2081 if (task->flags & PF_EXITING)
2082 goto errout;
2083
2084 /* Reuse ptrace permission checks for now. */
2085 err = -EACCES;
2086 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2087 goto errout;
2088
2089 return task;
2090 errout:
2091 put_task_struct(task);
2092 return ERR_PTR(err);
2093
2094 }
2095
2096 static struct perf_event_context *
2097 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2098 {
2099 struct perf_event_context *ctx;
2100 struct perf_cpu_context *cpuctx;
2101 unsigned long flags;
2102 int ctxn, err;
2103
2104 if (!task && cpu != -1) {
2105 /* Must be root to operate on a CPU event: */
2106 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2107 return ERR_PTR(-EACCES);
2108
2109 if (cpu < 0 || cpu >= nr_cpumask_bits)
2110 return ERR_PTR(-EINVAL);
2111
2112 /*
2113 * We could be clever and allow to attach a event to an
2114 * offline CPU and activate it when the CPU comes up, but
2115 * that's for later.
2116 */
2117 if (!cpu_online(cpu))
2118 return ERR_PTR(-ENODEV);
2119
2120 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2121 ctx = &cpuctx->ctx;
2122 get_ctx(ctx);
2123
2124 return ctx;
2125 }
2126
2127 err = -EINVAL;
2128 ctxn = pmu->task_ctx_nr;
2129 if (ctxn < 0)
2130 goto errout;
2131
2132 retry:
2133 ctx = perf_lock_task_context(task, ctxn, &flags);
2134 if (ctx) {
2135 unclone_ctx(ctx);
2136 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2137 }
2138
2139 if (!ctx) {
2140 ctx = alloc_perf_context(pmu, task);
2141 err = -ENOMEM;
2142 if (!ctx)
2143 goto errout;
2144
2145 get_ctx(ctx);
2146
2147 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2148 /*
2149 * We raced with some other task; use
2150 * the context they set.
2151 */
2152 put_task_struct(task);
2153 kfree(ctx);
2154 goto retry;
2155 }
2156 }
2157
2158 return ctx;
2159
2160 errout:
2161 return ERR_PTR(err);
2162 }
2163
2164 static void perf_event_free_filter(struct perf_event *event);
2165
2166 static void free_event_rcu(struct rcu_head *head)
2167 {
2168 struct perf_event *event;
2169
2170 event = container_of(head, struct perf_event, rcu_head);
2171 if (event->ns)
2172 put_pid_ns(event->ns);
2173 perf_event_free_filter(event);
2174 kfree(event);
2175 }
2176
2177 static void perf_buffer_put(struct perf_buffer *buffer);
2178
2179 static void free_event(struct perf_event *event)
2180 {
2181 irq_work_sync(&event->pending);
2182
2183 if (!event->parent) {
2184 if (event->attach_state & PERF_ATTACH_TASK)
2185 jump_label_dec(&perf_task_events);
2186 if (event->attr.mmap || event->attr.mmap_data)
2187 atomic_dec(&nr_mmap_events);
2188 if (event->attr.comm)
2189 atomic_dec(&nr_comm_events);
2190 if (event->attr.task)
2191 atomic_dec(&nr_task_events);
2192 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2193 put_callchain_buffers();
2194 }
2195
2196 if (event->buffer) {
2197 perf_buffer_put(event->buffer);
2198 event->buffer = NULL;
2199 }
2200
2201 if (event->destroy)
2202 event->destroy(event);
2203
2204 if (event->ctx)
2205 put_ctx(event->ctx);
2206
2207 call_rcu(&event->rcu_head, free_event_rcu);
2208 }
2209
2210 int perf_event_release_kernel(struct perf_event *event)
2211 {
2212 struct perf_event_context *ctx = event->ctx;
2213
2214 /*
2215 * Remove from the PMU, can't get re-enabled since we got
2216 * here because the last ref went.
2217 */
2218 perf_event_disable(event);
2219
2220 WARN_ON_ONCE(ctx->parent_ctx);
2221 /*
2222 * There are two ways this annotation is useful:
2223 *
2224 * 1) there is a lock recursion from perf_event_exit_task
2225 * see the comment there.
2226 *
2227 * 2) there is a lock-inversion with mmap_sem through
2228 * perf_event_read_group(), which takes faults while
2229 * holding ctx->mutex, however this is called after
2230 * the last filedesc died, so there is no possibility
2231 * to trigger the AB-BA case.
2232 */
2233 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2234 raw_spin_lock_irq(&ctx->lock);
2235 perf_group_detach(event);
2236 list_del_event(event, ctx);
2237 raw_spin_unlock_irq(&ctx->lock);
2238 mutex_unlock(&ctx->mutex);
2239
2240 free_event(event);
2241
2242 return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2245
2246 /*
2247 * Called when the last reference to the file is gone.
2248 */
2249 static int perf_release(struct inode *inode, struct file *file)
2250 {
2251 struct perf_event *event = file->private_data;
2252 struct task_struct *owner;
2253
2254 file->private_data = NULL;
2255
2256 rcu_read_lock();
2257 owner = ACCESS_ONCE(event->owner);
2258 /*
2259 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2260 * !owner it means the list deletion is complete and we can indeed
2261 * free this event, otherwise we need to serialize on
2262 * owner->perf_event_mutex.
2263 */
2264 smp_read_barrier_depends();
2265 if (owner) {
2266 /*
2267 * Since delayed_put_task_struct() also drops the last
2268 * task reference we can safely take a new reference
2269 * while holding the rcu_read_lock().
2270 */
2271 get_task_struct(owner);
2272 }
2273 rcu_read_unlock();
2274
2275 if (owner) {
2276 mutex_lock(&owner->perf_event_mutex);
2277 /*
2278 * We have to re-check the event->owner field, if it is cleared
2279 * we raced with perf_event_exit_task(), acquiring the mutex
2280 * ensured they're done, and we can proceed with freeing the
2281 * event.
2282 */
2283 if (event->owner)
2284 list_del_init(&event->owner_entry);
2285 mutex_unlock(&owner->perf_event_mutex);
2286 put_task_struct(owner);
2287 }
2288
2289 return perf_event_release_kernel(event);
2290 }
2291
2292 static int perf_event_read_size(struct perf_event *event)
2293 {
2294 int entry = sizeof(u64); /* value */
2295 int size = 0;
2296 int nr = 1;
2297
2298 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2299 size += sizeof(u64);
2300
2301 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2302 size += sizeof(u64);
2303
2304 if (event->attr.read_format & PERF_FORMAT_ID)
2305 entry += sizeof(u64);
2306
2307 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2308 nr += event->group_leader->nr_siblings;
2309 size += sizeof(u64);
2310 }
2311
2312 size += entry * nr;
2313
2314 return size;
2315 }
2316
2317 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2318 {
2319 struct perf_event *child;
2320 u64 total = 0;
2321
2322 *enabled = 0;
2323 *running = 0;
2324
2325 mutex_lock(&event->child_mutex);
2326 total += perf_event_read(event);
2327 *enabled += event->total_time_enabled +
2328 atomic64_read(&event->child_total_time_enabled);
2329 *running += event->total_time_running +
2330 atomic64_read(&event->child_total_time_running);
2331
2332 list_for_each_entry(child, &event->child_list, child_list) {
2333 total += perf_event_read(child);
2334 *enabled += child->total_time_enabled;
2335 *running += child->total_time_running;
2336 }
2337 mutex_unlock(&event->child_mutex);
2338
2339 return total;
2340 }
2341 EXPORT_SYMBOL_GPL(perf_event_read_value);
2342
2343 static int perf_event_read_group(struct perf_event *event,
2344 u64 read_format, char __user *buf)
2345 {
2346 struct perf_event *leader = event->group_leader, *sub;
2347 int n = 0, size = 0, ret = -EFAULT;
2348 struct perf_event_context *ctx = leader->ctx;
2349 u64 values[5];
2350 u64 count, enabled, running;
2351
2352 mutex_lock(&ctx->mutex);
2353 count = perf_event_read_value(leader, &enabled, &running);
2354
2355 values[n++] = 1 + leader->nr_siblings;
2356 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2357 values[n++] = enabled;
2358 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2359 values[n++] = running;
2360 values[n++] = count;
2361 if (read_format & PERF_FORMAT_ID)
2362 values[n++] = primary_event_id(leader);
2363
2364 size = n * sizeof(u64);
2365
2366 if (copy_to_user(buf, values, size))
2367 goto unlock;
2368
2369 ret = size;
2370
2371 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2372 n = 0;
2373
2374 values[n++] = perf_event_read_value(sub, &enabled, &running);
2375 if (read_format & PERF_FORMAT_ID)
2376 values[n++] = primary_event_id(sub);
2377
2378 size = n * sizeof(u64);
2379
2380 if (copy_to_user(buf + ret, values, size)) {
2381 ret = -EFAULT;
2382 goto unlock;
2383 }
2384
2385 ret += size;
2386 }
2387 unlock:
2388 mutex_unlock(&ctx->mutex);
2389
2390 return ret;
2391 }
2392
2393 static int perf_event_read_one(struct perf_event *event,
2394 u64 read_format, char __user *buf)
2395 {
2396 u64 enabled, running;
2397 u64 values[4];
2398 int n = 0;
2399
2400 values[n++] = perf_event_read_value(event, &enabled, &running);
2401 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2402 values[n++] = enabled;
2403 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2404 values[n++] = running;
2405 if (read_format & PERF_FORMAT_ID)
2406 values[n++] = primary_event_id(event);
2407
2408 if (copy_to_user(buf, values, n * sizeof(u64)))
2409 return -EFAULT;
2410
2411 return n * sizeof(u64);
2412 }
2413
2414 /*
2415 * Read the performance event - simple non blocking version for now
2416 */
2417 static ssize_t
2418 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2419 {
2420 u64 read_format = event->attr.read_format;
2421 int ret;
2422
2423 /*
2424 * Return end-of-file for a read on a event that is in
2425 * error state (i.e. because it was pinned but it couldn't be
2426 * scheduled on to the CPU at some point).
2427 */
2428 if (event->state == PERF_EVENT_STATE_ERROR)
2429 return 0;
2430
2431 if (count < perf_event_read_size(event))
2432 return -ENOSPC;
2433
2434 WARN_ON_ONCE(event->ctx->parent_ctx);
2435 if (read_format & PERF_FORMAT_GROUP)
2436 ret = perf_event_read_group(event, read_format, buf);
2437 else
2438 ret = perf_event_read_one(event, read_format, buf);
2439
2440 return ret;
2441 }
2442
2443 static ssize_t
2444 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2445 {
2446 struct perf_event *event = file->private_data;
2447
2448 return perf_read_hw(event, buf, count);
2449 }
2450
2451 static unsigned int perf_poll(struct file *file, poll_table *wait)
2452 {
2453 struct perf_event *event = file->private_data;
2454 struct perf_buffer *buffer;
2455 unsigned int events = POLL_HUP;
2456
2457 rcu_read_lock();
2458 buffer = rcu_dereference(event->buffer);
2459 if (buffer)
2460 events = atomic_xchg(&buffer->poll, 0);
2461 rcu_read_unlock();
2462
2463 poll_wait(file, &event->waitq, wait);
2464
2465 return events;
2466 }
2467
2468 static void perf_event_reset(struct perf_event *event)
2469 {
2470 (void)perf_event_read(event);
2471 local64_set(&event->count, 0);
2472 perf_event_update_userpage(event);
2473 }
2474
2475 /*
2476 * Holding the top-level event's child_mutex means that any
2477 * descendant process that has inherited this event will block
2478 * in sync_child_event if it goes to exit, thus satisfying the
2479 * task existence requirements of perf_event_enable/disable.
2480 */
2481 static void perf_event_for_each_child(struct perf_event *event,
2482 void (*func)(struct perf_event *))
2483 {
2484 struct perf_event *child;
2485
2486 WARN_ON_ONCE(event->ctx->parent_ctx);
2487 mutex_lock(&event->child_mutex);
2488 func(event);
2489 list_for_each_entry(child, &event->child_list, child_list)
2490 func(child);
2491 mutex_unlock(&event->child_mutex);
2492 }
2493
2494 static void perf_event_for_each(struct perf_event *event,
2495 void (*func)(struct perf_event *))
2496 {
2497 struct perf_event_context *ctx = event->ctx;
2498 struct perf_event *sibling;
2499
2500 WARN_ON_ONCE(ctx->parent_ctx);
2501 mutex_lock(&ctx->mutex);
2502 event = event->group_leader;
2503
2504 perf_event_for_each_child(event, func);
2505 func(event);
2506 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2507 perf_event_for_each_child(event, func);
2508 mutex_unlock(&ctx->mutex);
2509 }
2510
2511 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2512 {
2513 struct perf_event_context *ctx = event->ctx;
2514 int ret = 0;
2515 u64 value;
2516
2517 if (!event->attr.sample_period)
2518 return -EINVAL;
2519
2520 if (copy_from_user(&value, arg, sizeof(value)))
2521 return -EFAULT;
2522
2523 if (!value)
2524 return -EINVAL;
2525
2526 raw_spin_lock_irq(&ctx->lock);
2527 if (event->attr.freq) {
2528 if (value > sysctl_perf_event_sample_rate) {
2529 ret = -EINVAL;
2530 goto unlock;
2531 }
2532
2533 event->attr.sample_freq = value;
2534 } else {
2535 event->attr.sample_period = value;
2536 event->hw.sample_period = value;
2537 }
2538 unlock:
2539 raw_spin_unlock_irq(&ctx->lock);
2540
2541 return ret;
2542 }
2543
2544 static const struct file_operations perf_fops;
2545
2546 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2547 {
2548 struct file *file;
2549
2550 file = fget_light(fd, fput_needed);
2551 if (!file)
2552 return ERR_PTR(-EBADF);
2553
2554 if (file->f_op != &perf_fops) {
2555 fput_light(file, *fput_needed);
2556 *fput_needed = 0;
2557 return ERR_PTR(-EBADF);
2558 }
2559
2560 return file->private_data;
2561 }
2562
2563 static int perf_event_set_output(struct perf_event *event,
2564 struct perf_event *output_event);
2565 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2566
2567 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2568 {
2569 struct perf_event *event = file->private_data;
2570 void (*func)(struct perf_event *);
2571 u32 flags = arg;
2572
2573 switch (cmd) {
2574 case PERF_EVENT_IOC_ENABLE:
2575 func = perf_event_enable;
2576 break;
2577 case PERF_EVENT_IOC_DISABLE:
2578 func = perf_event_disable;
2579 break;
2580 case PERF_EVENT_IOC_RESET:
2581 func = perf_event_reset;
2582 break;
2583
2584 case PERF_EVENT_IOC_REFRESH:
2585 return perf_event_refresh(event, arg);
2586
2587 case PERF_EVENT_IOC_PERIOD:
2588 return perf_event_period(event, (u64 __user *)arg);
2589
2590 case PERF_EVENT_IOC_SET_OUTPUT:
2591 {
2592 struct perf_event *output_event = NULL;
2593 int fput_needed = 0;
2594 int ret;
2595
2596 if (arg != -1) {
2597 output_event = perf_fget_light(arg, &fput_needed);
2598 if (IS_ERR(output_event))
2599 return PTR_ERR(output_event);
2600 }
2601
2602 ret = perf_event_set_output(event, output_event);
2603 if (output_event)
2604 fput_light(output_event->filp, fput_needed);
2605
2606 return ret;
2607 }
2608
2609 case PERF_EVENT_IOC_SET_FILTER:
2610 return perf_event_set_filter(event, (void __user *)arg);
2611
2612 default:
2613 return -ENOTTY;
2614 }
2615
2616 if (flags & PERF_IOC_FLAG_GROUP)
2617 perf_event_for_each(event, func);
2618 else
2619 perf_event_for_each_child(event, func);
2620
2621 return 0;
2622 }
2623
2624 int perf_event_task_enable(void)
2625 {
2626 struct perf_event *event;
2627
2628 mutex_lock(&current->perf_event_mutex);
2629 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2630 perf_event_for_each_child(event, perf_event_enable);
2631 mutex_unlock(&current->perf_event_mutex);
2632
2633 return 0;
2634 }
2635
2636 int perf_event_task_disable(void)
2637 {
2638 struct perf_event *event;
2639
2640 mutex_lock(&current->perf_event_mutex);
2641 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2642 perf_event_for_each_child(event, perf_event_disable);
2643 mutex_unlock(&current->perf_event_mutex);
2644
2645 return 0;
2646 }
2647
2648 #ifndef PERF_EVENT_INDEX_OFFSET
2649 # define PERF_EVENT_INDEX_OFFSET 0
2650 #endif
2651
2652 static int perf_event_index(struct perf_event *event)
2653 {
2654 if (event->hw.state & PERF_HES_STOPPED)
2655 return 0;
2656
2657 if (event->state != PERF_EVENT_STATE_ACTIVE)
2658 return 0;
2659
2660 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2661 }
2662
2663 /*
2664 * Callers need to ensure there can be no nesting of this function, otherwise
2665 * the seqlock logic goes bad. We can not serialize this because the arch
2666 * code calls this from NMI context.
