2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
41 int perf_max_events __read_mostly
= 1;
42 static int perf_reserved_percpu __read_mostly
;
43 static int perf_overcommit __read_mostly
= 1;
45 static atomic_t nr_events __read_mostly
;
46 static atomic_t nr_mmap_events __read_mostly
;
47 static atomic_t nr_comm_events __read_mostly
;
48 static atomic_t nr_task_events __read_mostly
;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly
= 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid
> -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid
> 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid
> 1;
74 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
81 static atomic64_t perf_event_id
;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock
);
89 * Architecture provided APIs - weak aliases:
91 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
96 void __weak
hw_perf_disable(void) { barrier(); }
97 void __weak
hw_perf_enable(void) { barrier(); }
99 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
100 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
103 hw_perf_group_sched_in(struct perf_event
*group_leader
,
104 struct perf_cpu_context
*cpuctx
,
105 struct perf_event_context
*ctx
, int cpu
)
110 void __weak
perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count
);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count
)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count
);
124 void perf_disable(void)
130 void perf_enable(void)
136 static void get_ctx(struct perf_event_context
*ctx
)
138 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
141 static void free_ctx(struct rcu_head
*head
)
143 struct perf_event_context
*ctx
;
145 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
149 static void put_ctx(struct perf_event_context
*ctx
)
151 if (atomic_dec_and_test(&ctx
->refcount
)) {
153 put_ctx(ctx
->parent_ctx
);
155 put_task_struct(ctx
->task
);
156 call_rcu(&ctx
->rcu_head
, free_ctx
);
160 static void unclone_ctx(struct perf_event_context
*ctx
)
162 if (ctx
->parent_ctx
) {
163 put_ctx(ctx
->parent_ctx
);
164 ctx
->parent_ctx
= NULL
;
169 * If we inherit events we want to return the parent event id
172 static u64
primary_event_id(struct perf_event
*event
)
177 id
= event
->parent
->id
;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context
*
188 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
190 struct perf_event_context
*ctx
;
194 ctx
= rcu_dereference(task
->perf_event_ctxp
);
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx
->lock
, *flags
);
207 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
208 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
212 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
213 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
228 struct perf_event_context
*ctx
;
231 ctx
= perf_lock_task_context(task
, &flags
);
234 spin_unlock_irqrestore(&ctx
->lock
, flags
);
239 static void perf_unpin_context(struct perf_event_context
*ctx
)
243 spin_lock_irqsave(&ctx
->lock
, flags
);
245 spin_unlock_irqrestore(&ctx
->lock
, flags
);
249 static inline u64
perf_clock(void)
251 return cpu_clock(smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context
*ctx
)
259 u64 now
= perf_clock();
261 ctx
->time
+= now
- ctx
->timestamp
;
262 ctx
->timestamp
= now
;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event
*event
)
270 struct perf_event_context
*ctx
= event
->ctx
;
273 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
274 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
280 run_end
= event
->tstamp_stopped
;
282 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
284 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
285 run_end
= event
->tstamp_stopped
;
289 event
->total_time_running
= run_end
- event
->tstamp_running
;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
297 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
299 struct perf_event
*group_leader
= event
->group_leader
;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader
== event
)
307 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
309 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
310 group_leader
->nr_siblings
++;
313 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
315 if (event
->attr
.inherit_stat
)
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
324 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
326 struct perf_event
*sibling
, *tmp
;
328 if (list_empty(&event
->group_entry
))
331 if (event
->attr
.inherit_stat
)
334 list_del_init(&event
->group_entry
);
335 list_del_rcu(&event
->event_entry
);
337 if (event
->group_leader
!= event
)
338 event
->group_leader
->nr_siblings
--;
340 update_event_times(event
);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
349 if (event
->state
> PERF_EVENT_STATE_OFF
)
350 event
->state
= PERF_EVENT_STATE_OFF
;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
359 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
360 sibling
->group_leader
= sibling
;
365 event_sched_out(struct perf_event
*event
,
366 struct perf_cpu_context
*cpuctx
,
367 struct perf_event_context
*ctx
)
369 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
372 event
->state
= PERF_EVENT_STATE_INACTIVE
;
373 if (event
->pending_disable
) {
374 event
->pending_disable
= 0;
375 event
->state
= PERF_EVENT_STATE_OFF
;
377 event
->tstamp_stopped
= ctx
->time
;
378 event
->pmu
->disable(event
);
381 if (!is_software_event(event
))
382 cpuctx
->active_oncpu
--;
384 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
385 cpuctx
->exclusive
= 0;
389 group_sched_out(struct perf_event
*group_event
,
390 struct perf_cpu_context
*cpuctx
,
391 struct perf_event_context
*ctx
)
393 struct perf_event
*event
;
395 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
398 event_sched_out(group_event
, cpuctx
, ctx
);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
404 event_sched_out(event
, cpuctx
, ctx
);
406 if (group_event
->attr
.exclusive
)
407 cpuctx
->exclusive
= 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info
)
418 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
419 struct perf_event
*event
= info
;
420 struct perf_event_context
*ctx
= event
->ctx
;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
430 spin_lock(&ctx
->lock
);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
437 event_sched_out(event
, cpuctx
, ctx
);
439 list_del_event(event
, ctx
);
443 * Allow more per task events with respect to the
446 cpuctx
->max_pertask
=
447 min(perf_max_events
- ctx
->nr_events
,
448 perf_max_events
- perf_reserved_percpu
);
452 spin_unlock(&ctx
->lock
);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event
*event
)
473 struct perf_event_context
*ctx
= event
->ctx
;
474 struct task_struct
*task
= ctx
->task
;
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event
->cpu
,
482 __perf_event_remove_from_context
,
488 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
491 spin_lock_irq(&ctx
->lock
);
493 * If the context is active we need to retry the smp call.
495 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
496 spin_unlock_irq(&ctx
->lock
);
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
505 if (!list_empty(&event
->group_entry
))
506 list_del_event(event
, ctx
);
507 spin_unlock_irq(&ctx
->lock
);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event
*leader
)
515 struct perf_event
*event
;
517 update_event_times(leader
);
518 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
519 update_event_times(event
);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info
)
527 struct perf_event
*event
= info
;
528 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
529 struct perf_event_context
*ctx
= event
->ctx
;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
538 spin_lock(&ctx
->lock
);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
545 update_context_time(ctx
);
546 update_group_times(event
);
547 if (event
== event
->group_leader
)
548 group_sched_out(event
, cpuctx
, ctx
);
550 event_sched_out(event
, cpuctx
, ctx
);
551 event
->state
= PERF_EVENT_STATE_OFF
;
554 spin_unlock(&ctx
->lock
);
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 static void perf_event_disable(struct perf_event
*event
)
572 struct perf_event_context
*ctx
= event
->ctx
;
573 struct task_struct
*task
= ctx
->task
;
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event
->cpu
, __perf_event_disable
,
585 task_oncpu_function_call(task
, __perf_event_disable
, event
);
587 spin_lock_irq(&ctx
->lock
);
589 * If the event is still active, we need to retry the cross-call.
591 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
592 spin_unlock_irq(&ctx
->lock
);
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
601 update_group_times(event
);
602 event
->state
= PERF_EVENT_STATE_OFF
;
605 spin_unlock_irq(&ctx
->lock
);
609 event_sched_in(struct perf_event
*event
,
610 struct perf_cpu_context
*cpuctx
,
611 struct perf_event_context
*ctx
,
614 if (event
->state
<= PERF_EVENT_STATE_OFF
)
617 event
->state
= PERF_EVENT_STATE_ACTIVE
;
618 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
624 if (event
->pmu
->enable(event
)) {
625 event
->state
= PERF_EVENT_STATE_INACTIVE
;
630 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
632 if (!is_software_event(event
))
633 cpuctx
->active_oncpu
++;
636 if (event
->attr
.exclusive
)
637 cpuctx
->exclusive
= 1;
643 group_sched_in(struct perf_event
*group_event
,
644 struct perf_cpu_context
*cpuctx
,
645 struct perf_event_context
*ctx
,
648 struct perf_event
*event
, *partial_group
;
651 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
654 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
656 return ret
< 0 ? ret
: 0;
658 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
665 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
666 partial_group
= event
;
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
679 if (event
== partial_group
)
681 event_sched_out(event
, cpuctx
, ctx
);
683 event_sched_out(group_event
, cpuctx
, ctx
);
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event
*leader
)
694 struct perf_event
*event
;
696 if (!is_software_event(leader
))
699 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
700 if (!is_software_event(event
))
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event
*event
,
710 struct perf_cpu_context
*cpuctx
,
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event
))
719 * If an exclusive group is already on, no other hardware
722 if (cpuctx
->exclusive
)
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
731 * Otherwise, try to add it if all previous groups were able
737 static void add_event_to_ctx(struct perf_event
*event
,
738 struct perf_event_context
*ctx
)
740 list_add_event(event
, ctx
);
741 event
->tstamp_enabled
= ctx
->time
;
742 event
->tstamp_running
= ctx
->time
;
743 event
->tstamp_stopped
= ctx
->time
;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info
)
753 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
754 struct perf_event
*event
= info
;
755 struct perf_event_context
*ctx
= event
->ctx
;
756 struct perf_event
*leader
= event
->group_leader
;
757 int cpu
= smp_processor_id();
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
768 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
770 cpuctx
->task_ctx
= ctx
;
773 spin_lock(&ctx
->lock
);
775 update_context_time(ctx
);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
783 add_event_to_ctx(event
, ctx
);
786 * Don't put the event on if it is disabled or if
787 * it is in a group and the group isn't on.
789 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
790 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
794 * An exclusive event can't go on if there are already active
795 * hardware events, and no hardware event can go on if there
796 * is already an exclusive event on.
798 if (!group_can_go_on(event
, cpuctx
, 1))
801 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
805 * This event couldn't go on. If it is in a group
806 * then we have to pull the whole group off.
807 * If the event group is pinned then put it in error state.
810 group_sched_out(leader
, cpuctx
, ctx
);
811 if (leader
->attr
.pinned
) {
812 update_group_times(leader
);
813 leader
->state
= PERF_EVENT_STATE_ERROR
;
817 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
818 cpuctx
->max_pertask
--;
823 spin_unlock(&ctx
->lock
);
827 * Attach a performance event to a context
829 * First we add the event to the list with the hardware enable bit
830 * in event->hw_config cleared.
832 * If the event is attached to a task which is on a CPU we use a smp
833 * call to enable it in the task context. The task might have been
834 * scheduled away, but we check this in the smp call again.
836 * Must be called with ctx->mutex held.
839 perf_install_in_context(struct perf_event_context
*ctx
,
840 struct perf_event
*event
,
843 struct task_struct
*task
= ctx
->task
;
847 * Per cpu events are installed via an smp call and
848 * the install is always successful.
850 smp_call_function_single(cpu
, __perf_install_in_context
,
856 task_oncpu_function_call(task
, __perf_install_in_context
,
859 spin_lock_irq(&ctx
->lock
);
861 * we need to retry the smp call.
863 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
864 spin_unlock_irq(&ctx
->lock
);
869 * The lock prevents that this context is scheduled in so we
870 * can add the event safely, if it the call above did not
873 if (list_empty(&event
->group_entry
))
874 add_event_to_ctx(event
, ctx
);
875 spin_unlock_irq(&ctx
->lock
);
879 * Put a event into inactive state and update time fields.
880 * Enabling the leader of a group effectively enables all
881 * the group members that aren't explicitly disabled, so we
882 * have to update their ->tstamp_enabled also.
883 * Note: this works for group members as well as group leaders
884 * since the non-leader members' sibling_lists will be empty.
886 static void __perf_event_mark_enabled(struct perf_event
*event
,
887 struct perf_event_context
*ctx
)
889 struct perf_event
*sub
;
891 event
->state
= PERF_EVENT_STATE_INACTIVE
;
892 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
893 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
894 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
895 sub
->tstamp_enabled
=
896 ctx
->time
- sub
->total_time_enabled
;
900 * Cross CPU call to enable a performance event
902 static void __perf_event_enable(void *info
)
904 struct perf_event
*event
= info
;
905 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
906 struct perf_event_context
*ctx
= event
->ctx
;
907 struct perf_event
*leader
= event
->group_leader
;
911 * If this is a per-task event, need to check whether this
912 * event's task is the current task on this cpu.
914 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
915 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
917 cpuctx
->task_ctx
= ctx
;
920 spin_lock(&ctx
->lock
);
922 update_context_time(ctx
);
924 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
926 __perf_event_mark_enabled(event
, ctx
);
929 * If the event is in a group and isn't the group leader,
930 * then don't put it on unless the group is on.
932 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
935 if (!group_can_go_on(event
, cpuctx
, 1)) {
940 err
= group_sched_in(event
, cpuctx
, ctx
,
943 err
= event_sched_in(event
, cpuctx
, ctx
,
950 * If this event can't go on and it's part of a
951 * group, then the whole group has to come off.
