Merge branch 'x86/asm' into x86/urgent
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37 * Each CPU has a list of per CPU events:
38 */
39 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 static inline bool perf_paranoid_tracepoint_raw(void)
60 {
61 return sysctl_perf_event_paranoid > -1;
62 }
63
64 static inline bool perf_paranoid_cpu(void)
65 {
66 return sysctl_perf_event_paranoid > 0;
67 }
68
69 static inline bool perf_paranoid_kernel(void)
70 {
71 return sysctl_perf_event_paranoid > 1;
72 }
73
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76 /*
77 * max perf event sample rate
78 */
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81 static atomic64_t perf_event_id;
82
83 /*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86 static DEFINE_SPINLOCK(perf_resource_lock);
87
88 /*
89 * Architecture provided APIs - weak aliases:
90 */
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92 {
93 return NULL;
94 }
95
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
98
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106 {
107 return 0;
108 }
109
110 void __weak perf_event_print_debug(void) { }
111
112 static DEFINE_PER_CPU(int, perf_disable_count);
113
114 void __perf_disable(void)
115 {
116 __get_cpu_var(perf_disable_count)++;
117 }
118
119 bool __perf_enable(void)
120 {
121 return !--__get_cpu_var(perf_disable_count);
122 }
123
124 void perf_disable(void)
125 {
126 __perf_disable();
127 hw_perf_disable();
128 }
129
130 void perf_enable(void)
131 {
132 if (__perf_enable())
133 hw_perf_enable();
134 }
135
136 static void get_ctx(struct perf_event_context *ctx)
137 {
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 }
140
141 static void free_ctx(struct rcu_head *head)
142 {
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147 }
148
149 static void put_ctx(struct perf_event_context *ctx)
150 {
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158 }
159
160 static void unclone_ctx(struct perf_event_context *ctx)
161 {
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166 }
167
168 /*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172 static u64 primary_event_id(struct perf_event *event)
173 {
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180 }
181
182 /*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189 {
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219 }
220
221 /*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227 {
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237 }
238
239 static void perf_unpin_context(struct perf_event_context *ctx)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247 }
248
249 static inline u64 perf_clock(void)
250 {
251 return cpu_clock(smp_processor_id());
252 }
253
254 /*
255 * Update the record of the current time in a context.
256 */
257 static void update_context_time(struct perf_event_context *ctx)
258 {
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263 }
264
265 /*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268 static void update_event_times(struct perf_event *event)
269 {
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290 }
291
292 /*
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
295 */
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298 {
299 struct perf_event *group_leader = event->group_leader;
300
301 /*
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
305 */
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
311 }
312
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
317 }
318
319 /*
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
322 */
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325 {
326 struct perf_event *sibling, *tmp;
327
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
333
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
336
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
339
340 update_event_times(event);
341
342 /*
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
348 */
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
351
352 /*
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
356 */
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
361 }
362 }
363
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
368 {
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
371
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
376 }
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
380
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
386 }
387
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392 {
393 struct perf_event *event;
394
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
397
398 event_sched_out(group_event, cpuctx, ctx);
399
400 /*
401 * Schedule out siblings (if any):
402 */
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
405
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
408 }
409
410 /*
411 * Cross CPU call to remove a performance event
412 *
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
415 */
416 static void __perf_event_remove_from_context(void *info)
417 {
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
421
422 /*
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
426 */
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
429
430 spin_lock(&ctx->lock);
431 /*
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
434 */
435 perf_disable();
436
437 event_sched_out(event, cpuctx, ctx);
438
439 list_del_event(event, ctx);
440
441 if (!ctx->task) {
442 /*
443 * Allow more per task events with respect to the
444 * reservation:
445 */
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
449 }
450
451 perf_enable();
452 spin_unlock(&ctx->lock);
453 }
454
455
456 /*
457 * Remove the event from a task's (or a CPU's) list of events.
458 *
459 * Must be called with ctx->mutex held.
460 *
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
463 *
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
470 */
471 static void perf_event_remove_from_context(struct perf_event *event)
472 {
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
475
476 if (!task) {
477 /*
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
480 */
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
485 }
486
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
490
491 spin_lock_irq(&ctx->lock);
492 /*
493 * If the context is active we need to retry the smp call.
494 */
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 spin_unlock_irq(&ctx->lock);
497 goto retry;
498 }
499
500 /*
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
504 */
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 spin_unlock_irq(&ctx->lock);
508 }
509
510 /*
511 * Update total_time_enabled and total_time_running for all events in a group.
512 */
513 static void update_group_times(struct perf_event *leader)
514 {
515 struct perf_event *event;
516
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
520 }
521
522 /*
523 * Cross CPU call to disable a performance event
524 */
525 static void __perf_event_disable(void *info)
526 {
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
530
531 /*
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
534 */
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
537
538 spin_lock(&ctx->lock);
539
540 /*
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
543 */
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
552 }
553
554 spin_unlock(&ctx->lock);
555 }
556
557 /*
558 * Disable a event.
559 *
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
569 */
570 static void perf_event_disable(struct perf_event *event)
571 {
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
574
575 if (!task) {
576 /*
577 * Disable the event on the cpu that it's on
578 */
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
582 }
583
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
586
587 spin_lock_irq(&ctx->lock);
588 /*
589 * If the event is still active, we need to retry the cross-call.
590 */
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 spin_unlock_irq(&ctx->lock);
593 goto retry;
594 }
595
596 /*
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
599 */
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
603 }
604
605 spin_unlock_irq(&ctx->lock);
606 }
607
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
613 {
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
616
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
619 /*
620 * The new state must be visible before we turn it on in the hardware:
621 */
622 smp_wmb();
623
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
628 }
629
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
631
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
635
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
638
639 return 0;
640 }
641
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
647 {
648 struct perf_event *event, *partial_group;
649 int ret;
650
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
653
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
657
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
660
661 /*
662 * Schedule in siblings as one group (if any):
663 */
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
668 }
669 }
670
671 return 0;
672
673 group_error:
674 /*
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
677 */
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
682 }
683 event_sched_out(group_event, cpuctx, ctx);
684
685 return -EAGAIN;
686 }
687
688 /*
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
691 */
692 static int is_software_only_group(struct perf_event *leader)
693 {
694 struct perf_event *event;
695
696 if (!is_software_event(leader))
697 return 0;
698
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
702
703 return 1;
704 }
705
706 /*
707 * Work out whether we can put this event group on the CPU now.
708 */
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
712 {
713 /*
714 * Groups consisting entirely of software events can always go on.
715 */
716 if (is_software_only_group(event))
717 return 1;
718 /*
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
721 */
722 if (cpuctx->exclusive)
723 return 0;
724 /*
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
727 */
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
730 /*
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
733 */
734 return can_add_hw;
735 }
736
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
739 {
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
744 }
745
746 /*
747 * Cross CPU call to install and enable a performance event
748 *
749 * Must be called with ctx->mutex held
750 */
751 static void __perf_install_in_context(void *info)
752 {
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
759
760 /*
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
766 */
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
771 }
772
773 spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
776
777 /*
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
780 */
781 perf_disable();
782
783 add_event_to_ctx(event, ctx);
784
785 /*
786 * Don't put the event on if it is disabled or if
787 * it is in a group and the group isn't on.
788 */
789 if (event->state != PERF_EVENT_STATE_INACTIVE ||
790 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
791 goto unlock;
792
793 /*
794 * An exclusive event can't go on if there are already active
795 * hardware events, and no hardware event can go on if there
796 * is already an exclusive event on.
797 */
798 if (!group_can_go_on(event, cpuctx, 1))
799 err = -EEXIST;
800 else
801 err = event_sched_in(event, cpuctx, ctx, cpu);
802
803 if (err) {
804 /*
805 * This event couldn't go on. If it is in a group
806 * then we have to pull the whole group off.
807 * If the event group is pinned then put it in error state.
808 */
809 if (leader != event)
810 group_sched_out(leader, cpuctx, ctx);
811 if (leader->attr.pinned) {
812 update_group_times(leader);
813 leader->state = PERF_EVENT_STATE_ERROR;
814 }
815 }
816
817 if (!err && !ctx->task && cpuctx->max_pertask)
818 cpuctx->max_pertask--;
819
820 unlock:
821 perf_enable();
822
823 spin_unlock(&ctx->lock);
824 }
825
826 /*
827 * Attach a performance event to a context
828 *
829 * First we add the event to the list with the hardware enable bit
830 * in event->hw_config cleared.
831 *
832 * If the event is attached to a task which is on a CPU we use a smp
833 * call to enable it in the task context. The task might have been
834 * scheduled away, but we check this in the smp call again.
835 *
836 * Must be called with ctx->mutex held.
837 */
838 static void
839 perf_install_in_context(struct perf_event_context *ctx,
840 struct perf_event *event,
841 int cpu)
842 {
843 struct task_struct *task = ctx->task;
844
845 if (!task) {
846 /*
847 * Per cpu events are installed via an smp call and
848 * the install is always successful.
849 */
850 smp_call_function_single(cpu, __perf_install_in_context,
851 event, 1);
852 return;
853 }
854
855 retry:
856 task_oncpu_function_call(task, __perf_install_in_context,
857 event);
858
859 spin_lock_irq(&ctx->lock);
860 /*
861 * we need to retry the smp call.
862 */
863 if (ctx->is_active && list_empty(&event->group_entry)) {
864 spin_unlock_irq(&ctx->lock);
865 goto retry;
866 }
867
868 /*
869 * The lock prevents that this context is scheduled in so we
870 * can add the event safely, if it the call above did not
871 * succeed.
872 */
873 if (list_empty(&event->group_entry))
874 add_event_to_ctx(event, ctx);
875 spin_unlock_irq(&ctx->lock);
876 }
877
878 /*
879 * Put a event into inactive state and update time fields.
880 * Enabling the leader of a group effectively enables all
881 * the group members that aren't explicitly disabled, so we
882 * have to update their ->tstamp_enabled also.
883 * Note: this works for group members as well as group leaders
884 * since the non-leader members' sibling_lists will be empty.
885 */
886 static void __perf_event_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888 {
889 struct perf_event *sub;
890
891 event->state = PERF_EVENT_STATE_INACTIVE;
892 event->tstamp_enabled = ctx->time - event->total_time_enabled;
893 list_for_each_entry(sub, &event->sibling_list, group_entry)
894 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
895 sub->tstamp_enabled =
896 ctx->time - sub->total_time_enabled;
897 }
898
899 /*
900 * Cross CPU call to enable a performance event
901 */
902 static void __perf_event_enable(void *info)
903 {
904 struct perf_event *event = info;
905 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
906 struct perf_event_context *ctx = event->ctx;
907 struct perf_event *leader = event->group_leader;
908 int err;
909
910 /*
911 * If this is a per-task event, need to check whether this
912 * event's task is the current task on this cpu.
913 */
914 if (ctx->task && cpuctx->task_ctx != ctx) {
915 if (cpuctx->task_ctx || ctx->task != current)
916 return;
917 cpuctx->task_ctx = ctx;
918 }
919
920 spin_lock(&ctx->lock);
921 ctx->is_active = 1;
922 update_context_time(ctx);
923
924 if (event->state >= PERF_EVENT_STATE_INACTIVE)
925 goto unlock;
926 __perf_event_mark_enabled(event, ctx);
927
928 /*
929 * If the event is in a group and isn't the group leader,
930 * then don't put it on unless the group is on.
931 */
932 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
933 goto unlock;
934
935 if (!group_can_go_on(event, cpuctx, 1)) {
936 err = -EEXIST;
937 } else {
938 perf_disable();
939 if (event == leader)
940 err = group_sched_in(event, cpuctx, ctx,
941 smp_processor_id());
942 else
943 err = event_sched_in(event, cpuctx, ctx,
944 smp_processor_id());
945 perf_enable();
946 }
947
948 if (err) {
949 /*
950 * If this event can't go on and it's part of a
951 * group, then the whole group has to come off.
952 */
953 if (leader != event)
954 group_sched_out(leader, cpuctx, ctx);
955 if (leader->attr.pinned) {
956 update_group_times(leader);
957 leader->state = PERF_EVENT_STATE_ERROR;
958 }
959 }
960
961 unlock:
962 spin_unlock(&ctx->lock);
963 }
964
965 /*
966 * Enable a event.
967 *
968 * If event->ctx is a cloned context, callers must make sure that
969 * every task struct that event->ctx->task could possibly point to
970 * remains valid. This condition is satisfied when called through
971 * perf_event_for_each_child or perf_event_for_each as described
972 * for perf_event_disable.
973 */
974 static void perf_event_enable(struct perf_event *event)
975 {
976 struct perf_event_context *ctx = event->ctx;
977 struct task_struct *task = ctx->task;
978
979 if (!task) {
980 /*
981 * Enable the event on the cpu that it's on
982 */
983 smp_call_function_single(event->cpu, __perf_event_enable,
984 event, 1);
985 return;
986 }
987
988 spin_lock_irq(&ctx->lock);
989 if (event->state >= PERF_EVENT_STATE_INACTIVE)
990 goto out;
991
992 /*
993 * If the event is in error state, clear that first.
994 * That way, if we see the event in error state below, we
995 * know that it has gone back into error state, as distinct
996 * from the task having been scheduled away before the
997 * cross-call arrived.
998 */
999 if (event->state == PERF_EVENT_STATE_ERROR)
1000 event->state = PERF_EVENT_STATE_OFF;
1001
1002 retry:
1003 spin_unlock_irq(&ctx->lock);
1004 task_oncpu_function_call(task, __perf_event_enable, event);
1005
1006 spin_lock_irq(&ctx->lock);
1007
1008 /*
1009 * If the context is active and the event is still off,
1010 * we need to retry the cross-call.
1011 */
1012 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1013 goto retry;
1014
1015 /*
1016 * Since we have the lock this context can't be scheduled
1017 * in, so we can change the state safely.
1018 */
1019 if (event->state == PERF_EVENT_STATE_OFF)
1020 __perf_event_mark_enabled(event, ctx);
1021
1022 out:
1023 spin_unlock_irq(&ctx->lock);
1024 }
1025
1026 static int perf_event_refresh(struct perf_event *event, int refresh)
1027 {
1028 /*
1029 * not supported on inherited events
1030 */
1031 if (event->attr.inherit)
1032 return -EINVAL;
1033
1034 atomic_add(refresh, &event->event_limit);
1035 perf_event_enable(event);
1036
1037 return 0;
1038 }
1039
1040 void __perf_event_sched_out(struct perf_event_context *ctx,
1041 struct perf_cpu_context *cpuctx)
1042 {
1043 struct perf_event *event;
1044
1045 spin_lock(&ctx->lock);
1046 ctx->is_active = 0;
1047 if (likely(!ctx->nr_events))
1048 goto out;
1049 update_context_time(ctx);
1050
1051 perf_disable();
1052 if (ctx->nr_active) {
1053 list_for_each_entry(event, &ctx->group_list, group_entry)
1054 group_sched_out(event, cpuctx, ctx);
1055 }
1056 perf_enable();
1057 out:
1058 spin_unlock(&ctx->lock);
1059 }
1060
1061 /*
1062 * Test whether two contexts are equivalent, i.e. whether they
1063 * have both been cloned from the same version of the same context
1064 * and they both have the same number of enabled events.
1065 * If the number of enabled events is the same, then the set
1066 * of enabled events should be the same, because these are both
1067 * inherited contexts, therefore we can't access individual events
1068 * in them directly with an fd; we can only enable/disable all
1069 * events via prctl, or enable/disable all events in a family
1070 * via ioctl, which will have the same effect on both contexts.
1071 */
1072 static int context_equiv(struct perf_event_context *ctx1,
1073 struct perf_event_context *ctx2)
1074 {
1075 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1076 && ctx1->parent_gen == ctx2->parent_gen
1077 && !ctx1->pin_count && !ctx2->pin_count;
1078 }
1079
1080 static void __perf_event_sync_stat(struct perf_event *event,
1081 struct perf_event *next_event)
1082 {
1083 u64 value;
1084
1085 if (!event->attr.inherit_stat)
1086 return;
1087
1088 /*
1089 * Update the event value, we cannot use perf_event_read()
1090 * because we're in the middle of a context switch and have IRQs
1091 * disabled, which upsets smp_call_function_single(), however
1092 * we know the event must be on the current CPU, therefore we
1093 * don't need to use it.
1094 */
1095 switch (event->state) {
1096 case PERF_EVENT_STATE_ACTIVE:
1097 event->pmu->read(event);
1098 /* fall-through */
1099
1100 case PERF_EVENT_STATE_INACTIVE:
1101 update_event_times(event);
1102 break;
1103
1104 default:
1105 break;
1106 }
1107
1108 /*
1109 * In order to keep per-task stats reliable we need to flip the event
1110 * values when we flip the contexts.
1111 */
1112 value = atomic64_read(&next_event->count);
1113 value = atomic64_xchg(&event->count, value);
1114 atomic64_set(&next_event->count, value);
1115
1116 swap(event->total_time_enabled, next_event->total_time_enabled);
1117 swap(event->total_time_running, next_event->total_time_running);
1118
1119 /*
1120 * Since we swizzled the values, update the user visible data too.