2667 */
2668 void perf_event_update_userpage(struct perf_event *event)
2669 {
2670 struct perf_event_mmap_page *userpg;
2671 struct perf_buffer *buffer;
2672
2673 rcu_read_lock();
2674 buffer = rcu_dereference(event->buffer);
2675 if (!buffer)
2676 goto unlock;
2677
2678 userpg = buffer->user_page;
2679
2680 /*
2681 * Disable preemption so as to not let the corresponding user-space
2682 * spin too long if we get preempted.
2683 */
2684 preempt_disable();
2685 ++userpg->lock;
2686 barrier();
2687 userpg->index = perf_event_index(event);
2688 userpg->offset = perf_event_count(event);
2689 if (event->state == PERF_EVENT_STATE_ACTIVE)
2690 userpg->offset -= local64_read(&event->hw.prev_count);
2691
2692 userpg->time_enabled = event->total_time_enabled +
2693 atomic64_read(&event->child_total_time_enabled);
2694
2695 userpg->time_running = event->total_time_running +
2696 atomic64_read(&event->child_total_time_running);
2697
2698 barrier();
2699 ++userpg->lock;
2700 preempt_enable();
2701 unlock:
2702 rcu_read_unlock();
2703 }
2704
2705 static unsigned long perf_data_size(struct perf_buffer *buffer);
2706
2707 static void
2708 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2709 {
2710 long max_size = perf_data_size(buffer);
2711
2712 if (watermark)
2713 buffer->watermark = min(max_size, watermark);
2714
2715 if (!buffer->watermark)
2716 buffer->watermark = max_size / 2;
2717
2718 if (flags & PERF_BUFFER_WRITABLE)
2719 buffer->writable = 1;
2720
2721 atomic_set(&buffer->refcount, 1);
2722 }
2723
2724 #ifndef CONFIG_PERF_USE_VMALLOC
2725
2726 /*
2727 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2728 */
2729
2730 static struct page *
2731 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2732 {
2733 if (pgoff > buffer->nr_pages)
2734 return NULL;
2735
2736 if (pgoff == 0)
2737 return virt_to_page(buffer->user_page);
2738
2739 return virt_to_page(buffer->data_pages[pgoff - 1]);
2740 }
2741
2742 static void *perf_mmap_alloc_page(int cpu)
2743 {
2744 struct page *page;
2745 int node;
2746
2747 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2748 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2749 if (!page)
2750 return NULL;
2751
2752 return page_address(page);
2753 }
2754
2755 static struct perf_buffer *
2756 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2757 {
2758 struct perf_buffer *buffer;
2759 unsigned long size;
2760 int i;
2761
2762 size = sizeof(struct perf_buffer);
2763 size += nr_pages * sizeof(void *);
2764
2765 buffer = kzalloc(size, GFP_KERNEL);
2766 if (!buffer)
2767 goto fail;
2768
2769 buffer->user_page = perf_mmap_alloc_page(cpu);
2770 if (!buffer->user_page)
2771 goto fail_user_page;
2772
2773 for (i = 0; i < nr_pages; i++) {
2774 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2775 if (!buffer->data_pages[i])
2776 goto fail_data_pages;
2777 }
2778
2779 buffer->nr_pages = nr_pages;
2780
2781 perf_buffer_init(buffer, watermark, flags);
2782
2783 return buffer;
2784
2785 fail_data_pages:
2786 for (i--; i >= 0; i--)
2787 free_page((unsigned long)buffer->data_pages[i]);
2788
2789 free_page((unsigned long)buffer->user_page);
2790
2791 fail_user_page:
2792 kfree(buffer);
2793
2794 fail:
2795 return NULL;
2796 }
2797
2798 static void perf_mmap_free_page(unsigned long addr)
2799 {
2800 struct page *page = virt_to_page((void *)addr);
2801
2802 page->mapping = NULL;
2803 __free_page(page);
2804 }
2805
2806 static void perf_buffer_free(struct perf_buffer *buffer)
2807 {
2808 int i;
2809
2810 perf_mmap_free_page((unsigned long)buffer->user_page);
2811 for (i = 0; i < buffer->nr_pages; i++)
2812 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2813 kfree(buffer);
2814 }
2815
2816 static inline int page_order(struct perf_buffer *buffer)
2817 {
2818 return 0;
2819 }
2820
2821 #else
2822
2823 /*
2824 * Back perf_mmap() with vmalloc memory.
2825 *
2826 * Required for architectures that have d-cache aliasing issues.
2827 */
2828
2829 static inline int page_order(struct perf_buffer *buffer)
2830 {
2831 return buffer->page_order;
2832 }
2833
2834 static struct page *
2835 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2836 {
2837 if (pgoff > (1UL << page_order(buffer)))
2838 return NULL;
2839
2840 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2841 }
2842
2843 static void perf_mmap_unmark_page(void *addr)
2844 {
2845 struct page *page = vmalloc_to_page(addr);
2846
2847 page->mapping = NULL;
2848 }
2849
2850 static void perf_buffer_free_work(struct work_struct *work)
2851 {
2852 struct perf_buffer *buffer;
2853 void *base;
2854 int i, nr;
2855
2856 buffer = container_of(work, struct perf_buffer, work);
2857 nr = 1 << page_order(buffer);
2858
2859 base = buffer->user_page;
2860 for (i = 0; i < nr + 1; i++)
2861 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2862
2863 vfree(base);
2864 kfree(buffer);
2865 }
2866
2867 static void perf_buffer_free(struct perf_buffer *buffer)
2868 {
2869 schedule_work(&buffer->work);
2870 }
2871
2872 static struct perf_buffer *
2873 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2874 {
2875 struct perf_buffer *buffer;
2876 unsigned long size;
2877 void *all_buf;
2878
2879 size = sizeof(struct perf_buffer);
2880 size += sizeof(void *);
2881
2882 buffer = kzalloc(size, GFP_KERNEL);
2883 if (!buffer)
2884 goto fail;
2885
2886 INIT_WORK(&buffer->work, perf_buffer_free_work);
2887
2888 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2889 if (!all_buf)
2890 goto fail_all_buf;
2891
2892 buffer->user_page = all_buf;
2893 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2894 buffer->page_order = ilog2(nr_pages);
2895 buffer->nr_pages = 1;
2896
2897 perf_buffer_init(buffer, watermark, flags);
2898
2899 return buffer;
2900
2901 fail_all_buf:
2902 kfree(buffer);
2903
2904 fail:
2905 return NULL;
2906 }
2907
2908 #endif
2909
2910 static unsigned long perf_data_size(struct perf_buffer *buffer)
2911 {
2912 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2913 }
2914
2915 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2916 {
2917 struct perf_event *event = vma->vm_file->private_data;
2918 struct perf_buffer *buffer;
2919 int ret = VM_FAULT_SIGBUS;
2920
2921 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2922 if (vmf->pgoff == 0)
2923 ret = 0;
2924 return ret;
2925 }
2926
2927 rcu_read_lock();
2928 buffer = rcu_dereference(event->buffer);
2929 if (!buffer)
2930 goto unlock;
2931
2932 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2933 goto unlock;
2934
2935 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2936 if (!vmf->page)
2937 goto unlock;
2938
2939 get_page(vmf->page);
2940 vmf->page->mapping = vma->vm_file->f_mapping;
2941 vmf->page->index = vmf->pgoff;
2942
2943 ret = 0;
2944 unlock:
2945 rcu_read_unlock();
2946
2947 return ret;
2948 }
2949
2950 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2951 {
2952 struct perf_buffer *buffer;
2953
2954 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2955 perf_buffer_free(buffer);
2956 }
2957
2958 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2959 {
2960 struct perf_buffer *buffer;
2961
2962 rcu_read_lock();
2963 buffer = rcu_dereference(event->buffer);
2964 if (buffer) {
2965 if (!atomic_inc_not_zero(&buffer->refcount))
2966 buffer = NULL;
2967 }
2968 rcu_read_unlock();
2969
2970 return buffer;
2971 }
2972
2973 static void perf_buffer_put(struct perf_buffer *buffer)
2974 {
2975 if (!atomic_dec_and_test(&buffer->refcount))
2976 return;
2977
2978 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2979 }
2980
2981 static void perf_mmap_open(struct vm_area_struct *vma)
2982 {
2983 struct perf_event *event = vma->vm_file->private_data;
2984
2985 atomic_inc(&event->mmap_count);
2986 }
2987
2988 static void perf_mmap_close(struct vm_area_struct *vma)
2989 {
2990 struct perf_event *event = vma->vm_file->private_data;
2991
2992 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2993 unsigned long size = perf_data_size(event->buffer);
2994 struct user_struct *user = event->mmap_user;
2995 struct perf_buffer *buffer = event->buffer;
2996
2997 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2998 vma->vm_mm->locked_vm -= event->mmap_locked;
2999 rcu_assign_pointer(event->buffer, NULL);
3000 mutex_unlock(&event->mmap_mutex);
3001
3002 perf_buffer_put(buffer);
3003 free_uid(user);
3004 }
3005 }
3006
3007 static const struct vm_operations_struct perf_mmap_vmops = {
3008 .open = perf_mmap_open,
3009 .close = perf_mmap_close,
3010 .fault = perf_mmap_fault,
3011 .page_mkwrite = perf_mmap_fault,
3012 };
3013
3014 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3015 {
3016 struct perf_event *event = file->private_data;
3017 unsigned long user_locked, user_lock_limit;
3018 struct user_struct *user = current_user();
3019 unsigned long locked, lock_limit;
3020 struct perf_buffer *buffer;
3021 unsigned long vma_size;
3022 unsigned long nr_pages;
3023 long user_extra, extra;
3024 int ret = 0, flags = 0;
3025
3026 /*
3027 * Don't allow mmap() of inherited per-task counters. This would
3028 * create a performance issue due to all children writing to the
3029 * same buffer.
3030 */
3031 if (event->cpu == -1 && event->attr.inherit)
3032 return -EINVAL;
3033
3034 if (!(vma->vm_flags & VM_SHARED))
3035 return -EINVAL;
3036
3037 vma_size = vma->vm_end - vma->vm_start;
3038 nr_pages = (vma_size / PAGE_SIZE) - 1;
3039
3040 /*
3041 * If we have buffer pages ensure they're a power-of-two number, so we
3042 * can do bitmasks instead of modulo.
3043 */
3044 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3045 return -EINVAL;
3046
3047 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3048 return -EINVAL;
3049
3050 if (vma->vm_pgoff != 0)
3051 return -EINVAL;
3052
3053 WARN_ON_ONCE(event->ctx->parent_ctx);
3054 mutex_lock(&event->mmap_mutex);
3055 if (event->buffer) {
3056 if (event->buffer->nr_pages == nr_pages)
3057 atomic_inc(&event->buffer->refcount);
3058 else
3059 ret = -EINVAL;
3060 goto unlock;
3061 }
3062
3063 user_extra = nr_pages + 1;
3064 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3065
3066 /*
3067 * Increase the limit linearly with more CPUs:
3068 */
3069 user_lock_limit *= num_online_cpus();
3070
3071 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3072
3073 extra = 0;
3074 if (user_locked > user_lock_limit)
3075 extra = user_locked - user_lock_limit;
3076
3077 lock_limit = rlimit(RLIMIT_MEMLOCK);
3078 lock_limit >>= PAGE_SHIFT;
3079 locked = vma->vm_mm->locked_vm + extra;
3080
3081 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3082 !capable(CAP_IPC_LOCK)) {
3083 ret = -EPERM;
3084 goto unlock;
3085 }
3086
3087 WARN_ON(event->buffer);
3088
3089 if (vma->vm_flags & VM_WRITE)
3090 flags |= PERF_BUFFER_WRITABLE;
3091
3092 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3093 event->cpu, flags);
3094 if (!buffer) {
3095 ret = -ENOMEM;
3096 goto unlock;
3097 }
3098 rcu_assign_pointer(event->buffer, buffer);
3099
3100 atomic_long_add(user_extra, &user->locked_vm);
3101 event->mmap_locked = extra;
3102 event->mmap_user = get_current_user();
3103 vma->vm_mm->locked_vm += event->mmap_locked;
3104
3105 unlock:
3106 if (!ret)
3107 atomic_inc(&event->mmap_count);
3108 mutex_unlock(&event->mmap_mutex);
3109
3110 vma->vm_flags |= VM_RESERVED;
3111 vma->vm_ops = &perf_mmap_vmops;
3112
3113 return ret;
3114 }
3115
3116 static int perf_fasync(int fd, struct file *filp, int on)
3117 {
3118 struct inode *inode = filp->f_path.dentry->d_inode;
3119 struct perf_event *event = filp->private_data;
3120 int retval;
3121
3122 mutex_lock(&inode->i_mutex);
3123 retval = fasync_helper(fd, filp, on, &event->fasync);
3124 mutex_unlock(&inode->i_mutex);
3125
3126 if (retval < 0)
3127 return retval;
3128
3129 return 0;
3130 }
3131
3132 static const struct file_operations perf_fops = {
3133 .llseek = no_llseek,
3134 .release = perf_release,
3135 .read = perf_read,
3136 .poll = perf_poll,
3137 .unlocked_ioctl = perf_ioctl,
3138 .compat_ioctl = perf_ioctl,
3139 .mmap = perf_mmap,
3140 .fasync = perf_fasync,
3141 };
3142
3143 /*
3144 * Perf event wakeup
3145 *
3146 * If there's data, ensure we set the poll() state and publish everything
3147 * to user-space before waking everybody up.
3148 */
3149
3150 void perf_event_wakeup(struct perf_event *event)
3151 {
3152 wake_up_all(&event->waitq);
3153
3154 if (event->pending_kill) {
3155 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3156 event->pending_kill = 0;
3157 }
3158 }
3159
3160 static void perf_pending_event(struct irq_work *entry)
3161 {
3162 struct perf_event *event = container_of(entry,
3163 struct perf_event, pending);
3164
3165 if (event->pending_disable) {
3166 event->pending_disable = 0;
3167 __perf_event_disable(event);
3168 }
3169
3170 if (event->pending_wakeup) {
3171 event->pending_wakeup = 0;
3172 perf_event_wakeup(event);
3173 }
3174 }
3175
3176 /*
3177 * We assume there is only KVM supporting the callbacks.