954 group_sched_out(leader
, cpuctx
, ctx
);
955 if (leader
->attr
.pinned
) {
956 update_group_times(leader
);
957 leader
->state
= PERF_EVENT_STATE_ERROR
;
962 spin_unlock(&ctx
->lock
);
968 * If event->ctx is a cloned context, callers must make sure that
969 * every task struct that event->ctx->task could possibly point to
970 * remains valid. This condition is satisfied when called through
971 * perf_event_for_each_child or perf_event_for_each as described
972 * for perf_event_disable.
974 static void perf_event_enable(struct perf_event
*event
)
976 struct perf_event_context
*ctx
= event
->ctx
;
977 struct task_struct
*task
= ctx
->task
;
981 * Enable the event on the cpu that it's on
983 smp_call_function_single(event
->cpu
, __perf_event_enable
,
988 spin_lock_irq(&ctx
->lock
);
989 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
993 * If the event is in error state, clear that first.
994 * That way, if we see the event in error state below, we
995 * know that it has gone back into error state, as distinct
996 * from the task having been scheduled away before the
997 * cross-call arrived.
999 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1000 event
->state
= PERF_EVENT_STATE_OFF
;
1003 spin_unlock_irq(&ctx
->lock
);
1004 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1006 spin_lock_irq(&ctx
->lock
);
1009 * If the context is active and the event is still off,
1010 * we need to retry the cross-call.
1012 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1016 * Since we have the lock this context can't be scheduled
1017 * in, so we can change the state safely.
1019 if (event
->state
== PERF_EVENT_STATE_OFF
)
1020 __perf_event_mark_enabled(event
, ctx
);
1023 spin_unlock_irq(&ctx
->lock
);
1026 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1029 * not supported on inherited events
1031 if (event
->attr
.inherit
)
1034 atomic_add(refresh
, &event
->event_limit
);
1035 perf_event_enable(event
);
1040 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1041 struct perf_cpu_context
*cpuctx
)
1043 struct perf_event
*event
;
1045 spin_lock(&ctx
->lock
);
1047 if (likely(!ctx
->nr_events
))
1049 update_context_time(ctx
);
1052 if (ctx
->nr_active
) {
1053 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1054 group_sched_out(event
, cpuctx
, ctx
);
1058 spin_unlock(&ctx
->lock
);
1062 * Test whether two contexts are equivalent, i.e. whether they
1063 * have both been cloned from the same version of the same context
1064 * and they both have the same number of enabled events.
1065 * If the number of enabled events is the same, then the set
1066 * of enabled events should be the same, because these are both
1067 * inherited contexts, therefore we can't access individual events
1068 * in them directly with an fd; we can only enable/disable all
1069 * events via prctl, or enable/disable all events in a family
1070 * via ioctl, which will have the same effect on both contexts.
1072 static int context_equiv(struct perf_event_context
*ctx1
,
1073 struct perf_event_context
*ctx2
)
1075 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1076 && ctx1
->parent_gen
== ctx2
->parent_gen
1077 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1080 static void __perf_event_sync_stat(struct perf_event
*event
,
1081 struct perf_event
*next_event
)
1085 if (!event
->attr
.inherit_stat
)
1089 * Update the event value, we cannot use perf_event_read()
1090 * because we're in the middle of a context switch and have IRQs
1091 * disabled, which upsets smp_call_function_single(), however
1092 * we know the event must be on the current CPU, therefore we
1093 * don't need to use it.
1095 switch (event
->state
) {
1096 case PERF_EVENT_STATE_ACTIVE
:
1097 event
->pmu
->read(event
);
1100 case PERF_EVENT_STATE_INACTIVE
:
1101 update_event_times(event
);
1109 * In order to keep per-task stats reliable we need to flip the event
1110 * values when we flip the contexts.
1112 value
= atomic64_read(&next_event
->count
);
1113 value
= atomic64_xchg(&event
->count
, value
);
1114 atomic64_set(&next_event
->count
, value
);
1116 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1117 swap(event
->total_time_running
, next_event
->total_time_running
);
1120 * Since we swizzled the values, update the user visible data too.
1122 perf_event_update_userpage(event
);
1123 perf_event_update_userpage(next_event
);
1126 #define list_next_entry(pos, member) \
1127 list_entry(pos->member.next, typeof(*pos), member)
1129 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1130 struct perf_event_context
*next_ctx
)
1132 struct perf_event
*event
, *next_event
;
1137 update_context_time(ctx
);
1139 event
= list_first_entry(&ctx
->event_list
,
1140 struct perf_event
, event_entry
);
1142 next_event
= list_first_entry(&next_ctx
->event_list
,
1143 struct perf_event
, event_entry
);
1145 while (&event
->event_entry
!= &ctx
->event_list
&&
1146 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1148 __perf_event_sync_stat(event
, next_event
);
1150 event
= list_next_entry(event
, event_entry
);
1151 next_event
= list_next_entry(next_event
, event_entry
);
1156 * Called from scheduler to remove the events of the current task,
1157 * with interrupts disabled.
1159 * We stop each event and update the event value in event->count.
1161 * This does not protect us against NMI, but disable()
1162 * sets the disabled bit in the control field of event _before_
1163 * accessing the event control register. If a NMI hits, then it will
1164 * not restart the event.
1166 void perf_event_task_sched_out(struct task_struct
*task
,
1167 struct task_struct
*next
, int cpu
)
1169 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1170 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1171 struct perf_event_context
*next_ctx
;
1172 struct perf_event_context
*parent
;
1173 struct pt_regs
*regs
;
1176 regs
= task_pt_regs(task
);
1177 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1179 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1183 parent
= rcu_dereference(ctx
->parent_ctx
);
1184 next_ctx
= next
->perf_event_ctxp
;
1185 if (parent
&& next_ctx
&&
1186 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1188 * Looks like the two contexts are clones, so we might be
1189 * able to optimize the context switch. We lock both
1190 * contexts and check that they are clones under the
1191 * lock (including re-checking that neither has been
1192 * uncloned in the meantime). It doesn't matter which
1193 * order we take the locks because no other cpu could
1194 * be trying to lock both of these tasks.
1196 spin_lock(&ctx
->lock
);
1197 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1198 if (context_equiv(ctx
, next_ctx
)) {
1200 * XXX do we need a memory barrier of sorts
1201 * wrt to rcu_dereference() of perf_event_ctxp
1203 task
->perf_event_ctxp
= next_ctx
;
1204 next
->perf_event_ctxp
= ctx
;
1206 next_ctx
->task
= task
;
1209 perf_event_sync_stat(ctx
, next_ctx
);
1211 spin_unlock(&next_ctx
->lock
);
1212 spin_unlock(&ctx
->lock
);
1217 __perf_event_sched_out(ctx
, cpuctx
);
1218 cpuctx
->task_ctx
= NULL
;
1223 * Called with IRQs disabled
1225 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1227 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1229 if (!cpuctx
->task_ctx
)
1232 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1235 __perf_event_sched_out(ctx
, cpuctx
);
1236 cpuctx
->task_ctx
= NULL
;
1240 * Called with IRQs disabled
1242 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1244 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1248 __perf_event_sched_in(struct perf_event_context
*ctx
,
1249 struct perf_cpu_context
*cpuctx
, int cpu
)
1251 struct perf_event
*event
;
1254 spin_lock(&ctx
->lock
);
1256 if (likely(!ctx
->nr_events
))
1259 ctx
->timestamp
= perf_clock();
1264 * First go through the list and put on any pinned groups
1265 * in order to give them the best chance of going on.
1267 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1268 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1269 !event
->attr
.pinned
)
1271 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1274 if (group_can_go_on(event
, cpuctx
, 1))
1275 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1278 * If this pinned group hasn't been scheduled,
1279 * put it in error state.
1281 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1282 update_group_times(event
);
1283 event
->state
= PERF_EVENT_STATE_ERROR
;
1287 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1289 * Ignore events in OFF or ERROR state, and
1290 * ignore pinned events since we did them already.
1292 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1297 * Listen to the 'cpu' scheduling filter constraint
1300 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1303 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1304 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1309 spin_unlock(&ctx
->lock
);
1313 * Called from scheduler to add the events of the current task
1314 * with interrupts disabled.
1316 * We restore the event value and then enable it.
1318 * This does not protect us against NMI, but enable()
1319 * sets the enabled bit in the control field of event _before_
1320 * accessing the event control register. If a NMI hits, then it will
1321 * keep the event running.
1323 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1325 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1326 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1330 if (cpuctx
->task_ctx
== ctx
)
1332 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1333 cpuctx
->task_ctx
= ctx
;
1336 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1338 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1340 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1343 #define MAX_INTERRUPTS (~0ULL)
1345 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1347 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1349 struct hw_perf_event
*hwc
= &event
->hw
;
1350 u64 period
, sample_period
;
1353 events
*= hwc
->sample_period
;
1354 period
= div64_u64(events
, event
->attr
.sample_freq
);
1356 delta
= (s64
)(period
- hwc
->sample_period
);
1357 delta
= (delta
+ 7) / 8; /* low pass filter */
1359 sample_period
= hwc
->sample_period
+ delta
;
1364 hwc
->sample_period
= sample_period
;
1367 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1369 struct perf_event
*event
;
1370 struct hw_perf_event
*hwc
;
1371 u64 interrupts
, freq
;
1373 spin_lock(&ctx
->lock
);
1374 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1375 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1380 interrupts
= hwc
->interrupts
;
1381 hwc
->interrupts
= 0;
1384 * unthrottle events on the tick
1386 if (interrupts
== MAX_INTERRUPTS
) {
1387 perf_log_throttle(event
, 1);
1388 event
->pmu
->unthrottle(event
);
1389 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1392 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1396 * if the specified freq < HZ then we need to skip ticks
1398 if (event
->attr
.sample_freq
< HZ
) {
1399 freq
= event
->attr
.sample_freq
;
1401 hwc
->freq_count
+= freq
;
1402 hwc
->freq_interrupts
+= interrupts
;
1404 if (hwc
->freq_count
< HZ
)
1407 interrupts
= hwc
->freq_interrupts
;
1408 hwc
->freq_interrupts
= 0;
1409 hwc
->freq_count
-= HZ
;
1413 perf_adjust_period(event
, freq
* interrupts
);
1416 * In order to avoid being stalled by an (accidental) huge
1417 * sample period, force reset the sample period if we didn't
1418 * get any events in this freq period.
1422 event
->pmu
->disable(event
);
1423 atomic64_set(&hwc
->period_left
, 0);
1424 event
->pmu
->enable(event
);
1428 spin_unlock(&ctx
->lock
);
1432 * Round-robin a context's events:
1434 static void rotate_ctx(struct perf_event_context
*ctx
)
1436 struct perf_event
*event
;
1438 if (!ctx
->nr_events
)
1441 spin_lock(&ctx
->lock
);
1443 * Rotate the first entry last (works just fine for group events too):
1446 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1447 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1452 spin_unlock(&ctx
->lock
);
1455 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1457 struct perf_cpu_context
*cpuctx
;
1458 struct perf_event_context
*ctx
;
1460 if (!atomic_read(&nr_events
))
1463 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1464 ctx
= curr
->perf_event_ctxp
;
1466 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1468 perf_ctx_adjust_freq(ctx
);
1470 perf_event_cpu_sched_out(cpuctx
);
1472 __perf_event_task_sched_out(ctx
);
1474 rotate_ctx(&cpuctx
->ctx
);
1478 perf_event_cpu_sched_in(cpuctx
, cpu
);
1480 perf_event_task_sched_in(curr
, cpu
);
1484 * Enable all of a task's events that have been marked enable-on-exec.
1485 * This expects task == current.
1487 static void perf_event_enable_on_exec(struct task_struct
*task
)
1489 struct perf_event_context
*ctx
;
1490 struct perf_event
*event
;
1491 unsigned long flags
;
1494 local_irq_save(flags
);
1495 ctx
= task
->perf_event_ctxp
;
1496 if (!ctx
|| !ctx
->nr_events
)
1499 __perf_event_task_sched_out(ctx
);
1501 spin_lock(&ctx
->lock
);
1503 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1504 if (!event
->attr
.enable_on_exec
)
1506 event
->attr
.enable_on_exec
= 0;
1507 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1509 __perf_event_mark_enabled(event
, ctx
);
1514 * Unclone this context if we enabled any event.
1519 spin_unlock(&ctx
->lock
);
1521 perf_event_task_sched_in(task
, smp_processor_id());
1523 local_irq_restore(flags
);
1527 * Cross CPU call to read the hardware event
1529 static void __perf_event_read(void *info
)
1531 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1532 struct perf_event
*event
= info
;
1533 struct perf_event_context
*ctx
= event
->ctx
;
1536 * If this is a task context, we need to check whether it is
1537 * the current task context of this cpu. If not it has been
1538 * scheduled out before the smp call arrived. In that case
1539 * event->count would have been updated to a recent sample
1540 * when the event was scheduled out.