1121 */
1122 perf_event_update_userpage(event);
1123 perf_event_update_userpage(next_event);
1124 }
1125
1126 #define list_next_entry(pos, member) \
1127 list_entry(pos->member.next, typeof(*pos), member)
1128
1129 static void perf_event_sync_stat(struct perf_event_context *ctx,
1130 struct perf_event_context *next_ctx)
1131 {
1132 struct perf_event *event, *next_event;
1133
1134 if (!ctx->nr_stat)
1135 return;
1136
1137 update_context_time(ctx);
1138
1139 event = list_first_entry(&ctx->event_list,
1140 struct perf_event, event_entry);
1141
1142 next_event = list_first_entry(&next_ctx->event_list,
1143 struct perf_event, event_entry);
1144
1145 while (&event->event_entry != &ctx->event_list &&
1146 &next_event->event_entry != &next_ctx->event_list) {
1147
1148 __perf_event_sync_stat(event, next_event);
1149
1150 event = list_next_entry(event, event_entry);
1151 next_event = list_next_entry(next_event, event_entry);
1152 }
1153 }
1154
1155 /*
1156 * Called from scheduler to remove the events of the current task,
1157 * with interrupts disabled.
1158 *
1159 * We stop each event and update the event value in event->count.
1160 *
1161 * This does not protect us against NMI, but disable()
1162 * sets the disabled bit in the control field of event _before_
1163 * accessing the event control register. If a NMI hits, then it will
1164 * not restart the event.
1165 */
1166 void perf_event_task_sched_out(struct task_struct *task,
1167 struct task_struct *next, int cpu)
1168 {
1169 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1170 struct perf_event_context *ctx = task->perf_event_ctxp;
1171 struct perf_event_context *next_ctx;
1172 struct perf_event_context *parent;
1173 struct pt_regs *regs;
1174 int do_switch = 1;
1175
1176 regs = task_pt_regs(task);
1177 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1178
1179 if (likely(!ctx || !cpuctx->task_ctx))
1180 return;
1181
1182 rcu_read_lock();
1183 parent = rcu_dereference(ctx->parent_ctx);
1184 next_ctx = next->perf_event_ctxp;
1185 if (parent && next_ctx &&
1186 rcu_dereference(next_ctx->parent_ctx) == parent) {
1187 /*
1188 * Looks like the two contexts are clones, so we might be
1189 * able to optimize the context switch. We lock both
1190 * contexts and check that they are clones under the
1191 * lock (including re-checking that neither has been
1192 * uncloned in the meantime). It doesn't matter which
1193 * order we take the locks because no other cpu could
1194 * be trying to lock both of these tasks.
1195 */
1196 spin_lock(&ctx->lock);
1197 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1198 if (context_equiv(ctx, next_ctx)) {
1199 /*
1200 * XXX do we need a memory barrier of sorts
1201 * wrt to rcu_dereference() of perf_event_ctxp
1202 */
1203 task->perf_event_ctxp = next_ctx;
1204 next->perf_event_ctxp = ctx;
1205 ctx->task = next;
1206 next_ctx->task = task;
1207 do_switch = 0;
1208
1209 perf_event_sync_stat(ctx, next_ctx);
1210 }
1211 spin_unlock(&next_ctx->lock);
1212 spin_unlock(&ctx->lock);
1213 }
1214 rcu_read_unlock();
1215
1216 if (do_switch) {
1217 __perf_event_sched_out(ctx, cpuctx);
1218 cpuctx->task_ctx = NULL;
1219 }
1220 }
1221
1222 /*
1223 * Called with IRQs disabled
1224 */
1225 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1226 {
1227 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1228
1229 if (!cpuctx->task_ctx)
1230 return;
1231
1232 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1233 return;
1234
1235 __perf_event_sched_out(ctx, cpuctx);
1236 cpuctx->task_ctx = NULL;
1237 }
1238
1239 /*
1240 * Called with IRQs disabled
1241 */
1242 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1243 {
1244 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1245 }
1246
1247 static void
1248 __perf_event_sched_in(struct perf_event_context *ctx,
1249 struct perf_cpu_context *cpuctx, int cpu)
1250 {
1251 struct perf_event *event;
1252 int can_add_hw = 1;
1253
1254 spin_lock(&ctx->lock);
1255 ctx->is_active = 1;
1256 if (likely(!ctx->nr_events))
1257 goto out;
1258
1259 ctx->timestamp = perf_clock();
1260
1261 perf_disable();
1262
1263 /*
1264 * First go through the list and put on any pinned groups
1265 * in order to give them the best chance of going on.
1266 */
1267 list_for_each_entry(event, &ctx->group_list, group_entry) {
1268 if (event->state <= PERF_EVENT_STATE_OFF ||
1269 !event->attr.pinned)
1270 continue;
1271 if (event->cpu != -1 && event->cpu != cpu)
1272 continue;
1273
1274 if (group_can_go_on(event, cpuctx, 1))
1275 group_sched_in(event, cpuctx, ctx, cpu);
1276
1277 /*
1278 * If this pinned group hasn't been scheduled,
1279 * put it in error state.
1280 */
1281 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1282 update_group_times(event);
1283 event->state = PERF_EVENT_STATE_ERROR;
1284 }
1285 }
1286
1287 list_for_each_entry(event, &ctx->group_list, group_entry) {
1288 /*
1289 * Ignore events in OFF or ERROR state, and
1290 * ignore pinned events since we did them already.
1291 */
1292 if (event->state <= PERF_EVENT_STATE_OFF ||
1293 event->attr.pinned)
1294 continue;
1295
1296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
1300 if (event->cpu != -1 && event->cpu != cpu)
1301 continue;
1302
1303 if (group_can_go_on(event, cpuctx, can_add_hw))
1304 if (group_sched_in(event, cpuctx, ctx, cpu))
1305 can_add_hw = 0;
1306 }
1307 perf_enable();
1308 out:
1309 spin_unlock(&ctx->lock);
1310 }
1311
1312 /*
1313 * Called from scheduler to add the events of the current task
1314 * with interrupts disabled.
1315 *
1316 * We restore the event value and then enable it.
1317 *
1318 * This does not protect us against NMI, but enable()
1319 * sets the enabled bit in the control field of event _before_
1320 * accessing the event control register. If a NMI hits, then it will
1321 * keep the event running.
1322 */
1323 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1324 {
1325 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1326 struct perf_event_context *ctx = task->perf_event_ctxp;
1327
1328 if (likely(!ctx))
1329 return;
1330 if (cpuctx->task_ctx == ctx)
1331 return;
1332 __perf_event_sched_in(ctx, cpuctx, cpu);
1333 cpuctx->task_ctx = ctx;
1334 }
1335
1336 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1337 {
1338 struct perf_event_context *ctx = &cpuctx->ctx;
1339
1340 __perf_event_sched_in(ctx, cpuctx, cpu);
1341 }
1342
1343 #define MAX_INTERRUPTS (~0ULL)
1344
1345 static void perf_log_throttle(struct perf_event *event, int enable);
1346
1347 static void perf_adjust_period(struct perf_event *event, u64 events)
1348 {
1349 struct hw_perf_event *hwc = &event->hw;
1350 u64 period, sample_period;
1351 s64 delta;
1352
1353 events *= hwc->sample_period;
1354 period = div64_u64(events, event->attr.sample_freq);
1355
1356 delta = (s64)(period - hwc->sample_period);
1357 delta = (delta + 7) / 8; /* low pass filter */
1358
1359 sample_period = hwc->sample_period + delta;
1360
1361 if (!sample_period)
1362 sample_period = 1;
1363
1364 hwc->sample_period = sample_period;
1365 }
1366
1367 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1368 {
1369 struct perf_event *event;
1370 struct hw_perf_event *hwc;
1371 u64 interrupts, freq;
1372
1373 spin_lock(&ctx->lock);
1374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1375 if (event->state != PERF_EVENT_STATE_ACTIVE)
1376 continue;
1377
1378 hwc = &event->hw;
1379
1380 interrupts = hwc->interrupts;
1381 hwc->interrupts = 0;
1382
1383 /*
1384 * unthrottle events on the tick
1385 */
1386 if (interrupts == MAX_INTERRUPTS) {
1387 perf_log_throttle(event, 1);
1388 event->pmu->unthrottle(event);
1389 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1390 }
1391
1392 if (!event->attr.freq || !event->attr.sample_freq)
1393 continue;
1394
1395 /*
1396 * if the specified freq < HZ then we need to skip ticks
1397 */
1398 if (event->attr.sample_freq < HZ) {
1399 freq = event->attr.sample_freq;
1400
1401 hwc->freq_count += freq;
1402 hwc->freq_interrupts += interrupts;
1403
1404 if (hwc->freq_count < HZ)
1405 continue;
1406
1407 interrupts = hwc->freq_interrupts;
1408 hwc->freq_interrupts = 0;
1409 hwc->freq_count -= HZ;
1410 } else
1411 freq = HZ;
1412
1413 perf_adjust_period(event, freq * interrupts);
1414
1415 /*
1416 * In order to avoid being stalled by an (accidental) huge
1417 * sample period, force reset the sample period if we didn't
1418 * get any events in this freq period.
1419 */
1420 if (!interrupts) {
1421 perf_disable();
1422 event->pmu->disable(event);
1423 atomic64_set(&hwc->period_left, 0);
1424 event->pmu->enable(event);
1425 perf_enable();
1426 }
1427 }
1428 spin_unlock(&ctx->lock);
1429 }
1430
1431 /*
1432 * Round-robin a context's events:
1433 */
1434 static void rotate_ctx(struct perf_event_context *ctx)
1435 {
1436 struct perf_event *event;
1437
1438 if (!ctx->nr_events)
1439 return;
1440
1441 spin_lock(&ctx->lock);
1442 /*
1443 * Rotate the first entry last (works just fine for group events too):
1444 */
1445 perf_disable();
1446 list_for_each_entry(event, &ctx->group_list, group_entry) {
1447 list_move_tail(&event->group_entry, &ctx->group_list);
1448 break;
1449 }
1450 perf_enable();
1451
1452 spin_unlock(&ctx->lock);
1453 }
1454
1455 void perf_event_task_tick(struct task_struct *curr, int cpu)
1456 {
1457 struct perf_cpu_context *cpuctx;
1458 struct perf_event_context *ctx;
1459
1460 if (!atomic_read(&nr_events))
1461 return;
1462
1463 cpuctx = &per_cpu(perf_cpu_context, cpu);
1464 ctx = curr->perf_event_ctxp;
1465
1466 perf_ctx_adjust_freq(&cpuctx->ctx);
1467 if (ctx)
1468 perf_ctx_adjust_freq(ctx);
1469
1470 perf_event_cpu_sched_out(cpuctx);
1471 if (ctx)
1472 __perf_event_task_sched_out(ctx);
1473
1474 rotate_ctx(&cpuctx->ctx);
1475 if (ctx)
1476 rotate_ctx(ctx);
1477
1478 perf_event_cpu_sched_in(cpuctx, cpu);
1479 if (ctx)
1480 perf_event_task_sched_in(curr, cpu);
1481 }
1482
1483 /*
1484 * Enable all of a task's events that have been marked enable-on-exec.
1485 * This expects task == current.
1486 */
1487 static void perf_event_enable_on_exec(struct task_struct *task)
1488 {
1489 struct perf_event_context *ctx;
1490 struct perf_event *event;
1491 unsigned long flags;
1492 int enabled = 0;
1493
1494 local_irq_save(flags);
1495 ctx = task->perf_event_ctxp;
1496 if (!ctx || !ctx->nr_events)
1497 goto out;
1498
1499 __perf_event_task_sched_out(ctx);
1500
1501 spin_lock(&ctx->lock);
1502
1503 list_for_each_entry(event, &ctx->group_list, group_entry) {
1504 if (!event->attr.enable_on_exec)
1505 continue;
1506 event->attr.enable_on_exec = 0;
1507 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1508 continue;
1509 __perf_event_mark_enabled(event, ctx);
1510 enabled = 1;
1511 }
1512
1513 /*
1514 * Unclone this context if we enabled any event.
1515 */
1516 if (enabled)
1517 unclone_ctx(ctx);
1518
1519 spin_unlock(&ctx->lock);
1520
1521 perf_event_task_sched_in(task, smp_processor_id());
1522 out:
1523 local_irq_restore(flags);
1524 }
1525
1526 /*
1527 * Cross CPU call to read the hardware event
1528 */
1529 static void __perf_event_read(void *info)
1530 {
1531 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1532 struct perf_event *event = info;
1533 struct perf_event_context *ctx = event->ctx;
1534
1535 /*
1536 * If this is a task context, we need to check whether it is
1537 * the current task context of this cpu. If not it has been
1538 * scheduled out before the smp call arrived. In that case
1539 * event->count would have been updated to a recent sample
1540 * when the event was scheduled out.
1541 */
1542 if (ctx->task && cpuctx->task_ctx != ctx)
1543 return;
1544
1545 spin_lock(&ctx->lock);
1546 update_context_time(ctx);
1547 update_event_times(event);
1548 spin_unlock(&ctx->lock);
1549
1550 event->pmu->read(event);
1551 }
1552
1553 static u64 perf_event_read(struct perf_event *event)
1554 {
1555 /*
1556 * If event is enabled and currently active on a CPU, update the
1557 * value in the event structure:
1558 */
1559 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1560 smp_call_function_single(event->oncpu,
1561 __perf_event_read, event, 1);
1562 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1563 struct perf_event_context *ctx = event->ctx;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&ctx->lock, flags);
1567 update_context_time(ctx);
1568 update_event_times(event);
1569 spin_unlock_irqrestore(&ctx->lock, flags);
1570 }
1571
1572 return atomic64_read(&event->count);
1573 }
1574
1575 /*
1576 * Initialize the perf_event context in a task_struct:
1577 */
1578 static void
1579 __perf_event_init_context(struct perf_event_context *ctx,
1580 struct task_struct *task)
1581 {
1582 memset(ctx, 0, sizeof(*ctx));
1583 spin_lock_init(&ctx->lock);
1584 mutex_init(&ctx->mutex);
1585 INIT_LIST_HEAD(&ctx->group_list);
1586 INIT_LIST_HEAD(&ctx->event_list);
1587 atomic_set(&ctx->refcount, 1);
1588 ctx->task = task;
1589 }
1590
1591 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1592 {
1593 struct perf_event_context *ctx;
1594 struct perf_cpu_context *cpuctx;
1595 struct task_struct *task;
1596 unsigned long flags;
1597 int err;
1598
1599 /*
1600 * If cpu is not a wildcard then this is a percpu event:
1601 */
1602 if (cpu != -1) {
1603 /* Must be root to operate on a CPU event: */
1604 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1605 return ERR_PTR(-EACCES);
1606
1607 if (cpu < 0 || cpu > num_possible_cpus())
1608 return ERR_PTR(-EINVAL);
1609
1610 /*
1611 * We could be clever and allow to attach a event to an
1612 * offline CPU and activate it when the CPU comes up, but
1613 * that's for later.
1614 */
1615 if (!cpu_isset(cpu, cpu_online_map))
1616 return ERR_PTR(-ENODEV);
1617
1618 cpuctx = &per_cpu(perf_cpu_context, cpu);
1619 ctx = &cpuctx->ctx;
1620 get_ctx(ctx);
1621
1622 return ctx;
1623 }
1624
1625 rcu_read_lock();
1626 if (!pid)
1627 task = current;
1628 else
1629 task = find_task_by_vpid(pid);
1630 if (task)
1631 get_task_struct(task);
1632 rcu_read_unlock();
1633
1634 if (!task)
1635 return ERR_PTR(-ESRCH);
1636
1637 /*
1638 * Can't attach events to a dying task.
1639 */
1640 err = -ESRCH;
1641 if (task->flags & PF_EXITING)
1642 goto errout;
1643
1644 /* Reuse ptrace permission checks for now. */
1645 err = -EACCES;
1646 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1647 goto errout;
1648
1649 retry:
1650 ctx = perf_lock_task_context(task, &flags);
1651 if (ctx) {
1652 unclone_ctx(ctx);
1653 spin_unlock_irqrestore(&ctx->lock, flags);
1654 }
1655
1656 if (!ctx) {
1657 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1658 err = -ENOMEM;
1659 if (!ctx)
1660 goto errout;
1661 __perf_event_init_context(ctx, task);
1662 get_ctx(ctx);
1663 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1664 /*
1665 * We raced with some other task; use
1666 * the context they set.