3178 * Later on, we might change it to a list if there is
3179 * another virtualization implementation supporting the callbacks.
3180 */
3181 struct perf_guest_info_callbacks *perf_guest_cbs;
3182
3183 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3184 {
3185 perf_guest_cbs = cbs;
3186 return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3189
3190 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3191 {
3192 perf_guest_cbs = NULL;
3193 return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3196
3197 /*
3198 * Output
3199 */
3200 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3201 unsigned long offset, unsigned long head)
3202 {
3203 unsigned long mask;
3204
3205 if (!buffer->writable)
3206 return true;
3207
3208 mask = perf_data_size(buffer) - 1;
3209
3210 offset = (offset - tail) & mask;
3211 head = (head - tail) & mask;
3212
3213 if ((int)(head - offset) < 0)
3214 return false;
3215
3216 return true;
3217 }
3218
3219 static void perf_output_wakeup(struct perf_output_handle *handle)
3220 {
3221 atomic_set(&handle->buffer->poll, POLL_IN);
3222
3223 if (handle->nmi) {
3224 handle->event->pending_wakeup = 1;
3225 irq_work_queue(&handle->event->pending);
3226 } else
3227 perf_event_wakeup(handle->event);
3228 }
3229
3230 /*
3231 * We need to ensure a later event_id doesn't publish a head when a former
3232 * event isn't done writing. However since we need to deal with NMIs we
3233 * cannot fully serialize things.
3234 *
3235 * We only publish the head (and generate a wakeup) when the outer-most
3236 * event completes.
3237 */
3238 static void perf_output_get_handle(struct perf_output_handle *handle)
3239 {
3240 struct perf_buffer *buffer = handle->buffer;
3241
3242 preempt_disable();
3243 local_inc(&buffer->nest);
3244 handle->wakeup = local_read(&buffer->wakeup);
3245 }
3246
3247 static void perf_output_put_handle(struct perf_output_handle *handle)
3248 {
3249 struct perf_buffer *buffer = handle->buffer;
3250 unsigned long head;
3251
3252 again:
3253 head = local_read(&buffer->head);
3254
3255 /*
3256 * IRQ/NMI can happen here, which means we can miss a head update.
3257 */
3258
3259 if (!local_dec_and_test(&buffer->nest))
3260 goto out;
3261
3262 /*
3263 * Publish the known good head. Rely on the full barrier implied
3264 * by atomic_dec_and_test() order the buffer->head read and this
3265 * write.
3266 */
3267 buffer->user_page->data_head = head;
3268
3269 /*
3270 * Now check if we missed an update, rely on the (compiler)
3271 * barrier in atomic_dec_and_test() to re-read buffer->head.
3272 */
3273 if (unlikely(head != local_read(&buffer->head))) {
3274 local_inc(&buffer->nest);
3275 goto again;
3276 }
3277
3278 if (handle->wakeup != local_read(&buffer->wakeup))
3279 perf_output_wakeup(handle);
3280
3281 out:
3282 preempt_enable();
3283 }
3284
3285 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3286 const void *buf, unsigned int len)
3287 {
3288 do {
3289 unsigned long size = min_t(unsigned long, handle->size, len);
3290
3291 memcpy(handle->addr, buf, size);
3292
3293 len -= size;
3294 handle->addr += size;
3295 buf += size;
3296 handle->size -= size;
3297 if (!handle->size) {
3298 struct perf_buffer *buffer = handle->buffer;
3299
3300 handle->page++;
3301 handle->page &= buffer->nr_pages - 1;
3302 handle->addr = buffer->data_pages[handle->page];
3303 handle->size = PAGE_SIZE << page_order(buffer);
3304 }
3305 } while (len);
3306 }
3307
3308 int perf_output_begin(struct perf_output_handle *handle,
3309 struct perf_event *event, unsigned int size,
3310 int nmi, int sample)
3311 {
3312 struct perf_buffer *buffer;
3313 unsigned long tail, offset, head;
3314 int have_lost;
3315 struct {
3316 struct perf_event_header header;
3317 u64 id;
3318 u64 lost;
3319 } lost_event;
3320
3321 rcu_read_lock();
3322 /*
3323 * For inherited events we send all the output towards the parent.
3324 */
3325 if (event->parent)
3326 event = event->parent;
3327
3328 buffer = rcu_dereference(event->buffer);
3329 if (!buffer)
3330 goto out;
3331
3332 handle->buffer = buffer;
3333 handle->event = event;
3334 handle->nmi = nmi;
3335 handle->sample = sample;
3336
3337 if (!buffer->nr_pages)
3338 goto out;
3339
3340 have_lost = local_read(&buffer->lost);
3341 if (have_lost)
3342 size += sizeof(lost_event);
3343
3344 perf_output_get_handle(handle);
3345
3346 do {
3347 /*
3348 * Userspace could choose to issue a mb() before updating the
3349 * tail pointer. So that all reads will be completed before the
3350 * write is issued.
3351 */
3352 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3353 smp_rmb();
3354 offset = head = local_read(&buffer->head);
3355 head += size;
3356 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3357 goto fail;
3358 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3359
3360 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3361 local_add(buffer->watermark, &buffer->wakeup);
3362
3363 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3364 handle->page &= buffer->nr_pages - 1;
3365 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3366 handle->addr = buffer->data_pages[handle->page];
3367 handle->addr += handle->size;
3368 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3369
3370 if (have_lost) {
3371 lost_event.header.type = PERF_RECORD_LOST;
3372 lost_event.header.misc = 0;
3373 lost_event.header.size = sizeof(lost_event);
3374 lost_event.id = event->id;
3375 lost_event.lost = local_xchg(&buffer->lost, 0);
3376
3377 perf_output_put(handle, lost_event);
3378 }
3379
3380 return 0;
3381
3382 fail:
3383 local_inc(&buffer->lost);
3384 perf_output_put_handle(handle);
3385 out:
3386 rcu_read_unlock();
3387
3388 return -ENOSPC;
3389 }
3390
3391 void perf_output_end(struct perf_output_handle *handle)
3392 {
3393 struct perf_event *event = handle->event;
3394 struct perf_buffer *buffer = handle->buffer;
3395
3396 int wakeup_events = event->attr.wakeup_events;
3397
3398 if (handle->sample && wakeup_events) {
3399 int events = local_inc_return(&buffer->events);
3400 if (events >= wakeup_events) {
3401 local_sub(wakeup_events, &buffer->events);
3402 local_inc(&buffer->wakeup);
3403 }
3404 }
3405
3406 perf_output_put_handle(handle);
3407 rcu_read_unlock();
3408 }
3409
3410 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3411 {
3412 /*
3413 * only top level events have the pid namespace they were created in
3414 */
3415 if (event->parent)
3416 event = event->parent;
3417
3418 return task_tgid_nr_ns(p, event->ns);
3419 }
3420
3421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3422 {
3423 /*
3424 * only top level events have the pid namespace they were created in
3425 */
3426 if (event->parent)
3427 event = event->parent;
3428
3429 return task_pid_nr_ns(p, event->ns);
3430 }
3431
3432 static void perf_output_read_one(struct perf_output_handle *handle,
3433 struct perf_event *event,
3434 u64 enabled, u64 running)
3435 {
3436 u64 read_format = event->attr.read_format;
3437 u64 values[4];
3438 int n = 0;
3439
3440 values[n++] = perf_event_count(event);
3441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3442 values[n++] = enabled +
3443 atomic64_read(&event->child_total_time_enabled);
3444 }
3445 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3446 values[n++] = running +
3447 atomic64_read(&event->child_total_time_running);
3448 }
3449 if (read_format & PERF_FORMAT_ID)
3450 values[n++] = primary_event_id(event);
3451
3452 perf_output_copy(handle, values, n * sizeof(u64));
3453 }
3454
3455 /*
3456 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3457 */
3458 static void perf_output_read_group(struct perf_output_handle *handle,
3459 struct perf_event *event,
3460 u64 enabled, u64 running)
3461 {
3462 struct perf_event *leader = event->group_leader, *sub;
3463 u64 read_format = event->attr.read_format;
3464 u64 values[5];
3465 int n = 0;
3466
3467 values[n++] = 1 + leader->nr_siblings;
3468
3469 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3470 values[n++] = enabled;
3471
3472 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3473 values[n++] = running;
3474
3475 if (leader != event)
3476 leader->pmu->read(leader);
3477
3478 values[n++] = perf_event_count(leader);
3479 if (read_format & PERF_FORMAT_ID)
3480 values[n++] = primary_event_id(leader);
3481
3482 perf_output_copy(handle, values, n * sizeof(u64));
3483
3484 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3485 n = 0;
3486
3487 if (sub != event)
3488 sub->pmu->read(sub);
3489
3490 values[n++] = perf_event_count(sub);
3491 if (read_format & PERF_FORMAT_ID)
3492 values[n++] = primary_event_id(sub);
3493
3494 perf_output_copy(handle, values, n * sizeof(u64));
3495 }
3496 }
3497
3498 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3499 PERF_FORMAT_TOTAL_TIME_RUNNING)
3500
3501 static void perf_output_read(struct perf_output_handle *handle,
3502 struct perf_event *event)
3503 {
3504 u64 enabled = 0, running = 0, now, ctx_time;
3505 u64 read_format = event->attr.read_format;
3506
3507 /*
3508 * compute total_time_enabled, total_time_running
3509 * based on snapshot values taken when the event
3510 * was last scheduled in.
3511 *
3512 * we cannot simply called update_context_time()
3513 * because of locking issue as we are called in
3514 * NMI context
3515 */
3516 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3517 now = perf_clock();
3518 ctx_time = event->shadow_ctx_time + now;
3519 enabled = ctx_time - event->tstamp_enabled;
3520 running = ctx_time - event->tstamp_running;
3521 }
3522
3523 if (event->attr.read_format & PERF_FORMAT_GROUP)
3524 perf_output_read_group(handle, event, enabled, running);
3525 else
3526 perf_output_read_one(handle, event, enabled, running);
3527 }
3528
3529 void perf_output_sample(struct perf_output_handle *handle,
3530 struct perf_event_header *header,
3531 struct perf_sample_data *data,
3532 struct perf_event *event)
3533 {
3534 u64 sample_type = data->type;
3535
3536 perf_output_put(handle, *header);
3537
3538 if (sample_type & PERF_SAMPLE_IP)
3539 perf_output_put(handle, data->ip);
3540
3541 if (sample_type & PERF_SAMPLE_TID)
3542 perf_output_put(handle, data->tid_entry);
3543
3544 if (sample_type & PERF_SAMPLE_TIME)
3545 perf_output_put(handle, data->time);
3546
3547 if (sample_type & PERF_SAMPLE_ADDR)
3548 perf_output_put(handle, data->addr);
3549
3550 if (sample_type & PERF_SAMPLE_ID)
3551 perf_output_put(handle, data->id);
3552
3553 if (sample_type & PERF_SAMPLE_STREAM_ID)
3554 perf_output_put(handle, data->stream_id);
3555
3556 if (sample_type & PERF_SAMPLE_CPU)
3557 perf_output_put(handle, data->cpu_entry);
3558
3559 if (sample_type & PERF_SAMPLE_PERIOD)
3560 perf_output_put(handle, data->period);
3561
3562 if (sample_type & PERF_SAMPLE_READ)
3563 perf_output_read(handle, event);
3564
3565 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3566 if (data->callchain) {
3567 int size = 1;
3568
3569 if (data->callchain)
3570 size += data->callchain->nr;
3571
3572 size *= sizeof(u64);
3573
3574 perf_output_copy(handle, data->callchain, size);
3575 } else {
3576 u64 nr = 0;
3577 perf_output_put(handle, nr);
3578 }
3579 }
3580
3581 if (sample_type & PERF_SAMPLE_RAW) {
3582 if (data->raw) {
3583 perf_output_put(handle, data->raw->size);
3584 perf_output_copy(handle, data->raw->data,
3585 data->raw->size);
3586 } else {
3587 struct {
3588 u32 size;
3589 u32 data;
3590 } raw = {
3591 .size = sizeof(u32),
3592 .data = 0,
3593 };
3594 perf_output_put(handle, raw);
3595 }
3596 }
3597 }
3598
3599 void perf_prepare_sample(struct perf_event_header *header,
3600 struct perf_sample_data *data,
3601 struct perf_event *event,
3602 struct pt_regs *regs)
3603 {
3604 u64 sample_type = event->attr.sample_type;
3605
3606 data->type = sample_type;
3607
3608 header->type = PERF_RECORD_SAMPLE;
3609 header->size = sizeof(*header);
3610
3611 header->misc = 0;
3612 header->misc |= perf_misc_flags(regs);
3613
3614 if (sample_type & PERF_SAMPLE_IP) {
3615 data->ip = perf_instruction_pointer(regs);
3616
3617 header->size += sizeof(data->ip);
3618 }
3619
3620 if (sample_type & PERF_SAMPLE_TID) {
3621 /* namespace issues */
3622 data->tid_entry.pid = perf_event_pid(event, current);
3623 data->tid_entry.tid = perf_event_tid(event, current);
3624
3625 header->size += sizeof(data->tid_entry);
3626 }
3627
3628 if (sample_type & PERF_SAMPLE_TIME) {
3629 data->time = perf_clock();
3630
3631 header->size += sizeof(data->time);
3632 }
3633
3634 if (sample_type & PERF_SAMPLE_ADDR)
3635 header->size += sizeof(data->addr);
3636
3637 if (sample_type & PERF_SAMPLE_ID) {
3638 data->id = primary_event_id(event);
3639
3640 header->size += sizeof(data->id);
3641 }
3642
3643 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3644 data->stream_id = event->id;
3645
3646 header->size += sizeof(data->stream_id);
3647 }
3648
3649 if (sample_type & PERF_SAMPLE_CPU) {
3650 data->cpu_entry.cpu = raw_smp_processor_id();
3651 data->cpu_entry.reserved = 0;
3652
3653 header->size += sizeof(data->cpu_entry);
3654 }
3655
3656 if (sample_type & PERF_SAMPLE_PERIOD)
3657 header->size += sizeof(data->period);
3658
3659 if (sample_type & PERF_SAMPLE_READ)
3660 header->size += perf_event_read_size(event);
3661
3662 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3663 int size = 1;
3664
3665 data->callchain = perf_callchain(regs);
3666
3667 if (data->callchain)
3668 size += data->callchain->nr;
3669
3670 header->size += size * sizeof(u64);
3671 }
3672
3673 if (sample_type & PERF_SAMPLE_RAW) {
3674 int size = sizeof(u32);
3675
3676 if (data->raw)
3677 size += data->raw->size;
3678 else
3679 size += sizeof(u32);
3680
3681 WARN_ON_ONCE(size & (sizeof(u64)-1));