1542 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1545 spin_lock(&ctx
->lock
);
1546 update_context_time(ctx
);
1547 update_event_times(event
);
1548 spin_unlock(&ctx
->lock
);
1550 event
->pmu
->read(event
);
1553 static u64
perf_event_read(struct perf_event
*event
)
1556 * If event is enabled and currently active on a CPU, update the
1557 * value in the event structure:
1559 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1560 smp_call_function_single(event
->oncpu
,
1561 __perf_event_read
, event
, 1);
1562 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1563 struct perf_event_context
*ctx
= event
->ctx
;
1564 unsigned long flags
;
1566 spin_lock_irqsave(&ctx
->lock
, flags
);
1567 update_context_time(ctx
);
1568 update_event_times(event
);
1569 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1572 return atomic64_read(&event
->count
);
1576 * Initialize the perf_event context in a task_struct:
1579 __perf_event_init_context(struct perf_event_context
*ctx
,
1580 struct task_struct
*task
)
1582 memset(ctx
, 0, sizeof(*ctx
));
1583 spin_lock_init(&ctx
->lock
);
1584 mutex_init(&ctx
->mutex
);
1585 INIT_LIST_HEAD(&ctx
->group_list
);
1586 INIT_LIST_HEAD(&ctx
->event_list
);
1587 atomic_set(&ctx
->refcount
, 1);
1591 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1593 struct perf_event_context
*ctx
;
1594 struct perf_cpu_context
*cpuctx
;
1595 struct task_struct
*task
;
1596 unsigned long flags
;
1600 * If cpu is not a wildcard then this is a percpu event:
1603 /* Must be root to operate on a CPU event: */
1604 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1605 return ERR_PTR(-EACCES
);
1607 if (cpu
< 0 || cpu
> num_possible_cpus())
1608 return ERR_PTR(-EINVAL
);
1611 * We could be clever and allow to attach a event to an
1612 * offline CPU and activate it when the CPU comes up, but
1615 if (!cpu_isset(cpu
, cpu_online_map
))
1616 return ERR_PTR(-ENODEV
);
1618 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1629 task
= find_task_by_vpid(pid
);
1631 get_task_struct(task
);
1635 return ERR_PTR(-ESRCH
);
1638 * Can't attach events to a dying task.
1641 if (task
->flags
& PF_EXITING
)
1644 /* Reuse ptrace permission checks for now. */
1646 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1650 ctx
= perf_lock_task_context(task
, &flags
);
1653 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1657 ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1661 __perf_event_init_context(ctx
, task
);
1663 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1665 * We raced with some other task; use
1666 * the context they set.
1671 get_task_struct(task
);
1674 put_task_struct(task
);
1678 put_task_struct(task
);
1679 return ERR_PTR(err
);
1682 static void perf_event_free_filter(struct perf_event
*event
);
1684 static void free_event_rcu(struct rcu_head
*head
)
1686 struct perf_event
*event
;
1688 event
= container_of(head
, struct perf_event
, rcu_head
);
1690 put_pid_ns(event
->ns
);
1691 perf_event_free_filter(event
);
1695 static void perf_pending_sync(struct perf_event
*event
);
1697 static void free_event(struct perf_event
*event
)
1699 perf_pending_sync(event
);
1701 if (!event
->parent
) {
1702 atomic_dec(&nr_events
);
1703 if (event
->attr
.mmap
)
1704 atomic_dec(&nr_mmap_events
);
1705 if (event
->attr
.comm
)
1706 atomic_dec(&nr_comm_events
);
1707 if (event
->attr
.task
)
1708 atomic_dec(&nr_task_events
);
1711 if (event
->output
) {
1712 fput(event
->output
->filp
);
1713 event
->output
= NULL
;
1717 event
->destroy(event
);
1719 put_ctx(event
->ctx
);
1720 call_rcu(&event
->rcu_head
, free_event_rcu
);
1723 int perf_event_release_kernel(struct perf_event
*event
)
1725 struct perf_event_context
*ctx
= event
->ctx
;
1727 WARN_ON_ONCE(ctx
->parent_ctx
);
1728 mutex_lock(&ctx
->mutex
);
1729 perf_event_remove_from_context(event
);
1730 mutex_unlock(&ctx
->mutex
);
1732 mutex_lock(&event
->owner
->perf_event_mutex
);
1733 list_del_init(&event
->owner_entry
);
1734 mutex_unlock(&event
->owner
->perf_event_mutex
);
1735 put_task_struct(event
->owner
);
1741 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1744 * Called when the last reference to the file is gone.
1746 static int perf_release(struct inode
*inode
, struct file
*file
)
1748 struct perf_event
*event
= file
->private_data
;
1750 file
->private_data
= NULL
;
1752 return perf_event_release_kernel(event
);
1755 static int perf_event_read_size(struct perf_event
*event
)
1757 int entry
= sizeof(u64
); /* value */
1761 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1762 size
+= sizeof(u64
);
1764 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1765 size
+= sizeof(u64
);
1767 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1768 entry
+= sizeof(u64
);
1770 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1771 nr
+= event
->group_leader
->nr_siblings
;
1772 size
+= sizeof(u64
);
1780 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
1782 struct perf_event
*child
;
1788 mutex_lock(&event
->child_mutex
);
1789 total
+= perf_event_read(event
);
1790 *enabled
+= event
->total_time_enabled
+
1791 atomic64_read(&event
->child_total_time_enabled
);
1792 *running
+= event
->total_time_running
+
1793 atomic64_read(&event
->child_total_time_running
);
1795 list_for_each_entry(child
, &event
->child_list
, child_list
) {
1796 total
+= perf_event_read(child
);
1797 *enabled
+= child
->total_time_enabled
;
1798 *running
+= child
->total_time_running
;
1800 mutex_unlock(&event
->child_mutex
);
1804 EXPORT_SYMBOL_GPL(perf_event_read_value
);
1806 static int perf_event_read_group(struct perf_event
*event
,
1807 u64 read_format
, char __user
*buf
)
1809 struct perf_event
*leader
= event
->group_leader
, *sub
;
1810 int n
= 0, size
= 0, ret
= -EFAULT
;
1811 struct perf_event_context
*ctx
= leader
->ctx
;
1813 u64 count
, enabled
, running
;
1815 mutex_lock(&ctx
->mutex
);
1816 count
= perf_event_read_value(leader
, &enabled
, &running
);
1818 values
[n
++] = 1 + leader
->nr_siblings
;
1819 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1820 values
[n
++] = enabled
;
1821 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1822 values
[n
++] = running
;
1823 values
[n
++] = count
;
1824 if (read_format
& PERF_FORMAT_ID
)
1825 values
[n
++] = primary_event_id(leader
);
1827 size
= n
* sizeof(u64
);
1829 if (copy_to_user(buf
, values
, size
))
1834 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1837 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
1838 if (read_format
& PERF_FORMAT_ID
)
1839 values
[n
++] = primary_event_id(sub
);
1841 size
= n
* sizeof(u64
);
1843 if (copy_to_user(buf
+ ret
, values
, size
)) {
1851 mutex_unlock(&ctx
->mutex
);
1856 static int perf_event_read_one(struct perf_event
*event
,
1857 u64 read_format
, char __user
*buf
)
1859 u64 enabled
, running
;
1863 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
1864 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1865 values
[n
++] = enabled
;
1866 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1867 values
[n
++] = running
;
1868 if (read_format
& PERF_FORMAT_ID
)
1869 values
[n
++] = primary_event_id(event
);
1871 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1874 return n
* sizeof(u64
);
1878 * Read the performance event - simple non blocking version for now
1881 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1883 u64 read_format
= event
->attr
.read_format
;
1887 * Return end-of-file for a read on a event that is in
1888 * error state (i.e. because it was pinned but it couldn't be
1889 * scheduled on to the CPU at some point).
1891 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1894 if (count
< perf_event_read_size(event
))
1897 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1898 if (read_format
& PERF_FORMAT_GROUP
)
1899 ret
= perf_event_read_group(event
, read_format
, buf
);
1901 ret
= perf_event_read_one(event
, read_format
, buf
);
1907 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1909 struct perf_event
*event
= file
->private_data
;
1911 return perf_read_hw(event
, buf
, count
);
1914 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1916 struct perf_event
*event
= file
->private_data
;
1917 struct perf_mmap_data
*data
;
1918 unsigned int events
= POLL_HUP
;
1921 data
= rcu_dereference(event
->data
);
1923 events
= atomic_xchg(&data
->poll
, 0);
1926 poll_wait(file
, &event
->waitq
, wait
);
1931 static void perf_event_reset(struct perf_event
*event
)
1933 (void)perf_event_read(event
);
1934 atomic64_set(&event
->count
, 0);
1935 perf_event_update_userpage(event
);
1939 * Holding the top-level event's child_mutex means that any
1940 * descendant process that has inherited this event will block
1941 * in sync_child_event if it goes to exit, thus satisfying the
1942 * task existence requirements of perf_event_enable/disable.
1944 static void perf_event_for_each_child(struct perf_event
*event
,
1945 void (*func
)(struct perf_event
*))
1947 struct perf_event
*child
;
1949 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1950 mutex_lock(&event
->child_mutex
);
1952 list_for_each_entry(child
, &event
->child_list
, child_list
)
1954 mutex_unlock(&event
->child_mutex
);
1957 static void perf_event_for_each(struct perf_event
*event
,
1958 void (*func
)(struct perf_event
*))
1960 struct perf_event_context
*ctx
= event
->ctx
;
1961 struct perf_event
*sibling
;
1963 WARN_ON_ONCE(ctx
->parent_ctx
);
1964 mutex_lock(&ctx
->mutex
);
1965 event
= event
->group_leader
;
1967 perf_event_for_each_child(event
, func
);
1969 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1970 perf_event_for_each_child(event
, func
);
1971 mutex_unlock(&ctx
->mutex
);
1974 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1976 struct perf_event_context
*ctx
= event
->ctx
;
1981 if (!event
->attr
.sample_period
)
1984 size
= copy_from_user(&value
, arg
, sizeof(value
));
1985 if (size
!= sizeof(value
))
1991 spin_lock_irq(&ctx
->lock
);
1992 if (event
->attr
.freq
) {
1993 if (value
> sysctl_perf_event_sample_rate
) {
1998 event
->attr
.sample_freq
= value
;
2000 event
->attr
.sample_period
= value
;
2001 event
->hw
.sample_period
= value
;
2004 spin_unlock_irq(&ctx
->lock
);
2009 static int perf_event_set_output(struct perf_event
*event
, int output_fd
);
2010 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2012 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2014 struct perf_event
*event
= file
->private_data
;
2015 void (*func
)(struct perf_event
*);
2019 case PERF_EVENT_IOC_ENABLE
:
2020 func
= perf_event_enable
;
2022 case PERF_EVENT_IOC_DISABLE
:
2023 func
= perf_event_disable
;
2025 case PERF_EVENT_IOC_RESET
:
2026 func
= perf_event_reset
;
2029 case PERF_EVENT_IOC_REFRESH
:
2030 return perf_event_refresh(event
, arg
);
2032 case PERF_EVENT_IOC_PERIOD
:
2033 return perf_event_period(event
, (u64 __user
*)arg
);
2035 case PERF_EVENT_IOC_SET_OUTPUT
:
2036 return perf_event_set_output(event
, arg
);
2038 case PERF_EVENT_IOC_SET_FILTER
:
2039 return perf_event_set_filter(event
, (void __user
*)arg
);
2045 if (flags
& PERF_IOC_FLAG_GROUP
)
2046 perf_event_for_each(event
, func
);
2048 perf_event_for_each_child(event
, func
);
2053 int perf_event_task_enable(void)
2055 struct perf_event
*event
;
2057 mutex_lock(¤t
->perf_event_mutex
);
2058 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2059 perf_event_for_each_child(event
, perf_event_enable
);
2060 mutex_unlock(¤t
->perf_event_mutex
);
2065 int perf_event_task_disable(void)
2067 struct perf_event
*event
;
2069 mutex_lock(¤t
->perf_event_mutex
);
2070 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2071 perf_event_for_each_child(event
, perf_event_disable
);
2072 mutex_unlock(¤t
->perf_event_mutex
);
2077 #ifndef PERF_EVENT_INDEX_OFFSET
2078 # define PERF_EVENT_INDEX_OFFSET 0
2081 static int perf_event_index(struct perf_event
*event
)
2083 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2086 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2090 * Callers need to ensure there can be no nesting of this function, otherwise
2091 * the seqlock logic goes bad. We can not serialize this because the arch
2092 * code calls this from NMI context.
2094 void perf_event_update_userpage(struct perf_event
*event
)
2096 struct perf_event_mmap_page
*userpg
;
2097 struct perf_mmap_data
*data
;
2100 data
= rcu_dereference(event
->data
);
2104 userpg
= data
->user_page
;
2107 * Disable preemption so as to not let the corresponding user-space
2108 * spin too long if we get preempted.