1667 */
1668 kfree(ctx);
1669 goto retry;
1670 }
1671 get_task_struct(task);
1672 }
1673
1674 put_task_struct(task);
1675 return ctx;
1676
1677 errout:
1678 put_task_struct(task);
1679 return ERR_PTR(err);
1680 }
1681
1682 static void perf_event_free_filter(struct perf_event *event);
1683
1684 static void free_event_rcu(struct rcu_head *head)
1685 {
1686 struct perf_event *event;
1687
1688 event = container_of(head, struct perf_event, rcu_head);
1689 if (event->ns)
1690 put_pid_ns(event->ns);
1691 perf_event_free_filter(event);
1692 kfree(event);
1693 }
1694
1695 static void perf_pending_sync(struct perf_event *event);
1696
1697 static void free_event(struct perf_event *event)
1698 {
1699 perf_pending_sync(event);
1700
1701 if (!event->parent) {
1702 atomic_dec(&nr_events);
1703 if (event->attr.mmap)
1704 atomic_dec(&nr_mmap_events);
1705 if (event->attr.comm)
1706 atomic_dec(&nr_comm_events);
1707 if (event->attr.task)
1708 atomic_dec(&nr_task_events);
1709 }
1710
1711 if (event->output) {
1712 fput(event->output->filp);
1713 event->output = NULL;
1714 }
1715
1716 if (event->destroy)
1717 event->destroy(event);
1718
1719 put_ctx(event->ctx);
1720 call_rcu(&event->rcu_head, free_event_rcu);
1721 }
1722
1723 int perf_event_release_kernel(struct perf_event *event)
1724 {
1725 struct perf_event_context *ctx = event->ctx;
1726
1727 WARN_ON_ONCE(ctx->parent_ctx);
1728 mutex_lock(&ctx->mutex);
1729 perf_event_remove_from_context(event);
1730 mutex_unlock(&ctx->mutex);
1731
1732 mutex_lock(&event->owner->perf_event_mutex);
1733 list_del_init(&event->owner_entry);
1734 mutex_unlock(&event->owner->perf_event_mutex);
1735 put_task_struct(event->owner);
1736
1737 free_event(event);
1738
1739 return 0;
1740 }
1741 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1742
1743 /*
1744 * Called when the last reference to the file is gone.
1745 */
1746 static int perf_release(struct inode *inode, struct file *file)
1747 {
1748 struct perf_event *event = file->private_data;
1749
1750 file->private_data = NULL;
1751
1752 return perf_event_release_kernel(event);
1753 }
1754
1755 static int perf_event_read_size(struct perf_event *event)
1756 {
1757 int entry = sizeof(u64); /* value */
1758 int size = 0;
1759 int nr = 1;
1760
1761 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1762 size += sizeof(u64);
1763
1764 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1765 size += sizeof(u64);
1766
1767 if (event->attr.read_format & PERF_FORMAT_ID)
1768 entry += sizeof(u64);
1769
1770 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1771 nr += event->group_leader->nr_siblings;
1772 size += sizeof(u64);
1773 }
1774
1775 size += entry * nr;
1776
1777 return size;
1778 }
1779
1780 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1781 {
1782 struct perf_event *child;
1783 u64 total = 0;
1784
1785 *enabled = 0;
1786 *running = 0;
1787
1788 mutex_lock(&event->child_mutex);
1789 total += perf_event_read(event);
1790 *enabled += event->total_time_enabled +
1791 atomic64_read(&event->child_total_time_enabled);
1792 *running += event->total_time_running +
1793 atomic64_read(&event->child_total_time_running);
1794
1795 list_for_each_entry(child, &event->child_list, child_list) {
1796 total += perf_event_read(child);
1797 *enabled += child->total_time_enabled;
1798 *running += child->total_time_running;
1799 }
1800 mutex_unlock(&event->child_mutex);
1801
1802 return total;
1803 }
1804 EXPORT_SYMBOL_GPL(perf_event_read_value);
1805
1806 static int perf_event_read_group(struct perf_event *event,
1807 u64 read_format, char __user *buf)
1808 {
1809 struct perf_event *leader = event->group_leader, *sub;
1810 int n = 0, size = 0, ret = -EFAULT;
1811 struct perf_event_context *ctx = leader->ctx;
1812 u64 values[5];
1813 u64 count, enabled, running;
1814
1815 mutex_lock(&ctx->mutex);
1816 count = perf_event_read_value(leader, &enabled, &running);
1817
1818 values[n++] = 1 + leader->nr_siblings;
1819 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1820 values[n++] = enabled;
1821 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1822 values[n++] = running;
1823 values[n++] = count;
1824 if (read_format & PERF_FORMAT_ID)
1825 values[n++] = primary_event_id(leader);
1826
1827 size = n * sizeof(u64);
1828
1829 if (copy_to_user(buf, values, size))
1830 goto unlock;
1831
1832 ret = size;
1833
1834 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1835 n = 0;
1836
1837 values[n++] = perf_event_read_value(sub, &enabled, &running);
1838 if (read_format & PERF_FORMAT_ID)
1839 values[n++] = primary_event_id(sub);
1840
1841 size = n * sizeof(u64);
1842
1843 if (copy_to_user(buf + ret, values, size)) {
1844 ret = -EFAULT;
1845 goto unlock;
1846 }
1847
1848 ret += size;
1849 }
1850 unlock:
1851 mutex_unlock(&ctx->mutex);
1852
1853 return ret;
1854 }
1855
1856 static int perf_event_read_one(struct perf_event *event,
1857 u64 read_format, char __user *buf)
1858 {
1859 u64 enabled, running;
1860 u64 values[4];
1861 int n = 0;
1862
1863 values[n++] = perf_event_read_value(event, &enabled, &running);
1864 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1865 values[n++] = enabled;
1866 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1867 values[n++] = running;
1868 if (read_format & PERF_FORMAT_ID)
1869 values[n++] = primary_event_id(event);
1870
1871 if (copy_to_user(buf, values, n * sizeof(u64)))
1872 return -EFAULT;
1873
1874 return n * sizeof(u64);
1875 }
1876
1877 /*
1878 * Read the performance event - simple non blocking version for now
1879 */
1880 static ssize_t
1881 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1882 {
1883 u64 read_format = event->attr.read_format;
1884 int ret;
1885
1886 /*
1887 * Return end-of-file for a read on a event that is in
1888 * error state (i.e. because it was pinned but it couldn't be
1889 * scheduled on to the CPU at some point).
1890 */
1891 if (event->state == PERF_EVENT_STATE_ERROR)
1892 return 0;
1893
1894 if (count < perf_event_read_size(event))
1895 return -ENOSPC;
1896
1897 WARN_ON_ONCE(event->ctx->parent_ctx);
1898 if (read_format & PERF_FORMAT_GROUP)
1899 ret = perf_event_read_group(event, read_format, buf);
1900 else
1901 ret = perf_event_read_one(event, read_format, buf);
1902
1903 return ret;
1904 }
1905
1906 static ssize_t
1907 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1908 {
1909 struct perf_event *event = file->private_data;
1910
1911 return perf_read_hw(event, buf, count);
1912 }
1913
1914 static unsigned int perf_poll(struct file *file, poll_table *wait)
1915 {
1916 struct perf_event *event = file->private_data;
1917 struct perf_mmap_data *data;
1918 unsigned int events = POLL_HUP;
1919
1920 rcu_read_lock();
1921 data = rcu_dereference(event->data);
1922 if (data)
1923 events = atomic_xchg(&data->poll, 0);
1924 rcu_read_unlock();
1925
1926 poll_wait(file, &event->waitq, wait);
1927
1928 return events;
1929 }
1930
1931 static void perf_event_reset(struct perf_event *event)
1932 {
1933 (void)perf_event_read(event);
1934 atomic64_set(&event->count, 0);
1935 perf_event_update_userpage(event);
1936 }
1937
1938 /*
1939 * Holding the top-level event's child_mutex means that any
1940 * descendant process that has inherited this event will block
1941 * in sync_child_event if it goes to exit, thus satisfying the
1942 * task existence requirements of perf_event_enable/disable.
1943 */
1944 static void perf_event_for_each_child(struct perf_event *event,
1945 void (*func)(struct perf_event *))
1946 {
1947 struct perf_event *child;
1948
1949 WARN_ON_ONCE(event->ctx->parent_ctx);
1950 mutex_lock(&event->child_mutex);
1951 func(event);
1952 list_for_each_entry(child, &event->child_list, child_list)
1953 func(child);
1954 mutex_unlock(&event->child_mutex);
1955 }
1956
1957 static void perf_event_for_each(struct perf_event *event,
1958 void (*func)(struct perf_event *))
1959 {
1960 struct perf_event_context *ctx = event->ctx;
1961 struct perf_event *sibling;
1962
1963 WARN_ON_ONCE(ctx->parent_ctx);
1964 mutex_lock(&ctx->mutex);
1965 event = event->group_leader;
1966
1967 perf_event_for_each_child(event, func);
1968 func(event);
1969 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1970 perf_event_for_each_child(event, func);
1971 mutex_unlock(&ctx->mutex);
1972 }
1973
1974 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1975 {
1976 struct perf_event_context *ctx = event->ctx;
1977 unsigned long size;
1978 int ret = 0;
1979 u64 value;
1980
1981 if (!event->attr.sample_period)
1982 return -EINVAL;
1983
1984 size = copy_from_user(&value, arg, sizeof(value));
1985 if (size != sizeof(value))
1986 return -EFAULT;
1987
1988 if (!value)
1989 return -EINVAL;
1990
1991 spin_lock_irq(&ctx->lock);
1992 if (event->attr.freq) {
1993 if (value > sysctl_perf_event_sample_rate) {
1994 ret = -EINVAL;
1995 goto unlock;
1996 }
1997
1998 event->attr.sample_freq = value;
1999 } else {
2000 event->attr.sample_period = value;
2001 event->hw.sample_period = value;
2002 }
2003 unlock:
2004 spin_unlock_irq(&ctx->lock);
2005
2006 return ret;
2007 }
2008
2009 static int perf_event_set_output(struct perf_event *event, int output_fd);
2010 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2011
2012 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2013 {
2014 struct perf_event *event = file->private_data;
2015 void (*func)(struct perf_event *);
2016 u32 flags = arg;
2017
2018 switch (cmd) {
2019 case PERF_EVENT_IOC_ENABLE:
2020 func = perf_event_enable;
2021 break;
2022 case PERF_EVENT_IOC_DISABLE:
2023 func = perf_event_disable;
2024 break;
2025 case PERF_EVENT_IOC_RESET:
2026 func = perf_event_reset;
2027 break;
2028
2029 case PERF_EVENT_IOC_REFRESH:
2030 return perf_event_refresh(event, arg);
2031
2032 case PERF_EVENT_IOC_PERIOD:
2033 return perf_event_period(event, (u64 __user *)arg);
2034
2035 case PERF_EVENT_IOC_SET_OUTPUT:
2036 return perf_event_set_output(event, arg);
2037
2038 case PERF_EVENT_IOC_SET_FILTER:
2039 return perf_event_set_filter(event, (void __user *)arg);
2040
2041 default:
2042 return -ENOTTY;
2043 }
2044
2045 if (flags & PERF_IOC_FLAG_GROUP)
2046 perf_event_for_each(event, func);
2047 else
2048 perf_event_for_each_child(event, func);
2049
2050 return 0;
2051 }
2052
2053 int perf_event_task_enable(void)
2054 {
2055 struct perf_event *event;
2056
2057 mutex_lock(&current->perf_event_mutex);
2058 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2059 perf_event_for_each_child(event, perf_event_enable);
2060 mutex_unlock(&current->perf_event_mutex);
2061
2062 return 0;
2063 }
2064
2065 int perf_event_task_disable(void)
2066 {
2067 struct perf_event *event;
2068
2069 mutex_lock(&current->perf_event_mutex);
2070 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2071 perf_event_for_each_child(event, perf_event_disable);
2072 mutex_unlock(&current->perf_event_mutex);
2073
2074 return 0;
2075 }
2076
2077 #ifndef PERF_EVENT_INDEX_OFFSET
2078 # define PERF_EVENT_INDEX_OFFSET 0
2079 #endif
2080
2081 static int perf_event_index(struct perf_event *event)
2082 {
2083 if (event->state != PERF_EVENT_STATE_ACTIVE)
2084 return 0;
2085
2086 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2087 }
2088
2089 /*
2090 * Callers need to ensure there can be no nesting of this function, otherwise
2091 * the seqlock logic goes bad. We can not serialize this because the arch
2092 * code calls this from NMI context.
2093 */
2094 void perf_event_update_userpage(struct perf_event *event)
2095 {
2096 struct perf_event_mmap_page *userpg;
2097 struct perf_mmap_data *data;
2098
2099 rcu_read_lock();
2100 data = rcu_dereference(event->data);
2101 if (!data)
2102 goto unlock;
2103
2104 userpg = data->user_page;
2105
2106 /*
2107 * Disable preemption so as to not let the corresponding user-space
2108 * spin too long if we get preempted.
2109 */
2110 preempt_disable();
2111 ++userpg->lock;
2112 barrier();
2113 userpg->index = perf_event_index(event);
2114 userpg->offset = atomic64_read(&event->count);
2115 if (event->state == PERF_EVENT_STATE_ACTIVE)
2116 userpg->offset -= atomic64_read(&event->hw.prev_count);
2117
2118 userpg->time_enabled = event->total_time_enabled +
2119 atomic64_read(&event->child_total_time_enabled);
2120
2121 userpg->time_running = event->total_time_running +
2122 atomic64_read(&event->child_total_time_running);
2123
2124 barrier();
2125 ++userpg->lock;
2126 preempt_enable();
2127 unlock:
2128 rcu_read_unlock();
2129 }
2130
2131 static unsigned long perf_data_size(struct perf_mmap_data *data)
2132 {
2133 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2134 }
2135
2136 #ifndef CONFIG_PERF_USE_VMALLOC
2137
2138 /*
2139 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2140 */
2141
2142 static struct page *
2143 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2144 {
2145 if (pgoff > data->nr_pages)
2146 return NULL;
2147
2148 if (pgoff == 0)
2149 return virt_to_page(data->user_page);
2150
2151 return virt_to_page(data->data_pages[pgoff - 1]);
2152 }
2153
2154 static struct perf_mmap_data *
2155 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2156 {
2157 struct perf_mmap_data *data;
2158 unsigned long size;
2159 int i;
2160
2161 WARN_ON(atomic_read(&event->mmap_count));
2162
2163 size = sizeof(struct perf_mmap_data);
2164 size += nr_pages * sizeof(void *);
2165
2166 data = kzalloc(size, GFP_KERNEL);
2167 if (!data)
2168 goto fail;
2169
2170 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2171 if (!data->user_page)
2172 goto fail_user_page;
2173
2174 for (i = 0; i < nr_pages; i++) {
2175 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2176 if (!data->data_pages[i])
2177 goto fail_data_pages;
2178 }
2179
2180 data->data_order = 0;
2181 data->nr_pages = nr_pages;
2182
2183 return data;
2184
2185 fail_data_pages:
2186 for (i--; i >= 0; i--)
2187 free_page((unsigned long)data->data_pages[i]);
2188
2189 free_page((unsigned long)data->user_page);
2190
2191 fail_user_page:
2192 kfree(data);
2193
2194 fail:
2195 return NULL;
2196 }
2197
2198 static void perf_mmap_free_page(unsigned long addr)
2199 {
2200 struct page *page = virt_to_page((void *)addr);
2201
2202 page->mapping = NULL;
2203 __free_page(page);
2204 }
2205
2206 static void perf_mmap_data_free(struct perf_mmap_data *data)
2207 {
2208 int i;
2209
2210 perf_mmap_free_page((unsigned long)data->user_page);
2211 for (i = 0; i < data->nr_pages; i++)
2212 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2213 kfree(data);
2214 }
2215
2216 #else
2217
2218 /*
2219 * Back perf_mmap() with vmalloc memory.
2220 *
2221 * Required for architectures that have d-cache aliasing issues.