3682 header->size += size;
3683 }
3684 }
3685
3686 static void perf_event_output(struct perf_event *event, int nmi,
3687 struct perf_sample_data *data,
3688 struct pt_regs *regs)
3689 {
3690 struct perf_output_handle handle;
3691 struct perf_event_header header;
3692
3693 /* protect the callchain buffers */
3694 rcu_read_lock();
3695
3696 perf_prepare_sample(&header, data, event, regs);
3697
3698 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3699 goto exit;
3700
3701 perf_output_sample(&handle, &header, data, event);
3702
3703 perf_output_end(&handle);
3704
3705 exit:
3706 rcu_read_unlock();
3707 }
3708
3709 /*
3710 * read event_id
3711 */
3712
3713 struct perf_read_event {
3714 struct perf_event_header header;
3715
3716 u32 pid;
3717 u32 tid;
3718 };
3719
3720 static void
3721 perf_event_read_event(struct perf_event *event,
3722 struct task_struct *task)
3723 {
3724 struct perf_output_handle handle;
3725 struct perf_read_event read_event = {
3726 .header = {
3727 .type = PERF_RECORD_READ,
3728 .misc = 0,
3729 .size = sizeof(read_event) + perf_event_read_size(event),
3730 },
3731 .pid = perf_event_pid(event, task),
3732 .tid = perf_event_tid(event, task),
3733 };
3734 int ret;
3735
3736 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3737 if (ret)
3738 return;
3739
3740 perf_output_put(&handle, read_event);
3741 perf_output_read(&handle, event);
3742
3743 perf_output_end(&handle);
3744 }
3745
3746 /*
3747 * task tracking -- fork/exit
3748 *
3749 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3750 */
3751
3752 struct perf_task_event {
3753 struct task_struct *task;
3754 struct perf_event_context *task_ctx;
3755
3756 struct {
3757 struct perf_event_header header;
3758
3759 u32 pid;
3760 u32 ppid;
3761 u32 tid;
3762 u32 ptid;
3763 u64 time;
3764 } event_id;
3765 };
3766
3767 static void perf_event_task_output(struct perf_event *event,
3768 struct perf_task_event *task_event)
3769 {
3770 struct perf_output_handle handle;
3771 struct task_struct *task = task_event->task;
3772 int size, ret;
3773
3774 size = task_event->event_id.header.size;
3775 ret = perf_output_begin(&handle, event, size, 0, 0);
3776
3777 if (ret)
3778 return;
3779
3780 task_event->event_id.pid = perf_event_pid(event, task);
3781 task_event->event_id.ppid = perf_event_pid(event, current);
3782
3783 task_event->event_id.tid = perf_event_tid(event, task);
3784 task_event->event_id.ptid = perf_event_tid(event, current);
3785
3786 perf_output_put(&handle, task_event->event_id);
3787
3788 perf_output_end(&handle);
3789 }
3790
3791 static int perf_event_task_match(struct perf_event *event)
3792 {
3793 if (event->state < PERF_EVENT_STATE_INACTIVE)
3794 return 0;
3795
3796 if (event->cpu != -1 && event->cpu != smp_processor_id())
3797 return 0;
3798
3799 if (event->attr.comm || event->attr.mmap ||
3800 event->attr.mmap_data || event->attr.task)
3801 return 1;
3802
3803 return 0;
3804 }
3805
3806 static void perf_event_task_ctx(struct perf_event_context *ctx,
3807 struct perf_task_event *task_event)
3808 {
3809 struct perf_event *event;
3810
3811 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3812 if (perf_event_task_match(event))
3813 perf_event_task_output(event, task_event);
3814 }
3815 }
3816
3817 static void perf_event_task_event(struct perf_task_event *task_event)
3818 {
3819 struct perf_cpu_context *cpuctx;
3820 struct perf_event_context *ctx;
3821 struct pmu *pmu;
3822 int ctxn;
3823
3824 rcu_read_lock();
3825 list_for_each_entry_rcu(pmu, &pmus, entry) {
3826 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3827 if (cpuctx->active_pmu != pmu)
3828 goto next;
3829 perf_event_task_ctx(&cpuctx->ctx, task_event);
3830
3831 ctx = task_event->task_ctx;
3832 if (!ctx) {
3833 ctxn = pmu->task_ctx_nr;
3834 if (ctxn < 0)
3835 goto next;
3836 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3837 }
3838 if (ctx)
3839 perf_event_task_ctx(ctx, task_event);
3840 next:
3841 put_cpu_ptr(pmu->pmu_cpu_context);
3842 }
3843 rcu_read_unlock();
3844 }
3845
3846 static void perf_event_task(struct task_struct *task,
3847 struct perf_event_context *task_ctx,
3848 int new)
3849 {
3850 struct perf_task_event task_event;
3851
3852 if (!atomic_read(&nr_comm_events) &&
3853 !atomic_read(&nr_mmap_events) &&
3854 !atomic_read(&nr_task_events))
3855 return;
3856
3857 task_event = (struct perf_task_event){
3858 .task = task,
3859 .task_ctx = task_ctx,
3860 .event_id = {
3861 .header = {
3862 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3863 .misc = 0,
3864 .size = sizeof(task_event.event_id),
3865 },
3866 /* .pid */
3867 /* .ppid */
3868 /* .tid */
3869 /* .ptid */
3870 .time = perf_clock(),
3871 },
3872 };
3873
3874 perf_event_task_event(&task_event);
3875 }
3876
3877 void perf_event_fork(struct task_struct *task)
3878 {
3879 perf_event_task(task, NULL, 1);
3880 }
3881
3882 /*
3883 * comm tracking
3884 */
3885
3886 struct perf_comm_event {
3887 struct task_struct *task;
3888 char *comm;
3889 int comm_size;
3890
3891 struct {
3892 struct perf_event_header header;
3893
3894 u32 pid;
3895 u32 tid;
3896 } event_id;
3897 };
3898
3899 static void perf_event_comm_output(struct perf_event *event,
3900 struct perf_comm_event *comm_event)
3901 {
3902 struct perf_output_handle handle;
3903 int size = comm_event->event_id.header.size;
3904 int ret = perf_output_begin(&handle, event, size, 0, 0);
3905
3906 if (ret)
3907 return;
3908
3909 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3910 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3911
3912 perf_output_put(&handle, comm_event->event_id);
3913 perf_output_copy(&handle, comm_event->comm,
3914 comm_event->comm_size);
3915 perf_output_end(&handle);
3916 }
3917
3918 static int perf_event_comm_match(struct perf_event *event)
3919 {
3920 if (event->state < PERF_EVENT_STATE_INACTIVE)
3921 return 0;
3922
3923 if (event->cpu != -1 && event->cpu != smp_processor_id())
3924 return 0;
3925
3926 if (event->attr.comm)
3927 return 1;
3928
3929 return 0;
3930 }
3931
3932 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3933 struct perf_comm_event *comm_event)
3934 {
3935 struct perf_event *event;
3936
3937 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3938 if (perf_event_comm_match(event))
3939 perf_event_comm_output(event, comm_event);
3940 }
3941 }
3942
3943 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3944 {
3945 struct perf_cpu_context *cpuctx;
3946 struct perf_event_context *ctx;
3947 char comm[TASK_COMM_LEN];
3948 unsigned int size;
3949 struct pmu *pmu;
3950 int ctxn;
3951
3952 memset(comm, 0, sizeof(comm));
3953 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3954 size = ALIGN(strlen(comm)+1, sizeof(u64));
3955
3956 comm_event->comm = comm;
3957 comm_event->comm_size = size;
3958
3959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3960
3961 rcu_read_lock();
3962 list_for_each_entry_rcu(pmu, &pmus, entry) {
3963 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3964 if (cpuctx->active_pmu != pmu)
3965 goto next;
3966 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3967
3968 ctxn = pmu->task_ctx_nr;
3969 if (ctxn < 0)
3970 goto next;
3971
3972 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3973 if (ctx)
3974 perf_event_comm_ctx(ctx, comm_event);
3975 next:
3976 put_cpu_ptr(pmu->pmu_cpu_context);
3977 }
3978 rcu_read_unlock();
3979 }
3980
3981 void perf_event_comm(struct task_struct *task)
3982 {
3983 struct perf_comm_event comm_event;
3984 struct perf_event_context *ctx;
3985 int ctxn;
3986
3987 for_each_task_context_nr(ctxn) {
3988 ctx = task->perf_event_ctxp[ctxn];
3989 if (!ctx)
3990 continue;
3991
3992 perf_event_enable_on_exec(ctx);
3993 }
3994
3995 if (!atomic_read(&nr_comm_events))
3996 return;
3997
3998 comm_event = (struct perf_comm_event){
3999 .task = task,
4000 /* .comm */
4001 /* .comm_size */
4002 .event_id = {
4003 .header = {
4004 .type = PERF_RECORD_COMM,
4005 .misc = 0,
4006 /* .size */
4007 },
4008 /* .pid */
4009 /* .tid */
4010 },
4011 };
4012
4013 perf_event_comm_event(&comm_event);
4014 }
4015
4016 /*
4017 * mmap tracking
4018 */
4019
4020 struct perf_mmap_event {
4021 struct vm_area_struct *vma;
4022
4023 const char *file_name;
4024 int file_size;
4025
4026 struct {
4027 struct perf_event_header header;
4028
4029 u32 pid;
4030 u32 tid;
4031 u64 start;
4032 u64 len;
4033 u64 pgoff;
4034 } event_id;
4035 };
4036
4037 static void perf_event_mmap_output(struct perf_event *event,
4038 struct perf_mmap_event *mmap_event)
4039 {
4040 struct perf_output_handle handle;
4041 int size = mmap_event->event_id.header.size;
4042 int ret = perf_output_begin(&handle, event, size, 0, 0);
4043
4044 if (ret)
4045 return;
4046
4047 mmap_event->event_id.pid = perf_event_pid(event, current);
4048 mmap_event->event_id.tid = perf_event_tid(event, current);
4049
4050 perf_output_put(&handle, mmap_event->event_id);
4051 perf_output_copy(&handle, mmap_event->file_name,
4052 mmap_event->file_size);
4053 perf_output_end(&handle);
4054 }
4055
4056 static int perf_event_mmap_match(struct perf_event *event,
4057 struct perf_mmap_event *mmap_event,
4058 int executable)
4059 {
4060 if (event->state < PERF_EVENT_STATE_INACTIVE)
4061 return 0;
4062
4063 if (event->cpu != -1 && event->cpu != smp_processor_id())
4064 return 0;
4065
4066 if ((!executable && event->attr.mmap_data) ||
4067 (executable && event->attr.mmap))
4068 return 1;
4069
4070 return 0;
4071 }
4072
4073 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4074 struct perf_mmap_event *mmap_event,
4075 int executable)
4076 {
4077 struct perf_event *event;
4078
4079 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4080 if (perf_event_mmap_match(event, mmap_event, executable))
4081 perf_event_mmap_output(event, mmap_event);
4082 }
4083 }
4084
4085 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4086 {
4087 struct perf_cpu_context *cpuctx;
4088 struct perf_event_context *ctx;
4089 struct vm_area_struct *vma = mmap_event->vma;
4090 struct file *file = vma->vm_file;
4091 unsigned int size;
4092 char tmp[16];
4093 char *buf = NULL;
4094 const char *name;
4095 struct pmu *pmu;
4096 int ctxn;
4097
4098 memset(tmp, 0, sizeof(tmp));
4099
4100 if (file) {
4101 /*
4102 * d_path works from the end of the buffer backwards, so we
4103 * need to add enough zero bytes after the string to handle
4104 * the 64bit alignment we do later.
4105 */
4106 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4107 if (!buf) {
4108 name = strncpy(tmp, "//enomem", sizeof(tmp));
4109 goto got_name;
4110 }
4111 name = d_path(&file->f_path, buf, PATH_MAX);
4112 if (IS_ERR(name)) {
4113 name = strncpy(tmp, "//toolong", sizeof(tmp));
4114 goto got_name;
4115 }
4116 } else {
4117 if (arch_vma_name(mmap_event->vma)) {
4118 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4119 sizeof(tmp));
4120 goto got_name;
4121 }
4122
4123 if (!vma->vm_mm) {
4124 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4125 goto got_name;
4126 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4127 vma->vm_end >= vma->vm_mm->brk) {
4128 name = strncpy(tmp, "[heap]", sizeof(tmp));
4129 goto got_name;
4130 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4131 vma->vm_end >= vma->vm_mm->start_stack) {
4132 name = strncpy(tmp, "[stack]", sizeof(tmp));
4133 goto got_name;
4134 }
4135
4136 name = strncpy(tmp, "//anon", sizeof(tmp));
4137 goto got_name;
4138 }
4139
4140 got_name:
4141 size = ALIGN(strlen(name)+1, sizeof(u64));
4142
4143 mmap_event->file_name = name;
4144 mmap_event->file_size = size;
4145
4146 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4147
4148 rcu_read_lock();
4149 list_for_each_entry_rcu(pmu, &pmus, entry) {
4150 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4151 if (cpuctx->active_pmu != pmu)
4152 goto next;
4153 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4154 vma->vm_flags & VM_EXEC);
4155
4156 ctxn = pmu->task_ctx_nr;
4157 if (ctxn < 0)
4158 goto next;
4159
4160 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4161 if (ctx) {
4162 perf_event_mmap_ctx(ctx, mmap_event,
4163 vma->vm_flags & VM_EXEC);
4164 }
4165 next:
4166 put_cpu_ptr(pmu->pmu_cpu_context);
4167 }
4168 rcu_read_unlock();
4169
4170 kfree(buf);
4171 }
4172
4173 void perf_event_mmap(struct vm_area_struct *vma)
4174 {
4175 struct perf_mmap_event mmap_event;
4176
4177 if (!atomic_read(&nr_mmap_events))
4178 return;
4179
4180 mmap_event = (struct perf_mmap_event){
4181 .vma = vma,
4182 /* .file_name */
4183 /* .file_size */
4184 .event_id = {
4185 .header = {
4186 .type = PERF_RECORD_MMAP,
4187 .misc = PERF_RECORD_MISC_USER,
4188 /* .size */
4189 },
4190 /* .pid */
4191 /* .tid */
4192 .start = vma->vm_start,
4193 .len = vma->vm_end - vma->vm_start,
4194 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4195 },
4196 };
4197
4198 perf_event_mmap_event(&mmap_event);
4199 }
4200
4201 /*
4202 * IRQ throttle logging
4203 */
4204
4205 static void perf_log_throttle(struct perf_event *event, int enable)
4206 {
4207 struct perf_output_handle handle;
4208 int ret;
4209
4210 struct {
4211 struct perf_event_header header;
4212 u64 time;
4213 u64 id;
4214 u64 stream_id;
4215 } throttle_event = {
4216 .header = {
4217 .type = PERF_RECORD_THROTTLE,
4218 .misc = 0,
4219 .size = sizeof(throttle_event),
4220 },
4221 .time = perf_clock(),
4222 .id = primary_event_id(event),
4223 .stream_id = event->id,
4224 };
4225
4226 if (enable)
4227 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4228
4229 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4230 if (ret)
4231 return;
4232
4233 perf_output_put(&handle, throttle_event);
4234 perf_output_end(&handle);
4235 }
4236
4237 /*
4238 * Generic event overflow handling, sampling.