2113 userpg
->index
= perf_event_index(event
);
2114 userpg
->offset
= atomic64_read(&event
->count
);
2115 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2116 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2118 userpg
->time_enabled
= event
->total_time_enabled
+
2119 atomic64_read(&event
->child_total_time_enabled
);
2121 userpg
->time_running
= event
->total_time_running
+
2122 atomic64_read(&event
->child_total_time_running
);
2131 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2133 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2136 #ifndef CONFIG_PERF_USE_VMALLOC
2139 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2142 static struct page
*
2143 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2145 if (pgoff
> data
->nr_pages
)
2149 return virt_to_page(data
->user_page
);
2151 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2154 static struct perf_mmap_data
*
2155 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2157 struct perf_mmap_data
*data
;
2161 WARN_ON(atomic_read(&event
->mmap_count
));
2163 size
= sizeof(struct perf_mmap_data
);
2164 size
+= nr_pages
* sizeof(void *);
2166 data
= kzalloc(size
, GFP_KERNEL
);
2170 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2171 if (!data
->user_page
)
2172 goto fail_user_page
;
2174 for (i
= 0; i
< nr_pages
; i
++) {
2175 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2176 if (!data
->data_pages
[i
])
2177 goto fail_data_pages
;
2180 data
->data_order
= 0;
2181 data
->nr_pages
= nr_pages
;
2186 for (i
--; i
>= 0; i
--)
2187 free_page((unsigned long)data
->data_pages
[i
]);
2189 free_page((unsigned long)data
->user_page
);
2198 static void perf_mmap_free_page(unsigned long addr
)
2200 struct page
*page
= virt_to_page((void *)addr
);
2202 page
->mapping
= NULL
;
2206 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2210 perf_mmap_free_page((unsigned long)data
->user_page
);
2211 for (i
= 0; i
< data
->nr_pages
; i
++)
2212 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2219 * Back perf_mmap() with vmalloc memory.
2221 * Required for architectures that have d-cache aliasing issues.
2224 static struct page
*
2225 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2227 if (pgoff
> (1UL << data
->data_order
))
2230 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2233 static void perf_mmap_unmark_page(void *addr
)
2235 struct page
*page
= vmalloc_to_page(addr
);
2237 page
->mapping
= NULL
;
2240 static void perf_mmap_data_free_work(struct work_struct
*work
)
2242 struct perf_mmap_data
*data
;
2246 data
= container_of(work
, struct perf_mmap_data
, work
);
2247 nr
= 1 << data
->data_order
;
2249 base
= data
->user_page
;
2250 for (i
= 0; i
< nr
+ 1; i
++)
2251 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2257 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2259 schedule_work(&data
->work
);
2262 static struct perf_mmap_data
*
2263 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2265 struct perf_mmap_data
*data
;
2269 WARN_ON(atomic_read(&event
->mmap_count
));
2271 size
= sizeof(struct perf_mmap_data
);
2272 size
+= sizeof(void *);
2274 data
= kzalloc(size
, GFP_KERNEL
);
2278 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2280 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2284 data
->user_page
= all_buf
;
2285 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2286 data
->data_order
= ilog2(nr_pages
);
2300 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2302 struct perf_event
*event
= vma
->vm_file
->private_data
;
2303 struct perf_mmap_data
*data
;
2304 int ret
= VM_FAULT_SIGBUS
;
2306 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2307 if (vmf
->pgoff
== 0)
2313 data
= rcu_dereference(event
->data
);
2317 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2320 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2324 get_page(vmf
->page
);
2325 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2326 vmf
->page
->index
= vmf
->pgoff
;
2336 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2338 long max_size
= perf_data_size(data
);
2340 atomic_set(&data
->lock
, -1);
2342 if (event
->attr
.watermark
) {
2343 data
->watermark
= min_t(long, max_size
,
2344 event
->attr
.wakeup_watermark
);
2347 if (!data
->watermark
)
2348 data
->watermark
= max_size
/ 2;
2351 rcu_assign_pointer(event
->data
, data
);
2354 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2356 struct perf_mmap_data
*data
;
2358 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2359 perf_mmap_data_free(data
);
2362 static void perf_mmap_data_release(struct perf_event
*event
)
2364 struct perf_mmap_data
*data
= event
->data
;
2366 WARN_ON(atomic_read(&event
->mmap_count
));
2368 rcu_assign_pointer(event
->data
, NULL
);
2369 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2372 static void perf_mmap_open(struct vm_area_struct
*vma
)
2374 struct perf_event
*event
= vma
->vm_file
->private_data
;
2376 atomic_inc(&event
->mmap_count
);
2379 static void perf_mmap_close(struct vm_area_struct
*vma
)
2381 struct perf_event
*event
= vma
->vm_file
->private_data
;
2383 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2384 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2385 unsigned long size
= perf_data_size(event
->data
);
2386 struct user_struct
*user
= current_user();
2388 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2389 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2390 perf_mmap_data_release(event
);
2391 mutex_unlock(&event
->mmap_mutex
);
2395 static const struct vm_operations_struct perf_mmap_vmops
= {
2396 .open
= perf_mmap_open
,
2397 .close
= perf_mmap_close
,
2398 .fault
= perf_mmap_fault
,
2399 .page_mkwrite
= perf_mmap_fault
,
2402 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2404 struct perf_event
*event
= file
->private_data
;
2405 unsigned long user_locked
, user_lock_limit
;
2406 struct user_struct
*user
= current_user();
2407 unsigned long locked
, lock_limit
;
2408 struct perf_mmap_data
*data
;
2409 unsigned long vma_size
;
2410 unsigned long nr_pages
;
2411 long user_extra
, extra
;
2414 if (!(vma
->vm_flags
& VM_SHARED
))
2417 vma_size
= vma
->vm_end
- vma
->vm_start
;
2418 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2421 * If we have data pages ensure they're a power-of-two number, so we
2422 * can do bitmasks instead of modulo.
2424 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2427 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2430 if (vma
->vm_pgoff
!= 0)
2433 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2434 mutex_lock(&event
->mmap_mutex
);
2435 if (event
->output
) {
2440 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2441 if (nr_pages
!= event
->data
->nr_pages
)
2446 user_extra
= nr_pages
+ 1;
2447 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2450 * Increase the limit linearly with more CPUs:
2452 user_lock_limit
*= num_online_cpus();
2454 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2457 if (user_locked
> user_lock_limit
)
2458 extra
= user_locked
- user_lock_limit
;
2460 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2461 lock_limit
>>= PAGE_SHIFT
;
2462 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2464 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2465 !capable(CAP_IPC_LOCK
)) {
2470 WARN_ON(event
->data
);
2472 data
= perf_mmap_data_alloc(event
, nr_pages
);
2478 perf_mmap_data_init(event
, data
);
2480 atomic_set(&event
->mmap_count
, 1);
2481 atomic_long_add(user_extra
, &user
->locked_vm
);
2482 vma
->vm_mm
->locked_vm
+= extra
;
2483 event
->data
->nr_locked
= extra
;
2484 if (vma
->vm_flags
& VM_WRITE
)
2485 event
->data
->writable
= 1;
2488 mutex_unlock(&event
->mmap_mutex
);
2490 vma
->vm_flags
|= VM_RESERVED
;
2491 vma
->vm_ops
= &perf_mmap_vmops
;
2496 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2498 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2499 struct perf_event
*event
= filp
->private_data
;
2502 mutex_lock(&inode
->i_mutex
);
2503 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2504 mutex_unlock(&inode
->i_mutex
);
2512 static const struct file_operations perf_fops
= {
2513 .release
= perf_release
,
2516 .unlocked_ioctl
= perf_ioctl
,
2517 .compat_ioctl
= perf_ioctl
,
2519 .fasync
= perf_fasync
,
2525 * If there's data, ensure we set the poll() state and publish everything
2526 * to user-space before waking everybody up.
2529 void perf_event_wakeup(struct perf_event
*event
)
2531 wake_up_all(&event
->waitq
);
2533 if (event
->pending_kill
) {
2534 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2535 event
->pending_kill
= 0;
2542 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2544 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2545 * single linked list and use cmpxchg() to add entries lockless.
2548 static void perf_pending_event(struct perf_pending_entry
*entry
)
2550 struct perf_event
*event
= container_of(entry
,
2551 struct perf_event
, pending
);
2553 if (event
->pending_disable
) {
2554 event
->pending_disable
= 0;
2555 __perf_event_disable(event
);
2558 if (event
->pending_wakeup
) {
2559 event
->pending_wakeup
= 0;
2560 perf_event_wakeup(event
);
2564 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2566 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2570 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2571 void (*func
)(struct perf_pending_entry
*))
2573 struct perf_pending_entry
**head
;
2575 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2580 head
= &get_cpu_var(perf_pending_head
);
2583 entry
->next
= *head
;
2584 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2586 set_perf_event_pending();
2588 put_cpu_var(perf_pending_head
);
2591 static int __perf_pending_run(void)
2593 struct perf_pending_entry
*list
;
2596 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2597 while (list
!= PENDING_TAIL
) {
2598 void (*func
)(struct perf_pending_entry
*);
2599 struct perf_pending_entry
*entry
= list
;
2606 * Ensure we observe the unqueue before we issue the wakeup,
2607 * so that we won't be waiting forever.
2608 * -- see perf_not_pending().
2619 static inline int perf_not_pending(struct perf_event
*event
)
2622 * If we flush on whatever cpu we run, there is a chance we don't
2626 __perf_pending_run();
2630 * Ensure we see the proper queue state before going to sleep
2631 * so that we do not miss the wakeup. -- see perf_pending_handle()
2634 return event
->pending
.next
== NULL
;
2637 static void perf_pending_sync(struct perf_event
*event
)
2639 wait_event(event
->waitq
, perf_not_pending(event
));
2642 void perf_event_do_pending(void)
2644 __perf_pending_run();
2648 * Callchain support -- arch specific
2651 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2659 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2660 unsigned long offset
, unsigned long head
)
2664 if (!data
->writable
)
2667 mask
= perf_data_size(data
) - 1;
2669 offset
= (offset
- tail
) & mask
;
2670 head
= (head
- tail
) & mask
;
2672 if ((int)(head
- offset
) < 0)
2678 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2680 atomic_set(&handle
->data
->poll
, POLL_IN
);
2683 handle
->event
->pending_wakeup
= 1;
2684 perf_pending_queue(&handle
->event
->pending
,
2685 perf_pending_event
);
2687 perf_event_wakeup(handle
->event
);
2691 * Curious locking construct.
2693 * We need to ensure a later event_id doesn't publish a head when a former
2694 * event_id isn't done writing. However since we need to deal with NMIs we
2695 * cannot fully serialize things.
2697 * What we do is serialize between CPUs so we only have to deal with NMI
2698 * nesting on a single CPU.
2700 * We only publish the head (and generate a wakeup) when the outer-most
2701 * event_id completes.
2703 static void perf_output_lock(struct perf_output_handle
*handle
)
2705 struct perf_mmap_data
*data
= handle
->data
;
2706 int cur
, cpu
= get_cpu();
2711 cur
= atomic_cmpxchg(&data
->lock
, -1, cpu
);
2723 static void perf_output_unlock(struct perf_output_handle
*handle
)
2725 struct perf_mmap_data
*data
= handle
->data
;
2729 data
->done_head
= data
->head
;
2731 if (!handle
->locked
)
2736 * The xchg implies a full barrier that ensures all writes are done
2737 * before we publish the new head, matched by a rmb() in userspace when
2738 * reading this position.
2740 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2741 data
->user_page
->data_head
= head
;
2744 * NMI can happen here, which means we can miss a done_head update.
2747 cpu
= atomic_xchg(&data
->lock
, -1);
2748 WARN_ON_ONCE(cpu
!= smp_processor_id());
2751 * Therefore we have to validate we did not indeed do so.
2753 if (unlikely(atomic_long_read(&data
->done_head
))) {
2755 * Since we had it locked, we can lock it again.
2757 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2763 if (atomic_xchg(&data
->wakeup
, 0))
2764 perf_output_wakeup(handle
);
2769 void perf_output_copy(struct perf_output_handle
*handle
,
2770 const void *buf
, unsigned int len
)
2772 unsigned int pages_mask
;
2773 unsigned long offset
;
2777 offset
= handle
->offset
;
2778 pages_mask
= handle
->data
->nr_pages
- 1;
2779 pages
= handle
->data
->data_pages
;
2782 unsigned long page_offset
;
2783 unsigned long page_size
;
2786 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2787 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2788 page_offset
= offset
& (page_size
- 1);
2789 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2791 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2798 handle
->offset
= offset
;
2801 * Check we didn't copy past our reservation window, taking the
2802 * possible unsigned int wrap into account.
2804 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2807 int perf_output_begin(struct perf_output_handle
*handle
,
2808 struct perf_event
*event
, unsigned int size
,
2809 int nmi
, int sample
)
2811 struct perf_event
*output_event
;
2812 struct perf_mmap_data
*data
;
2813 unsigned long tail
, offset
, head
;
2816 struct perf_event_header header
;
2823 * For inherited events we send all the output towards the parent.