2222 */
2223
2224 static struct page *
2225 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2226 {
2227 if (pgoff > (1UL << data->data_order))
2228 return NULL;
2229
2230 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2231 }
2232
2233 static void perf_mmap_unmark_page(void *addr)
2234 {
2235 struct page *page = vmalloc_to_page(addr);
2236
2237 page->mapping = NULL;
2238 }
2239
2240 static void perf_mmap_data_free_work(struct work_struct *work)
2241 {
2242 struct perf_mmap_data *data;
2243 void *base;
2244 int i, nr;
2245
2246 data = container_of(work, struct perf_mmap_data, work);
2247 nr = 1 << data->data_order;
2248
2249 base = data->user_page;
2250 for (i = 0; i < nr + 1; i++)
2251 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2252
2253 vfree(base);
2254 kfree(data);
2255 }
2256
2257 static void perf_mmap_data_free(struct perf_mmap_data *data)
2258 {
2259 schedule_work(&data->work);
2260 }
2261
2262 static struct perf_mmap_data *
2263 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2264 {
2265 struct perf_mmap_data *data;
2266 unsigned long size;
2267 void *all_buf;
2268
2269 WARN_ON(atomic_read(&event->mmap_count));
2270
2271 size = sizeof(struct perf_mmap_data);
2272 size += sizeof(void *);
2273
2274 data = kzalloc(size, GFP_KERNEL);
2275 if (!data)
2276 goto fail;
2277
2278 INIT_WORK(&data->work, perf_mmap_data_free_work);
2279
2280 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2281 if (!all_buf)
2282 goto fail_all_buf;
2283
2284 data->user_page = all_buf;
2285 data->data_pages[0] = all_buf + PAGE_SIZE;
2286 data->data_order = ilog2(nr_pages);
2287 data->nr_pages = 1;
2288
2289 return data;
2290
2291 fail_all_buf:
2292 kfree(data);
2293
2294 fail:
2295 return NULL;
2296 }
2297
2298 #endif
2299
2300 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302 struct perf_event *event = vma->vm_file->private_data;
2303 struct perf_mmap_data *data;
2304 int ret = VM_FAULT_SIGBUS;
2305
2306 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2307 if (vmf->pgoff == 0)
2308 ret = 0;
2309 return ret;
2310 }
2311
2312 rcu_read_lock();
2313 data = rcu_dereference(event->data);
2314 if (!data)
2315 goto unlock;
2316
2317 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2318 goto unlock;
2319
2320 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2321 if (!vmf->page)
2322 goto unlock;
2323
2324 get_page(vmf->page);
2325 vmf->page->mapping = vma->vm_file->f_mapping;
2326 vmf->page->index = vmf->pgoff;
2327
2328 ret = 0;
2329 unlock:
2330 rcu_read_unlock();
2331
2332 return ret;
2333 }
2334
2335 static void
2336 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2337 {
2338 long max_size = perf_data_size(data);
2339
2340 atomic_set(&data->lock, -1);
2341
2342 if (event->attr.watermark) {
2343 data->watermark = min_t(long, max_size,
2344 event->attr.wakeup_watermark);
2345 }
2346
2347 if (!data->watermark)
2348 data->watermark = max_size / 2;
2349
2350
2351 rcu_assign_pointer(event->data, data);
2352 }
2353
2354 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2355 {
2356 struct perf_mmap_data *data;
2357
2358 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2359 perf_mmap_data_free(data);
2360 }
2361
2362 static void perf_mmap_data_release(struct perf_event *event)
2363 {
2364 struct perf_mmap_data *data = event->data;
2365
2366 WARN_ON(atomic_read(&event->mmap_count));
2367
2368 rcu_assign_pointer(event->data, NULL);
2369 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2370 }
2371
2372 static void perf_mmap_open(struct vm_area_struct *vma)
2373 {
2374 struct perf_event *event = vma->vm_file->private_data;
2375
2376 atomic_inc(&event->mmap_count);
2377 }
2378
2379 static void perf_mmap_close(struct vm_area_struct *vma)
2380 {
2381 struct perf_event *event = vma->vm_file->private_data;
2382
2383 WARN_ON_ONCE(event->ctx->parent_ctx);
2384 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2385 unsigned long size = perf_data_size(event->data);
2386 struct user_struct *user = current_user();
2387
2388 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2389 vma->vm_mm->locked_vm -= event->data->nr_locked;
2390 perf_mmap_data_release(event);
2391 mutex_unlock(&event->mmap_mutex);
2392 }
2393 }
2394
2395 static const struct vm_operations_struct perf_mmap_vmops = {
2396 .open = perf_mmap_open,
2397 .close = perf_mmap_close,
2398 .fault = perf_mmap_fault,
2399 .page_mkwrite = perf_mmap_fault,
2400 };
2401
2402 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2403 {
2404 struct perf_event *event = file->private_data;
2405 unsigned long user_locked, user_lock_limit;
2406 struct user_struct *user = current_user();
2407 unsigned long locked, lock_limit;
2408 struct perf_mmap_data *data;
2409 unsigned long vma_size;
2410 unsigned long nr_pages;
2411 long user_extra, extra;
2412 int ret = 0;
2413
2414 if (!(vma->vm_flags & VM_SHARED))
2415 return -EINVAL;
2416
2417 vma_size = vma->vm_end - vma->vm_start;
2418 nr_pages = (vma_size / PAGE_SIZE) - 1;
2419
2420 /*
2421 * If we have data pages ensure they're a power-of-two number, so we
2422 * can do bitmasks instead of modulo.
2423 */
2424 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2425 return -EINVAL;
2426
2427 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2428 return -EINVAL;
2429
2430 if (vma->vm_pgoff != 0)
2431 return -EINVAL;
2432
2433 WARN_ON_ONCE(event->ctx->parent_ctx);
2434 mutex_lock(&event->mmap_mutex);
2435 if (event->output) {
2436 ret = -EINVAL;
2437 goto unlock;
2438 }
2439
2440 if (atomic_inc_not_zero(&event->mmap_count)) {
2441 if (nr_pages != event->data->nr_pages)
2442 ret = -EINVAL;
2443 goto unlock;
2444 }
2445
2446 user_extra = nr_pages + 1;
2447 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2448
2449 /*
2450 * Increase the limit linearly with more CPUs:
2451 */
2452 user_lock_limit *= num_online_cpus();
2453
2454 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2455
2456 extra = 0;
2457 if (user_locked > user_lock_limit)
2458 extra = user_locked - user_lock_limit;
2459
2460 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2461 lock_limit >>= PAGE_SHIFT;
2462 locked = vma->vm_mm->locked_vm + extra;
2463
2464 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2465 !capable(CAP_IPC_LOCK)) {
2466 ret = -EPERM;
2467 goto unlock;
2468 }
2469
2470 WARN_ON(event->data);
2471
2472 data = perf_mmap_data_alloc(event, nr_pages);
2473 ret = -ENOMEM;
2474 if (!data)
2475 goto unlock;
2476
2477 ret = 0;
2478 perf_mmap_data_init(event, data);
2479
2480 atomic_set(&event->mmap_count, 1);
2481 atomic_long_add(user_extra, &user->locked_vm);
2482 vma->vm_mm->locked_vm += extra;
2483 event->data->nr_locked = extra;
2484 if (vma->vm_flags & VM_WRITE)
2485 event->data->writable = 1;
2486
2487 unlock:
2488 mutex_unlock(&event->mmap_mutex);
2489
2490 vma->vm_flags |= VM_RESERVED;
2491 vma->vm_ops = &perf_mmap_vmops;
2492
2493 return ret;
2494 }
2495
2496 static int perf_fasync(int fd, struct file *filp, int on)
2497 {
2498 struct inode *inode = filp->f_path.dentry->d_inode;
2499 struct perf_event *event = filp->private_data;
2500 int retval;
2501
2502 mutex_lock(&inode->i_mutex);
2503 retval = fasync_helper(fd, filp, on, &event->fasync);
2504 mutex_unlock(&inode->i_mutex);
2505
2506 if (retval < 0)
2507 return retval;
2508
2509 return 0;
2510 }
2511
2512 static const struct file_operations perf_fops = {
2513 .release = perf_release,
2514 .read = perf_read,
2515 .poll = perf_poll,
2516 .unlocked_ioctl = perf_ioctl,
2517 .compat_ioctl = perf_ioctl,
2518 .mmap = perf_mmap,
2519 .fasync = perf_fasync,
2520 };
2521
2522 /*
2523 * Perf event wakeup
2524 *
2525 * If there's data, ensure we set the poll() state and publish everything
2526 * to user-space before waking everybody up.
2527 */
2528
2529 void perf_event_wakeup(struct perf_event *event)
2530 {
2531 wake_up_all(&event->waitq);
2532
2533 if (event->pending_kill) {
2534 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2535 event->pending_kill = 0;
2536 }
2537 }
2538
2539 /*
2540 * Pending wakeups
2541 *
2542 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2543 *
2544 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2545 * single linked list and use cmpxchg() to add entries lockless.
2546 */
2547
2548 static void perf_pending_event(struct perf_pending_entry *entry)
2549 {
2550 struct perf_event *event = container_of(entry,
2551 struct perf_event, pending);
2552
2553 if (event->pending_disable) {
2554 event->pending_disable = 0;
2555 __perf_event_disable(event);
2556 }
2557
2558 if (event->pending_wakeup) {
2559 event->pending_wakeup = 0;
2560 perf_event_wakeup(event);
2561 }
2562 }
2563
2564 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2565
2566 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2567 PENDING_TAIL,
2568 };
2569
2570 static void perf_pending_queue(struct perf_pending_entry *entry,
2571 void (*func)(struct perf_pending_entry *))
2572 {
2573 struct perf_pending_entry **head;
2574
2575 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2576 return;
2577
2578 entry->func = func;
2579
2580 head = &get_cpu_var(perf_pending_head);
2581
2582 do {
2583 entry->next = *head;
2584 } while (cmpxchg(head, entry->next, entry) != entry->next);
2585
2586 set_perf_event_pending();
2587
2588 put_cpu_var(perf_pending_head);
2589 }
2590
2591 static int __perf_pending_run(void)
2592 {
2593 struct perf_pending_entry *list;
2594 int nr = 0;
2595
2596 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2597 while (list != PENDING_TAIL) {
2598 void (*func)(struct perf_pending_entry *);
2599 struct perf_pending_entry *entry = list;
2600
2601 list = list->next;
2602
2603 func = entry->func;
2604 entry->next = NULL;
2605 /*
2606 * Ensure we observe the unqueue before we issue the wakeup,
2607 * so that we won't be waiting forever.
2608 * -- see perf_not_pending().
2609 */
2610 smp_wmb();
2611
2612 func(entry);
2613 nr++;
2614 }
2615
2616 return nr;
2617 }
2618
2619 static inline int perf_not_pending(struct perf_event *event)
2620 {
2621 /*
2622 * If we flush on whatever cpu we run, there is a chance we don't
2623 * need to wait.
2624 */
2625 get_cpu();
2626 __perf_pending_run();
2627 put_cpu();
2628
2629 /*
2630 * Ensure we see the proper queue state before going to sleep
2631 * so that we do not miss the wakeup. -- see perf_pending_handle()
2632 */
2633 smp_rmb();
2634 return event->pending.next == NULL;
2635 }
2636
2637 static void perf_pending_sync(struct perf_event *event)
2638 {
2639 wait_event(event->waitq, perf_not_pending(event));
2640 }
2641
2642 void perf_event_do_pending(void)
2643 {
2644 __perf_pending_run();
2645 }
2646
2647 /*
2648 * Callchain support -- arch specific
2649 */
2650
2651 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2652 {
2653 return NULL;
2654 }
2655
2656 /*
2657 * Output
2658 */
2659 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2660 unsigned long offset, unsigned long head)
2661 {
2662 unsigned long mask;
2663
2664 if (!data->writable)
2665 return true;
2666
2667 mask = perf_data_size(data) - 1;
2668
2669 offset = (offset - tail) & mask;
2670 head = (head - tail) & mask;
2671
2672 if ((int)(head - offset) < 0)
2673 return false;
2674
2675 return true;
2676 }
2677
2678 static void perf_output_wakeup(struct perf_output_handle *handle)
2679 {
2680 atomic_set(&handle->data->poll, POLL_IN);
2681
2682 if (handle->nmi) {
2683 handle->event->pending_wakeup = 1;
2684 perf_pending_queue(&handle->event->pending,
2685 perf_pending_event);
2686 } else
2687 perf_event_wakeup(handle->event);
2688 }
2689
2690 /*
2691 * Curious locking construct.
2692 *
2693 * We need to ensure a later event_id doesn't publish a head when a former
2694 * event_id isn't done writing. However since we need to deal with NMIs we
2695 * cannot fully serialize things.
2696 *
2697 * What we do is serialize between CPUs so we only have to deal with NMI
2698 * nesting on a single CPU.
2699 *
2700 * We only publish the head (and generate a wakeup) when the outer-most
2701 * event_id completes.
2702 */
2703 static void perf_output_lock(struct perf_output_handle *handle)
2704 {
2705 struct perf_mmap_data *data = handle->data;
2706 int cur, cpu = get_cpu();
2707
2708 handle->locked = 0;
2709
2710 for (;;) {
2711 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2712 if (cur == -1) {
2713 handle->locked = 1;
2714 break;
2715 }
2716 if (cur == cpu)
2717 break;
2718
2719 cpu_relax();
2720 }
2721 }
2722
2723 static void perf_output_unlock(struct perf_output_handle *handle)
2724 {
2725 struct perf_mmap_data *data = handle->data;
2726 unsigned long head;
2727 int cpu;
2728
2729 data->done_head = data->head;
2730
2731 if (!handle->locked)
2732 goto out;
2733
2734 again:
2735 /*
2736 * The xchg implies a full barrier that ensures all writes are done
2737 * before we publish the new head, matched by a rmb() in userspace when
2738 * reading this position.
2739 */
2740 while ((head = atomic_long_xchg(&data->done_head, 0)))
2741 data->user_page->data_head = head;
2742
2743 /*
2744 * NMI can happen here, which means we can miss a done_head update.
2745 */
2746
2747 cpu = atomic_xchg(&data->lock, -1);
2748 WARN_ON_ONCE(cpu != smp_processor_id());
2749
2750 /*
2751 * Therefore we have to validate we did not indeed do so.
2752 */
2753 if (unlikely(atomic_long_read(&data->done_head))) {
2754 /*
2755 * Since we had it locked, we can lock it again.
2756 */
2757 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2758 cpu_relax();
2759
2760 goto again;
2761 }
2762
2763 if (atomic_xchg(&data->wakeup, 0))
2764 perf_output_wakeup(handle);
2765 out:
2766 put_cpu();
2767 }
2768
2769 void perf_output_copy(struct perf_output_handle *handle,
2770 const void *buf, unsigned int len)
2771 {
2772 unsigned int pages_mask;
2773 unsigned long offset;
2774 unsigned int size;
2775 void **pages;
2776
2777 offset = handle->offset;
2778 pages_mask = handle->data->nr_pages - 1;
2779 pages = handle->data->data_pages;
2780
2781 do {
2782 unsigned long page_offset;
2783 unsigned long page_size;
2784 int nr;
2785
2786 nr = (offset >> PAGE_SHIFT) & pages_mask;
2787 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2788 page_offset = offset & (page_size - 1);
2789 size = min_t(unsigned int, page_size - page_offset, len);
2790
2791 memcpy(pages[nr] + page_offset, buf, size);
2792
2793 len -= size;
2794 buf += size;
2795 offset += size;
2796 } while (len);
2797
2798 handle->offset = offset;
2799
2800 /*
2801 * Check we didn't copy past our reservation window, taking the
2802 * possible unsigned int wrap into account.
2803 */
2804 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2805 }
2806
2807 int perf_output_begin(struct perf_output_handle *handle,
2808 struct perf_event *event, unsigned int size,
2809 int nmi, int sample)
2810 {
2811 struct perf_event *output_event;
2812 struct perf_mmap_data *data;
2813 unsigned long tail, offset, head;
2814 int have_lost;
2815 struct {
2816 struct perf_event_header header;
2817 u64 id;
2818 u64 lost;
2819 } lost_event;
2820
2821 rcu_read_lock();
2822 /*
2823 * For inherited events we send all the output towards the parent.
2824 */
2825 if (event->parent)
2826 event = event->parent;
2827
2828 output_event = rcu_dereference(event->output);
2829 if (output_event)
2830 event = output_event;
2831
2832 data = rcu_dereference(event->data);
2833 if (!data)
2834 goto out;
2835
2836 handle->data = data;
2837 handle->event = event;
2838 handle->nmi = nmi;
2839 handle->sample = sample;
2840
2841 if (!data->nr_pages)
2842 goto fail;
2843
2844 have_lost = atomic_read(&data->lost);
2845 if (have_lost)
2846 size += sizeof(lost_event);
2847
2848 perf_output_lock(handle);
2849
2850 do {
2851 /*
2852 * Userspace could choose to issue a mb() before updating the
2853 * tail pointer. So that all reads will be completed before the
2854 * write is issued.