4239 */
4240
4241 static int __perf_event_overflow(struct perf_event *event, int nmi,
4242 int throttle, struct perf_sample_data *data,
4243 struct pt_regs *regs)
4244 {
4245 int events = atomic_read(&event->event_limit);
4246 struct hw_perf_event *hwc = &event->hw;
4247 int ret = 0;
4248
4249 if (!throttle) {
4250 hwc->interrupts++;
4251 } else {
4252 if (hwc->interrupts != MAX_INTERRUPTS) {
4253 hwc->interrupts++;
4254 if (HZ * hwc->interrupts >
4255 (u64)sysctl_perf_event_sample_rate) {
4256 hwc->interrupts = MAX_INTERRUPTS;
4257 perf_log_throttle(event, 0);
4258 ret = 1;
4259 }
4260 } else {
4261 /*
4262 * Keep re-disabling events even though on the previous
4263 * pass we disabled it - just in case we raced with a
4264 * sched-in and the event got enabled again:
4265 */
4266 ret = 1;
4267 }
4268 }
4269
4270 if (event->attr.freq) {
4271 u64 now = perf_clock();
4272 s64 delta = now - hwc->freq_time_stamp;
4273
4274 hwc->freq_time_stamp = now;
4275
4276 if (delta > 0 && delta < 2*TICK_NSEC)
4277 perf_adjust_period(event, delta, hwc->last_period);
4278 }
4279
4280 /*
4281 * XXX event_limit might not quite work as expected on inherited
4282 * events
4283 */
4284
4285 event->pending_kill = POLL_IN;
4286 if (events && atomic_dec_and_test(&event->event_limit)) {
4287 ret = 1;
4288 event->pending_kill = POLL_HUP;
4289 if (nmi) {
4290 event->pending_disable = 1;
4291 irq_work_queue(&event->pending);
4292 } else
4293 perf_event_disable(event);
4294 }
4295
4296 if (event->overflow_handler)
4297 event->overflow_handler(event, nmi, data, regs);
4298 else
4299 perf_event_output(event, nmi, data, regs);
4300
4301 return ret;
4302 }
4303
4304 int perf_event_overflow(struct perf_event *event, int nmi,
4305 struct perf_sample_data *data,
4306 struct pt_regs *regs)
4307 {
4308 return __perf_event_overflow(event, nmi, 1, data, regs);
4309 }
4310
4311 /*
4312 * Generic software event infrastructure
4313 */
4314
4315 struct swevent_htable {
4316 struct swevent_hlist *swevent_hlist;
4317 struct mutex hlist_mutex;
4318 int hlist_refcount;
4319
4320 /* Recursion avoidance in each contexts */
4321 int recursion[PERF_NR_CONTEXTS];
4322 };
4323
4324 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4325
4326 /*
4327 * We directly increment event->count and keep a second value in
4328 * event->hw.period_left to count intervals. This period event
4329 * is kept in the range [-sample_period, 0] so that we can use the
4330 * sign as trigger.
4331 */
4332
4333 static u64 perf_swevent_set_period(struct perf_event *event)
4334 {
4335 struct hw_perf_event *hwc = &event->hw;
4336 u64 period = hwc->last_period;
4337 u64 nr, offset;
4338 s64 old, val;
4339
4340 hwc->last_period = hwc->sample_period;
4341
4342 again:
4343 old = val = local64_read(&hwc->period_left);
4344 if (val < 0)
4345 return 0;
4346
4347 nr = div64_u64(period + val, period);
4348 offset = nr * period;
4349 val -= offset;
4350 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4351 goto again;
4352
4353 return nr;
4354 }
4355
4356 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4357 int nmi, struct perf_sample_data *data,
4358 struct pt_regs *regs)
4359 {
4360 struct hw_perf_event *hwc = &event->hw;
4361 int throttle = 0;
4362
4363 data->period = event->hw.last_period;
4364 if (!overflow)
4365 overflow = perf_swevent_set_period(event);
4366
4367 if (hwc->interrupts == MAX_INTERRUPTS)
4368 return;
4369
4370 for (; overflow; overflow--) {
4371 if (__perf_event_overflow(event, nmi, throttle,
4372 data, regs)) {
4373 /*
4374 * We inhibit the overflow from happening when
4375 * hwc->interrupts == MAX_INTERRUPTS.
4376 */
4377 break;
4378 }
4379 throttle = 1;
4380 }
4381 }
4382
4383 static void perf_swevent_event(struct perf_event *event, u64 nr,
4384 int nmi, struct perf_sample_data *data,
4385 struct pt_regs *regs)
4386 {
4387 struct hw_perf_event *hwc = &event->hw;
4388
4389 local64_add(nr, &event->count);
4390
4391 if (!regs)
4392 return;
4393
4394 if (!hwc->sample_period)
4395 return;
4396
4397 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4398 return perf_swevent_overflow(event, 1, nmi, data, regs);
4399
4400 if (local64_add_negative(nr, &hwc->period_left))
4401 return;
4402
4403 perf_swevent_overflow(event, 0, nmi, data, regs);
4404 }
4405
4406 static int perf_exclude_event(struct perf_event *event,
4407 struct pt_regs *regs)
4408 {
4409 if (event->hw.state & PERF_HES_STOPPED)
4410 return 0;
4411
4412 if (regs) {
4413 if (event->attr.exclude_user && user_mode(regs))
4414 return 1;
4415
4416 if (event->attr.exclude_kernel && !user_mode(regs))
4417 return 1;
4418 }
4419
4420 return 0;
4421 }
4422
4423 static int perf_swevent_match(struct perf_event *event,
4424 enum perf_type_id type,
4425 u32 event_id,
4426 struct perf_sample_data *data,
4427 struct pt_regs *regs)
4428 {
4429 if (event->attr.type != type)
4430 return 0;
4431
4432 if (event->attr.config != event_id)
4433 return 0;
4434
4435 if (perf_exclude_event(event, regs))
4436 return 0;
4437
4438 return 1;
4439 }
4440
4441 static inline u64 swevent_hash(u64 type, u32 event_id)
4442 {
4443 u64 val = event_id | (type << 32);
4444
4445 return hash_64(val, SWEVENT_HLIST_BITS);
4446 }
4447
4448 static inline struct hlist_head *
4449 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4450 {
4451 u64 hash = swevent_hash(type, event_id);
4452
4453 return &hlist->heads[hash];
4454 }
4455
4456 /* For the read side: events when they trigger */
4457 static inline struct hlist_head *
4458 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4459 {
4460 struct swevent_hlist *hlist;
4461
4462 hlist = rcu_dereference(swhash->swevent_hlist);
4463 if (!hlist)
4464 return NULL;
4465
4466 return __find_swevent_head(hlist, type, event_id);
4467 }
4468
4469 /* For the event head insertion and removal in the hlist */
4470 static inline struct hlist_head *
4471 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4472 {
4473 struct swevent_hlist *hlist;
4474 u32 event_id = event->attr.config;
4475 u64 type = event->attr.type;
4476
4477 /*
4478 * Event scheduling is always serialized against hlist allocation
4479 * and release. Which makes the protected version suitable here.
4480 * The context lock guarantees that.
4481 */
4482 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4483 lockdep_is_held(&event->ctx->lock));
4484 if (!hlist)
4485 return NULL;
4486
4487 return __find_swevent_head(hlist, type, event_id);
4488 }
4489
4490 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4491 u64 nr, int nmi,
4492 struct perf_sample_data *data,
4493 struct pt_regs *regs)
4494 {
4495 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4496 struct perf_event *event;
4497 struct hlist_node *node;
4498 struct hlist_head *head;
4499
4500 rcu_read_lock();
4501 head = find_swevent_head_rcu(swhash, type, event_id);
4502 if (!head)
4503 goto end;
4504
4505 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4506 if (perf_swevent_match(event, type, event_id, data, regs))
4507 perf_swevent_event(event, nr, nmi, data, regs);
4508 }
4509 end:
4510 rcu_read_unlock();
4511 }
4512
4513 int perf_swevent_get_recursion_context(void)
4514 {
4515 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516
4517 return get_recursion_context(swhash->recursion);
4518 }
4519 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4520
4521 void inline perf_swevent_put_recursion_context(int rctx)
4522 {
4523 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4524
4525 put_recursion_context(swhash->recursion, rctx);
4526 }
4527
4528 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4529 struct pt_regs *regs, u64 addr)
4530 {
4531 struct perf_sample_data data;
4532 int rctx;
4533
4534 preempt_disable_notrace();
4535 rctx = perf_swevent_get_recursion_context();
4536 if (rctx < 0)
4537 return;
4538
4539 perf_sample_data_init(&data, addr);
4540
4541 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4542
4543 perf_swevent_put_recursion_context(rctx);
4544 preempt_enable_notrace();
4545 }
4546
4547 static void perf_swevent_read(struct perf_event *event)
4548 {
4549 }
4550
4551 static int perf_swevent_add(struct perf_event *event, int flags)
4552 {
4553 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4554 struct hw_perf_event *hwc = &event->hw;
4555 struct hlist_head *head;
4556
4557 if (hwc->sample_period) {
4558 hwc->last_period = hwc->sample_period;
4559 perf_swevent_set_period(event);
4560 }
4561
4562 hwc->state = !(flags & PERF_EF_START);
4563
4564 head = find_swevent_head(swhash, event);
4565 if (WARN_ON_ONCE(!head))
4566 return -EINVAL;
4567
4568 hlist_add_head_rcu(&event->hlist_entry, head);
4569
4570 return 0;
4571 }
4572
4573 static void perf_swevent_del(struct perf_event *event, int flags)
4574 {
4575 hlist_del_rcu(&event->hlist_entry);
4576 }
4577
4578 static void perf_swevent_start(struct perf_event *event, int flags)
4579 {
4580 event->hw.state = 0;
4581 }
4582
4583 static void perf_swevent_stop(struct perf_event *event, int flags)
4584 {
4585 event->hw.state = PERF_HES_STOPPED;
4586 }
4587
4588 /* Deref the hlist from the update side */
4589 static inline struct swevent_hlist *
4590 swevent_hlist_deref(struct swevent_htable *swhash)
4591 {
4592 return rcu_dereference_protected(swhash->swevent_hlist,
4593 lockdep_is_held(&swhash->hlist_mutex));
4594 }
4595
4596 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4597 {
4598 struct swevent_hlist *hlist;
4599
4600 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4601 kfree(hlist);
4602 }
4603
4604 static void swevent_hlist_release(struct swevent_htable *swhash)
4605 {
4606 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4607
4608 if (!hlist)
4609 return;
4610
4611 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4612 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4613 }
4614
4615 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4616 {
4617 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4618
4619 mutex_lock(&swhash->hlist_mutex);
4620
4621 if (!--swhash->hlist_refcount)
4622 swevent_hlist_release(swhash);
4623
4624 mutex_unlock(&swhash->hlist_mutex);
4625 }
4626
4627 static void swevent_hlist_put(struct perf_event *event)
4628 {
4629 int cpu;
4630
4631 if (event->cpu != -1) {
4632 swevent_hlist_put_cpu(event, event->cpu);
4633 return;
4634 }
4635
4636 for_each_possible_cpu(cpu)
4637 swevent_hlist_put_cpu(event, cpu);
4638 }
4639
4640 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4641 {
4642 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4643 int err = 0;
4644
4645 mutex_lock(&swhash->hlist_mutex);
4646
4647 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4648 struct swevent_hlist *hlist;
4649
4650 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4651 if (!hlist) {
4652 err = -ENOMEM;
4653 goto exit;
4654 }
4655 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4656 }
4657 swhash->hlist_refcount++;
4658 exit:
4659 mutex_unlock(&swhash->hlist_mutex);
4660
4661 return err;
4662 }
4663
4664 static int swevent_hlist_get(struct perf_event *event)
4665 {
4666 int err;
4667 int cpu, failed_cpu;
4668
4669 if (event->cpu != -1)
4670 return swevent_hlist_get_cpu(event, event->cpu);
4671
4672 get_online_cpus();
4673 for_each_possible_cpu(cpu) {
4674 err = swevent_hlist_get_cpu(event, cpu);
4675 if (err) {
4676 failed_cpu = cpu;
4677 goto fail;
4678 }
4679 }
4680 put_online_cpus();
4681
4682 return 0;
4683 fail:
4684 for_each_possible_cpu(cpu) {
4685 if (cpu == failed_cpu)
4686 break;
4687 swevent_hlist_put_cpu(event, cpu);
4688 }
4689
4690 put_online_cpus();
4691 return err;
4692 }
4693
4694 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4695
4696 static void sw_perf_event_destroy(struct perf_event *event)
4697 {
4698 u64 event_id = event->attr.config;
4699
4700 WARN_ON(event->parent);
4701
4702 jump_label_dec(&perf_swevent_enabled[event_id]);
4703 swevent_hlist_put(event);
4704 }
4705
4706 static int perf_swevent_init(struct perf_event *event)
4707 {
4708 int event_id = event->attr.config;
4709
4710 if (event->attr.type != PERF_TYPE_SOFTWARE)
4711 return -ENOENT;
4712
4713 switch (event_id) {
4714 case PERF_COUNT_SW_CPU_CLOCK:
4715 case PERF_COUNT_SW_TASK_CLOCK:
4716 return -ENOENT;
4717
4718 default:
4719 break;
4720 }
4721
4722 if (event_id >= PERF_COUNT_SW_MAX)
4723 return -ENOENT;
4724
4725 if (!event->parent) {
4726 int err;
4727
4728 err = swevent_hlist_get(event);
4729 if (err)
4730 return err;
4731
4732 jump_label_inc(&perf_swevent_enabled[event_id]);
4733 event->destroy = sw_perf_event_destroy;
4734 }
4735
4736 return 0;
4737 }
4738
4739 static struct pmu perf_swevent = {
4740 .task_ctx_nr = perf_sw_context,
4741
4742 .event_init = perf_swevent_init,
4743 .add = perf_swevent_add,
4744 .del = perf_swevent_del,
4745 .start = perf_swevent_start,
4746 .stop = perf_swevent_stop,
4747 .read = perf_swevent_read,
4748 };
4749
4750 #ifdef CONFIG_EVENT_TRACING
4751
4752 static int perf_tp_filter_match(struct perf_event *event,
4753 struct perf_sample_data *data)
4754 {
4755 void *record = data->raw->data;
4756
4757 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4758 return 1;
4759 return 0;
4760 }
4761
4762 static int perf_tp_event_match(struct perf_event *event,
4763 struct perf_sample_data *data,
4764 struct pt_regs *regs)
4765 {
4766 /*
4767 * All tracepoints are from kernel-space.
4768 */
4769 if (event->attr.exclude_kernel)
4770 return 0;
4771
4772 if (!perf_tp_filter_match(event, data))
4773 return 0;
4774
4775 return 1;
4776 }
4777
4778 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4779 struct pt_regs *regs, struct hlist_head *head, int rctx)
4780 {
4781 struct perf_sample_data data;
4782 struct perf_event *event;
4783 struct hlist_node *node;
4784
4785 struct perf_raw_record raw = {
4786 .size = entry_size,
4787 .data = record,
4788 };
4789
4790 perf_sample_data_init(&data, addr);
4791 data.raw = &raw;
4792
4793 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4794 if (perf_tp_event_match(event, &data, regs))
4795 perf_swevent_event(event, count, 1, &data, regs);
4796 }
4797
4798 perf_swevent_put_recursion_context(rctx);
4799 }
4800 EXPORT_SYMBOL_GPL(perf_tp_event);
4801
4802 static void tp_perf_event_destroy(struct perf_event *event)
4803 {
4804 perf_trace_destroy(event);
4805 }
4806
4807 static int perf_tp_event_init(struct perf_event *event)
4808 {
4809 int err;
4810
4811 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4812 return -ENOENT;
4813
4814 /*
4815 * Raw tracepoint data is a severe data leak, only allow root to
4816 * have these.