2826 event
= event
->parent
;
2828 output_event
= rcu_dereference(event
->output
);
2830 event
= output_event
;
2832 data
= rcu_dereference(event
->data
);
2836 handle
->data
= data
;
2837 handle
->event
= event
;
2839 handle
->sample
= sample
;
2841 if (!data
->nr_pages
)
2844 have_lost
= atomic_read(&data
->lost
);
2846 size
+= sizeof(lost_event
);
2848 perf_output_lock(handle
);
2852 * Userspace could choose to issue a mb() before updating the
2853 * tail pointer. So that all reads will be completed before the
2856 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2858 offset
= head
= atomic_long_read(&data
->head
);
2860 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2862 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2864 handle
->offset
= offset
;
2865 handle
->head
= head
;
2867 if (head
- tail
> data
->watermark
)
2868 atomic_set(&data
->wakeup
, 1);
2871 lost_event
.header
.type
= PERF_RECORD_LOST
;
2872 lost_event
.header
.misc
= 0;
2873 lost_event
.header
.size
= sizeof(lost_event
);
2874 lost_event
.id
= event
->id
;
2875 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2877 perf_output_put(handle
, lost_event
);
2883 atomic_inc(&data
->lost
);
2884 perf_output_unlock(handle
);
2891 void perf_output_end(struct perf_output_handle
*handle
)
2893 struct perf_event
*event
= handle
->event
;
2894 struct perf_mmap_data
*data
= handle
->data
;
2896 int wakeup_events
= event
->attr
.wakeup_events
;
2898 if (handle
->sample
&& wakeup_events
) {
2899 int events
= atomic_inc_return(&data
->events
);
2900 if (events
>= wakeup_events
) {
2901 atomic_sub(wakeup_events
, &data
->events
);
2902 atomic_set(&data
->wakeup
, 1);
2906 perf_output_unlock(handle
);
2910 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2913 * only top level events have the pid namespace they were created in
2916 event
= event
->parent
;
2918 return task_tgid_nr_ns(p
, event
->ns
);
2921 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2924 * only top level events have the pid namespace they were created in
2927 event
= event
->parent
;
2929 return task_pid_nr_ns(p
, event
->ns
);
2932 static void perf_output_read_one(struct perf_output_handle
*handle
,
2933 struct perf_event
*event
)
2935 u64 read_format
= event
->attr
.read_format
;
2939 values
[n
++] = atomic64_read(&event
->count
);
2940 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2941 values
[n
++] = event
->total_time_enabled
+
2942 atomic64_read(&event
->child_total_time_enabled
);
2944 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2945 values
[n
++] = event
->total_time_running
+
2946 atomic64_read(&event
->child_total_time_running
);
2948 if (read_format
& PERF_FORMAT_ID
)
2949 values
[n
++] = primary_event_id(event
);
2951 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2955 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2957 static void perf_output_read_group(struct perf_output_handle
*handle
,
2958 struct perf_event
*event
)
2960 struct perf_event
*leader
= event
->group_leader
, *sub
;
2961 u64 read_format
= event
->attr
.read_format
;
2965 values
[n
++] = 1 + leader
->nr_siblings
;
2967 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2968 values
[n
++] = leader
->total_time_enabled
;
2970 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2971 values
[n
++] = leader
->total_time_running
;
2973 if (leader
!= event
)
2974 leader
->pmu
->read(leader
);
2976 values
[n
++] = atomic64_read(&leader
->count
);
2977 if (read_format
& PERF_FORMAT_ID
)
2978 values
[n
++] = primary_event_id(leader
);
2980 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2982 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2986 sub
->pmu
->read(sub
);
2988 values
[n
++] = atomic64_read(&sub
->count
);
2989 if (read_format
& PERF_FORMAT_ID
)
2990 values
[n
++] = primary_event_id(sub
);
2992 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2996 static void perf_output_read(struct perf_output_handle
*handle
,
2997 struct perf_event
*event
)
2999 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3000 perf_output_read_group(handle
, event
);
3002 perf_output_read_one(handle
, event
);
3005 void perf_output_sample(struct perf_output_handle
*handle
,
3006 struct perf_event_header
*header
,
3007 struct perf_sample_data
*data
,
3008 struct perf_event
*event
)
3010 u64 sample_type
= data
->type
;
3012 perf_output_put(handle
, *header
);
3014 if (sample_type
& PERF_SAMPLE_IP
)
3015 perf_output_put(handle
, data
->ip
);
3017 if (sample_type
& PERF_SAMPLE_TID
)
3018 perf_output_put(handle
, data
->tid_entry
);
3020 if (sample_type
& PERF_SAMPLE_TIME
)
3021 perf_output_put(handle
, data
->time
);
3023 if (sample_type
& PERF_SAMPLE_ADDR
)
3024 perf_output_put(handle
, data
->addr
);
3026 if (sample_type
& PERF_SAMPLE_ID
)
3027 perf_output_put(handle
, data
->id
);
3029 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3030 perf_output_put(handle
, data
->stream_id
);
3032 if (sample_type
& PERF_SAMPLE_CPU
)
3033 perf_output_put(handle
, data
->cpu_entry
);
3035 if (sample_type
& PERF_SAMPLE_PERIOD
)
3036 perf_output_put(handle
, data
->period
);
3038 if (sample_type
& PERF_SAMPLE_READ
)
3039 perf_output_read(handle
, event
);
3041 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3042 if (data
->callchain
) {
3045 if (data
->callchain
)
3046 size
+= data
->callchain
->nr
;
3048 size
*= sizeof(u64
);
3050 perf_output_copy(handle
, data
->callchain
, size
);
3053 perf_output_put(handle
, nr
);
3057 if (sample_type
& PERF_SAMPLE_RAW
) {
3059 perf_output_put(handle
, data
->raw
->size
);
3060 perf_output_copy(handle
, data
->raw
->data
,
3067 .size
= sizeof(u32
),
3070 perf_output_put(handle
, raw
);
3075 void perf_prepare_sample(struct perf_event_header
*header
,
3076 struct perf_sample_data
*data
,
3077 struct perf_event
*event
,
3078 struct pt_regs
*regs
)
3080 u64 sample_type
= event
->attr
.sample_type
;
3082 data
->type
= sample_type
;
3084 header
->type
= PERF_RECORD_SAMPLE
;
3085 header
->size
= sizeof(*header
);
3088 header
->misc
|= perf_misc_flags(regs
);
3090 if (sample_type
& PERF_SAMPLE_IP
) {
3091 data
->ip
= perf_instruction_pointer(regs
);
3093 header
->size
+= sizeof(data
->ip
);
3096 if (sample_type
& PERF_SAMPLE_TID
) {
3097 /* namespace issues */
3098 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3099 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3101 header
->size
+= sizeof(data
->tid_entry
);
3104 if (sample_type
& PERF_SAMPLE_TIME
) {
3105 data
->time
= perf_clock();
3107 header
->size
+= sizeof(data
->time
);
3110 if (sample_type
& PERF_SAMPLE_ADDR
)
3111 header
->size
+= sizeof(data
->addr
);
3113 if (sample_type
& PERF_SAMPLE_ID
) {
3114 data
->id
= primary_event_id(event
);
3116 header
->size
+= sizeof(data
->id
);
3119 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3120 data
->stream_id
= event
->id
;
3122 header
->size
+= sizeof(data
->stream_id
);
3125 if (sample_type
& PERF_SAMPLE_CPU
) {
3126 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3127 data
->cpu_entry
.reserved
= 0;
3129 header
->size
+= sizeof(data
->cpu_entry
);
3132 if (sample_type
& PERF_SAMPLE_PERIOD
)
3133 header
->size
+= sizeof(data
->period
);
3135 if (sample_type
& PERF_SAMPLE_READ
)
3136 header
->size
+= perf_event_read_size(event
);
3138 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3141 data
->callchain
= perf_callchain(regs
);
3143 if (data
->callchain
)
3144 size
+= data
->callchain
->nr
;
3146 header
->size
+= size
* sizeof(u64
);
3149 if (sample_type
& PERF_SAMPLE_RAW
) {
3150 int size
= sizeof(u32
);
3153 size
+= data
->raw
->size
;
3155 size
+= sizeof(u32
);
3157 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3158 header
->size
+= size
;
3162 static void perf_event_output(struct perf_event
*event
, int nmi
,
3163 struct perf_sample_data
*data
,
3164 struct pt_regs
*regs
)
3166 struct perf_output_handle handle
;
3167 struct perf_event_header header
;
3169 perf_prepare_sample(&header
, data
, event
, regs
);
3171 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3174 perf_output_sample(&handle
, &header
, data
, event
);
3176 perf_output_end(&handle
);
3183 struct perf_read_event
{
3184 struct perf_event_header header
;
3191 perf_event_read_event(struct perf_event
*event
,
3192 struct task_struct
*task
)
3194 struct perf_output_handle handle
;
3195 struct perf_read_event read_event
= {
3197 .type
= PERF_RECORD_READ
,
3199 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3201 .pid
= perf_event_pid(event
, task
),
3202 .tid
= perf_event_tid(event
, task
),
3206 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3210 perf_output_put(&handle
, read_event
);
3211 perf_output_read(&handle
, event
);
3213 perf_output_end(&handle
);
3217 * task tracking -- fork/exit
3219 * enabled by: attr.comm | attr.mmap | attr.task
3222 struct perf_task_event
{
3223 struct task_struct
*task
;
3224 struct perf_event_context
*task_ctx
;
3227 struct perf_event_header header
;
3237 static void perf_event_task_output(struct perf_event
*event
,
3238 struct perf_task_event
*task_event
)
3240 struct perf_output_handle handle
;
3242 struct task_struct
*task
= task_event
->task
;
3245 size
= task_event
->event_id
.header
.size
;
3246 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3251 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3252 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3254 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3255 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3257 task_event
->event_id
.time
= perf_clock();
3259 perf_output_put(&handle
, task_event
->event_id
);
3261 perf_output_end(&handle
);
3264 static int perf_event_task_match(struct perf_event
*event
)
3266 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3272 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3273 struct perf_task_event
*task_event
)
3275 struct perf_event
*event
;
3277 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3278 if (perf_event_task_match(event
))
3279 perf_event_task_output(event
, task_event
);
3283 static void perf_event_task_event(struct perf_task_event
*task_event
)
3285 struct perf_cpu_context
*cpuctx
;
3286 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3289 cpuctx
= &get_cpu_var(perf_cpu_context
);
3290 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3291 put_cpu_var(perf_cpu_context
);
3294 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3296 perf_event_task_ctx(ctx
, task_event
);
3300 static void perf_event_task(struct task_struct
*task
,
3301 struct perf_event_context
*task_ctx
,
3304 struct perf_task_event task_event
;
3306 if (!atomic_read(&nr_comm_events
) &&
3307 !atomic_read(&nr_mmap_events
) &&
3308 !atomic_read(&nr_task_events
))
3311 task_event
= (struct perf_task_event
){
3313 .task_ctx
= task_ctx
,
3316 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3318 .size
= sizeof(task_event
.event_id
),
3327 perf_event_task_event(&task_event
);
3330 void perf_event_fork(struct task_struct
*task
)
3332 perf_event_task(task
, NULL
, 1);
3339 struct perf_comm_event
{
3340 struct task_struct
*task
;
3345 struct perf_event_header header
;
3352 static void perf_event_comm_output(struct perf_event
*event
,
3353 struct perf_comm_event
*comm_event
)
3355 struct perf_output_handle handle
;
3356 int size
= comm_event
->event_id
.header
.size
;
3357 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3362 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3363 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3365 perf_output_put(&handle
, comm_event
->event_id
);
3366 perf_output_copy(&handle
, comm_event
->comm
,
3367 comm_event
->comm_size
);
3368 perf_output_end(&handle
);
3371 static int perf_event_comm_match(struct perf_event
*event
)
3373 if (event
->attr
.comm
)
3379 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3380 struct perf_comm_event
*comm_event
)
3382 struct perf_event
*event
;
3384 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3385 if (perf_event_comm_match(event
))
3386 perf_event_comm_output(event
, comm_event
);
3390 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3392 struct perf_cpu_context
*cpuctx
;
3393 struct perf_event_context
*ctx
;
3395 char comm
[TASK_COMM_LEN
];
3397 memset(comm
, 0, sizeof(comm
));
3398 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3399 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3401 comm_event
->comm
= comm
;
3402 comm_event
->comm_size
= size
;
3404 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3407 cpuctx
= &get_cpu_var(perf_cpu_context
);
3408 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3409 put_cpu_var(perf_cpu_context
);
3412 * doesn't really matter which of the child contexts the
3413 * events ends up in.