2855 */
2856 tail = ACCESS_ONCE(data->user_page->data_tail);
2857 smp_rmb();
2858 offset = head = atomic_long_read(&data->head);
2859 head += size;
2860 if (unlikely(!perf_output_space(data, tail, offset, head)))
2861 goto fail;
2862 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2863
2864 handle->offset = offset;
2865 handle->head = head;
2866
2867 if (head - tail > data->watermark)
2868 atomic_set(&data->wakeup, 1);
2869
2870 if (have_lost) {
2871 lost_event.header.type = PERF_RECORD_LOST;
2872 lost_event.header.misc = 0;
2873 lost_event.header.size = sizeof(lost_event);
2874 lost_event.id = event->id;
2875 lost_event.lost = atomic_xchg(&data->lost, 0);
2876
2877 perf_output_put(handle, lost_event);
2878 }
2879
2880 return 0;
2881
2882 fail:
2883 atomic_inc(&data->lost);
2884 perf_output_unlock(handle);
2885 out:
2886 rcu_read_unlock();
2887
2888 return -ENOSPC;
2889 }
2890
2891 void perf_output_end(struct perf_output_handle *handle)
2892 {
2893 struct perf_event *event = handle->event;
2894 struct perf_mmap_data *data = handle->data;
2895
2896 int wakeup_events = event->attr.wakeup_events;
2897
2898 if (handle->sample && wakeup_events) {
2899 int events = atomic_inc_return(&data->events);
2900 if (events >= wakeup_events) {
2901 atomic_sub(wakeup_events, &data->events);
2902 atomic_set(&data->wakeup, 1);
2903 }
2904 }
2905
2906 perf_output_unlock(handle);
2907 rcu_read_unlock();
2908 }
2909
2910 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2911 {
2912 /*
2913 * only top level events have the pid namespace they were created in
2914 */
2915 if (event->parent)
2916 event = event->parent;
2917
2918 return task_tgid_nr_ns(p, event->ns);
2919 }
2920
2921 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2922 {
2923 /*
2924 * only top level events have the pid namespace they were created in
2925 */
2926 if (event->parent)
2927 event = event->parent;
2928
2929 return task_pid_nr_ns(p, event->ns);
2930 }
2931
2932 static void perf_output_read_one(struct perf_output_handle *handle,
2933 struct perf_event *event)
2934 {
2935 u64 read_format = event->attr.read_format;
2936 u64 values[4];
2937 int n = 0;
2938
2939 values[n++] = atomic64_read(&event->count);
2940 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2941 values[n++] = event->total_time_enabled +
2942 atomic64_read(&event->child_total_time_enabled);
2943 }
2944 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2945 values[n++] = event->total_time_running +
2946 atomic64_read(&event->child_total_time_running);
2947 }
2948 if (read_format & PERF_FORMAT_ID)
2949 values[n++] = primary_event_id(event);
2950
2951 perf_output_copy(handle, values, n * sizeof(u64));
2952 }
2953
2954 /*
2955 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2956 */
2957 static void perf_output_read_group(struct perf_output_handle *handle,
2958 struct perf_event *event)
2959 {
2960 struct perf_event *leader = event->group_leader, *sub;
2961 u64 read_format = event->attr.read_format;
2962 u64 values[5];
2963 int n = 0;
2964
2965 values[n++] = 1 + leader->nr_siblings;
2966
2967 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2968 values[n++] = leader->total_time_enabled;
2969
2970 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2971 values[n++] = leader->total_time_running;
2972
2973 if (leader != event)
2974 leader->pmu->read(leader);
2975
2976 values[n++] = atomic64_read(&leader->count);
2977 if (read_format & PERF_FORMAT_ID)
2978 values[n++] = primary_event_id(leader);
2979
2980 perf_output_copy(handle, values, n * sizeof(u64));
2981
2982 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2983 n = 0;
2984
2985 if (sub != event)
2986 sub->pmu->read(sub);
2987
2988 values[n++] = atomic64_read(&sub->count);
2989 if (read_format & PERF_FORMAT_ID)
2990 values[n++] = primary_event_id(sub);
2991
2992 perf_output_copy(handle, values, n * sizeof(u64));
2993 }
2994 }
2995
2996 static void perf_output_read(struct perf_output_handle *handle,
2997 struct perf_event *event)
2998 {
2999 if (event->attr.read_format & PERF_FORMAT_GROUP)
3000 perf_output_read_group(handle, event);
3001 else
3002 perf_output_read_one(handle, event);
3003 }
3004
3005 void perf_output_sample(struct perf_output_handle *handle,
3006 struct perf_event_header *header,
3007 struct perf_sample_data *data,
3008 struct perf_event *event)
3009 {
3010 u64 sample_type = data->type;
3011
3012 perf_output_put(handle, *header);
3013
3014 if (sample_type & PERF_SAMPLE_IP)
3015 perf_output_put(handle, data->ip);
3016
3017 if (sample_type & PERF_SAMPLE_TID)
3018 perf_output_put(handle, data->tid_entry);
3019
3020 if (sample_type & PERF_SAMPLE_TIME)
3021 perf_output_put(handle, data->time);
3022
3023 if (sample_type & PERF_SAMPLE_ADDR)
3024 perf_output_put(handle, data->addr);
3025
3026 if (sample_type & PERF_SAMPLE_ID)
3027 perf_output_put(handle, data->id);
3028
3029 if (sample_type & PERF_SAMPLE_STREAM_ID)
3030 perf_output_put(handle, data->stream_id);
3031
3032 if (sample_type & PERF_SAMPLE_CPU)
3033 perf_output_put(handle, data->cpu_entry);
3034
3035 if (sample_type & PERF_SAMPLE_PERIOD)
3036 perf_output_put(handle, data->period);
3037
3038 if (sample_type & PERF_SAMPLE_READ)
3039 perf_output_read(handle, event);
3040
3041 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3042 if (data->callchain) {
3043 int size = 1;
3044
3045 if (data->callchain)
3046 size += data->callchain->nr;
3047
3048 size *= sizeof(u64);
3049
3050 perf_output_copy(handle, data->callchain, size);
3051 } else {
3052 u64 nr = 0;
3053 perf_output_put(handle, nr);
3054 }
3055 }
3056
3057 if (sample_type & PERF_SAMPLE_RAW) {
3058 if (data->raw) {
3059 perf_output_put(handle, data->raw->size);
3060 perf_output_copy(handle, data->raw->data,
3061 data->raw->size);
3062 } else {
3063 struct {
3064 u32 size;
3065 u32 data;
3066 } raw = {
3067 .size = sizeof(u32),
3068 .data = 0,
3069 };
3070 perf_output_put(handle, raw);
3071 }
3072 }
3073 }
3074
3075 void perf_prepare_sample(struct perf_event_header *header,
3076 struct perf_sample_data *data,
3077 struct perf_event *event,
3078 struct pt_regs *regs)
3079 {
3080 u64 sample_type = event->attr.sample_type;
3081
3082 data->type = sample_type;
3083
3084 header->type = PERF_RECORD_SAMPLE;
3085 header->size = sizeof(*header);
3086
3087 header->misc = 0;
3088 header->misc |= perf_misc_flags(regs);
3089
3090 if (sample_type & PERF_SAMPLE_IP) {
3091 data->ip = perf_instruction_pointer(regs);
3092
3093 header->size += sizeof(data->ip);
3094 }
3095
3096 if (sample_type & PERF_SAMPLE_TID) {
3097 /* namespace issues */
3098 data->tid_entry.pid = perf_event_pid(event, current);
3099 data->tid_entry.tid = perf_event_tid(event, current);
3100
3101 header->size += sizeof(data->tid_entry);
3102 }
3103
3104 if (sample_type & PERF_SAMPLE_TIME) {
3105 data->time = perf_clock();
3106
3107 header->size += sizeof(data->time);
3108 }
3109
3110 if (sample_type & PERF_SAMPLE_ADDR)
3111 header->size += sizeof(data->addr);
3112
3113 if (sample_type & PERF_SAMPLE_ID) {
3114 data->id = primary_event_id(event);
3115
3116 header->size += sizeof(data->id);
3117 }
3118
3119 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3120 data->stream_id = event->id;
3121
3122 header->size += sizeof(data->stream_id);
3123 }
3124
3125 if (sample_type & PERF_SAMPLE_CPU) {
3126 data->cpu_entry.cpu = raw_smp_processor_id();
3127 data->cpu_entry.reserved = 0;
3128
3129 header->size += sizeof(data->cpu_entry);
3130 }
3131
3132 if (sample_type & PERF_SAMPLE_PERIOD)
3133 header->size += sizeof(data->period);
3134
3135 if (sample_type & PERF_SAMPLE_READ)
3136 header->size += perf_event_read_size(event);
3137
3138 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3139 int size = 1;
3140
3141 data->callchain = perf_callchain(regs);
3142
3143 if (data->callchain)
3144 size += data->callchain->nr;
3145
3146 header->size += size * sizeof(u64);
3147 }
3148
3149 if (sample_type & PERF_SAMPLE_RAW) {
3150 int size = sizeof(u32);
3151
3152 if (data->raw)
3153 size += data->raw->size;
3154 else
3155 size += sizeof(u32);
3156
3157 WARN_ON_ONCE(size & (sizeof(u64)-1));
3158 header->size += size;
3159 }
3160 }
3161
3162 static void perf_event_output(struct perf_event *event, int nmi,
3163 struct perf_sample_data *data,
3164 struct pt_regs *regs)
3165 {
3166 struct perf_output_handle handle;
3167 struct perf_event_header header;
3168
3169 perf_prepare_sample(&header, data, event, regs);
3170
3171 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3172 return;
3173
3174 perf_output_sample(&handle, &header, data, event);
3175
3176 perf_output_end(&handle);
3177 }
3178
3179 /*
3180 * read event_id
3181 */
3182
3183 struct perf_read_event {
3184 struct perf_event_header header;
3185
3186 u32 pid;
3187 u32 tid;
3188 };
3189
3190 static void
3191 perf_event_read_event(struct perf_event *event,
3192 struct task_struct *task)
3193 {
3194 struct perf_output_handle handle;
3195 struct perf_read_event read_event = {
3196 .header = {
3197 .type = PERF_RECORD_READ,
3198 .misc = 0,
3199 .size = sizeof(read_event) + perf_event_read_size(event),
3200 },
3201 .pid = perf_event_pid(event, task),
3202 .tid = perf_event_tid(event, task),
3203 };
3204 int ret;
3205
3206 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3207 if (ret)
3208 return;
3209
3210 perf_output_put(&handle, read_event);
3211 perf_output_read(&handle, event);
3212
3213 perf_output_end(&handle);
3214 }
3215
3216 /*
3217 * task tracking -- fork/exit
3218 *
3219 * enabled by: attr.comm | attr.mmap | attr.task
3220 */
3221
3222 struct perf_task_event {
3223 struct task_struct *task;
3224 struct perf_event_context *task_ctx;
3225
3226 struct {
3227 struct perf_event_header header;
3228
3229 u32 pid;
3230 u32 ppid;
3231 u32 tid;
3232 u32 ptid;
3233 u64 time;
3234 } event_id;
3235 };
3236
3237 static void perf_event_task_output(struct perf_event *event,
3238 struct perf_task_event *task_event)
3239 {
3240 struct perf_output_handle handle;
3241 int size;
3242 struct task_struct *task = task_event->task;
3243 int ret;
3244
3245 size = task_event->event_id.header.size;
3246 ret = perf_output_begin(&handle, event, size, 0, 0);
3247
3248 if (ret)
3249 return;
3250
3251 task_event->event_id.pid = perf_event_pid(event, task);
3252 task_event->event_id.ppid = perf_event_pid(event, current);
3253
3254 task_event->event_id.tid = perf_event_tid(event, task);
3255 task_event->event_id.ptid = perf_event_tid(event, current);
3256
3257 task_event->event_id.time = perf_clock();
3258
3259 perf_output_put(&handle, task_event->event_id);
3260
3261 perf_output_end(&handle);
3262 }
3263
3264 static int perf_event_task_match(struct perf_event *event)
3265 {
3266 if (event->attr.comm || event->attr.mmap || event->attr.task)
3267 return 1;
3268
3269 return 0;
3270 }
3271
3272 static void perf_event_task_ctx(struct perf_event_context *ctx,
3273 struct perf_task_event *task_event)
3274 {
3275 struct perf_event *event;
3276
3277 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3278 if (perf_event_task_match(event))
3279 perf_event_task_output(event, task_event);
3280 }
3281 }
3282
3283 static void perf_event_task_event(struct perf_task_event *task_event)
3284 {
3285 struct perf_cpu_context *cpuctx;
3286 struct perf_event_context *ctx = task_event->task_ctx;
3287
3288 rcu_read_lock();
3289 cpuctx = &get_cpu_var(perf_cpu_context);
3290 perf_event_task_ctx(&cpuctx->ctx, task_event);
3291 put_cpu_var(perf_cpu_context);
3292
3293 if (!ctx)
3294 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3295 if (ctx)
3296 perf_event_task_ctx(ctx, task_event);
3297 rcu_read_unlock();
3298 }
3299
3300 static void perf_event_task(struct task_struct *task,
3301 struct perf_event_context *task_ctx,
3302 int new)
3303 {
3304 struct perf_task_event task_event;
3305
3306 if (!atomic_read(&nr_comm_events) &&
3307 !atomic_read(&nr_mmap_events) &&
3308 !atomic_read(&nr_task_events))
3309 return;
3310
3311 task_event = (struct perf_task_event){
3312 .task = task,
3313 .task_ctx = task_ctx,
3314 .event_id = {
3315 .header = {
3316 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3317 .misc = 0,
3318 .size = sizeof(task_event.event_id),
3319 },
3320 /* .pid */
3321 /* .ppid */
3322 /* .tid */
3323 /* .ptid */
3324 },
3325 };
3326
3327 perf_event_task_event(&task_event);
3328 }
3329
3330 void perf_event_fork(struct task_struct *task)
3331 {
3332 perf_event_task(task, NULL, 1);
3333 }
3334
3335 /*
3336 * comm tracking
3337 */
3338
3339 struct perf_comm_event {
3340 struct task_struct *task;
3341 char *comm;
3342 int comm_size;
3343
3344 struct {
3345 struct perf_event_header header;
3346
3347 u32 pid;
3348 u32 tid;
3349 } event_id;
3350 };
3351
3352 static void perf_event_comm_output(struct perf_event *event,
3353 struct perf_comm_event *comm_event)
3354 {
3355 struct perf_output_handle handle;
3356 int size = comm_event->event_id.header.size;
3357 int ret = perf_output_begin(&handle, event, size, 0, 0);
3358
3359 if (ret)
3360 return;
3361
3362 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3363 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3364
3365 perf_output_put(&handle, comm_event->event_id);
3366 perf_output_copy(&handle, comm_event->comm,
3367 comm_event->comm_size);
3368 perf_output_end(&handle);
3369 }
3370
3371 static int perf_event_comm_match(struct perf_event *event)
3372 {
3373 if (event->attr.comm)
3374 return 1;
3375
3376 return 0;
3377 }
3378
3379 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3380 struct perf_comm_event *comm_event)
3381 {
3382 struct perf_event *event;
3383
3384 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3385 if (perf_event_comm_match(event))
3386 perf_event_comm_output(event, comm_event);
3387 }
3388 }
3389
3390 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3391 {
3392 struct perf_cpu_context *cpuctx;
3393 struct perf_event_context *ctx;
3394 unsigned int size;
3395 char comm[TASK_COMM_LEN];
3396
3397 memset(comm, 0, sizeof(comm));
3398 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3399 size = ALIGN(strlen(comm)+1, sizeof(u64));
3400
3401 comm_event->comm = comm;
3402 comm_event->comm_size = size;
3403
3404 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3405
3406 rcu_read_lock();
3407 cpuctx = &get_cpu_var(perf_cpu_context);
3408 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3409 put_cpu_var(perf_cpu_context);
3410
3411 /*
3412 * doesn't really matter which of the child contexts the
3413 * events ends up in.
3414 */
3415 ctx = rcu_dereference(current->perf_event_ctxp);
3416 if (ctx)
3417 perf_event_comm_ctx(ctx, comm_event);
3418 rcu_read_unlock();
3419 }
3420
3421 void perf_event_comm(struct task_struct *task)
3422 {
3423 struct perf_comm_event comm_event;
3424
3425 if (task->perf_event_ctxp)
3426 perf_event_enable_on_exec(task);
3427
3428 if (!atomic_read(&nr_comm_events))
3429 return;
3430
3431 comm_event = (struct perf_comm_event){
3432 .task = task,
3433 /* .comm */
3434 /* .comm_size */
3435 .event_id = {
3436 .header = {
3437 .type = PERF_RECORD_COMM,
3438 .misc = 0,
3439 /* .size */
3440 },
3441 /* .pid */
3442 /* .tid */
3443 },
3444 };
3445
3446 perf_event_comm_event(&comm_event);
3447 }
3448
3449 /*
3450 * mmap tracking
3451 */
3452
3453 struct perf_mmap_event {
3454 struct vm_area_struct *vma;
3455
3456 const char *file_name;
3457 int file_size;
3458
3459 struct {
3460 struct perf_event_header header;
3461
3462 u32 pid;
3463 u32 tid;
3464 u64 start;
3465 u64 len;
3466 u64 pgoff;
3467 } event_id;
3468 };
3469
3470 static void perf_event_mmap_output(struct perf_event *event,
3471 struct perf_mmap_event *mmap_event)
3472 {
3473 struct perf_output_handle handle;
3474 int size = mmap_event->event_id.header.size;
3475 int ret = perf_output_begin(&handle, event, size, 0, 0);
3476
3477 if (ret)
3478 return;
3479
3480 mmap_event->event_id.pid = perf_event_pid(event, current);
3481 mmap_event->event_id.tid = perf_event_tid(event, current);
3482
3483 perf_output_put(&handle, mmap_event->event_id);
3484 perf_output_copy(&handle, mmap_event->file_name,
3485 mmap_event->file_size);
3486 perf_output_end(&handle);
3487 }
3488
3489 static int perf_event_mmap_match(struct perf_event *event,
3490 struct perf_mmap_event *mmap_event)
3491 {
3492 if (event->attr.mmap)
3493 return 1;
3494
3495 return 0;
3496 }
3497
3498 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3499 struct perf_mmap_event *mmap_event)
3500 {
3501 struct perf_event *event;
3502
3503 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3504 if (perf_event_mmap_match(event, mmap_event))
3505 perf_event_mmap_output(event, mmap_event);
3506 }
3507 }
3508
3509 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3510 {
3511 struct perf_cpu_context *cpuctx;
3512 struct perf_event_context *ctx;
3513 struct vm_area_struct *vma = mmap_event->vma;
3514 struct file *file = vma->vm_file;
3515 unsigned int size;
3516 char tmp[16];
3517 char *buf = NULL;
3518 const char *name;
3519
3520 memset(tmp, 0, sizeof(tmp));
3521
3522 if (file) {
3523 /*
3524 * d_path works from the end of the buffer backwards, so we
3525 * need to add enough zero bytes after the string to handle
3526 * the 64bit alignment we do later.
3527 */
3528 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3529 if (!buf) {
3530 name = strncpy(tmp, "//enomem", sizeof(tmp));
3531 goto got_name;
3532 }
3533 name = d_path(&file->f_path, buf, PATH_MAX);
3534 if (IS_ERR(name)) {
3535 name = strncpy(tmp, "//toolong", sizeof(tmp));
3536 goto got_name;
3537 }
3538 } else {
3539 if (arch_vma_name(mmap_event->vma)) {
3540 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3541 sizeof(tmp));
3542 goto got_name;
3543 }
3544
3545 if (!vma->vm_mm) {
3546 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3547 goto got_name;
3548 }
3549
3550 name = strncpy(tmp, "//anon", sizeof(tmp));
3551 goto got_name;
3552 }
3553
3554 got_name:
3555 size = ALIGN(strlen(name)+1, sizeof(u64));
3556
3557 mmap_event->file_name = name;
3558 mmap_event->file_size = size;
3559
3560 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3561
3562 rcu_read_lock();
3563 cpuctx = &get_cpu_var(perf_cpu_context);
3564 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3565 put_cpu_var(perf_cpu_context);
3566
3567 /*
3568 * doesn't really matter which of the child contexts the
3569 * events ends up in.