4817 */
4818 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4819 perf_paranoid_tracepoint_raw() &&
4820 !capable(CAP_SYS_ADMIN))
4821 return -EPERM;
4822
4823 err = perf_trace_init(event);
4824 if (err)
4825 return err;
4826
4827 event->destroy = tp_perf_event_destroy;
4828
4829 return 0;
4830 }
4831
4832 static struct pmu perf_tracepoint = {
4833 .task_ctx_nr = perf_sw_context,
4834
4835 .event_init = perf_tp_event_init,
4836 .add = perf_trace_add,
4837 .del = perf_trace_del,
4838 .start = perf_swevent_start,
4839 .stop = perf_swevent_stop,
4840 .read = perf_swevent_read,
4841 };
4842
4843 static inline void perf_tp_register(void)
4844 {
4845 perf_pmu_register(&perf_tracepoint);
4846 }
4847
4848 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4849 {
4850 char *filter_str;
4851 int ret;
4852
4853 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4854 return -EINVAL;
4855
4856 filter_str = strndup_user(arg, PAGE_SIZE);
4857 if (IS_ERR(filter_str))
4858 return PTR_ERR(filter_str);
4859
4860 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4861
4862 kfree(filter_str);
4863 return ret;
4864 }
4865
4866 static void perf_event_free_filter(struct perf_event *event)
4867 {
4868 ftrace_profile_free_filter(event);
4869 }
4870
4871 #else
4872
4873 static inline void perf_tp_register(void)
4874 {
4875 }
4876
4877 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4878 {
4879 return -ENOENT;
4880 }
4881
4882 static void perf_event_free_filter(struct perf_event *event)
4883 {
4884 }
4885
4886 #endif /* CONFIG_EVENT_TRACING */
4887
4888 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4889 void perf_bp_event(struct perf_event *bp, void *data)
4890 {
4891 struct perf_sample_data sample;
4892 struct pt_regs *regs = data;
4893
4894 perf_sample_data_init(&sample, bp->attr.bp_addr);
4895
4896 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4897 perf_swevent_event(bp, 1, 1, &sample, regs);
4898 }
4899 #endif
4900
4901 /*
4902 * hrtimer based swevent callback
4903 */
4904
4905 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4906 {
4907 enum hrtimer_restart ret = HRTIMER_RESTART;
4908 struct perf_sample_data data;
4909 struct pt_regs *regs;
4910 struct perf_event *event;
4911 u64 period;
4912
4913 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4914 event->pmu->read(event);
4915
4916 perf_sample_data_init(&data, 0);
4917 data.period = event->hw.last_period;
4918 regs = get_irq_regs();
4919
4920 if (regs && !perf_exclude_event(event, regs)) {
4921 if (!(event->attr.exclude_idle && current->pid == 0))
4922 if (perf_event_overflow(event, 0, &data, regs))
4923 ret = HRTIMER_NORESTART;
4924 }
4925
4926 period = max_t(u64, 10000, event->hw.sample_period);
4927 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4928
4929 return ret;
4930 }
4931
4932 static void perf_swevent_start_hrtimer(struct perf_event *event)
4933 {
4934 struct hw_perf_event *hwc = &event->hw;
4935
4936 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4937 hwc->hrtimer.function = perf_swevent_hrtimer;
4938 if (hwc->sample_period) {
4939 s64 period = local64_read(&hwc->period_left);
4940
4941 if (period) {
4942 if (period < 0)
4943 period = 10000;
4944
4945 local64_set(&hwc->period_left, 0);
4946 } else {
4947 period = max_t(u64, 10000, hwc->sample_period);
4948 }
4949 __hrtimer_start_range_ns(&hwc->hrtimer,
4950 ns_to_ktime(period), 0,
4951 HRTIMER_MODE_REL_PINNED, 0);
4952 }
4953 }
4954
4955 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4956 {
4957 struct hw_perf_event *hwc = &event->hw;
4958
4959 if (hwc->sample_period) {
4960 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4961 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4962
4963 hrtimer_cancel(&hwc->hrtimer);
4964 }
4965 }
4966
4967 /*
4968 * Software event: cpu wall time clock
4969 */
4970
4971 static void cpu_clock_event_update(struct perf_event *event)
4972 {
4973 s64 prev;
4974 u64 now;
4975
4976 now = local_clock();
4977 prev = local64_xchg(&event->hw.prev_count, now);
4978 local64_add(now - prev, &event->count);
4979 }
4980
4981 static void cpu_clock_event_start(struct perf_event *event, int flags)
4982 {
4983 local64_set(&event->hw.prev_count, local_clock());
4984 perf_swevent_start_hrtimer(event);
4985 }
4986
4987 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4988 {
4989 perf_swevent_cancel_hrtimer(event);
4990 cpu_clock_event_update(event);
4991 }
4992
4993 static int cpu_clock_event_add(struct perf_event *event, int flags)
4994 {
4995 if (flags & PERF_EF_START)
4996 cpu_clock_event_start(event, flags);
4997
4998 return 0;
4999 }
5000
5001 static void cpu_clock_event_del(struct perf_event *event, int flags)
5002 {
5003 cpu_clock_event_stop(event, flags);
5004 }
5005
5006 static void cpu_clock_event_read(struct perf_event *event)
5007 {
5008 cpu_clock_event_update(event);
5009 }
5010
5011 static int cpu_clock_event_init(struct perf_event *event)
5012 {
5013 if (event->attr.type != PERF_TYPE_SOFTWARE)
5014 return -ENOENT;
5015
5016 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5017 return -ENOENT;
5018
5019 return 0;
5020 }
5021
5022 static struct pmu perf_cpu_clock = {
5023 .task_ctx_nr = perf_sw_context,
5024
5025 .event_init = cpu_clock_event_init,
5026 .add = cpu_clock_event_add,
5027 .del = cpu_clock_event_del,
5028 .start = cpu_clock_event_start,
5029 .stop = cpu_clock_event_stop,
5030 .read = cpu_clock_event_read,
5031 };
5032
5033 /*
5034 * Software event: task time clock
5035 */
5036
5037 static void task_clock_event_update(struct perf_event *event, u64 now)
5038 {
5039 u64 prev;
5040 s64 delta;
5041
5042 prev = local64_xchg(&event->hw.prev_count, now);
5043 delta = now - prev;
5044 local64_add(delta, &event->count);
5045 }
5046
5047 static void task_clock_event_start(struct perf_event *event, int flags)
5048 {
5049 local64_set(&event->hw.prev_count, event->ctx->time);
5050 perf_swevent_start_hrtimer(event);
5051 }
5052
5053 static void task_clock_event_stop(struct perf_event *event, int flags)
5054 {
5055 perf_swevent_cancel_hrtimer(event);
5056 task_clock_event_update(event, event->ctx->time);
5057 }
5058
5059 static int task_clock_event_add(struct perf_event *event, int flags)
5060 {
5061 if (flags & PERF_EF_START)
5062 task_clock_event_start(event, flags);
5063
5064 return 0;
5065 }
5066
5067 static void task_clock_event_del(struct perf_event *event, int flags)
5068 {
5069 task_clock_event_stop(event, PERF_EF_UPDATE);
5070 }
5071
5072 static void task_clock_event_read(struct perf_event *event)
5073 {
5074 u64 time;
5075
5076 if (!in_nmi()) {
5077 update_context_time(event->ctx);
5078 time = event->ctx->time;
5079 } else {
5080 u64 now = perf_clock();
5081 u64 delta = now - event->ctx->timestamp;
5082 time = event->ctx->time + delta;
5083 }
5084
5085 task_clock_event_update(event, time);
5086 }
5087
5088 static int task_clock_event_init(struct perf_event *event)
5089 {
5090 if (event->attr.type != PERF_TYPE_SOFTWARE)
5091 return -ENOENT;
5092
5093 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5094 return -ENOENT;
5095
5096 return 0;
5097 }
5098
5099 static struct pmu perf_task_clock = {
5100 .task_ctx_nr = perf_sw_context,
5101
5102 .event_init = task_clock_event_init,
5103 .add = task_clock_event_add,
5104 .del = task_clock_event_del,
5105 .start = task_clock_event_start,
5106 .stop = task_clock_event_stop,
5107 .read = task_clock_event_read,
5108 };
5109
5110 static void perf_pmu_nop_void(struct pmu *pmu)
5111 {
5112 }
5113
5114 static int perf_pmu_nop_int(struct pmu *pmu)
5115 {
5116 return 0;
5117 }
5118
5119 static void perf_pmu_start_txn(struct pmu *pmu)
5120 {
5121 perf_pmu_disable(pmu);
5122 }
5123
5124 static int perf_pmu_commit_txn(struct pmu *pmu)
5125 {
5126 perf_pmu_enable(pmu);
5127 return 0;
5128 }
5129
5130 static void perf_pmu_cancel_txn(struct pmu *pmu)
5131 {
5132 perf_pmu_enable(pmu);
5133 }
5134
5135 /*
5136 * Ensures all contexts with the same task_ctx_nr have the same
5137 * pmu_cpu_context too.
5138 */
5139 static void *find_pmu_context(int ctxn)
5140 {
5141 struct pmu *pmu;
5142
5143 if (ctxn < 0)
5144 return NULL;
5145
5146 list_for_each_entry(pmu, &pmus, entry) {
5147 if (pmu->task_ctx_nr == ctxn)
5148 return pmu->pmu_cpu_context;
5149 }
5150
5151 return NULL;
5152 }
5153
5154 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5155 {
5156 int cpu;
5157
5158 for_each_possible_cpu(cpu) {
5159 struct perf_cpu_context *cpuctx;
5160
5161 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5162
5163 if (cpuctx->active_pmu == old_pmu)
5164 cpuctx->active_pmu = pmu;
5165 }
5166 }
5167
5168 static void free_pmu_context(struct pmu *pmu)
5169 {
5170 struct pmu *i;
5171
5172 mutex_lock(&pmus_lock);
5173 /*
5174 * Like a real lame refcount.
5175 */
5176 list_for_each_entry(i, &pmus, entry) {
5177 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5178 update_pmu_context(i, pmu);
5179 goto out;
5180 }
5181 }
5182
5183 free_percpu(pmu->pmu_cpu_context);
5184 out:
5185 mutex_unlock(&pmus_lock);
5186 }
5187
5188 int perf_pmu_register(struct pmu *pmu)
5189 {
5190 int cpu, ret;
5191
5192 mutex_lock(&pmus_lock);
5193 ret = -ENOMEM;
5194 pmu->pmu_disable_count = alloc_percpu(int);
5195 if (!pmu->pmu_disable_count)
5196 goto unlock;
5197
5198 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5199 if (pmu->pmu_cpu_context)
5200 goto got_cpu_context;
5201
5202 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5203 if (!pmu->pmu_cpu_context)
5204 goto free_pdc;
5205
5206 for_each_possible_cpu(cpu) {
5207 struct perf_cpu_context *cpuctx;
5208
5209 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5210 __perf_event_init_context(&cpuctx->ctx);
5211 cpuctx->ctx.type = cpu_context;
5212 cpuctx->ctx.pmu = pmu;
5213 cpuctx->jiffies_interval = 1;
5214 INIT_LIST_HEAD(&cpuctx->rotation_list);
5215 cpuctx->active_pmu = pmu;
5216 }
5217
5218 got_cpu_context:
5219 if (!pmu->start_txn) {
5220 if (pmu->pmu_enable) {
5221 /*
5222 * If we have pmu_enable/pmu_disable calls, install
5223 * transaction stubs that use that to try and batch
5224 * hardware accesses.
5225 */
5226 pmu->start_txn = perf_pmu_start_txn;
5227 pmu->commit_txn = perf_pmu_commit_txn;
5228 pmu->cancel_txn = perf_pmu_cancel_txn;
5229 } else {
5230 pmu->start_txn = perf_pmu_nop_void;
5231 pmu->commit_txn = perf_pmu_nop_int;
5232 pmu->cancel_txn = perf_pmu_nop_void;
5233 }
5234 }
5235
5236 if (!pmu->pmu_enable) {
5237 pmu->pmu_enable = perf_pmu_nop_void;
5238 pmu->pmu_disable = perf_pmu_nop_void;
5239 }
5240
5241 list_add_rcu(&pmu->entry, &pmus);
5242 ret = 0;
5243 unlock:
5244 mutex_unlock(&pmus_lock);
5245
5246 return ret;
5247
5248 free_pdc:
5249 free_percpu(pmu->pmu_disable_count);
5250 goto unlock;
5251 }
5252
5253 void perf_pmu_unregister(struct pmu *pmu)
5254 {
5255 mutex_lock(&pmus_lock);
5256 list_del_rcu(&pmu->entry);
5257 mutex_unlock(&pmus_lock);
5258
5259 /*
5260 * We dereference the pmu list under both SRCU and regular RCU, so
5261 * synchronize against both of those.
5262 */
5263 synchronize_srcu(&pmus_srcu);
5264 synchronize_rcu();
5265
5266 free_percpu(pmu->pmu_disable_count);
5267 free_pmu_context(pmu);
5268 }
5269
5270 struct pmu *perf_init_event(struct perf_event *event)
5271 {
5272 struct pmu *pmu = NULL;
5273 int idx;
5274
5275 idx = srcu_read_lock(&pmus_srcu);
5276 list_for_each_entry_rcu(pmu, &pmus, entry) {
5277 int ret = pmu->event_init(event);
5278 if (!ret)
5279 goto unlock;
5280
5281 if (ret != -ENOENT) {
5282 pmu = ERR_PTR(ret);
5283 goto unlock;
5284 }
5285 }
5286 pmu = ERR_PTR(-ENOENT);
5287 unlock:
5288 srcu_read_unlock(&pmus_srcu, idx);
5289
5290 return pmu;
5291 }
5292
5293 /*
5294 * Allocate and initialize a event structure
5295 */
5296 static struct perf_event *
5297 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5298 struct task_struct *task,
5299 struct perf_event *group_leader,
5300 struct perf_event *parent_event,
5301 perf_overflow_handler_t overflow_handler)
5302 {
5303 struct pmu *pmu;
5304 struct perf_event *event;
5305 struct hw_perf_event *hwc;
5306 long err;
5307
5308 event = kzalloc(sizeof(*event), GFP_KERNEL);
5309 if (!event)
5310 return ERR_PTR(-ENOMEM);
5311
5312 /*
5313 * Single events are their own group leaders, with an
5314 * empty sibling list:
5315 */
5316 if (!group_leader)
5317 group_leader = event;
5318
5319 mutex_init(&event->child_mutex);
5320 INIT_LIST_HEAD(&event->child_list);
5321
5322 INIT_LIST_HEAD(&event->group_entry);
5323 INIT_LIST_HEAD(&event->event_entry);
5324 INIT_LIST_HEAD(&event->sibling_list);
5325 init_waitqueue_head(&event->waitq);
5326 init_irq_work(&event->pending, perf_pending_event);
5327
5328 mutex_init(&event->mmap_mutex);
5329
5330 event->cpu = cpu;
5331 event->attr = *attr;
5332 event->group_leader = group_leader;
5333 event->pmu = NULL;
5334 event->oncpu = -1;
5335
5336 event->parent = parent_event;
5337
5338 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5339 event->id = atomic64_inc_return(&perf_event_id);
5340
5341 event->state = PERF_EVENT_STATE_INACTIVE;
5342
5343 if (task) {
5344 event->attach_state = PERF_ATTACH_TASK;
5345 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5346 /*
5347 * hw_breakpoint is a bit difficult here..