3415 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3417 perf_event_comm_ctx(ctx
, comm_event
);
3421 void perf_event_comm(struct task_struct
*task
)
3423 struct perf_comm_event comm_event
;
3425 if (task
->perf_event_ctxp
)
3426 perf_event_enable_on_exec(task
);
3428 if (!atomic_read(&nr_comm_events
))
3431 comm_event
= (struct perf_comm_event
){
3437 .type
= PERF_RECORD_COMM
,
3446 perf_event_comm_event(&comm_event
);
3453 struct perf_mmap_event
{
3454 struct vm_area_struct
*vma
;
3456 const char *file_name
;
3460 struct perf_event_header header
;
3470 static void perf_event_mmap_output(struct perf_event
*event
,
3471 struct perf_mmap_event
*mmap_event
)
3473 struct perf_output_handle handle
;
3474 int size
= mmap_event
->event_id
.header
.size
;
3475 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3480 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3481 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3483 perf_output_put(&handle
, mmap_event
->event_id
);
3484 perf_output_copy(&handle
, mmap_event
->file_name
,
3485 mmap_event
->file_size
);
3486 perf_output_end(&handle
);
3489 static int perf_event_mmap_match(struct perf_event
*event
,
3490 struct perf_mmap_event
*mmap_event
)
3492 if (event
->attr
.mmap
)
3498 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3499 struct perf_mmap_event
*mmap_event
)
3501 struct perf_event
*event
;
3503 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3504 if (perf_event_mmap_match(event
, mmap_event
))
3505 perf_event_mmap_output(event
, mmap_event
);
3509 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3511 struct perf_cpu_context
*cpuctx
;
3512 struct perf_event_context
*ctx
;
3513 struct vm_area_struct
*vma
= mmap_event
->vma
;
3514 struct file
*file
= vma
->vm_file
;
3520 memset(tmp
, 0, sizeof(tmp
));
3524 * d_path works from the end of the buffer backwards, so we
3525 * need to add enough zero bytes after the string to handle
3526 * the 64bit alignment we do later.
3528 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3530 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3533 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3535 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3539 if (arch_vma_name(mmap_event
->vma
)) {
3540 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3546 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3550 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3555 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3557 mmap_event
->file_name
= name
;
3558 mmap_event
->file_size
= size
;
3560 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3563 cpuctx
= &get_cpu_var(perf_cpu_context
);
3564 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3565 put_cpu_var(perf_cpu_context
);
3568 * doesn't really matter which of the child contexts the
3569 * events ends up in.
3571 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3573 perf_event_mmap_ctx(ctx
, mmap_event
);
3579 void __perf_event_mmap(struct vm_area_struct
*vma
)
3581 struct perf_mmap_event mmap_event
;
3583 if (!atomic_read(&nr_mmap_events
))
3586 mmap_event
= (struct perf_mmap_event
){
3592 .type
= PERF_RECORD_MMAP
,
3598 .start
= vma
->vm_start
,
3599 .len
= vma
->vm_end
- vma
->vm_start
,
3600 .pgoff
= vma
->vm_pgoff
,
3604 perf_event_mmap_event(&mmap_event
);
3608 * IRQ throttle logging
3611 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3613 struct perf_output_handle handle
;
3617 struct perf_event_header header
;
3621 } throttle_event
= {
3623 .type
= PERF_RECORD_THROTTLE
,
3625 .size
= sizeof(throttle_event
),
3627 .time
= perf_clock(),
3628 .id
= primary_event_id(event
),
3629 .stream_id
= event
->id
,
3633 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3635 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3639 perf_output_put(&handle
, throttle_event
);
3640 perf_output_end(&handle
);
3644 * Generic event overflow handling, sampling.
3647 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3648 int throttle
, struct perf_sample_data
*data
,
3649 struct pt_regs
*regs
)
3651 int events
= atomic_read(&event
->event_limit
);
3652 struct hw_perf_event
*hwc
= &event
->hw
;
3655 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3660 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3662 if (HZ
* hwc
->interrupts
>
3663 (u64
)sysctl_perf_event_sample_rate
) {
3664 hwc
->interrupts
= MAX_INTERRUPTS
;
3665 perf_log_throttle(event
, 0);
3670 * Keep re-disabling events even though on the previous
3671 * pass we disabled it - just in case we raced with a
3672 * sched-in and the event got enabled again:
3678 if (event
->attr
.freq
) {
3679 u64 now
= perf_clock();
3680 s64 delta
= now
- hwc
->freq_stamp
;
3682 hwc
->freq_stamp
= now
;
3684 if (delta
> 0 && delta
< TICK_NSEC
)
3685 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3689 * XXX event_limit might not quite work as expected on inherited
3693 event
->pending_kill
= POLL_IN
;
3694 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3696 event
->pending_kill
= POLL_HUP
;
3698 event
->pending_disable
= 1;
3699 perf_pending_queue(&event
->pending
,
3700 perf_pending_event
);
3702 perf_event_disable(event
);
3705 if (event
->overflow_handler
)
3706 event
->overflow_handler(event
, nmi
, data
, regs
);
3708 perf_event_output(event
, nmi
, data
, regs
);
3713 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3714 struct perf_sample_data
*data
,
3715 struct pt_regs
*regs
)
3717 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3721 * Generic software event infrastructure
3725 * We directly increment event->count and keep a second value in
3726 * event->hw.period_left to count intervals. This period event
3727 * is kept in the range [-sample_period, 0] so that we can use the
3731 static u64
perf_swevent_set_period(struct perf_event
*event
)
3733 struct hw_perf_event
*hwc
= &event
->hw
;
3734 u64 period
= hwc
->last_period
;
3738 hwc
->last_period
= hwc
->sample_period
;
3741 old
= val
= atomic64_read(&hwc
->period_left
);
3745 nr
= div64_u64(period
+ val
, period
);
3746 offset
= nr
* period
;
3748 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3754 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
3755 int nmi
, struct perf_sample_data
*data
,
3756 struct pt_regs
*regs
)
3758 struct hw_perf_event
*hwc
= &event
->hw
;
3761 data
->period
= event
->hw
.last_period
;
3763 overflow
= perf_swevent_set_period(event
);
3765 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3768 for (; overflow
; overflow
--) {
3769 if (__perf_event_overflow(event
, nmi
, throttle
,
3772 * We inhibit the overflow from happening when
3773 * hwc->interrupts == MAX_INTERRUPTS.
3781 static void perf_swevent_unthrottle(struct perf_event
*event
)
3784 * Nothing to do, we already reset hwc->interrupts.
3788 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3789 int nmi
, struct perf_sample_data
*data
,
3790 struct pt_regs
*regs
)
3792 struct hw_perf_event
*hwc
= &event
->hw
;
3794 atomic64_add(nr
, &event
->count
);
3799 if (!hwc
->sample_period
)
3802 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
3803 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
3805 if (atomic64_add_negative(nr
, &hwc
->period_left
))
3808 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
3811 static int perf_swevent_is_counting(struct perf_event
*event
)
3814 * The event is active, we're good!
3816 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3820 * The event is off/error, not counting.
3822 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3826 * The event is inactive, if the context is active
3827 * we're part of a group that didn't make it on the 'pmu',
3830 if (event
->ctx
->is_active
)
3834 * We're inactive and the context is too, this means the
3835 * task is scheduled out, we're counting events that happen
3836 * to us, like migration events.
3841 static int perf_tp_event_match(struct perf_event
*event
,
3842 struct perf_sample_data
*data
);
3844 static int perf_exclude_event(struct perf_event
*event
,
3845 struct pt_regs
*regs
)
3848 if (event
->attr
.exclude_user
&& user_mode(regs
))
3851 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3858 static int perf_swevent_match(struct perf_event
*event
,
3859 enum perf_type_id type
,
3861 struct perf_sample_data
*data
,
3862 struct pt_regs
*regs
)
3864 if (!perf_swevent_is_counting(event
))
3867 if (event
->attr
.type
!= type
)
3870 if (event
->attr
.config
!= event_id
)
3873 if (perf_exclude_event(event
, regs
))
3876 if (event
->attr
.type
== PERF_TYPE_TRACEPOINT
&&
3877 !perf_tp_event_match(event
, data
))
3883 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3884 enum perf_type_id type
,
3885 u32 event_id
, u64 nr
, int nmi
,
3886 struct perf_sample_data
*data
,
3887 struct pt_regs
*regs
)
3889 struct perf_event
*event
;
3891 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3892 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
3893 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3897 int perf_swevent_get_recursion_context(void)
3899 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3906 else if (in_softirq())
3911 if (cpuctx
->recursion
[rctx
]) {
3912 put_cpu_var(perf_cpu_context
);
3916 cpuctx
->recursion
[rctx
]++;
3921 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
3923 void perf_swevent_put_recursion_context(int rctx
)
3925 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
3927 cpuctx
->recursion
[rctx
]--;
3928 put_cpu_var(perf_cpu_context
);
3930 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context
);
3932 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3934 struct perf_sample_data
*data
,
3935 struct pt_regs
*regs
)
3937 struct perf_cpu_context
*cpuctx
;
3938 struct perf_event_context
*ctx
;
3940 cpuctx
= &__get_cpu_var(perf_cpu_context
);
3942 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3943 nr
, nmi
, data
, regs
);
3945 * doesn't really matter which of the child contexts the
3946 * events ends up in.
3948 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3950 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3954 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3955 struct pt_regs
*regs
, u64 addr
)
3957 struct perf_sample_data data
;
3960 rctx
= perf_swevent_get_recursion_context();
3967 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
3969 perf_swevent_put_recursion_context(rctx
);
3972 static void perf_swevent_read(struct perf_event
*event
)
3976 static int perf_swevent_enable(struct perf_event
*event
)
3978 struct hw_perf_event
*hwc
= &event
->hw
;
3980 if (hwc
->sample_period
) {
3981 hwc
->last_period
= hwc
->sample_period
;
3982 perf_swevent_set_period(event
);
3987 static void perf_swevent_disable(struct perf_event
*event
)
3991 static const struct pmu perf_ops_generic
= {
3992 .enable
= perf_swevent_enable
,
3993 .disable
= perf_swevent_disable
,
3994 .read
= perf_swevent_read
,
3995 .unthrottle
= perf_swevent_unthrottle
,
3999 * hrtimer based swevent callback
4002 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4004 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4005 struct perf_sample_data data
;
4006 struct pt_regs
*regs
;
4007 struct perf_event
*event
;
4010 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4011 event
->pmu
->read(event
);
4014 data
.period
= event
->hw
.last_period
;
4015 regs
= get_irq_regs();
4017 * In case we exclude kernel IPs or are somehow not in interrupt
4018 * context, provide the next best thing, the user IP.