3570 */
3571 ctx = rcu_dereference(current->perf_event_ctxp);
3572 if (ctx)
3573 perf_event_mmap_ctx(ctx, mmap_event);
3574 rcu_read_unlock();
3575
3576 kfree(buf);
3577 }
3578
3579 void __perf_event_mmap(struct vm_area_struct *vma)
3580 {
3581 struct perf_mmap_event mmap_event;
3582
3583 if (!atomic_read(&nr_mmap_events))
3584 return;
3585
3586 mmap_event = (struct perf_mmap_event){
3587 .vma = vma,
3588 /* .file_name */
3589 /* .file_size */
3590 .event_id = {
3591 .header = {
3592 .type = PERF_RECORD_MMAP,
3593 .misc = 0,
3594 /* .size */
3595 },
3596 /* .pid */
3597 /* .tid */
3598 .start = vma->vm_start,
3599 .len = vma->vm_end - vma->vm_start,
3600 .pgoff = vma->vm_pgoff,
3601 },
3602 };
3603
3604 perf_event_mmap_event(&mmap_event);
3605 }
3606
3607 /*
3608 * IRQ throttle logging
3609 */
3610
3611 static void perf_log_throttle(struct perf_event *event, int enable)
3612 {
3613 struct perf_output_handle handle;
3614 int ret;
3615
3616 struct {
3617 struct perf_event_header header;
3618 u64 time;
3619 u64 id;
3620 u64 stream_id;
3621 } throttle_event = {
3622 .header = {
3623 .type = PERF_RECORD_THROTTLE,
3624 .misc = 0,
3625 .size = sizeof(throttle_event),
3626 },
3627 .time = perf_clock(),
3628 .id = primary_event_id(event),
3629 .stream_id = event->id,
3630 };
3631
3632 if (enable)
3633 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3634
3635 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3636 if (ret)
3637 return;
3638
3639 perf_output_put(&handle, throttle_event);
3640 perf_output_end(&handle);
3641 }
3642
3643 /*
3644 * Generic event overflow handling, sampling.
3645 */
3646
3647 static int __perf_event_overflow(struct perf_event *event, int nmi,
3648 int throttle, struct perf_sample_data *data,
3649 struct pt_regs *regs)
3650 {
3651 int events = atomic_read(&event->event_limit);
3652 struct hw_perf_event *hwc = &event->hw;
3653 int ret = 0;
3654
3655 throttle = (throttle && event->pmu->unthrottle != NULL);
3656
3657 if (!throttle) {
3658 hwc->interrupts++;
3659 } else {
3660 if (hwc->interrupts != MAX_INTERRUPTS) {
3661 hwc->interrupts++;
3662 if (HZ * hwc->interrupts >
3663 (u64)sysctl_perf_event_sample_rate) {
3664 hwc->interrupts = MAX_INTERRUPTS;
3665 perf_log_throttle(event, 0);
3666 ret = 1;
3667 }
3668 } else {
3669 /*
3670 * Keep re-disabling events even though on the previous
3671 * pass we disabled it - just in case we raced with a
3672 * sched-in and the event got enabled again:
3673 */
3674 ret = 1;
3675 }
3676 }
3677
3678 if (event->attr.freq) {
3679 u64 now = perf_clock();
3680 s64 delta = now - hwc->freq_stamp;
3681
3682 hwc->freq_stamp = now;
3683
3684 if (delta > 0 && delta < TICK_NSEC)
3685 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3686 }
3687
3688 /*
3689 * XXX event_limit might not quite work as expected on inherited
3690 * events
3691 */
3692
3693 event->pending_kill = POLL_IN;
3694 if (events && atomic_dec_and_test(&event->event_limit)) {
3695 ret = 1;
3696 event->pending_kill = POLL_HUP;
3697 if (nmi) {
3698 event->pending_disable = 1;
3699 perf_pending_queue(&event->pending,
3700 perf_pending_event);
3701 } else
3702 perf_event_disable(event);
3703 }
3704
3705 if (event->overflow_handler)
3706 event->overflow_handler(event, nmi, data, regs);
3707 else
3708 perf_event_output(event, nmi, data, regs);
3709
3710 return ret;
3711 }
3712
3713 int perf_event_overflow(struct perf_event *event, int nmi,
3714 struct perf_sample_data *data,
3715 struct pt_regs *regs)
3716 {
3717 return __perf_event_overflow(event, nmi, 1, data, regs);
3718 }
3719
3720 /*
3721 * Generic software event infrastructure
3722 */
3723
3724 /*
3725 * We directly increment event->count and keep a second value in
3726 * event->hw.period_left to count intervals. This period event
3727 * is kept in the range [-sample_period, 0] so that we can use the
3728 * sign as trigger.
3729 */
3730
3731 static u64 perf_swevent_set_period(struct perf_event *event)
3732 {
3733 struct hw_perf_event *hwc = &event->hw;
3734 u64 period = hwc->last_period;
3735 u64 nr, offset;
3736 s64 old, val;
3737
3738 hwc->last_period = hwc->sample_period;
3739
3740 again:
3741 old = val = atomic64_read(&hwc->period_left);
3742 if (val < 0)
3743 return 0;
3744
3745 nr = div64_u64(period + val, period);
3746 offset = nr * period;
3747 val -= offset;
3748 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3749 goto again;
3750
3751 return nr;
3752 }
3753
3754 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3755 int nmi, struct perf_sample_data *data,
3756 struct pt_regs *regs)
3757 {
3758 struct hw_perf_event *hwc = &event->hw;
3759 int throttle = 0;
3760
3761 data->period = event->hw.last_period;
3762 if (!overflow)
3763 overflow = perf_swevent_set_period(event);
3764
3765 if (hwc->interrupts == MAX_INTERRUPTS)
3766 return;
3767
3768 for (; overflow; overflow--) {
3769 if (__perf_event_overflow(event, nmi, throttle,
3770 data, regs)) {
3771 /*
3772 * We inhibit the overflow from happening when
3773 * hwc->interrupts == MAX_INTERRUPTS.
3774 */
3775 break;
3776 }
3777 throttle = 1;
3778 }
3779 }
3780
3781 static void perf_swevent_unthrottle(struct perf_event *event)
3782 {
3783 /*
3784 * Nothing to do, we already reset hwc->interrupts.
3785 */
3786 }
3787
3788 static void perf_swevent_add(struct perf_event *event, u64 nr,
3789 int nmi, struct perf_sample_data *data,
3790 struct pt_regs *regs)
3791 {
3792 struct hw_perf_event *hwc = &event->hw;
3793
3794 atomic64_add(nr, &event->count);
3795
3796 if (!regs)
3797 return;
3798
3799 if (!hwc->sample_period)
3800 return;
3801
3802 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3803 return perf_swevent_overflow(event, 1, nmi, data, regs);
3804
3805 if (atomic64_add_negative(nr, &hwc->period_left))
3806 return;
3807
3808 perf_swevent_overflow(event, 0, nmi, data, regs);
3809 }
3810
3811 static int perf_swevent_is_counting(struct perf_event *event)
3812 {
3813 /*
3814 * The event is active, we're good!
3815 */
3816 if (event->state == PERF_EVENT_STATE_ACTIVE)
3817 return 1;
3818
3819 /*
3820 * The event is off/error, not counting.
3821 */
3822 if (event->state != PERF_EVENT_STATE_INACTIVE)
3823 return 0;
3824
3825 /*
3826 * The event is inactive, if the context is active
3827 * we're part of a group that didn't make it on the 'pmu',
3828 * not counting.
3829 */
3830 if (event->ctx->is_active)
3831 return 0;
3832
3833 /*
3834 * We're inactive and the context is too, this means the
3835 * task is scheduled out, we're counting events that happen
3836 * to us, like migration events.
3837 */
3838 return 1;
3839 }
3840
3841 static int perf_tp_event_match(struct perf_event *event,
3842 struct perf_sample_data *data);
3843
3844 static int perf_exclude_event(struct perf_event *event,
3845 struct pt_regs *regs)
3846 {
3847 if (regs) {
3848 if (event->attr.exclude_user && user_mode(regs))
3849 return 1;
3850
3851 if (event->attr.exclude_kernel && !user_mode(regs))
3852 return 1;
3853 }
3854
3855 return 0;
3856 }
3857
3858 static int perf_swevent_match(struct perf_event *event,
3859 enum perf_type_id type,
3860 u32 event_id,
3861 struct perf_sample_data *data,
3862 struct pt_regs *regs)
3863 {
3864 if (!perf_swevent_is_counting(event))
3865 return 0;
3866
3867 if (event->attr.type != type)
3868 return 0;
3869
3870 if (event->attr.config != event_id)
3871 return 0;
3872
3873 if (perf_exclude_event(event, regs))
3874 return 0;
3875
3876 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3877 !perf_tp_event_match(event, data))
3878 return 0;
3879
3880 return 1;
3881 }
3882
3883 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3884 enum perf_type_id type,
3885 u32 event_id, u64 nr, int nmi,
3886 struct perf_sample_data *data,
3887 struct pt_regs *regs)
3888 {
3889 struct perf_event *event;
3890
3891 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3892 if (perf_swevent_match(event, type, event_id, data, regs))
3893 perf_swevent_add(event, nr, nmi, data, regs);
3894 }
3895 }
3896
3897 int perf_swevent_get_recursion_context(void)
3898 {
3899 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3900 int rctx;
3901
3902 if (in_nmi())
3903 rctx = 3;
3904 else if (in_irq())
3905 rctx = 2;
3906 else if (in_softirq())
3907 rctx = 1;
3908 else
3909 rctx = 0;
3910
3911 if (cpuctx->recursion[rctx]) {
3912 put_cpu_var(perf_cpu_context);
3913 return -1;
3914 }
3915
3916 cpuctx->recursion[rctx]++;
3917 barrier();
3918
3919 return rctx;
3920 }
3921 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3922
3923 void perf_swevent_put_recursion_context(int rctx)
3924 {
3925 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3926 barrier();
3927 cpuctx->recursion[rctx]--;
3928 put_cpu_var(perf_cpu_context);
3929 }
3930 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
3931
3932 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3933 u64 nr, int nmi,
3934 struct perf_sample_data *data,
3935 struct pt_regs *regs)
3936 {
3937 struct perf_cpu_context *cpuctx;
3938 struct perf_event_context *ctx;
3939
3940 cpuctx = &__get_cpu_var(perf_cpu_context);
3941 rcu_read_lock();
3942 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3943 nr, nmi, data, regs);
3944 /*
3945 * doesn't really matter which of the child contexts the
3946 * events ends up in.
3947 */
3948 ctx = rcu_dereference(current->perf_event_ctxp);
3949 if (ctx)
3950 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3951 rcu_read_unlock();
3952 }
3953
3954 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3955 struct pt_regs *regs, u64 addr)
3956 {
3957 struct perf_sample_data data;
3958 int rctx;
3959
3960 rctx = perf_swevent_get_recursion_context();
3961 if (rctx < 0)
3962 return;
3963
3964 data.addr = addr;
3965 data.raw = NULL;
3966
3967 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3968
3969 perf_swevent_put_recursion_context(rctx);
3970 }
3971
3972 static void perf_swevent_read(struct perf_event *event)
3973 {
3974 }
3975
3976 static int perf_swevent_enable(struct perf_event *event)
3977 {
3978 struct hw_perf_event *hwc = &event->hw;
3979
3980 if (hwc->sample_period) {
3981 hwc->last_period = hwc->sample_period;
3982 perf_swevent_set_period(event);
3983 }
3984 return 0;
3985 }
3986
3987 static void perf_swevent_disable(struct perf_event *event)
3988 {
3989 }
3990
3991 static const struct pmu perf_ops_generic = {
3992 .enable = perf_swevent_enable,
3993 .disable = perf_swevent_disable,
3994 .read = perf_swevent_read,
3995 .unthrottle = perf_swevent_unthrottle,
3996 };
3997
3998 /*
3999 * hrtimer based swevent callback
4000 */
4001
4002 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4003 {
4004 enum hrtimer_restart ret = HRTIMER_RESTART;
4005 struct perf_sample_data data;
4006 struct pt_regs *regs;
4007 struct perf_event *event;
4008 u64 period;
4009
4010 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4011 event->pmu->read(event);
4012
4013 data.addr = 0;
4014 data.period = event->hw.last_period;
4015 regs = get_irq_regs();
4016 /*
4017 * In case we exclude kernel IPs or are somehow not in interrupt
4018 * context, provide the next best thing, the user IP.
4019 */
4020 if ((event->attr.exclude_kernel || !regs) &&
4021 !event->attr.exclude_user)
4022 regs = task_pt_regs(current);
4023
4024 if (regs) {
4025 if (!(event->attr.exclude_idle && current->pid == 0))
4026 if (perf_event_overflow(event, 0, &data, regs))
4027 ret = HRTIMER_NORESTART;
4028 }
4029
4030 period = max_t(u64, 10000, event->hw.sample_period);
4031 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4032
4033 return ret;
4034 }
4035
4036 static void perf_swevent_start_hrtimer(struct perf_event *event)
4037 {
4038 struct hw_perf_event *hwc = &event->hw;
4039
4040 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 hwc->hrtimer.function = perf_swevent_hrtimer;
4042 if (hwc->sample_period) {
4043 u64 period;
4044
4045 if (hwc->remaining) {
4046 if (hwc->remaining < 0)
4047 period = 10000;
4048 else
4049 period = hwc->remaining;
4050 hwc->remaining = 0;
4051 } else {
4052 period = max_t(u64, 10000, hwc->sample_period);
4053 }
4054 __hrtimer_start_range_ns(&hwc->hrtimer,
4055 ns_to_ktime(period), 0,
4056 HRTIMER_MODE_REL, 0);
4057 }
4058 }
4059
4060 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4061 {
4062 struct hw_perf_event *hwc = &event->hw;
4063
4064 if (hwc->sample_period) {
4065 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4066 hwc->remaining = ktime_to_ns(remaining);
4067
4068 hrtimer_cancel(&hwc->hrtimer);
4069 }
4070 }
4071
4072 /*
4073 * Software event: cpu wall time clock
4074 */
4075
4076 static void cpu_clock_perf_event_update(struct perf_event *event)
4077 {
4078 int cpu = raw_smp_processor_id();
4079 s64 prev;
4080 u64 now;
4081
4082 now = cpu_clock(cpu);
4083 prev = atomic64_read(&event->hw.prev_count);
4084 atomic64_set(&event->hw.prev_count, now);
4085 atomic64_add(now - prev, &event->count);
4086 }
4087
4088 static int cpu_clock_perf_event_enable(struct perf_event *event)
4089 {
4090 struct hw_perf_event *hwc = &event->hw;
4091 int cpu = raw_smp_processor_id();
4092
4093 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4094 perf_swevent_start_hrtimer(event);
4095
4096 return 0;
4097 }
4098
4099 static void cpu_clock_perf_event_disable(struct perf_event *event)
4100 {
4101 perf_swevent_cancel_hrtimer(event);
4102 cpu_clock_perf_event_update(event);
4103 }
4104
4105 static void cpu_clock_perf_event_read(struct perf_event *event)
4106 {
4107 cpu_clock_perf_event_update(event);
4108 }
4109
4110 static const struct pmu perf_ops_cpu_clock = {
4111 .enable = cpu_clock_perf_event_enable,
4112 .disable = cpu_clock_perf_event_disable,
4113 .read = cpu_clock_perf_event_read,
4114 };
4115
4116 /*
4117 * Software event: task time clock
4118 */
4119
4120 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4121 {
4122 u64 prev;
4123 s64 delta;
4124
4125 prev = atomic64_xchg(&event->hw.prev_count, now);
4126 delta = now - prev;
4127 atomic64_add(delta, &event->count);
4128 }
4129
4130 static int task_clock_perf_event_enable(struct perf_event *event)
4131 {
4132 struct hw_perf_event *hwc = &event->hw;
4133 u64 now;
4134
4135 now = event->ctx->time;
4136
4137 atomic64_set(&hwc->prev_count, now);
4138
4139 perf_swevent_start_hrtimer(event);
4140
4141 return 0;
4142 }
4143
4144 static void task_clock_perf_event_disable(struct perf_event *event)
4145 {
4146 perf_swevent_cancel_hrtimer(event);
4147 task_clock_perf_event_update(event, event->ctx->time);
4148
4149 }
4150
4151 static void task_clock_perf_event_read(struct perf_event *event)
4152 {
4153 u64 time;
4154
4155 if (!in_nmi()) {
4156 update_context_time(event->ctx);
4157 time = event->ctx->time;
4158 } else {
4159 u64 now = perf_clock();
4160 u64 delta = now - event->ctx->timestamp;
4161 time = event->ctx->time + delta;
4162 }
4163
4164 task_clock_perf_event_update(event, time);
4165 }
4166
4167 static const struct pmu perf_ops_task_clock = {
4168 .enable = task_clock_perf_event_enable,
4169 .disable = task_clock_perf_event_disable,
4170 .read = task_clock_perf_event_read,
4171 };
4172
4173 #ifdef CONFIG_EVENT_PROFILE
4174
4175 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4176 int entry_size)
4177 {
4178 struct perf_raw_record raw = {
4179 .size = entry_size,
4180 .data = record,
4181 };
4182
4183 struct perf_sample_data data = {
4184 .addr = addr,
4185 .raw = &raw,
4186 };
4187
4188 struct pt_regs *regs = get_irq_regs();
4189
4190 if (!regs)
4191 regs = task_pt_regs(current);
4192
4193 /* Trace events already protected against recursion */
4194 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4195 &data, regs);
4196 }
4197 EXPORT_SYMBOL_GPL(perf_tp_event);
4198
4199 static int perf_tp_event_match(struct perf_event *event,
4200 struct perf_sample_data *data)
4201 {
4202 void *record = data->raw->data;
4203
4204 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4205 return 1;
4206 return 0;
4207 }
4208
4209 static void tp_perf_event_destroy(struct perf_event *event)
4210 {
4211 ftrace_profile_disable(event->attr.config);
4212 }
4213
4214 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4215 {
4216 /*
4217 * Raw tracepoint data is a severe data leak, only allow root to
4218 * have these.