5348 */
5349 if (attr->type == PERF_TYPE_BREAKPOINT)
5350 event->hw.bp_target = task;
5351 #endif
5352 }
5353
5354 if (!overflow_handler && parent_event)
5355 overflow_handler = parent_event->overflow_handler;
5356
5357 event->overflow_handler = overflow_handler;
5358
5359 if (attr->disabled)
5360 event->state = PERF_EVENT_STATE_OFF;
5361
5362 pmu = NULL;
5363
5364 hwc = &event->hw;
5365 hwc->sample_period = attr->sample_period;
5366 if (attr->freq && attr->sample_freq)
5367 hwc->sample_period = 1;
5368 hwc->last_period = hwc->sample_period;
5369
5370 local64_set(&hwc->period_left, hwc->sample_period);
5371
5372 /*
5373 * we currently do not support PERF_FORMAT_GROUP on inherited events
5374 */
5375 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5376 goto done;
5377
5378 pmu = perf_init_event(event);
5379
5380 done:
5381 err = 0;
5382 if (!pmu)
5383 err = -EINVAL;
5384 else if (IS_ERR(pmu))
5385 err = PTR_ERR(pmu);
5386
5387 if (err) {
5388 if (event->ns)
5389 put_pid_ns(event->ns);
5390 kfree(event);
5391 return ERR_PTR(err);
5392 }
5393
5394 event->pmu = pmu;
5395
5396 if (!event->parent) {
5397 if (event->attach_state & PERF_ATTACH_TASK)
5398 jump_label_inc(&perf_task_events);
5399 if (event->attr.mmap || event->attr.mmap_data)
5400 atomic_inc(&nr_mmap_events);
5401 if (event->attr.comm)
5402 atomic_inc(&nr_comm_events);
5403 if (event->attr.task)
5404 atomic_inc(&nr_task_events);
5405 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5406 err = get_callchain_buffers();
5407 if (err) {
5408 free_event(event);
5409 return ERR_PTR(err);
5410 }
5411 }
5412 }
5413
5414 return event;
5415 }
5416
5417 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5418 struct perf_event_attr *attr)
5419 {
5420 u32 size;
5421 int ret;
5422
5423 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5424 return -EFAULT;
5425
5426 /*
5427 * zero the full structure, so that a short copy will be nice.
5428 */
5429 memset(attr, 0, sizeof(*attr));
5430
5431 ret = get_user(size, &uattr->size);
5432 if (ret)
5433 return ret;
5434
5435 if (size > PAGE_SIZE) /* silly large */
5436 goto err_size;
5437
5438 if (!size) /* abi compat */
5439 size = PERF_ATTR_SIZE_VER0;
5440
5441 if (size < PERF_ATTR_SIZE_VER0)
5442 goto err_size;
5443
5444 /*
5445 * If we're handed a bigger struct than we know of,
5446 * ensure all the unknown bits are 0 - i.e. new
5447 * user-space does not rely on any kernel feature
5448 * extensions we dont know about yet.
5449 */
5450 if (size > sizeof(*attr)) {
5451 unsigned char __user *addr;
5452 unsigned char __user *end;
5453 unsigned char val;
5454
5455 addr = (void __user *)uattr + sizeof(*attr);
5456 end = (void __user *)uattr + size;
5457
5458 for (; addr < end; addr++) {
5459 ret = get_user(val, addr);
5460 if (ret)
5461 return ret;
5462 if (val)
5463 goto err_size;
5464 }
5465 size = sizeof(*attr);
5466 }
5467
5468 ret = copy_from_user(attr, uattr, size);
5469 if (ret)
5470 return -EFAULT;
5471
5472 /*
5473 * If the type exists, the corresponding creation will verify
5474 * the attr->config.
5475 */
5476 if (attr->type >= PERF_TYPE_MAX)
5477 return -EINVAL;
5478
5479 if (attr->__reserved_1)
5480 return -EINVAL;
5481
5482 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5483 return -EINVAL;
5484
5485 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5486 return -EINVAL;
5487
5488 out:
5489 return ret;
5490
5491 err_size:
5492 put_user(sizeof(*attr), &uattr->size);
5493 ret = -E2BIG;
5494 goto out;
5495 }
5496
5497 static int
5498 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5499 {
5500 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5501 int ret = -EINVAL;
5502
5503 if (!output_event)
5504 goto set;
5505
5506 /* don't allow circular references */
5507 if (event == output_event)
5508 goto out;
5509
5510 /*
5511 * Don't allow cross-cpu buffers
5512 */
5513 if (output_event->cpu != event->cpu)
5514 goto out;
5515
5516 /*
5517 * If its not a per-cpu buffer, it must be the same task.
5518 */
5519 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5520 goto out;
5521
5522 set:
5523 mutex_lock(&event->mmap_mutex);
5524 /* Can't redirect output if we've got an active mmap() */
5525 if (atomic_read(&event->mmap_count))
5526 goto unlock;
5527
5528 if (output_event) {
5529 /* get the buffer we want to redirect to */
5530 buffer = perf_buffer_get(output_event);
5531 if (!buffer)
5532 goto unlock;
5533 }
5534
5535 old_buffer = event->buffer;
5536 rcu_assign_pointer(event->buffer, buffer);
5537 ret = 0;
5538 unlock:
5539 mutex_unlock(&event->mmap_mutex);
5540
5541 if (old_buffer)
5542 perf_buffer_put(old_buffer);
5543 out:
5544 return ret;
5545 }
5546
5547 /**
5548 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5549 *
5550 * @attr_uptr: event_id type attributes for monitoring/sampling
5551 * @pid: target pid
5552 * @cpu: target cpu
5553 * @group_fd: group leader event fd
5554 */
5555 SYSCALL_DEFINE5(perf_event_open,
5556 struct perf_event_attr __user *, attr_uptr,
5557 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5558 {
5559 struct perf_event *group_leader = NULL, *output_event = NULL;
5560 struct perf_event *event, *sibling;
5561 struct perf_event_attr attr;
5562 struct perf_event_context *ctx;
5563 struct file *event_file = NULL;
5564 struct file *group_file = NULL;
5565 struct task_struct *task = NULL;
5566 struct pmu *pmu;
5567 int event_fd;
5568 int move_group = 0;
5569 int fput_needed = 0;
5570 int err;
5571
5572 /* for future expandability... */
5573 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5574 return -EINVAL;
5575
5576 err = perf_copy_attr(attr_uptr, &attr);
5577 if (err)
5578 return err;
5579
5580 if (!attr.exclude_kernel) {
5581 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5582 return -EACCES;
5583 }
5584
5585 if (attr.freq) {
5586 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5587 return -EINVAL;
5588 }
5589
5590 event_fd = get_unused_fd_flags(O_RDWR);
5591 if (event_fd < 0)
5592 return event_fd;
5593
5594 if (group_fd != -1) {
5595 group_leader = perf_fget_light(group_fd, &fput_needed);
5596 if (IS_ERR(group_leader)) {
5597 err = PTR_ERR(group_leader);
5598 goto err_fd;
5599 }
5600 group_file = group_leader->filp;
5601 if (flags & PERF_FLAG_FD_OUTPUT)
5602 output_event = group_leader;
5603 if (flags & PERF_FLAG_FD_NO_GROUP)
5604 group_leader = NULL;
5605 }
5606
5607 if (pid != -1) {
5608 task = find_lively_task_by_vpid(pid);
5609 if (IS_ERR(task)) {
5610 err = PTR_ERR(task);
5611 goto err_group_fd;
5612 }
5613 }
5614
5615 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5616 if (IS_ERR(event)) {
5617 err = PTR_ERR(event);
5618 goto err_task;
5619 }
5620
5621 /*
5622 * Special case software events and allow them to be part of
5623 * any hardware group.
5624 */
5625 pmu = event->pmu;
5626
5627 if (group_leader &&
5628 (is_software_event(event) != is_software_event(group_leader))) {
5629 if (is_software_event(event)) {
5630 /*
5631 * If event and group_leader are not both a software
5632 * event, and event is, then group leader is not.
5633 *
5634 * Allow the addition of software events to !software
5635 * groups, this is safe because software events never
5636 * fail to schedule.
5637 */
5638 pmu = group_leader->pmu;
5639 } else if (is_software_event(group_leader) &&
5640 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5641 /*
5642 * In case the group is a pure software group, and we
5643 * try to add a hardware event, move the whole group to
5644 * the hardware context.
5645 */
5646 move_group = 1;
5647 }
5648 }
5649
5650 /*
5651 * Get the target context (task or percpu):
5652 */
5653 ctx = find_get_context(pmu, task, cpu);
5654 if (IS_ERR(ctx)) {
5655 err = PTR_ERR(ctx);
5656 goto err_alloc;
5657 }
5658
5659 /*
5660 * Look up the group leader (we will attach this event to it):
5661 */
5662 if (group_leader) {
5663 err = -EINVAL;
5664
5665 /*
5666 * Do not allow a recursive hierarchy (this new sibling
5667 * becoming part of another group-sibling):
5668 */
5669 if (group_leader->group_leader != group_leader)
5670 goto err_context;
5671 /*
5672 * Do not allow to attach to a group in a different
5673 * task or CPU context:
5674 */
5675 if (move_group) {
5676 if (group_leader->ctx->type != ctx->type)
5677 goto err_context;
5678 } else {
5679 if (group_leader->ctx != ctx)
5680 goto err_context;
5681 }
5682
5683 /*
5684 * Only a group leader can be exclusive or pinned
5685 */
5686 if (attr.exclusive || attr.pinned)
5687 goto err_context;
5688 }
5689
5690 if (output_event) {
5691 err = perf_event_set_output(event, output_event);
5692 if (err)
5693 goto err_context;
5694 }
5695
5696 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5697 if (IS_ERR(event_file)) {
5698 err = PTR_ERR(event_file);
5699 goto err_context;
5700 }
5701
5702 if (move_group) {
5703 struct perf_event_context *gctx = group_leader->ctx;
5704
5705 mutex_lock(&gctx->mutex);
5706 perf_event_remove_from_context(group_leader);
5707 list_for_each_entry(sibling, &group_leader->sibling_list,
5708 group_entry) {
5709 perf_event_remove_from_context(sibling);
5710 put_ctx(gctx);
5711 }
5712 mutex_unlock(&gctx->mutex);
5713 put_ctx(gctx);
5714 }
5715
5716 event->filp = event_file;
5717 WARN_ON_ONCE(ctx->parent_ctx);
5718 mutex_lock(&ctx->mutex);
5719
5720 if (move_group) {
5721 perf_install_in_context(ctx, group_leader, cpu);
5722 get_ctx(ctx);
5723 list_for_each_entry(sibling, &group_leader->sibling_list,
5724 group_entry) {
5725 perf_install_in_context(ctx, sibling, cpu);
5726 get_ctx(ctx);
5727 }
5728 }
5729
5730 perf_install_in_context(ctx, event, cpu);
5731 ++ctx->generation;
5732 mutex_unlock(&ctx->mutex);
5733
5734 event->owner = current;
5735
5736 mutex_lock(&current->perf_event_mutex);
5737 list_add_tail(&event->owner_entry, &current->perf_event_list);
5738 mutex_unlock(&current->perf_event_mutex);
5739
5740 /*
5741 * Drop the reference on the group_event after placing the
5742 * new event on the sibling_list. This ensures destruction
5743 * of the group leader will find the pointer to itself in
5744 * perf_group_detach().
5745 */
5746 fput_light(group_file, fput_needed);
5747 fd_install(event_fd, event_file);
5748 return event_fd;
5749
5750 err_context:
5751 put_ctx(ctx);
5752 err_alloc:
5753 free_event(event);
5754 err_task:
5755 if (task)
5756 put_task_struct(task);
5757 err_group_fd:
5758 fput_light(group_file, fput_needed);
5759 err_fd:
5760 put_unused_fd(event_fd);
5761 return err;
5762 }
5763
5764 /**
5765 * perf_event_create_kernel_counter
5766 *
5767 * @attr: attributes of the counter to create
5768 * @cpu: cpu in which the counter is bound
5769 * @task: task to profile (NULL for percpu)
5770 */
5771 struct perf_event *
5772 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5773 struct task_struct *task,
5774 perf_overflow_handler_t overflow_handler)
5775 {
5776 struct perf_event_context *ctx;
5777 struct perf_event *event;
5778 int err;
5779
5780 /*
5781 * Get the target context (task or percpu):
5782 */
5783
5784 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5785 if (IS_ERR(event)) {
5786 err = PTR_ERR(event);
5787 goto err;
5788 }
5789
5790 ctx = find_get_context(event->pmu, task, cpu);
5791 if (IS_ERR(ctx)) {
5792 err = PTR_ERR(ctx);
5793 goto err_free;
5794 }
5795
5796 event->filp = NULL;
5797 WARN_ON_ONCE(ctx->parent_ctx);
5798 mutex_lock(&ctx->mutex);
5799 perf_install_in_context(ctx, event, cpu);
5800 ++ctx->generation;
5801 mutex_unlock(&ctx->mutex);
5802
5803 return event;
5804
5805 err_free:
5806 free_event(event);
5807 err:
5808 return ERR_PTR(err);
5809 }
5810 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5811
5812 static void sync_child_event(struct perf_event *child_event,
5813 struct task_struct *child)
5814 {
5815 struct perf_event *parent_event = child_event->parent;
5816 u64 child_val;
5817
5818 if (child_event->attr.inherit_stat)
5819 perf_event_read_event(child_event, child);
5820
5821 child_val = perf_event_count(child_event);
5822
5823 /*
5824 * Add back the child's count to the parent's count:
5825 */
5826 atomic64_add(child_val, &parent_event->child_count);
5827 atomic64_add(child_event->total_time_enabled,
5828 &parent_event->child_total_time_enabled);
5829 atomic64_add(child_event->total_time_running,
5830 &parent_event->child_total_time_running);
5831
5832 /*
5833 * Remove this event from the parent's list
5834 */
5835 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5836 mutex_lock(&parent_event->child_mutex);
5837 list_del_init(&child_event->child_list);
5838 mutex_unlock(&parent_event->child_mutex);
5839
5840 /*
5841 * Release the parent event, if this was the last
5842 * reference to it.
5843 */
5844 fput(parent_event->filp);
5845 }
5846
5847 static void
5848 __perf_event_exit_task(struct perf_event *child_event,
5849 struct perf_event_context *child_ctx,
5850 struct task_struct *child)
5851 {
5852 struct perf_event *parent_event;
5853
5854 perf_event_remove_from_context(child_event);
5855
5856 parent_event = child_event->parent;
5857 /*
5858 * It can happen that parent exits first, and has events
5859 * that are still around due to the child reference. These
5860 * events need to be zapped - but otherwise linger.
5861 */
5862 if (parent_event) {
5863 sync_child_event(child_event, child);
5864 free_event(child_event);
5865 }
5866 }
5867
5868 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5869 {
5870 struct perf_event *child_event, *tmp;
5871 struct perf_event_context *child_ctx;
5872 unsigned long flags;
5873
5874 if (likely(!child->perf_event_ctxp[ctxn])) {
5875 perf_event_task(child, NULL, 0);
5876 return;
5877 }
5878
5879 local_irq_save(flags);
5880 /*
5881 * We can't reschedule here because interrupts are disabled,
5882 * and either child is current or it is a task that can't be
5883 * scheduled, so we are now safe from rescheduling changing
5884 * our context.
5885 */
5886 child_ctx = child->perf_event_ctxp[ctxn];
5887 task_ctx_sched_out(child_ctx, EVENT_ALL);
5888
5889 /*
5890 * Take the context lock here so that if find_get_context is
5891 * reading child->perf_event_ctxp, we wait until it has
5892 * incremented the context's refcount before we do put_ctx below.
5893 */
5894 raw_spin_lock(&child_ctx->lock);
5895 child->perf_event_ctxp[ctxn] = NULL;
5896 /*
5897 * If this context is a clone; unclone it so it can't get
5898 * swapped to another process while we're removing all
5899 * the events from it.