4020 if ((event
->attr
.exclude_kernel
|| !regs
) &&
4021 !event
->attr
.exclude_user
)
4022 regs
= task_pt_regs(current
);
4025 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4026 if (perf_event_overflow(event
, 0, &data
, regs
))
4027 ret
= HRTIMER_NORESTART
;
4030 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4031 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4036 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4038 struct hw_perf_event
*hwc
= &event
->hw
;
4040 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4041 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4042 if (hwc
->sample_period
) {
4045 if (hwc
->remaining
) {
4046 if (hwc
->remaining
< 0)
4049 period
= hwc
->remaining
;
4052 period
= max_t(u64
, 10000, hwc
->sample_period
);
4054 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4055 ns_to_ktime(period
), 0,
4056 HRTIMER_MODE_REL
, 0);
4060 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4062 struct hw_perf_event
*hwc
= &event
->hw
;
4064 if (hwc
->sample_period
) {
4065 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4066 hwc
->remaining
= ktime_to_ns(remaining
);
4068 hrtimer_cancel(&hwc
->hrtimer
);
4073 * Software event: cpu wall time clock
4076 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4078 int cpu
= raw_smp_processor_id();
4082 now
= cpu_clock(cpu
);
4083 prev
= atomic64_read(&event
->hw
.prev_count
);
4084 atomic64_set(&event
->hw
.prev_count
, now
);
4085 atomic64_add(now
- prev
, &event
->count
);
4088 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4090 struct hw_perf_event
*hwc
= &event
->hw
;
4091 int cpu
= raw_smp_processor_id();
4093 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4094 perf_swevent_start_hrtimer(event
);
4099 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4101 perf_swevent_cancel_hrtimer(event
);
4102 cpu_clock_perf_event_update(event
);
4105 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4107 cpu_clock_perf_event_update(event
);
4110 static const struct pmu perf_ops_cpu_clock
= {
4111 .enable
= cpu_clock_perf_event_enable
,
4112 .disable
= cpu_clock_perf_event_disable
,
4113 .read
= cpu_clock_perf_event_read
,
4117 * Software event: task time clock
4120 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4125 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4127 atomic64_add(delta
, &event
->count
);
4130 static int task_clock_perf_event_enable(struct perf_event
*event
)
4132 struct hw_perf_event
*hwc
= &event
->hw
;
4135 now
= event
->ctx
->time
;
4137 atomic64_set(&hwc
->prev_count
, now
);
4139 perf_swevent_start_hrtimer(event
);
4144 static void task_clock_perf_event_disable(struct perf_event
*event
)
4146 perf_swevent_cancel_hrtimer(event
);
4147 task_clock_perf_event_update(event
, event
->ctx
->time
);
4151 static void task_clock_perf_event_read(struct perf_event
*event
)
4156 update_context_time(event
->ctx
);
4157 time
= event
->ctx
->time
;
4159 u64 now
= perf_clock();
4160 u64 delta
= now
- event
->ctx
->timestamp
;
4161 time
= event
->ctx
->time
+ delta
;
4164 task_clock_perf_event_update(event
, time
);
4167 static const struct pmu perf_ops_task_clock
= {
4168 .enable
= task_clock_perf_event_enable
,
4169 .disable
= task_clock_perf_event_disable
,
4170 .read
= task_clock_perf_event_read
,
4173 #ifdef CONFIG_EVENT_PROFILE
4175 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4178 struct perf_raw_record raw
= {
4183 struct perf_sample_data data
= {
4188 struct pt_regs
*regs
= get_irq_regs();
4191 regs
= task_pt_regs(current
);
4193 /* Trace events already protected against recursion */
4194 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4197 EXPORT_SYMBOL_GPL(perf_tp_event
);
4199 static int perf_tp_event_match(struct perf_event
*event
,
4200 struct perf_sample_data
*data
)
4202 void *record
= data
->raw
->data
;
4204 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4209 static void tp_perf_event_destroy(struct perf_event
*event
)
4211 ftrace_profile_disable(event
->attr
.config
);
4214 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4217 * Raw tracepoint data is a severe data leak, only allow root to
4220 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4221 perf_paranoid_tracepoint_raw() &&
4222 !capable(CAP_SYS_ADMIN
))
4223 return ERR_PTR(-EPERM
);
4225 if (ftrace_profile_enable(event
->attr
.config
))
4228 event
->destroy
= tp_perf_event_destroy
;
4230 return &perf_ops_generic
;
4233 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4238 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4241 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4242 if (IS_ERR(filter_str
))
4243 return PTR_ERR(filter_str
);
4245 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4251 static void perf_event_free_filter(struct perf_event
*event
)
4253 ftrace_profile_free_filter(event
);
4258 static int perf_tp_event_match(struct perf_event
*event
,
4259 struct perf_sample_data
*data
)
4264 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4269 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4274 static void perf_event_free_filter(struct perf_event
*event
)
4278 #endif /* CONFIG_EVENT_PROFILE */
4280 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4281 static void bp_perf_event_destroy(struct perf_event
*event
)
4283 release_bp_slot(event
);
4286 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4290 * The breakpoint is already filled if we haven't created the counter
4291 * through perf syscall
4292 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4295 err
= register_perf_hw_breakpoint(bp
);
4297 err
= __register_perf_hw_breakpoint(bp
);
4299 return ERR_PTR(err
);
4301 bp
->destroy
= bp_perf_event_destroy
;
4303 return &perf_ops_bp
;
4306 void perf_bp_event(struct perf_event
*bp
, void *data
)
4308 struct perf_sample_data sample
;
4309 struct pt_regs
*regs
= data
;
4311 sample
.addr
= bp
->attr
.bp_addr
;
4313 if (!perf_exclude_event(bp
, regs
))
4314 perf_swevent_add(bp
, 1, 1, &sample
, regs
);
4317 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4322 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4327 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4329 static void sw_perf_event_destroy(struct perf_event
*event
)
4331 u64 event_id
= event
->attr
.config
;
4333 WARN_ON(event
->parent
);
4335 atomic_dec(&perf_swevent_enabled
[event_id
]);
4338 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4340 const struct pmu
*pmu
= NULL
;
4341 u64 event_id
= event
->attr
.config
;
4344 * Software events (currently) can't in general distinguish
4345 * between user, kernel and hypervisor events.
4346 * However, context switches and cpu migrations are considered
4347 * to be kernel events, and page faults are never hypervisor
4351 case PERF_COUNT_SW_CPU_CLOCK
:
4352 pmu
= &perf_ops_cpu_clock
;
4355 case PERF_COUNT_SW_TASK_CLOCK
:
4357 * If the user instantiates this as a per-cpu event,
4358 * use the cpu_clock event instead.
4360 if (event
->ctx
->task
)
4361 pmu
= &perf_ops_task_clock
;
4363 pmu
= &perf_ops_cpu_clock
;
4366 case PERF_COUNT_SW_PAGE_FAULTS
:
4367 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4368 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4369 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4370 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4371 case PERF_COUNT_SW_ALIGNMENT_FAULTS
:
4372 case PERF_COUNT_SW_EMULATION_FAULTS
:
4373 if (!event
->parent
) {
4374 atomic_inc(&perf_swevent_enabled
[event_id
]);
4375 event
->destroy
= sw_perf_event_destroy
;
4377 pmu
= &perf_ops_generic
;
4385 * Allocate and initialize a event structure
4387 static struct perf_event
*
4388 perf_event_alloc(struct perf_event_attr
*attr
,
4390 struct perf_event_context
*ctx
,
4391 struct perf_event
*group_leader
,
4392 struct perf_event
*parent_event
,
4393 perf_callback_t callback
,
4396 const struct pmu
*pmu
;
4397 struct perf_event
*event
;
4398 struct hw_perf_event
*hwc
;
4401 event
= kzalloc(sizeof(*event
), gfpflags
);
4403 return ERR_PTR(-ENOMEM
);
4406 * Single events are their own group leaders, with an
4407 * empty sibling list:
4410 group_leader
= event
;
4412 mutex_init(&event
->child_mutex
);
4413 INIT_LIST_HEAD(&event
->child_list
);
4415 INIT_LIST_HEAD(&event
->group_entry
);
4416 INIT_LIST_HEAD(&event
->event_entry
);
4417 INIT_LIST_HEAD(&event
->sibling_list
);
4418 init_waitqueue_head(&event
->waitq
);
4420 mutex_init(&event
->mmap_mutex
);
4423 event
->attr
= *attr
;
4424 event
->group_leader
= group_leader
;
4429 event
->parent
= parent_event
;
4431 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4432 event
->id
= atomic64_inc_return(&perf_event_id
);
4434 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4436 if (!callback
&& parent_event
)
4437 callback
= parent_event
->callback
;
4439 event
->callback
= callback
;
4442 event
->state
= PERF_EVENT_STATE_OFF
;
4447 hwc
->sample_period
= attr
->sample_period
;
4448 if (attr
->freq
&& attr
->sample_freq
)
4449 hwc
->sample_period
= 1;
4450 hwc
->last_period
= hwc
->sample_period
;
4452 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4455 * we currently do not support PERF_FORMAT_GROUP on inherited events
4457 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4460 switch (attr
->type
) {
4462 case PERF_TYPE_HARDWARE
:
4463 case PERF_TYPE_HW_CACHE
:
4464 pmu
= hw_perf_event_init(event
);
4467 case PERF_TYPE_SOFTWARE
:
4468 pmu
= sw_perf_event_init(event
);
4471 case PERF_TYPE_TRACEPOINT
:
4472 pmu
= tp_perf_event_init(event
);
4475 case PERF_TYPE_BREAKPOINT
:
4476 pmu
= bp_perf_event_init(event
);
4487 else if (IS_ERR(pmu
))
4492 put_pid_ns(event
->ns
);
4494 return ERR_PTR(err
);
4499 if (!event
->parent
) {
4500 atomic_inc(&nr_events
);
4501 if (event
->attr
.mmap
)
4502 atomic_inc(&nr_mmap_events
);
4503 if (event
->attr
.comm
)
4504 atomic_inc(&nr_comm_events
);
4505 if (event
->attr
.task
)
4506 atomic_inc(&nr_task_events
);
4512 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4513 struct perf_event_attr
*attr
)
4518 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4522 * zero the full structure, so that a short copy will be nice.
4524 memset(attr
, 0, sizeof(*attr
));
4526 ret
= get_user(size
, &uattr
->size
);
4530 if (size
> PAGE_SIZE
) /* silly large */
4533 if (!size
) /* abi compat */
4534 size
= PERF_ATTR_SIZE_VER0
;
4536 if (size
< PERF_ATTR_SIZE_VER0
)
4540 * If we're handed a bigger struct than we know of,
4541 * ensure all the unknown bits are 0 - i.e. new
4542 * user-space does not rely on any kernel feature
4543 * extensions we dont know about yet.
4545 if (size
> sizeof(*attr
)) {
4546 unsigned char __user
*addr
;
4547 unsigned char __user
*end
;
4550 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4551 end
= (void __user
*)uattr
+ size
;
4553 for (; addr
< end
; addr
++) {
4554 ret
= get_user(val
, addr
);
4560 size
= sizeof(*attr
);
4563 ret
= copy_from_user(attr
, uattr
, size
);
4568 * If the type exists, the corresponding creation will verify
4571 if (attr
->type
>= PERF_TYPE_MAX
)
4574 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4577 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4580 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4587 put_user(sizeof(*attr
), &uattr
->size
);
4592 static int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4594 struct perf_event
*output_event
= NULL
;
4595 struct file
*output_file
= NULL
;
4596 struct perf_event
*old_output
;
4597 int fput_needed
= 0;
4603 output_file
= fget_light(output_fd
, &fput_needed
);
4607 if (output_file
->f_op
!= &perf_fops
)
4610 output_event
= output_file
->private_data
;
4612 /* Don't chain output fds */
4613 if (output_event
->output
)
4616 /* Don't set an output fd when we already have an output channel */
4620 atomic_long_inc(&output_file
->f_count
);
4623 mutex_lock(&event
->mmap_mutex
);
4624 old_output
= event
->output
;
4625 rcu_assign_pointer(event
->output
, output_event
);
4626 mutex_unlock(&event
->mmap_mutex
);
4630 * we need to make sure no existing perf_output_*()
4631 * is still referencing this event.
4634 fput(old_output
->filp
);
4639 fput_light(output_file
, fput_needed
);
4644 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4646 * @attr_uptr: event_id type attributes for monitoring/sampling
4649 * @group_fd: group leader event fd
4651 SYSCALL_DEFINE5(perf_event_open
,
4652 struct perf_event_attr __user
*, attr_uptr
,
4653 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4655 struct perf_event
*event
, *group_leader
;
4656 struct perf_event_attr attr
;
4657 struct perf_event_context
*ctx
;
4658 struct file
*event_file
= NULL
;
4659 struct file
*group_file
= NULL
;
4660 int fput_needed
= 0;
4661 int fput_needed2
= 0;
4664 /* for future expandability... */
4665 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4668 err
= perf_copy_attr(attr_uptr
, &attr
);
4672 if (!attr
.exclude_kernel
) {
4673 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4678 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4683 * Get the target context (task or percpu):
4685 ctx
= find_get_context(pid
, cpu
);
4687 return PTR_ERR(ctx
);
4690 * Look up the group leader (we will attach this event to it):
4692 group_leader
= NULL
;
4693 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4695 group_file
= fget_light(group_fd
, &fput_needed
);
4697 goto err_put_context
;
4698 if (group_file
->f_op
!= &perf_fops
)
4699 goto err_put_context
;
4701 group_leader
= group_file
->private_data
;
4703 * Do not allow a recursive hierarchy (this new sibling
4704 * becoming part of another group-sibling):
4706 if (group_leader
->group_leader
!= group_leader
)
4707 goto err_put_context
;
4709 * Do not allow to attach to a group in a different
4710 * task or CPU context:
4712 if (group_leader
->ctx
!= ctx
)
4713 goto err_put_context
;
4715 * Only a group leader can be exclusive or pinned
4717 if (attr
.exclusive
|| attr
.pinned
)
4718 goto err_put_context
;
4721 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4722 NULL
, NULL
, GFP_KERNEL
);
4723 err
= PTR_ERR(event
);
4725 goto err_put_context
;
4727 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, 0);
4729 goto err_free_put_context
;
4731 event_file
= fget_light(err
, &fput_needed2
);
4733 goto err_free_put_context
;
4735 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4736 err
= perf_event_set_output(event
, group_fd
);
4738 goto err_fput_free_put_context
;
4741 event
->filp
= event_file
;
4742 WARN_ON_ONCE(ctx
->parent_ctx
);
4743 mutex_lock(&ctx
->mutex
);
4744 perf_install_in_context(ctx
, event
, cpu
);
4746 mutex_unlock(&ctx
->mutex
);
4748 event
->owner
= current
;
4749 get_task_struct(current
);
4750 mutex_lock(¤t
->perf_event_mutex
);
4751 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4752 mutex_unlock(¤t
->perf_event_mutex
);
4754 err_fput_free_put_context
:
4755 fput_light(event_file
, fput_needed2
);
4757 err_free_put_context
:
4765 fput_light(group_file
, fput_needed
);
4771 * perf_event_create_kernel_counter
4773 * @attr: attributes of the counter to create
4774 * @cpu: cpu in which the counter is bound
4775 * @pid: task to profile
4778 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
4779 pid_t pid
, perf_callback_t callback
)
4781 struct perf_event
*event
;
4782 struct perf_event_context
*ctx
;
4786 * Get the target context (task or percpu):
4789 ctx
= find_get_context(pid
, cpu
);
4795 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
4796 NULL
, callback
, GFP_KERNEL
);
4797 if (IS_ERR(event
)) {
4798 err
= PTR_ERR(event
);
4799 goto err_put_context
;
4803 WARN_ON_ONCE(ctx
->parent_ctx
);
4804 mutex_lock(&ctx
->mutex
);
4805 perf_install_in_context(ctx
, event
, cpu
);
4807 mutex_unlock(&ctx
->mutex
);
4809 event
->owner
= current
;
4810 get_task_struct(current
);
4811 mutex_lock(¤t
->perf_event_mutex
);
4812 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4813 mutex_unlock(¤t
->perf_event_mutex
);
4820 return ERR_PTR(err
);
4822 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
4825 * inherit a event from parent task to child task:
4827 static struct perf_event
*
4828 inherit_event(struct perf_event
*parent_event
,
4829 struct task_struct
*parent
,
4830 struct perf_event_context
*parent_ctx
,
4831 struct task_struct
*child
,
4832 struct perf_event
*group_leader
,
4833 struct perf_event_context
*child_ctx
)
4835 struct perf_event
*child_event
;
4838 * Instead of creating recursive hierarchies of events,
4839 * we link inherited events back to the original parent,
4840 * which has a filp for sure, which we use as the reference
4843 if (parent_event
->parent
)
4844 parent_event
= parent_event
->parent
;
4846 child_event
= perf_event_alloc(&parent_event
->attr
,
4847 parent_event
->cpu
, child_ctx
,
4848 group_leader
, parent_event
,
4850 if (IS_ERR(child_event
))
4855 * Make the child state follow the state of the parent event,
4856 * not its attr.disabled bit. We hold the parent's mutex,
4857 * so we won't race with perf_event_{en, dis}able_family.