4219 */
4220 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4221 perf_paranoid_tracepoint_raw() &&
4222 !capable(CAP_SYS_ADMIN))
4223 return ERR_PTR(-EPERM);
4224
4225 if (ftrace_profile_enable(event->attr.config))
4226 return NULL;
4227
4228 event->destroy = tp_perf_event_destroy;
4229
4230 return &perf_ops_generic;
4231 }
4232
4233 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4234 {
4235 char *filter_str;
4236 int ret;
4237
4238 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4239 return -EINVAL;
4240
4241 filter_str = strndup_user(arg, PAGE_SIZE);
4242 if (IS_ERR(filter_str))
4243 return PTR_ERR(filter_str);
4244
4245 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4246
4247 kfree(filter_str);
4248 return ret;
4249 }
4250
4251 static void perf_event_free_filter(struct perf_event *event)
4252 {
4253 ftrace_profile_free_filter(event);
4254 }
4255
4256 #else
4257
4258 static int perf_tp_event_match(struct perf_event *event,
4259 struct perf_sample_data *data)
4260 {
4261 return 1;
4262 }
4263
4264 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4265 {
4266 return NULL;
4267 }
4268
4269 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4270 {
4271 return -ENOENT;
4272 }
4273
4274 static void perf_event_free_filter(struct perf_event *event)
4275 {
4276 }
4277
4278 #endif /* CONFIG_EVENT_PROFILE */
4279
4280 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4281 static void bp_perf_event_destroy(struct perf_event *event)
4282 {
4283 release_bp_slot(event);
4284 }
4285
4286 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4287 {
4288 int err;
4289 /*
4290 * The breakpoint is already filled if we haven't created the counter
4291 * through perf syscall
4292 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4293 */
4294 if (!bp->callback)
4295 err = register_perf_hw_breakpoint(bp);
4296 else
4297 err = __register_perf_hw_breakpoint(bp);
4298 if (err)
4299 return ERR_PTR(err);
4300
4301 bp->destroy = bp_perf_event_destroy;
4302
4303 return &perf_ops_bp;
4304 }
4305
4306 void perf_bp_event(struct perf_event *bp, void *data)
4307 {
4308 struct perf_sample_data sample;
4309 struct pt_regs *regs = data;
4310
4311 sample.addr = bp->attr.bp_addr;
4312
4313 if (!perf_exclude_event(bp, regs))
4314 perf_swevent_add(bp, 1, 1, &sample, regs);
4315 }
4316 #else
4317 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4318 {
4319 return NULL;
4320 }
4321
4322 void perf_bp_event(struct perf_event *bp, void *regs)
4323 {
4324 }
4325 #endif
4326
4327 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4328
4329 static void sw_perf_event_destroy(struct perf_event *event)
4330 {
4331 u64 event_id = event->attr.config;
4332
4333 WARN_ON(event->parent);
4334
4335 atomic_dec(&perf_swevent_enabled[event_id]);
4336 }
4337
4338 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4339 {
4340 const struct pmu *pmu = NULL;
4341 u64 event_id = event->attr.config;
4342
4343 /*
4344 * Software events (currently) can't in general distinguish
4345 * between user, kernel and hypervisor events.
4346 * However, context switches and cpu migrations are considered
4347 * to be kernel events, and page faults are never hypervisor
4348 * events.
4349 */
4350 switch (event_id) {
4351 case PERF_COUNT_SW_CPU_CLOCK:
4352 pmu = &perf_ops_cpu_clock;
4353
4354 break;
4355 case PERF_COUNT_SW_TASK_CLOCK:
4356 /*
4357 * If the user instantiates this as a per-cpu event,
4358 * use the cpu_clock event instead.
4359 */
4360 if (event->ctx->task)
4361 pmu = &perf_ops_task_clock;
4362 else
4363 pmu = &perf_ops_cpu_clock;
4364
4365 break;
4366 case PERF_COUNT_SW_PAGE_FAULTS:
4367 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4368 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4369 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4370 case PERF_COUNT_SW_CPU_MIGRATIONS:
4371 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4372 case PERF_COUNT_SW_EMULATION_FAULTS:
4373 if (!event->parent) {
4374 atomic_inc(&perf_swevent_enabled[event_id]);
4375 event->destroy = sw_perf_event_destroy;
4376 }
4377 pmu = &perf_ops_generic;
4378 break;
4379 }
4380
4381 return pmu;
4382 }
4383
4384 /*
4385 * Allocate and initialize a event structure
4386 */
4387 static struct perf_event *
4388 perf_event_alloc(struct perf_event_attr *attr,
4389 int cpu,
4390 struct perf_event_context *ctx,
4391 struct perf_event *group_leader,
4392 struct perf_event *parent_event,
4393 perf_callback_t callback,
4394 gfp_t gfpflags)
4395 {
4396 const struct pmu *pmu;
4397 struct perf_event *event;
4398 struct hw_perf_event *hwc;
4399 long err;
4400
4401 event = kzalloc(sizeof(*event), gfpflags);
4402 if (!event)
4403 return ERR_PTR(-ENOMEM);
4404
4405 /*
4406 * Single events are their own group leaders, with an
4407 * empty sibling list:
4408 */
4409 if (!group_leader)
4410 group_leader = event;
4411
4412 mutex_init(&event->child_mutex);
4413 INIT_LIST_HEAD(&event->child_list);
4414
4415 INIT_LIST_HEAD(&event->group_entry);
4416 INIT_LIST_HEAD(&event->event_entry);
4417 INIT_LIST_HEAD(&event->sibling_list);
4418 init_waitqueue_head(&event->waitq);
4419
4420 mutex_init(&event->mmap_mutex);
4421
4422 event->cpu = cpu;
4423 event->attr = *attr;
4424 event->group_leader = group_leader;
4425 event->pmu = NULL;
4426 event->ctx = ctx;
4427 event->oncpu = -1;
4428
4429 event->parent = parent_event;
4430
4431 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4432 event->id = atomic64_inc_return(&perf_event_id);
4433
4434 event->state = PERF_EVENT_STATE_INACTIVE;
4435
4436 if (!callback && parent_event)
4437 callback = parent_event->callback;
4438
4439 event->callback = callback;
4440
4441 if (attr->disabled)
4442 event->state = PERF_EVENT_STATE_OFF;
4443
4444 pmu = NULL;
4445
4446 hwc = &event->hw;
4447 hwc->sample_period = attr->sample_period;
4448 if (attr->freq && attr->sample_freq)
4449 hwc->sample_period = 1;
4450 hwc->last_period = hwc->sample_period;
4451
4452 atomic64_set(&hwc->period_left, hwc->sample_period);
4453
4454 /*
4455 * we currently do not support PERF_FORMAT_GROUP on inherited events
4456 */
4457 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4458 goto done;
4459
4460 switch (attr->type) {
4461 case PERF_TYPE_RAW:
4462 case PERF_TYPE_HARDWARE:
4463 case PERF_TYPE_HW_CACHE:
4464 pmu = hw_perf_event_init(event);
4465 break;
4466
4467 case PERF_TYPE_SOFTWARE:
4468 pmu = sw_perf_event_init(event);
4469 break;
4470
4471 case PERF_TYPE_TRACEPOINT:
4472 pmu = tp_perf_event_init(event);
4473 break;
4474
4475 case PERF_TYPE_BREAKPOINT:
4476 pmu = bp_perf_event_init(event);
4477 break;
4478
4479
4480 default:
4481 break;
4482 }
4483 done:
4484 err = 0;
4485 if (!pmu)
4486 err = -EINVAL;
4487 else if (IS_ERR(pmu))
4488 err = PTR_ERR(pmu);
4489
4490 if (err) {
4491 if (event->ns)
4492 put_pid_ns(event->ns);
4493 kfree(event);
4494 return ERR_PTR(err);
4495 }
4496
4497 event->pmu = pmu;
4498
4499 if (!event->parent) {
4500 atomic_inc(&nr_events);
4501 if (event->attr.mmap)
4502 atomic_inc(&nr_mmap_events);
4503 if (event->attr.comm)
4504 atomic_inc(&nr_comm_events);
4505 if (event->attr.task)
4506 atomic_inc(&nr_task_events);
4507 }
4508
4509 return event;
4510 }
4511
4512 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4513 struct perf_event_attr *attr)
4514 {
4515 u32 size;
4516 int ret;
4517
4518 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4519 return -EFAULT;
4520
4521 /*
4522 * zero the full structure, so that a short copy will be nice.
4523 */
4524 memset(attr, 0, sizeof(*attr));
4525
4526 ret = get_user(size, &uattr->size);
4527 if (ret)
4528 return ret;
4529
4530 if (size > PAGE_SIZE) /* silly large */
4531 goto err_size;
4532
4533 if (!size) /* abi compat */
4534 size = PERF_ATTR_SIZE_VER0;
4535
4536 if (size < PERF_ATTR_SIZE_VER0)
4537 goto err_size;
4538
4539 /*
4540 * If we're handed a bigger struct than we know of,
4541 * ensure all the unknown bits are 0 - i.e. new
4542 * user-space does not rely on any kernel feature
4543 * extensions we dont know about yet.
4544 */
4545 if (size > sizeof(*attr)) {
4546 unsigned char __user *addr;
4547 unsigned char __user *end;
4548 unsigned char val;
4549
4550 addr = (void __user *)uattr + sizeof(*attr);
4551 end = (void __user *)uattr + size;
4552
4553 for (; addr < end; addr++) {
4554 ret = get_user(val, addr);
4555 if (ret)
4556 return ret;
4557 if (val)
4558 goto err_size;
4559 }
4560 size = sizeof(*attr);
4561 }
4562
4563 ret = copy_from_user(attr, uattr, size);
4564 if (ret)
4565 return -EFAULT;
4566
4567 /*
4568 * If the type exists, the corresponding creation will verify
4569 * the attr->config.
4570 */
4571 if (attr->type >= PERF_TYPE_MAX)
4572 return -EINVAL;
4573
4574 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4575 return -EINVAL;
4576
4577 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4578 return -EINVAL;
4579
4580 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4581 return -EINVAL;
4582
4583 out:
4584 return ret;
4585
4586 err_size:
4587 put_user(sizeof(*attr), &uattr->size);
4588 ret = -E2BIG;
4589 goto out;
4590 }
4591
4592 static int perf_event_set_output(struct perf_event *event, int output_fd)
4593 {
4594 struct perf_event *output_event = NULL;
4595 struct file *output_file = NULL;
4596 struct perf_event *old_output;
4597 int fput_needed = 0;
4598 int ret = -EINVAL;
4599
4600 if (!output_fd)
4601 goto set;
4602
4603 output_file = fget_light(output_fd, &fput_needed);
4604 if (!output_file)
4605 return -EBADF;
4606
4607 if (output_file->f_op != &perf_fops)
4608 goto out;
4609
4610 output_event = output_file->private_data;
4611
4612 /* Don't chain output fds */
4613 if (output_event->output)
4614 goto out;
4615
4616 /* Don't set an output fd when we already have an output channel */
4617 if (event->data)
4618 goto out;
4619
4620 atomic_long_inc(&output_file->f_count);
4621
4622 set:
4623 mutex_lock(&event->mmap_mutex);
4624 old_output = event->output;
4625 rcu_assign_pointer(event->output, output_event);
4626 mutex_unlock(&event->mmap_mutex);
4627
4628 if (old_output) {
4629 /*
4630 * we need to make sure no existing perf_output_*()
4631 * is still referencing this event.
4632 */
4633 synchronize_rcu();
4634 fput(old_output->filp);
4635 }
4636
4637 ret = 0;
4638 out:
4639 fput_light(output_file, fput_needed);
4640 return ret;
4641 }
4642
4643 /**
4644 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4645 *
4646 * @attr_uptr: event_id type attributes for monitoring/sampling
4647 * @pid: target pid
4648 * @cpu: target cpu
4649 * @group_fd: group leader event fd
4650 */
4651 SYSCALL_DEFINE5(perf_event_open,
4652 struct perf_event_attr __user *, attr_uptr,
4653 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4654 {
4655 struct perf_event *event, *group_leader;
4656 struct perf_event_attr attr;
4657 struct perf_event_context *ctx;
4658 struct file *event_file = NULL;
4659 struct file *group_file = NULL;
4660 int fput_needed = 0;
4661 int fput_needed2 = 0;
4662 int err;
4663
4664 /* for future expandability... */
4665 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4666 return -EINVAL;
4667
4668 err = perf_copy_attr(attr_uptr, &attr);
4669 if (err)
4670 return err;
4671
4672 if (!attr.exclude_kernel) {
4673 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4674 return -EACCES;
4675 }
4676
4677 if (attr.freq) {
4678 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4679 return -EINVAL;
4680 }
4681
4682 /*
4683 * Get the target context (task or percpu):
4684 */
4685 ctx = find_get_context(pid, cpu);
4686 if (IS_ERR(ctx))
4687 return PTR_ERR(ctx);
4688
4689 /*
4690 * Look up the group leader (we will attach this event to it):
4691 */
4692 group_leader = NULL;
4693 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4694 err = -EINVAL;
4695 group_file = fget_light(group_fd, &fput_needed);
4696 if (!group_file)
4697 goto err_put_context;
4698 if (group_file->f_op != &perf_fops)
4699 goto err_put_context;
4700
4701 group_leader = group_file->private_data;
4702 /*
4703 * Do not allow a recursive hierarchy (this new sibling
4704 * becoming part of another group-sibling):
4705 */
4706 if (group_leader->group_leader != group_leader)
4707 goto err_put_context;
4708 /*
4709 * Do not allow to attach to a group in a different
4710 * task or CPU context:
4711 */
4712 if (group_leader->ctx != ctx)
4713 goto err_put_context;
4714 /*
4715 * Only a group leader can be exclusive or pinned
4716 */
4717 if (attr.exclusive || attr.pinned)
4718 goto err_put_context;
4719 }
4720
4721 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4722 NULL, NULL, GFP_KERNEL);
4723 err = PTR_ERR(event);
4724 if (IS_ERR(event))
4725 goto err_put_context;
4726
4727 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4728 if (err < 0)
4729 goto err_free_put_context;
4730
4731 event_file = fget_light(err, &fput_needed2);
4732 if (!event_file)
4733 goto err_free_put_context;
4734
4735 if (flags & PERF_FLAG_FD_OUTPUT) {
4736 err = perf_event_set_output(event, group_fd);
4737 if (err)
4738 goto err_fput_free_put_context;
4739 }
4740
4741 event->filp = event_file;
4742 WARN_ON_ONCE(ctx->parent_ctx);
4743 mutex_lock(&ctx->mutex);
4744 perf_install_in_context(ctx, event, cpu);
4745 ++ctx->generation;
4746 mutex_unlock(&ctx->mutex);
4747
4748 event->owner = current;
4749 get_task_struct(current);
4750 mutex_lock(&current->perf_event_mutex);
4751 list_add_tail(&event->owner_entry, &current->perf_event_list);
4752 mutex_unlock(&current->perf_event_mutex);
4753
4754 err_fput_free_put_context:
4755 fput_light(event_file, fput_needed2);
4756
4757 err_free_put_context:
4758 if (err < 0)
4759 kfree(event);
4760
4761 err_put_context:
4762 if (err < 0)
4763 put_ctx(ctx);
4764
4765 fput_light(group_file, fput_needed);
4766
4767 return err;
4768 }
4769
4770 /**
4771 * perf_event_create_kernel_counter
4772 *
4773 * @attr: attributes of the counter to create
4774 * @cpu: cpu in which the counter is bound
4775 * @pid: task to profile
4776 */
4777 struct perf_event *
4778 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4779 pid_t pid, perf_callback_t callback)
4780 {
4781 struct perf_event *event;
4782 struct perf_event_context *ctx;
4783 int err;
4784
4785 /*
4786 * Get the target context (task or percpu):
4787 */
4788
4789 ctx = find_get_context(pid, cpu);
4790 if (IS_ERR(ctx)) {
4791 err = PTR_ERR(ctx);
4792 goto err_exit;
4793 }
4794
4795 event = perf_event_alloc(attr, cpu, ctx, NULL,
4796 NULL, callback, GFP_KERNEL);
4797 if (IS_ERR(event)) {
4798 err = PTR_ERR(event);
4799 goto err_put_context;
4800 }
4801
4802 event->filp = NULL;
4803 WARN_ON_ONCE(ctx->parent_ctx);
4804 mutex_lock(&ctx->mutex);
4805 perf_install_in_context(ctx, event, cpu);
4806 ++ctx->generation;
4807 mutex_unlock(&ctx->mutex);
4808
4809 event->owner = current;
4810 get_task_struct(current);
4811 mutex_lock(&current->perf_event_mutex);
4812 list_add_tail(&event->owner_entry, &current->perf_event_list);
4813 mutex_unlock(&current->perf_event_mutex);
4814
4815 return event;
4816
4817 err_put_context:
4818 put_ctx(ctx);
4819 err_exit:
4820 return ERR_PTR(err);
4821 }
4822 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4823
4824 /*
4825 * inherit a event from parent task to child task:
4826 */
4827 static struct perf_event *
4828 inherit_event(struct perf_event *parent_event,
4829 struct task_struct *parent,
4830 struct perf_event_context *parent_ctx,
4831 struct task_struct *child,
4832 struct perf_event *group_leader,
4833 struct perf_event_context *child_ctx)
4834 {
4835 struct perf_event *child_event;
4836
4837 /*
4838 * Instead of creating recursive hierarchies of events,
4839 * we link inherited events back to the original parent,
4840 * which has a filp for sure, which we use as the reference
4841 * count:
4842 */
4843 if (parent_event->parent)
4844 parent_event = parent_event->parent;
4845
4846 child_event = perf_event_alloc(&parent_event->attr,
4847 parent_event->cpu, child_ctx,
4848 group_leader, parent_event,
4849 NULL, GFP_KERNEL);
4850 if (IS_ERR(child_event))
4851 return child_event;
4852 get_ctx(child_ctx);
4853
4854 /*
4855 * Make the child state follow the state of the parent event,
4856 * not its attr.disabled bit. We hold the parent's mutex,
4857 * so we won't race with perf_event_{en, dis}able_family.