5900 */
5901 unclone_ctx(child_ctx);
5902 update_context_time(child_ctx);
5903 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5904
5905 /*
5906 * Report the task dead after unscheduling the events so that we
5907 * won't get any samples after PERF_RECORD_EXIT. We can however still
5908 * get a few PERF_RECORD_READ events.
5909 */
5910 perf_event_task(child, child_ctx, 0);
5911
5912 /*
5913 * We can recurse on the same lock type through:
5914 *
5915 * __perf_event_exit_task()
5916 * sync_child_event()
5917 * fput(parent_event->filp)
5918 * perf_release()
5919 * mutex_lock(&ctx->mutex)
5920 *
5921 * But since its the parent context it won't be the same instance.
5922 */
5923 mutex_lock(&child_ctx->mutex);
5924
5925 again:
5926 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5927 group_entry)
5928 __perf_event_exit_task(child_event, child_ctx, child);
5929
5930 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5931 group_entry)
5932 __perf_event_exit_task(child_event, child_ctx, child);
5933
5934 /*
5935 * If the last event was a group event, it will have appended all
5936 * its siblings to the list, but we obtained 'tmp' before that which
5937 * will still point to the list head terminating the iteration.
5938 */
5939 if (!list_empty(&child_ctx->pinned_groups) ||
5940 !list_empty(&child_ctx->flexible_groups))
5941 goto again;
5942
5943 mutex_unlock(&child_ctx->mutex);
5944
5945 put_ctx(child_ctx);
5946 }
5947
5948 /*
5949 * When a child task exits, feed back event values to parent events.
5950 */
5951 void perf_event_exit_task(struct task_struct *child)
5952 {
5953 struct perf_event *event, *tmp;
5954 int ctxn;
5955
5956 mutex_lock(&child->perf_event_mutex);
5957 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5958 owner_entry) {
5959 list_del_init(&event->owner_entry);
5960
5961 /*
5962 * Ensure the list deletion is visible before we clear
5963 * the owner, closes a race against perf_release() where
5964 * we need to serialize on the owner->perf_event_mutex.
5965 */
5966 smp_wmb();
5967 event->owner = NULL;
5968 }
5969 mutex_unlock(&child->perf_event_mutex);
5970
5971 for_each_task_context_nr(ctxn)
5972 perf_event_exit_task_context(child, ctxn);
5973 }
5974
5975 static void perf_free_event(struct perf_event *event,
5976 struct perf_event_context *ctx)
5977 {
5978 struct perf_event *parent = event->parent;
5979
5980 if (WARN_ON_ONCE(!parent))
5981 return;
5982
5983 mutex_lock(&parent->child_mutex);
5984 list_del_init(&event->child_list);
5985 mutex_unlock(&parent->child_mutex);
5986
5987 fput(parent->filp);
5988
5989 perf_group_detach(event);
5990 list_del_event(event, ctx);
5991 free_event(event);
5992 }
5993
5994 /*
5995 * free an unexposed, unused context as created by inheritance by
5996 * perf_event_init_task below, used by fork() in case of fail.
5997 */
5998 void perf_event_free_task(struct task_struct *task)
5999 {
6000 struct perf_event_context *ctx;
6001 struct perf_event *event, *tmp;
6002 int ctxn;
6003
6004 for_each_task_context_nr(ctxn) {
6005 ctx = task->perf_event_ctxp[ctxn];
6006 if (!ctx)
6007 continue;
6008
6009 mutex_lock(&ctx->mutex);
6010 again:
6011 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6012 group_entry)
6013 perf_free_event(event, ctx);
6014
6015 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6016 group_entry)
6017 perf_free_event(event, ctx);
6018
6019 if (!list_empty(&ctx->pinned_groups) ||
6020 !list_empty(&ctx->flexible_groups))
6021 goto again;
6022
6023 mutex_unlock(&ctx->mutex);
6024
6025 put_ctx(ctx);
6026 }
6027 }
6028
6029 void perf_event_delayed_put(struct task_struct *task)
6030 {
6031 int ctxn;
6032
6033 for_each_task_context_nr(ctxn)
6034 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6035 }
6036
6037 /*
6038 * inherit a event from parent task to child task:
6039 */
6040 static struct perf_event *
6041 inherit_event(struct perf_event *parent_event,
6042 struct task_struct *parent,
6043 struct perf_event_context *parent_ctx,
6044 struct task_struct *child,
6045 struct perf_event *group_leader,
6046 struct perf_event_context *child_ctx)
6047 {
6048 struct perf_event *child_event;
6049 unsigned long flags;
6050
6051 /*
6052 * Instead of creating recursive hierarchies of events,
6053 * we link inherited events back to the original parent,
6054 * which has a filp for sure, which we use as the reference
6055 * count:
6056 */
6057 if (parent_event->parent)
6058 parent_event = parent_event->parent;
6059
6060 child_event = perf_event_alloc(&parent_event->attr,
6061 parent_event->cpu,
6062 child,
6063 group_leader, parent_event,
6064 NULL);
6065 if (IS_ERR(child_event))
6066 return child_event;
6067 get_ctx(child_ctx);
6068
6069 /*
6070 * Make the child state follow the state of the parent event,
6071 * not its attr.disabled bit. We hold the parent's mutex,
6072 * so we won't race with perf_event_{en, dis}able_family.
6073 */
6074 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6075 child_event->state = PERF_EVENT_STATE_INACTIVE;
6076 else
6077 child_event->state = PERF_EVENT_STATE_OFF;
6078
6079 if (parent_event->attr.freq) {
6080 u64 sample_period = parent_event->hw.sample_period;
6081 struct hw_perf_event *hwc = &child_event->hw;
6082
6083 hwc->sample_period = sample_period;
6084 hwc->last_period = sample_period;
6085
6086 local64_set(&hwc->period_left, sample_period);
6087 }
6088
6089 child_event->ctx = child_ctx;
6090 child_event->overflow_handler = parent_event->overflow_handler;
6091
6092 /*
6093 * Link it up in the child's context:
6094 */
6095 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6096 add_event_to_ctx(child_event, child_ctx);
6097 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6098
6099 /*
6100 * Get a reference to the parent filp - we will fput it
6101 * when the child event exits. This is safe to do because
6102 * we are in the parent and we know that the filp still
6103 * exists and has a nonzero count:
6104 */
6105 atomic_long_inc(&parent_event->filp->f_count);
6106
6107 /*
6108 * Link this into the parent event's child list
6109 */
6110 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6111 mutex_lock(&parent_event->child_mutex);
6112 list_add_tail(&child_event->child_list, &parent_event->child_list);
6113 mutex_unlock(&parent_event->child_mutex);
6114
6115 return child_event;
6116 }
6117
6118 static int inherit_group(struct perf_event *parent_event,
6119 struct task_struct *parent,
6120 struct perf_event_context *parent_ctx,
6121 struct task_struct *child,
6122 struct perf_event_context *child_ctx)
6123 {
6124 struct perf_event *leader;
6125 struct perf_event *sub;
6126 struct perf_event *child_ctr;
6127
6128 leader = inherit_event(parent_event, parent, parent_ctx,
6129 child, NULL, child_ctx);
6130 if (IS_ERR(leader))
6131 return PTR_ERR(leader);
6132 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6133 child_ctr = inherit_event(sub, parent, parent_ctx,
6134 child, leader, child_ctx);
6135 if (IS_ERR(child_ctr))
6136 return PTR_ERR(child_ctr);
6137 }
6138 return 0;
6139 }
6140
6141 static int
6142 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6143 struct perf_event_context *parent_ctx,
6144 struct task_struct *child, int ctxn,
6145 int *inherited_all)
6146 {
6147 int ret;
6148 struct perf_event_context *child_ctx;
6149
6150 if (!event->attr.inherit) {
6151 *inherited_all = 0;
6152 return 0;
6153 }
6154
6155 child_ctx = child->perf_event_ctxp[ctxn];
6156 if (!child_ctx) {
6157 /*
6158 * This is executed from the parent task context, so
6159 * inherit events that have been marked for cloning.
6160 * First allocate and initialize a context for the
6161 * child.
6162 */
6163
6164 child_ctx = alloc_perf_context(event->pmu, child);
6165 if (!child_ctx)
6166 return -ENOMEM;
6167
6168 child->perf_event_ctxp[ctxn] = child_ctx;
6169 }
6170
6171 ret = inherit_group(event, parent, parent_ctx,
6172 child, child_ctx);
6173
6174 if (ret)
6175 *inherited_all = 0;
6176
6177 return ret;
6178 }
6179
6180 /*
6181 * Initialize the perf_event context in task_struct
6182 */
6183 int perf_event_init_context(struct task_struct *child, int ctxn)
6184 {
6185 struct perf_event_context *child_ctx, *parent_ctx;
6186 struct perf_event_context *cloned_ctx;
6187 struct perf_event *event;
6188 struct task_struct *parent = current;
6189 int inherited_all = 1;
6190 unsigned long flags;
6191 int ret = 0;
6192
6193 child->perf_event_ctxp[ctxn] = NULL;
6194
6195 mutex_init(&child->perf_event_mutex);
6196 INIT_LIST_HEAD(&child->perf_event_list);
6197
6198 if (likely(!parent->perf_event_ctxp[ctxn]))
6199 return 0;
6200
6201 /*
6202 * If the parent's context is a clone, pin it so it won't get
6203 * swapped under us.
6204 */
6205 parent_ctx = perf_pin_task_context(parent, ctxn);
6206
6207 /*
6208 * No need to check if parent_ctx != NULL here; since we saw
6209 * it non-NULL earlier, the only reason for it to become NULL
6210 * is if we exit, and since we're currently in the middle of
6211 * a fork we can't be exiting at the same time.
6212 */
6213
6214 /*
6215 * Lock the parent list. No need to lock the child - not PID
6216 * hashed yet and not running, so nobody can access it.
6217 */
6218 mutex_lock(&parent_ctx->mutex);
6219
6220 /*
6221 * We dont have to disable NMIs - we are only looking at
6222 * the list, not manipulating it:
6223 */
6224 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6225 ret = inherit_task_group(event, parent, parent_ctx,
6226 child, ctxn, &inherited_all);
6227 if (ret)
6228 break;
6229 }
6230
6231 /*
6232 * We can't hold ctx->lock when iterating the ->flexible_group list due
6233 * to allocations, but we need to prevent rotation because
6234 * rotate_ctx() will change the list from interrupt context.
6235 */
6236 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6237 parent_ctx->rotate_disable = 1;
6238 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6239
6240 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6241 ret = inherit_task_group(event, parent, parent_ctx,
6242 child, ctxn, &inherited_all);
6243 if (ret)
6244 break;
6245 }
6246
6247 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6248 parent_ctx->rotate_disable = 0;
6249 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6250
6251 child_ctx = child->perf_event_ctxp[ctxn];
6252
6253 if (child_ctx && inherited_all) {
6254 /*
6255 * Mark the child context as a clone of the parent
6256 * context, or of whatever the parent is a clone of.
6257 * Note that if the parent is a clone, it could get
6258 * uncloned at any point, but that doesn't matter
6259 * because the list of events and the generation
6260 * count can't have changed since we took the mutex.
6261 */
6262 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6263 if (cloned_ctx) {
6264 child_ctx->parent_ctx = cloned_ctx;
6265 child_ctx->parent_gen = parent_ctx->parent_gen;
6266 } else {
6267 child_ctx->parent_ctx = parent_ctx;
6268 child_ctx->parent_gen = parent_ctx->generation;
6269 }
6270 get_ctx(child_ctx->parent_ctx);
6271 }
6272
6273 mutex_unlock(&parent_ctx->mutex);
6274
6275 perf_unpin_context(parent_ctx);
6276
6277 return ret;
6278 }
6279
6280 /*
6281 * Initialize the perf_event context in task_struct
6282 */
6283 int perf_event_init_task(struct task_struct *child)
6284 {
6285 int ctxn, ret;
6286
6287 for_each_task_context_nr(ctxn) {
6288 ret = perf_event_init_context(child, ctxn);
6289 if (ret)
6290 return ret;
6291 }
6292
6293 return 0;
6294 }
6295
6296 static void __init perf_event_init_all_cpus(void)
6297 {
6298 struct swevent_htable *swhash;
6299 int cpu;
6300
6301 for_each_possible_cpu(cpu) {
6302 swhash = &per_cpu(swevent_htable, cpu);
6303 mutex_init(&swhash->hlist_mutex);
6304 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6305 }
6306 }
6307
6308 static void __cpuinit perf_event_init_cpu(int cpu)
6309 {
6310 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6311
6312 mutex_lock(&swhash->hlist_mutex);
6313 if (swhash->hlist_refcount > 0) {
6314 struct swevent_hlist *hlist;
6315
6316 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6317 WARN_ON(!hlist);
6318 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6319 }
6320 mutex_unlock(&swhash->hlist_mutex);
6321 }
6322
6323 #ifdef CONFIG_HOTPLUG_CPU
6324 static void perf_pmu_rotate_stop(struct pmu *pmu)
6325 {
6326 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6327
6328 WARN_ON(!irqs_disabled());
6329
6330 list_del_init(&cpuctx->rotation_list);
6331 }
6332
6333 static void __perf_event_exit_context(void *__info)
6334 {
6335 struct perf_event_context *ctx = __info;
6336 struct perf_event *event, *tmp;
6337
6338 perf_pmu_rotate_stop(ctx->pmu);
6339
6340 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6341 __perf_event_remove_from_context(event);
6342 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6343 __perf_event_remove_from_context(event);
6344 }
6345
6346 static void perf_event_exit_cpu_context(int cpu)
6347 {
6348 struct perf_event_context *ctx;
6349 struct pmu *pmu;
6350 int idx;
6351
6352 idx = srcu_read_lock(&pmus_srcu);
6353 list_for_each_entry_rcu(pmu, &pmus, entry) {
6354 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6355
6356 mutex_lock(&ctx->mutex);
6357 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6358 mutex_unlock(&ctx->mutex);
6359 }
6360 srcu_read_unlock(&pmus_srcu, idx);
6361 }
6362
6363 static void perf_event_exit_cpu(int cpu)
6364 {
6365 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6366
6367 mutex_lock(&swhash->hlist_mutex);
6368 swevent_hlist_release(swhash);
6369 mutex_unlock(&swhash->hlist_mutex);
6370
6371 perf_event_exit_cpu_context(cpu);
6372 }
6373 #else
6374 static inline void perf_event_exit_cpu(int cpu) { }
6375 #endif
6376
6377 static int __cpuinit
6378 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6379 {
6380 unsigned int cpu = (long)hcpu;
6381
6382 switch (action & ~CPU_TASKS_FROZEN) {
6383
6384 case CPU_UP_PREPARE:
6385 case CPU_DOWN_FAILED:
6386 perf_event_init_cpu(cpu);
6387 break;
6388
6389 case CPU_UP_CANCELED:
6390 case CPU_DOWN_PREPARE:
6391 perf_event_exit_cpu(cpu);
6392 break;
6393
6394 default:
6395 break;
6396 }
6397
6398 return NOTIFY_OK;
6399 }
6400
6401 void __init perf_event_init(void)
6402 {
6403 int ret;
6404
6405 perf_event_init_all_cpus();
6406 init_srcu_struct(&pmus_srcu);
6407 perf_pmu_register(&perf_swevent);
6408 perf_pmu_register(&perf_cpu_clock);
6409 perf_pmu_register(&perf_task_clock);
6410 perf_tp_register();
6411 perf_cpu_notifier(perf_cpu_notify);
6412
6413 ret = init_hw_breakpoint();
6414 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6415 }
This page took 0.156284 seconds and 6 git commands to generate.