4859 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4860 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4862 child_event
->state
= PERF_EVENT_STATE_OFF
;
4864 if (parent_event
->attr
.freq
)
4865 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4867 child_event
->overflow_handler
= parent_event
->overflow_handler
;
4870 * Link it up in the child's context:
4872 add_event_to_ctx(child_event
, child_ctx
);
4875 * Get a reference to the parent filp - we will fput it
4876 * when the child event exits. This is safe to do because
4877 * we are in the parent and we know that the filp still
4878 * exists and has a nonzero count:
4880 atomic_long_inc(&parent_event
->filp
->f_count
);
4883 * Link this into the parent event's child list
4885 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4886 mutex_lock(&parent_event
->child_mutex
);
4887 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4888 mutex_unlock(&parent_event
->child_mutex
);
4893 static int inherit_group(struct perf_event
*parent_event
,
4894 struct task_struct
*parent
,
4895 struct perf_event_context
*parent_ctx
,
4896 struct task_struct
*child
,
4897 struct perf_event_context
*child_ctx
)
4899 struct perf_event
*leader
;
4900 struct perf_event
*sub
;
4901 struct perf_event
*child_ctr
;
4903 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4904 child
, NULL
, child_ctx
);
4906 return PTR_ERR(leader
);
4907 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4908 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4909 child
, leader
, child_ctx
);
4910 if (IS_ERR(child_ctr
))
4911 return PTR_ERR(child_ctr
);
4916 static void sync_child_event(struct perf_event
*child_event
,
4917 struct task_struct
*child
)
4919 struct perf_event
*parent_event
= child_event
->parent
;
4922 if (child_event
->attr
.inherit_stat
)
4923 perf_event_read_event(child_event
, child
);
4925 child_val
= atomic64_read(&child_event
->count
);
4928 * Add back the child's count to the parent's count:
4930 atomic64_add(child_val
, &parent_event
->count
);
4931 atomic64_add(child_event
->total_time_enabled
,
4932 &parent_event
->child_total_time_enabled
);
4933 atomic64_add(child_event
->total_time_running
,
4934 &parent_event
->child_total_time_running
);
4937 * Remove this event from the parent's list
4939 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4940 mutex_lock(&parent_event
->child_mutex
);
4941 list_del_init(&child_event
->child_list
);
4942 mutex_unlock(&parent_event
->child_mutex
);
4945 * Release the parent event, if this was the last
4948 fput(parent_event
->filp
);
4952 __perf_event_exit_task(struct perf_event
*child_event
,
4953 struct perf_event_context
*child_ctx
,
4954 struct task_struct
*child
)
4956 struct perf_event
*parent_event
;
4958 perf_event_remove_from_context(child_event
);
4960 parent_event
= child_event
->parent
;
4962 * It can happen that parent exits first, and has events
4963 * that are still around due to the child reference. These
4964 * events need to be zapped - but otherwise linger.
4967 sync_child_event(child_event
, child
);
4968 free_event(child_event
);
4973 * When a child task exits, feed back event values to parent events.
4975 void perf_event_exit_task(struct task_struct
*child
)
4977 struct perf_event
*child_event
, *tmp
;
4978 struct perf_event_context
*child_ctx
;
4979 unsigned long flags
;
4981 if (likely(!child
->perf_event_ctxp
)) {
4982 perf_event_task(child
, NULL
, 0);
4986 local_irq_save(flags
);
4988 * We can't reschedule here because interrupts are disabled,
4989 * and either child is current or it is a task that can't be
4990 * scheduled, so we are now safe from rescheduling changing
4993 child_ctx
= child
->perf_event_ctxp
;
4994 __perf_event_task_sched_out(child_ctx
);
4997 * Take the context lock here so that if find_get_context is
4998 * reading child->perf_event_ctxp, we wait until it has
4999 * incremented the context's refcount before we do put_ctx below.
5001 spin_lock(&child_ctx
->lock
);
5002 child
->perf_event_ctxp
= NULL
;
5004 * If this context is a clone; unclone it so it can't get
5005 * swapped to another process while we're removing all
5006 * the events from it.
5008 unclone_ctx(child_ctx
);
5009 update_context_time(child_ctx
);
5010 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5013 * Report the task dead after unscheduling the events so that we
5014 * won't get any samples after PERF_RECORD_EXIT. We can however still
5015 * get a few PERF_RECORD_READ events.
5017 perf_event_task(child
, child_ctx
, 0);
5020 * We can recurse on the same lock type through:
5022 * __perf_event_exit_task()
5023 * sync_child_event()
5024 * fput(parent_event->filp)
5026 * mutex_lock(&ctx->mutex)
5028 * But since its the parent context it won't be the same instance.
5030 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
5033 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
5035 __perf_event_exit_task(child_event
, child_ctx
, child
);
5038 * If the last event was a group event, it will have appended all
5039 * its siblings to the list, but we obtained 'tmp' before that which
5040 * will still point to the list head terminating the iteration.
5042 if (!list_empty(&child_ctx
->group_list
))
5045 mutex_unlock(&child_ctx
->mutex
);
5051 * free an unexposed, unused context as created by inheritance by
5052 * init_task below, used by fork() in case of fail.
5054 void perf_event_free_task(struct task_struct
*task
)
5056 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5057 struct perf_event
*event
, *tmp
;
5062 mutex_lock(&ctx
->mutex
);
5064 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
5065 struct perf_event
*parent
= event
->parent
;
5067 if (WARN_ON_ONCE(!parent
))
5070 mutex_lock(&parent
->child_mutex
);
5071 list_del_init(&event
->child_list
);
5072 mutex_unlock(&parent
->child_mutex
);
5076 list_del_event(event
, ctx
);
5080 if (!list_empty(&ctx
->group_list
))
5083 mutex_unlock(&ctx
->mutex
);
5089 * Initialize the perf_event context in task_struct
5091 int perf_event_init_task(struct task_struct
*child
)
5093 struct perf_event_context
*child_ctx
, *parent_ctx
;
5094 struct perf_event_context
*cloned_ctx
;
5095 struct perf_event
*event
;
5096 struct task_struct
*parent
= current
;
5097 int inherited_all
= 1;
5100 child
->perf_event_ctxp
= NULL
;
5102 mutex_init(&child
->perf_event_mutex
);
5103 INIT_LIST_HEAD(&child
->perf_event_list
);
5105 if (likely(!parent
->perf_event_ctxp
))
5109 * This is executed from the parent task context, so inherit
5110 * events that have been marked for cloning.
5111 * First allocate and initialize a context for the child.
5114 child_ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
5118 __perf_event_init_context(child_ctx
, child
);
5119 child
->perf_event_ctxp
= child_ctx
;
5120 get_task_struct(child
);
5123 * If the parent's context is a clone, pin it so it won't get
5126 parent_ctx
= perf_pin_task_context(parent
);
5129 * No need to check if parent_ctx != NULL here; since we saw
5130 * it non-NULL earlier, the only reason for it to become NULL
5131 * is if we exit, and since we're currently in the middle of
5132 * a fork we can't be exiting at the same time.
5136 * Lock the parent list. No need to lock the child - not PID
5137 * hashed yet and not running, so nobody can access it.
5139 mutex_lock(&parent_ctx
->mutex
);
5142 * We dont have to disable NMIs - we are only looking at
5143 * the list, not manipulating it:
5145 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
5147 if (!event
->attr
.inherit
) {
5152 ret
= inherit_group(event
, parent
, parent_ctx
,
5160 if (inherited_all
) {
5162 * Mark the child context as a clone of the parent
5163 * context, or of whatever the parent is a clone of.
5164 * Note that if the parent is a clone, it could get
5165 * uncloned at any point, but that doesn't matter
5166 * because the list of events and the generation
5167 * count can't have changed since we took the mutex.
5169 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5171 child_ctx
->parent_ctx
= cloned_ctx
;
5172 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5174 child_ctx
->parent_ctx
= parent_ctx
;
5175 child_ctx
->parent_gen
= parent_ctx
->generation
;
5177 get_ctx(child_ctx
->parent_ctx
);
5180 mutex_unlock(&parent_ctx
->mutex
);
5182 perf_unpin_context(parent_ctx
);
5187 static void __cpuinit
perf_event_init_cpu(int cpu
)
5189 struct perf_cpu_context
*cpuctx
;
5191 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5192 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5194 spin_lock(&perf_resource_lock
);
5195 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5196 spin_unlock(&perf_resource_lock
);
5198 hw_perf_event_setup(cpu
);
5201 #ifdef CONFIG_HOTPLUG_CPU
5202 static void __perf_event_exit_cpu(void *info
)
5204 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5205 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5206 struct perf_event
*event
, *tmp
;
5208 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
5209 __perf_event_remove_from_context(event
);
5211 static void perf_event_exit_cpu(int cpu
)
5213 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5214 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5216 mutex_lock(&ctx
->mutex
);
5217 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5218 mutex_unlock(&ctx
->mutex
);
5221 static inline void perf_event_exit_cpu(int cpu
) { }
5224 static int __cpuinit
5225 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5227 unsigned int cpu
= (long)hcpu
;
5231 case CPU_UP_PREPARE
:
5232 case CPU_UP_PREPARE_FROZEN
:
5233 perf_event_init_cpu(cpu
);
5237 case CPU_ONLINE_FROZEN
:
5238 hw_perf_event_setup_online(cpu
);
5241 case CPU_DOWN_PREPARE
:
5242 case CPU_DOWN_PREPARE_FROZEN
:
5243 perf_event_exit_cpu(cpu
);
5254 * This has to have a higher priority than migration_notifier in sched.c.
5256 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5257 .notifier_call
= perf_cpu_notify
,
5261 void __init
perf_event_init(void)
5263 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5264 (void *)(long)smp_processor_id());
5265 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5266 (void *)(long)smp_processor_id());
5267 register_cpu_notifier(&perf_cpu_nb
);
5270 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5272 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5276 perf_set_reserve_percpu(struct sysdev_class
*class,
5280 struct perf_cpu_context
*cpuctx
;
5284 err
= strict_strtoul(buf
, 10, &val
);
5287 if (val
> perf_max_events
)
5290 spin_lock(&perf_resource_lock
);
5291 perf_reserved_percpu
= val
;
5292 for_each_online_cpu(cpu
) {
5293 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5294 spin_lock_irq(&cpuctx
->ctx
.lock
);
5295 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5296 perf_max_events
- perf_reserved_percpu
);
5297 cpuctx
->max_pertask
= mpt
;
5298 spin_unlock_irq(&cpuctx
->ctx
.lock
);
5300 spin_unlock(&perf_resource_lock
);
5305 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5307 return sprintf(buf
, "%d\n", perf_overcommit
);
5311 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5316 err
= strict_strtoul(buf
, 10, &val
);
5322 spin_lock(&perf_resource_lock
);
5323 perf_overcommit
= val
;
5324 spin_unlock(&perf_resource_lock
);
5329 static SYSDEV_CLASS_ATTR(
5332 perf_show_reserve_percpu
,
5333 perf_set_reserve_percpu
5336 static SYSDEV_CLASS_ATTR(
5339 perf_show_overcommit
,
5343 static struct attribute
*perfclass_attrs
[] = {
5344 &attr_reserve_percpu
.attr
,
5345 &attr_overcommit
.attr
,
5349 static struct attribute_group perfclass_attr_group
= {
5350 .attrs
= perfclass_attrs
,
5351 .name
= "perf_events",
5354 static int __init
perf_event_sysfs_init(void)
5356 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5357 &perfclass_attr_group
);
5359 device_initcall(perf_event_sysfs_init
);