4858 */
4859 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4860 child_event->state = PERF_EVENT_STATE_INACTIVE;
4861 else
4862 child_event->state = PERF_EVENT_STATE_OFF;
4863
4864 if (parent_event->attr.freq)
4865 child_event->hw.sample_period = parent_event->hw.sample_period;
4866
4867 child_event->overflow_handler = parent_event->overflow_handler;
4868
4869 /*
4870 * Link it up in the child's context:
4871 */
4872 add_event_to_ctx(child_event, child_ctx);
4873
4874 /*
4875 * Get a reference to the parent filp - we will fput it
4876 * when the child event exits. This is safe to do because
4877 * we are in the parent and we know that the filp still
4878 * exists and has a nonzero count:
4879 */
4880 atomic_long_inc(&parent_event->filp->f_count);
4881
4882 /*
4883 * Link this into the parent event's child list
4884 */
4885 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4886 mutex_lock(&parent_event->child_mutex);
4887 list_add_tail(&child_event->child_list, &parent_event->child_list);
4888 mutex_unlock(&parent_event->child_mutex);
4889
4890 return child_event;
4891 }
4892
4893 static int inherit_group(struct perf_event *parent_event,
4894 struct task_struct *parent,
4895 struct perf_event_context *parent_ctx,
4896 struct task_struct *child,
4897 struct perf_event_context *child_ctx)
4898 {
4899 struct perf_event *leader;
4900 struct perf_event *sub;
4901 struct perf_event *child_ctr;
4902
4903 leader = inherit_event(parent_event, parent, parent_ctx,
4904 child, NULL, child_ctx);
4905 if (IS_ERR(leader))
4906 return PTR_ERR(leader);
4907 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4908 child_ctr = inherit_event(sub, parent, parent_ctx,
4909 child, leader, child_ctx);
4910 if (IS_ERR(child_ctr))
4911 return PTR_ERR(child_ctr);
4912 }
4913 return 0;
4914 }
4915
4916 static void sync_child_event(struct perf_event *child_event,
4917 struct task_struct *child)
4918 {
4919 struct perf_event *parent_event = child_event->parent;
4920 u64 child_val;
4921
4922 if (child_event->attr.inherit_stat)
4923 perf_event_read_event(child_event, child);
4924
4925 child_val = atomic64_read(&child_event->count);
4926
4927 /*
4928 * Add back the child's count to the parent's count:
4929 */
4930 atomic64_add(child_val, &parent_event->count);
4931 atomic64_add(child_event->total_time_enabled,
4932 &parent_event->child_total_time_enabled);
4933 atomic64_add(child_event->total_time_running,
4934 &parent_event->child_total_time_running);
4935
4936 /*
4937 * Remove this event from the parent's list
4938 */
4939 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4940 mutex_lock(&parent_event->child_mutex);
4941 list_del_init(&child_event->child_list);
4942 mutex_unlock(&parent_event->child_mutex);
4943
4944 /*
4945 * Release the parent event, if this was the last
4946 * reference to it.
4947 */
4948 fput(parent_event->filp);
4949 }
4950
4951 static void
4952 __perf_event_exit_task(struct perf_event *child_event,
4953 struct perf_event_context *child_ctx,
4954 struct task_struct *child)
4955 {
4956 struct perf_event *parent_event;
4957
4958 perf_event_remove_from_context(child_event);
4959
4960 parent_event = child_event->parent;
4961 /*
4962 * It can happen that parent exits first, and has events
4963 * that are still around due to the child reference. These
4964 * events need to be zapped - but otherwise linger.
4965 */
4966 if (parent_event) {
4967 sync_child_event(child_event, child);
4968 free_event(child_event);
4969 }
4970 }
4971
4972 /*
4973 * When a child task exits, feed back event values to parent events.
4974 */
4975 void perf_event_exit_task(struct task_struct *child)
4976 {
4977 struct perf_event *child_event, *tmp;
4978 struct perf_event_context *child_ctx;
4979 unsigned long flags;
4980
4981 if (likely(!child->perf_event_ctxp)) {
4982 perf_event_task(child, NULL, 0);
4983 return;
4984 }
4985
4986 local_irq_save(flags);
4987 /*
4988 * We can't reschedule here because interrupts are disabled,
4989 * and either child is current or it is a task that can't be
4990 * scheduled, so we are now safe from rescheduling changing
4991 * our context.
4992 */
4993 child_ctx = child->perf_event_ctxp;
4994 __perf_event_task_sched_out(child_ctx);
4995
4996 /*
4997 * Take the context lock here so that if find_get_context is
4998 * reading child->perf_event_ctxp, we wait until it has
4999 * incremented the context's refcount before we do put_ctx below.
5000 */
5001 spin_lock(&child_ctx->lock);
5002 child->perf_event_ctxp = NULL;
5003 /*
5004 * If this context is a clone; unclone it so it can't get
5005 * swapped to another process while we're removing all
5006 * the events from it.
5007 */
5008 unclone_ctx(child_ctx);
5009 update_context_time(child_ctx);
5010 spin_unlock_irqrestore(&child_ctx->lock, flags);
5011
5012 /*
5013 * Report the task dead after unscheduling the events so that we
5014 * won't get any samples after PERF_RECORD_EXIT. We can however still
5015 * get a few PERF_RECORD_READ events.
5016 */
5017 perf_event_task(child, child_ctx, 0);
5018
5019 /*
5020 * We can recurse on the same lock type through:
5021 *
5022 * __perf_event_exit_task()
5023 * sync_child_event()
5024 * fput(parent_event->filp)
5025 * perf_release()
5026 * mutex_lock(&ctx->mutex)
5027 *
5028 * But since its the parent context it won't be the same instance.
5029 */
5030 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5031
5032 again:
5033 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5034 group_entry)
5035 __perf_event_exit_task(child_event, child_ctx, child);
5036
5037 /*
5038 * If the last event was a group event, it will have appended all
5039 * its siblings to the list, but we obtained 'tmp' before that which
5040 * will still point to the list head terminating the iteration.
5041 */
5042 if (!list_empty(&child_ctx->group_list))
5043 goto again;
5044
5045 mutex_unlock(&child_ctx->mutex);
5046
5047 put_ctx(child_ctx);
5048 }
5049
5050 /*
5051 * free an unexposed, unused context as created by inheritance by
5052 * init_task below, used by fork() in case of fail.
5053 */
5054 void perf_event_free_task(struct task_struct *task)
5055 {
5056 struct perf_event_context *ctx = task->perf_event_ctxp;
5057 struct perf_event *event, *tmp;
5058
5059 if (!ctx)
5060 return;
5061
5062 mutex_lock(&ctx->mutex);
5063 again:
5064 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5065 struct perf_event *parent = event->parent;
5066
5067 if (WARN_ON_ONCE(!parent))
5068 continue;
5069
5070 mutex_lock(&parent->child_mutex);
5071 list_del_init(&event->child_list);
5072 mutex_unlock(&parent->child_mutex);
5073
5074 fput(parent->filp);
5075
5076 list_del_event(event, ctx);
5077 free_event(event);
5078 }
5079
5080 if (!list_empty(&ctx->group_list))
5081 goto again;
5082
5083 mutex_unlock(&ctx->mutex);
5084
5085 put_ctx(ctx);
5086 }
5087
5088 /*
5089 * Initialize the perf_event context in task_struct
5090 */
5091 int perf_event_init_task(struct task_struct *child)
5092 {
5093 struct perf_event_context *child_ctx, *parent_ctx;
5094 struct perf_event_context *cloned_ctx;
5095 struct perf_event *event;
5096 struct task_struct *parent = current;
5097 int inherited_all = 1;
5098 int ret = 0;
5099
5100 child->perf_event_ctxp = NULL;
5101
5102 mutex_init(&child->perf_event_mutex);
5103 INIT_LIST_HEAD(&child->perf_event_list);
5104
5105 if (likely(!parent->perf_event_ctxp))
5106 return 0;
5107
5108 /*
5109 * This is executed from the parent task context, so inherit
5110 * events that have been marked for cloning.
5111 * First allocate and initialize a context for the child.
5112 */
5113
5114 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5115 if (!child_ctx)
5116 return -ENOMEM;
5117
5118 __perf_event_init_context(child_ctx, child);
5119 child->perf_event_ctxp = child_ctx;
5120 get_task_struct(child);
5121
5122 /*
5123 * If the parent's context is a clone, pin it so it won't get
5124 * swapped under us.
5125 */
5126 parent_ctx = perf_pin_task_context(parent);
5127
5128 /*
5129 * No need to check if parent_ctx != NULL here; since we saw
5130 * it non-NULL earlier, the only reason for it to become NULL
5131 * is if we exit, and since we're currently in the middle of
5132 * a fork we can't be exiting at the same time.
5133 */
5134
5135 /*
5136 * Lock the parent list. No need to lock the child - not PID
5137 * hashed yet and not running, so nobody can access it.
5138 */
5139 mutex_lock(&parent_ctx->mutex);
5140
5141 /*
5142 * We dont have to disable NMIs - we are only looking at
5143 * the list, not manipulating it:
5144 */
5145 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5146
5147 if (!event->attr.inherit) {
5148 inherited_all = 0;
5149 continue;
5150 }
5151
5152 ret = inherit_group(event, parent, parent_ctx,
5153 child, child_ctx);
5154 if (ret) {
5155 inherited_all = 0;
5156 break;
5157 }
5158 }
5159
5160 if (inherited_all) {
5161 /*
5162 * Mark the child context as a clone of the parent
5163 * context, or of whatever the parent is a clone of.
5164 * Note that if the parent is a clone, it could get
5165 * uncloned at any point, but that doesn't matter
5166 * because the list of events and the generation
5167 * count can't have changed since we took the mutex.
5168 */
5169 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5170 if (cloned_ctx) {
5171 child_ctx->parent_ctx = cloned_ctx;
5172 child_ctx->parent_gen = parent_ctx->parent_gen;
5173 } else {
5174 child_ctx->parent_ctx = parent_ctx;
5175 child_ctx->parent_gen = parent_ctx->generation;
5176 }
5177 get_ctx(child_ctx->parent_ctx);
5178 }
5179
5180 mutex_unlock(&parent_ctx->mutex);
5181
5182 perf_unpin_context(parent_ctx);
5183
5184 return ret;
5185 }
5186
5187 static void __cpuinit perf_event_init_cpu(int cpu)
5188 {
5189 struct perf_cpu_context *cpuctx;
5190
5191 cpuctx = &per_cpu(perf_cpu_context, cpu);
5192 __perf_event_init_context(&cpuctx->ctx, NULL);
5193
5194 spin_lock(&perf_resource_lock);
5195 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5196 spin_unlock(&perf_resource_lock);
5197
5198 hw_perf_event_setup(cpu);
5199 }
5200
5201 #ifdef CONFIG_HOTPLUG_CPU
5202 static void __perf_event_exit_cpu(void *info)
5203 {
5204 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5205 struct perf_event_context *ctx = &cpuctx->ctx;
5206 struct perf_event *event, *tmp;
5207
5208 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5209 __perf_event_remove_from_context(event);
5210 }
5211 static void perf_event_exit_cpu(int cpu)
5212 {
5213 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5214 struct perf_event_context *ctx = &cpuctx->ctx;
5215
5216 mutex_lock(&ctx->mutex);
5217 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5218 mutex_unlock(&ctx->mutex);
5219 }
5220 #else
5221 static inline void perf_event_exit_cpu(int cpu) { }
5222 #endif
5223
5224 static int __cpuinit
5225 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5226 {
5227 unsigned int cpu = (long)hcpu;
5228
5229 switch (action) {
5230
5231 case CPU_UP_PREPARE:
5232 case CPU_UP_PREPARE_FROZEN:
5233 perf_event_init_cpu(cpu);
5234 break;
5235
5236 case CPU_ONLINE:
5237 case CPU_ONLINE_FROZEN:
5238 hw_perf_event_setup_online(cpu);
5239 break;
5240
5241 case CPU_DOWN_PREPARE:
5242 case CPU_DOWN_PREPARE_FROZEN:
5243 perf_event_exit_cpu(cpu);
5244 break;
5245
5246 default:
5247 break;
5248 }
5249
5250 return NOTIFY_OK;
5251 }
5252
5253 /*
5254 * This has to have a higher priority than migration_notifier in sched.c.
5255 */
5256 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5257 .notifier_call = perf_cpu_notify,
5258 .priority = 20,
5259 };
5260
5261 void __init perf_event_init(void)
5262 {
5263 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5264 (void *)(long)smp_processor_id());
5265 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5266 (void *)(long)smp_processor_id());
5267 register_cpu_notifier(&perf_cpu_nb);
5268 }
5269
5270 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5271 {
5272 return sprintf(buf, "%d\n", perf_reserved_percpu);
5273 }
5274
5275 static ssize_t
5276 perf_set_reserve_percpu(struct sysdev_class *class,
5277 const char *buf,
5278 size_t count)
5279 {
5280 struct perf_cpu_context *cpuctx;
5281 unsigned long val;
5282 int err, cpu, mpt;
5283
5284 err = strict_strtoul(buf, 10, &val);
5285 if (err)
5286 return err;
5287 if (val > perf_max_events)
5288 return -EINVAL;
5289
5290 spin_lock(&perf_resource_lock);
5291 perf_reserved_percpu = val;
5292 for_each_online_cpu(cpu) {
5293 cpuctx = &per_cpu(perf_cpu_context, cpu);
5294 spin_lock_irq(&cpuctx->ctx.lock);
5295 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5296 perf_max_events - perf_reserved_percpu);
5297 cpuctx->max_pertask = mpt;
5298 spin_unlock_irq(&cpuctx->ctx.lock);
5299 }
5300 spin_unlock(&perf_resource_lock);
5301
5302 return count;
5303 }
5304
5305 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5306 {
5307 return sprintf(buf, "%d\n", perf_overcommit);
5308 }
5309
5310 static ssize_t
5311 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5312 {
5313 unsigned long val;
5314 int err;
5315
5316 err = strict_strtoul(buf, 10, &val);
5317 if (err)
5318 return err;
5319 if (val > 1)
5320 return -EINVAL;
5321
5322 spin_lock(&perf_resource_lock);
5323 perf_overcommit = val;
5324 spin_unlock(&perf_resource_lock);
5325
5326 return count;
5327 }
5328
5329 static SYSDEV_CLASS_ATTR(
5330 reserve_percpu,
5331 0644,
5332 perf_show_reserve_percpu,
5333 perf_set_reserve_percpu
5334 );
5335
5336 static SYSDEV_CLASS_ATTR(
5337 overcommit,
5338 0644,
5339 perf_show_overcommit,
5340 perf_set_overcommit
5341 );
5342
5343 static struct attribute *perfclass_attrs[] = {
5344 &attr_reserve_percpu.attr,
5345 &attr_overcommit.attr,
5346 NULL
5347 };
5348
5349 static struct attribute_group perfclass_attr_group = {
5350 .attrs = perfclass_attrs,
5351 .name = "perf_events",
5352 };
5353
5354 static int __init perf_event_sysfs_init(void)
5355 {
5356 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5357 &perfclass_attr_group);
5358 }
5359 device_initcall(perf_event_sysfs_init);
This page took 0.138861 seconds and 6 git commands to generate.